Beyond the Shell Model Short Range Correlations in Nuclei

Ran Shneor¹, Peter Monaghan² and Ramesh Subedi³

1 Tel Aviv University, Tel Aviv, 69978, Israel 2 Massachusetts Institute of Technology, Cambridge, MA 02139, USA 3 Kent State University, Kent, Ohio, 44242, USA

Short Range Correlations

In the shell model, nucleons move independently in well-defined quantum "orbits" in the nuclear mean-field. The mean field is dominated by the long-range attractive part of the N-N interaction.

repulsion

Due to the N-N interaction at short distances, a significant fraction (~20%) of nucleons form pairs instead of moving independently. The dominant repulsive part of the interaction at these distances, causes high relative momentum between the nucleons in the pair.

The Experiment

In Hall-A experiment E01-015, high-energy electrons knocked out high-momentum protons from ¹²C. We measured how many times the struck proton was accompanied by

a coincident recoil neutron or proton.

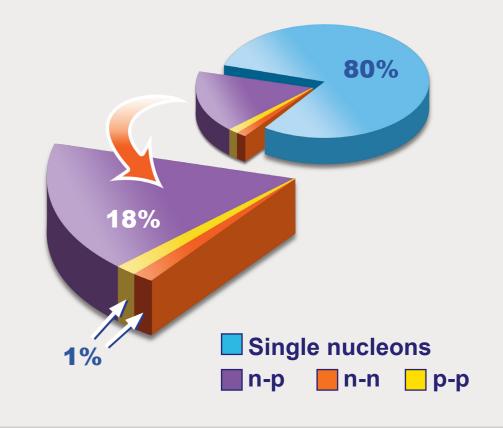
Incident

Correlated partner proton or neutron

Time Of Flight of triple coincidence ¹²C(e,e'pp) events. Measurement was done at luminosity of ~ 10³8 [cm²sec¹] 20 10 HRS coincidence time[ns] Time Of Flight of triple coincidence ¹²C(e,e'pp) events. Measurement was done at luminosity of ~ 10³8 [cm²sec¹] Trind Arm ce time[ns]

Results

Scattered


Scattered

proton

electron

We identified p-p and n-p short range correlated pairs in ¹²C and showed that :

- Almost all nucleons with momentum above the Fermi momentum in ¹²C are paired.
- n-p pairs are nearly 20 times more prevalent than p-p pairs.

The dominance of n-p over p-p SRC pairs is a clear fingerprint of the short-range N-N tensor force. This has far-reaching implications for modeling and understanding cold dense nuclear matter such as neutron stars.