TreeSearch Track Reconstruction for BigBite
Software User Guide v1.0

Jens-Ole Hansen
Jefferson Lab

March 12, 2010

1 Installation

1.1 Requirements

The TreeSearch library is implemented as a plugin module for the Hall A C++ analyzer
Podd. Minimum software requirements are as follows:

e Linux platform. RedHat Enterprise Linux 3 or Fedora 6 or newer have been
tested. Other Unix platforms will probaby work as well, but require modifications
to the Makefile

e GNU make 3.7
e ROOT 5
e Podd 1.5

It is especially important to use at least Podd version 1.5. Older versions of Podd
do not offer the database and detector map functionality required by the TreeSearch
library.

1.2 Download

The source code can ba obtained via the Web from
http://hallaweb. jlab.org/root/TreeSearch/

or via CVS, using the commands

setenv CVS_RSH ssh
cvs -d :ext:cvs.jlab.org:/group/halla/analysis/cvs co TreeSearch

Web access is possible either directly from any JLab computer or by using the
account name and password of the Hall A counting house analysis account. CVS
access is permitted for anyone using a valid JLab CUE username and password.

1.3 Compilation
Compilation of the source code is straightforward:

e Ensure that ROOT and Podd are set up. The environment variables $R00TSYS and
$ANALYZER must be set.

e Change to the TreeSearch source directory.

e Edit the Makefile if desired. At the top of the Makefile, several variables can
be set that modify the compilation:

— VERBOSE: enable verbose status messages that can be enabled by setting the
verbosity level with a call to SetDebug() at run time (recommended)

— TESTCODE: enable additional computations and global variables containing
detailed statistics information about the progress of the analysis. This
option will cause a performance hit and export a large amount of internal
information as global variables, which may greatly increase the output file
size. Only recommended for experts.

— DEBUG: compile a debug version for gdb. This will significantly slow down
the analysis. Only recommended for troubleshooting by experts.

e Run make to compile the code. A shared library named 1ibTreeSearch.so will
be built. This library can be loaded into Podd using gSystem->Load ().

2 Configuration

To use the TreeSearch track reconstruction for replay, several items will need to be
configured:

1. Crate map

2. Replay script

3. MWDC database file
4. Output definitions

These are discussed in the following.

2.1 Crate Map

The crate map file used for replay (usually db_cratemap.dat) must contain proper
entries for the MWDC TDCs. The software supports both the old Fastbus readout
(LeCroy 1877 TDCs) and the VME CAEN pipeline TDCs. The crate map is normally
set up by the DAQ expert. There are no special considerations about the setup of the
modules for the MWDC in the crate map.

With the present version of the TreeSearch library, some information from the
regular DAQ crate map, db_cratemap.dat, must be duplicated in the database file.
See the detailed description of the cratemap database key below. This requirement
will be dropped in a future version.

2.2 Replay Script

The TreeSearch code is implemented as a tracking detector class, TreeSearch: :MWDC,
describing the BigBite MWDCs. For replay, the MWDC detector should be made
part of a spectrometer apparatus, describing BigBite. For convenience, the library
includes such an apparatus, called TreeSearch::BigBite, which contains only the
MWDC detector named “mwdc”. One can either use this apparatus and add additional
detectors (e.g. scintillators, calorimeter) as needed, or use a different spectrometer
class (implemented outside of the TreeSearch library) and add the TreeSearch: : MWDC
detector to it (using the AddDetector () method — see the Podd documentation for
details).

As an example, we consider the former approach. Below are example commands
that could be used in a replay script:

gSystem->Load ("1ibTreeSearch.so");

THaSpectrometer* B = new TreeSearch::BigBite("B", "BigBite");
gHaApps->Add (B) ;

// optionally, add detectors

THaDetector* BS1 = new THaScintillator("BS1", "BigBite S1");
B->AddDetector(BS1);

This assumes that 1ibTreeSearch.so is in your $LD_LIBRARY_PATH, for example
via a symbolic link from the $ANALYZER directory. Otherwise, the full path of the
library needs to be specified in the gSystem->Load() command.

2.3 MWDC Database File

The database file for the MWDC detector contains all configuration and calibration
data. It must be carefully set up before replay. An example database file, named
db_B.mwdc.dat, is included in the source code distribution. The file name follows the
usual Podd conventions: db_prefiz.dat, where prefix is the spectrometer name (“B”)
followed by a dot and the MWDC detector name (“mwdc”).

