
DVCS Amplitude and Generalized Parton distributions

in Position Space

Asmita Mukherjee
Indian Institute of Technology, Mumbai, India

• Light-front wave functions and DVCS

• Simple example : electron at one loop

• DVCS amplitude in σ space

• Parton distributions in impact parameter space

• Simulated bound state calculations

ECT Trento; June 11-15, 2007

In collaboration with S. J. Brodsky, D. Chakrabarti, A. Harindranath, J. P. Vary
and H. Dahiya, S. Ray

. – p.1/24



Deeply Virtual Compton Scattering (DVCS) Amplitude

Deeply virtual Compton scattering :

q q' q'q

P'PP'P

Incident photon highly virtual, final photon real; momentum transfer ∆ = P − P ′, t = ∆2

Momenta of initial and final proton :

P =

„

P+ , ~0⊥ ,
M2

P+

«

, P ′ =

 

(1 − ζ)P+ , −~∆⊥ ,
M2 + ~∆2

⊥

(1 − ζ)P+

!

t = 2P · ∆ = −
ζ2M2 + ~∆2

⊥

1 − ζ
,

Q2

2P · q = ζ

ζ : skewness variable
For DVCS, −q2 = Q2 is large compared to the masses and | t |

Choose a frame where the incident space-like photon carries q+ = 0
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DVCS (contd.)

DVCS amplitude

MIJ (~q⊥, ~∆⊥, ζ) = ǫIµ ǫ
∗J
ν Mµν(~q⊥, ~∆⊥, ζ) = −e2q

1

2P̄+

Z 1

ζ−1
dx

×


tIJ (x, ζ) Ū(P ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P )

ff

,

where P̄ = 1
2
(P ′ + P ),

x is the fraction of the proton momentum carried by the active quark
For circularly polarized initial and final photons

t ↑↑(x, ζ) = t ↓↓(x, ζ) =
1

x− iǫ
+

1

x− ζ + iǫ

Contributions from longitudinal pol. photons are suppressed

Fλ,λ′ =

Z

dy−

8π
eixP+y−/2 〈P ′, λ′|ψ̄(0) γ+ ψ(y) |P, λ〉

˛

˛

˛

˛

y+=0,y⊥=0

=
1

2P̄+
Ū(P ′, λ′)

»

H(x, ζ, t) γ+ + E(x, ζ, t)
i

2M
σ+α(−∆α)

–

U(P, λ),
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Overlap Representation

• The target state is expanded in terms of multiparticle light-front wave functions in Fock
space; choose light-front gauge

DVCS amplitude is given in terms of overlaps of the light-front wave functions

Diehl, Feldman, Jacob, Kroll (2001);
Brodsky, Diehl, Huang (2001)

• Diagonal parton number conserving n→ n overlap in the kinematical regime
ζ < x < 1 and ζ − 1 < x < 0

Off-diagonal n+ 1 → n− 1 overlap for 0 < x < ζ where the parton number is
decreased by two.

• Consider a dressed electron state instead of a proton

State is expanded in Fock space : | e−γ〉 and | e−e−e+〉 contribute to O(α)

• Generalized form of QED : mass M to the external electrons, m to the internal electron
lines λ to the internal photon lines → composite fermion state with mass M : a fermion
and a vector ‘diquark" constituents

Brodsky, Drell (1980)

• Two and three particle LFWFs are systematically evaluated in perturbation theory :
2 → 2 and 3 → 1 contributions
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DVCS in QED at one loop

In the kinematical region ζ < x < 1 one has 2 → 2 contribution

F 22
++ =

√
1 − ζ

1 − ζ
2

H(2→2)(x, ζ, t) − ζ2

4(1 − ζ
2
)
√

1 − ζ
E(2→2)(x, ζ, t)

=

Z

d2~k⊥

16π3

»

ψ↑∗

+ 1
2
+1

(x′, ~k′⊥)ψ↑

+ 1
2
+1

(x,~k⊥) + ψ↑∗

+ 1
2
−1

(x′, ~k′⊥)ψ↑

+ 1
2
−1

(x,~k⊥)

