
 1

TN: JLAB-TN-18-025

InfraModel: An Interactive Electrical Modeling System

Using Common, Commercially Available Software

Walt Akers*, Paul Powers, Jason Willoughby
Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA 23696

April 23, 2018

I. INTRODUCTION

Jefferson Lab has an electrical infrastructure that

distributes power from two utility feeds with a rated

capacity of 56 MVA each. Power is distributed

through dozens of large transformers and into

hundreds of distribution panels. In addition to the

nearly 100 buildings on campus, this electrical

system also supports the Continuous Electron Beam

Accelerator Facility (CEBAF), a Low Energy

Recirculating Facility (LERF), and four

experimental halls where users conduct the Lab’s

experimental nuclear physics program. Each of

these areas has unique requirements and is

regularly reconfigured to support new activities.

This continuously changing configuration makes it

difficult to maintain and update electrical

documentation to accurately reflect the current

state of the system. Further, while some metering

has been introduced in panels at the top of the

hierarchy, it is not economically feasible to extend

metering throughout the entire system. As a result,

system documentation is often incomplete or

inaccurate, making it difficult to determine the

amount of power consumed in various regions, or to

plan for future installations which could exceed the

capacity of the system.

Proprietary software exists that addresses some of

the issues involved in managing a large electrical

installation. However, these packages are generally

targeted at highly specific problems, such as arc-

flash calculations, harmonic analysis, and protective

device coordination. The specificity, cost and

complexity of these programs inhibits their adoption

to address the fundamental configuration

management issues which occur in most large

electrical installations. This leaves many facilities

in the unfortunate position of managing their

electrical configuration using a disjointed collection

of panel schedules, spreadsheets, and static one-line

diagrams which are supplemented with meters.

Despite the scale of the infrastructure being

managed, the configuration management issues

most organizations face are quite fundamental. In

the simplest terms, these are issues of capacity and

distribution. To address these challenges, an

institution has the choice of a) investing in

proprietary systems which require a highly trained

workforce to implement and use, b) developing local

software solutions which require a highly skilled

workforce to construct and maintain, or c) managing

their configuration using schematics,

documentation and electronic records which are

unlikely to ever leave the file room. In this paper

we discuss a fourth, hybrid option which leverages

the emerging capabilities of common office

applications to produce smart-documents targeted

at specific configuration management issues.

II. OBJECTIVES

In approaching this problem, the first step is to

identify the specific problems that must be resolved,

and then to identify a software platform that can be

used to address these issues with a minimal

development effort. While the preliminary

objectives discussed here are geared to address

electrical distribution, the idea of extending this

product to broader infrastructure issues (HVAC,

process cooling water, cryogenics) remains

prominent. Still, this document will focus on the

requirements that the initial product must satisfy

and will use those requirements to identify and

justify the selected software platform.

General Requirements

 Appropriateness of Scope: Specificity a.

In systems theory, there is a balance that exists

between concrete specificity and abstraction. For

instance, a model that is developed with the goal

of exactly representing reality must, necessarily,

contain all known information and detail. The

reader can infer, therefore, that even for the

simplest system, the vastness of information that

is known (or knowable) can quickly overwhelm

the senses. This avalanche of information

immediately creates the conditions for confusion

because, as described in the Law of Requisite

Saliency (Warfield, 1993), not all information

 2

Figure 1. The Computer Tree (Kempf, 1961) employs an

unrelated metaphor to describe the developmental history of

computing systems.

within a system is of equal importance. Worse

yet, Boulding’s (1966) concept of “spurious

saliency” dictates that when faced with an

overwhelming volume of information,

individuals will often assign importance to the

wrong things. A good model, therefore, must

choose which information is required to address

the problem at hand, and which information is

superfluous. Having resolved this, the critical

information must be presented with specificity,

while peripheral information must be abstracted,

or better yet, eliminated.

 Appropriateness of Scope: Abstraction b.

Even once all peripheral information has been

eliminated, a complicated infrastructure system

may still have an overwhelming volume of data.

In this case, it becomes the responsibility of the

model (and the modeler) to develop mechanisms

of abstraction that allow the data to be viewed

through different lenses. These lenses are simply

abstractions that allow data that is momentarily

non-essential to be removed from the current

perspective. This creates an environment where

the most salient issues are brought to the fore.

It should be noted, that good abstraction does not

eliminate pertinent data. On the contrary, it

synthesizes and digests it, to provide a clearer

perspective of the problem at hand.

 Ease of Use: Representation c.

Whatever model is created must have an

immediate, clear and meaningful relationship to

the system being represented. While metaphor

driven models are often useful for introducing

new concepts via well-known constructs, it

should be stipulated that individuals who are

managing a large infrastructure already

understand the basic tenets of their system. As

an illustration, the use of the tree diagram in

Figure 1 to represent a hierarchy may benefit

those with no knowledge of the topic, but it adds

little or no value for those who already

understand the shape, structure and the nature

of relationships within the system.

Infrastructure models should seek to emulate the

actual structure of the system being modeled.

This approach allows the user to infer the

physical topography of the system using the

same model that describes the distribution and

flow of resources within it.

 Ease of Use: Interface d.

The interface that is provided for creating,

manipulating and viewing infrastructure models

should be consistent with the interfaces that are

in common use. In a perfect implementation, the

user of a model would be able to apply only the

techniques that are commonly used in existing

applications, with the modeling application

introducing no new or novel interfaces.

Non-standard interface operations should either

be eliminated or should be concealed within the

underlying software. This is not to suggest that

common techniques such as hot-keys should not

be employed. On the contrary, these techniques

can be used, but they should conform to the

standard key combinations in common use on the

platform.

 Ease of Maintenance: Code e.

Minimization

For software developers, there is always a

temptation to address emerging issues by

developing a new application or library. If

done properly, embedded code has the

ability to greatly enhance the speed,

flexibility and efficiency of a model. Still,

each line of code that is added to the

modeling application is a line that will need

to be maintained by the local organization

in the future. By contrast, a system that

exclusively uses capabilities that are

intrinsic to the underlying application may

continue to operate across many software

releases and version updates with little or

no intervention by local developers.

 3

This being said, it is unlikely that any truly

beneficial modeling system can be derived

directly from a common application without the

need for some software development. Therefore,

any software that is introduced into the model

should provide a highly justified benefit, a

minimum amount of code, and be well

documented.

Platform Considerations

A key decision in developing this solution was the

selection of an appropriate application to use as the

platform for developing the model and the modeling

software. The considerations in selecting the

software platform included: cost, availability,

prevalence and how well it satisfied the general

requirements discussed earlier.

The following applications were considered for the

initial implementation of this infrastructure model.

 AutoDesk AutoCad a.

Originally released in 1982 (Weisberg, 2011),

AutoCad has immediate appeal when

considering platforms to use for infrastructure

modeling. As a drafting application, it has a long

history and is widely used in both Facilities and

Design departments. AutoCad has a

programmable backend for creating custom

entities and has support for languages such as

LISP, VBA, C++ and C#.

There are, however, significant drawbacks to

using AutoCad as a foundation for system

modeling. First, the time required to learn to use

this product ranges from months to years,

depending on the motivation and skill of the

user. The selection of AutoCad for system

modeling would essentially demand that the

individuals maintaining the model must be

highly skilled in the use of the software, as well

as have an in depth understanding of the system

being modeled.

Further, at a current cost of $1,500 per year for a

software license for AutoCad, the product quickly

prices itself out of the market for use as a simple,

affordable platform for modeling.

 Trimble Sketchup b.

While not as venerable as AutoCad, Sketchup is

an emerging power in the modeling community

and is marketed under the banner “3D modeling

for everyone.” (Donley, 2011) The application is

simple enough that most users can gain a

working understanding by watching a few hours

of online video instructions, and can be

productive within a few weeks. Additionally, a

license for Sketchup is economically priced at

just $695 per seat. Still, there are challenges

with using Sketchup as a platform for developing

infrastructure models.

One major issue with employing Sketchup for

this use is the fact that it is 3D all the time.

While it is possible to create views of a 3D model

using a parallel projection that makes them

appear to be 2D, the complexity of the 3D

universe is always present while drawing,

updating or using these models.

Further, Sketchup does not support the concept

of pages. Each model is a representation of the

entire three dimensional universe, and can be as

small or as vast as the user chooses. Limited

views of this 3D universe can be created using

hidden layers, but this is not an optimal solution

for models that may span a variety of

independent sub-systems.

Finally, Sketchup’s components are programmed

using an archaic Ruby interface. While the

language is powerful and entities that are

programmed in this interface are very useful,

they often have idiosyncrasies and unexpected

behaviors that are manifested when a

programmed object is grouped, reshaped or

copied.

None of this should be taken to denigrate

Sketchup, which is an excellent modeling

platform. None the less, these issues do

negatively impact its usability for infrastructure

modeling in this environment.

 Microsoft Visio c.

Originally released in 1992 as Shapeware

(Johnson, 2013), Visio was acquired in 2000 by

the Microsoft Corporation and has been its

premiere diagramming package since then.

Currently priced at $500 for a Visio Professional

license, the product is more economical than

either AutoCad or Sketchup.

The real benefit that Visio provides for this

application is it’s totally conformance to the

standard user interface used in all Microsoft

products. This means that most users who are

already familiar with the MS Windows platform

will be able to immediately use this product.

Additionally, this product has integrated support

for Visual Basic, and can be easily integrated

with C#, C++, C, Fortran or any other language

 4

that can be used to create a Windows Dynamic

Link Library.

Finally, the Visio platform is designed to support

Stencils, which are small, task specific toolboxes

of shapes. The pre-programmed objects within a

stencil can be distributed and updated

independently of the application.

Of course, the Visio platform is not without its

drawbacks. The programming interface for

shapes is spreadsheet driven and can be clumsy

to use when attempting to manipulate several

objects at the same time. In terms of

documentation, the number of books that

specifically discuss Visio programming are few,

and most of those were written for older

versions. Still, the product has a vibrant online

community that tends to be highly responsive to

programming questions.

 Inkscape (Scalable Vector Graphics) d.

