Spectrometer Group Update

Spectrometer Meetings

- Director's Review January 2010
- Advisory Group Meeting August 2010
- Collaboration Meeting *December 2010*
- Supergroup Meeting *June 2012*
- Collaboration Meeting *September 2012*
- Collaboration Meeting June 2013
- Advisory Group Meeting July 2013

Advisory Group

- (External) Magnet Advisory Group
 - George Clark (TRIUMF)
 - Vladimir Kashikhin (FNAL)
 - Dieter Walz (SLAC)
 - Additional members?
- (Internal) Magnet Advisory Group
 - Jim Kelsey (MIT)
 - Ernie Ilhof (MIT)
 - Jason Bessuille (MIT)
 - Robin Wines (JLAB)
 - Jay Benesch (JLAB)
 - Roger Carlini (JLAB)
 - Additional members?

Suggestions of Advisory Group

- larger conductor and hole (\rightarrow 1550 A/cm²)
- wanted a better representation of the fields, space constraints, etc., wanted Br, Bphi
- larger vacuum chamber instead of petals
- Wish list:
 - Get rid of negative bend
 - Use iron to reduce current density

Work since last Advisory group

- New conductor layout with larger conductor
 - MIT engineer suggests larger water-cooling hole, at expense of larger current density
- Optics tweaks
 - Improved ep separation
 - Maximized rate; keep "front-back" symmetry
- Interface with CAD
 - Create scattered electron envelopes
 - Step file translator
- Maps for sensitivity study created
- First look at 1-bounce photons
- Target length study
- Updated collimators
- Coils defined in GEANT4 June 12, 2013 Spectrom

Engineering Work since last time

- Detailed water-cooling calcs
- New larger water-cooling hole
 - Larger, square conductor 6 mm on a side
 - Trade-off between lowest power, voltage and fewest cooling channels
 - Even larger current density 1750 or 2000 A/cm²
- Evaluation of stress (from gravity only)

Future work

- Optics Tweaks
 - Fix conductor issues in TOSCA (conductor sizes, s-bends, etc.)
 - Remove negative bend (preliminary work on this)
 - Look at optics with 3 coils?
 - Iron in magnet? (reduce current density; estimate affect on bkgds) – Willy Falk has concept, I'll model in TOSCA
- Sensitivity Study
 - Maps created
 - Summer student working, making good progress
- Radiative Power Deposited in Coils (collimation)

Future Engineering Work

- Water-cooling/electrical connection plan
- Evaluation of stresses with magnetic forces
- Vendors for magnet power supply
- Conceptual design of magnet supports (coils and stand)

Tracks in GEANT4

Moller and ep electrons (GHz/cm²)

All phi values

Tracks in TOSCA

phi=0 only

phi=0 only, near magnet

phi = 0, Mollers only

phi=0 only, near magnet, mollers only

up (z0 =-75 cm) 5.5 and 15 mrads middle (z0 =0 cm) 6.0 and 17 mrads down (z0 =75 cm) 6.5 and 19 mrads phi=0 only

green – eps blue - mollers

up (z0 =-75 cm) 5.5 and 15 mrads middle (z0 =0 cm) 6.0 and 17 mrads down (z0 =75 cm) 6.5 and 19 mrads phi=0 only, near magnet

green – eps blue - mollers

Moller and elastic ep electrons at z=2800.0cm

Tracks from center of target, phi =0 only 6.0 and 17 mrads

Moller and elastic ep electrons

Moller and elastic ep electrons

Moller and elastic ep electrons at z=2800.0cm

 \sim

Begin Intro slides for Meeting

Large Phase Space for Design

- I. Large phase space of possible changes
 - A. Field (strength, coil position and profile)
 - B. Collimator location, orientation, size
 - C. Choice of Primary collimator
 - D. Detector location, orientation, size
- II. Large phase space of relevant properties
 - A. Moller rate and asymmetry
 - B. Elastic ep rate and asymmetry
 - C. Inelastic rate and asymmetry
 - D. Transverse asymmetry
 - E. Neutral/other background rates/asymmetries
 - F. Ability to measure backgrounds (the uncertainty is what's important)
 - 1. Separation between Moller and ep peaks
 - 2. Profile of inelastics in the various regions
 - 3. Degree of cancellation of transverse (F/B rate, detector symmetry)
 - 4. Time to measure asymmetry of backgrounds (not just rate)
 - G. Beam Properties (location of primary collimator)

Spectrometer Design

Looking downstream

January 27, 2009 An Ultra-precise Measurement of the Weak Mixing Angle Using Møller Scattering

June 12, 2013

Proposal Model to TOSCA model

Home built code using a Biot-Savart calculation

Optimized the amount of current in various segments (final design had 4 current returns)

Integrated along lines of current, without taking into account finite conductor size

"Coils-only" Biot-Savart calculation

Verified proposal model

Created a first version with actual coil layout

Created second version with larger water cooling hole and nicer profile; obeyed keep-out zones

rometer Group

Concept 1 – choose constraints

- Try to use "double pancakes" structure
- Choose (standard) conductor size/layout minimizes current density
- Keep individual double pancakes as flat as possible
- Fit within radial, angular acceptances (360/7° at low radius and <360/14° at larger radius)
- Total current in each inner "cylinder" same as proposal model
- Take into account water cooling hole, insulation
- Need to consider epoxy backfill and aluminum plates/ other supports?

