;
L

1
St

it

I/0BASIC LANGUAGE

REFERENCE MANUAL

28 January 1987

Sy

N N,

Ninth Printing (rev) April 1986

All Rights Reserved ADAC Corporation
Copyright (e) 1983, 1984, 1986

The material in this manual is for
informational purposes only and is subject to
change without notice.

ADAC Corporation assumes no responsibility
for any errors which may appear in this
document.

Printed in U.S.A.

I/0BASIC Software rev level supported: V00.0C

5
g

The following are trademarks of Digital
Equipment Corporation, Maynard, MA:

DEC, DIGITAL

The following are trademarks of ADAC
Corporation, Woburn, MA:

BASYS, I/OBASIC

DISKBASYS, PROMBASYS, DX11, PX11, MICROBASYS, PICOBASYS

;
4

g‘\‘*%mw’ '

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

-—
. &
LW N —

CONTENTS

INTRODUCTION

INTENDED AUDIENCE
RELATED DOCUMENTS
STRUCTURE OF THIS MANUAL

KEYSTROKE COMMANDS

RT-11 COMMANDS

I/0OBASIC ENHANCEMENTS

LONG VARIABLE NAME SUPPORT
UPPER/LOWER CASE SUPPORT
PROGRAM FORMATTING SUPPORT
STATEMENT SHORT FORMS
INDIRECT COMMAND FILE SUPPORT
I/0BASIC PROGRAMMING ELEMENTS
I/0BASIC LINE FORMAT

I/0BASIC EXPRESSION OPERATORS
BASYS FILE SPECIFICATIONS

STATEMENTS, COMMANDS, AND FUNCTIONS

I/0BASIC ERROR MESSAGES

COMMAND AND PROGRAM LINE ERRORS

FUNCTION ERRORS
I/0BASIC ERROR CODES

ASCII CHARACTER EQUIVALENTS

BASYS FILE EXTENSIONS AND DEVICE NAMES

I/0BASIC KEYWORDS

PAGE

1=1
1=1
1=2

!
N N =3 e e

L — g
I

T

A

,f"
S

S

CHAPTER 1

INTRODUCTION

This manual provides a summary of commands and information
necessary to use the I/OBASIC interpreter that runs on the ADAC
BASYS systems. There are six BASYS systems available,
DISKBASYS, PROMBASYS, DX11, PX11, MICROBASYS and PICOBASYS, if
you are a first-time user, refer to the BASYS User's Guide for
instructions on using the BASYS systems.

It is not necessary to read this manual from beginning to end.
The information given here can be used for reference whenyou are
interacting with the computer and when you are writing
application programs,

1.1 INTENDED AUDIENCE

This manual is intended for experienced users and for users who
have read the BASYS User's Guide. Some knowledge of standard
BASIC 1is assumed, although a full description of I/0BASIC
language elements is given in this manual.

1.2 RELATED DOCUMENTS
The BASYS System manuals provide sufficient information to enable
first-time wusers +to operate a BASYS Systemn, The following
additional manuals are suggested if more information is desired
for operation of a BASYS System.

Digital Equipment Corporation RT-11 Manuals

Digital Equipment Corporation RT-11 BASIC Manual

Introduction PAGE 1-2

1.3 STRUCTURE OF THIS MANUAL

This Reference Manual is divided into chapters which describe
I/OBASIC language elements. These chapters are summarized below:

Chapter 2 -« Keystroke Commands

Chapter 2 defines in alphabetical order the special control
character commands used to interact with the BASYS Sy stem at
thelevelof terminal input or output. These commandsare
usedtocorrecttyping mistakes before they areentered and
to control output to the terminal.

Chapter 3 - RT-11 Commands

Chapter 3 defines in alphabetical order the commands used to
interact with the operating system software, called RT-11.
These commands are wused to perform file maintenance
operations such as deleting, copying or renaming files,
RT-11 commands are applicable only to DISKBASYS and
PROMBASYS systems.

Chapter 4 - I/0OBASIC Enhancements

Chapter 4 defines the I/0BASIC programming features that
differ from standard BASIC. These features are used to make
your I/0BASIC programs more readable and easier to write and

debug.
Chapter 5 - I/OBASIC Language Elements

Chapter 5 defines in alphabetical order all I/0BASIC
programming language elements. These include standard BASIC
statements, commands and functions, as well as statements in
I/0BASIC that allow you to perform input and output (I/0) on
analog and digital devices attached to your system, Example
programs are also given for most of the language elements.

Appendix A - I/0BASIC Error Messages
Appendix A lists the error messages returned during I/O0BASIC
progran execution because of errors in commands or
statements. Both fatal errors and warnings are listed.

Appendix B - I/O0BASIC Error Codes

Appendix B lists the numeric error codes that correspond to
possible I/OBASIC program errors.

e

i r
S

% 7
i

A3 ;
S

Introduction PAGE 1-3

Appendix C - ASCII Equivalents

Appendix C lists the decimal and octal code equivalents of
ASCII characters.

Appendix D - Device Names and File Extensions

Appendix D lists possible device names and file extensions
used in RT-11 and I/OBASIC file specifications,

Appendix E - I1/0BASIC Keywords

Appendix E contains all of the I/OBASIC keywords that cannot
be used for variable names in an I/0BASIC program.

e

. F
Moy

X"‘Mw’f

CHAPTER 2

KEYSTROKE COMMANDS

The commands described in this chapter are used at the terminal
to interact with the BASYS System. These commands allow you to
control input and output at the terminal by stopping and starting
terminal scrolling and correcting typing mistakes before they are
entered,

These keystroke commands can be used at the console serial
channel when interacting with the BASYS Systemn, Serial channels
other than the console serial <channel also support these
key stroke commands when using the INPUT €, LINPUT €&, and PRINT @
statements,

To specify a CTRL/X keystroke command, type the letter indicated
while holding down the CTRL key.

CTRL/C

Stops a running I/0BASIC program and returns the wuser to
I/0BASIC command level. Two CTRL/Cs are needed if an
I/0BASIC program is executing, but only one CTRL/C is needed
if an I/0BASIC program is waiting for terminal input at an
INPUT statement,. This keystroke command can only be issued
at the console serial channel. It has no effect if issued
at the other serial channels.

When CTRL/C is typed, it echoes as "C followed by a carriage
return and line feed.

CTRL/0O
Inhibits the remainder of the output from printing on the
terminal. This command might be used to end a lengthy LIST
command.
When CTRL/O0 is typed, it echoes as "0 followed by a carriage
return and line feed.

CTRL/Q

Causes terminal output to resume if it has been halted by a
CTRL/S.

Keystroke Commands PAGE 2-2

CTRL/S

Causes a pause or halt of the output to the user's terminal;
output resumes with CTRL/Q.

CIRL/U

Cancels every character on the current 1line, This command
can be used to cancel an incorrect line before it is entered

SO you can retype it,

When CTRL/U is typed, it echoes as "U followed by a carriage
return and line feed,

DELETE key

Deletes the last character entered. This key will also
erase the character on the terminal by issuing a backspace,

space, backspace sequence.

S

Souniai™

%, i

CHAPTER 3

RT-11 COMMANDS

The operating system software for DX11 and PX11 is called RT-11.
RT-11 consists of a group of programs that allow you to control
and interact with the resources of the computer, The I/O0BASIC
interpreter, for example, is a program that is run under the
controi of RT-11. The DX11 and PX11 Systems have been designed
to minimize your interaction with RT-11, since most program
development operations can be performed at the I/OBASIC
interpreter level,

This chapter lists only the RT-11 commands you will need to
operate the DX11 or PX11 Systems. The RT-11 commands described
here are used to perform file maintenance functions, as well as
several miscellaneous operations,

The following RT-11 commands are listed 1in alphabetical order,
Where appropriate the system's response to the command is given.
For more information about these RT-11 commands, see Chapter 4 of
the BASYS User's Guide.

‘If an RT-11 command is entered incorrectly, an error message will

be returned. The error messages are self-explanatory.

All RT-11 commands are terminated by pressing the carriage return
key on the terminal keyboard. This key is symbolized by <ret> in
the command formats given below.

ASSIGN <ret>

Assigns a logical device name to a physical storage device.
For example, you can assign the logical device name DK: to
a drive to specify that drive as the default drive for RT-11
commands, The system prompts for logical device name and
physical device name, .

COPY <ret>
Copies the specified file from one storage volume to
another, The system will prompt for the input and output
files.

RT=11

Commands PAGE 3=-2

COPY/WAIT <ret>

DATE

DATE

Copies the specified file from one storage volume to another
when it is desired to temporarily remove the volume in a
device unit. The system will prompt you to place the input
and output volumes in the specified drives,

{ret>

Prints the current system date if it has been set.

dd-mmm~-yy <ret>

Sets the current system date specified in the form
day-month-year, For example, 02-FEB-83 specifies February
2nd, 1983.

DELETE [filespeci [,filespec2 ...]] <ret>

Deletes specified file(s) from storage volume directory and
makes the space they occupied available for reuse. Multiple
files can be specified separated by commas. The system will
confirm each file individually before deleting it. The
system will prompt for filenames if none are specified.

DIRECTORY [ddn:] <ret>

Lists the directory of the volume in device ddn: on the
terminal. The default device is DK: if no device is
specified,

DIRECTORY/FULL [ddn:] <ret>

Lists the full directory of the volume in device ddn: on
the terminal. The full directory lists both file names and
free space arrangement. The default device is DK: if no

other device is specified.

DIRECTORY/BRIEF [ddn:] <ret>

Lists the brief directory of the volume in device ddn: on
the terminal. The brief directory gives only file names and
file extensions in a 5-column format. The default device is
DK: if no other device is specified.

DIRECTORY/PRINTER [ddn:] <ret>

Lists the directory of the volume in' device ddn: on the
line printer if a line printer is available. Make sure the
line printer is turned on before issuing this command.

p——_—

v

i

v
i

o
g

RT-11 Commands PAGE 3-3

INITIALIZE [ddn:] <ret>

Clears the directory of the volume in device ddn:. The
system will prompt for the device if it is not given. New
volumes must be initialized prior to use,

RENAME [o0ld file name] [,new file name] <ret>

Gives a new name to file, The systemwill prompt for a file
name and the new name 1if they are not provided in the

command 1line,
SQUEEZE [ddn:] <ret>

Moves the files on a device so that +the free space 1is
compressed into a contiguous block. This permits a larger
usable free space to be onthe device, and is necessary if
the disk free space becomes 'chopped' by the creation or
deletion of a large number of files. The system prompts for
a device name if it is not provided in the command line,

TIME <ret>

Prints the current system time if it has been set.
TIME hh:mm:ss <ret>

Sets the current system time to the time =specified in the
command line, The time is supplied in 24-hour notation in
the form hour:minute:second. For example, 14:10:00
specifies the time 2:10 p.m.

TYPE [filename] <ret>

Lists the contents of a file on the console terminal. This
command may be used to 1list an I/OBASIC program, a data
file, a command file, or any other file that 1is in ASCII
format., It may not be used to list the contents of a binary
file,

e

Ry

9 i
Wi

j

CHAPTER 4

I/0BASIC ENHANCEMENTS

This chapter describes briefly the enhancements to standard BASIC
which are provided in I/OBASIC. For more information about these
teatures see Chapter 5 of the BASYS User's Guide.

4.1 LONG VARIABLE NAME SUPPORT

I/0OBASIC variable names can be up to 32 characters long and can
contain letters, numbers and the underscore character. Variable
names must begin with a letter. The following are examples of
valid I/0BASIC variable names:

gas_flow, templ2, delay_A4dtime

4,2 UPPER/LOWER CASE SUPPORT

I/0BASIC variable names will always appear in lower case when the
program 1is listed, regardless of how they are input. For
example, if you type the variable "GAS_FLOW", it will appear as
"gas flow" when the program is listed.

In addition, all I/OBASIC statement and function names, such as
PRINT, GOTO, ete., will always appear in upper case when the
program is listed, regardless of how they are typed in. For a
complete listing of the keywords that always appear in upper
case, see Appendix E.

4.3 PROGRAM FORMATTING SUPPORT

To improve readability of your I/OBASIC programs, you can insert
any number of spaces and tabs between the program line number and
the first word of the program l1ine., Thisallowsyou to wuse an
indented structure when you program to facilitate debugging and
readability.

I/OBASIC Enhancements PAGE 4-2

4.4 STATEMENT SHORT FORMS

Several I/OBASIC statements that perform analog and digital I/O0
have an abbreviated name that can also be used. The following
are the statements that have both a long and a short form:

LONG FORM SHORT FORM
ANALOG_IN AIN
ANALOG_LOW_IN AINL
ANALOG_OUT AQOT
BIT_CLEAR BIC
BIT_SET BIS
BIT_TEST BIT
DIGITAL_IN DIN
DIGITAL_OUT DOT
TEMPERATURE_IN TMPIN

4.5 INDIRECT COMMAND FILE SUPPORT

DX11 and PX11 Systems allow the I/0BASIC interpreter to read
input lines from an indirect command file, This feature can be
used for applications that execute I/0BASIC programs
automatically on power up. See the BASYS User's Guide for more

information on this feature.

;
3
i

S

N

|

CHAPTER 5

I1/0BASIC PROGRAMMING ELEMENTS

This chapter describes I/OBASIC syntax and language -elements.
The language el ements include statements, commands, and
tunctions, which can be used to create I/OBASIC programs. These
language elements include those found in standard BASIC, as well
as additional statements that can be used for real-time data
acquisition and control. This chapter is for reference purposes
and is not designed as a tutorial.

5.1 I/0BASIC LINE FORMAT

An I/0BASIC program line consistsof a line number, one or more
statements, and a 1line terminator. An I/0BASIC program line
cannot exceed 80 characters in length.

Every program line begins with a line number which must be an
integer between 1 and 32767. Each line number must be unique.
Any number of spaces and/or tabs may be inserted between the line
number and the first character of the line to create an indented
format. The program line should be terminated with a carriage
return character,

An I/OBASIC program line <can contain a =single statement or
several statements separated by backslash characters (\). For

example:

320 LET alpha = beta + 5

330 PRINT alpha

or

320 LET alpha = beta + 5 \ PRINT alpha

When multiple statements occur on one program line, the 1line
number refers to all the statements on the line.

5.2 I/0BASIC EXPRESSION OPERATORS

Expressions in I/0BASIC statements may contain arithmetic and
logical operators. The following is a list of these operators in
order of evaluation precedence (from first to last evaluated):

-~

power
7 multiplication, division
+, - addition, subtraction
NOT logical negation
AND, OR logical AND, inclusive OR
XOR logical exclusive OR

Note that the string concatenation operator is the plus sign (+).
Al so, the logical operators convert their arguments to 16-bit
integers before performing the operation.

I/0BASIC Programming Elements PAGE 5-2

The following are examples of the use of logical operators:
10 IF alpha% AND beta% = NOT gamma % THEN 200
10 DIGITAL_OUT(channel,value% XOR mask$%)

10 PRINT NOT x_variable

5.3 BASYS FILE SPECIFICATIONS

All files residing on a DX11 or PX11 Systems are identified
using the following format. The square brackets are used to
indicate an optional part of the file specification:

[ddn:]filename[.ext]

ddn: is the device specification. The default specification 1is
DK:. Device names are listed in Appendix D.

filename is the one to six character name of the file. This name
can consist of any combination of letters A to Z and digits 0 to
9. ’

.ext 1s the three-letter file extension, Possible file
extensions are given in Appendix D. A period should always
precede the letters in the file extension.

5.4 STATEMENTS, COMMANDS, AND FUNCTIONS

I/OBASIC statements, commands, and functions are used to create,
edit, and run I/OBASIC programs. These elements include those
found in standard BASIC, as well as statements added to perform
real-time analog and digital I/0. BASIC programs written to run
on other systems can be used on your BASYS System with usually
very little modifications.

I/0BASIC programming elements are listed here in alphabetical
order, The syntax of the element is given followed by a
description of the element and brief programming examples where
appropriate,

R

\Ww

I/0BASIC Programming Elements PAGE 5-3

The following documentation conventions are used 1in describing
the I/OBASIC programming elements:

exp
Any valid I/OBASIC expression, A numeric expression 1is
required unless otherwise specified,

filespec
A BASYS file specification as described in Section 5.2.
Only DX11 and PX11 Systems support file specifications.
MICROBASYS and PICOBASYSdonot supportfile specifications,

integer

Any positive integer number constant or any positive numeric
constant that could be an integer if it were followed by a
percent sign.

linenumber

Any valid I/0BASIC program line number, such as 10, 65,
3276T7.

string

Any string expression such as "ABCY, name$, or
d$”‘SEG$(a$739u) .

variable

A floating point, integer or string variable,

[]
The enclosed element is optional. For example,
(LET] variable = expression

In the statement above, the LET statement 1is optional and
need not be specified.

Preceeding element <c¢an be repeated as indicated. For
example,

DEL linenumber1 [,linenumber2 ...]

In the command line above, multiple 1line numbers may be
specified on one command 1line,

All I/OBASIC command and statement 1lines are terminated by a
carriage return unless specified otherwise in the text. In the
examples that follow, the symbol <ret> is used to indicate a
carriage return typed by the user.

I/0BASIC Programming El ements PAGE 5-4

b m e — e ————— +
! Function !
! !
! ABORT !
o - +

ABORT Function
SYNTAX: variable = ABORT(code)
DESCRIPTION:

The ABORT function causes termination of a program, The variable
specified can be any valid I/OBASIC variable -- it is simply part
of the syntax of the function and need not be defined.

The code specified can be either 1 or 0. If +the wvalue is 1,
program execution will be stopped and the program will be cleared
from immediate memory. If the value is 0, program execution will
be stopped, but it will remain in immediate memory.

The ABORT function is not supported in MICROBASYS or PICOBASYS.

ABS Function
SYNTAX: ABS(numeric expression)
DESCRIPTION:

The ABS function returns the absolute value of the specified
numeric expression. The absolute value of a positive number is
equal to the number, but that of a negative number is equal to -1
times the number. Whether the expression is in integer or real
number format, the returned function value is in floating point
format.