+ ψ↑ ∗

− 1
2
+1

(x′, ~k′⊥)ψ↑

− 1
2
+1

(x,~k⊥)

–

,

F 22
+− =

1√
1 − ζ

(∆1 − i∆2)

2M
E(2→2)(x, ζ, t)

=

Z

d2~k⊥

16π3

»

ψ↑∗

+ 1
2
−1

(x′, ~k′⊥)ψ↓

+ 1
2
−1

(x,~k⊥) + ψ↑∗

− 1
2
+1

(x′, ~k′⊥)ψ↓

− 1
2
+1

(x,~k⊥)

–

,

where

x′ =
x− ζ

1 − ζ
, ~k′⊥ = ~k⊥ − 1 − x

1 − ζ
~∆⊥.
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DVCS in QED at one loop (contd.)

In the kinematical region 0 < x < ζ contribution comes from 3 → 1 overlap :

F 31
++ =

√
1 − ζ

1 − ζ
2

H(3→1)(x, ζ, t) − ζ2

4(1 − ζ
2
)
√

1 − ζ
E(3→1)(x, ζ, t)

=
p

1 − ζ

Z

d2~k⊥

16π3

»

ψ↑

+1
2

+ 1
2

−
1
2

(x, 1 − ζ, ζ − x, ~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

+ ψ↑

−
1
2

+ 1
2

+ 1
2

(x, 1 − ζ, ζ − x,~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

–

F 31
+− =

1√
1 − ζ

(∆1 − i∆2)

2M
E(3→1)(x, ζ, t)

=
p

1 − ζ

Z

d2~k⊥

16π3

»

ψ↓

+ 1
2

+ 1
2

−
1
2

(x, 1 − ζ, ζ − x, ~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

+ ψ↓

−
1
2

+ 1
2

+ 1
2

(x, 1 − ζ, ζ − x,~k⊥,−~∆⊥, ~∆⊥ − ~k⊥)

–

third region ζ − 1 < x < 0 does not contribute : corresponds to the emission and

reabsorption of a positron from the physical electron
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Light-front Wave Functions

Dressed electron state : 2 particle LFWF

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ψ↑

+ 1
2

+1
(x,~k⊥) = −

√
2 −k1+ik2

x(1−x)
ϕ ,

ψ↑

+ 1
2
−1

(x,~k⊥) = −
√

2 k1+ik2

1−x
ϕ ,

ψ↑

− 1
2

+1
(x,~k⊥) = −

√
2 (M − m

x
)ϕ ,

ψ↑

− 1
2
−1

(x,~k⊥) = 0 ,

9

>

>

>

>

>

>

=

>

>

>

>

>

>

;

.

ϕ(x,~k⊥) =
e√

1 − x

1

M2 −
~k2
⊥

+m2

x
−

~k2
⊥

+λ2

1−x

.

3 particle LFWF is also known
One particle wave fn : renormalization of the state ; contributes in the 3 − 1 overlaps.
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Real and Imaginary Parts of the Amplitude

• Real and imaginary parts of the DVCS amplitude are calculated separately using the
principal value prescription for the propagator and using the explicit form of the two-and
three-particle LFWFs

Z 1

0
dx

1

x− ζ + iǫ
F (x, ζ) = P

Z 1

0
dx

1

x− ζ
F (x, ζ) − iπF (ζ, ζ)

Here P denotes the principal value defined as

P

Z 1

0
dx

1

x− ζ
F (x, ζ) = lim

ǫ→0

» Z ζ−ǫ

0

1

x− ζ
F (x, ζ) +

Z 1

ζ+ǫ

1

x− ζ
F (x, ζ)

–

where

F (x, ζ) = F 31
ij (x, ζ,∆⊥), for 0 < x < ζ

= F 22
ij (x, ζ,∆⊥), for ζ < x < 1

ij = ++ for helicity non-flip and ij = +− for helicity flip amplitudes
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Parton Distributions in Impact Parameter Space

Impact parameter dependent parton distributions are defined from the GPDs by taking a
FT in ∆⊥ when ζ = 0

q(x, b⊥) =
1

(2π)2

Z

d2∆⊥e
−ib⊥·∆⊥H(x, t),

e(x, b⊥) =
1

(2π)2

Z

d2∆⊥e
−ib⊥·∆⊥E(x, t),

b⊥ is the impact parameter conjugate to ∆⊥

Soper(1977); Burkardt (2000).