Radial extent depends on upstream

torus and upstream parts of hybrid!!

Moller Magnet Teleconference August 31,

Blocky Model superimposed

Blocky Actual Layout, with Actual Layout

Concept 2 – Post-review

Current density not an issue, but affects cooling

Larger conductor

- Larger water-cooling hole
- Fewer connections
- Less chance of developing a plug

➤ New layout

- $_{\odot}$ Use single power supply
- Keep-out zones/tolerances
- \circ Need to think about supports
- \circ Study magnetic forces
- ➤Continued simulation effort
 - Consider sensitivities
 - Re-design collimation
 - \circ Power of incident radiation

3R 3R 3L **3L** 4C 4C **4**R **4**R 41 **4**L R 3R 1BR 1BL 1BR 31 1BL 1AR 1AR Actual conductor layout, with blocky version 1BL 1BR ooZ <u>---</u>--₹ 1600 1AR 12 Spectrometer Group Ju

Layout

Upstream Torus

Keep Out Zones

Comparison of GEANT4 Simulations

Comparison of GEANT4 Simulations

Current Version of the Hybrid and Upstream

Remoll with new collimators?

3R 3R 3L **3L** 4C 4C **4**R **4**R 41 **4**L R 3R 1BR 1BL 1BR 31 1BL 1AR 1AR Actual conductor layout, with blocky version 1BL 1BR ooZ <u>---</u>--₹ 1600 1AR 12 Spectrometer Group Ju

Layout

Tweaking the Optics

Assume: 6.0-15.4 mrads from upstream end of target

Finite target effects: We'll accept some high angles from further downstream for which we won't have full azimuthal acceptance

Tweaking the Optics

3R 3R 3L **3L** 4C 4C **4**R **4**R 41 **4**L 3R 1BR 1BL 1BR **3**L 1BL 1AR 1AR Actual conductor layout, with blocky version 1BR 1BL ooZ <u>---</u>--₹ 1AR 12 Spectrometer Group Ju

Layout

Rate Comparison*

Field Map	Moller (GHz)	Elastic ep (GHz)	Inelastic ep (GHz)	Bkgd. Fraction (%)	
Proposal	133	12	0.4	9	
Actual 0 (1.0)	162	18	0.6	10	
Actual 3 (2.6)	140	13	0.6	10	
svn	147	16	0.6	11	

*Assuming 75µA

Photons

Magnetic Forces

- Use TOSCA to calculate magnetic forces on coils
- Have calculated the centering force on coil:
 ~3000lbs (compare to Qweak: 28000 lbs)
- Need to look at effects of asymmetric placement of coils
- Could affect the manufacturing tolerances

Sensitivity Studies

- Need to consider the effects of asymmetric coils, misalignments etc. on acceptance
- This could affect our manufacturing tolerances and support structure
- Have created field maps for a single coil misplaced by five steps in:
 - -1° < pitch < 1°
 - -4° < roll < 4°
 - -1° < yaw < 1°</p>
 - -2 < r < 2 cm
 - -10 < z < 10 cm
 - $-5^{\circ} < \phi < 5^{\circ}$
- Simulations need to be run and analyzed

GEANT4

- Moved to GDML geometry description
- Defined hybrid and upstream toroids
 - Parameterized in same way as the TOSCA models

GEANT4 – Upstream Torus

GEANT4

Magnet Stats

Property	Moller Concept 1	Upstream	Moller Concept 2	Qweak	
Field Integral (Tm)	1.4	0.15	1.1	0.89	
Total Power (kW)	820	40	40 765		
Current per wire (A)	243	298	384	9500	
Voltage per coil (V)	480	19	285	18	
Current Density (A/cm ²)	1600	1200	1550	500	
Wire cross section (ID: water hole) (in)	0.182x0.182 (0.101)	0.229x0.229 (0.128)	0.229x0.229 (0.128)	2.3x1.5 (0.8)	
Weight of a coil (lbs)	556	44	555	7600	

Spectrometer Group

Water-cooling and supports

Verified by MIT engineers
– cooling could be accomplished in concept 2 with 4 turns per loop Still 38 connections per coil!

Suggestion from engineering review: Put the magnets *inside* the vacuum volume

a

Direct Comparison of Fields

Complicated field because of multiple current returns

Field Components

0.3

0.25

0.2

0.15

0.1 0.05

0

63

Field Components

Direct Comparison of Fields

Complicated field because of multiple current returns

Comparison of field values

Red – proposal model Black – TOSCA model

By (left) or Bx (right) vs. z in 5° bins in phi

Proposal Model

OD A _{cond} (cm) (cm ²)	Total # Wires			Current (A)			Current	J			
	(cm ²)	Х	Y	Z	А	Х	Y	Z	A	per wire	(A/cm²)
Prop	oosal					7748	10627	16859	29160		1100
0.4115	0.1248	40	54	86	146	7989	10785	17176	29160	200	1600
0.4620	0.1568	32	44	70	120	7776	10692	17010	29160	243	1550
0.5189	0.1978	26	36	56	94	8066	11168	17372	29160	310	1568
0.5827	0.2476	20	28	40	76	7680	10752	15360	29184	384	1551