EXAMPLE:

>listnh <ret>

10 xray = 72

20 PRINT ABS(xray)

30 PRINT ABS(-6.536)

40 PRINT ABS(3.50000E+21)

>runnh <ret>
72

6.536
3.50000E+21

I/0BASIC Programming Elements PAGE 5-5

o — - —————— +
! Statement !
f !
! ANALOG_IN !
o ————————— +
ANALOG_IN Statement
SYINTAX: ANALOG_IN(chan, val [,flagl)

or
AIN(chan, val [,flagl)
DESCRIPTION:

The ANALOG_IN statement reads one or more channels on the
high-level analog input board.

Argument chan is a variable or constant of any type that contains
the analog channel to be read, or the last channel to scan if
channel scanning is set, The value of this argument must be
supplied by the program, Legal range is 0 to 63 for the
first high-level board and the second (if any) is accessed by
chan values 128-191. Chan values 0-63 correspond to channels 0~
63 on the first board, and chan values 128-191
correspond tc channels 0-63 on the second board. The boards
operate independently with respect to channel scanning and DMA
(if present), so it is possible to to have two ANALOG_IN
statements with flags specified operating simultaneously.

Argument val is a variable of any type that will be returned with
the value of the analog channel, If argument val is of type real
the value is returned in wunits of either volts or ©percent
full-scale. If argument val is of type integer or string, the
value returned 1is the unconverted binary value of the A/D
converter, If argument val is an array or array element then the
entire array will be filled with analog channel values. String
arrays are not allowed.

Argument flag is an optional integer or real variable, When
specified, causes the statement to operate asynchronously in
either interrupt mode or DMA mode (only if an ADAC 1622DMA
controller is present). It will be set to a zero prior to the
next I/0BASIC program statement, and will be set to a one when
all of the analog values have been read. If argument flag is not
specified then the statement will operate synchronously, so that
all processing is completed before the next I/OBASIC statement.
DMA is not supported in PICOBASYS hence argument flag is not
used.

I/0BASIC Programming Elements PAGE 5-6

NOTE

The ANALOG_IN statement also
supports direct transfer of analog
input channel data to a virtual
array. The virtual array must be
located on an XM memory disk, and
it must be of type integer, For
complete information on this
feature, see the chapter Data Files
and Virtual Arrays in the BASYS
User's Guide. '

e e e it +
! Statement !
! !
! ANALOG_LOW_IN !
- ——— - ——— -, —-—— +
ANALOG_LOW_IN Statement
SYNTAX: ANALOG_LOW_IN(chan, val [,tflag])

or
AINL(chan, val [,flag]l)
DESCRIPTION:

The ANALOG_LOW_IN statement reads one or more channels on the
low-level analog input board.

Argument chan is a variable or constant of any type that contains
the analog channel to beread, or the last channel to scan if
channel scanning is set. The value of this argument must be
supplied by the program. Legal range is 0 to 1023 in DX11 and
PX11. :

Argument val is a variable of any type that will be returned with
the value of the analog channel. If argument val is of type real
the value is returned in wunits of either volts or percent

full-scale. If argument val is of type integer or string, the
value returned is the wunconverted binary value of the A/D
converter, If argument val 1is an array then the entire array

will be filled with analog channel values. String arrays are not
allowed.

S

%,
g

I/0BASIC Programming Elements PAGE 5-7

Argument flag is an optional integer or real variable. When
specified, causes the statement to operate asynchronously in
interrupt mode, or DMA mode if an ADAC 1622DMA controller 1is
present. It will be set to a zero prior to the next I/0BASIC
program statement, and will be set to a one when all of the
analog values have been read. If argument flag is not specified
then the statement will operate synchronously, so that all
processing is completed before the next I/OBASIC statement.

NOTE

The ANALOG_LOW_IN statement also
supports direct transfer of analog
input channel data to a virtual
array. The virtual array must be
located on an XM memory disk, and
it must be of type integer. For
complete information on this
feature, see the chapter Data Files
and Virtual Arrays in the BASYS
User's Guide.

e e +
! Statement !
! !
! ANALOG_OUT !
e m e, - ——— +
ANALOG_OQUT Statement
SYNTAX: ANALOG_OUT(chan, val [,flag])

or
AOT(chan, val [,flagl)
DESCRIPTION:

The ANALOG_OUT statement writes to a specified analog output
channel.

Argument chan is a variable or constant of any type that contains
the analog output channel to be written. The value of this
argument must be supplied by the program. Legal range 1is 0 to
127 for DX11 and PX11 systems.

I/0BASIC Programming Elements PAGE 5-8

Argument val is a variable or constant of any type that contains
the value(s) to be written to the analog output channel. If
argument val is of type real the value is in wunits of either
volts or percent full-scale, If argument val is of type integer
or string, the value is the unconverted binary value for the D/A
converter, If wval is an array, then the entire array will be
written to the analog channel. String arrays are not allowed.
The value(s) for this argument must be supplied by the program.

Argument flag is an optional integer or real variable. When
specified, causes the statement to operate asynchronously in DMA
mode if an ADAC 1622DMA controller is present and the channel is
part of an ADAC 1023EX board., If flag is specified and no DMA
hardware is present, then an error message results. It will be
set to a zero prior to the next I/0BASIC program statement, and
will be set to a one when all of the analog values have been
written. If argument flag is not specified then the statement
will operate synchronously in program control mode, so that all
processing 1is completed before the next I/OBASIC statement. If
this argument is specified, then argument val must be of type
integer, with values in the following range:

1. zero to 4,095 for full scale unipolar 12 bits;
2. -2,048 to +2,047 for full scale bipolar 12 bits.
NOTE

The ANALOG_OUT statement also
supports direct transfer of data
from a virtual array to an analog
output channel., The virtual array
must be located on an XM memory
disk, and it must be of type
integer. For complete information
on this feature, see the chapter
Data Files and JYVirtual Arrays in
the BASYS User's Guide.

e +
! Command !
! !
! APPEND !
o - - +

APPEND Command
SYNTAX: APPEND file specification
DESCRIPTION:

The APPEND command loads the specified program tile into
immediate memory and merges it with the program already in
immediate memory. APPEND cannot be used on a compiled file., If
common line numbers exist, the appended program lines will
replace the original 1lines.

g™

|

g
4
i

L
S

e, &
e

I/0BASIC Programming Elements PAGE 5-9

EXAMPLE:
Program 1 Qutput 1
10 REM This is PROG1 >runnh <ret>
30 time = 50 .50
40 PRINT time
50 END
Program 2 Qutput 2
10 REM This is PROG2 >runnh <ret>
20 volts = 10 100
50 PRINT volts % 10
60 END
Program 1 is in immediate memory. If you enter the command:

APPEND PR0OG2, the following program is the result:

10 REM This is PROG2 <Line 10 replaced by Program 2 line 10
20 volts = 10 <Line 20 from Program 2
30 time = 50 <Line 30 from Program 1
40 PRINT time <Line 40 from Program 1
50 PRINT volts ¥ 10 <Line 50 replaced by Program 2 line 50
60 END <Line 60 from Program 2

>runnh <ret>

50

100

>
o o e +
! Function !
! !
! ASC
o = ——— +

ASC Function
SYNTAX: ASC(character string)

DESCRIPTION:

The ASC function is used to convert a one-character string to its
ASCII value. The integer value of the decimal ASCII code is
returned for the character specified. If the string is null or
contains more than 1 character, I/0BASIC returns the error
message: "?2Argument error', Appendix C lists the decimal and
octal equivalents for ASCII characters.

I/0BASIC Programming Elements PAGE 5-10

EXAMPLE:

>listnh <ret>
10 PRINT "Enter any character followed by a returnt®

20 INPUT any_character$
30 number = ASC(any_character$)
40 PRINT "The ASCII value of that character is:";number

50 END

>runnh <ret>

Enter any character followed by a return?
B <ret>

The ASCII value of that character is: 66

>
e e R +
! Function !
! !
! ATN !
o e e e e o e +

ATN Function
SYNTAX: ATN(numeric expression)

DESCRIPTION:

The ATN funetion returns the arctangent of the expression
specified as an angle in radians in the range +PI/2 to -PI/2.

EXAMPLE:

>listnh <ret>

10 PRINT "Enter a number";

20 INPUT num

30 angle = ATN(num) /7 PI # 180
40 PRINT "The angle is "j;angle
50 END

>runnh <ret>

Enter a number? 1 <ret)
The angle is 45

>runnh <ret>

Enter a number? 30 <ret>
The angle is 88.0909

>

g

Segi®

I/0BASIC Programming Elements PAGE 5-11

BIN Function

SYNTAX:

BIN(string of binary digits)

DESCRIPTION:

The BIN function returns the decimal value of the binary string

specified,.

Spaces which occur in the expression are ignored and

the value is returned as an integer.

The binary number is treated as a signed 2's complement integer
and its absolute value may not be larger than 2715-1

EXAMPLE:

>listnh <ret>

10
20
30
40
50

PRINT "Enter a binary number®;
INPUT Dbing$

num = BIN(bin$)

PRINT "The decimal equivalent";num
END

>runnh <ret>

Enter a binary number? 10 <ret>>
The decimal equivalent 2

>runnh <ret>

Enter a binary number? 11101 <ret>
The decimal equivalent 29

>

+ ————————————————————
! Statement

!

! BIT_CLEAR

+ ————————————————————

BIT CLEAR Statement

SYNTAX:

g

BIT_CLEAR(chan, bit)
or

BIC(chan, bit)

I/0BASIC Programming Elements PAGE 5-12

DESCRIPTION:

The BIT_CLEAR statement clears a single bit in a digital output
channel,

Argument chan is a variable or constant of any type that contains
the digital channel for the bit to be cleared., The value of this
argument must be supplied by the program. Legal range is 0 to
127 for DX11 and PX11 systems.

Argument bit is a variable or constant of any type that contains
the bit number to be cleared in the channel. The value of this
argument must be supplied by the program. Legal range is 0 to
15.

! Statement !

! BIT_SET !

BIT SET Statement
SYNTAX: BIT_SET(chan, bit)
or
BIS(chan, bit)
DESCRIPTION:

The BIT_SET statement sets a single bit din a digital output
channel.

Argument chan is a variable or constant of any type that contains
the digital channel for the bit to be set. The value of this
argument must be supplied by the program. Legal range is 0 to
127 for DX11 and PX11 systems.

Argument bit is a variable or constant of any type that contains
the bit number to be set in the channel. The value of this
argument must be supplied by the program., Legal range is 0 to
15.

g

S’

I/0BASIC Programming Elements PAGE 5-13

o o o e o e om o +
! Statement !
! !
! BIT_TEST !
e R +

BIT_TEST Statement
SYNTAX: BIT _TEST(chan, bit, val)
or
BIT(chan, bit, val)
DESCRIPTION:

The BIT_TEST statement will test a single bit in a digital input
or output channel.

Argument chan is a variable or constant of any type that contains
the digital channel for the bit to be tested., The value of this
argument must be supplied by the program. Legal range is 0 ¢to
127 for DX11 and PX11 systems,

Argument bit is a variable or constant of any type that contains
the bit number to be tested in the channel. The value of this
argument must be supplied by the program. Legal range is 0 to

15.

Argument val is a variable of any type thatwill be set to the
state of the bit. If the bit is on, argument val will equal a
one, and if the bit is off, argument val will equal a zero,.

- +
! Command !
! !
! BYE !
o ——————————— +

BYE Command
SYNTAX: BYE
DESCRIPTION:

The BYE command exits from the I/0BASIC interpreter and returns
the user to control of the RT-11 operating system,

EXAMPLE:
>bye <ret>

. <RT=-11 prompt is printed

I/0BASIC Programming El ements PAGE 5-14

! Statement !

! CANCEL_CTLO !

CANCEL_CTLO Statement
SYNTAX: CANCEL_CTLO

DESCRIPTION:

The CANCEL CTLO statement will cancel the effect of a CTRL/O
command. It causes output to resume printing at the console
terminal after a CTRL/O has discarded the output.

CTRL/0 is a binary command key, so that typing it once will cause
output sent to the console terminal to be discarded, and typing
it again will cause output to resume printing.

The CANCEL_CTLO statement can be wuseful if executed prior to
printing a summary line within a program, so that the user can
skip lengthy intermediate output with a CTRL/0 if desired, and
still get the summary line at the end.

! CHAIN !
e - - —————————— +
CHAIN Statement
SYNTAX: CHAIN "string®" [LINE line number]

DESCRIPTION:

The CHAIN statement allows you to separate larger programs into
smaller subprograms so thatat any one time only a portion of a
large program is in immediate memory. When a program is
segmented, it has lower memory requirements; this means that
programs that exceed memory size can be broken wup and run 1in
segments,

Segmenting programs also simplifies debugging since the segments
can be run independently for testing.

When the CHAIN statement is executed, the current program in
execution is terminated and erased from immediate memory; the
program specified by the string in the CHAIN statement is loaded
into immediate memory and execution begins at the line number
specified. If no line number is specified, execution begins at
the lowest line number,

~ww“";

QD“M.:M»‘:.‘.;

7
S

S’

i
S’

I/0BASIC Programming Elements PAGE 5-15

The program segment includes all program lines, user defined
functions, arrays, and variables except those that are listed in
COMMON statements, The COMMON statement, wused in conjunction
with the CHAIN statement, preserves variables specified in one
segment through another.

If the file extension is not specified, the CHAIN command looks
for the compiled version (,BAC extension) first. If it cannot
find it, it then looks for the non-compiled version (.BAS

extension).

o, ———————————— +
! Statement !
! !
! CHAR_IN !
- o e +

CHAR_IN Statement

SYNTAX: CHAR_IN(chan, var)

DESCRIPTION:

The CHAR_IN statement will read one or more characters from a
serial channel. This statement can be used to read characters
already contained in the input buffer for a serial channel. The
CHAR_IN statement is different from the INPUT @ and LINPUT €
statements, since it does not wait for input, but rather reads
one or more characters already typed at the serial channel
specified. It is therefore useful for polling serial channels
for input, without causing the program to 'hang' at one spot,

When the CHAR_IN statement is executed, all characters
subsequently typed at the serial channel will not be echoed until
an INPUT 6 or LINPUT € statement 1is executed for that serial
channel (or INPUT and LINPUT statements for the console serial

channel).

Argument chan is a variable or constant of any type that contains
the serial channel number, The value of this argument must be
supplied by the program. Legal range is 0 to 7 for DX11 and
PX11. Note that serial channel number zero is the console
terminal.

The CHAR_IN statement acts differently depending whether the type
of argument var is numeric (integer or real) or string.

If argument var is of type string, all characters currently
residing in the input buffer for the serial channel are placed in
the string. More than one character can therefore be read using
a s8string wvariable. If no characters are present in the input
buffer when the CHAR_IN statement executes a null string will - be
returned.

I/0BASIC Programming Elements PAGE 5-16

If argument var is of type integer or real, only one character
will be read from the input buffer. Its ASCII code equivalent
will be returned in the numeric variable, If no characters are
present in the input buffer when the CHAR_IN statement executes,

a -1 will be returned.

EXAMPLE:

>listnh <ret>

10 REM poll serial channels and send input to console
20 FOR term_no = 1 to 3

30 CHAR_IN(term_no,a$)

40 IF a$ = "" GO TO 60

50 PRINT "Channel ";term_no;" ";a$

60 NEXT term no

70 END
>
e +
! Function !
! !
! CHR $ i
e —————— e ————— +
CHR$ Function
SYNTAX: CHR$(ASCII value expression)

DESCRIPTION:

The CHR$ function converts the ASCII value expression specified
and returns a one-character string equivalent. The expression
must be between 0 and 255. I/0BASIC treats arguments greater
than 255 modulo 256, therefore, 256 is treated as 0, 257 as 1,

etc.
EXAMPLE:

>listnh <ret>s

10 PRINT "Enter an ASCII value for 1 character";

20 INPUT number

30 IF number > 31 THEN 60

40 PRINT "That would be a control. Try again.®

50 GO TO 10

60 IF number < 127 THEN 90

70 PRINT "That is outside the upper limit. Try again.®
80 GO TO 10

90 PRINT "The character ";CHR$(number);" is equal to";
100 PRINT number

110 END

>runnh <ret>

Enter an ASCII value for 1 character? 7 <ret>
That would be a control. Try again.,

g

« i
g

I/0BASIC Programming Elements PAGE 5-1T7

Enter an ASCII value for 1 character? 200 <ret>
That is outside the upper limit, Try again.,

Enter an ASCII value for 1 character? 65 <ret>
The character A is equal to 65

>
drom - e e o o e e +
! Command !
! !
! CLEAR !
o —————————— +

CLEAR Command
SYNTAX: CLEAR

DESCRIPTION:

The CLEAR command removes all common and noncommon variables from
immediate memory, initializes all numeric variables to zero and
all string variables to nulls. Arrays are also deleted. Progranm
text and subroutine stacks remain unaffected. When CLEAR is
executed, the amount of space formerly used by arrays is
available for additional program text,

o - = +
! Function !
! !
! CLK$!
o - - +

CLK$ Function
SYNTAX: CLK$

DESCRIPTION:

The CLK$ function returns the present time in hours, minutes and
seconds in 24-hour notation.

The time can be set with the I/OBASIC SET_TIME statement.

EXAMPLE:
>listnh <ret> 12:00: 14
10 FOR alpha = 1 TO 6 12:00:15
20 PRINT CLK$ 12:00:16
30 WAIT(1) 12:00:17
40 NEXT alpha 12:00:18
50 END 12:00:19

>runnh <ret> >

I/0BASIC Programming Elements PAGE 5-18

o - e e e e e e +
! Statement !
! !
! CLOCK_OUT !
e — e ————————— +
CLOCK_OUT Statement
SYINTAX: CLOCK_OUT(rate, val [,flag]l)

DESCRIPTION:

The CLOCK_OUT statement operates the ADAC 1601GPT real-time
clock on DX11 and PX11,

Argument rate 1is a variable or constant of any type that
indicates the rate for the real-time c¢lock. The value of this
argument must be supplied by the program. Legal range is 0 to 7.
The table below indicates what rates are selected by different
values of argument rate:

=]
e

qcnuu:u:m.aota
=

MEANING

Stop

1 MHz

100KHz

10 KHz

1 KHz

100 Hz

EXT CLK (user supplied)
60 Hz (EVENT CLK), 10 Hz

Argument val is a variable or constant of any type but that is a
whole number. Val is the number (range 1 to 32767) of units that
the clock is to count before it resets. Divide the value for
argument rate by the value for argument val to find the number of
pulses delivered by the hardware in the given time period
(specified by argument rate).

