
Basic EPICS Device Support
i

Basic EPICS Device Support

Basic EPICS Device Support
ii

COLLABORATORS

TITLE :

Basic EPICS Device Support

ACTION NAME DATE SIGNATURE

WRITTEN BY Michael Davidsaver Febuary 2013

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

1 April 2009 Initial revision MAD

2 Febuary 2013 Add I/O Intr scanning example MAD

Basic EPICS Device Support
iii

Contents

1 Introduction 1

2 Prepare IOC environment 1

3 Periodic Example 1

3.1 Device Definition . 2

3.2 Writing Support . 2

3.2.1 init_record . 3

3.2.2 read_ai . 3

3.3 Building . 3

3.4 Database Configuration . 4

3.5 Running . 4

4 Asynchronous Example 4

4.1 Writing Support . 5

4.1.1 init_record . 5

4.1.2 read_ai . 6

4.1.3 callback . 6

4.2 Running . 7

5 Interrupt Driven Example 7

5.1 Writing Support . 7

5.1.1 init . 8

5.1.2 init_record . 8

5.1.3 Init hook . 9

5.1.4 Worker . 9

5.1.5 get_iointr_info . 9

5.1.6 read_ai . 10

5.2 Rate Limiting . 10

6 When to Use 11

7 Now What 12

8 References 12

Basic EPICS Device Support
1 / 12

1 Introduction

Device support is the means of providing functionality specific to access hardware. This is done by providing several functions
which the record support layer will call when appropriate. The functions which must be provided depend on the record type
being supported. The Record Reference Manual[RecRef] provides a list of record types with descriptions and lists of device
support functions. To determine the exact form of a record’s device support functions the source found in $EPICS_BASE/src/rec
is invaluable.

The latest version of this page, and code listings, can be found at: https://pubweb.bnl.gov/~mdavidsaver/#doc

2 Prepare IOC environment

It is assumed that EPICS Base is already built, that EPICS_BASE is set, and that the EPICS executables are in the system search
PATH.

All paths given in this example are assumed to be relative to the devsumexample directory.

$ mkdir devsupexample
$ cd devsupexample

3 Periodic Example

Let us begin with an example. The Analog input record is intended to represent a value read from hardware and interpreted as a
floating point number. This does not imply that the underlying hardware representation is a floating point number. The AI record
support provides a facility for conversion between a raw integer value and a floating point number.

In this example the hardware device to be read is the system pseudo random number generator. Whenever the record is processed
a new number is read into the process variable (PV) database.

makeBaseApp.pl -t ioc prng

This creates the makefiles needed to compile the code. The files we are about to create will be placed in prngApp/src. Later when
.db files are created we will place them in prngApp/Db.

Take a moment to examine the files in prngApp/src. The file prngMain.cpp will be the point of entry for our IOC when run on a
non-embedded platform. It is not very interesting through as it serves only to invoke the IOC shell.

The prngApp/src/Makefile does contain several interesting entries. Removing comments and blank lines leaves the following.

TOP=../..
include $(TOP)/configure/CONFIG
PROD_IOC = prng
DBD += prng.dbd
prng_DBD += base.dbd
prng_SRCS += prng_registerRecordDeviceDriver.cpp
prng_SRCS_DEFAULT += prngMain.cpp
prng_SRCS_vxWorks += -nil-
prng_LIBS += $(EPICS_BASE_IOC_LIBS)
include $(TOP)/configure/RULES

It is important to note that the EPICS build system attaches special significance to file names, not just extensions.

This Makefile will build the prng IOC (executable) from the two given C++ files and the database definition. Of these three
only prngMain.cpp exists currently. The file prng_registerRecordDeviceDriver.cpp is automatically generated from the database
definition. The database definition file prng.dbd is also generated by concatenating base.dbd with other .dbd files which we will
add later. At this point is effectively just a copy of base.dbd, which is part of the EPICS Base package and specifies, among other
things, the basic record types (see $EPICS_BASE/dbd/base.dbd).

