4000 PX11 & DX11

USER'S GUIDE

IM-0887

) J
S

.

A1l Rights Reserved ADAC Corporation
Copyright (c) 1983, 1984, 1986

The material in this manual is for
informational purposes only and is subject to
change without notice.

ADAC Corporation assumes no responsibility
for any errors which may appear in this

document.

Printed in U, S.A,.

The following are trademarks of Digital
Equipment Corporation, Maynard, MA:

DEC, DIGITAL

The following are trademarks of ADAC
Corporation, Woburn, MA:

BASYS, I/OBASIC

DISKBASYS, PROMBASYS, PX11, DX11, MICROBASYS, PICOBASYS

S &

S

TABLE OF CONTENTS

PAGE
CHAPTER 1 INTRODUCTION
1.1 PURPOSE OF THE MANUAL 1=-1
1.2 INTENDED AUDIENCE 1-1
1.3 RELATED DOCUMENTS =1
1.4 KEYPAD EDITING SOFIWARE 1-2
1.5 BASYS FAMILY DESCRIPTION 1=-2
1.5.1 DX11 SYSTEM DESCRIPTION 1-3
1.5.2 PX11 SYSTEM DESCRIPTION 1=-3
1.6 BASYS COMMUNICATIONS SOFTWARE 1-3
CHAPTER 2 SYSTEM STARTUP
2.1 STARTING A PX11 & DX11 SYSTEM 2-1
2.2 BOOTSTRAPPING YOUR BASYS SYSTEM 2-1
2.3 SAMPLE PROGRAMS 2=-2
2.4 INDIRECT COMMAND FILE SUPPORT 2-2
CHAPTER 3 MASS STORAGE VOLUMES
3.1 DATA STORAGE 3-1
3.2 HARD DISK WRITE-PROTECTION 3-2
3.3 ACCESSING STORED FILES 3=2
3.4 PX11 & DX11 MEMORY DISKS 3-2
CHAPTER 4 RT-11 COMMANDS
4.1 HOW TO EXIT FROM OR RUN I/OBASIC 4-2
4.2 ASSIGN COMMAND 4-2
4.3 COPY COMMAND 4-3
by DATE COMMAND 4y
4.5 DELETE COMMAND 4~y
4,6 DIRECTORY COMMAND -5
4,7 INITIALIZE COMMAND h-7
4.8 RENAME COMMAND b7
4.9 SQUEEZE COMMAND 4-8
4.10 TIME COMMAND h-g
4,11 TYPE COMMAND 4-9
CHAPTER 5 I/0OBASIC EXTENSIONS

LONG VARIABLE NAME SUPPORT 5-1
UPPER/LOWER CASE SUPPORT 5-2
PROGRAM FORMATTING 5-3
I/0BASIC REAL-TIME CONTROL STATEMENTS 5-3

uvITUTUTWL;
L) -
W N -

%, 4
R

CHAPTER

OO OUVIUVIVIUVIVTUVIUVIUITUITVIVIVIVIVIVTUVIVIVIVIVIUVTVIVIVTVIVTUTVTUVITUVTVIVITUT VIO VT U S 2 W N - =
L]

« o o e o . o « + s+ e o o
e o o e o o ¢« = & s » e e o e e e s o o s & e s e+ . e o ®
N s W N —
. ¢ o . ¢« & e 9 o o @ * e s o e e e @ « s
VT EWN — W N - N — O~ OOV EWN -

e o e 0 « s o
s e & % e 0 . .

~N OO OO OONVIVITUIVITUIT VNI S EEWWWWMNDMNMN - b e el el o e o

s e ..
W N -

STATEMENT OPERATING MODES
PROGRAMMED I/0 MODE
INTERRUPT MODE
DIRECT MEMORY ACCESS MODE
I/0BASIC ARGUMENT TYPES
DOCUMENTATION NOTES
INTERRUPT SERVICING AND THE USE OF FLAGS
INPUT/OUTPUT STATEMENTS
ON EVENT GOSUB
STATEMENT DESCRIPTIONS
ANALOG INPUT STATEMENTS:
ANALOG_IN
SET_AIN_GAIN
SET_AIN_SCAN / SET_AIN_NOSCAN
SET_AIN _TRIGGER / SET_AIN_NOTRIGGER
ANALOG_LOW_IN
SET_AINL_GAIN
SET_AINL_SCAN / SET_AINL_NOSCAN
SET_AINL_TRIGGER / SET_AINL_NOTRIGGER
TEMPERATURE MEASUREMENT STATEMENTS:
TEMPERATURE_IN
SET_THERMOCOUPLE
ANALOG OUTPUT STATEMENTS:
ANALOG_OUT
SET_AOT_TOGGLE / SET_AOT_NOTOGGLE
SET_AOT_TRIGGER / SET_AOT_NOTRIGGER
DIGITAL I/O STATEMENTS:
BIT_CLEAR

BIT SET
BIT_TEST

DIGITAL_IN
DIGITAL_OUT

TIME AND TIMING STATEMENTS:
CLOCK_OUT

GET_DATE / SET_DATE
GET_TIME / SET_TIME

TIME_OUT
WAIT

MISCELLANEQOUS STATEMENTS:

CHAR_IN

CONVERT_OCTAL

PEEK
POKE

SET_ANALOG_PERCENT / SET_ANALOG_VOLTS
TEST _ADDRESS

ERROR PROCESSING
ADDITIONAL INFORMATION

DEFAULTS FOR SET STATEMENTS

NULL ARGUMENTS

FLAG ARGUMENT

I/0BASIC REAL-TIME CONTROL STATEMENTS

[I R I I B |
et el e e @O OO OOUI W WND DN

[eAN > e W ep NN e e N e N o Mo W e e e Mo We We We We We W e We W W o)
]

iy, Iy
s

CHAPTER DATA FILES AND VIRTUAL ARRAYS

OPENING A FILE

CLOSING A FILE

USING SEQUENTIAL FILES

CHECKING FOR THE END OF AN INPUT FILE
RESTORING A FILE TO THE BEGINNING
USING VIRTUAL ARRAY FILES
DIMENSIONING VIRTUAL ARRAYS

VIRTUAL ARRAYS WITH AIN, AND AOT

L]
O-JONUT FWN —

0 ~~y~3-3~3=3-~3-3 =3

CHAPTER FORMATTED PRINTING

FORMATTING NUMBERS WITH PRINT USING
FORMATTING STRINGS WITH PRINT USING

(ool e o]
.
N —

BASYS CONFIGURATION PROGRAMS

L.

APPENDIX

DX11 AND PX11 PROGRAM
MODIFY

SHOW

EXIT

HELP

SAVE

OPEN

INDIRECT COMMAND FILES
ADDITIONAL INFORMATION

.

Lo B
WO EWN -

.

APPENDIX B DEFAULT BASYS SYSTEM CONFIGURATION
APPENDIX C I/0BASIC INSTRUCTION TIMES

APPENDIX D IMMEDIATE MODE COMMANDS

APPENDIX E MEMORY CONSIDERATIONS

APPENDIX F PROGRAMMING PROMS FOR PROMBASYS SYSTEMS

APPENDIX AUTOSTARTING DX11 AND PX11

[op}

SUMMARY OF LANGUAGE ELEMENTS

2o

APPENDIX

RT-11 COMMANDS

REAL-TIME CONTROL STATEMENTS

STANDARD BASIC STATEMENTS

TERMINAL CONTROL COMMANDS

I/0BASIC COMMANDS

ARITHMETIC FUNCTIONS

STRING FUNCTICNS

MISCELLANEOUS FUNCTIONS AND STATEMENTS

O~-IT AU EWN -

.

moin o

| I O I R T B |
CO--1TUVU =W W N

—3 3 =3 ~3 3 ~3 =3 ~J

oo o
w N

=
DOII~TONW =

| N R R R A |
UL 20w -

11

nmminom inm Imom

:
e

% 5
g

CHAPTER 1

INTRODUCTION

1.1 PURPOSE OF THE MANUAL

The purpose of this manual is to provide all the basic
information necessary for a user to set up software and hardware
for signal conditioning, data acquisition and process control

applications.

This user's guide will:
1. Teach you to start up a BASYS systen,
2. Describe the features of the I1/0BASIC software,
3. Instruct you on how to use I/0OBASIC features, and

4. Give you examples of programs in which I/O0BASIC
features are used.

If you are a first-time user, read the first four chapters of
this manual in sequence before running programs on the systenmn.
These chapters will describe the operation of the system so you
can take full advantage of its features.

1.2 INTENDED AUDIENCE

I/0BASIC users should know BASIC. Your programs will be written
essentially in BASIC, but I/OBASIC has convenience features not
found in standard BASIC. These enhancements to BASIC are
described in Chapter 5 of this manual. Additional information

Manual.

1.3 RELATED DOCUMENTS

Use the ADAC Corporation hardware manuals provided with your
system to familiarize yourself with the hardware of the systen
and to determine the components of your particular system,.

The BASYS System manuals will provide sufficient information to
enable BASIC users to operate the system, but you may find the
following reference manuals useful in future operation of the

system:

DEC RT-~11 Manuals

DEC BASIC Manuals

PAGE 1=2

1.4 KEYPAD EDITING SOFTWARE

Included with DISKBASYS and PROMBASYS systems is a keypad editor
that permits you to create and modify ASCII files, such as
I/0BASIC programs or data files. It is not necessary to use the
keypad editor to make full use of the features in the BASYS
system. The keypad editor program called KED, is not documented
here. You can refer to the PDP-11 Keypad Editor Hser's Guide,
published by Digital Equipment Corporation for information on how
to run and use KED,

1.5 BASYS FAMILY DESCRIPTION

The ADAC BASYS family of data acquisition and control =systems
consists of six members; DISKBASYS, PROMBASYS, PX11, DX11,
MICROBASYS and PICOBASYS., These six members span a performance
range from the larger DISKBASYS systems to the smaller PICOBASYS

systems.,

A feature shared by all six family members is the I/OBASIC
interpreter language. User-written I/0BASIC programs can be
developed on any family member and run on anyother family member.
The only exception is the MICROBASYS and PICOBASYS systems do not
have support for file I/0 and virtual arrays, which are available
on DISKBASYS, PX11, DX11, and PROMBASYS systems.