For example:

CLOCK_OUT(2,1000) causes:
100,000(units/second)/1000(units/pulse) = 100 pulses/second.

The argument flag is an optional real or integer variable., If
the argument flag is absent then the clock operates in Mode 3
(see hardware reference manual) and pulses are generated after
every "val" counts as described above until the c¢lock is stopped
with the statement CLOCK_OUT(0). 1In this mode the CLOCK_0UT()
statement operates synchronously and the statements following
CLOCK_OUT() will not execute until the CLOCK_OUT() related
processing is completed.

For example:

30 DIM a%(1000)

40 CLOCK_OUT(2,10)

50 ANALOG_IN(6,a%(),done)
60 PRINT "MESSAGE"

St

s

s

I/0BASIC Programming Elements PAGE 5~-19

"MESSAGE"™ will get printed when array a% is filled with 1001
integers from analog channel 6. This data is being converted at
100000/10 = 10000 samples per second thus 2% will f£ill in 0.10

second.

If argument flag is specified then the GPT will operate in Mode 2
(see hardware manual), A single pulse and an interrupt will be
generated at the end of the time interval.

For example:

20 CLOCK_OUT(2,10000,ready)
30 PRINT "COUNTING"
40 ANALOG_IN(5,pressure)

The clock will commence counting 10,000 counts at 100,000
counts/sec., that will take 10,000/100,000 = 0.10 second.
Asynchronously the word "COUNTING" will appear, program control
will pause at line 40 awaiting the clock pulse to trigger the A
to D at channel 5 whieh value will be stored in "pressure" and
the value of ready will become = 1.

HINT:Read about DMA control and about the SET_AIN_TRIGGER
statement.

e —————————————— - +
! Statement !
! i
! CLOSE !
pmmm———-———, - ————— - +
CLOSE Statement
SYNTAX: CLOSE [[#]expressioni, [[#lexpression2 ...]]

DESCRIPTION:

The CLOSE statement closes the files associated with the channel
specified 4in the expression. If no expression is specified, all
open files are closed, Once a file is c¢losed, it must be
reopened to be accessed again.

Although all files are closed when an END statement, a CHAIN
statement, or the highest numbered program line is executed, it

is good practice toclose all files that are opened by a progran
with the CLOSE statement,

Statement !

COMMON !

COMMON Statement

SYNTAX: COMMON variablel [,variable2 ...]

I/0BASIC Programming El ements PAGE 5-20

DESCRIPTION:

The COMMON statement can be used to preserve variables when an
I/0BASIC program chains to another I/OBASIC program with the
CHAIN statement. The variables or arrays listed in a COMMON
statement will retain their values after CHAIN is executed. The
COMMON statement is an alternative to wusing data files for
passing information between programs.

NOTE

The COMMON statement should appear
in both programs, and it should
have the same variable names, data
types, and array dimensions listed
in each,

In the syntax above, variable is any integer, real, or string
variable or array. More than one COMMON statement can appear in

an I/O0BASIC program,

The variables that appear in a COMMON statement should be
structured so that the same storage is allocated in the COMMON
statements of both programs. '

The program sections listed below provide a sample of how to set
up COMMON statements for two programs, Assume that program 1
will chain to program 2. When program 2 starts execution, the
variables declared in its COMMON statements will have the same
values as those in the COMMON statements in program 1.

EXAMPLE:

Program 1

10 COMMON alpha, beta, gamma
20 COMMON int_array$%(100)
30 COMMON real_array(256)

Program 2

100 COMMON alpha, beta, gamma
200 COMMON int_array%(100), real_array(256)

o - +
! Command !
! !
! COMPILE !
o o o o o +

COMPILE Command

"o

i

§ i
%
i

%

I1/0BASIC Programming Elements PAGE 5-21

SYNTAX: COMPILE file specification

DESCRIPTION:

The COMPILE command saves a compiled version of the program
specified. A compiled version occupies less file space on a disk
than an uncompiled version, but it is stored ina binary format
that does not permit direct editing or viewing of the file. A
compiled program will load into memory faster than an uncompiled
program, Compiled programs have a " BAC" extension,

CONVERT_OCTAL Statement
SYINTAX: CONVERT_OCTAL(arg1, arg?2)

DESCRIPTION:

The CONVERT_OCTAL statement converts values from decimal to octal
and vice versa,. The decimal argument is specified as an integer
or real and the octal argument is specified as a string. The
input argument argl is converted to output argument arg2.

Argument argl is a constant or variable of any type. The value
of this argument must be supplied by the program. If the type is

integer or real then it is treated as a decimal number. If the
type is string then the string must contain a valid octal number
representation, Legal range is 0 to 177777 (octal).

Argument arg2 is a variable of any type that will be returned
with the same value as argument argil. If argl is anoctal
string, then arg2 should be of type integer or real, and an octal
to decimal conversion will occur. If argl is of type integer or
real, then arg2 should be of type string, and a decimal to octal
conversion will take place.

i +
! Function !
! !
! CO0s !
o +

COS Function
SYNTAX: CO0S(numeric expression)

DESCRIPTION:

I/0BASIC Programming Elements PAGE 5-22

The COS function returns the cosine of the angle specified. The
angle is specified in radians,

EXAMPLE:

>listnh <ret>
10 REM Convert angle to radians and print cosine

20 PRINT "Enter an angle in degrees";

‘30 INPUT angle

40 REM Convert the angle to radians

50 LET num = angle ¥ 2 # PT / 360

60 PRINT "The cosine of angle A is ";CO0S(num)
70 END

>runnh <retb>
Enter anangle in degrees? 30 <ret)>
The cosine of angle A is .866025

>runnh <ret>

Enter an angle in degrees? 90 <ret>
The cosine of angle A is O

>
- — +
! Function !
! !
! CTLC !
e ————— +

CTLC Function
SYNTAX: CTLC

DESCRIPTION:

The CTLC function 1is used to indicate whether a CTRL/C
(control-C) has been typed at the <console terminal (serial
channel number zero), The function returns a 1 if a CTRL/C has
been typed, and a zero if it has not been typed. This function
is useful when used with the DISABLE_CTLC statement to monitor
the user's attempt to terminate the program,

See descriptions of the DISABLE_CTLC and ENABLE_CTLC statements
for more information on CTRL/C processing.

EXAMPLE:

>listnh <ret>

10 DISABLE_CTLC

20 IF CTLC = 1 THEN 100

30 PRINT "Still Executing!®

4o WAIT (1)

50 GO TO 20

100 PRINT "Program terminating."
110 END

>

S’

%
Ty

i
4
i

f—

I/0OBASIC Programming Elements PAGE 5-23

e +
! Statement !
! 1
! DATA !
o +

DATA Statement

SYNTAX: DATA valuel [,value2 ...]

DESCRIPTION:

The DATA statement supplies the values to be used in a READ
statement, Each time a READ statement is executed the next
sequential value in the DATA statement 1s assigned to the
variable in the READ statement argument list. Since the values
are taken sequentially, the order of values is important.

Literal strings or numeric variables may be wused, but values
specified in the DATA statement must correspond to variables in
the READ statement. Commas separate all constants specified in
the DATA statement,

A program can have more than one DATA statement. DATA statements
which have no corresponding READ statements are ignored.

All characters between the DATA statement and the next 1line
number are treated as data. A DATA statement should, therefore,
be the only statement on a line,

I/0OBASIC ignores excess data in DATA statements, but variables in
a READ statement with no corresponding value in a DATA statement
result in an I/0OBASIC error message, "?0ut of data".

EXAMPLE:

>listnh <ret)>

10 DATA "Tom Snyder",50,"Rona Barret",55

20 FOR count = 1 T0O 2

30 READ person$,age

40 message$ = "years old."

50 PRINT count") ";person$;" is ";age;" "message$
60 NEXT count

70 END

>runnh <ret>

1) Tom Snyder is 50 years old.
2) Rona Barret is 55 years old.

I/0BASIC Programming El ements PAGE 5-24

R bl LT +
! Function !
! !
! DAT$!
R kT R +

DAT$ Function
SYNTAX: DATS

DESCRIPTION:

The DAT$ function returns the Gregorian date as a string in the
form: DD-MON-YR.

The date can be set with the I/OBASIC SET_DATE statement,

EXAMPLE:

>PRINT "Today's date is "; DAT$ <ret>
Today's date is 21-JAN-83

>

! DEF FN !
- - — - ————— +
DEF FN Statement
SYNTAX: DEF FNletter[$ or %] (list)=zexpression
DESCRIPTION:
The DEF FN statement declares a user-defined function. In the

syntax above, list is any argument list, consisting of variable
names or constants separated by commas., Expression is any valid
mathematical or string expression, Letter is any single letter,
A toZ. If adollar sign follows the letter, then the function
will return a string, and if a percent sign follows the letter,
then the function will return an integer. If neither a dollar
sign or percent sign is used, then the function returns a real
number,

You must declare each user-defined function once in a program
with a DEF FN statement. You can define it anywhere in the
progranm, Ensure that expression is the same data type (string,
integer, or real) as indicated by the function name.

Once you have defined the function anywhere in the program, you
can use the function by specifying its name and argument list.
The value of the function will be computed by substituting the
variables in the argument list into the expression given in the
DEF FN statement.

R

e o
s

tsag”

I/0BASIC Programming Elements PAGE 5-25

The defining expression can contain any constants, variables, or
functions, as well as another user-defined function.

For example, the line:

10 DEF FNA(arg) = arg¥2
causes a later statement:

20 PRINT FNA(4)

to print the number 8.

o +
! Command !
! !
! DEL !
o - —— - +

DEL Command
SYNTAX: DEL line specification?1 [,line specification2 ...]
DESCRIPTION:
The DEL command deletes lines from a program in immediate memory.
Individual lines can be deleted by entering the line number and a
carriage return; multiple lines and/or a range of lines can be
also be deleted with a single DEL command. Line numbers do not
need to be specified in numerical order, and the same DEL.command
may contain single line numbers and ranges.
EXAMPLE:
>del 20,30,40 <ret> {Deletes lines 20, 30, and 40
>del 20-40 <ret> <Deletes lines 20 through 40

>del 40,20-25,30 <ret> <Deletes line 40, lines 20
through 25, and line 30.

! Statement !

! DIGITAL_IN !
e —————— - ———— +
DIGITAL_IN Statement
SYNTAX: DIGITAL_IN(chan, val [,flagl)

or
DIN(chan, val [,flagl)

DESCRIPTION:

I/0BASIC Programming Elements PAGE 5-26

The DIGITAL_IN statement reads a digital input channel,.

Argument chan is a variable or constant of any type that contains
the digital input channel to be read. The value of this argument
must be supplied by the program. Legal range is 0 to 127 for
DX11 and PX11 systems,

Argument val is a variable or constant of any type that will |Dbe
returned with the 16-bit value(s) of the digital input channel.
If val is an array, then the entire array will be filled with
values read from the input channel. String arrays are not

allowed.

In the case where argument flag is specified in the statement,
argument val is restricted to being of type integer,

Argument flag is an optional integer or real variable, When
specified, causes the statement to operate asynchronously in
interrupt mode, provided the hardware for the digital channel
supports interrupts. For each hardware generated interrupt, the
channel will be read and its value placed in argument val. When
argument val has been filled, the flagwill be set from a zero to
a one, If argument flag is not specified thenthe statement will
operate synchronously in program control mode, so that all
processing is completed before the next I/0BASIC statement,

! Statement !

! DIGITAL_OUT !

DIGITAL_OQOUT Statement

SYNTAX: DIGITAL_OUT(chan, val [,flag])
or
DOT(chan, val [,flag])

DESCRIPTION:
The DIGITAL_OUT statement writes to a digital output channel,

Argument chan is a variable or constant of any type that contains
the digital output channel to be written. The value of this
argument must be supplied by the program, Legal range 1is 0 to
127 for DX11 and PX11 systems.

Argument val is a variable or constant of any type that contains
the value(s) to be written to the digital output channel, If
argument val is an array, then the entire array will be written
to the output channel,. String arrays are not allowed. The value
of this argument must be supplied by the program. Legal range is
0 to 177777 (octal).

S

I/0BASIC Programming Elements PAGE 5-27

In the case where argument flag is specified in the =statement,
argument val is restricted to being of type integer,

Argument flag is an optional integer or real variable. When
specified, «causes the statement to operate asynchronously in
interrupt mode, provided the hardware for the digital channel
supports interrupts. For each hardware generated interrupt, the
channel will be written using the (next) value in argument val,
When argument val has been entirely written, the flag will be set
to a one, If argument flag is not specified then the statement
will operate synchronously in program control mode, so that all
processing is completed before the next I/0BASIC statement.

o ————— i — ————— +
! Statement !
! !
! DIM !
o e o e +
DIM Statement
SYNTAX: DIM variablel(integer1 [,integer2]) ,...

DESCRIPTION:

The DIM statement sets up the dimensions of an array in an
I/0BASIC program, The array can be of type real, integer, or
string, depending on the type of variablel specified in the
syntax above,

More than one array can be dimensioned in a DIM statement. In
the syntax above, if optional integer2 is not specified, then the
array 1s one-~-dimensional and is integeri1+1 elements 1long. If

integer2 is specified, then a two-dimensional array is specified,
of size (integer1+1) x (integer2+1).

A DIM statement is not executed and can be placed anywhere in an
I/0BASIC program, Multiple DIM statements c¢an also be used
within the same program. Note that all arrays start at element
zero, rather than element one,

The following are some sample program lines containing DIM
statements.

10 DIM alpha(100), beta(200)
20 DIM names$(15), data%(500)

DIM # Statement

SYNTAX: DIM #integer1, array [integer2]

I/0BASIC Programming Elements PAGE 5-28

DESCRIPTION:

The DIM # statement declares a virtual array. A virtual array is
an array whose data is actually stored ina disk file rather than
inworking memory., The advantage of a virtual array is that it
can have a larger size than a memory array.

In the syntax above, integeri1 is a constant that specifies the
channel number of the file containing the virtual array. In the
DIM # statement above, array is the name of a one or
two-dimensional array. It has the same format as in the standard
DIM statement, Integer2 is an optional constant that =specifies
the maximum length for elements in a virtual string array.

A DIM # statement should always be followed by an OPEN statement
to open the virtual array file with the same channel number,

See the chapter Using Data Files in the BASYS User's Guide for a
complete description of the DIM # statement,

o o o +
! Statement !
! !
! DISABLE_CTLC !
G - - +

DISABLE_CTLC Statement
SYNTAX: DISABLE_CTLC

DESCRIPTION:

The DISABLE_CTLC statement will prevent a CTRL/C typed at the
console terminal from stopping an I/0BASIC program. Normally, a
running program can be stopped by typing two CTRL/Cs, and a
program waiting for terminal input can be stopped by typing one
CTRL/C. After a DISABLE_CTLC statement is executed, a CTRL/C
typed at the console terminal will have no effect on an executing
I/0BASIC program,

H
" H
S

P

5 ;
Ay

I/0BASIC Programming Elements v PAGE 5-29

This statement is useful for preventing critical portions of a
program from being interrupted by the user.

See descriptions of the CTILC function and ENABLE CTLC statement
for more information on CTRL/C processing.

The ENABLE _CTLC statement reverses the effect of the DISABLE CTLC
statement, so that a CTRL/C can terminate a program.

o ————————— +
1 Statement !
! !
! ENABLE_CTLC !
o e - —————— - +

ENABLE_CTLC Statement
SYNTAX: ENABLE_CTLC

DESCRIPTION:

The ENABLE_CTLC statement reverses the effect of the DISABLE_CTLC
statement, so that CTRL/C typed at the console terminal can
terminate an executing I/OBASIC program, When a program is run,
the ENABLE_CTLC statement is in effect, so that a CTRL/C may stop

an executing program,

See descriptions of the CTLC function and DISABLE CTLC statement
for more information on CTRL/C processing.

oo e +
! Statement !
! !
! END f
- - +

END Statement
SYNTAX: END

DESCRIPTION:

The END statement is optional. It can be used as the final 1line
in a program to terminate execution, If END is used, it must
occur on the highest line number of the program, since execution
will cease when the =system reads an END. No subsequent line
numbers will be processed.

Only one END statement may be included in a program. If no END
statement is included, the program will terminate upon execution
of the highest line number. When the END statement is executed,
the system closes all open files,

I1/0BASIC Programming Elements PAGE 5-30

Rl e +
! Function !
1 !
! ERL !
o - ————————— +

ERL Function
SYNTAX: ERL

DESCRIPTION:

The ERL function returns the value of the line number at which a
program error occured. Error processing must have been
previously activated by executing an ON ERROR GOTO statement
prior to using the ERL function.

The ERL function is used within an error recovery routine in an
I/0BASIC program to determine where in a program an error
occured. This is useful when the same error condition can ocecur
at different lines and requires different recovery procedures.

See descriptions of the ERR function and the ON ERROR GOTO and
RESUME statements for additional information about error

processing,.

ERR Function
SYNTAX: ERR
DESCRIPTION:

The ERR function returns the value of the error code for the most
recent program error. A list of possible error codes is given in
Appendix B.

The ERR function is used within an error recovery routine in an
I/0BASIC program to determine what type of program error occured.
The error recovery routine can then make use of this information
to select the proper recovery method.

See descriptions of the ERL function and the ON ERROR GOTO and
RESUME statements for additional information about error
processing.

g

i i
Sesagpiit”

I/0BASIC Programming Elements PAGE 5-31

EVENT RETURN Statement
SYNTAX: EVENT RETURN

DESCRIPTION:

The EVENT RETURN statement causes an I/0BASIC program to resume
execution at the point it was interrupted at when an event
occured., Events are indicated by the setting of any (flag
argument specified in a real-time control statement (such as
ANALOG_IN). The EVENT RETURN statement is used in conjunction
with the ON EVENT GOSUB statement and the real-time control
statements that support flags.

An EVENT RETURN statement must be the 1last statement executed
within an event processing subroutine. It tells the system that
further events (setting of flag arguments) can cause program
execution to branch to the line number specified in an ON EVENT
GOSUB statement. Events that occur while an event processing
subroutine is executing are queued, so that after an EVENT RETURN
is executed, then next (if any) event is processed.