Another application that was considered as a

platform for developing this modeling system

was Inkscape. Inkscape is a freeware package

that generates and manipulates Scalable Vector

Graphic (SVG) files. SVG images use an XML-

like text structure, are programmed with

embedded java script and are directly viewable

through most web browsers. Models created in

this format have the benefit of being

immediately accessible and updateable by a

large, distributed group of people.

While Inkscape provides mechanisms for almost

unlimited programmability, it requires that the

developer have an intimate understanding of

how the application works, as well as the

underlying structure and behavior of the SVG

files. Further, although the user interface for

drawing is consistent with many common

applications, the programming interface is

largely focused on mouse events and any

sophisticated programming must be performed

in an external editor.

Platform Selection: Microsoft Visio

For the initial release of this package, we have

chosen to use Microsoft Visio. While each of the

other applications has benefits, Visio provides an

immediate ease of use and design that allow this

product to be developed and deployed quickly. Still,

web accessibility remains a highly desirable

capability; therefore, it is likely that an SVG

interface will be integrated into future designs.

The remainder of this document will discuss the

Visio objects that were created for use in electrical

modeling, along with a description of their

behaviors, capabilities and limitations.

III. OBJECTS AND INTERFACES

Design Perspective

As stated in the objectives, the primary goals of the

design process include: ensuring that the user

experience is as consistent as possible with

commonly used applications; that the completed

model has the right balance between specificity and

generalization; that the visual representation is

meaningful to a user who is versed in the subject

matter; and that the modeling system remains

tightly focused on the goal at hand, specifically,

modeling the distribution of power.

The issue of maintaining focus is perhaps the most

challenging (and limiting) of these concerns. There

is always a temptation to allow any model to expand

to encompass more and more functionality, in hopes

that it will provide a better representation of

reality. In truth though, the noise that is created by

the addition of new features often overwhelms the

system; preventing it from achieving the goals for

which it was designed. To avoid this, the

development of this modeling system will remain

tightly focused on the distribution of three-phased,

alternating current power in either 480Y/277V or

208Y/120V voltages.

Power distribution will be modeled through the use

of a collection of entities that represent different

elements in the power system. These include

sources, distributions, breakers, switches and loads.

All of these objects derive their base functionality

from a fundamental entity – the distribution object.

While they may add distinctive behaviors or visual

representations, they all essentially distribute

power from an incoming source to connected loads.

Therefore, a discussion of these objects will begin

with a description of the distribution object, and

then will define all other entities by their variations

from that base class.

 5

Figure 2. The Distribution Object

The Distribution Object

As discussed earlier, the distribution object

contains characteristics that are common

across all of the model elements. There are

two types of data fields (or attributes) that

are described below: those that are visible,

and those that are hidden. The visible

attributes are displayed as part of the

model’s onscreen interface, while the

hidden attributes are only accessible

through the objects Shape Sheet or from

Visio’s Shape Data window. These hidden

attributes are typically used for computing

the state of a distribution object or for

summing the flow of power through the

object.

The following visible data attributes can be viewed

from the model’s onscreen interface.

 Name a.

Each distribution object should have a unique

name (shown as Panel 1 in the figure). The name

of a distribution object is typically the same as

the name that is stamped on the outside of the

physical panel or device.

The name field is included in the object’s shape

data and is the unique identifier that is used to

reference the object when loading external data.

One should note that each object also has an

application generated identifier which is used by

Visio to relate the objects to one another. The

object name described here has no relationship to

that identifier.

 Phases b.

A distribution object receives power on any

combination of the A, B or C phases. For

instance, a single phase distribution object may

receive its power from the A, B or C phase of its

parent object. Likewise, a two phased

distribution may receive power from the A/B, B/C

or A/C phases of its parents. This is an

important distinction because power is

distributed (and accumulates load) along each

phase. Retaining phase identity throughout the

distribution allows the model to detect and

display phase imbalances.

By extension, the user should note that a

distribution object can only have the phases that

are provided by its parent. Further, it can only

distribute one or more of those phases to the

loads that are connected to it. In the event that

a distribution object is connected to a source that

does not provide the phases it requires, it will

immediately trip-off, and will not distribute

power downstream.

If a connected load (a child) requires a power

phase that is not provided by the distribution

object, then that child will trip-off, but the

distribution object will continue to provide power

to other connected loads.

 Capacity c.

Each distribution object has a capacity (in amps)

that represents the maximum power that can be

delivered along each individual phase. If the

power drawn along any phase exceeds that

capacity, then the object will trip-off and will no

longer deliver power downstream to any

connected object.

 Voltage d.

In three-phase/four-wire systems, the voltage

value for a distribution object will be either

“480V/277V” or “208V/120V”. The incoming and

outgoing voltage for a distribution object is

always the same. A distribution object cannot be

connected to a source (a parent) unless the

voltage is the same. If a distribution object is

connected to a source object with a different

voltage, then the distribution object will trip-off

and will not deliver power downstream.

Likewise, if a child object has a different voltage

than the distribution object, then the

distribution object will remain functional, but

the child will trip-off.

 On e.

This is a simple binary switch that determines if

the unit is switched on or off. Note that the “On”

flag is not the sole requirement to ensure the

 6

unit is delivering power downstream. In order to

deliver power, the distribution object must meet

three criteria:

i. The On flag must be TRUE

ii. The Powered flag must be TRUE

iii. The Tripped flag must be FALSE

 A Phase Drawn [B,C] f.

This is a floating point value that is used to

display the current (in amps) that is actively

being drawn on the A (or B, or C) phase if this

object is on, powered and not tripped. This value

is the sum of the hidden attributes: A Phase

Load and A Phase Local.

The following are the hidden attributes of the

distribution object. While the user might never

directly manipulate these values, they provide the

underlying functionality for the object. They are

accessible using Visio’s Shape Sheet or Shape Data

windows.

 Distribution g.

This is a simple integer field that identifies the

object as a member of the family of distribution

objects. This flag is present on sources, loads,

switches, and any other object that is derived

from the distribution object. The attribute is

used by applications to confirm that an object

being evaluated is a distribution object before

performing operations on it.

 Powered h.

The Powered flag is a binary switch that

indicates that this distribution object is receiving

incoming power from a source. For this flag to be

TRUE this object must be fed by another

distribution object (the parent) and the Powering

flag on that parent object must be TRUE.

 Powering i.

Unlike the Powered flag, the Powering flag

indicates that this object is actively delivering (or

is capable of delivering) power to objects that are

connected downstream. This flag is TRUE if the

following conditions are met.

i. The On flag is TRUE.

ii. The Powered flag is TRUE.

iii. The Tripped flag is FALSE.

 Phase Mismatch j.

The Phase Mismatch flag is a binary switch that

is TRUE if the Phases attribute of this

distribution object is incompatible with the

Phases attribute of its parent. For instance, if

this object is defined to have a “B” phase, but its

parent provides only an “A” Phase.

 Tripped k.

The Tripped flag is a binary switch that will be

TRUE if either of the following conditions are

met:

i. The Phase Mismatch flag is TRUE.

ii. The load on any phase of this distribution

object exceeds the object’s Capacity.

 A Phase [B,C] l.

This field exists as a mechanism for determining

how much power the object would consume if it

were powered on. Like the A Phase Drawn field,

the A Phase attribute is also the sum of the A

Phase Load and A Phase Local attributes. The

notable difference is that this field will compute

the value even if the object is not on, is not

powered, or is tripped.

 A Phase Local [B.C] m.

This is a floating point value that contains the

current that is consumed by this object locally.

This value is sometimes used to represent

transformation costs, inefficiencies or other

losses. Most often, though, this field is used in

load objects to represent the amount of power

that a terminal load (such as a motor) is

consuming.

 A Phase Load [B,C] n.

This is a floating point value that contains the

sum of all currents that are being drawn from

the A Phase by objects that are downstream from

this distribution object. For instance, if this

distribution object has two objects connected to it

that are drawing 20 amps and 60 amps

respectively (from the “A” phase), then it will

have an A Phase Load of 80 amps

 A Phase Reading [B,C] o.

This is a floating point number that contains an

actual reading that was taken from this device

when it was in operation. This reading can be

used to extrapolate loads throughout the model

for computational purposes.

Some special considerations exist for this

attribute. Specifically:

i. If the reading is greater than 0, then the

model will assume that the current drawn

along this phase by this and all connected

children is equal to the reading.

 7

ii. If the reading is 0, then the model will

assume that no power is drawn along this

phase by this object or any of its children.

iii. If the attribute is set to -1, then the model

will assume that a reading does not exist for

this object and it should be computed based

on the characteristics of the attached loads.

 BTU/Hour p.

This is the number of British thermal units that

are generated per hour by this piece of

equipment. The field is a floating point value

that is computed using the voltage and the local

load on all three phases. If this distribution

object does not have any load indicated in the

A/B/C Phase Local fields, then it will have no

BTU/Hour. For the purpose of this model, heat

exists where the load exists. Therefore, power can

pass through any number of distribution objects,

but it only generates heat at the terminal load

unless a local load is indicated.

The Source Object

The source object is at the uppermost level in a

power distribution model. These objects typically

represent generators, sub-stations, or power plants.

The source object is functional identical to the

distribution object with a few minor exceptions in

the following fields.

 Capacity a.

This value is not just the amount of current that

this object can deliver or its breaker capacity – it

is the amount of power that is provided by this

power source.

 Powered (Hidden) b.

The Powered flag on a source object is always

TRUE. It does not need to be connected to an

energized parent in order to receive power. In

fact, it should not be downstream from any other

distribution object.

 Source (Hidden) c.

In conjunction with the Distribution attribute

(which is inherited from the distribution object),

the Source attribute is an integer flag that

specifically identifies this as a source type of a

distribution object. This flag is provided to

support application development and dynamic

type discovery.

The Breaker Object

Breaker objects are used to represent circuit

breakers that are installed between other

distribution objects. These objects impose

maximum limitations on the amount of power that

can be distributed downstream to either, a) protect

underlying components, or b) limit the total power

that can be consumed by a specific electrical

component or branch. The behavior of these objects

is essentially identical to that of distribution objects,

except for a few parameters.

 Name (Hidden) a.