Each BASYS family member can be configured with a wide variety of

“ analog and digital I/0 options, as well as other peripheral
<-hardware options. These options permit tailoring of the system

“'to -the user's particular requirements. The table below lists the

L f3

a4

“ maximum amount of I/0 supported by each family member:

. PX11 DX11
CPU Type LSI-11/23 LSI-11/23
LSI-11/73 LSI~-11/73
_‘ ’Disk Support YES YES
“?fPowerfail Support NO NO
u;jfserial Channels 8 8
£»“HAJ‘.gh-Level Analog 128 128
vp,%PPUt Channels
i:zibigital Channels 128 128
ﬁgﬁkkhaiog Qut 128 128

~ Wide Range A/D 1024 1024

S

R

Lo

j

PAGE 1-3

1.5.1 DXt1 SYSTEM DESCRIPTION

DX11 is the high-end member of the BASYS family. It is capable
of being configured with a wide variety and amount of mass
storage. It is based on Digital Equipment Corporation's RT-11
operating system and LSI-11/23 CPU. The system operates from a
rotating mass storage device, (a winchester disk drive). The
system is suitable for program developement environments because
of the large amounts of mass storage available, Applications
that require collecting or storing large quantities of data can
also make use of the mass storage devices,

1.5.2 PX11 SYSTEM DESCRIPTION

The PX11system is designed for applications that cannot use
rotating disk storage because of environmental conditions such

as dust, vibration, temperature, etc.

The PX11system is supplied with the system software located in
Programmable Read-Only Memory (PROM XMO: DEVICE). This memory
is configured to function as a system disk., When the system is
powered on the operating system software is automatically read
from this disk, loaded into system working memory, and then
executed.

User-written programs and data can be stored in read/write CMOS
memory that is configured to function as a disk. This memory is
battery backed-up so that it can retain its contents for periods
of many days without power. For more permanent storage, of
programs, software is provided with each PX11 & DX11 system that
lets the wuser burn the image of aread/write disk into a PROM
disk. A hardware PROM burner is an option that can be supplied
by ADAC Corporation for this purpose,

The operation of a PX11 & DX11 system 1is described more fully in
later sections of this manual.
2972

1.6 BASYS COMMUNICATIONS SOFTWARE
LG

Communications software designed to run on a host computer and
support all four BASYS systems is available for a number of
different operating systems. This software allows programs to be
downline loaded to a BASYS system from a host computer..over a
standard RS-232/RS-423 serial line. Similarly, programs may be
upline stored from a BASYS system to a host computer, . .- i
The communications software is available for VAX/VMS, MICROVAX,
RSX-11M, RSX-11M+, RT-11, DX11, PX11, amd IBM PC/XT host computer
Ssystems., Programs are developed and executed directly on a
target BASYS systemnm, using only the terminal and mass
storage devices of the host computer.

. T W
Additional information is supplied in the BASYS Communications
Utility User's Guide.

i
g

o
s’

S

CHAPTER 2

SYSTEM STARTUP

Each of the two different BASYS systems consists of both hardware
and software components, The hardware components include items
such as a central processing unit, a console terminal, one or
more storage devices, and analog and digital I/0 devices. Refer
to the ADAC Corporation Hardware manuals to familiarize yourself
with the components in your particular system. The software
components consist of an I/OBASIC interpreter and operating
system software,

This chapter will explain how to start up both of these BASYS
systems so that the hardware and software can be used.

2.1 STARTING A PX11 & DX11 SYSTEM

No special operations are required to start a PX11 or DX11 systenm
since all of the operating system software is located permanently
in the system SY: Device. The system c¢an be bootstrapped
directly on power up.

2.2 BOOTSTRAPPING YOUR BASYS SYSTEM

Once the BASYS system has been turned on, the system should
bootstrap automatically.

If the system bootstraps correctly, the following display should
appear on the terminal screen for DX11 and PX11 systems:

OZ";
ADAC I/0BASIC Vnn~-x

>

The "greater than sign" (>) is the prompt which tells you that
the system 1s ready to receive I/0OBASIC commands, When this
prompt is present, you can enter and run programs or perform any
other I/0BASIC function, Before attempting to do so, however,
read the following chapters describing I/0BASIC software and how
it differs from BASIC.

PAGE 2-2

2.3 SAMPLE PROGRAMS

Included with DX11 and PX11 systems are several sample I/OBASIC
programs, You <can run these ©programs by using the I/0BASIC
RUN command as follows:

>RUN SY:progname <ret>

where progname is the name of one of the sample programs. SY:
is used to identify the system disk as the location of the
progranm, The following are the sample programs provided with

DX11 and PX11 systems:

ADDRSS.BAS Displays I/0 page addresses
CODE.BAS Plays a game of substitution code
LANDER.BAS The famous lunar lander game

TIME.BAS Used for computing instruction times

2.4 INDIRECT COMMAND FILE SUPPORT

I/0BASIC commands and statement lines can be read from indirect
command files, This feature is very useful and permits I/O0BASIC
programs to be run automatically at system powerup by using an
indirect command file. This support permits a standalone system
to be created using programs developed in I/0BASIC.

The indirect command file feature 1is especially important in
PX11 & DX11 systemn, It allows the user to generate and store
commands that control the manner in which a system is restored,
once power 1is applied, or re-applied. The desired sequence of
events to occur is stored as a series of RT-11 commands that get
executed in from a startup file, (START.COM)

PX11 & DX11 includes code that, during boot-up of the systen,
looks for the presence of a special file named "START.COM™,
If this file is found it is used to process RT-11 and I/O0OBASIC
commands, If this file 1is not found the system automatically
starts the I/0BASIC interpretter and displays the ">" prompt.