See the deseription of the ON EVENT GOSUB statement for
additional information about event processing.

o e - +
! Function !
1 !
! EXP !
o +

EXP Function

SYNTAX: EXP(numeric expression)

DESCRIPTION:

The EXP function returns the value of e (approximately 2.7182818)
raised to the power of the specified expression, For example,

EXP(x) finds the number Y whose logarithm X is known,

The EXP function is the inverse of the LOG function.

I/0BASIC Programming Elements PAGE 5=32

EXAMPLE:

>listnh <ret)>

10 PRINT "Input an exponent of e'";

20 INPUT number

30 PRINT "e raised to the power ";number;
40 PRINT " equals ";EXP(number)

50 END

>runnh <ret>

Input an exponent of e? 1 <ret>>
e raised to the power 1 equals 2.71828

>runnh <ret>

Input an exponent of e? 3 <ret)>
e raised to the power 3 equals 20.0855

>

e m e r e m—m——c e —————— +
! Statement !
! !
! FOR-TO-NEXT !
e, e —— - +

FOR~TO~-NEXT Statement

SYNTAX: FOR variable = beginning TO end [STEP inc]

Other Statements

NEXT variable

DESCRIPTION:

The FOR-TO-NEXT I/0BASIC statements are used together to create a
counted loop that terminates when the end value is reached, For
example, the statement, FOR X=1 TO 10, is wused to =specify 10
processing loops.

The beginning count may be either a constant, integer variable or
numeric variable, The beginning count should be the low value of
the counter loop.

The end count specifies the point at which +the 1loop ends. It
should be the high value of the counter loop.

The NEXT statement occurs at the end of the processing loop and
directs the computer to begin processing the next value for the
variable in the loop. The NEXT variable and the FOR variable
should be identical,

g i
S

I/0BASIC Programming Elements PAGE 5-33

Each time the loop cycles, the NEXT statement increments the
counter variable by the value of inc, or by one if STEP inc was
not specified, and tests whether the end count has been reached.
If the end count has not been reached, control returns to the FOR
statement, If the end count has been reached, execution proceeds
with the first executable statement following the NEXT statement.

The STEP increment is optional and defaults to 1 if not
specified. The STEP increment «can be a positive or negative,
integer variable or numeric variable, The beginning count will
be the first value of the loop, followed by beginning count +
step increment. In other words, FOR X=1 TO 10 STEP 3, will
result in the 1loop being processed for the values 1, 4, 7, and

10.

The FOR-TO and NEXT statements must always be paired in a
program, otherwise an error will result in execution. There is
no 1limit to the number of lines of processing that may =separate
the two statements. FOR-TO-NEXT loops may be nested, that is,
you may have a Loop withina loop, but the counter variables must
be wunique so that the correct counter will increment for each

loop.
EXAMPLE:

>listnh <retd>

10 REM Simple FOR-TO-NEXT Loop
20 FOR beta = 0 TO 10 STEP 2
30 PRINT beta # 5

40 NEXT beta

50 END

>runnh <ret>

0

10
20
30
4o
50

>o0ld progl <ret>

>listnh <ret>
10 begecount
20 endcount
30 FOR count = begecount TO endeount STEP =~ 1
40 PRINT "This is line: ";count

50 NEXT count

60 PRINT "Loop is complete,"

70 END

3
1

I/0BASIC Programming Elements PAGE 5-34

>runnh <ret>

This is line: 3
This is line: 2
This is line: 1
Loop is complete.

>
bt i +
! Statement !
! !
! GET_DATE !
e e —————— +

GET_DATE Statement

SYNTAX: GET_DATE(month, day, year)

DESCRIPTION:

The GET_DATE statement will return the current system date,

Argument month is a variable of any-type that will be returned
with the value of the current month of the year.

Argument day is a variable of any type that will be returned with
the value of the current day of the month.

Argument year is a variable of any type that will be returned
with the value of the current year since 1900.

tm e - +
! Statement !
! !
! GET_TIME !
oo e +

GET_TIME Statement

SYNTAX: GET_TIME(val)

DESCRIPTION:

The GET_TIME statement will return the current system time,
Argument val is a variable of any type that will be returned with
the system time in seconds past midnight. If argument val is of
type real, then fractional seconds can be returned. System time

is kept in units of 1/60th of a second, and is accurate to
1/10th of a second when returned by this statement.

W
i

&

o

-

I/0BASIC Programming Elements PAGE 5-35

NOTE

If argument val is of type integer
or string and the time is greater
than 65,535 seconds past midnight a
numeric overflow error will result,
To avoid this, specify argument val
as a real variable,

o = +
! Statement !
! !
! GOSUB !
- +

GOSUB Statement
SYNTAX: GOSUB line number

DESCRIPTION:

The GOSUB statement is used to transfer control to a subroutine
within your program, The line number specified is the first line
of a subroutine to which control is transferred when the GOSUB is
encountered.

GOSUB is different from the GOTO statement in that the system
stores the location of the GOSUB statement and returns control to
the statement following the GOSUB when the subroutine is finished

executing.
EXAMPLE:

>listnh <ret>

10 PRINT "Enter two numbers separated by a comma";
20 INPUT x,y

30 GOSUB 110

40 PRINT

50 PRINT "The subroutine just completed.”
60 PRINT

70 PRINT "1) x + y = ";a

80 PRINT

90 PRINT "2) x %y = ";b

100 GO TO 170

110 REM This is the subroutine

120 PRINT "The subroutine just started."
130 a = x +y

140 WAIT(2)

150 b = x %y

160 RETURN
170 END

I/OBASIC Programming Elements PAGE 5-36

>runnh <ret>

Enter two numbers separated by a comma? 23.4,58.2 <ret>
The subroutine just started.

The subroutine just completed.

1) x + y = 81.6
2) x ¥y = 1361.88
>
o e o +
! Statement !
! !
! GOTO !
o e m o o o o o o = +
GOTO Statement
SYNTAX: GOTO line number

DESCRIPTION:

The GOTO statement is an unconditional branching statement that
transfers control to the specified 1line number and resumes
execution at that point. Unlike GOSUB, the system does not store
the location of the GOTO statement and does not return control to
that point.

The target line number in a GOTO statement can be anywhere in the
program, If +the 1line number does not exist in the program, a
warning message is returned.

EXAMPLE:

>listnh <ret>

10 gamma = 5

20 PRINT gamma * 10

30 GO TO 60

40 PRINT "This line will not execute in this program"
50 PRINT gamma ¥ 3

60 PRINT

70 PRINT "Skip to line 60.7
80 PRINT

90 PRINT gamma ¥ 15

100 END

o

i

J

I/0BASIC Programming Elements PAGE 5-37

>runnh <ret>
50

Skip to line 60.

75
>
o s o e +
! Statement !
! 1
! IF END !
o +
IF END Statement
SYNTAX: IF END #expression THEN statement

or

IF END #expression THEN line number

DESCRIPTION:

The IF END conditional statement is used to test for an end of
file condition. It is wused with the INPUT # statement to
determine if there is no more data to read from a file. The
statement is similar in function to the IF-THEN statement,

In the syntax above expression is the channel number of the file
to test for, statement is any valid I/OBASIC statement, and line
number is any valid I/OBASIC program line number, See the
chapter Using Data Files in the BASYS User's Guide for more
information on the IF END statement.

o +
! Statement !
! !
! IF THEN !
e +
IF THEN Statement
SYNTAX: IF condition THEN statement

or

IF condition THEN line number

I/0BASIC Programming Elements PAGE 5-38

DESCRIPTION:

The IF-THEN conditional statement is used to test for a specified
condition and perform an action only if that condition is met.
In I/0BASIC the condition is a relational expression between two
operands. These two operands may be strings, alpha variables,
constants, numeric variables, integer variables, or expressions,

When the IF-THEN statement is encountered, the system tests the
condition, If it 1is true, the THEN statement is executed, If
the condition statement is not ¢true, the THEN statement is
ignored and the next sequential statement in the program is

executed,

The following operators may be used in a conditional statement:

Less than

Less than or equal
Equal

Greater than or equal
Greater than

Not equal to

ANVVE A A
" "

v

EXAMPLE:

>listnh <ret>
10 PRINT "Enter 2 words";
20 INPUT wordil1$,word2$

30 PRINT
40 IF wordi1$ = word2$ THEN PRINT "Words are equal"

50 PRINT
60 IF wordi1$ <> word2$ THEN PRINT "Words not equal"

70 PRINT

80 IF wordi1$ <> word2$ THEN 10

90 END

>runnh <ret>

Enter 2 words? house, mouse <ret)>
Words not equal

Enter 2 words? house, house <ret>

Words are equal

P

o

I/0BASIC Programming Elements PAGE 5-39

>old progb <ret>

>listnh <ret>

10 PRINT "Enter 2 numbers (0 to end)";

20 INPUT numberi,numberz

30 IF numbert1 = 0 THEN 110

4o IF number2 = 0 THEN 110

50 IF numberi1 <> number2 THEN PRINT "Not Equal"
60 IF number1 = number2 THEN PRINT "Equal"

70 PRINT

100 GO TO 10

110 PRINT "That is the end."

>runnh <ret>>

Enter 2 numbers (0 to end)? 23.4,56 <ret>
Not Equal

Enter 2 numbers (0 to end)? 55.4,55.4 <ret>
Equal

Enter 2 numbers (0 to end)? 23.6,0 <ret>
That is the end.

>

e — - —————————— +
! Statement !
! !
! INPUT !
o o o e +

INPUT Statement

SYNTAX: INPUT variablel [,variable2 ...]

DESCRIPTION:

The INPUT statement allows the user to interact directly with the
program to enter values, When an INPUT statement is executed,
the program halts and prints a prompt on the terminal screen., If
more than one variable is input, the variables should be
separated by commas,

The values input must agree with the variable types specified in
the program or an error will result. Note the error message
returned in example 2 following input of the wrong variable type.

I/0BASIC Programming Elements PAGE 5-140

EXAMPLE:

>listnh <ret>

10 message$ = "Enter your full name"
20 PRINT message$;

30 INPUT fullname$

40 PRINT "Hello ";fullnames$

50 END

>runnh <ret>

Enter your full name? John Jones <ret>
Hello John Jones

>o0ld prog21 <ret>

>listnh <ret>

10 prompt$ = "Enter your age to the nearest year"
20 PRINT prompt$

30 INPUT age%

40 PRINT "Good"

50 END

>runnh <ret>>

Enter your age to the nearest year

? 25.5 <ret>

?Bad data-retype from error at line 30

25 <ret>
Good

>

! Statement !

! INPUT # !
e e ————— +
INPUT # Statement
SYNTAX: INPUT #channel, variablel [,variable2 ...]

DESCRIPTION:

The INPUT # statement reads data from afile that has been opened
for input, and assigns values to variable(s) specified in the
INPUT statement. If the line of data in the file <contains more
data than the number of variables in the INPUT statement, the
excess data is ignored. If the channel number specified is zero,
the values are input from the user's terminal, but no prompt is
output.

The INPUT # statement is not supported in MICROBASYS or
PICOBASYS.

s

| —

e

I/0BASIC Programming Elements PAGE 5-41

EXAMPLE:

>listnh <ret>
10 OPEN "REC.DAT" FOR INPUT AS FILE #1

20 FOR i = 1 TO 365

30 INPUT #1, daily_receipts
40 total_receipts = daily_receipts + total_receipts
50 NEXT i

60 PRINT "Total Receipts for Year = ";total_receipts
70 CLOSE #1

80 END

>runnh <ret>

Total Receipts for Year = 332650.00

>

o - +
! Statement !
!
! INPUT € !
o +

INPUT € Statement

SYNTAX: INPUT @channel, variablel [,variable2 ...]

DESCRIPTION:

The INPUT € statement reads data from a serial channel, It acts
like the standard INPUT statement, except that input is obtained
from the serial channel specified in the INPUT € statement, The
program waits for all data to be input while it is executing an
INPUT € statement. Unlike the standard INPUT statement, no
prompt is issued at the serial channel.

Characters typed at a serial channel are buffered so that they
are not lost, even if an INPUT € statement is not being executed.
The characters typed are always echoed after an INPUT € statement
executes. Note that the CHAR_IN statement will disable echoing
at a serial channel until an INPUT @6 or LINPUT € statement 1is
again executed.

The console terminal is always serial channel number zero., Legal
values for the channel number can range from 0 to 7 for DX11 and

PX11.

I/0BASIC Programming Elements

EXAMPLE:

>listnh <ret>>

10
20
30
40
50
60

>

REM get input from several serial

FOR term_no = 1 to 3
PRINT €éterm_no, "Enter a number please: "
INPUT €term_no, any number

NEXT term_no

END

INT Function

SYNTAX:

DESCRIPTION:

INT(numeric expression)

PAGE 5-42

channels

——————————————— +
Function !
!

INT !
——————————————— +

The INT function returns the greatest integer less than or equal
to the numeric expression supplied.

By using the formula below,

any number N to D decimal places:

EXAMPLE:

INT(N*#10°D+0.5)/107D

>listnh <ret>
10 FOR series = 1 TO 3

20
30
4o
50
60
70

PRINT "Enter a number";

INPUT number

PRINT "The integer of ";number;"
PRINT

NEXT series

END

the INT function can be made to round

= ";INT(number)

R

' ’
s

>runnh <retj>

Enter a number?
The integer of

Enter a number?

I/0BASIC Programming Elements

2.25 <ret>
2.25 = 2

3.999 <ret>

PAGE 5-43

The integer of 3.999 = 3

Enter a number? 999 <ret>

The integer of 999 = 999

>
o +
i Statement !
!
! KILL !
o e e = +

KILL Statement

SYNTAX: KILL string

DESCRIPTION:

The KILL statement deletes the file specified by the string.
Once a KILL statement has been executed, the deleted file can no
longer be opened or any of the records in the file accessed since
the file is permanently deleted.

o —— - —————— +
! Function !
! !
! L EN !
o o = +

LEN Function

SYNTAX: LEN(string expression)

DESCRIPTION:

The LEN function is used to determine the number of characters in
the specified string, The LEN function returns an integer equal
to the number of characters in the specified string including
leading and trailing blanks. For example, LEN(A$) will return
the number of characters in the string A$.

I/0BASIC Programming El ements PAGE 5-44

EXAMPLE:
>listnh <ret>>
10 b$ = "ABCDEFGHIJKLMNOPQRSTUVWXYZ"

20 PRINT "The length of the string is ";LEN(b$)
30 END

>runnh <ret>

The length of the string is 26

>
- +
! Command !
! !
! LENGTH !
o +

LENGTH Command
SYNTAX: LENGTH
DESCRIPTION:

The LENGTH command returns the size of the current program in
memory, and the size of the free memory available for additional
program space, The size is given in bytes, This size can change
when a program is run depending upon how much dynamic memory is
needed for arrays, string variables, and open files.

- —————— +
! Statement !
! !
! LET !
o e e +
LET Statement
SYNTAX: [LET] variable = expression

DESCRIPTION:

The LET statement assigns the value of the expression on the
right of the equal sign to the variable on the left, The
expression may be a string, integer, or number, but the data type
of the expression and variable must either both be strings or
numeric. That is, a string expression cannot be assigned to a
numeric variable.

Strings should be enclosed in quotation marks. The LET portion
of the statement is optional.

‘{)%%W/

I/0BASIC Programming Elements PAGE 5-45

EXAMPLE:

>listnh <ret>

10 LET alpha = 5

20 PRINT "The first value of alpha = ";alpha
30 LET alpha = alpha + 1

40 PRINT "The second value of alpha = ";alpha
50 alpha = 10

60 PRINT "The final value of alpha = ";alpha
70 END

>runnh <ret>

The first value of alpha= 5

The second value of alpha= 6
The final value of alpha = 10
>
o ——————— s e +
! Statement !
! !
! LINPUT !
o e +
LINPUT Statement
SYNTAX: LINPUT string variablel [,string variable2 ...]

DESCRIPTION:

The LINPUT (Line Input) statement is used exclusively to enter
string variables directly from the console serial channel.
Unlike the INPUT statement which interprets the quotation marks
and commas as delimiters, the LINPUT statement accepts entire
strings. This means that multiple LINPUT responses cannot be
entered on the same line, String data entered in response to a
LINPUT statement must be entered individually followed by a
carriage return.

EXAMPLE:

>listnh <ret>

10 prompt1$ "]l ast name"

20 prompt2$ "first name"

30 PRINT "Enter ";prompti1$

40 LINPUT lastname$

50 PRINT "Enter ";prompt2$

60 LINPUT firstname$

70 PRINT

80 PRINT "My name is ";firstname$;" ";lastname$

I/0BASIC Programming Elements PAGE 5-146

>runnh <ret>

Enter last name

? Bailey, 3rd<ret>
Enter first name

? William "Bill" <ret>>

My name is William "Bill" Bailey, 3rd

>
e, ——— - +
! Statement !
!
! LINPUT # !
e, ———— +

LINPUT # Statement
SYNTAX: LINPUT #channel ,string variablel [,string variable2 ...]
DESCRIPTION:

The LINPUT # statement is used for reading strings from a data
file, It acts 1like the INPUT # statement in that it obtains
input from a file. The LINPUT # statement accepts entire strings
as input, ignoring comma and quotation mark delimiters. See the
LINPUT statement for more information,

1 Statement {

l LINPUT € !

LINPUT @ Statement

SYNTAX: LINPUT €channel, string variablel [,string variable2 ...]

DESCRIPTION:

The LINPUT € statement reads data from a serial channel., It acts
like the standard LINPUT statement, except that input is obtained
from the serial channel specified in the LINPUT € statement. The
program waits for all data to be input while it is executing a
LINPUT € statement. Unlike the standard LINPUT statement, no
prompt is issued at the serial channel.

Characters typed at a serial channel are buffered so that they
are not lost, even if a LINPUT € statement is not being executed.
The characters typed are always echoed after a LINPUT € statement
executes. Note that the CHAR_IN statement will disable echoing
at a serial channel until an INPUT @ or LINPUT € statement is
again executed.

R

g

N’

|

I/0BASIC Programming Elements PAGE 5-47

The console serial channel is always channel number zero, Legal
values for the channel number can range from 0 to 7 for DX11 and

PX11.

e —————— +
! Command !
! !
! LIST/LISTNH !
o ———————————— - ——— +
LIST/LISTNH Command
SYNTAX: LIST[NH] [line specificationi ...]