Unlike many older Podd database files, the MWDC database may be freely for-
matted. Blank lines and anything between a comment character, #, and the end of
a line is ignored. Lines may be continued with a trailing backslash character, \, for
better readability. Valid lines contain key/value pairs of the form

key = value

In the present version of the software, all keys must begin with the prefix of the
detector, i.e. the same string that distinguishes the database file name. In the above
example, the prefix is “B.mwdc”. Therefore, a database key “timecut” would be spec-

ified in the file as

B.mwdc.timecut = 1

The available database keys (without prefix) are described in detail in the following
sections. Table 1 lists the properties of the individual keys. The table columns have
the following meanings:

o “Key” is the name of the key.

e “Class” indicates the part of the program to which the key applies. “MWDC”
keys apply to the entire MWDC detector class, i.e. represent global parameters;
Projection (“Proj”) keys refer to coordinate projections, i.e. wu, v, x or y; and
WirePlane (“WP”) keys apply to individual wire planes, e.g. ul, 2, etc.

Key names of class “Projection” or “WirePlane” must normally be prefixed first
by the common detector prefix described above (“B.mwdc”), followed by the pr-
jection or wire plane name to which they apply, for example “B.mwdc.ul.detmap”.
However, see the description of the “Up-level” column below.

e “Up-level” indicates whether a global value for a per-projection or per-wire plane
key may be set. To set such a value, one omits the projection- or plane-specific
part of the key’s name when specifying the key in the database. A value set in this
way applies to all projections or wire planes, respectively, except for projections
of planes for which values are given explicitly. For instance, if all wire planes had
200 wires, except for plane x1, which had 240, the most efficient way to specify
this configuration in the database would be

B.mwdc.nwires = 200
B.mwdc.x1.nwires = 240

Global defaults are not available where they clearly do not make sense, for ex-
ample the detector map of a plane, which must be different for every plane.

e “Type” indicates the data type (integer, string, floating point, array, matrix). A
type of “array” means a one-dimensional vector of data; a type of “matrix” repre-
sents a rectangular two-dimensional matrix of data, where the number of matrix
columns and their respective meanings is explained in the detailed description
of the key.

e “Required” indicates whether the respective key is required to be present. If it
is not required and omitted, a default value is used, which is given in the next
column.

e “Default” (optional keys only) gives the value that is used if the key is omit-
ted from the database. A default of “auto” indicates that a suitable value is
automatically calculated based on other information. See the respective key’s
description for details.

Key Class Up-level Type Required | Default
planeconfig MWDC N String Y -
cratemap MWDC N Integer Matrix Y -
calibrate MWDC N String N empty
3d_maxmiss MWDC N Integer N auto
3d_matchcut MWDC N Float N 1074
3d_chi2_conflevel | MWDC N Float N 107?
maxthreads MWDC N Integer N auto
timecut MWDC N Boolean N T
pairsonly MWDC N Boolean N F
nopartner MWDC N Boolean N F
event_display MWDC N Boolean N F
disable_tracking | MWDC N Boolean N F
disable_finetrack | MWDC N Boolean N F
search_depth Proj Y Integer Y -
angle Proj N Float N auto
maxslope Proj Y Float N auto
cluster maxdist Proj Y Integer N 0
min_fit_planes Proj Y Integer N 3
chi2_conflevel Proj Y Float N 1073
maxmiss Proj Y Integer N 0
reqlof2 Proj Y Boolean N T
maxpat Proj Y Integer N no limit
detmap WP N Integer Matrix Y -
nwires WP N Integer Y -
wire.pos WP N Float Y -
wire.spacing WP Y Float Y -
Xp.res wp Y Float Y -
ttd.converter WP Y String Y -
ttd.param WP Y Float Array Y -
tdc.offsets WP N Float Array Y -
description WP N String N auto
type WP N String N auto
required WP N Boolean N F
drift.min Wwp Y Float N no limit
drift.max WP Y Float N no limit
maxhits WP Y Integer N no limit

Table 1: MWDC database key properties. See text for description of columns.

2.3.1 planeconfig

This is a string of the space-separated names of all the wire planes that should be
included in the analysis. For each name, a WirePlane object of the same name will
be created. Normally, the minimum number of planes required is 9 — three planes in
each of three projections. Plane-specific database entries need to be created for each
plane named in this configuration string.

Names can be arbitrary strings, although it is advantageous to use names corre-
sponding to the actual configuration of the detector, such as z1, u2, etc.

By default, the first character of each plane’s name indicates that plane’s projection
type. For instance, a plane named ul will be automatically associated with the u-
projection. Its wires will be assumed to be oriented according to the angle of the
u-coordinate (see angle key). This behavior can be overridden using the type key.
The projection type must be one of the supported types (u, v, z, or y).

Furthermore, it is assumed that wire planes are arranged in pairs (partners) of
adjacent wire chambers whose wires are offset by one-half wire spacing. To indicate
that one plane is to be considered the partner of another, the partner plane’s name must
be identical to that of the other plane except for a trailing p (for “prime”). Example:
x1 and z1p will be considered partner planes. Plane partnering can currently only be
configured via the appended p character in the name. It can be turned off via the
nopartner key.

2.3.2 nopartner

If set, completely turns off partnering of wire planes. Partnering is enabled by default.

