

Double Coincidence (e,e'p) in a Correlations Dominant Regime

Peter Monaghan¹, Ran Shneor² and Ramesh Subedi³ for the E01-105 Collaboration

¹ Massachusetts Institute of Technology, Cambridge, MA 02139, USA

2 Tel Aviv University, Tel Aviv, 69978, Israel

KENT STATE 3 Kent State University, Kent, OH 44242, USA

An important task of nuclear physics is the study of the strong interaction between protons and neutrons within the nucleus.

¹²C(e,e'pN) Experiment

Experiment E01-015 performed in Hall A at Lab to investigate short range correlations in carbon.

Kinematics chosen to produce a correlations dominant regime, while minimizing final state interactions, meson exchange currents and isobar configurations.

 $X_{p} > 1$ $Q^2 = 2 (GeV/c)^2$ Incident electron with energy of 4.627 GeV, with $X_{R} \sim 1.2$ at $Q^2 = 2 (GeV/c)^2$.

Short Range Correlations

A nucleon-nucleon short range correlation occurs when the nucleon wavefunctions strongly overlap inside the nucleus. An incident electron knocks out a proton; to conserve momentum the partner nucleon recoils with its initial momentum and is ejected from the nucleus.

BigBite

This experiment makes a triple coincident measurement, using both high resolution spectrometers in Hall A and a third, large acceptance spectrometer called BigBite.

neutron correlations possible.

- Non-focusing dipole magnet 16x larger acceptance than HRS.
- Charged particle detector 3 scintillator planes.
- Neutron detector 4 scintillator planes + veto layer.

¹²C(e,e'p)¹¹B Double Coincidence

¹²C(e,e'p) data taken for the first time at $X_{R} > 1$. Preliminary results are shown for the P-shell removal - cut on missing energy to select events.

P- shell cross- section data shown renormalised to the Ciofi model (red trace) and also compared to a harmonic oscillator model (green trace). The Ciofi model includes correlations ad hoc; further, more detailed calculations will be forthcoming soon.

Further data for S-shell removal and the continuum case is still being analyzed.

Further Information

BigBite website:

http://hallaweb.jlab.org/equipment/bigbite/index.html

Experiment website:

http://hallaweb.jlab.org/experiment/E01-015/

JLab

The Thomas Jefferson National Accelerator Facility generates a continuous wave electron beam - an ideal probe for investigating the nucleus at extremely small distance scales.

Note the carbon foil target was tilted to minimize the material being traversed by the ejected partner nucleon