At this point the prng IOC can now be compiled, and the resulting executable can be run. However, it will not be capable of
doing anything more then the softIoc executable. If fact they are functionally identical.

https://pubweb.bnl.gov/~mdavidsaver/#doc

Basic EPICS Device Support
2 / 12

3.1 Device Definition

Our first task is to make an addition to the IOC database for our prng device. Create the file prngApp/src/prngdev.dbd:

device(ai,CONSTANT,devAiPrng,"Random")

This defines the device devAiPrng as support for an AI record with a CONSTANT input link named "Random". The name
devAiPrng must be unique in the IOC. The combination of record type and name string must also be unique. It is convention
that device support names should take the form devXxYyyy where Xx is the record type and Yyyy identifies the hardware to be
supported.

3.2 Writing Support

Now create the file prngApp/src/devprng.c with the following sections.

#include <stdlib.h>
#include <epicsExport.h>
#include <dbAccess.h>
#include <devSup.h>
#include <recGbl.h>

#include <aiRecord.h>

static long init_record(aiRecord *pao);
static long read_ai(aiRecord *pao);

struct prngState {
unsigned int seed;

};

Our device support code will be contained in the init_record and read_ai functions. Custom state information will be held in an
instance of the prngState structure.

struct {
long num;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiPrng = {
6, /* space for 6 functions */
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL

};
epicsExportAddress(dset,devAiPrng);

Now associate the name devAiPrng with our device support functions. This mechanism is a way of providing a set of functions
which the record support will use in to perform certain functions.

It should be noted that AI record support requires read_ai to be specified, but init_record is optional.

From the prospective of object oriented programming the record support can be regarded as a base class. This device support
inherits from the AI record support and provides definitions for two virtual methods. The AI record requires that read_ai be
provided while init is optional. In this way read_ai functions as a pure virtual method.

The number of functions record support will look for and the meaning of these functions is determined by record support. For in-
formation on a specific record types see the Record Reference Manual[RecRef] and the source (ie $EPICS_BASE/src/rec/aiRecord.c).

Basic EPICS Device Support
3 / 12

3.2.1 init_record

static long init_record(aiRecord *pao)
{

struct prngState* priv;
unsigned long start;

priv=malloc(sizeof(struct prngState));
if(!priv){
recGblRecordError(S_db_noMemory, (void*)pao,

"devAoTimebase failed to allocate private struct");
return S_db_noMemory;

}

recGblInitConstantLink(&pao->inp,DBF_ULONG,&start);

priv->seed=start;
pao->dpvt=priv;

return 0;
}

This init_record function is called once for each record in the IOC database which uses DTYP Random (ie devAiPrng device
support). It allocates space for the structure used to keep internal state, then parses the Constant input link string to get the initial
seed value.

The input link can only by a CONSTANT link so there is no need to verify this.

3.2.2 read_ai

static long read_ai(aiRecord *pao)
{

struct prngState* priv=pao->dpvt;

pao->rval=rand_r(&priv->seed);

return 0;
}

Whenever a record using devAiPrng is processed read_ai is invoked. It simply invokes the thread-safe version of the rand
function to supply a raw (integer) value.

3.3 Building

Now modify prngApp/src/Makefile to include the prng database and support code. Then go to the devsupexample directory and
run make

TOP=../..
include $(TOP)/configure/CONFIG
PROD_IOC = prng
DBD += prng.dbd
prng_DBD += base.dbd
prng_DBD += prngdev.dbd # <- added
prng_SRCS += prng_registerRecordDeviceDriver.cpp
prng_SRCS += devprng.c # <- added
prng_SRCS_DEFAULT += prngMain.cpp
prng_SRCS_vxWorks += -nil-
prng_LIBS += $(EPICS_BASE_IOC_LIBS)
include $(TOP)/configure/RULES

Basic EPICS Device Support
4 / 12

3.4 Database Configuration

The next task is to create a IOC database which uses the Random device support. Place the following in prngApp/Db/prng.db
and add it to the makefile prngApp/Db/Makefile.

record(ai,"$(P)"){
field(DTYP,"$(D)")
field(DESC,"Random numbers")
field(SCAN,"$(SCAN=1 second)")
field(INP,"$(S)")
field(LINR,"LINEAR")
field(ESLO,1e-9)
field(EOFF,-1)

}

This will allow us to create several PVs generating random numbers. The combination of record type ai and the DTYP field are
used to identify the correct device support. When instantiated $(P), $(D), and $(S) will be replaced with the PV name, device
support type (Random), and initial seed value. These will be specified later.