During boot, the system is designed to search through the file
directories of the various semiconductor "disks", looking for

START.COM. Once found, the search is ended, and the file 1is

executed. The sequence of search is first through XM1:
(RAM), then XM2: (auxilliary PROM), and then XM3: (located on the
1822PROM board), and finally XM4: (the non-volatile RAM disk).

In writing the START.COM indirect command file, a series of
commands 1is issued in exactly the same manner as if giving these
commands manually from the keyboard. To simplify the writing of
the file, the RT-11 COPY command can be used to "copy"™ a file
generated from the system console keyboard to the non-volatile
RAM provided for XMi4:, After the file is generated, it is
terminated with a "control-z"w,

i

PAGE 2-3

} As an example, assume that the following sequence 1is desired
g after power-up:

1. Load the I/0BASIC interpreter,

2. Run program 'DATTIM.BAS', which asks the operator for
the time and date. The program is stored on device XM4:

3. Run program 'STRTUP.BAS' from device XM3: after DATTIM
ends. PX11 ONLY.

y, Upon completion of STRTUP, run program 'LEVCIL.BAS' from
device XM3:. It is assumed that XM4 is the default
device,

EXAMPLE:

COPY TT:START.COM XM4: instructs system to copy inputs from
keyboard to RAM disk, XM4:

R IOBAS load I/0BASIC interpreter
RUN DATTIM run program DATTIM on XM4:
RUN XM3:STRTUP run STRTUP on XM3: after DATTIM finishes
RUN XM3:LEVCTL run LEVCTL after STRTUP finishes
<CTRL-Z> terminates ind. command file
A The program is now stored on the default device, XM4:, It will
J automatically get called up during power-up. If it is desired to

run this program again at some other time, type the following at
the RT-11 command level:

@START <ret>

M A

%

1 !
.
Sy

CHAPTER 3

MASS STORAGE VOLUMES

Mass storage volumes allow you to keep information outside of the
computer memory. Information on". storage volumes is accessed
using mass storage devices (or drives).

PX11 - Storage device solid state battery backed-up memory
DX11 - Storage device, Winchester and solid state battery
backed-up memory

3.1 DATA STORAGE

Information is kept on storage volumes in the form of files. A
file 1is simply a <collection of data, Programs, parts of
programs, input data, output data, or text, such as reports, may
be stored in files.

Every file on a storage volume has a unique name to distinguish
it from other files stored on the volume. When you create a file

'you give it whatever name you wish as long as no two files on one

volume have the same name, File names can be up to 6 characters
long and can be either letters or numbers.

File names are followed by a period and a 3-letter extension
which identifies the file type. File extensions tell you whether
a file is a user program, system program, data file, or some
other type of file, A list of possible file extensions and their
meaning is given in the table below.

File Type Meaning
.BAC I/0BASIC compiled file
.BAK Editor (or other) backup file
.BAS I/0BASIC source ftile
.COM Indirect command file
.DAT I/0BASIC data file
SAV Executable background program file
.SYS System files and handlers
LIXT Text file

Normally the operating system will provide the appropriate file
extensions to files when they are created. However, you should
be aware of these extensions, since they help identify different
file types.

The system maintains a directory on each storage volume listing
all the files on that volume. The directory will tell you the
file name, file type, size, and creation date for each file,
Each time you alter the contents of a storage volume, the change
will be reflected in the directory. See Section 4.6 for more
information on storage volume directories.

PAGE 3=-2

3.2 HARD DISK WRITE-PROTECTION

On the control panel there is a button marked (WWP) "Winchester
Write Protect"™, When this button is pressed in, it lights up and
the disk 1is write-protected. To write~enable the drive
simply press the "WWP" button until it does not light up.

3.3 ACCESSING STORED FILES

To access information on a storage volume it must be loaded into
an appropriate storage device unit. Each wunit of a storage
device 1s <called a drive. Devices are given code names
consisting of two letters, a number, and a colon, For example:
DLO: is the name of the winchester drive.

3.4 PX11 & DX11 MEMORY DISKS

PX11 & DX11 Systems treat extended memory as though it were
several disks. A special device handler supplied with either
system does this automatically. The user needs to know =several
things in order to make effective use of these disks:

1. The disks have physical device names XMO: to XMT7:.

2. If no device name 1is specified in an I/OBASIC file
operation, such as SAVE, OLD, or OPEN, then the default
device is used. This is also true for RT-11 operations,
such as DIR, DELETE, etc. The default device (called
DK:) will be assigned to device XM1: if XM1: is
present, If device XM1: does not exist then device
XMU: is assigned the default device,

3. Device XMO: contains the operating system software in
EPROM. It starts at the physical memory address
3.5M bytes, and is 224K bytes long. It occupies the
first seven socket pairs on the ADAC 1822PROM board.
(Not available in DX11)

4. Device XM1: is a read/write memory disk. It starts
at physical memory address 128K bytes, and its 1length
is dynamically set depending on how much contiguous
read/write memory is installed im the system after
this address. Up to 3.0M bytes may be installed,.
If there is no memory in the system device XM1: will
not exist. Memory c¢an be volatile dynamic RAM or
non-volatile CMOS RAM.

