Radiation Resistance of Kalrez®

The following guidelines and definitions are useful in understanding radiation resistance.

• Radiation can be defined as the transmission of high energy waves or particles through space or through a material medium. Energy absorption by the material may produce a variety of effects such as cross-linking and degradation. Excessive energy absorption usually results in adverse properties, i.e., failure of the substance by embrittlement due to over cross-linking or reversion (degradation) caused by chain cleavage.

• Gamma radiation may be considered typical of the type to which elastomers would be subjected and is used in most of the laboratory radiation studies.

• Radiation dose is expressed as rads. One rad is the dose that produces an energy absorption of 100 erg/g in 1 cm³ of air at standard temperature and pressure. 10^6 rad = 1 Mrad.

• In general, radiation doses are additive. A material can be assumed to have a “perfect memory” with regard to radiation exposures. Thus, ten exposures of 10^4 rad are equivalent to one exposure of 10^5 rad.

• Concerning elastomer serviceability, a Gamma radiation dose less than 5×10^6 rad is considered low. Up to 10^8 is considered intermediate and 10^8 to 10^9 is high.

Kalrez® can withstand 1 Mrad (10^6 rad) with little effect on physical properties. Exposure to 10 Mrad (10^7 rad) produces moderate effect with 40% loss of tensile strength and 25% loss of elongation at break. At 100 Mrad (10^8 rad), there is a severe effect with 80% loss of tensile strength and 80% loss of elongation. The accompanying graphs detail Kalrez® performance up to 100 Mrad.

Other factors need to be evaluated in addition to radiation exposure. The effects of fluids and the operating temperature to which the elastomers are exposed should be determined. Kalrez® has excellent high temperature and fluid resistance and should be evaluated for the environment as well as radiation resistance.
Radiation Results

Electron Radiation Source, G.E. Resonate Beam, Transformer 2×10^6V, mA

Tensile at Break vs. Radiation Dosage

Elongation at Break vs. Radiation Dosage

Retention of Tensile at Break Properties After Exposure to Gamma Radiation

Retention of Elongation After Exposure to Gamma Radiation

For further information please contact one of the addresses below, or visit us at our website at

www.dupontelastomers.com/kalrez

Global Headquarters — Wilmington, DE USA	European Headquarters — Geneva
Tel. +1-800-853-5515	Tel. +41-22-717-4000
Fax +1-302-792-4450	Fax +41-22-717-4001

South & Central America Headquarters — Brazil	Asia Pacific Headquarters — Singapore
Tel. +55-11-4166-8978	Tel. +65-6275-9383
Fax +55-11-4166-8989	Fax +65-6275-9395

| Japan Headquarters — Tokyo |
| Tel. +81-3-6402-6300 |
| Fax +81-3-6402-6301 |

The information set forth herein is furnished free of charge and is based on technical data that DuPont Performance Elastomers believes to be reliable. It is intended for use by persons having technical skill, at their own discretion and risk. Handling precaution information is given with the understanding that those using it will satisfy themselves that their particular conditions of use present no health or safety hazards. Since conditions of product use and disposal are outside of our control, we make no warranties, express or implied, and assume no liability in connection with any use of this information. As with any material, evaluation of any compound under end-use conditions prior to specification is essential. Nothing herein is to be taken as a license to operate or a recommendation to infringe on any patents. While the information presented here is accurate at the time of publication, specifications can change. Check www.dupontelastomers.com for the most up-to-date information.

CAUTION: Do not use in medical applications involving permanent implantation in the human body. For other medical applications, discuss with your DuPont Performance Elastomers customer service representative and read Medical Caution Statement H-69237.

DuPont™ is a trademark of DuPont and its affiliates.

Kalrez® is a registered trademark of DuPont Performance Elastomers.

Copyright © 2005 DuPont Performance Elastomers L.L.C. All rights reserved.