• Give simultaneous information on the distribution of quarks as a function of x and the
transverse distance b⊥ of the parton from the center of the proton in the transverse plane

• Obey certain positivity constraints, can interprete them as probability densities

•Transversely polarized target : distribution of partons in the impact space no longer
axially symmetric; deformation is described by e(x, b⊥) → model calculation shows that
it is connected with Sivers Effect

Burkardt (2002); Meissner, Metz, Goeke (2007)
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Fourier Transform of DVCS Amplitude in ζ

• In order to obtain the DVCS amplitude in y− space, we take a Fourier transform in ζ as,

A++(σ,∆⊥) =
1

2π

Z 1−ε2

ε2

dζ eiσζ M++(ζ,∆⊥),

A+−(σ,∆⊥) =
1

2π

Z 1−ε2

ε2

dζ eiσζ M+−(ζ,∆⊥),

where σ = 1
2
P+y− is the (boost invariant) longitudinal distance on the light cone

• Fourier transforms have been performed by numerically calculating the Fourier sine
and cosine transforms and then calculating the resultant by squaring them, adding and
taking the square root

• Helicity non-flip part of the amplitude depends on the scale Λ
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Imaginary Part of the DVCS Amplitude in σ Space
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• (a) When the electron helicity is not flipped, (b) helicity is flipped

•M = 0.51 MeV, m = 0.5 MeV, λ = 0.02 MeV, t is in MeV2

Brodsky,Chakrabarti,Harindranath,AM,Vary (2006).
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Real Part of the DVCS Amplitude in σ
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• (a) When the electron helicity is not flipped, (b) helicity is flipped

•M = 0.51 MeV, m = 0.5 MeV, λ = 0.02 MeV, t is in MeV2

• As | t | increases the first minima move in, positions of minima independent of target
helicity

Brodsky,Chakrabarti,Harindranath,AM,Vary (2006).
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Simulated model for a hadron

• Wave function of a dressed electron depends on bound state mass square M2

(denominator) : differentiation wrt M2 increases the fall-off of the LFWFs near the end
points as well as improves the k⊥ behaviour; this simulates the wave functions of a
meson-like hadron (model 1)

• Differentiation wrt m2 and λ2 simulates the fall-off at short distances which matches
the fall-off wavefunction of a baryon : form factor F1(Q2) computed from the
Drell-Yan-West formula will fall-off like 1

Q4 ; analog of a two-parton quark plus spin-one

diquark model of a baryon (model 2)

• Convolutions of these wave functions gives the DVCS amplitude as well as the GPDs
for the simulated hadron model

• 2 particle wave function is normalized to 1

•
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Helicity-flip DVCS Amplitude in the Simulated Model
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• Mass parameters M = 150,m = λ = 300 MeV
• Differentiation wrt M2 brings an extra factor of x− ζ in the numerator : imaginary part
of the DVCS amplitude vanishes in this model

• Note : Differentiation of the single particle wave function gives zero : so the 3 → 1
overlap vanishes in this model

Brodsky,Chakrabarti,Harindranath,AM,Vary (2006).

•
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Helicity Non-flip DVCS Amplitude in the Simulated Model
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• Mass parameters M = 150,m = λ = 300 MeV

• Helicity non-flip amplitude decreases as ζ increases for fixed | t |

• Diffraction pattern in σ

Brodsky,Chakrabarti,Harindranath,AM,Vary (2006).

•
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IPDPDFs in the Simulated Model (1)
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• Mass parameters M = 150,m = λ = 300 MeV; b⊥ is in MeV−1.

• (a) Helicity non-flp; (b) helicity flip

• Skewness ζ = 0 here; 2 − 2 overlap

H. Dahiya, AM, S. Ray (2007).
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IPDPDFs in the Simulated Model (2)
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• Mass parameters M = 150,m = λ = 300 MeV; b⊥ is in MeV−1.