Like all distribution objects, the breaker object

has a Name field. However, to minimize the

visible footprint of this object in the model, the

name is typically not shown. In most cases, the

Breaker Number attribute is displayed instead.

Figure 4. The Breaker Object

Figure 3. The Source Object

 8

 Breaker Number b.

This is an integer value that identifies the

breaker number within the panel board. While

the application does not dictate what value is

used for this field, breakers that consume

multiple poles or positions will typically use the

lowest number.

The Load Object

The load object is the terminal element in an

electrical distribution model. No objects should be

installed downstream from a load.

Power that is consumed by a load object is entered

into the [A/B/C] Phase Local field of the object.

This power is then accumulated as electrical load in

all of the distribution objects that are upstream

from this entity.

The load object has several distinct properties:

 Load (Hidden) a.

In conjunction with the Distribution attribute

which is also present, the Load attribute is an

integer field that identifies this object as a load

type of a distribution object. The attribute is

used for application programming and for

dynamic type discovery.

 Priority (Hidden) b.

The Priority flag is a unique characteristic of the

load object and indicates the load’s relative

importance as part of the electrical system.

Although the entire distribution system that

feeds a critical load is equally critical, to

minimize distractions, only the terminal load is

marked with a Priority flag. The following

options are available.

i. Normal – this is a load that can lose power

without jeopardizing the overall operability of

the system. Examples might include lights

and receptacles.

ii. Essential – an essential load is one that will

prevent the total system from being

functional if it loses power.

iii. Critical – a critical load is one that will result

in a threat to either life safety, machine

protection or will disrupt a legally required

standby system if it loses power.

While not shown in the figures, when an

essential or critical load loses power, a flag

appears next to the object indicating that it is

offline. The flag for an essential system is a

yellow disc, while the flag for a critical system is

a red disc.

The Load-Mini Object

The load-mini object is a special variation of the

load object that is designed to substantially reduce

the footprint of the model and still provide adequate

data. While this object has all of the underlying

data and functionality of a load object, its size is

significantly reduced.

Figure 6. The Load-Mini Object

Figure 5. The Load Object

 9

The Transformer Object

The transformer object is unique variant of the

distribution family of objects. A transformer is used

to change the voltage from its input side to its

output side. The transformer imposes a conversion

cost on the transformation process using an

efficiency variable. This means that if the

transformer has an efficiency value of 0.90 (90%

efficient), then 10% of the total wattage will be lost

(and converted to heat) as it passes from the input

side to the output side.

Because the transformation process maintains the

loads along each phase, the formulas used to

perform the conversion are relatively simple. For

each phase, the current being drawn on the output

side is multiplied by the ratio of the input voltage

and the output voltage to transform the power. The

transformed value is then divided by the efficiency

value to incur the cost of transformation. This value

is then transferred to the appropriate phase on the

input side of the transformer.

Take the transformation that is shown in Figure 7

as an example. For the A Phase:

1) Identify the current being drawn:

 A Phase = 110 Amps

2) Multiply that value by the ratio of the voltages

that are being transformed:

 110 Amps * (208V / 480V) = 47.67 Amps

3) Divide the transformed amperage by the

efficiency.

 47.67 / 0.90 = 52.96 Amps

This value, which has been rounded in the figure

above, is the load that will be drawn on the A Phase

of the source object.

The following attributes are specific to the

transformer object.

 Transformer (Hidden) a.

This is an integer field that identifies this object

as a transformer type of a distribution object. It

is used for application development and dynamic

type discovery.

 Incoming Phases / Outgoing Phases b.

Because the transformer object may have

different incoming and outgoing phases, the

Phases attribute has been replaced with the

Incoming Phases and Outgoing Phases

attributes.

 Incoming Capacity c.

Only the incoming capacity of the transformer

object is specified. The Outgoing Capacity is a

Figure 7. The Transformer Object

 10

hidden attribute and is computed using the

incoming capacity, voltages and efficiency.

 Efficiency (Hidden) d.

This is the efficiency of the power transformation

that occurs within the transformer object. This

value is specified by the user and must be

greater than 0 and less than or equal to 1.0.

The Switch Object

The switch object receives power from two sources

and then delivers the selected source downstream to

the subordinate distribution objects. Unlike other

distribution objects where the inbound connector

can attach anywhere, for the switch object inbound

connections MUST attach at the connector points

defined on the SRC 1 and SRC 2 boxes. Using these

connection points allows the underlying application

to determine which parent is connected to which

poll of the switch. For clarity, a connection point is

also included on the Out box, but using that

connection point is optional.

In examining Figure 8 the user will note some

peculiarities that are unique to the switch object.

First, the selected source (SRC 1) has a solid fill,

while the unselected source (SRC 2) is hatched. If

the user switches the device to SRC 2, then that box

will become solid and SRC 1 will become hatched.

Additionally, the user may select neither source, in

which case both SRC 1 and SRC 2 will be filled with

a hatch pattern and no power will be delivered

downstream.

Unlike other distribution objects, the switch object

has no notion of capacity. This object’s capacity is

essentially unlimited and it can delivery any

amount of power from either of its sources to its

downstream loads. If the user desires a capacity

limitation for a switch, then breaker objects should

be installed between the switch object and its

sources.

The switch object has the following attributes.

 Switch (Hidden) a.

This is an integer field that identifies this object

as a switch type of a distribution object and is

used for application development.

 Capacity b.

The capacity field on the switch object is hidden.

The field is set to an initial value of 1,000,000

amps. This value may be increased if necessary.

 Selected Source c.

This field is used to identify the currently

selected source. The following values are used:

0) No source is selected,

1) SRC 1 is selected,

2) SRC 2 is selected.

The Automatic Transfer Switch Object

This type of switch is visual identical to the switch

object, however, because it is an automatic switch it

is governed by the following rules.

1) SRC 1 is the primary source, if SRC 1 is

energized and the automatic transfer switch is

powered on, then power will be delivered to the

downstream loads from SRC 1.

2) If SRC 1 is unavailable, the automatic transfer

switch will immediately transfer the load to SRC 2

if it is available and the object is powered on.

3) If the automatic transfer switch is using SRC 2,

when the primary source becomes available, the

switch will automatically return to using SRC 1.

4) If neither the primary nor the secondary source is

available, the automatic transfer switch will remain

switched to SRC 1.

In addition to all fields defined on the switch object,

the automatic transfer switch also has an

Automatic attribute to distinguish it from its

standard counterpart.

Figure 8. The Switch Object

 11

The Proxy Object

The final object in this collection is the proxy object.

This object is designed to maintain connections and

relationships across multiple pages. To be clear, a

proxy object represents another distribution object

that exists somewhere else in the current model.

The proxy contains live references to all of the data

that is stored in the actual object and can be used to

distribute or accumulate load across the model.

Figure 9 contains two proxy objects. The one labeled

Load is a proxy for the load object on the right,

while the one labeled Source is a proxy for the

source object on the left. As you can see from the

diagram, the power being drawn by the load object

is being drawn from the source object even though

they are not physically connected.

When a proxy object is added to the page, the user

will be prompted to identify the object that it is

Linked To. This value is entered using Visio’s page

notation. For instance, if we are creating a proxy

for an object with ID=12 on the page named Page-1,

the Linked To attribute would contain: Pages[Page-

1]!Sheet.12.

Note: If the object is on the same page, then the

Pages part of the reference need not be included.

If a valid reference is entered, then the name

displayed above the proxy object will be the same as

the name of the object that it is referencing.

IV. CONSTRUCTING ELECTRICAL

INFRASTRUCTURE MODELS

While complete guidance for using the Visio

application to create diagrams is beyond the scope of

this document, there are a few details that are

important. The objects that are described in this

document are designed to automatically interact

and create relationships with one another when

they are used in a document where the proper

application code is installed. This section discusses

how that process works, as well as other

considerations that are important in developing an

electrical infrastructure model.

Templates and Stencils

All of the distribution objects described earlier are

included in the electrical stencil which is part of the

infrastructure modeling package. In Visio, a stencil

contains a collection of related shapes that can be

used within a model. Stencils can be loaded and

unloaded at will, however, once a shape from a

stencil is used, it will remain part of the document

until it is deleted.

Beyond mere shapes, though, this system relies on a

small amount of Visual Basic application code that

controls how the distribution objects establish their

relationships when they are connected to one

another. This VBA code is included as an appendix

to this document, but is also embedded in the

electrical template that is distributed with the

infrastructure modeling package. For best results,

the user should start by creating a new document

using the electrical template and then save it to a

new document. When the new document is opened,

the relationship building code will automatically

start.

Connections and Relationships

For all documents that are created using the

electrical template, there are a set of functions

included in the document’s Visual Basic module.

Whenever a connection is created or deleted

between two distribution objects, these functions

call the ProcessDistributionConnections function to

update the relationships between the objects. The

Figure 9. Proxy Objects

 12

direction (upstream to downstream) of these

relationships is created based on the orientation of

the connection.

For each connecting line, there exists a point that is

the beginning and a point that is the end. In this

modeling system, power flows from the beginning to

the end. For instance, if the beginning side of the

connector is linked to a source and the end side is

linked to a load, then power will flow properly.

Conversely, if the beginning side is attached to the

load and the end is attached to the source, then

nothing will happen. Because of this, the user must

be careful to ensure that connections are oriented

properly.

The best way to ensure proper orientation is to use

connecting lines that have a directional arrow on

one end. Not only does this make the resultant

model easier to understand, it makes it simple to

see when a connecting line is installed backward.

Sources and Loads as Terminal Objects

The source object and the load object should always

be treated as terminal objects. This means that they

should always be the final object on any chain of

distribution objects. Although the Visio application

will allow a user to have one distribution object feed

into a source object, the resulting relationships is

nonsensical and only serves to confuse the reader.

Likewise, a load object should be the last leaf at the

far end of a model. Additional objects should not

extend from a load object, even though that object

will tolerate the connection and will distribute

power downstream.

One Source at a Time

With the exception of switches and automatic

transfer switches, only one upstream source should

feed an object at any time. The reason for this is

because when multiple sources are feeding an

object, the model cannot determine which source the

power should be drawn from. As a result, even

though Visio allows multiple sources to be attached

to an object, the underlying Visual Basic application

will ignore all but one of the connections to

maintain a sensible relationship. Ensuring that

only one source is connected at any time will make

the models easier to read and understand.