The fields ESLO and EOFF serve to define a linear scale to use when converting (integer) raw values to (floating point) engineer-
ing units.

Note: when changing prngApp/Db/prng.db remember to run make to update db/prng.db.

3.5 Running

In devsupexample create the IOC boot infrastructure to run the first example (prng1).

makeBaseApp.pl -a linux-x86 -i -t ioc -p prng prng1

In iocBoot/iocprng1/st.cmd:

< envPaths
cd ${TOP}
dbLoadDatabase "dbd/prng.dbd"
prng_registerRecordDeviceDriver pdbbase
V Add this line V
dbLoadRecords("db/prng.db","P=test:prng,D=Random,S=324235")
cd ${TOP}/iocBoot/${IOC}
iocInit

Now run the IOC.

make
cd iocBoost/iocprng1
../../bin/linux-x86/prng st.cmd

Then watch the value of the PV test:prng

$ camonitor test:prng
test:prng 2009-02-21 15:29:15.364549 0.155918
test:prng 2009-02-21 15:29:16.364611 -0.681225
...

4 Asynchronous Example

The preceding example assumes that calls to read_ai will return quickly. This is true of rand_r which does only a simple
computation, but not true of many operations which access hardware. It these cases it is desirable to start an operation, spend
time doing other things, and only update the database when the result becomes available.

Basic EPICS Device Support
5 / 12

Support for this mode of operation is provided via the PACT flag. The following example creates another device support which
demonstrates asynchronous processing.

Add the following line to prngApp/src/prngdev.dbd

device(ai,CONSTANT,devAiPrngAsync,"Random Async")

4.1 Writing Support

Now create the file prngApp/src/devprngasync.c and add the following sections.

#include <stdlib.h>
#include <epicsExport.h>
#include <dbAccess.h>
#include <devSup.h>
#include <recSup.h>
#include <recGbl.h>
#include <callback.h>

#include <aiRecord.h>

static long init_record(aiRecord *pao);
static long read_ai(aiRecord *pao);

struct prngState {
unsigned int seed;
CALLBACK cb; /* New */

};

struct {
long num;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiPrngAsync = {
6, /* space for 6 functions */
NULL,
NULL,
init_record,
NULL,
read_ai,
NULL

};
epicsExportAddress(dset,devAiPrngAsync); /* change name */

void prng_cb(CALLBACK* cb);

Note the addition to the prngState struct of a CALLBACK.

4.1.1 init_record

static long init_record(aiRecord *pao)
{

struct prngState* priv;
unsigned long start;

Basic EPICS Device Support
6 / 12

priv=malloc(sizeof(struct prngState));
if(!priv){
recGblRecordError(S_db_noMemory, (void*)pao,

"devAoTimebase failed to allocate private struct");
return S_db_noMemory;

}

/* New */
callbackSetCallback(prng_cb,&priv->cb);
callbackSetPriority(priorityLow,&priv->cb);
callbackSetUser(pao,&priv->cb);
priv->cb.timer=NULL;

recGblInitConstantLink(&pao->inp,DBF_ULONG,&start);

priv->seed=start;
pao->dpvt=priv;

return 0;
}

The callback function and priority are set.

4.1.2 read_ai

static long read_ai(aiRecord *pao)
{

struct prngState* priv=pao->dpvt;

if(! pao->pact){
/* start async operation */
pao->pact=TRUE;
callbackSetUser(pao,&priv->cb);
callbackRequestDelayed(&priv->cb,0.1);
return 0;

}else{
/* complete operation */
pao->pact=FALSE;
return 0;

}
}

The operation of read_ai changes substantially. When the record is processed control passes into read_ai with the PACT field
set to false. To start an asynchronous operation this field is set to TRUE, and a delayed action is scheduled. While PACT is set
the IOC will not try to process this record again.

When the callback has completed it must manually process the record which will complete the operation and allow PACT to be
cleared.