DESCRIPTION:

The LIST command instructs the system to display the text
currently in memory. If no line number(s) is specified, the
entire program will be displayed along with a header which
identifies the file name, date and time of day.

The LISTNH command is identical to the LIST command, but a header
is not displayed with the program text. The header contains the
current date, time and program name. The date will not be listed
in the header if no date has been entered into the system.

The SAVE command should be used to 1ist a program on a printer or
device other than a terminal,

EXAMPLE:

>list <ret> <The entire program will be
{displayed on the terminal,
<including a header 1line,

>listnh <ret> <The entire program will be
<displayed on the terminal, with
<no header line,

>list 20,30 <ret> <Lines 20 and 30 are displayed.

>list 20-50 <ret> <Lines 20 through 50 are
<displayed.

>list 10,30-60 <ret> <Lines 10 and 30 through 60 are

<displayed.

I/0BASIC Programming Elements PAGE 5-U48

o - +
! Function !
!

! LOG !
e o o o e o+

LOG Function
SYNTAX: LOG(numeric expression)

DESCRIPTION:

The LOG functionreturns the logarithm to the base e of the
expression specified. The value of e is approximately 2.71828.
The natural logarithm of a number X is the power towhich e must
be raised to equal X. For example, the natural logarithm of 100
is 4.,60517, because e raised to the power 4.60517 equals 100.

The LOG function is the inverse of the EXP function.

If the value of the expression specified 1is negative or =zero,
I/0BASIC prints the nonfatal error message, "7Bad 1log" and

returns a value of O,

Note that execution of the sample program is terminated by typing
a CTRL/C.

EXAMPLE:

>listnh <ret>>
10 PRINT "Enter a number";

20 INPUT beta
30 PRINT "The natural logarithm of ";beta;

40 PRINT " is ";L0G(beta)
50 PRINT
60 GO TO 10

>runnh <ret>

Enter a number? 100 <ret>
The natural logarithm of 100 is 4.60517

Enter a number? 2.71829 <ret)>
The natural logarithm of 2.71829 is 1

Enter a number? 45 <ret>>
The natural logarithm of 45 is 3.80666

Enter a number? “C
Stopat line 20

>

o’

‘\ B
R

i’”ww"‘f

% i
4 &
e

%
S

I/0BASIC Programming Elements PAGE 5-49

L) +
! Function !
! !
! LOG10 !
o o +

LOG10 Function

SYNTAX: L0G10(numeric expression)

DESCRIPTION:

The LOG10 function returns the logarithm to the base 10 of the
expression specified. The logarithm to the base 10 of N is the
power to which 10 must be raised to equal N. For example, the

logarithm to base 10 of 100 is 2 because 10 to the power 2 equals
100.

If the value of the expression specified 1is negative or =zero,
I/0OBASIC prints the nonfatal error message "?Bad log" and returns
a value of 0.

EXAMPLE:

>listnh <ret>

10 FOR range = 1 TO 100 STEP 10
20 PRINT LOG10(range)

30 NEXT range

40 END

>runnh <ret>

0

1.04139
1.32222
1.49136
1.61278
1.70757
1.78533
1.85126
1.90849
1.95904

I/0BASIC Programming Elements PAGE 5-50

o e - +
! Statement !
! !
! NAME 1
o e = +

NAME Statement

SYNTAX: NAME stringil TO string2

DESCRIPTION:

The NAME statement renames the file specified by stringl, giving
it the name specified by string2. If a device is specified, it

must be the same in string?l and string2.

When the NAME statement is executed, only the name of the file is
changed; the contents remain unaltered.

b ——— - - ———————— +
! Command !
! !
! NEW !
B e ettt +

NEW Command
SYNTAX: NEW [program name]
DESCRIPTION:

The NEW command clears all program text presently in immediate
memory and allows the user to enter a new program,

In DISKBASYS and PROMBASYS, if a program name is not provided in
the command, I/OBASICwill request the name of the program to be
created. If you press the carriage return without entering a
program name then the new program is given the default name
"NONAME., "

o

e

I/0BASIC Programming Elements PAGE 5-51

EXAMPLE:

>new progl <ret> <The system clears all immediate
<memory and names the new program
<to be entered, PROG1.

>new <ret>

New file name? <System prompts for name if none-
<is supplied with the command.
<If no name is supplied in
<response to this prompt, the
{system assigns the name NONAME.

o o o e e e +
! Statement !
! !
! NEXT !
o e e +

NEXT Statement

SYNTAX: NEXT numeric variable

DESCRIPTION:

The NEXT statement is always used following a FOR-TO statement.

The NEXT statement terminates the FOR-TO-NEXT loop. FOR and NEXT
must specify the same variable counter. See FOR-TO-NEXT.

EXAMPLE:

>listnh <ret>

10 PRINT "Graph of Count®"

20 FOR count = 1 TO 8

30 PRINT TAB(count + 10);n#n
40 NEXT count

50 PRINT "End of Count"

60 END

>runnh <ret)>

Graph of Count

End of Count

>

I/0BASIC Programming Elements PAGE 5-52

fm e, e ———— +
! Function !
! !
! OCT !
e - ———————— +

OCT Function

SYNTAX: OCT(octal number string)

DESCRIPTION:

The OCT function returns the decimal equivalent of the octal
number specified. This function converts a string representing
an octal value to its numeric equivalent.

The only characters permitted in the string are 0 through 7 and
space, Spaces 1in the .expression are ignored and the value is
returned as an integer., If conversion of the string to octal

would result in a value outside the range -32768 to +32767, an
I/0BASIC error message will be returned.

EXAMPLE:

>print oet (*177777') <ret>
-1

>print oct ("TTTTT7') <ret>

32767

>print oet("100000") <ret)>

~-32768

>
e ———————————— +
! Command !
! !
! OLD 1
o ——————————————— +

OLD Command
SYNTAX: OLD [file specification]
DESCRIPTION:

The OLD command searches for the file specified, clears the
immediate memory, all variables, arrays and functions, and loads
the program into immediate memory. If a file specification is
not specified in the command line, I/OBASIC will prompt for the
file name,.

g

I/0BASIC Programming Elements PAGE 5-53

If the specified file is not found, I/OBASIC returns an error
message.

Statements cleared from immediate memory cannot be restored
unless they have been saved using the SAVE or REPLACE commands.

EXAMPLE:
>0ld testl <reto <The immediate memory will be
<cleared and program TEST1 will
<be loaded for execution or
<editing.
>old <ret> <If no file specification is
01d file name - <provided, the system will prompt

{you to provide one,

e — - ———————— +
! Statement i
i !
! ON ERROR GOTO 1
e - ———————————— +

ON ERROR GOTO Statement

SYNTAX: ON ERROR GOTO line number

DESCRIPTION:

The ON ERROR GOTO statement enables error processing within an
I/OBASIC program. When error processing is enabled and a progranm
error occurs (such as division by zero) the program will ©branch
to the 1line number specified in the ON ERROR GOTO statement,
Error processing enables you to correct for some fatal and
nonfatal error conditions that could occur within a program.

When error processing is desired in an I/O0BASIC program, the ON
ERROR GOTO statement is generally placed at the beginning of the
program, Specifying a line number of zero will disable error
processing. By default, error processing is disabled when a
program is run.

The error processing routine that starts at the line number given
in the ON ERROR GOTO statement can make use of the ERL and ERR
functions to determine the type and location of a program error.
In general, the error processing routine is specific to a given
program, and it is written to process only certain types of
errors that would be 1likely to occur because of the programs
particular application (such a frequent numeric overflows during
calculations).

I/0BASIC Programming Elements PAGE 5-514

The RESUME statement is used to exit the error processing routine
and either retry the program statement that caused the error or

resume execution at another line number.

ON EVENT GOSUB Statement
SYNTAX: ON EVENT GOSUB line number
DESCRIPTION:

The ON EVENT GOSUB statement enables event processing within an
I/0BASIC program, When event processing is enabled, and a flag
argument becomes set in a real-time control statement, the
program will branch to the line number specified in the ON EVENT
GOSUB statement

When event processing is desired in an I/OBASIC program, the ON
EVENT GOSUB statement is generally placed at the beginning of the
program, Specifying a line number of =zero will disable event
processing, By default, event processing is disabled when a
program is run.

Event processing is very useful for creating powerful real-time
control programs that do not have to poll for completion of I/OQ
or timed events.

Only one event processing subroutine can be specified by an ON
EVENT GOSUB statement. The 1last ON EVENT GOSUB statement
executed determines the line number of the subroutine.

Al though there is only one event processing subroutine possible
within an I/O0BASIC program, the event processing subroutine can
determine what flag caused the event by checking to see if a flag
is zero or non-zero,

The following real-time control statements support the flag
arguments and therefore <can be wused with the ON EVENT GOSUB

statement:

ANALOG_IN
ANALOG_LOW_IN
ANALOG_OUT
CLOCK_OUT
DIGITAL_IN
DIGITAL_OUT
TEMPERATURE_IN
TIME_OUT

1

I/0BASIC Programming Elements

EXAMPLE:

NOTE

It 4is dimportant to note that
control will branch to the event
processing subroutine when a flag

is set only after the current
I/0BASIC statement completes
entirely. For this reason,
statements such as INPUT should be
avoided in a program if fast

real-time response is desired. The
INPUT statement can theoretically
take forever to execute if it is
waiting for terminal input. The
CHAR_IN statement could be used in
place of the INPUT statement for
this purpose,.

PAGE 5-55

10 REM Check for high voltage every 0.5 seconds
20 ON EVENT GOSUB 1000
30 TIME_OUT(0,0.5,time_flag)

perform other processing here

1000 REM event processing subroutine starts here
TIME_OUT(0,0.5,time_flag) \ REM restart timer

1010
1020
1030

ANALOG_IN(O,voltage)

IF voltage > high_limit THEN PRINT "High Voltage"
1040 EVENT RETURN

other program statements

2000 END

I/0BASIC Programming Elements PAGE 5-56

Statement

! ON GOsuB

ON GOSUB Statement

SYNTAX: ON expression GOSUB line number1 [,line number2 .,,]

DESCRIPTION:

The ON GOSUB statement branches the pProgram to the subroutine
Specified depending on the value orf the €éxpression. After the
brogram has branchegd to the subroutine, it will return to the

Statement,

When I/OBASIC eéXecutes the QON GOSUB Statement, it evaluates the
€éxpression and truncates it to an integer ir necessary, If the
value of the €Xpression is 1, I/OBASIC transfers control to first
line number Specified; if the valuye of the €Xpression is 2,
I/0BASIC transfers control to the Sécond line number Specified,
If the €Xpression is less than one or greater than the number of
lines Specified, an I/0BASIC error meéssage is returned,

EXAMPLE:

>listnh <ret>
10 PRINT "Entep Pay Code (1=Reg Tinme, 2=0vertime)n,;
20 INPUT timecode

30 PRINT "Enter Payraten;

40 INPUT rate

50 PRINT "Enter Employee Namer;

60 INPUT employees

70 PRINT "Enter number of hours workedn;

80 INPUT hours

90 ON timecode GOSUB 150,190

100 PRINT "Continue“;

110 INPUT a3

120 IF a$ = nyggn THEN 10

130 IF a$ = "NO" THEN 230

140 GO TO 100

150 REM Regular Time

160 bay = rate * houyrs

170 PRINT "Employee; ";employee$;" Regular: $";pay
180 RETURN

190 REM Overtime

200 Pay = (rate # hours) # 1 5

210 PRINT "Employee: ";employee$;" Overtime: $";pay
220 RETURN

230 END

':
N

S’

I/0BASIC Programming Elements PAGE 5-57

>runnh <ret>

Enter Pay Code (1=zReg Time, 2=Overtime)? 1 <ret>
Enter Payrate? 5.00 <ret>

Enter Employee Name? George Roberts <ret>
Enter number of hours worked? 10 <ret>

Employee: George Roberts Regular: § 50
Continue? YES <ret>

Enter Pay Code (1=Reg Time, 2=Overtime)? 2 <ret>
Enter Payrate? 5.00 <ret>

Enter Employee Name? George Roberts <ret>
Enter number of hours worked? 10 <ret>

Employee: George Roberts Overtime: $ 75
Continue? NO <ret>

>
o n o o o o +
! Statement !
! !
1 ON GOTO !
o e e +

ON GOTO Statement

SYNTAX: ON expression GOTO line number1 [,line number2 ...]

DESCRIPTION:

The ON GOTO statement pair is a conditional branching statement.
Control transfers to the line number specified in order as they
correspond to the value of the expression specified. Transfer
depends on the value of the expression specified.

When I/OBASIC executes the ON GOTO statement, it evaluates the
expression and truncates it to an integer if necessary. If the
value of the expression is 1, I/OBASIC transfers control to the
first 1line number specified; if the value of the expression is
2, I/0BASIC transfers control to the second line number
specified, etc. If the value of the expression is less than 1 or
greater than the number of lines specified, an I/OBASIC error
message is returned.

EXAMPLE:
510 ON count GO TO 40,50,60,70

In this example, if count = 1, the programwill branch to 1line
40, if count = 2, the program will branch to line 50, if count =
3, the program will branch to line 60, and if count = 4 the
program will branch to line TO.

I/0BASIC Programming Elements PAGE 5-58

If the value of count is not an integer, the fractional part will
be ignored. If count is negative or larger than the number of
line numbers specified (in this example 5 or greater), an error
message will be returned.

Unlike the ON GOSUB statement, when the program branches to the
line number specified, it does not return to the line following

the ON GOTO statement.

o e +
! Statement !
!
! ON THEN !
e L +
ON THEN Statement
SYNTAX: ‘ ON expression THEN statement

DESCRIPTION:

The ON-~THEN statement is identical to the ON~-GOTO statement.

o ——— +
! Statement !
1 i
! OPEN i
Fom e —— e e, ———— +
OPEN Statement
SYNTAX: OPEN string [FOR INPUT] AS FILE [#]expr

or

OPEN string [FOR OUTPUT] AS FILE [#]expr

DESCRIPTION:

The OPEN statement associates a file channel number with a file
specification. The OPEN statement is wused to either open an
existing file or create a new file. It must be executed before
any file I/0 can take place. In the syntax above, string is any
valid file specification, and expr is the file channel number to
associate with the file. The file channel number can be any
integer in the range 1 to 12.

See the chapter Using Data Files in the BASYS User's Guide for
more information on the OPEN statement.

i
s

I/0BASIC Programming Elements PAGE 5-59

o e e o e +
! Statement !
! !
! OVERLAY !
o +

QVERLAY Statement

SYNTAX: OVERLAY file specification [line number]

DESCRIPTION:

The OVERLAY statement merges one program with another in
immediate memory by overlaying the new on the old. All common
lines are replaced by the new program lines,. All 1lines not

common to the two programs remain unchanged.

When the OVERLAY statement is executed, the program specified 1is
merged with' the program currently 1in immediate memory and
execution begins with the program line number specified. If no
beginning line number 1is specified, execution starts at the
lowest line number in immediate memory after the two programs are
merged.

If a beginning line number is specified that does not exist,
I/0OBASIC returns the error message, "?Undefined line number".

o e +
| Statement !
! !
! PEEK !
o e o e o e +

PEEK Statement
SINTAX: PEEK(address, val)
DESCRIPTION:

The PEEK statement will read a 16-bit word from a memory
location.

Argument address is a variable or constant of any type that
contains the memory address that will be read. The value of this
argument must be supplied by the progranm, and it must be an even
number. Legal range is 0 to 177776 (octal). If the memory
location is not present, then an error message will be printed.

Argument val is a variable of any type that will be returned with
the contents of the word at the memory location specified by
argument address.

I/0BASIC Programming Elements PAGE 5-60

o o e +
! Function !
! !
! PI !
o m e ——— +

PI Function
SYNTAX: PI

DESCRIPTION:

The PI function returns the value of PI (approximately 3.141593).
Pi is the ratio of the circumference of a circle to its diameter,

This function needs no argument; it can be used in any numeric
expression.

o o o o e +
! Statement !
! !
! POKE !
- - - +

POKE Statement

SINTAX: POKE(address, val)

DESCRIPTION:
The POKE statement will write a 16-bit word to a memory location,

Argument address is a variable or constant of any type that
contains the memory address that will be written to, The value
of this argument must be supplied by the program, and it must Dbe
an even number, Legal range is 0 to 177776 (octal)., If this
address is not present, then an error message will be printed.

Argument val is a variable or constant of any type that contains
the word to write to the memory location specified by argument
address. The value of this argument must be supplied by the
program. Legal range is 0 to 177777 (octal).

Ay

i v
Pt

I/0BASIC Programming Elements PAGE 5-61

o o o m ——— +
! Function !
! !
! POS !
B T) +

POS Function

string to position to
SYNTAX: POS(be searched,substring,begin search)

DESCRIPTION:

The POS (Position) function will search for a specified substring
within the string specified for its location. I/0BASIC begins
the search at the character position specified. If the substring
is located, the integer value of the 1location of the first
character in the substring is returned, If the substring is not
found, a =zero 1is returned. The count is from left to right

within the string to be searched, Spaces within the string are
not ignored.

EXAMPLE:
>listnh <ret>
10 a$ = "The quick brown fox jumped over the lazy dog"
20 b$ = "fox jumped™"
30 PRINT "The string starts at position ";P0S(a$,b$,1)
40 END
>runnh <reto>

The string starts at position 17

>

PRINT Statement

SYNTAX: PRINT [1list]

DESCRIPTION:

The PRINT statement outputs data to the console terminal,

The optional list argument contains all items to be printed and

can contain any numeric, string or tab function. The items in
the list argument may be separated by <commas or semicolons,

I/0BASIC Programming Elements PAGE 5-62

Comma separators will cause the 1ist items to be printed in
different zones. Semicolon separators will cause the 1list itemn
to be printed in packed format., If no list is specified, a blank
line is printed., If a semicolonisthe last character in the
list a carriage return and 1line feedwill not be sent to the
console terminal after the PRINT statement executes,

L L R +
! Statement !
!