Application Faults

Occasionally, an interaction between the user and

the application will cause an error in the underlying

Visual Basic application. If such an error occurs

while the application is processing a connection

between two distribution objects, it may cause those

functions to be disabled for the remainder of the

session. After this, relationships will no longer be

automatically created when two distribution objects

are connected.

If this happens, save the document, close it and

then re-open it. This restores the underlying

application to a functional state and allows

connection processing to continue.

Creating Relationships Manually

Included in the Visual Basic application code is a

macro named MapDistributionNodes. If the

relationships between nodes are not being

automatically created, the user can run this macro

to regenerate all of the relationships between

connected distribution objects. Note that this macro

will examine every shape in the document to

confirm that the relationships are correctly defined.

This can be a very time-consuming process and

should be avoided in favor of using the event based

relationship builder that automatically evaluates

connections as they occur.

V. CONCLUSIONS

This document has described a technique for

constructing a model that describes an industrial

electrical system. This infrastructure modeling

system has been developed using commercial

software that is readily available and is common in

most workplaces. While the modeling system does

rely on some locally developed software, the amount

of code that was created is very small, well-

documented and should be approachable by any

developer who is versed in the Microsoft Office suite

of applications.

While the development of models like this is a

meaningful contribution to good configuration

management, it is only the first step. Management

of a large electrical infrastructure demands that

modeling be used in conjunction with good record

keeping and periodic audits that ensure the records

are accurate and up-to-date. Accordingly,

infrastructure models, like one-line diagrams and

panel schedules, must be audited and updated

regularly. Likewise, the models generated from the

modeling approach described here should be coupled

with diligent record keeping and regular auditing to

be most effective.

 13

While the goal of this project was to rapidly deploy a

modeling system to support an electrical

infrastructure, this product is only a starting point.

The future developments, described below, should

leverage these techniques to improve our

understanding of the systems we work with and

expand the utility of these models.

Future Directions

The objects and the modeling techniques described

in this document are only the first steps in

developing a simple and inexpensive technique for

managing industrial infrastructure. While this

document focuses specifically on electrical systems,

the foundation is laid for expanding this technique

to include modeling HVAC systems, process cooling

water and, potentially, cryogenic systems.

The future directions that this research will pursue

include techniques for automating the conversion of

electrical schedules and diagrams stored in other

formats into dynamic models like those described

here. As with this system, the development

objectives will continue to be, a) using commercially

available software, b) minimizing locally developed

code, c) creating an environment that is easy for a

non-expert to use, and d) keeping the price point as

low as possible. Further developments will include

the design and implementation of an alarm system

that alerts users when the critical or essential

systems will be impacted by either maintenance

activities, scheduled outages or failures.

Beyond these rudimentary applications, the

development of an extrapolation model that allows

users to estimate the amount of power consumed by

elements within the electrical system is also a

future possibility. This approach would allow the

user to enter system readings or estimates where

they are known, after which the application would

distribute power throughout the system to make the

estimated loads conform to the entered readings. To

improve performance, this application will likely be

developed through the use of an application add-in

or a dynamically linked library that uses a higher

performing language.

Source Code

Included as appendices to this document are a

variety of Visual Basic Application sources. These

include the following:

 Appendix 1: Document Event Handlers a.

This is the VBA code that must be included in

the ThisDocument module of each document to

cause new connections to automatically update

the relationships between distribution objects.

 Appendix 2: Distribution Code Module b.

These are functions and macros that specifically

apply to distribution objects in the Visio

environment.

 Appendix 3: Utility Code Module c.

These are lightweight utilities that are provided

for working with generic Visio shapes and

objects.

 Factories Module d.

While the original collection of distribution

objects described in this document were

constructed by hand, it quickly became more

practical to develop a set of Visual Basic

functions that automatically generate the

objects. These functions allow new features to be

added within the source code and immediately

instantiated into new objects for distribution.

Because this module is very large and complex, it

is included as part of the online software

distribution rather than as an appendix.

Obtaining this Modeling Package

All of the source code, stencils and templates

described within this document are available online

via anonymous ftp from:

ftp://ftp.jlab.org/pub/modeling

 14

VI. REFERENCES

1. Boulding, K. (1966). The Impact of Social

Sciences. New Brunswick, NJ: Rutgers

University Press.

2. Donley, M. (2011, October 17). History of

Sketchup. Retrieved March 30, 2018, from

masterSketchup.com:

https://mastersketchup.com/history-of-

sketchup/

3. Johnson, T. (2013, September 14). Timeline.

Retrieved March 30, 2018, from Visio:

http://www.visiocorp.info/timeline.aspx

4. Kempf, K. (1961). Electronic Computers

within the Ordnance Corps. Aberdeen Proving

Ground, MD: United States Army.

5. Warfield, J. (1993). Structural Thinking:

Producing Effective Organizational Change.

15th Annual Meeting of the Association for

Integrative Studies. Detroit.

6. Weisberg, D. E. (2011, November 18). The

Engineering Design Revolution. Retrieved

March 30, 2018, from http://cadhistory.net

 15

Appendix 1: Document Event Handlers

Option Explicit

Private WithEvents m_page As Visio.Page

Private Sub Document_DocumentOpened(ByVal doc As IVDocument)

 Set m_page = Visio.ActivePage

End Sub

Private Sub Document_PageChanged(ByVal Page As IVPage)

 Set m_page = Visio.ActivePage

End Sub

Private Sub m_page_ConnectionsDeleted(ByVal Connects As IVConnects)

 ProcessDistributionConnections Connects

End Sub

Private Sub m_page_ConnectionsAdded(ByVal Connects As IVConnects)

 ProcessDistributionConnections Connects

End Sub

Private Sub m_page_BeforeShapeDelete(ByVal shp As IVShape)

 If shp.LineStyle = "Connector" Then

 shp.Disconnect visConnectorBothEnds, 0.1, 0.1, 0

 End If

End Sub

Appendix 2: Distribution.BAS - Distribution Code Module

Attribute VB_Name = "Distribution"

' ===

' Distribution Module

' Walt Akers

' Thomas Jefferson National Accelerator Facility

'

' This module contains the functions necessary to manage and create

' relationships between various distribution objects.

' ===

' ===

' MapDistributionNodes:

' Maps Loads and Sources.

' ===

Sub MapDistributionNodes()

 MapDistributionLoads

 MapDistributionSources

End Sub

' ===

' mapDistributionNode:

' This function calls the mapDistributionLoad and mapDistributionSource for

' a single shape.

' ===

Function mapDistributionNode(vsoShape As Visio.Shape)

 MapDistributionLoad vsoShape

 MapDistributionSource vsoShape

End Function

' ===

' MapDistributionLoads:

' This function walks through all of the shapes and creates the connections

' necessary to distribute loads from the bottom to the top.

' ===

Function MapDistributionLoads()

 16

 Dim vsoShapes As Visio.Shapes

 Dim vsoShape As Visio.Shape

 Set vsoShapes = Visio.ActivePage.Shapes

 MapDistributionShapesLoads vsoShapes

End Function

' ===

' MapDistributionShapesLoads:

' This is an overloaded version of the MapDistributionLoads function that

' passes a vsoShapes object as a parameter. This function will examine

' each shape. Shapes to be processed are one of two types.

'

' Distribution Object: (Has a Property cell named Distribution)

' This object will be processed as a Distribution Object.

'

' DistributionParent: (Has a Property cell named DistributionParent)

' The shapes contained within this shape will be passed (recursively) to

' this function to be evaluated and processed.

' ===

Function MapDistributionShapesLoads(vsoShapes As Shapes)

 Dim vsoShape As Visio.Shape

 For Each vsoShape In vsoShapes

 If (Not vsoShape.LineStyle = "Connector") Then

 If (vsoShape.CellExistsU("Prop.DistributionParent", False) And _

 vsoShape.Shapes.Count > 0) Then _

 MapDistributionShapesLoads vsoShape.Shapes

 If (vsoShape.CellExistsU("Prop.Distribution", False)) Then _

 MapDistributionLoad vsoShape

 End If

 Next vsoShape

End Function

' ===

' MapDistributionLoad:

' This funcction will examine all shapes that are connected to this shape

' as Outgoing Nodes. If the Outgoing Node is also a distribution node, then

' the A/B/C values on that Distribution object will be added to the

' A_LOAD/B_LOAD/C_LOAD values on this Distribution object.

'

' This effectively propogates the consumption of amperage from the bottom

' of the model (the Loads) to the top of the model (the Sources).

'

' Because all objects have an embedded Distribution property, it is assumed

' that they have all of the required Distribution fields. The Properties

' that are used by this function include

'

' Distribution Indicates the object is a distribution node

' A Amperage consumed by the node on the A phase

' B Amperage consumed by the node on the B phase

' C Amperage consumed by the node on the C phase

' A_Load Amperage accumulated on the nodes A Phase from subordinates

' B_Load Amperage accumulated on the nodes B Phase from subordinates

' C_Load Amperage accumulated on the nodes C Phase from subordinates

'

' Note that if that a connected distribution object is a switch, then it will

' be connected to this object based on the identifier of the connection

' point.

'

' For instance, if this distribution object is connected to port 1 on a

' Switch, the load will be collected from Switch!Prop.A1, Switch.Prop.B1,

' and Switch.Prop.C1 accordingly.

'

' If this object has a connection to a Switch that is not attached to a

' connection point, then it will neither accumulate load nor distribute

 17

' power to that node.

' ===

Function MapDistributionLoad(vsoShape As Visio.Shape)

 Dim vsoChild As Visio.Shape

 Dim childCP As String

 Dim conn() As ConnectedShapes

 Dim connCt As Integer

 Dim cnt As Integer

 Dim aVal As String

 Dim bVal As String

 Dim cVal As String

 Dim aSrc As String

 Dim bSrc As String

 Dim cSrc As String

 cnt = 0

 aVal = "0"

 bVal = "0"

 cVal = "0"

 If (vsoShape.CellExistsU("Prop.Distribution", False)) Then

 conn = ReadConnectivity(vsoShape)

 Err.Clear

 On Error Resume Next

 connCt = UBound(conn)

 If (Err.Number <> 0) Then connCt = 0

 For i = 1 To connCt

 If (conn(i).ConnectCount = 2 And Not conn(i).Incoming) Then

 Set vsoChild = conn(i).ToShape

 ' ===

 ' Only process this operation if the underlying child is a

 ' distribution object.