4.1.3 callback

void prng_cb(CALLBACK* cb)
{

aiRecord* prec;
struct prngState* priv;
struct rset* prset;
epicsInt32 raw;

callbackGetUser(prec,cb);

Basic EPICS Device Support
7 / 12

prset=(struct rset*)prec->rset;
priv=prec->dpvt;

raw=rand_r(&priv->seed);

dbScanLock((dbCommon*)prec);
prec->rval=raw;
(*prset->process)(prec);
dbScanUnLock((dbCommon*)prec);

}

This generic callback is taken from the EPICS Application Developer’s Guide[AppDev]. It manually invoke record processing.
It this way read_ai is called while PACT is set.

Note: Due to the way database processing and and the PACT flag are handled no additional locking is required. More complicated
senarios involving multiple PVs might require, for example, a mutex to guard priv→seed.

Remember to add devprngasync.c to prngApp/src/Makefile.

4.2 Running

The database file can be reused so only one change is necessary.

In iocBoot/iocprng1/st.cmd add a line:

< envPaths
cd ${TOP}
dbLoadDatabase "dbd/prng.dbd"
prng_registerRecordDeviceDriver pdbbase
dbLoadRecords("db/prng.db","P=test:prng,D=Random,S=324235")
V Add this line V
dbLoadRecords("db/prng.db","P=test:prngasync,D=Random Async,S=324235")
cd ${TOP}/iocBoot/${IOC}
iocInit

5 Interrupt Driven Example

This section demonstrates a variation on the Periodic example which allows the periodic SCAN (eg. "1 second") to be switch
with a SCAN rate driven from a device specific source ("I/O Intr"). In this example an arbitrary thread is used.

Add the following line to prngApp/src/prngdev.dbd

device(ai,CONSTANT,devAiPrngIntr,"Random Intr")

5.1 Writing Support

Now create prngApp/src/devprngintr.c with the following sections.

#include <stdlib.h>
#include <epicsExport.h>
#include <dbAccess.h>
#include <devSup.h>
#include <recGbl.h>
#include <dbScan.h>
#include <dbDefs.h>
#include <ellLib.h>
#include <cantProceed.h>
#include <epicsThread.h>

Basic EPICS Device Support
8 / 12

#include <epicsMutex.h>
#include <initHooks.h>

#include <aiRecord.h>

static ELLLIST allprngs = ELLLIST_INIT;

struct prngState {
ELLNODE node;
unsigned int seed;
unsigned int lastnum;
epicsMutexId lock;
IOSCANPVT scan;
epicsThreadId generator;

};

As before we define a private structure. Several addition members are added. The most significant is IOCSCANPVT scan; as
will be seen in the following sections.

5.1.1 init

static void start_workers(initHookState state);

static long init(int phase)
{

if(phase==0)
initHookRegister(&start_workers);

return 0;
}

Use of I/O Intr scanning is not permitted before a certain point in the IOC startup sequence (iocInit())). Here a callback function
is added which will receive notification of all future updates.

Note that a device support long init(int) function is called exactly twice (phase 0 and 1) during the initialization sequence. By
waiting until this point, the callback function will not be called for some of the hook states (they have already happened). To
capture all states the hook must be registered before iocInit() is called. This can be accomplished by using a registrar() function.

5.1.2 init_record

static long init_record(aiRecord *prec)
{

struct prngState* priv;
unsigned long start;

priv=callocMustSucceed(1,sizeof(*priv),"prngintr");

recGblInitConstantLink(&prec->inp,DBF_ULONG,&start);

priv->seed=start;
scanIoInit(&priv->scan);
priv->lock = epicsMutexMustCreate();
priv->generator = NULL;
ellAdd(&allprngs, &priv->node);
prec->dpvt=priv;

return 0;
}

Basic EPICS Device Support
9 / 12

Each record is initialized with its own private structure and (later) worker thread.

The allprngs list is used to keep track of all private structures created. No locking is needed in this example because init_record()
is called during the singled threaded phase of database initialization, and the list will not be modified afterward.

The function scanIoInit() is used to prepare this structure’s I/O Intr scan list.