• (a) Helicity non-flp; (b) helicity flip

• Skewness ζ = 0 here

H. Dahiya, AM, S. Ray (2007).
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IPDPDFs in the Simulated Model
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• Mass parameters M = 150,m = λ = 300 MeV; b⊥ is in MeV−1.

• (a) model (1); (b) model (2); helicity non-flip

• Skewness ζ = 0, x fixed

H. Dahiya, AM, S. Ray (2007).
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Light Front Wave Function in Holographic QCD

Normalized holographic QCD LFWF for the meson (qq̄) from AdS/CFT

ΨL,k(x, b⊥) = BL,k

p

x(1 − x)JL(ξβL,kΛQCD)

Brodsky,Teramond (2006)

BL,k = ΛQCD

h

(−1)LπJ1+L(βL,k)J1−L(βL,k)
i−1/2

,

ξ =
p

x(1 − x|b⊥|,
βL,k is the k-th zero of Bessel function JL.

For ground state L = 0, k = 1 and we have

φ(x, b⊥) = Ψ0,1(x, b⊥) = ΛQCD

p

x(1 − x)
J0(ξβ0,1ΛQCD)
√
πJ1(β0,1)

Corresponding momentum space LFWF

ψ(x, κ⊥) =
√

4π2

Z

d2b1⊥ e−ib1⊥·κ⊥ φ(x, b1⊥) .
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Light Front Wave Function in Holographic QCD

0
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|b⊥||b⊥|

Ground state ( L = 0, k = 1) of two parton holographic light front wave function in 3D
space. We have taken ΛQCD = 0.32 GeV. |b⊥| runs from 0.001 to 6.0 GeV−1 and σ
from -25 to 25.

Brodsky,Chakrabarti,Harindranath,AM,Vary (2006).
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IPDPDFs in Holographic QCD model

(a) ground state L = 0, k = 1 ; (b) first exited state L = 1, k = 1

ΛQCD = 0.32 GeV and b⊥ is given in GeV−1.

H. Dahiya, AM, S. Ray (2007).
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DVCS amplitude in Holographic QCD model
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The DVCS amplitude vs. ζ and Fourier spectrum of the DVCS amplitude in the σ space
using the light front wave function for meson obtained from holographic QCD.

ΛQCD = 0.32 GeV. Plots are in unit of e2q . b⊥ is given in units of GeV−1.

Brodsky,Chakrabarti,Harindranath,AM,Vary (2006).
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Optics Analog for σ dependence

• Analogy with optics :
(i) Finite range of ζ integration act as a slit of finite width and provides a necessary
condition for the occurrence of diffraction pattern in the Fourier transform of the DVCS
amplitude.
(ii) In analogy with optical diffraction, where the positions of the first minima are inversely
proportional to the slit width, here we expect their positions to be inversely proportional
to ζmax. Since ζmax increases with -t, the position of the first minimum moves to a
smaller value of σ
(iii) For fixed −t, higher minima appear at positions which are integral multiples of the
lowest minimum : in analogy with diffraction in optics.

• Fourier transforming the amplitude in ζ at fixed ∆⊥ and then Fourier transforming ∆⊥

to impact space b⊥ will give the analog of a three-dimensional scattering center.

• Scattering photons in DVCS provides the complete Lorentz-invariant light front
coordinate space structure of a hadron.
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Summary and Conclusions

•Fourier transform of the Deeply Virtual Compton Scattering (DVCS) amplitude with
respect to the skewness variable ζ provides a unique way to visualize the light-front
wavefunctions (LFWFs) of the target state in the boost-invariant longitudinal coordinate

space variable (σ = P+y−

2
).

• As a specific example, we consider a fermion state at one loop in QED. We then
simulate the wavefunction for a hadron by differentiating the above LFWFs with respect
to M2 and study the corresponding DVCS amplitudes in σ space.

•Results are analogous to the diffractive scattering of a wave in optics in which the
dependence of the amplitude on σ measures the physical size of the scattering center of
a one-dimensional system.

• If one combines this longitudinal transform with the Fourier transform of the DVCS
amplitude with respect to the transverse momentum transfer ∆⊥, one can obtain a
complete three-dimensional description of hadron optics at fixed light-front time
τ = t+ z/c.

•
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