 ' ===

 If (vsoChild.CellExistsU("Prop.Distribution", False)) Then

 ' ===

 ' Determine the proper name for each load Phase on the

 ' child. For normal distributions this will be Prop.A,

 ' Prop.B and Prop.C. For Switch Distributions, this will

 ' be Prop.An, Prop.Bn and Prop.Cn where n is the number of

 ' the connection point.

 ' ===

 If (vsoChild.CellExistsU("Prop.Switch", False)) Then

 childCP = conn(i).ToConnectionPoint

 aSrc = "Prop.A" & childCP

 bSrc = "Prop.B" & childCP

 cSrc = "Prop.C" & childCP

 Else

 aSrc = "Prop.A"

 bSrc = "Prop.B"

 cSrc = "Prop.C"

 End If

 ' ===

 ' Before adding the relationship, make sure that each of

 ' the properties exists on the child.

 ' ===

 If (vsoChild.CellExistsU(aSrc, False) And _

 vsoChild.CellExistsU(bSrc, False) And _

 vsoChild.CellExistsU(cSrc, False)) Then

 If (cnt = 0) Then

 aVal = vsoChild.NameID & "!" & aSrc

 bVal = vsoChild.NameID & "!" & bSrc

 cVal = vsoChild.NameID & "!" & cSrc

 cnt = cnt + 1

 Else

 aVal = aVal & "+" & vsoChild.NameID & "!" & aSrc

 bVal = bVal & "+" & vsoChild.NameID & "!" & bSrc

 18

 cVal = cVal & "+" & vsoChild.NameID & "!" & cSrc

 End If

 cnt = cnt + 1

 End If

 End If

 End If

 Next

 SetPropertyValue vsoShape, "A_LOAD", aVal

 SetPropertyValue vsoShape, "B_LOAD", bVal

 SetPropertyValue vsoShape, "C_LOAD", cVal

 End If

End Function

' ===

' MapDistributionSources:

' This function walks through all of the shapes and creates the connections

' necessary to provision power downward from the top to the bottom.

' ===

Function MapDistributionSources()

 Dim vsoShapes As Visio.Shapes

 Dim vsoShape As Visio.Shape

 Set vsoShapes = Visio.ActivePage.Shapes

 MapDistributionShapesSources vsoShapes

End Function

' ===

' MapDistributionShapesSources:

' This is an overloaded version of the MapDistributionSources function that

' passes a vsoShapes object as a parameter. This function will examine

' each shape. Shapes to be processed are one of two types.

'

' Distribution Object: (Has a Property cell named Distribution)

' This object will be processed as a Distribution Object.

'

' DistributionParent: (Has a Property cell named DistributionParent)

' The shapes contained within this shape will be passed (recursively) to

' this function to be evaluated and processed.

' ===

Function MapDistributionShapesSources(vsoShapes As Shapes)

 Dim vsoShape As Visio.Shape

 For Each vsoShape In vsoShapes

 If (Not vsoShape.LineStyle = "Connector") Then

 If (vsoShape.CellExistsU("Prop.DistributionParent", False) And _

 vsoShape.Shapes.Count > 0) Then _

 MapDistributionShapesSources vsoShape.Shapes

 If (vsoShape.CellExistsU("Prop.Distribution", False)) Then _

 MapDistributionSource vsoShape

 End If

 Next vsoShape

End Function

' ===

' MapDistributionSource:

' This function creates a relationship between a distribution node, with the

' Distribution nodes that exist above it to determine if the node is:

'

' a) Powered and

' b) Phase Mismatch

'

' A Distribution node should have one and only one Distribution parent.

' Still, this function will tolerate multiple parent distributions, by

' OR-ing them to produce a value.

 19

'

' Because all objects have an embedded Distribution property, it is assumed

' that they have all of the required Distribution fields. The Properties

' that are used by this function include

'

' Distribution Indicates the object is a distribution node

' Powered Boolean flag indicating the object is powered from above

' On Boolean flag indicating the object is switched on

' Tripped Boolean flag indicating the object is tripped

' Phases A bit field indicating the phases supported by the object

' PhaseMismatch Boolean indicates a phase mismatch between parent and child

'

' Note that if this object is a Distribution and a Source, then it will

' automatically be marked as Powered.

'

' Also Note: Unless a distribution object is a switch, it should not be fed

' from more than one source of power. If this object is receiving power from

' more than one source (and it is not a Switch), then only the last power

' source will be considered.

' ===

Function MapDistributionSource(vsoShape As Visio.Shape)

 Dim vsoParent As Visio.Shape

 Dim childCP As String

 Dim conn() As ConnectedShapes

 Dim connCt As Integer

 Dim parentProp As String

 Dim poweredProp As String

 Dim phaseMismatchProp As String

 Dim phaseProp As String

 Dim voltageProp As String

 Dim parentPhaseProp As String

 Dim parentVoltageProp As String

 Dim idx As Integer

 ' ===

 ' Confirm that this object is a Distribution before processing it.

 ' ===

 If (vsoShape.CellExistsU("Prop.Distribution", False)) Then

 On Error Resume Next

 ' ===

 ' If this is a Switch, the first essential step is to walk through

 ' all of the connections and clear them before this process begins.

 ' ===

 If (vsoShape.CellExistsU("Prop.Switch", False)) Then

 Dim iRow As Integer

 iRow = 0

 While vsoShape.RowExists(visSectionConnectionPts, iRow, False)

 childCP = vsoShape.CellsSRC(visSectionConnectionPts, iRow, 0).RowName

 If childCP <> "" Then

 parentProp = "Prop.Parent" & childCP

 poweredProp = "Prop.Powered" & childCP

 phaseMismatchProp = "Prop.PhaseMismatch" & childCP

 If (vsoShape.CellExistsU(parentProp, False)) Then _

 vsoShape.CellsU(parentProp).FormulaU = """"""

 If (vsoShape.CellExistsU(poweredProp, False)) Then _

 vsoShape.CellsU(poweredProp).FormulaU = "False"

 If (vsoShape.CellExistsU(phaseMismatchProp, False)) Then _

 vsoShape.CellsU(phaseMismatchProp).FormulaU = "False"

 End If

 iRow = iRow + 1

 Wend

 ' ===

 ' If this is not a switch, then the properties that are being

 20

 ' updated are FIXED and should be set here. Otherwise, they will be

 ' updated on each iteration to reflect the connectionID.

 ' ===

 Else

 parentProp = "Prop.Parent"

 poweredProp = "Prop.Powered"

 phaseMismatchProp = "Prop.PhaseMismatch"

 If (vsoShape.CellExistsU(parentProp, False)) Then vsoShape.CellsU(parentProp).FormulaU = _

 """"""

 If (vsoShape.CellExistsU(poweredProp, False)) Then vsoShape.CellsU(poweredProp).FormulaU = _

 "False"

 If (vsoShape.CellExistsU(phaseMismatchProp, False)) Then _

 vsoShape.CellsU(phaseMismatchProp).FormulaU = "False"

 End If

 ' ===

 ' Determine the names of the properties that will be addressed in this

 ' object. If it is a transformer object, then the Voltage

 ' property will be prepended with an "i" to differentiate it from

 ' teh output voltages.

 ' ===

 phaseProp = "Prop.Phases"

 If vsoShape.CellExistsU("Prop.Transformer", False) Then

 voltageProp = "Prop.iVoltage"

 Else

 voltageProp = "Prop.Voltage"

 End If

 ' ===

 ' If this Distribution object is a Source, then it should be "Powered"

 ' by default. Further, sources are assumed to have no upstream

 ' connections.

 ' ===

 If (vsoShape.CellExistsU("Prop.Source", False)) Then

 vsoShape.CellsU(poweredProp).FormulaU = "True"

 valCnt = 1

 Else

 ' ===

 ' Get a list of connections that are feeding into this shape

 ' ===

 conn = ReadConnectivity(vsoShape)

 Err.Clear

 connCt = UBound(conn)

 If (Err.Number <> 0) Then connCt = 0

 ' ===

 ' Iterate through the connections. Only process them if the

 ' connection has two connected shapes, it is an incoming connection

 ' to this object and the shape that it is connecting from is a

 ' Distribution object.

 ' ===

 For i = 1 To connCt

 If (conn(i).ConnectCount = 2 And _

 conn(i).Incoming And _

 conn(i).FromShape.CellExistsU("Prop.Distribution", False)) Then

 Set vsoParent = conn(i).FromShape

 childCP = conn(i).ToConnectionPoint

 ' ===

 ' If this device is a Switch, then the properties must have

 ' the connection point identifier appended to them.

 ' ===

 If (vsoShape.CellExistsU("Prop.Switch", False)) Then

 parentProp = "Prop.Parent" & childCP

 poweredProp = "Prop.Powered" & childCP

 phaseMismatchProp = "Prop.PhaseMismatch" & childCP

 End If

 21

 ' ===

 ' Set the name, phase and voltage property names

 ' ===

 parentPhaseProp = vsoParent.NameID & "!Prop.Phases"

 parentVoltageProp = vsoParent.NameID & "!Prop.Voltage"

 ' ==

 ' This conditional prevents the object from accidentally

 ' overwriting the master Powered and PhaseMismatch properties

 ' on a Switch object.

 ' ==

 If (Not vsoShape.CellExistsU("Prop.Switch", False) Or _

 childCP <> "") Then

 ' ==

 ' Set the Parent property.

 ' ==

 If (vsoShape.CellExistsU(parentProp, False)) Then

 vsoShape.CellsU(parentProp).FormulaU = vsoParent.NameID & "!Prop.Name"

 End If

 ' ==

 ' Set the Powered property.

