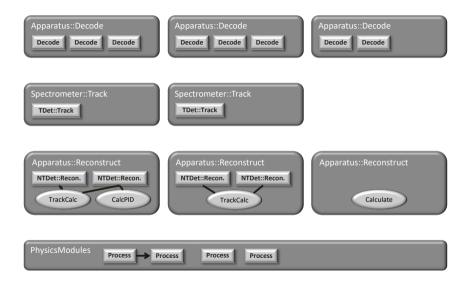
Hall A Analysis Software Status & Plans

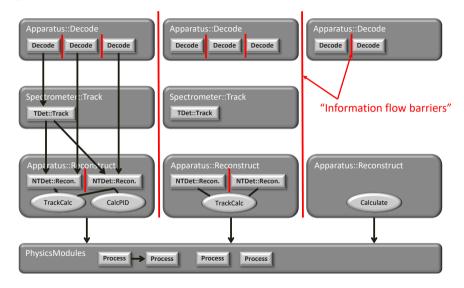
Ole Hansen

Jefferson Lab

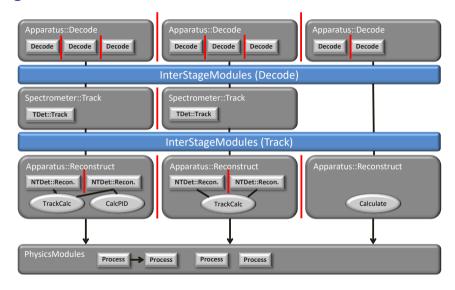
Hall A Collaboration Meeting January 31, 2020


Podd Status

- Current release: 1.7.0 (7 Feb 2020)
 - Many updates and new features (see next page)
 - Requires C++11 compiler (RHEL 7)
 - Drops support for obsolete ROOT 5
- Priority development: 2.0-devel
 - Multithreading
 - Intended for SBS
 - ▶ Will require C++17 (e.g. RHEL 8, devtoolset-8, llvm-toolset-7.0)
 - Existing code will likely need minor modifications
 - ► ETA: Summer/Fall 2020
- Auxiliary development: 1.8-devel
 - Include features missed in 1.7 (see later)
 - Maintain system requirements and API of version 1.7 as much as possible
 - ► ETA: as time permits


New in Podd 1.7

- Decoder upgrades
 - ► Support for CODA 3 data format, bank data and event block decoding (Bob Michaels)
 - ▶ EVIO upgraded to version 5.2 (better I/O performance and many bugfixes)
 - Includes FADC decoders developed for Tritium experiments
- New module type: "InterStageModule"
 - May combine information from arbitrary detectors after each processing stage
 - ightharpoonup Needed for coincidence time correction in Tritium ΛN
 - Removes a significant limitation of Podd; many other possible uses
- Build system overhaul
 - CMake build system added (used by SBS, for example)
 - SCons build system significantly improved (used by hcana)
 - Old make system removed
- Extensive code cleanup & reorganization
 - ▶ Libraries split into core and Hall A parts: libPodd and libHallA


Inter-Stage Modules

Inter-Stage Modules

Inter-Stage Modules

Building with CMake

Prerequisites:

- Install ROOT (root-config should be in PATH, or set \$ROOTSYS)
 - ► Farm: run setroot_CUE.csh. RHEL: install from EPEL. macOS: install from Homebrew.
 - See also https://redmine.jlab.org/projects/podd/wiki/ROOT_Installation_Guide
- Ensure you have CMake >= 3.5 (cmake --version. cmake3 on RedHat)

Building the Hall A analyzer with CMake

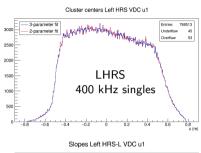
```
$ git clone https://github.com/JeffersonLab/analyzer.git
$ cd analyzer && mkdir build && cd build
$ cmake ..
$ make [-j4]
$ ./apps/analyzer
```

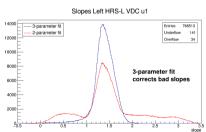
Notes:

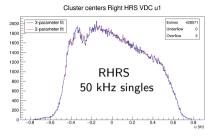
- Installing recommended (make install): Set CMAKE_INSTALL_PREFIX
- For debug build, set CMAKE_BUILD_TYPE
- Works with common IDEs (Eclipse, CLion, Xcode)
- Will phase out aging SCons build system (too many limitations)