5.1.3 Init hook

static void start_workers(initHookState state)
{

ELLNODE *cur;
if(state!=initHookAfterInterruptAccept)
return;

for(cur=ellFirst(&allprngs); cur; cur=ellNext(cur)) {
struct prngState *priv = CONTAINER(cur, struct prngState, node);
priv->generator = epicsThreadMustCreate("prngworker",

epicsThreadPriorityMedium,
epicsThreadGetStackSize(epicsThreadStackSmall),
&worker, priv);

}
}

Here the hook function is uses the state initHookAfterInterruptAccept to start a worker for each of the private structures.

5.1.4 Worker

static void worker(void* raw)
{

struct prngState* priv=raw;
while(1) {
epicsMutexMustLock(priv->lock);
priv->lastnum = rand_r(&priv->seed);
epicsMutexUnlock(priv->lock);

scanIoRequest(priv->scan);

epicsThreadSleep(1.0);
}

}

The worker thread itself simply loops. Each iteration updates the private structure with a new random number. When the number
is ready the function scanIoRequest() to queue a request to process all records associated with this scan list.

scanIoRequest() does not process the records directly, and can be called from interrupt context.

5.1.5 get_iointr_info

static long get_ioint_info(int dir,dbCommon* prec,IOSCANPVT* io)
{

struct prngState* priv=prec->dpvt;

*io = priv->scan;
return 0;

}

So far we have seen how to initialize a scan list with scanIoInit(), and how to request a scan with scanIoRequest(). Of course this
is only interesting if doing so will actually cause some records to be processed.

Basic EPICS Device Support
10 / 12

A record is added to a scan list by setting its SCAN field to I/O Intr. This can either by set in a .db files, or changed at runtime.
In either case this results in a call to the get_ioint_info() function with dir=0. If this function is not provided, or if no scan list is
given (*io = NULL) then the record will revert to Passive SCAN.

Once a record is successfully added to a scan list, it will be processed once for each call to scanIoRequest(). The I/O Intr scanning
mechanism is based on a fixed length queue shared by all scan lists. So care must be taken to avoid overflowing this queue.

Setting the SCAN field to a value other than I/O Intr will cause the get_ioint_info() function to be called a second time with
dir=1. In this case the record will be removed from the provided scan list. It is essential that the same scan list be provided for
both calls. Doing otherwise will result in undefined behavior (typically a crash).

5.1.6 read_ai

static long read_ai(aiRecord *prec)
{

struct prngState* priv=prec->dpvt;

epicsMutexMustLock(priv->lock);
prec->rval = priv->lastnum;
epicsMutexUnlock(priv->lock);

return 0;
}

The device support read function simply copies the latest random number.

As random numbers are generated by the worker thread we can use SCAN=I/O Intr to update the record with minimum latency.
It is also possible to set SCAN=10 second to throttle back the rate.

struct {
long num;
DEVSUPFUN report;
DEVSUPFUN init;
DEVSUPFUN init_record;
DEVSUPFUN get_ioint_info;
DEVSUPFUN read_ai;
DEVSUPFUN special_linconv;

} devAiPrngIntr = {
6, /* space for 6 functions */
NULL,
init,
init_record,
get_ioint_info,
read_ai,
NULL

};
epicsExportAddress(dset,devAiPrngIntr);

Define the device support table.

5.2 Rate Limiting

void scanIoRequest(IOSCANPVT);

The I/O Intr mechanism is implemented using the EPICS callback API (eg. callbackRequest(CALLBACK*)). In fact each
IOSCANPVT consists of three such callbacks, one for each of the available priorities. Each priority has a fixed length FIFO for
requests, and a worker thread to run them.

A fixed length FIFO can, of course, become full if requests are queued too quickly. Unfortunately, the API provides no straight
forward way of preventing or detecting this. Because this FIFO is shared, an overflow can be caused by any driver in the IOC,
and effect all drivers.

Basic EPICS Device Support
11 / 12

To see the effect of this try removing epicsThreadSleep(1.0); from the worker thread.

While not a complete solution, simple rate limiting of the source (caller of scanIoRequest) will generally be sufficient to avoid
problems. It is advisable to make this limit user controllable to allow it to be reduced in IOCs with high load.