 ' ==

 If (vsoShape.CellExistsU(poweredProp, False)) Then

 vsoShape.CellsU(poweredProp).FormulaU = vsoParent.NameID & "!Prop.Powering"

 End If

 ' ===

 ' Set the PhaseMismatch calculation which also considers phase

 ' mismatches between the objects voltages.

 ' ===

 If (vsoShape.CellExistsU(phaseMismatchProp, False)) Then

 vsoShape.CellsU(phaseMismatchProp).FormulaU = _

 "OR((BITAND(" & phaseProp & "," _

 & parentPhaseProp & ")<>" _

 & phaseProp & ")," _

 & "NOT(STRSAME(" & voltageProp & "," _

 & parentVoltageProp & ")))"

 End If

 End If

 End If

 Next

 End If

 End If

End Function

' ===

' This function is called whenever a connection is changed (added or removed)

' ===

Function ProcessDistributionConnections(ByVal Connects As IVConnects)

 Dim cnct As Visio.Connect

 Dim subCnt As Visio.Connect

 Dim vsoShapes As Visio.Shapes

 Dim vsoShape As Visio.Shape

 Dim processed As String

 On Error Resume Next

 For Each cnct In Connects

 '==

 ' Begin with the FromSheet that is listed in the connection. If it

 ' is valid, then process it.

 ' ===

 If (Not (cnct.FromSheet Is Nothing)) Then

 ' ===

 22

 ' If the Shape referred to by FromSheet has a Distribution property

 ' then it should be processed.

 ' ===

 If (cnct.FromSheet.CellExistsU("Prop.Distribution", False)) Then

 mapDistributionNode cnct.FromSheet

 ' ===

 ' Conversely, if the FromSheet has no Distribution property, but it

 ' does have its own set of connections, then they should be processed.

 ' ===

 ElseIf (Not (cnct.FromSheet.Connects Is Nothing)) Then

 For Each subCnt In cnct.FromSheet.Connects

 ' ===

 ' If the FromSheet in this subConnection is valid and has a

 ' Distribution property - process it.

 ' ===

 If (Not (subCnt.FromSheet Is Nothing) And _

 subCnt.FromSheet.CellExistsU("Prop.Distribution", False)) Then

 mapDistributionNode subCnt.FromSheet

 End If

 ' ===

 ' If the ToSheet in this subConnection is valid and has a

 ' Distribution property - process it.

 ' ===

 If (Not (subCnt.ToSheet Is Nothing) And _

 subCnt.ToSheet.CellExistsU("Prop.Distribution", False)) Then

 mapDistributionNode subCnt.ToSheet

 End If

 Next

 End If

 End If

 '==

 ' Next examine the ToSheet - If it is valid, then process it.

 ' ===

 If (Not (cnct.ToSheet Is Nothing)) Then

 ' ===

 ' If the Shape referred to by ToSheet has a Distribution property

 ' then it should be processed.

 ' ===

 If (cnct.ToSheet.CellExistsU("Prop.Distribution", False)) Then

 mapDistributionNode cnct.ToSheet

 ' ===

 ' Conversely, if the ToSheet has no Distribution property, but it

 ' does have its own set of connections, then they should be processed.

 ' ===

 ElseIf (Not (cnct.ToSheet.Connects Is Nothing)) Then

 For Each subCnt In cnct.ToSheet.Connects

 ' ===

 ' If the FromSheet in this subConnection is valid and has a

 ' Distribution property - process it.

 ' ===

 If (Not (subCnt.FromSheet Is Nothing) And _

 subCnt.FromSheet.CellExistsU("Prop.Distribution", False)) Then

 mapDistributionNode subCnt.FromSheet

 End If

 ' ===

 ' If the ToSheet in this subConnection is valid and has a

 ' Distribution property - process it.

 ' ===

 If (Not (subCnt.ToSheet Is Nothing) And _

 subCnt.ToSheet.CellExistsU("Prop.Distribution", False)) Then

 mapDistributionNode subCnt.ToSheet

 End If

 23

 Next

 End If

 End If

 Next

End Function

Appendix 3: Utility.BAS - Utility Code Module

Attribute VB_Name = "Utility"

' ===

' Utility Module

' Walt Akers

' Thomas Jefferson National Accelerator Facility

'

' This module contains a collection of utility functions that support Visio

' applications and shapes. These functions include:

'

' Function GotoPage(PageName As String)

' Goes to a named page and creates it if necessary.

'

' Function SetShapeDimensions(...)

' A utility function that sets the dimension settings of a shape.

'

' Function SetShapeProtections(...)

' A utility function that sets the protection settings of a shape.

'

' Function SetShapeMisc(...)

' A utility function that sets the miscellaneous settings of a shape.

'

' Function SetShapeLineFormat(...)

' A utility function that sets the shape's line format.

'

' Function SetShapeFillFormat(...)

' A utility function that sets the shape's fill format.

'

' Function SetShapeMargins(...)

' A utility function that sets the shape's internal margins.

'

' Function SetShapeCharFormat(...)

' A utility function that sets the shape's internal margins.

'

' Function SetPropertyParams(...)

' Creates a property in the Visio shape (if necesary) and then

' sets the parameters of the property.

'

' Function DeleteProperty(...)

' Deletes a property from the shape.

'

' Function SetPropertyValue(...)

' Creates a property in the Visio shape (if necessary) and then

' sets the value property.

'

' Function GetPropertyValue(...)

' Reads a property in the Visio shape and then returns it to the caller.

'

' Function SetPropertyVisibility(...)

' This function will hide or unhide properties.

'

' Function ConnectShapes(...)

' Connect the specified shapes, using the connecting points if

' they are specified.

'

' Function ReadConnectivity(...)

' Reads the connectivity information of a shape.

' ===

 24

' ===

' The ConnectedShapes object is used by the ReadConnectivity function to

' produce a list of all connections that are coming into (or goiong out of)

' an object.

'

' The Connector object is connecting line that runs between the two shapes.

'

' The ConnectCount variable is a count of connections on the connector - if it

' is less than 2, then this is a dangling connector.

'

' If the connection is coming into the shape, then the Incoming

' flag will be set and the FromShape will be the remote object that is

' connected to the evaluated shape.

'

' If the connection is going out of the shape (and ConnectCount > 1), then the

' Incoming flag will be false and the ToShape will be the remote object that

' is connected to the evaluated shape.

' ===

Public Type ConnectedShapes

 connector As Visio.Shape

 ConnectCount As Integer

 FromShape As Visio.Shape

 FromConnectionPoint As String

 ToShape As Visio.Shape

 ToConnectionPoint As String

 Incoming As Boolean

End Type

' ===

' GotoPage

' This is a utility function that moves to a named page and creates it if

' necessary.

' ===

Function GotoPage(PageName As String)

 On Error Resume Next

 Err.Clear

 Application.ActiveWindow.Page = Application.ActiveDocument.Pages.ItemU(PageName)

 If (Err.Number <> 0) Then

 Dim vsoPage1 As Visio.Page

 Set vsoPage1 = ActiveDocument.Pages.Add

 vsoPage1.Name = PageName

 Application.ActivePage.Name = PageName

 Application.ActivePage.NameU = PageName

 End If

End Function

' ===

' SetShapeDimensions

' This is a utility function that sets the dimension settings of a shape.

' ===

Function SetShapeDimensions(vsoShape As Visio.Shape, _

 Optional width As String = "", _

 Optional height As String = "", _

 Optional pinX As String = "", _

 Optional pinY As String = "", _

 Optional locPinX As String = "", _

 Optional locPinY As String = "")

 On Error Resume Next

 If (width <> "") Then vsoShape.CellsU("Width").FormulaForceU = width

 If (height <> "") Then vsoShape.CellsU("Height").FormulaForceU = height

 If (pinX <> "") Then vsoShape.CellsU("PinX").FormulaForceU = pinX

 If (pinY <> "") Then vsoShape.CellsU("PinY").FormulaForceU = pinY

 If (locPinX <> "") Then vsoShape.CellsU("LocPinX").FormulaForceU = locPinX

 If (locPinY <> "") Then vsoShape.CellsU("LocPinY").FormulaForceU = locPinY

 25

 On Error GoTo 0

End Function

' ===

' SetShapeProtections

' This is a utility function that sets the protection settings of a shape.

' ===

Function SetShapeProtections(vsoShape As Visio.Shape, _

 Optional lockWidth As String = "", _

 Optional lockHeight As String = "", _

 Optional lockAspect As String = "", _

 Optional lockMoveX As String = "", _

 Optional lockMoveY As String = "", _

 Optional lockRotate As String = "", _

 Optional lockBegin As String = "", _

 Optional lockEnd As String = "", _

 Optional lockDelete As String = "", _

 Optional lockSelect As String = "", _

 Optional lockFormat As String = "", _

 Optional lockCustProp As String = "", _

 Optional lockTextEdit As String = "", _

 Optional lockVtxEdit As String = "", _

 Optional lockCrop As String = "", _

 Optional lockGroup As String = "", _

 Optional lockCalcWH As String = "", _

 Optional lockFromGroupFormat As String = "", _

 Optional lockThemeColors As String = "", _

 Optional lockThemeEffects As String = "")

 On Error Resume Next

 If (lockWidth <> "") Then vsoShape.CellsU("LockWidth").FormulaForceU = lockWidth

 If (lockHeight <> "") Then vsoShape.CellsU("LockHeight").FormulaForceU = lockHeight

 If (lockAspect <> "") Then vsoShape.CellsU("LockAspect").FormulaForceU = lockAspect

 If (lockMoveX <> "") Then vsoShape.CellsU("LockMoveX").FormulaForceU = lockMoveX

 If (lockMoveY <> "") Then vsoShape.CellsU("LockMoveY").FormulaForceU = lockMoveY

 If (lockRotate <> "") Then vsoShape.CellsU("LockRotate").FormulaForceU = lockRotate

 If (lockBegin <> "") Then vsoShape.CellsU("LockBegin").FormulaForceU = lockBegin

 If (lockEnd <> "") Then vsoShape.CellsU("LockEnd").FormulaForceU = lockEnd

 If (lockDelete <> "") Then vsoShape.CellsU("LockDelete").FormulaForceU = lockDelete

 If (lockSelect <> "") Then vsoShape.CellsU("LockSelect").FormulaForceU = lockSelect

 If (lockFormat <> "") Then vsoShape.CellsU("LockFormat").FormulaForceU = lockFormat

 If (lockCustProp <> "") Then vsoShape.CellsU("LockCustProp").FormulaForceU = lockCustProp

 If (lockTextEdit <> "") Then vsoShape.CellsU("LockTextEdit").FormulaForceU = lockTextEdit

 If (lockVtxEdit <> "") Then vsoShape.CellsU("LockVtxEdit").FormulaForceU = lockVtxEdit

 If (lockCrop <> "") Then vsoShape.CellsU("LockCrop").FormulaForceU = lockCrop

 If (lockGroup <> "") Then vsoShape.CellsU("LockGroup").FormulaForceU = lockGroup

 If (lockCalcWH <> "") Then vsoShape.CellsU("LockCalcWH").FormulaForceU = lockCalcWH

 If (lockFromGroupFormat <> "") Then vsoShape.CellsU("LockFromGroupFormat").FormulaForceU = _

 lockFromGroupFormat

 If (lockThemeColors <> "") Then vsoShape.CellsU("LockThemeColors").FormulaForceU = _

 lockThemeColors

 If (lockThemeEffects <> "") Then vsoShape.CellsU("LockThemeEffects").FormulaForceU = _

 lockThemeEffects

 On Error GoTo 0

End Function

' ===

' SetShapeMisc

' This is a utility function that sets the miscellaneous settings of a shape.