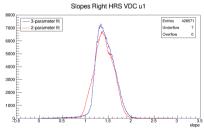
SBS Software Status & Plans

- SBS plan to use Podd framework. Anticipate to have multithreading available
- Standalone simulation well developed (g4sbs)
- Reconstruction library underway: https://github.com/JeffersonLab/SBS-offline
 - Decoders implemented for all subsystems
 - ► Optics & spin transport models done
 - ► GEM cluster finding & tracking under development (main challenge!)
 - Later: event display, online analysis
- Data handling will be challenging (by Hall A standards)
 - Raw data rates several GB/s. Will need preprocessing
 - ► Storage 200–1300 TB per experiment (sim+raw+prod) (4+ planned). Please check/update!
 - ► Simulation and analysis CPU requirements 1–4 M-core-hours (MCH) per experiment
 - ▶ Hall A farm quota is currently 6 MCH/year (5% of farm), probably need to double

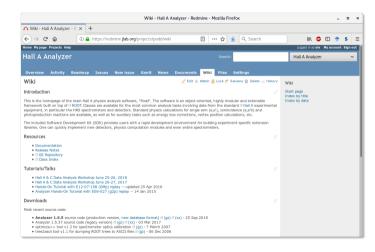

Podd 2.0


- Event-based parallelization/multithreading
 - Essential for SBS online replay
 - Reduced memory footprint compared to multiple individual jobs
 - ightharpoonup Requires thread safe user code (ightharpoonup no globals, statics)
- I/O improvements
 - Output system upgrade (full set of data types, object variables)
 - ► TBD: HIPO output file format support
 - ► TBD: EVIO 6 input format support (HIPO-like raw data files)


Lower-Priority Features \rightarrow Podd 1.8 (or 2.1)


- High-rate VDC analysis (useful mainly for APEX)
- Abstracted database API
 - Lets hcana reuse Podd database readers
 - ▶ Allows easy integration of other backends (e.g. ccdb)
- "Nice to have" items
 - Test suite (unit & integration tests)
 - ► Analysis metadata (configuration parameters, source & replay information)
 - Improved log messages (readability, configuration, logfile, etc.)
 - Containerized distribution

VDC Cluster Analysis—2-Parameter vs. 3-Parameter Fit



Project Home: Redmine Wiki

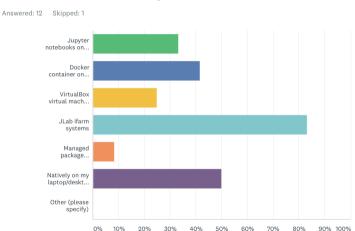
- https://redmine.jlab.org/ projects/podd/wiki/
- Integrated wiki, bug tracker, document database and more
- hcana docs on Hall C wiki

Good Starting Point for New Users: Analysis Workshops 2017/2018

- Workshop pages linked on main wiki
- Joint Hall A & C analysis workshops in summers 2017 & 2018
- Live hands-on tutorials, using preconfigured virtual machine environment
- Simulation, calibration, on- & offline data analysis, ROOT basics, etc.
- BlueJeans recordings available (linked on workshop page, CUE login required)

Next Analysis Workshop: Survey Results

Results of last summer's survey re next analysis workshop:


- Only 13 responses :-(
- Average/median experience level: 6.25/6.50 (scale 0–10)

Topics:

	1	2	3	4	5	Score
Advanced ROOT	:	l	4	5	6	3.94
Hall A simulations	:	. 2	2	4	4	3.62
Analysis in Python		2	5	3	3	3.54
Cross section analysis	:	. 2	2	5	3	3.54
Hall C simulations	:	. 2	4	3	3	3.38
Batch farm usage	:	. 3	3	3	3	3.31
Example analyses	1	. 5	1	2	4	3.23
Plugin modules	:	4	3	2	3	3.15
Replay scripts	:	. 5	2	2	3	3.08
Optics optimization	3	3	6	1	3	3.08
Counting house computing	3	3	2	2	3	2.92
Detector calibration	3	1	5	2	2	2.92
Asymmetry analysis	3	3 2	2	5	1	2.92
Intermediate ROOT	3	3	7			2.31
Basic ROOT		5			1	1.69

Next Analysis Workshop: Computing Environment

In which environment would you like to run interactive exercises, example programs, etc.? Please check one or two options that you think would work best for you.

Scientific Computing Update: Hall A /volatile Disk Move

- We have a bigger, faster, meaner Lustre file system for /volatile and /cache!
- Hall A /volatile allocation will be doubled,
- Halls B have already migrated
- rsync of Hall A data currently in progress
- Switchover probably Tuesday (4-Feb), along with Hall D
- ullet Source data kept under /volatile/halla-old for pprox 1 week
- Please do not create a lot of new data on /volatile at this time! Postpone new production replays on the farm until after the switchover.

Summary

- Hall A analysis software continues to be used by current experiments, is actively maintained and continually upgraded
- Significant development work (multithreading etc.) underway for SBS
- Many learning resources, documentation and examples can be found our archived recent analysis workshops.
- The next analysis workshop is planned for this summer
- More disk space (at least 2x) for farm jobs will be available very shortly