While the I/O Intr API does not provide a solution, it is possible to construct one using knowledge about the implementation.
This of course assumes that the implementation will not change.

Knowing that I/O Intr scan lists are executed in an EPICS callback, and knowing that each callback worker executes callbacks
sequentially, in the order they are added, then the following code has a guaranteed ordering.

IOCSCANPVT scan;
int waitfor;
CALLBACK done[3];
...
void cbfunc(CALLBACK *) {

if(--waitfor)
return;

/* re-enable IRQ */
}
...
callbackSetPriority(priorityLow, &done[0]);
callbackSetPriority(priorityMedium, &done[1]);
callbackSetPriority(priorityHigh, &done[2]);
...
/* disable IRQ */
scanIoRequest(scan);
waitfor = 3;
callbackRequest(&done[0]);
callbackRequest(&done[1]);
callbackRequest(&done[2]);

After all three of the done callbacks have run, it is certain that all records in the scan list have been processed. Thus, the interrupt
source could be re-enabled in, or after, the last callback without fear of overflowing the FIFO.

6 When to Use

The Periodic example presented above suffers from two problems. Because all processing for a given SCAN rate is done on a
single thread, any device support which blocks the thread will cause the entire IOC to become unresponsive. Also, the periodic
SCANs are based on the system time of the computer running the IOC, which will rarely be tied to the processing cycle of the
device being controlled.

The Asynchronous example solves the first problem by allowing work to be offloaded in another thread. The second problem is
partly solved. While start of processing is not tied a device, the completion can be.

The I/O Intr examples allows all work to be done outside the normally scanning process, and the results pushed into records.

Now to consider some situations:

Simple periodic scanning is appropriate when the value to be read (or written) is immediately accessible, and the source of the
value gives no notification of when a new value is available. An example of this is a temperature measurement from a memory
mapped device (eg. local CPU temp.).

Asynchronous processing is appropriate in a number of cases. When the value is not immediately accessible, but rather arrives
some time after it is requested. It is also useful when the underlying operation is a blocking system call. Also, asynchronous
processing works with the Channel Access put with callback operation (ca_put_callback()).

I/O Intr processing is most appropriate when data is delivered without an explicit request (unsolicited), perhaps driven by an
external trigger or clock.

However, there are a number of situations where I/O Intr processing can be used instead of Asynchronous processing. Instead
of one Asynchronous record, use two records. The first initiates the request, while the second uses SCAN=I/O Intr to scan on
completion. This may be helpful if the result(s) of the operation should be stored in several records.

Basic EPICS Device Support
12 / 12

This also allows flexibility if many request can be queued before a response arrives. It may also avoid the need to provide an
explicit cancel action.

7 Now What

These examples demonstrates writing device support for a single AI record. Support for other record types (BO, STRINGIN,
EVENT, . . .) differs only in which fields the read_* function must update. Also interesting are some of the other fields which ef-
fect conversion of raw values in the analog record types, and the ability to bypass this conversion and specify value in engineering
units directly.

8 References

[1] [RecRef] The Epics Collaboration EPICS 3.14 Record Reference Manual Wiki http://www.aps.anl.gov/epics/-
wiki/index.php/RRM_3-14

[2] [AppDev] Marty Kraimer et al. ’EPICS Application Developer’s Guide ’. http://www.aps.anl.gov/epics/base/-
R3-14/10-docs/AppDevGuide.pdf

http://www.aps.anl.gov/epics/wiki/index.php/RRM_3-14
http://www.aps.anl.gov/epics/wiki/index.php/RRM_3-14
http://www.aps.anl.gov/epics/base/R3-14/10-docs/AppDevGuide.pdf
http://www.aps.anl.gov/epics/base/R3-14/10-docs/AppDevGuide.pdf

	Introduction
	Prepare IOC environment
	Periodic Example
	Device Definition
	Writing Support
	init_record
	read_ai

	Building
	Database Configuration
	Running

	Asynchronous Example
	Writing Support
	init_record
	read_ai
	callback

	Running

	Interrupt Driven Example
	Writing Support
	init
	init_record
	Init hook
	Worker
	get_iointr_info
	read_ai

	Rate Limiting

	When to Use
	Now What
	References

