The Polarized 3He Target at Jefferson Lab Hall A

Why Polarized 3He?

- Effective nucleon polarizations: $P_x = 86\%$, $P_y = -2.8\%$

$^3\text{He} \approx \hat{n}$

Principle of Operation

- Optical pumping of Rb
- Spin exchange between Rb atom and ^3He nuclei

Target Setup

Cell Characteristics

- High pressurized glass cells:
 - cell length: 40 cm
 - ^3He density: ≈ 10 atm
 - $P \approx 40\%$ with 12 μA beam
- Polarimetries: NMR \odot EPR
- Highest Polarized luminosity of the world: 1×10^{37} cm$^{-2}$sr$^{-1}$

Physics Program

- Neutron Spin Structure
 - GDH (1995), A_1, g_1 (2001)
 - low Q^2 GDH, g_1 duality
- Neutron Form Factors
 - G_M (1998)
 - G_E
- Key program @ 12 GeV Upgrade

Medical Application

- Traditional method
- Radioactive 133Xe + gamma camera
- Resolution: 1~2 cm
- Noble-gas imaging
- Polariized ^3He gas + MRI
- Resolution: a few mm

Caltech | U. of Clermont–Ferrand | Jefferson Lab | Univ. of Kentucky | M.I.T. | Temple Univ. | Univ. of Virginia | C. of William&Mary