' ===

Function SetShapeMisc(vsoShape As Visio.Shape, _

 Optional noObjHandles As String = "", _

 Optional noCtlHandles As String = "", _

 Optional noAlignBox As String = "", _

 Optional langID As String = "", _

 26

 Optional hideText As String = "", _

 Optional updateAlignBox As String = "", _

 Optional dynFeedback As String = "", _

 Optional noLiveDynamics As String = "", _

 Optional calendar As String = "", _

 Optional objType As String = "", _

 Optional isDropSource As String = "", _

 Optional comment As String = "", _

 Optional dropOnPageScale As String = "", _

 Optional localizeMerge As String = "")

 On Error Resume Next

 If (noObjHandles <> "") Then vsoShape.CellsU("NoObjHandles").FormulaForceU = noObjHandles

 If (noCtlHandles <> "") Then vsoShape.CellsU("NoCtlHandles").FormulaForceU = noCtlHandles

 If (noAlignBox <> "") Then vsoShape.CellsU("NoAlignBox").FormulaForceU = noAlignBox

 If (langID <> "") Then vsoShape.CellsU("LangID").FormulaForceU = langID

 If (hideText <> "") Then vsoShape.CellsU("HideText").FormulaForceU = hideText

 If (updateAlignBox <> "") Then vsoShape.CellsU("UpdateAlignBox").FormulaForceU = updateAlignBox

 If (dynFeedback <> "") Then vsoShape.CellsU("DynFeedback").FormulaForceU = dynFeedback

 If (noLiveDynamics <> "") Then vsoShape.CellsU("NoLiveDynamics").FormulaForceU = noLiveDynamics

 If (calendar <> "") Then vsoShape.CellsU("Calendar").FormulaForceU = calendar

 If (objType <> "") Then vsoShape.CellsU("ObjType").FormulaForceU = objType

 If (isDropSource <> "") Then vsoShape.CellsU("IsDropSource").FormulaForceU = isDropSource

 If (comment <> "") Then vsoShape.CellsU("Comment").FormulaForceU = comment

 If (dropOnPageScale <> "") Then vsoShape.CellsU("DropOnPageScale").FormulaForceU = dropOnPageScale

 If (localizeMerge <> "") Then vsoShape.CellsU("LocalizeMerge").FormulaForceU = localizeMerge

 On Error GoTo 0

End Function

' ===

' SetShapeLineFormat

' This is a utility function that sets the shape's line format.

' ===

Function SetShapeLineFormat(vsoShape As Visio.Shape, _

 Optional linePattern As String = "", _

 Optional lineWeight As String = "", _

 Optional lineColor As String = "", _

 Optional lineCap As String = "", _

 Optional beginArrow As String = "", _

 Optional endArrow As String = "", _

 Optional lineColorTrans As String = "", _

 Optional beginArrowSize As String = "", _

 Optional endArrowSize As String = "", _

 Optional rounding As String = "")

 On Error Resume Next

 If (linePattern <> "") Then vsoShape.CellsU("LinePattern").FormulaForceU = linePattern

 If (lineWeight <> "") Then vsoShape.CellsU("LineWeight").FormulaForceU = lineWeight

 If (lineColor <> "") Then vsoShape.CellsU("LineColor").FormulaForceU = lineColor

 If (lineCap <> "") Then vsoShape.CellsU("LineCap").FormulaForceU = lineCap

 If (beginArrow <> "") Then vsoShape.CellsU("BeginArrow").FormulaForceU = beginArrow

 If (endArrow <> "") Then vsoShape.CellsU("EndArrow").FormulaForceU = endArrow

 If (lineColorTrans <> "") Then vsoShape.CellsU("LineColorTrans").FormulaForceU = lineColorTrans

 If (beginArrowSize <> "") Then vsoShape.CellsU("BeginArrowSize").FormulaForceU = beginArrowSize

 If (endArrowSize <> "") Then vsoShape.CellsU("EndArrowSize").FormulaForceU = endArrowSize

 If (rounding <> "") Then vsoShape.CellsU("Rounding").FormulaForceU = rounding

 On Error GoTo 0

End Function

' ===

' SetShapeFillFormat

' This is a utility function that sets the shape's fill format.

' ===

Function SetShapeFillFormat(vsoShape As Visio.Shape, _

 Optional fillForegnd As String = "", _

 Optional fillForegndTrans As String = "", _

 Optional fillBkgnd As String = "", _

 27

 Optional fillBkgndTrans As String = "", _

 Optional fillPattern As String = "", _

 Optional shdwForegnd As String = "", _

 Optional shdwForegndTrans As String = "", _

 Optional shdwBkgnd As String = "", _

 Optional shdwBkgndTrans As String = "", _

 Optional shdwPattern As String = "", _

 Optional shapeShdwOffsetX As String = "", _

 Optional shapeShdwOffsetY As String = "", _

 Optional shapeShdwType As String = "", _

 Optional shapeShdwObliqueAngle As String = "", _

 Optional shapeShdwScaleFactor As String = "")

 On Error Resume Next

 If (fillForegnd <> "") Then vsoShape.CellsU("FillForegnd").FormulaForceU = fillForegnd

 If (fillForegndTrans <> "") Then vsoShape.CellsU("FillForegndTrans").FormulaForceU = _

 fillForegndTrans

 If (fillBkgnd <> "") Then vsoShape.CellsU("FillBkgnd").FormulaForceU = fillBkgnd

 If (fillBkgndTrans <> "") Then vsoShape.CellsU("FillBkgndTrans").FormulaForceU = fillBkgndTrans

 If (fillPattern <> "") Then vsoShape.CellsU("FillPattern").FormulaForceU = fillPattern

 If (shdwForegnd <> "") Then vsoShape.CellsU("ShdwForegnd").FormulaForceU = shdwForegnd

 If (shdwForegndTrans <> "") Then vsoShape.CellsU("ShdwForegndTrans").FormulaForceU = _

 shdwForegndTrans

 If (shdwBkgnd <> "") Then vsoShape.CellsU("ShdwBkgnd").FormulaForceU = shdwBkgnd

 If (shdwBkgndTrans <> "") Then vsoShape.CellsU("ShdwBkgndTrans").FormulaForceU = shdwBkgndTrans

 If (shdwPattern <> "") Then vsoShape.CellsU("ShdwPattern").FormulaForceU = shdwPattern

 If (shapeShdwOffsetX <> "") Then vsoShape.CellsU("ShapeShdwOffsetX").FormulaForceU = _

 shapeShdwOffsetX

 If (shapeShdwOffsetY <> "") Then vsoShape.CellsU("ShapeShdwOffsetY").FormulaForceU = _

 shapeShdwOffsetY

 If (shapeShdwType <> "") Then vsoShape.CellsU("ShapeShdwType").FormulaForceU = shapeShdwType

 If (shapeShdwObliqueAngle <> "") Then vsoShape.CellsU("ShapeShdwObliqueAngle").FormulaForceU = _

 shapeShdwObliqueAngle

 If (shapeShdwScaleFactor <> "") Then vsoShape.CellsU("ShapeShdwScaleFactor").FormulaForceU = _

 shapeShdwScaleFactor

 On Error GoTo 0

End Function

' ===

' SetShapeMargins

' This is a utility function that sets the shape's internal margins.

' ===

Function SetShapeMargins(vsoShape As Visio.Shape, _

 Optional leftMargin As String = "", _

 Optional rightMargin As String = "", _

 Optional topMargin As String = "", _

 Optional bottomMargin As String = "")

 On Error Resume Next

 If (leftMargin <> "") Then vsoShape.CellsU("LeftMargin").FormulaForceU = leftMargin

 If (rightMargin <> "") Then vsoShape.CellsU("RightMargin").FormulaForceU = rightMargin

 If (topMargin <> "") Then vsoShape.CellsU("TopMargin").FormulaForceU = topMargin

 If (bottomMargin <> "") Then vsoShape.CellsU("BottomMargin").FormulaForceU = bottomMargin

 On Error GoTo 0

End Function

' ===

' SetShapeCharFormat

' This is a utility function that sets the shape's internal margins.