5. Device XM2: is available for a user-~developed PROM disk
starting at physical address 3.25M bytes and extending
to 3.5M bytes. A separate ADAC 1822PROM board could be
used to hold the contents of this device.

s

'»WMM

PAGE 3-3

Device XM3: is defined as the last (eighth) socket pair
on the ADAC 1822PROM board. This device is used to hold
the optional BASYS communications utility software. It
can also be wused as a user-developed PROM disk. This
disk will hold up to 56 blocks of file storage (one
block is 512 bytes). (Not available in DX11)

Device XMU: is the non-volatile RAM from 64K bytes to
128K bytes. It 4is available to the user., The con-
figuration parameters generated by the CONFIG program
are stored in XMA4.

The other disks are not assigned to any particular
extended memory locations, but they may be configured by
the user.

NOTE: Any device on the system can be set

to the default device by issuing
the RT-11 command: ASSIGN XMn:
DK:, where XMn is device XMO:,
XM1:, XM2:, XM3:, or XMi:, This
command can be issued directly by
the user or it can be imbedded in a
START.COM file set up by the user,
The START.COM file should contain
the following commands:

ASSIGN XMn: DK:
RUN XMO:IOBAS

See the section on indirect command
file support in Chapter 5 of this
manual for more information,

If the need arises to configure an extended memory disk the
following RT-11 command may be used:

CONFIG SET XMn BASE=aaa LENGTH=DbDD

Where n is the disk unit to be configured, aaa 1is the physical
base address of the extended memory that will be used as a disk,
and bbb is the length of the disk. Parameters aaa and bbb may be

specified as one of the following:

1.

An address in increments of 64 bytes (or 32 words), as
determined by the high 16 bits of the 22-bit phys-
ical address, as in 4000, which represents the physical
address 400000,

A block address, by appending the 1letter B to the
number. A block is 256 words (512 bytes).

A kilobyte address, by appending the letters KB to the
number. A kilobyte is 1024 bytes.

A megabyte address, by appending the letters MB to the
number, as in 2MB or 2,MB.

PAGE 3-4

The numbers aaa and bbb may also be either octal or decimal
numbers, If a decimal point follows the number (as in 10.), it
is assumed to be a decimal number, otherwise it 1is an octal
number, -

To show the current extended memory disk configuration, use the
following command at the RT-11 level:

CONFIG SHOW

The following chart shows the memory configuration of the various
XM disks:

Octal
R ittt bttt + OKB 0
+ RT-11 Operating System + 56KB
e — e —— e — e —————————— + 56KB 160000
+STANDARD, always supplied + 72KB maximum
+ XMy RAM disk + disk is autosized
+ Non-volatile +
e, ——— + 128KB 400000
+ +
+ +
+ XM1: RAM disk + 2944KB maximum
+optional; can be volatile + disk is autosized
+ or non-volatile RAM +
D e Y e LT + 3072KB 14000000
+ <unassigned> + 256KB
e el R P + 3328KB 15000000
+ + 256KB maximum
+ XM2 PROM disk + disk is autosized
+ +) disk is read only
e et R ettt T + 358U4KB 16000000
+ + 22L4KB
+ XMO: PROMdisk + disk isread only
+ +
e R R it + 3808KB 16700000
+ IM3: PROM disk + 32KB
tomrr e, e, r_,,r— ,—r e —.———— +3840KB 17000000 diskisread only
+ <unassigned> + j 256KB
ey + LO88KB 17760000
+ 1/0 Page +

T E R PP E P + HO9EKB ATTTTTTT

%,
g’

r

% ;
g

CHAPTER 4

RT-11 COMMANDS

The operating system, called RT~-11, is part of the software of
the BASYS System. RT-11 is a collection of programs that make up
the environment in which you enter and run your programs. RT-11
coordinates +the resources of the computer and lets you control

them,

The BASYS System is designed to enable youto bypass much of the
operating system in order to decrease the learning time involved
in using the systemn, This chapter provides the RT-11 commands
you will need to know, inaddition to the I/OBASIC language, in
order to use the BASYS Systenmn, The RT-11 commands described in
this chapter are listed below:

1. ASSIGN
2. COPY
3. DATE
4, DELETE

5. DIRECTORY, /FULL, /BRIEF, /PRINTER
6. FORMAT, /SINGLE

7. INITIALIZE

8. RENAME

9. SQUEEZE

10. TIME

11. TYPE

This chapter tells how and when to perform each of the above
commands. Prior to performing any of these commands you must
exit from the I/OBASIC interpreter,

All commands given in this chapter are entered by typing a
carriage return after the command. A carriage return is
symbolized by <ret> in the command format. If an RT-11 command
requires that you specify a device name, the device name will be
indicated by ddn: where dd is the two-letter device code and n
is drive number,

—

.

RT-11 Commands PAGE 4-2

4,1 HOW TO EXIT FROM OR RUN I/OBASIC

To enter any RT-11 command you must exit the I/OBASIC interpreter
so you can direct your commands to the RT-11 operating system.
To exit the I/O0OBASIC interpreter and communicate to RT-11, type
the following on the terminal in response to the I/O0BASIC prompt

(>):

BYE <ret>
A period (.) will appear on the terminal. This period is the
RT-11 prompt. It is similar to the greater-than sign (>) prompt
in I/OBASIC; it tells you that the system is ready to receive
RT-11 commands, To enter an RT-11 command simply type the

command followed by a carriage return in response to an RT=-11
prompt.