! PRINT # !
b, — - ———————— +

PRINT # Statement

SYNTAX: PRINT #channel [,list]

DESCRIPTION:

The PRINT # statement outputs data to the file associated with
the specified channel. If 0 1is specified, or if the channel
number is omitted, then the data 1is output to the user's

terminal,

The optional list argument contains all items to be printed and
can contain any numeric, string or tab function, The items in
the list argument may be separated by commas or semicolons.
Comma separators will «cause the 1list items to be printed in
different zones. Semicolon separators will cause the 1list item
to be printed in packed format. If no list is specified, a blank
line is printed.

o ————————————— +
! Statement !
! !
! PRINT @ !
- - +

PRINT & Statement

SYNTAX: PRINT échannel [,list]

DESCRIPTION:

The PRINT €@ statement outputs data to a serial channel. It acts
like the standard PRINT statement, except that output is directed

to the serial channel specified in the PRINT € statement.

The console terminal is always serial channel number zero., Legal
values for the channel number can range from 0 to 7 for DX11 and
PX11,

E]
A

I/0BASIC Programming Elements PAGE 5-63

o o - —— +
! Statement !
! 1
! PRINT USING 1
o o o o +

PRINT USING Statement
SYNTAX: PRINT USING string, list
or
PRINT #channel, USING string, list
or
PRINT @channel, USING string, list

DESCRIPTION:

The PRINT USING statement is a variation of the PRINT statement
that can be used to format the output sent to a terminal or a

file,

For numbers, the PRINT USING statement can control the format of
the number of digits, location of the decimal point, inclusion of
special symbols, and exponential format.

For strings, the PRINT USING statement can control the format of
the number of characters printed and justification.

A full description of the PRINT USING statement is provided in
the chapter Formatted Printing in the BASYS User's Guide.

o +
i Statement 1
! !
! RANDOMIZE !
e, e . ———————— +

RANDOMIZE Statement
SYNTAX: RANDOMIZE
DESCRIPTION:

The RANDOMIZE statement is wused in <conjunction with the RND
function, Every time I/OBASIC executes the RANDOMIZE statement
it begins the RND function at a new and unpredictable location in
the series. This allows an apparently unrelated and
unpredictable number to be produced at any time,

I/0BASIC Programming Elements PAGE 5-64

NOTE

Do not include the RANDOMIZE
statement until you have debugged
your program, If you do, you will
not know if changes to your program
or the RANDOMIZE statement are
producing changing results.

e T T - +
! Statement !
! !
! READ {
e +
READ Statement
SYNTAX: READ variablel [,variable2 ...]

DESCRIPTION:

The READ statement is always used with the DATA statement. It
inputs values from the DATA statement. For each wvariable
specified in a READ statement, I/OBASIC retrieves the next value
in a DATA statement,. The DATA statement provides the values and
the READ statement assigns those values to the specified
variables.

A data pointer keeps track of the data read. Values are assigned
in sequence from the DATA statement each time the READ statement
is executed. READ and DATA statements are generally used to
reinitialize variables with known values,

READ statements can appear anywhere in a multi-statement 1line,
but are not valid unless there isat least one DATA statement in

the program.

Variables and values may be either numeric or string and both
types of variables and values may occur in the same READ/DATA
statement pair. The numbers of each type of variable and value
must be the same in the DATA statement and the READ statement.

I/0BASIC Programming Elements PAGE 5-65

% EXAMPLE:
>10
>20

>10
>80

>10
>240
>250

>10
>350

REM Statement

% j
Mgt

SYNTAX:

DESCRIPTION:

READ
DATA

READ
DATA

READ
DATA
DATA

READ
DATA

a,b,c
6,1000,-0.087

any_array(pointer)
2,6,890,-19,54

a$,b$,c$
Time,Hours,Pay
Time, Overtime, Doubletime

alpha$,alpha,beta$,beta,gamma$,gamma

DEGREES,65,VOLTS,210,HOURS, 1
e e +
! Statement !
! !
! REM !
o +

REM comment

The REM statement is used to insert comments into a program to
identify or explain features of the program, The system ignores
any statement beginning with the REM statement.

EXAMPLE:

>10 REM Heat Conversion Program
>20 REM Revision 2/4 April 1982

>250 REM Data Collection Subroutine Starts Here

I/0BASIC Programming El ements PAGE 5-66

e, —,,————— - ————- +
! Command !
1 !
! RENAME !
o e e - +

RENAME Command
SYNTAX: RENAME [new name]
DESCRIPTION:

The RENAME command gives the specified new name to the current
program in memory. The RENAME command will not change the name
of a file, or alter the contents of a file,

A program name can contain up to six letters and/or numbers. If
the new name is not specified with the RENAME command, I/OBASIC
will prompt for the new name,

o ——————— +
! Command !
! !
! REPLACE !
o ————— - —————— +
REPLACE Command
SYNTAX: REPLACE [file specification]

DESCRIPTION:

The REPLACE command performs the same function as the SAVE
command, except that any existing file with the same file
specification is deleted and replaced with the program in
immediate memory, If no file is specified in the command, the
name of the program currently in immediate memory is used,

The REPLACE command is used to update a stored version of a file
with a newer version after editing it in immediate memory.

i

‘\'““W‘j

I/0BASIC Programming Elements PAGE 5-6T7

EXAMPLE:
>replace testl <ret> <The stored program TEST1
<is replaced with the new
{version in immediate memory.
>replace <ret> {The program in immediate

<{memory is saved and any
<{stored program with the
<{same name is replaced.

o e o o m +
! Command !
i 1
! RESEQ !
oo e e ———— +

RESEQ Command

SYNTAX: RESEQ [new line number],[old line numberi1]-[old line
number2],[increment]

DESCRIPTION:

The RESEQ command resequences the line numbering of the program
in immediate memory. New line number specifies the starting
number of the new sequence. If you specify 50, the program will
be renumbered starting with line number 50. 0ld line numberil -
0ld line number2 specifies the segment of the program to be
renumbered. If these parameters are not specified, the entire
program is renumbered. Increment specifies the increment to be
used in the new numbering.

Before running the program, user should SAVE resequenced program
first. Then, use OLD command to retrieve progranm before running.

o o +
! Statement !
! !
! RESTORE !
o e o +

RESTORE Statement
SYNTAX: RESTORE

DESCRIPTION:

The RESTORE statement resets the READ-DATA pointer to the
beginning of the first data value. This allows reuse of data
values and avoids out of data errors. The RESTORE statement can
be executed as many times as necessary. It 4is useful for
rereading of the data in DATA statements.

I/0BASIC Programming Elements PAGE 5-68

o e e o e e e +
! Statement !
! !
! RESTORE # !
R +

RESTORE # Statement

SYNTAX: RESTORE 4{#channel

DESCRIPTION:

The RESTORE # statement will ©reset the data pointer for a
specified input file to the beginning. In the syntax above
channel is the channel number of the file to be restored.

This statement is useful for reading a file a multiple number of
times, since the file does not have to be closed and reopened
each time. The statement operates in a similar manner to the
RESTORE statement that is used to reset the READ pointer for data
contained in DATA statements.

e ———— - - ——— +
! Statement o
! !
! RESUME !
e - ——————— - +

RESUME Statement
SYNTAX: RESUME [line number]

DESCRIPTION:

The RESUME statement will resume normal program execution after
an error has occured and the program has branched to the line
number specified in an ON ERROR GOTO statement. The RESUME
statement is the last statement in an error processing
subroutine,. It re~enables error processing after an error occurs
within a program.

If a line number is not specified with the RESUME statement, then
I/0BASIC will branch to and re-execute the entire line that
caused the program error, If a line number 1is =specified, then
RESUME will act as a GOTO statement, except that error processing
will be re-enabled.

See descriptions of the ERL and ERR functions and the ON ERROR
GOTO statement for additional information about error processing.

S

J

S

S

Mg

I/OBASIC Programming Elements PAGE 5-69

ittt e T) +
! Statement !
! !
1 RETURN !
o o e +

RETURN Statement
SYNTAX: RETURN

DESCRIPTION:

The RETURN statement terminates a subroutine and returns control
to the statement following the last executed GOSUB statement. If
a RETURN statement is encountered and a GOSUB has not been
executed, an error message is returned, "?RETURN without GOSUB".

EXAMPLE:

>listnh <ret>

10 REM Example of a RETURN

20 PRINT "Enter a number"

30 number2 = 5

40 INPUT number]

50 GOSUB 100

60 PRINT "The subroutine just finished."
70 PRINT "The program is ended."
80 GO TO 130

90 REM Subroutine starts here
100 PRINT "Number 1:";number?

110 PRINT "Number 2:";number?

120 RETURN

>runnh <ret>>

Enter a number
?2 7T <ret>

Number 1: 7T

Number 2: 5

The subroutine just finished.
The program is ended.

>

I/0BASIC Programming Elements PAGE 5-T0

- ————————— +
! Function !
1 1
! RND !
dmm e — e —————— +

RND Function
SYNTAX: RND
DESCRIPTION:

The RND function returns a pseudo-random number between zero and
one, I/OBASIC maintains a series of apparently unrelated numbers
called a pseudo~random series. Each time the RND function is
used, the next number in the series is returned.

Whenever the program is initialized through the use of an OLD,
NEW, or RUN command, or a CHAIN statement, the random series
pointer is set back to the beginning of the series. Therefore, a
predictable set of random numbers is always available for
testing. When the RANDOMIZE statement is wused with the RND
function, the pointer is set to an unpredictable location and the
series is returned from that point on.

EXAMPLE:

>listnh <ret>

10 REM Example of RND function
20 PRINT RND, RND, RND

30 END

>runnh <ret>
0407319 .528293 .803172

>runnh <ret>>
0407319 528293 803172

>0ld progil1 <ret>

>listnh <ret>

10 REM Example of RND function with RANDOMIZE
20 RANDOMIZE

30 PRINT RND, RND, RND

40 END

>runnh <ret>
LA494162 .888584 .884043

>runnh <ret)
.528293 803172 .0643915

>

;‘«, S
g

I/0BASIC Programming Elements PAGE 5-T1

o o e e e +
! Command !
! !
! RUN/RUNNH !
R L L T T +
RUN/RUNNH Command
SYNTAX: RUN[NH] [file specification]

DESCRIPTION:

The RUN command is used to begin program execution. When the RUN
command is entered, a header line is printed and the progranm in
immediate memory is run,

In DISKBASYS and PROMBASYS, if a file specification is supplied,
immediate memory is cleared, the program specified is loaded from
mass storage into immediate memory, and execution Dbegins, In
MICROBASYS, any file specification supplied with the RUN or RUNNH
command will be ignored, and the program currently in memory will
be run.

The RUNNH command is identical to RUN, but printing of the header
line is suppressed. The header contains the current date, time
and program name. The date will not be listed in the header if
no date has been entered into the system.

I/0BASIC Programming Elements PAGE 5-72

e lat ke +
! Command !
! i
! SAVE !
o o e +

SAVE Command
SYNTAX: SAVE [file specification]
DESCRIPTION:

The SAVE command outputs the program in immediate memory to the
specified file, If no file is specified, the program name in
immediate memory is the default specification. If the file
specified already exists in memory, an error message is returned,

"?Use REPLACE",

The SAVE command can be used to save a second copy of a progranm
under a different name, SAVE «can also be used to output a
program to a device, such as a line printer. This 1is done by
specifying a device rather than a file name.

EXAMPLE:
>save <ret>> <The program is saved under the
{current name,
>save progl <ret> <The program is save under the
<name PROGI1,
>save progl <ret> <Specifying an existing file name
?Use REPLACE <{results in an error message.

e o ot e +
! Function !
! l
! SEG$!
R b +
SEG$ Function
SYNTAX: SEG$(string, expressioni, expression2)

DESCRIPTION:

The SEG$ function returns a segment of a string starting from the
character position given by expressionl to that given by
expression2. The SEG$ function, when used with the ASC function,
is wuseful in determining the value of any character or group of
characters in a specific position within a string.

% i
N, L
Wi

s’

I/0BASIC Programming El ements PAGE 5-T73

EXAMPLE:

>listnh <ret>

10 REM Determine if product is a semiconductor
20 PRINT "ENTER PRODUCT ID('AAAAAM)Y

30 LINPUT product_id$

40 IF SEG$(product_id$,1,1)="S" THEN 70

50 PRINT "Product is not a semiconductor."

60 GO TO 20

70 PRINT "Good! It's a semiconductor."

80 END

>runnh <ret>

ENTER PRODUCT ID('AAAAA')

? R2345 <ret>

Product is not a semiconductor,
? S2345 <ret>

Good! It's a semiconductor.

>
o o e +
! Statement !
! !
! SET_AIN-GAIN !
e, — - ——————— +

SET _AIN _GAIN Statement
SYNTAX: SET_AIN GAIN(val)

DESCRIPTION:

The SET_AIN_GAIN statement will set the hardware programmable
gain on the high-level analog input device,

Argument val is a variable or constant of any type that specifies
a code for the analog gain. The value of this argument must be
supplied by the program. Its legal range is 0 to 3. The table
below shows the analog gain that corresponds to each possible
value for argument val:

val Gain
0 8
1 y
2 2
3 1
The default value is 3, which sets the gain to 1. This means

that the analog input signal is passed unchanged to the analog
input device,

I/0BASIC Programming Elements PAGE 5-T4

SET_AINL_GAIN Statement

SYNTAX: SET_AINL_GAIN(val)

DESCRIPTION:

The SET_AINL_GAIN statement will set the hardware programmable
gain on the low-level analog input device,

Argument val is a variable or constant of any type that specifies
a code for the analog gain. The value of this argument must be
supplied by the program., Its legal range is 0 to 7. The table
below shows the analog gain that corresponds to each possible

value for argument val:

val Gain
0 1000
1 500
2 200
3 100
4 20
5 10
6 5
7 1
The default value is 7, which sets the gain to 1. This means

that the full-scale analog input signal range is 10.0 volts/1 or
10.0 volts.

o - ———— +
! Statement !
! !
! SET_AIN_SCAN !
o ——————— - +

SET_AIN-SCAN Statement
SYNTAX: SET_AIN_SCAN
DESCRIPTION:

The SET_AIN_SCAN statement enables channel scanning for the
ANALOG_IN statement. When channel scanning is enabled, argument
chan in statement ANALOG_IN specifies the high channel to be
read, 30 that channels zero to chan are sequentially read and
placed in successive elements of an argument val array.

ot

S

g

I/0BASIC Programming Elements PAGE 5-75

The default setting for I/OBASIC is NOSCAN, The default setting
is restored each time a run command is issued,

SET_AIN_NOSCAN Statement
SYNTAX: SET_AIN_NOSCAN

DESCRIPTION:

The SET_AIN_NOSCAN statement disables channel scanning for the
ANALOG_IN statement. When channel scanning is disabled, argument
chan in statement ANALOG_IN specifies the single channel to be
read. ‘

This is the default setting for I/OBASIC. The default setting is
restored each time a run command is issued.

o e o e +
1 Statement !
! !
! SET - AINL_SCAN !
e e o e +

SET-AINL_SCAN Statement
SYNTAX: SET_AINL_SCAN
DESCRIPTION:

The SET_AINL_SCAN statement enables channel scanning for the
ANALOG_LOW_IN statement, When channel scanning is enabled,
argument chan in statement ANALOG_LOW-IN specifies the high
channel to be read, so that channels =zero to chan are
sequentially read and placed in successive elements of an
argument val array.

The default setting for I/OBASIC is NOSCAN. The default setting
is restored each time a run command is issued.

I/0BASIC Programming Elements PAGE 5-T76

SET_AINL_NOSCAN Statement

SYNTAX: SET_AINL_NOSCAN

DESCRIPTION:

The SET_AINL_NOSCAN statement disables channel scanning for the
ANALOG_LOW_IN statement, When channel scanning is disabled,

argument chan in statement ANALOG_LOW_IN specifies the single
channel to be read.

This is the default setting for I/OBASIC. The default setting is
restored each time a run command is issued.

SET_AIN_TRIGGER Statement
SYNTAX: SET_AIN_TRIGGER

DESCRIPTION:

The SET_AIN _TRIGGER statement enables external (hardware)
triggering for the ANALOG_IN statement. When external triggering
is enabled, the analog input device uses either an onboard clock
or a wuser supplied signal for triggering the A/D converter,
depending on how the hardware is configured.

The default setting for I/OBASIC is NOTRIGGER. The default
setting is restored when a RUN command is issued,

%
T

I/0BASIC Programming Elements PAGE 5-77

SET_AIN_NOTRIGGER Statement

SYNTAX: SET_AIN_NOTRIGGER

DESCRIPTION:

The SET AIN NOTRIGGER statement disables external (hardware)
triggering for the ANALOG_IN statement. When external triggering

is disabled, the analog input device is triggered by software,

This is the default setting for I/OBASIC. The default setting is
restored when a RUN command is issued.

SET_AINL_TRIGGER Statement
SYNTAX: SET_AINL_TRIGGER
DESCRIPTION:

The SET_AINL_TRIGGER statement enables external (hardware)
triggering for the ANALOG-LOW-_IN statement, When external
triggering is enabled, the analog input device wuses either an
onboard clock or a user supplied signal for triggering the A/D
converter, depending on how the hardware is configured.

The default setting for I/O0OBASIC is NOTRIGGER, The default
setting is restored when a RUN command is issued.

I/0OBASIC Programming Elements PAGE 5-78

SET_AINL_NOTRIGGER Statement

SYNTAX: SET_AINL_NOTRIGGER

DESCRIPTION:

The SET_AINL_NOTRIGGER statement disables external (hardware)
triggering for the ANALOG:-LOW_IN statement. When external
triggering is disabled, the analog input device is triggered by

software,

This is the default setting for I/OBASIC. The default setting is
restored when a RUN command is issued.

SET_AOT_TOGGLE Statement

SYNTAX: SET_AOT_TOGGLE

DESCRIPTION:

The SET_AOT_TOGGLE statement enables channel toggling for the
ANALOG_OUT statement when using DMA mode. When channel toggling
is enabled, the analog output alternates between DAC channel 1

and DAC channel 2.

The default setting for I/OBASIC is NOTOGGLE. The default
setting is restored when a RUN command is issued.

The SET_AOT_TOGGLE statement is not supported in PICOBASYS.

8 i
. 3
ot

\%meﬂ“”i

I/0BASIC Programming Elements PAGE 5-79

SET_AOT_NOTOGGLE Statement
SYNTAX: SET_AOT_NOTOGGLE
DESCRIPTION:

The SET_AOT_NOTOGGLE statement disables channel toggling for the
ANALOG_OUT statement when using DMA mode. DMA analog output will
always occur at DAC channel 1.

This is the default setting for I/OBASIC. The default setting is
restored when a RUN command is issued.