' ===

Function SetShapeCharFormat(vsoShape As Visio.Shape, _

 Optional cFont As String = "", _

 Optional cSize As String = "", _

 Optional cScale As String = "", _

 Optional cSpacing As String = "", _

 28

 Optional cColor As String = "", _

 Optional cTransparency As String = "", _

 Optional cStyle As String = "", _

 Optional cCase As String = "")

 On Error Resume Next

 If (cFont <> "") Then vsoShape.CellsU("Char.Font").FormulaForceU = cFont

 If (cSize <> "") Then vsoShape.CellsU("Char.Size").FormulaForceU = cSize

 If (cScale <> "") Then vsoShape.CellsU("Char.Scale").FormulaForceU = cScale

 If (cSpacing <> "") Then vsoShape.CellsU("Char.Spacing").FormulaForceU = cSpacing

 If (cColor <> "") Then vsoShape.CellsU("Char.Color").FormulaForceU = cColor

 If (cTransparency <> "") Then vsoShape.CellsU("Char.Transparency").FormulaForceU = cTransparency

 If (cStyle <> "") Then vsoShape.CellsU("Char.Style").FormulaForceU = cStyle

 If (cCase <> "") Then vsoShape.CellsU("Char.Case").FormulaForceU = cCase

 On Error GoTo 0

End Function

' ===

' SetPropertyParams:

' This function creates a property in the Visio shape (if necesary) and then

' sets the parameters of the property in accordance with the values passed to

' the function. Note that the "\0" is not a 0-length string (as in C), instead

' it is an actual string that is used to detect a Null value, because an

' undefined optional parameter cannot be set to Null.

' ===

Function SetPropertyParams(_

 vsoShape As Visio.Shape, _

 Name As String, _

 Optional Label As String = "\0", _

 Optional PropType As String = "\0", _

 Optional Format As String = "\0", _

 Optional Value As String = "\0", _

 Optional Ask As String = "\0", _

 Optional Invisible As String = "\0") As Integer

 Dim Property As String

 Dim Row As Integer

 Property = "Prop." + Name

 On Error Resume Next

 Err.Clear

 If (Not vsoShape.CellExistsU(Property, False)) Then

 Row = vsoShape.AddRow(visSectionProp, visRowLast, visTagDefault)

 vsoShape.Section(visSectionProp).Row(Row).NameU = Name

 End If

 Row = vsoShape.Cells(Property).Row

 If (Label <> "\0") Then vsoShape.CellsSRC(visSectionProp, Row, visCustPropsLabel).FormulaU = Label

 If (PropType <> "\0") Then vsoShape.CellsSRC(visSectionProp, Row, visCustPropsType).FormulaU = _

 PropType

 If (Format <> "\0") Then vsoShape.CellsSRC(visSectionProp, Row, visCustPropsFormat).FormulaU = _

 Format

 If (Value <> "\0") Then vsoShape.CellsSRC(visSectionProp, Row, visCustPropsValue).FormulaU = Value

 If (Ask <> "\0") Then vsoShape.CellsSRC(visSectionProp, Row, visCustPropsAsk).FormulaU = Ask

 If (Invisible <> "\0") Then vsoShape.CellsSRC(visSectionProp, Row, visCustPropsInvis).FormulaU = _

 Invisible

 SetPropertyParams = Row

 If Err.Number <> 0 Then

 Debug.Print Error(Err.Number)

 End If

 On Error GoTo 0

End Function

 29

' ===

' DeleteProperty:

' This function deletes a property from the shape.

' ===

Function DeleteProperty(_

 vsoShape As Visio.Shape, _

 Name As String)

 Dim Property As String

 Dim Row As Integer

 Property = "Prop." + Name

 On Error Resume Next

 Err.Clear

 If (vsoShape.CellExistsU(Property, False)) Then

 Row = vsoShape.Cells(Property).Row

 vsoShape.DeleteRow visSectionProp, Row

 DeleteProperty = 1

 Else

 DeleteProperty = 0

 End If

 If Err.Number <> 0 Then

 Debug.Print Error(Err.Number)

 End If

 On Error GoTo 0

 End Function

' ===

' SetPropertyValue:

' This function creates a property in the Visio shape (if necesary) and then

' sets the value property to the value specified in the parameter.

' ===

Function SetPropertyValue(_

 vsoShape As Visio.Shape, _

 Name As String, _

 Value As String) As Integer

 Dim Property As String

 Dim Row As Integer

 Property = "Prop." + Name

 On Error Resume Next

 Err.Clear

 If (Not vsoShape.CellExistsU(Property, False)) Then

 Row = vsoShape.AddRow(visSectionProp, visRowLast, visTagDefault)

 vsoShape.Section(visSectionProp).Row(Row).NameU = Name

 End If

 Row = vsoShape.Cells(Property).Row

 vsoShape.CellsSRC(visSectionProp, Row, visCustPropsValue).FormulaU = Value

 SetPropertyValue = Row

 If Err.Number <> 0 Then

 Debug.Print Error(Err.Number)

 End If

 On Error GoTo 0

End Function

' ===

 30

' GetPropertyValue:

' This function reads a property in the Visio shape and then returns it

' to the caller.

' ===

Function GetPropertyValue(_

 vsoShape As Visio.Shape, _

 Name As String) As String

 Dim Property As String

 Dim Row As Integer

 Property = "Prop." + Name

 On Error Resume Next

 Err.Clear

 If (vsoShape.CellExistsU(Property, False)) Then

 GetPropertyValue = vsoShape.CellsU(Property).ResultStr(0)

 Else

 GetPropertyValue = ""

 End If

 If Err.Number <> 0 Then

 Debug.Print Error(Err.Number)

 End If

 On Error GoTo 0

End Function

' ===

' SetPropertyVisibility:

' This function will hide or unhide properties

' ===

Function SetPropertyVisibility(_

 vsoShape As Visio.Shape, _

 Name As String, _

 Hidden As Boolean)

 Dim Property As String

 Dim Row As Integer

 Property = "Prop." + Name

 On Error Resume Next

 Err.Clear

 If (vsoShape.CellExistsU(Property, False)) Then

 Row = vsoShape.Cells(Property).Row

 vsoShape.CellsSRC(visSectionProp, Row, visCustPropsInvis).FormulaU = Hidden

 End If

 If Err.Number <> 0 Then

 Debug.Print Error(Err.Number)

 End If

 On Error GoTo 0

End Function

' ===

' ConnectShapes

' This function will connect the specified shapes. It will use connecting

' points if they are specified.

' ===

Function ConnectShapes(_

 FromShape As Visio.Shape, _

 ToShape As Visio.Shape, _

 Optional FromCP As String = "", _

 31

 Optional ToCP As String = "", _

 Optional zOrder As Integer)

 Dim vsoConn As Visio.Shape

 Dim vsoCell1 As Visio.Cell

 Dim vsoCell2 As Visio.Cell

 If (ToShape.CellExistsU("Prop.Distribution", False) And _

 ToShape.CellExistsU("Prop.Switch", False)) Then

 If (ToCP = "") Then ToCP = "1"

 End If

 On Error Resume Next

 Set vsoConn = ActivePage.Drop(ActiveDocument.Masters.ItemU("Dynamic connector"), 0#, 0#)

 If (zOrder > 0) Then

 vsoConn.CellsU("DisplayLevel").FormulaU = zOrder

 End If

 Set vsoCell1 = vsoConn.CellsU("BeginX")

 Err.Clear

 If (FromCP <> "") Then

 Set vsoCell2 = FromShape.CellsU("Connections." & FromCP)

 If (Err.Number = 0) Then vsoCell1.GlueTo vsoCell2

 End If

 If (FromCP = "" Or Err.Number <> 0) Then

 Set vsoCell2 = FromShape.CellsSRC(1, 1, 0)

 vsoCell1.GlueTo vsoCell2

 End If

 Set vsoCell1 = vsoConn.CellsU("EndX")

 Err.Clear

 If (ToCP <> "") Then

 Set vsoCell2 = ToShape.CellsU("Connections." & ToCP)

 If (Err.Number = 0) Then vsoCell1.GlueTo vsoCell2

 End If

 If (ToCP = "" Or Err.Number <> 0) Then

 Set vsoCell2 = ToShape.CellsSRC(1, 1, 0)

 vsoCell1.GlueTo vsoCell2

 End If

End Function

' ===

' ReadConnectivity:

' This function will evaluate the vsoShape object and will return an array

' of ConnectedShapes objects that represents all of the connections that

' are going in to or coming out of vsoShape.

' ===

Function ReadConnectivity(vsoShape As Visio.Shape) As ConnectedShapes()

 Dim result() As ConnectedShapes

 Dim vsoConn As Visio.Shape

 Dim partID As Integer

 ' ===

 ' Test if this item is not a connector and has connections.

 ' Only procede if both of those things are true.

 ' ===

 If ((Not vsoShape.LineStyle = "Connector") And (vsoShape.FromConnects.Count > 0)) Then

 ' ===

 ' Allocate the result array.

 ' ===

 ReDim result(vsoShape.FromConnects.Count)

 ' ===

 32

 ' Walkthrough the connections and process each one as you go.

 ' ===

 For i = 1 To vsoShape.FromConnects.Count

 Set vsoConn = vsoShape.FromConnects(i).FromSheet

 Set result(i).connector = vsoConn

 Set result(i).FromShape = Nothing

 Set result(i).ToShape = Nothing

 result(i).ConnectCount = 0

 result(i).FromConnectionPoint = ""

 result(i).ToConnectionPoint = ""

 result(i).Incoming = False

 If vsoConn.Connects.Count > 0 Then

 Set result(i).FromShape = vsoConn.Connects(1).ToSheet

 result(i).ConnectCount = 1

 partID = vsoConn.Connects(1).ToPart

 If (partID >= visConnectionPoint) Then

 If (vsoConn.Connects(1).ToCell.RowName <> "") Then

 result(i).FromConnectionPoint = vsoConn.Connects(1).ToCell.RowName

 Else

 result(i).FromConnectionPoint = "Row_" & CStr(partID - visConnectionPoint + 1)

 End If

 End If

 End If

 If vsoConn.Connects.Count > 1 Then

 Set result(i).ToShape = vsoConn.Connects(2).ToSheet

 result(i).ConnectCount = 2

 partID = vsoConn.Connects(2).ToPart

 If (partID >= visConnectionPoint) Then

 If (vsoConn.Connects(2).ToCell.RowName <> "") Then

 result(i).ToConnectionPoint = vsoConn.Connects(2).ToCell.RowName

 Else

 result(i).ToConnectionPoint = "Row_" & CStr(partID - visConnectionPoint + 1)

 End If

 End If

 If (result(i).ToShape.ID = vsoShape.ID) Then

 result(i).Incoming = True

 End If

 End If

 Next

 End If

ReadConnectivity = result

End Function