If your system is running in the RT-11 operating system and you
want to return to I/0OBASIC, you can do either of two things:

1. Type the following in response to the RT-11 prompt:
RUN SY:IOBAS <ret>
2. Or, rebootstrap (reload) the system software., This can
be done either by turning the power off and then on
again, or by depressing the RUN button located on the
front of the system. Remember that when the system is

first turned on, it &runs I/OBASIC and you see the
greater-than sign (>) prompt.

4,2 ASSIGN COMMAND

The ASSIGN command is used to assign a logical device name to a
physical storage device. Use the following command format:

+ASSIGN <ret>
Physical Device Name? ddn: <ret>
Logical Device Name? xx: <ret>

ddn: 1is the physical device name; XX: is a 1logical device
name, For example:

.ASSIGN <ret>

Physical Device Name? DLO: <ret>

Logical Device Name? DK: <ret>
results in disk drive DLO: Dbeing assigned the logical name DK:.
This means that it can be specified by either of the two

designations, DLO: or DK:. Use the ASSIGN command to specify
which device unit is to be the default (DK:) for RT-11 commands.

i

T’

S

RT-11 Commands PAGE 4-3

When issuing an RT-11 command that assumes the default device
specification (DK:), you can override the default by specifying

any other device in the command line.
NOTE

In general, the RT=-11 ASSIGN
command is not needed by users of a
BASYS Systen, It 1is possible to
successfully operate a BASYS System
without ever having to issue this
command, It is documented here for
configurations that have more than
two disk drive units, and where the
user wants to make use of logical
device names,

4,3 COPY COMMAND

The COPY command copies files between or within storage volumes,
The system duplicates the file you specify as input and gives it
the name and file extension you specify as output. The original
version of the file is not altered in any way.

You can use this command to create backup copies of important
data.

To copy a file from one volume to another, the volume you are
copying to must be write-enabled (Section 3.2). Use the
following command format:

.COPY <ret>

From? ddn:filename.ext <ret>

To? ddm:copyname.ext <ret>
where ddn: and ddm: are physical or logical device names, If

ddn: and ddm: are the same then the copy is placed on the same
volume as the original,

RT-11 Commands PAGE 4~}

4.4 DATE COMMAND

The DATE command is used to set the current date or to print it
on the terminal. To set the date use the following command
format:

.DATE dd-mmm-yy <ret>

Where dd-mmm-yy is the current date in the form day-month-year.
For example, .DATE 05-0CT-81 sets the date to October S5th, 1981.

The date must be reset every time you turn the BASYS System on.
If the date has been set, the following command will cause it to
print on the terminal:

.DATE <ret>>

The date will also print on header lines of I/OBASIC programs and
directory listings.

4,5 DELETE COMMAND

The DELETE command is used to delete file names from a storage
volume, When you enter the DELETE command, the system will
confirm each file to be deleted prior to deleting it. Use +this
prompt to check your operation before proceeding. If you type Y,
the system will delete the specified file. If you ¢type N or
anything other than Y, the file specified will not be deleted.

To delete a file, the volume must be write-enabled (Section 3.2).
Use the following command format:

.DELETE <ret>

The system will prompt for the name(s) of the file(s) to be
deleted. Enter the file name and the extension following the
prompt. More than one file can be specified for deletion by
entering the file names and extensions separated by commas, as in
the example below. RT-11 confirms each file to be deleted.

Files? DEMO.BAS, SPELL.TXT, TRIAL.DOC <ret>

Files deleted:

DK:DEMO .BAS ? Y <ret>
DK:SPELL .TXT 2?2 Y <ret>
DK:TRIAL .DOC ? Y <ret>

The system will not delete a file until youtype Yin response to
the prompt. If you type N or anything other than Y, the system
ignores that file and goes on the next one. Note that the system
prints the file name and the device specification as a safeguard
against accidental deletion.

-

P

gt

RT-11 Commands . PAGE 4-5

4.6 DIRECTORY COMMAND

The DIRECTORY command allows you to find out what files are
stored on a volume., The directory is maintained by RT-11; it
consists of file names, file lengths, and file creation dates for
each volume, The directory will also tell you how much free
space is available on the volunme,

Your volume does not need to be write-enabled to view the
directory since this command does not alter its contents. The
following command is used to print the directory on the terminal
secreen:

.DIRECTORY ddn: <ret>

Where ddn: is the device name. The system will default to DK:
if no device name is specified.

A sample directory is shown below and explained in the following
paragraph.

10-NOV-86 :
SWAP .SIS 26P 17-May-85 RT113J.38Y3 78P 17-May=-85
DX .SYS 3P 17-May-85 DY .SYS 4P 17-May-85
DL .SYS 5P 17-May-85 DD .SYS 5P 17-May-85
LP .81 2P 17-May-85 LS .SYS 2P 17-May-85
XM . SYS 3P 17-May-85 LD .SYS 8P 17-May-85
IOBAS .SAV T9P 17-May-85 CONFIG.CNF TP 17-May-85
STARTS.COM =~ 1P 17-May-85 PIP .SAV 29P 17-May-85
DIR LSAV 19P 17-May-85 DUP .SAV 4sp 17-May-85
KED .SAV 59P 17-May-85 LANDER.BAS 3P 17-May-85-
CODE .BAS 5P 17-May-85 TIME .BAS 4p 17-May-85
ADDRSS.BAS 2P 17-May-85 DU .SYS8 4P 17-May-85
FORMAT.SAV 21P 17-May-85 CONFIG.BAS 25P 17-May-85

24 Files, 439 Blocks
549 Free blocks

The directory lists the name you gave your file or progran
followed by the file extension or type. After the file name and
extension is the number of blocks of space that the file wuses
followed by the file's c¢reation date. The final lines of the
directory tell you the number of files, the total space used, and
the remaining free blocks on the volume. A block on a disk can
store 512 characters.