SET _AOT_TRIGGER Statement
SYNTAX: SET_AOT_TRIGGER
DESCRIPTION:

The SET_AOT_TRIGGER statement enables external (hardware)
triggering for the ANALOG_OUT statement when it is operating in
DMA mode. When external triggering is enabled, the analog output
device uses either an onboard clock or a user supplied signal for
triggering the D/A converter, depending on how the hardware is
configured.

The default setting for I/OBASIC is NOTRIGGER. The default
setting is restored when a RUN command is issued.

I/0BASIC Programming Elements

PAGE 5-80

o, —————— +
SET_AOT_NOTRIGGER Statement
SYNTAX: SET_AOT_NOTRIGGER
DESCRIPTION:
The SET_AOT _NOTRIGGER statement disables external (hardware)
triggering for the ANALOG_OUT statement when it is operating in
DMA mode. When external triggering is disabled, the analog

output device is triggered by software,

This is the default setting for I/OBASIC.
restored when a RUN command is issued.

SET_ANALOG_PERCENT Statement
SYNTAX: SET_ANALOG_PERCENT
DESCRIPTION:

sets
rather

The SET_ANALOG_PERCENT statement
units to percent full-scale,

returned by analog input statements,
statements,

to +100.

This is the default setting for I/OBASIC.
restored when a RUN command is issued.

are in units of percent full-scale.
can range from 0 to 100, and bipolar signals can range fron

The default setting is

o - o " . - +

e e s +
the analog engineering
than volts. All values

or passed to analog output
Unipolar signals
-100

The default setting is

E 5 w"‘v
S

S

I/0BASIC Programming Elements PAGE 5-81

o e +
! Statement !
!

! SET_ANALOG_VOLTS !

SET_ANALOG_VOLTS Statement
SYNTAX: SET_ANALOG_VOLTIS

DESCRIPTION:

The SET_ANALOG_VOLTS statement sets the analog engineering units
to volts, rather than percent full-scale. All values returned by
analog input statements or passed to analog output statements are
in units of volts,

The default setting for I/OBASIC is PERCENT. The default setting
is restored when a RUN command is issued.

o +
! Statement !
!

! SET_DATE !
o o o e e e o +

SET_DATE Statement

SYNTAX: SET_DATE(month, day, year)
DESCRIPTION:

The SET_DATE statement will set the system date.

Argument month is a variable or constant of any type that
contains the new value for themonth of the year, The value of
this argument must be supplied by the program. Legal range is 1
to 12.

Argument day is a variable or constant of any type that contains
the new value for the day of +the month. The value of this
argument must be supplied by the program. Legal range 1is 1 to

31.

Argument year is a variable or constant of any type that contains
the new value for the year since 1900. The value of this
argument must be supplied by the program. Legal range is 72 to
103, corresponding to the years 1972 to 2003.

I/0BASIC Programming Elements PAGE 5-82

NOTE

Al though each argument must be
within the range =specified, the
date is not checked for wvalidity.
For example, the date could be set
to 31-FEB-83 by using the statement
SET_DATE(2,31,83). This would be
an illegal date,

SET_THERMOCOUPLE Statement
SYNTAX: SET_THERMOCOUPLE(val)

DESCRIPTION:

The SET_THERMOCOUPLE statement sets the thermocouple type and its
temperature range to be used with the TEMPERATURE _IN statement.
The thermocouple types supported are J, K, and T. Only one
thermocouple type may be selected for the TEMPERATURE_IN
statement, but it may be changed during program execution.
Selecting a narrower temperature range will increase the accuracy
of the thermocouple readings.

In the syntax above, argument val is a variable or constant that
specifies a code for selecting the thermocouple type and
temperature range, It must be in the range from one to six.

val Type Range (degrees C)
1 dJd -210 to 870
2 dJd -210 to 366
3 dJd ~-210 to 185
4 K 0 to 1232
5 K 0 to 484
6 T ~200 to 385

The default value is 1, which selects thermocouple type J and a
range of =210 to 870 degrees C. The default value isrestored
when a RUN command is issued.

i

I/0BASIC Programming Elements PAGE 5-83

o +
! Statement i
! !
! SET_TIME !
o +

SET_TIME Statement

SYNTAX: SET_TIME(val)

DESCRIPTION:

The SET_TIME statement will set the system time.

Argument val is a variable or constant of any type that contains
the new value for the system time, in units of seconds past
midnight. The value of this argument must be supplied by the
progranm, Legal range is 0 to 86400.

NOTE

If argument val is of type integer
or string and the time is greater
than 65,535 seconds past midnight a
numeric overflow error will result.
To avoid this, specify argument val
as a real variable or constant.

o m - ———————————— +
} Statement !
! !
! SET_WIDTH !
o —————— e - +

SET_WIDTH Statement
SYNTAX: SET_WIDTH(val)
DESCRIPTION:

The SET_WIDTH statement will set the console terminal's right
margin, If the number of characters output to the console
terminal exceeds the width setting, a return and line feed are
automatically generated. The default width setting is 80
characters. .

I/0BASIC Programming Elements PAGE 5-84

SGN Function

SYNTAX: SGN(numeric expression)

DESCRIPTION:

The SGN function is used to determine the sign of an expression.
The SGN function returns a +1, -1, or 0 to identify the sign of
the specified expression as positive, negative, or ZEro,
respectively.

EXAMPLE:

>listnh <ret>
10 a = -8.34

20 b = 45,23
30 ¢ =0 -
40 PRINT "A = ";a; "SIGN A = ";SGN(a)
50 PRINT "B = ";b; "SIGN B = ";SGN(b)
60 PRINT ¥"C = ";c; "SIGN C = ";SGN(ec)
T0 END
>runnh <ret)>
A = -8.34 SIGN A = -1
B = 45,23 SIGN B = +1
C =0 SIGN C = 0
>
R ke +
! Function {
|
! SIN 1
e e, ——————— +
SIN Function
SYNTAX: SIN(numeric expression)

DESCRIPTION:

The SIN function returns the sine of the of the angle specified.
The angle is specified in radians.

I/0BASIC Programming Elements PAGE 5-85

EXAMPLE:

>listnh <ret>

10 REM Convert angle to radians and print sine

20 PRINT "Enter an angle in degrees";

30 INPUT deg_angle

40 REM Convert the angle to radians

50 LET rad_angle = deg_angle # 2 # PI / 360

60 PRINT "The sine of angle A is "; SIN(rad_angle)
70 END

>runnh <ret>

Enter an angle in degrees? 45 <ret>
The sine of angle A is 707107

>
o e - o e +
! Function !
! !
! SQR !
- ——————————— +

SQR Function

SYNTAX: SQR(numeric expression)

DESCRIPTION:

The SQR (square root) function returns the square root of the

specified numeric expression, If the expression specified is
negative, an error message is returned.

EXAMPLE:

>listnh <ret>

10 READ a, b, ¢

20 PRINT SQR(a); SQR(b); SQR(ec)
30 DATA 16, 2.5, -4.5

40 END

>runnh <ret>

4 5.65685
?Negative square root at line 20
0

I/0BASIC Programming Elements PAGE 5-86

o - ——————— +
! Statement !
! !
! STOP !
e — e —————— +

STOP Statement
SYNTAX: STOP
DESCRIPTION:

The STOP statement causes program execution to halt and I/OBASIC
prints the message: -

Stop at line x
Where x is the line number of the STOP statement.
The STOP statement is useful in debugging since variables can be
printed, then changed, and program execution resumed with a GOTO
statement.
The STOP statement does not close files opened during progranm

execution, therefore, the END statement should be used at the
logical (and physical) end of a program.

e m e, - ———— +
! Function !
!

1 STR$!
- ———————— +

STR$ Function

SYNTAX: STR$(numeric expression)

DESCRIPTION:

The STR$ function converts the specified numeric expression ¢to

its string equivalent, The string value is returned with no
leading or trailing spaces.

Ry

s’

I/0BASIC Programming Elements PAGE 5-87

o +
! Command !
! !
! SUB !
o o o e o +
SUB Command
SYNTAX: SUB linenumberXstringiXstring2Xnumber of occurrences

DESCRIPTION:

The SUB command allows you to edit a program 1line without
retyping the entire line.

Linenumber specifies the program line nunber to be
edited. String1 specifies the characters to be replaced by the
characters in string?2. X is a delimiter which may be any
character not found in the original or replacement
strings. Number of occurrences is an integer number which
specifies the number of times stringl should occur in the line
before the substitution is be made,

EXAMPLE:

>listnh 10 <ret>
>10 LET 2 = 2 + X + ¥

>sub 10/y/n <ret> <Substitute n for y

10 LET 2 = 2 + X + n ’ <New Line

>sub 10/z/b/2 <ret> <Substitute b for 2nd z
10 LET z = b + x + n <New Line

>

I/0BASIC Programming Elements PAGE 5-88

femr e - +
! Statement !
! !
! TEMPERATURE_IN !
e, ———— +

TEMPERATURE_IN Statement

SYNTAX: TEMPERATURE_IN(chan, val [,flag])
or
TMPIN(chan, val [,flag]l)

DESCRIPTION:

The TEMPERATURE_IN statement reads one or more channels on the
low~level analog input board, returning the values in degrees

centigrade,

Argument chan is a variable or constant of any type that contains
the analog channel to beread, or the last channel to scan if
channel scanning is set, The value of this argument must be
supplied by the program. Legal range is 0 to 1023.

Argument val is a variable of any type that will be returned with
the temperature value of the analog channel. If argument val is

of type real the value is returned in wunits of degrees
centigrade, If argument val is of type integer or string, the
value returned is the wunconverted binary value of the A/D
converter, If argument val 1is an array then the entire array

Wwill be filled with analog channel values. String arrays are not
allowed.

Argument flag is an optional integer or real variable,. When
specified, causes the statement to operate asynchronously in
interrupt mode, or DMA mode if an ADAC 1622DMA controller is
present, It will be set to a zero prior to the next I/OBASIC
program statement, and will be set to a one when all of the
analog values have been read. If argument flag is not specified,
then the statement will operate synchronously, so that all
processing is completed before the next I/OBASIC statement.

\%»wf'/

I/0BASIC Programming Elements PAGE 5-89

! Statement

! TEST_ADDRESS

TEST_ADDRESS Statement

SYNTAX: TEST_ADDRESS(address, val)

DESCRIPTION:

The TEST_ADDRESS statement will test for a valid bus address.

Argument address is a variable or constant of any type that
contains the address to be tested. The value of this argument
must be supplied by the program, and it must be an even number,
Legal range is 0 to 177776 (octal).

Argument val is a variable of any type that will be returned with
a one if the address is present on the bus, and a zero if the

address is not on the bus,

o o e e o +
| Statement {
! !
! THEN !
o o o e o +

THEN Statement
SYNTAX: THEN statement
or
THEN line number
DESCRIPTION:
The THEN statement is used in the expressions IF/THEN or ON/THEN,

The THEN statement cannot stand alone. See the IF/THEN and
ON/THEN statements.

I/0BASIC Programming Elements PAGE 5-90

o e e +
! Statement {
! !
! TIME_OUT !
e, ————————— +

TIME_OUT Statement

SYNTAX: TIME_OUT(chan, val [,flag])
DESCRIPTION:

The TIME_OUT statement starts a software timer,

Argument chan is a variable or constant of any type that
specifies the timer channel that will be started. The value for
this argument must be supplied by the program, Legal range is 0
to T.

Argument val is a variable or constant of any type that specifies
the time interval, in seconds, for the timer, The value of this
argument must be supplied by the program. Legal range 1is 0 to
540, If argument val 1is of type real, it may contain a
fractional part of a second. The time interval 1is measured in
increments of 1/60th of a second, and is generally accurate to
1/10th of a second. ‘

Argument flag is an optional integer or real variable of any
type. When specified, causes the statement to operate
asynchronously in interrupt mode, so that an interrupt will be
generated after the time interval. Argument flag will be set to
a zero prior tothe next I/0BASIC program statement, andwill be
set to a one when the time interval has elapsed. If argument
flag is not specified, then the statement will operate
synchronously, and behaves the same as the WAIT statement.

b — —— - — e ———— +
! Function !
! !
! TRM$!
e e e +

TRM$ Function
SYNTAX: TRM$(string expr)
DESCRIPTION:

The TRM$ function is used to remove all trailing blanks from the
specified string expression.

s

I/0BASIC Programming Elements PAGE 5-91

EXAMPLE:

>listnh <ret>

10 word1$ = "Word 1 "

20 word2$ = "~Word 2%

30 REM Concatenate Word 1 and 2

40 PRINT "Before Trimming: ";wordi1$ + word2$
50 word1$ = TRM$(word1$)

60 PRINT "After Trimming: ";wordi1$ + word2$
T0 END

>runnh <ret>

Before Trimming: Word 1 -Word 2
After Trimming: Word 1-Word 2

>

o ———————————— +
! Command !
1

! UNSAVE !
o, — - - ————— +

UNSAVE Command

SYNTAX: UNSAVE file specification

DESCRIPTION:

The UNSAVE command deletes the specified file and returns the

I/0BASIC prompt (>) when complete. Once a file is deleted, it
cannot be restored.

e, r e ——,——————— +
! Function !
! !
! VAL !
R etk +
VAL Function
SYNTAX: VAL(numeric constant string)

DESCRIPTION:

The VAL function returns the value of the numeric constant string
specified. The string may contain the digits 0 through 9, the
letter E for exponential notation, a decimal point, and the + or
-~ symbols,

I/0BASIC Programming Elements PAGE 5=-92

EXAMPLE:

>listnh <ret>

10 number1$ = vw-42,123"

20 number2$ = "67.01"

30 PRINT VAL(numberi$) + VAL(number2$)

>runnh <ret>

24 .887

- +
! Statement !
! !
! WAIT i
e et TR +

WAIT Statement

SYNTAX: WAIT(val)

DESCRIPTION:

The WAIT statement will delay program execution.

Argument val is a variable or constant of any type that contains
the delay time, in units of seconds. The value of this argument
must be supplied by the program, Legal range is 0 to 540, If
argument val isof type real, it may containa fractional part of
a second. The delay is measured in increments of 1/60th of a
second, and is generally accurate to 1/10th of a second.

i

St

%
Sasgu®

APPENDIX A

I/0BASIC ERROR MESSAGES

I/OBASIC processes errors in commands and progranm lines and
prints an error message which identifies the error. Error
messages are useful in debugging your programs because they help
identify the location and nature of the error,

I/0BASIC error messages are identical to standard BASIC error
messages. When an error is detected in a command, I/OBASIC

returns an error message in the following format:
?Message

When an error is detected in an I/0OBASIC program line, I/0BASIC
returns an error message in the following format:

?Message at line xx

where xx is the line number of the statement containing the
error. -

I/OBASIC errors are either fatal or nonfatal, 1If a fatal error
is detected in a program, execution of the program halts, an
error message is returned and control returns to the command
level. Nonfatal errors will result in an error message being
returned, but program execution is not halted.

This appendix 1lists error messages and their meanings in
alphabetical order, The error messages listed here are fatal
unless otherwise indicated.

A1 Command and Program Line Errors

?Argument error

Arguments in a function or statement do not match those
arguments defined for the function or statement in number,
range, or type, Ensure that the correct number of arguments
are specified, that their values are in the correct range,
and that they are the correct type.

?Arrays too large
Not enough memory is available for the arrays specified 1in

the DIM statements. Reduce the size of the arrays or reduce
the size of the program.

I/0BASIC Error Messages PAGE A-2

?Bad data read

A data item input from a DATA statement or from a file is
the wrong data type. Ensure that the DATA statement or the
file contains the same data type as specified in the READ or
INPUT # statement.

?Bad data -~ retype from error

Nonfatal error, Item entered in response to an INPUT or
INPUT #0 statement is the wrong data type. Retype the item

and the program will continue.

?Bad log

Nonfatal error, Expression in LOG or LOG10 function is zero
or negative, The function returns a zero and I/OBASIC

continues execution of the programn,
?2Buffer storage overflow

Not enough room available for file buffer in program storage
area. Reduce program size,

?Cannot delete file

The file specified in a KILL statement or UNSAVE command
cannot be deleted.

?Channel already open

OPEN statement specifies a channel that is already
associated with an open file. Ensure that OPEN statements
specify correct channel numbers and that files that should
be closed are closed.

?Channel I/0 error

Accessing data in a file produces an error. Ensure that
your peripheral devices and their storage media are working
correctly. One possible cause is that the file accessed has

zero length,
?Channel not open

A PRINT #, PRINT # USING, INPUT #, IF END #, or CLOSE
statement, or a reference to a virtual array file specifies
a channel number not associated with an open file. Check
that the OPEN statement has been executed and that it
specifies the same channel number as the program line with
the error.

E
o

J/0BASIC Error Messages PAGE A-3

?Checksum error in compiled program

File produced by the COMPILE command contains a format
error, Use a copy of the program created by a SAVE or

REPLACE command.

?2COMMON out of order

Variables and arrays in a COMMON statement are not listed in
the same order as those in a previous program segment.
Ensure that all segments have equivalent COMMON statements.

?Control variable out of range

Expression in an ON GOTO or ON GOSUB statement is 2zero or
negative or has a value greater than the number of line
numbers listed. Ensure that the expression has a value in

the correct range.
?Division by zero

Nonfatal error, An expression includes a division by zero.
I/OBASIC substitutes a value of zero for that operation and

continues execution of the program.
?END not last

END statement is not the highest numbered program line.
This error message is printed when the END statement is
executed. Ensure that there is only one END statement in
the program and that it has the highest 1line number.

?Error closing channel

Closing a channel produces an error. Ensure that your
peripheral devices and their storage media are working
correctly.

?Excess input ignored

Nonfatal error, There are more data items than required by
an INPUT or INPUT #0 statement. I/0BASIC ignores the excess
items and continues execution of the progran. Ensure that
data items did not contain an unintended comma (e.g., 5,432
instead of 5.432).

?Exponentiation error

Nonfatal error., An expression includes the operation of
raising a negative value to a nonintegral power (e.g.,
(-45)~.25). This would produce a complex number, which
cannot be represented in I/0BASIC. This message is also
produced when a negative value 1is raised to an integral
‘value that has an absolute value greater than 255 (e.g.,
(-1)*256). In both cases, I/OBASIC substitutes a value of
zero for the operation and continues execution.