You can also enter the command DIRECTORY/FULL to see the files on
a volume and how the available free space is arranged, This
information is useful in determining if a volume 1is near
capacity. Section 4.9 describes how to change the arrangement of
the available free space ona volume to make it more wuseful. A
sample full directory is shown below:

RT-11 Commands PAGE 4-6

06-MAY-83
PIP «SAV 23 02-JAN-83
< UNUSED > 18
CONFIG.BAS 20 16-MAY-82
< UNUSED > 18
TEMP1 .DAT 60 15-MAY-82

< UNUSED > 118
3 Files, 103 Blocks
154 Free Blocks

In the directory above, the total free space is 154 blocks, but
it is ©broken up into three sections containing 18 blocks, 18
blocks, and 118 blocks respectively.

If there are too many lines in the directory to fit on the screen
at one time, the system will scroll the screen to print them all.
You may need to stop the scrolling in order to examine the
directory. To do this, type the letter S while holding down the
CTRL key (CTRL/S). To start the screen scrolling again, type the
letter Q while holding down the CTRL key (CTRL/Q).

The DIRECTORY/BRIEF command will print an abbreviated directory
containing only the file name and file extension. The
DIRECTORY/PRINTER command will cause the directory to be output
to a line printer if one is available rather than the terminal.
Make sure the line printer is turned on when you issue the
DIRECTORY/PRINTER command,

The optional /FULL, /BRIEF, and /PRINTER commands can be used 1in
combination, For example, the command DIRECTORY/FULL/PRINTER
will cause a full directory to be output to the 1ine printer.

e

s

S

|
Sy

RT-11 Commands PAGE 4-7

4,7 INITIALIZE COMMAND

When you initialize a volume, the system will <destroy the
existing directory and create a new empty directory. The
initialize command erases all existing information on the volune,

After initializing a volume, the directory will be empty until
you store something on the volume, You must initialize new
volumes to prepare them for use, but you can also initialize
volumes with unwanted data on them to reclaim the space for use.
This command should be used with care because it results in all
the information on the volume being deleted.

You must write-enable a volume prior to initializing it Dbecause
its contents will be deleted (Section 3.2). To initialize a
volume use the following command format:

LINITIALIZE ddn: <ret>

Where ddn: is the device name which must be specified. The
system returns the following prompt,

ddn:/INITIALIZE, Are you sure?

If you type Y followed by a carriage return, the system will
initialize the volume in the specified drive., If youtype N, or
anything other than Y, the command will be cancelled and nothing
will happen to the disk. This is a safeguard to prevent
accidental deletion of files,

The system prints the targeted physical device name followed by
the operation to be performed. Use this information to double

check your command.

4.8 RENAME COMMAND
The RENAME command changes a file name or file type without
altering or moving the file itself. When you enter the RENAME

command, the device specified for input and output must be the
same,

To rename a file, the volume must be write-enabled (Section 3.2).
The command format given below renames the file TRIAL.DOC to
TEST. TXT.

.RENAME <ret>

From? DK:TRIAL.DOC <ret>

To? DK:TEST.TXT <ret>

RT-11 Commands PAGE 4-8

4.9 SQUEEZE COMMAND

The SQUEEZE command compresses all the files on a volume into a
block at the beginning of the volume leaving a contiguous block
of all remaining free space, Squeezing leaves your remaining
free space in a more useable form. Squeezing does not alter the
information stored in your files, it only alters the placement of
the files on the volume,

If youhave created or deleted a large number of files, the free
space on the volume may be broken up into small unuseable
segments., When you try to create a file using I/0BASIC, the
following message may appear on the terminal:

?Not enough room

You can check the directory using the command DIRECTORY/FULL on
the volume to see the configuration of free space on the disk.
This directory will show how the free space is broken up; if
many small, unused segments exist, you should squeeze the disk.

To squeeze a volume it must be write-enabled (Section 3.2). Use
the following command format:

.SQUEEZE ddn: <ret>

Where ddn: 1is the device name. The system will assume DK: if
no device name is specified. The system will return the
following prompt:

ddn:/SQUEEZE, Are you sure?

If you type Y followed by a carriage return the volume will be
squeezed, If you type N, or anything other than Y, the operation
will be cancelled. When a volume has been squeezed, check the
directory wusing the command DIRECTORY/FREE to see if you have
created more useable free space. The blocks of free space should
now be arranged in one large block.

NOTE

Squeezing only rearranges existing
free space 1into one large free
area, It does not increase the
total free space,

i i
" J
Mot

]
’w«j

%

s

k ;
%
g

RT-11 Commands PAGE 4-9

4,10 TIME COMMAND

The TIME command is used to set or display the current time 1in
24-hour notation. The system keeps track of the correct time
based on the initial time you enter by issuing the following

command:
.TIME hh:mm:ss <ret>

Where hh:mm:ss is the current time in the form
hours:minutes:seconds. For example 17:23:34 1is the correct
notation for 23 minutes and 34 seconds past 5 PM. You need not
enter the seconds or minutes (TIME 17 or TIME 17:23 are
sufficient to specify 5 PM or 5:23 PM respectively).