I/0BASIC Error Messages PAGE A-}4

?Expression too complex

An expression is too complex for I/0BASIC to evaluate in the
area it uses for calculations (called the stack). This
condition is wusually caused by including user-defined
functions or nested functions in an expression. The degree
of complexity that causes this error varies according to the
amount of space available in the stack at the time.
Breaking the statement up into several statements containing
simpler expressions may eliminate the error,

?File already exists

A file cannot be created with the same name as an existing
file, This would result in the deletion of the existing
file and this deletion is not allowed.

?File not found

I/0BASIC cannot find the specified file, Ensure that the
file specification was typed correctly and that the file
exists.

?File privilege violation
This operation includes a restricted file operation,
?Floating overflow

Nonfatal error, The absolute value of the result of a
computation is greater than the largest number that can be
stored by I/0BASIC (approximately 10E38). I/0BASIC
substitutes a value of zero for the operation and continues
execution of the program.

?Floating underflow

Nonfatal error, The absolute value of the result of a
computation is smaller than the smallest number that
I/0BASIC can store (approximately 10E(-38)). I/0BASIC
substitutes a value of =zero for operation and continues
execution of the program.

?FOR without NEXT
The program contains a FOR statement without a corresponding

NEXT statement to terminate the loop. Ensure that each loop
in the program is terminated with a NEXT statement.

$

S

Hen

I/0BASIC Error Messages PAGE A-5

?Il11legal channel number

The channel specified is not in the range allowed or the IF
END statement specifies a file on a terminal.

?2I1legal DEF

There is an error in the DEF statement. Check the format
and data types in the argument list and defining expression.

?2I1legal DIM

A subsceript in a DIM or COMMON statement is not an integer,
an array is dimensioned more than once, or an array has more
than two dimensions. Ensure that an array specification is
in the correct format and appears only once in the COMMON
and DIM statements in the program.

?Il1legal end of file in compiled program

File produced by the COMPILE contains a format error. Use a
copy of the program created by a SAVE or REPLACE command.

?Illegal file length

The file specification 1s invalid. See your BASYS User's
Guide for information on the format of file specifications.

?2I1legal I/0 direction

Statement attempts to write to an input file or read from an
output file., Ensure that the channel number specifies the
correct file. If the statement assigns a value to an
el ement of a virtual array file, ensure that the file's OPEN
statement does not specify "FOR INPUT."

?2Illegal record size

The RECORDSIZE keyword specified in an OPEN statement is
invalid.

?Inconsistent number of subscripts

The array is dimensioned with a different number of
subscripts than it is referenced by. Ensure that the DIM
statement and array references are consistent.

?Input string error

Nonfatal error. A string entered in response to an INPUT
statement begins with a quotation mark but is not terminated
by the appropriate ending quotation mark. I/0BASIC assigns
to the string all the characters between the initial quote
and the line terminator and continues execution of the
program,

I/0BASIC Error Messages PAGE A-6

?Integer overflow

An integer variable is assigned a value greater than 32767
or less than -32768 or an integer expression produces a
result which exceeds this range. Change the variable or
expression to a floating point format.

?Line too long

The line entered is longer than I/0BASIC allows; the 1line
is ignored. If this message occurs when I/OBASIC is reading
a program from a file, I/0OBASIC stops reading the file. A
possible cause 1is that you entered a line near the maximum
size with no spaces; when you save the progran, I1/0BASIC
adds spaces making the line too long. Split the line into
several smaller lines.

?Line to long to translate

Lines are translated as they are entered; the 1line just
entered exceeds the area reserved for translating, The line
is ignored. If this message is produced while I/OBASIC is
reading a program from a file, I/0OBASIC stops reading the
file., Split the line into several smaller lines.

?Missing subprogram

A nonexistent I1/0BASIC statement was specified. Ensure that
the statement was typed correctly.

?Negative square root

Nonfatal error, The expression in the SQR (square root)
function has a negative value, The function returns a value
of zero. I/0OBASIC continues execution of the program.

?Nested FOR statements with same control variable

A FOR statement specifies the same control variable as that
specified by a FOR/NEXT 1loop that the FOR statement is
nested within. Change one of the variables so that all
nested FOR statements have unique variable names. Make sure
you change both the FOR statement and the corresponding NEXT
statement,

?NEXT without FOR

A NEXT statement is without a corresponding FOR statement.
Ensure that each loop starts with a FOR statement and ends
with a NEXT statement which =specifies the =same variable.
This error message is also produced if control is
transferred into the middle of a 1loop. FOR/NEXT loops
should only be entered by executing the FOR statement.

ol

o

I/0BASIC Error Messages PAGE A-T7T

?Not a valid device

S’

File specification contains an invalid device. See the
BASYS User's Guide or Section 5.2 of this manual for further
information on file specifications.

?Not enough room

There is not enough room for the file. See the BASYS User's
Guide for more information,

?Numbers and strings mixed

String and numeric values appear in the same expression or
they are set equal to each other; for example A$=2. Change
either the data type of the variable (e.g., A=2) or the
expression (e.g., A$= "2%") so that they are consistent.

?20ut of data

The data list is exhausted and a READ statement requests
additional data or the end of afile isreached and the
INPUT # statement requests additional data. Ensure that
there is sufficient data or test for the end-of-file
condition with the IF END statement.

% '
i

?PRINT USING error

There is an error in the PRINT USING statement caused when
the format specification is not a valid string, or is null,
or does not contain one valid field. The error is also
caused when an attempt is made to print a numeric value in a
string field, a string value in a numeric field, or a
negative number in a floating asterisk or floating dollar
sign field that does not also specify a trailing minus sign.
The message is also printed if the items in the 1list are not
separated by commas or semicolon.

?Program too big

The line just entered cause the program to exceed the wuser
area in memory and the 1line is ignored. Reduce progranm
size, If this error occurs when I/OBASIC is reading a
program from a file, I/OBASIC stops reading the file.

?Resequence error
Resequencing the program would cause lines to overlap or

existing lines to be deleted, or would create an illegal
line number. Re~enter the command with different argument.

5

?RETURN without GOSUB

A RETURN is -encountered before execution of a GOSUB
statement, Do not transfer control to a subroutine except
by executing a GOSUB or an ON GOSUB statement.

I/0BASIC Error Messages PAGE A-8

?String storage overflow

Not enough memory is available to store all the strings used
in the progran. Reduce program size.

?String too long

The maximum length of a string in an I/OBASIC statement is
255 characters. Split the string into several smaller
strings.

?23ubscript out of bounds

The subscript computed is less than zero or is outside the
bounds defined in the DIM statement. Ensure that the
expression specifying the subscript is in the correct range.

?Substitute error

There was no separator between the strings in the SUB
command. Retype SUB command,

?Syntax error

I/0BASIC has encountered an unrecognizable element,. Common
examples of syntax errors are misspelled commands, unmatched
parentheses, and other typographical errors, This message

can also be produced by attempting to read in a program from
a file containing illegal characters, in which case I/0OBASIC
stops reading the file. Retype the program line or ensure
that the file contains a valid I/OBASIC program.

?2Too many GOSUBs

More than 20 GOSUBS have been executed without a
corresponding RETURN statement. Change the program logic so
that less GOSUB statements are executed,

?Too many items in COMMON

There are more than 255 variable and array names in COMMON
(A, A(100), A%, A%(10,10), A$, and A$(5) are all considered
different names). Reduce the number of items in COMMON by
converting individual variables to elements of an array or
by passing fewer items to the next program segment,

?Undefined functions
A user-defined function has been used and not defined.

Define the function, A function is defined only after the
RUN command or CHAIN statement is execute.

M

s

g’

I/0BASIC Error Messages PAGE A-9

?2Undefined line number

The line number specified in an IF, GOTO, GOSUB, ON GOTO, ON
GOSUB, or CHAIN statement does not exist anywhere in the
program., Ensure that the line number specified wexists in

the program,
?Undimensioned array in call

The first reference to an undimensioned array appears as an
argument in an I/0BASIC statement, Dimension the array with

the DIM statement.

?2Use REPLACE

Saving the program would have caused an existing file to be
deleted because of identical file specifications. Use a
different file specification for the new file or the REPLACE
command which will delete the original file.

?Virtual array channel already in use

The DIM # statement specifies a channel number which has
already appeared in a DIM # statement. Specify another

channel number,

A2 Function Errors

If you use an I/OBASIC function incorrectly, an error message
will be returned. This section describes the conditions which
will cause error messages for the various functions,

All functions

The argument used is the wrong type. For example, the
argument is numeric and the function expects a string
expression. This condition produces "?Argument error",

All functions

The wrong number of arguments were used in a function, or
the wrong character is used to separate them. For example,
PRINT SIN (X,Y) produces a syntax error because the SIN
function has only one argument, This condition produces

"?Syntax error',

ASC(string)

String is not a one-character string, This condition
produces "?Argument error",

BIN(string)

Characters other than blank, zero, or 1 occur in the string
or the value is greater than 2716. This condition produces
"?2Argument error?",

I/0BASIC Error Messages PAGE A-10

CHR$ (expr)

Expression 1is not

in the range gzero to 32767,
condition produces

This
"?Argument erropr",

EXP(expr)

Value of €xXpression is

greater than 87, This
produces

condition
"?Exponentiation errort,

FNletter

The function FNletter is not
defined by an immediate
produces "?Undefined funecti

LOG(expr)

defined (function cannot be

mode statement), This condition
on",

Expression is negative or

zero, The
value of zero,

function returns g
This condition produces

"?Bad logm,
LOG10(expr)
Expression is negative or zero, The function returns a
value of zero,

This condition-produces "?Bad logm,

OCT(string)

Characters other than blank or di

gits zero through 7 appear
in the string, or the value is greater than 2716, These
conditions produce "?Argument erroph,
PI
An argument is ineluded, This condition Produces "?Syntax
errorh",

SEG$(string, expril, expr2)

No additional error conditions,

SQR(expr)

Expression is negative, The funection returns
zero, This condition pro

a value of
duces

"?Negative Square rootn,
TAB

Expression is not in the range zero to 32767, This
condition produces "?Argument errort,

VAL(string)

String is not 4 numeric constant. This

condition Produces
"?Argument erropn,

i

This app
possible

APPENDIX B

I/0OBASIC ERROR CODES

endix lists the numeric error codes

that correspond

to

I/0BASIC program erroras., These codes can be obtained
using the ERR function after error processing has been enabled by

executing the ON ERROR GOTO statement.

ERROR MESSAGE

Argument error

No room for call

END not last

Arrays too large

Undefined line number
Syntax error

Resequence error
Substitute error

Illegal DIM

Virtual array channel already in use
COMMON out of order

String too long

Too many items in COMMON
Function already defined
Line too long to translate
Program too big

Checksum error in compiled program
Illegal end of file in compiled file
Channel I/0 error

Buffer storage overflow
Channel not open

Illegal channel number
Channel already open
Jllegal I/0 direction

File not found

Illegal file specification
Not enough room

Illegal file length

File too short

Use replace

PRINT USING error
Expression too complex

125
124
123
122
121
120
119
118
"7
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100

99

98

97

\

I/0BASIC Error Codes PAGE B-2

Numbers and strings mixed 95
String too long 94
Undefined function 93
Inconsistent number of subscripts g2
Subsecript out of bounds 91
String storage overflow g0
Too many GOSUBS 89
Control variable out of range 88
RETURN without GOSUB 87
or RESUME without error
Nested FOR statements with same 86
control variable
FOR without NEXT 85
NEXT without FOR 84
Illegal in immediate mode 83
Out of data 82
Bad data read 81
Undimensioned array in call 80
Power failure (MICROBASYS only) 79
A/D trigger too fast 78
Hardware not present 7
Event queue overflow 76
Line too ‘long 75
Integer overflow T4
Bad data~retype from error - 73
Excess input ignored 72
Input string error T1
Floating overflow 70
Floating underflow 69
Division by zero 68
Negative square root 67
Bad log 66

Exponentiation error 65

R

i

APPENDIX C

ASCII CHARACTER EQUIVALENTS

This appendix gives the decimal and octal equivalents of ASCII
characters, I/0BASIC wusers can convert an ASCII value to the
corresponding string character with the CHR$ function and can
convert a string character to the corresponding ASCII value with
the ASC function. ASCII characters are stored internally and 1in
files as eight bits, The eighth bit in normally zero.

DECIMAL OCTAL ASCII
VALUE VALUE CHARACTER

00 000 NUL (CTRL/@)

01 001 SOH (CTRL/A)

02 002 STX (CTRL/B)

03 003 ETB (CTRL/C)

ol 004 EOT (CTRL/D)

05 005 ENQ- (CTRL/E)

06 006 ACK (CTRL/F)

07 007 BEL (CTRL/G)

08 010 BS (CTRL/H)

09 011 HT (CTRL/I or TAB)

10 012 LF (NEW LINE or LINE FEED)

11 013 VT (Vertical TAB)

12 014 FF (Form Feed)

13 015 CR (Return)

14 016 SO (CTRL/N)

15 017 SI (CTRL/O)

16 020 DLE (CTRL/P)

17 021 DC1 (CTRL/Q)

18 022 DC2 (CTRL/R)

19 023 DC3 (CTRL/S)

20 o2y . DC4 (CTRL/T)

21 025 NAK (CTRL/U)

22 026 SYN (CTRL/V)

23 027 ETB (CTRL/W)

24 030 CAN (CTRL/X)

25 031 EM (CTRL/Y)

26 032 SUB (CTRL/Z)

27 033 ESC (ESCAPE)

28 034 FS (CTRL/\)

29 035 GS (CTRL/1)

30 036 RS (CTRL/"™)

ASCII Character Equivalents

DECIMAL
VALUE

31
32
33
34
35
36
37
38
39
40
41
42
43
by
45
k6
47
48
ko
50
51
52
53
54
55
56
5T
58
59
60
61
62
63
64
65
66
67
68
69
70
T1
72
73
T4
75
76
77
78
79

OCTAL
VALUE

037
o40
o1
ou2
043
044
045
ou6
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077
100
101
102
103
104
105
106
107
110
111
112
113
114
115
116
117

ASCII
CHARACTER

US (CTRL/)
SP (space bar)
!

"

+ O e 2oy

WO WN-20s N1

OZEM"RNUHIDNOWMBOAQAWE®@« VI A“ o

DECIMAL
VALUE

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
11
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

OCTAL
VALUE

120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137
140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

PAGE C-2

ASCII
CHARACTER

Y s, NK M E<<aoRl oY

‘l

terr e NG M E St 00O BSBHRFRGREIIR SO0 oD

DEL

Mo

APPENDIX D

BASYS FILE EXTENSIONS AND DEVICE NAMES

This appendix lists BASYS file extensions and device names. A
DX11 or PX11 file specification consists of a file name and
optionally a file extension and device name,.

For additional information on file extensions and device names,
see the BASYS User's Guide.

File extensions are not limited to those 1listed Dbelow. Those
listed below have generally accepted meanings and are useful for
identifying the type of information contained in a file, Any

combination of one to three letters may be used for a file
extension,

FILE TYPE MEANING
.BAC I/0BASIC compiled file
.BAK Editor (or other) backup file
.BAS I/0BASIC source file
.COM Indirect command file
.DAT I/0BASIC data file
.SAV Executable program file
.SYS System files and handlers
LIXT Text file

The two-letter device codes listed below are used to identify
possible BASYS System storage devices. These are standard device
names used for the Digital Equipment Corporation compatible
storage devices comprising the BASYS System.

DEVICE DEVICE NAME
TU58 Tape Drive DDn:
RLO1/RL02 Hard Disk Drive DLn:
RX01 Floppy Diskette Drive DXn:
RX02 Floppy Diskette Drive DYn:

DX11, PX11 Extended Memory Disks XMn:

(,\W‘)\M.;

s

APPENDIX E

I/0BASIC KEYWORDS

Listed below are all of the I/OBASIC keywords. These keywords
cannot be wused as variable names in an I/OBASIC program. If a
"?Syntax error" results when running a newly developed I/0OBASIC
progran, it is possible that a variable name was chosen that is

one of the keywords below.

ABORT NEXT

ABS NOT

AIN 0CT

AINL OLD

ANALOG_IN ON
ANALOG_LOW_IN ON ERROR GOTO
ANALOG_OUT ON EVENT GOSUB
AND OPEN

AOT OR -

APPEND OVERLAY

ASC PEEK

ASFILE PI

ANT POKE

BIC POS

BIN PRINT

BIS RANDOMIZE

BIT READ
BIT_CLEAR REM

BIT_SET RENA ME
BIT_TEST REPLACE

BYE RESEQ
CANCEL_CTLO RESET

CHAIN RESTORE
CHAR_IN RESUME

CHR RETURN

CLEAR RND

CLK RUN

CLOCK_OUT RUNNH

CLOSE SAVE

COMMON SEG

COMPILE SET_AINL_GAIN
CONVERT_OCTAL SET_AINL_NOSCAN
CoS SET_AINL_NOTRIGGER

CTLC

I/0BASIC Keywords

DAT
DATA

DEF

DEFFN

DEL
DIGITAL_IN
DIGITAL_OUT
DIM

DIN
DISABLE_CTLC
DOT
ENABLE_CTLC
END

ERL

ERR
EVENTRETURN
EXP

FN

FOR
FORINPUT
FOROUTPUT
GET_DATE
GET_TIME
GOSUB

GOTO

IF

INPUT

INT

KILL

LEN

LENGTH

LET

LINE

LINPUT
LIST

LISTNH

LOAD

LOG

L0OG10

NAME

NEW

PAGE E=-2

SET_AINL_SCAN
SET_AINL_TRIGGER
SET_AIN_GAIN
SET_AIN_NOSCAN
SET_AIN _NOTRIGGER
SET_AIN_SCAN
SET_AIN_TRIGGER
SET_ANALOG_PERCENT
SET_ANALOG_VOLTS
SET_AOT_NOTOGGLE
SET_AOT_NOTRIGGER
SET_AOT_TOGGLE
SET_AOT_TRIGGER
SET_DATE
SET_THERMOCOUPLE
SET_TIME
SET_WIDTH

SGN

SIN

SQR

STEP

STOP

STORE

STR

SUB -

TAB
TEMPERATURE_IN
TEST_ADDRESS

THEN

TIME_OUT

TMPIN

TO

TRM

UNSAVE

USING

VAL

WAIT

XOR