The TIME command must be entered each time you turn the system on
to keep the time current. Every time you enter the TIME command,
the new time overrides the previous setting.

To check the time once it has been set, use the following command
format:

.TIME <ret>

4,11 TYPE COMMAND
The TYPE command will list the contents of a file on the console
terminal. The command can be used to list an I/0BASIC program, a
data file, a command file, or any other file that is in ASCII
format. It may not be used to list the contents of a binary
file,
The following is the format for the TYPE command:

.TYPE <ret>
The system will prompt for the name of the file to be 1isted, as
in:

Files? filename,ext <ret>

where filename.ext is any valid BASYS file specification, such as
TEST1.DAT, or DL1:PROG1.BAS.

S

CHAPTER 5

I/0BASIC EXTENSIONS

The I/OBASIC interpreter is an extended implementation of the
Digital Equipment Corporation BASIC interpreter. The I/0BASIC
version of BASIC is easier and more convenient to wuse than
standard BASIC. I/0BASIC also provides you with powerful
statements that give you the ability to perform sophisticated
real-time data acquisition and control without having to write
lengthy or complicated programs.

The following I/0BASIC features are described in this chapter:

1. Long-variable name support,

2. Upper/lower case support for keywords and variable
names.

3. Program formatting support.

4, Real-time control statements.,

I/0BASIC features are explained in this chapter. The real-time
control statements included in I/OBASIC are summarized in this
chapter, with detailed instructions for their use given in
Chapter 6.

5.1 LONG VARIABLE NAME SUPPORT

To improve the readability of your programs, I/0BASIC allows you
to use 1long variable names. While standard BASIC limits you to
one or two characters for a variable name, I/0BASIC allows each
variable name to be up to 32 characters long, so that you can
create more descriptive variable names.

I/0BASIC variable names may contain any combination of letters,
numbers, and the underscore character. Variable names may also
contain embedded I/0OBASIC keywords, such as PRINT, or WAIT. The
only restriction 1is that all I/OBASIC variable names must begin
with a letter., For example, the following are valid I/OBASIC
variable names:

gas_flow, fortune, delay_4time, tanki2

The following are not valid I/0BASIC variable names:
12pay, U4_pressure, 6temp2, _tax

This feature of I1/0BASIC is very wuseful for creating programs
that are easily wunderstood by yourself and others, It also
greatly simplifies the task of writing large c¢r complex programs.
Long variable names can be selected which are most descriptive of
the variable's purpose.

I/OBASIC Extensions PAGE 5-2

To illustrate this point, two programs are listed below that do
exactly the same thing.

100 a 5

110 b 6

120 ¢ 10

130 d 2

140 a a+ b *da+ 5 % c ® 72

150 PRINT a

160 END

100 dist = 5

110 speed = 6

120 accel = 10

130 time = 2

140 dist = dist + (speed * time) + (.5 * accel * time”"2)
150 PRINT dist

160 END

It is obvious that the second program uses variable names that
are more descriptive and understandable than those in the first
progran,

It is also helpful to avoid using variable names that are very

long. Longer variable names can be more descriptive, but they
also result in longer program lines, thus making for more typing
and reading. Keeping variable names to less than about twelve

characters still permits a name to be quite descriptive.

The underscore character can also be used within a variable name
to delimit different words, making the progran more
understandable. For example, an accounting program might have
the following variable names:

employee_name, employee_pay, employee_age
consultant_name, consultant_pay, consultant_age

It is suggested for the I/0BASIC programmer that a common prefix
name be given to all variables that can be classified as a group,
such as those listed above in the accounting program example,
This greatly simplifies the task of selecting variable names and,
at the same time makes the program easier to read and understand.

5.2 UPPER/LOWER CASE SUPPORT

To improve the readability of your programs, I/0OBASIC allows you
to enter your program in upper or lower case letters. When your
program is listed I/OBASIC will always convert variable names to
lower case and I/0OBASIC keywords, such as statements and
functions, to upper case. For example, if you ¢type 1in the
following program:

1 to 10
LOOP_COUNT®*2

10 for loop_count
20 LET TIME_FRAME
30 print time_frame
40 WAIT(TIME_FRAME)
50 next loop_count
60 end

Mg

S

Rascgi®

gy’

I/0BASIC Extensions PAGE 5-3

it will appear as follows when it is listed:

>listnh <ret>

10 FOR loop_count = 1 TO 10

20 LET time_frame = loop_count ¥ 2
30 PRINT time_frame

40 WAIT(time_frame)

50 NEXT loop_count

60 END

>

Observe that even though the variables "Lime frame" and
"loop_count™ were originally entered in a variety of cases, they
are all converted to lower case by I/OBASIC. Thus, the variable
TIME frame and Time_FRAME are the -exact same variable to
I/0BASIC.

5.3 PROGRAM FORMATTING

I/OBASIC allows you to insert any number of spaces or tabs
between the program line number and the first word of the progran
line. This allows you to use an indented structure when you
program to facilitate debugging and improve readability.

It is desirable to use formatting to make programs more readable
and understandable, Program statements occurring within FOR/NEXT
loops can be indented to make them easier to read. For example:

>listnh <ret>

100 FOR count = 1 TO 10

110 PRINT count

120 square = count * count
130 PRINT square

140 NEXT count

150 PRINT "End of loop"

160 END

>

Note that the statements within the FOR/NEXT 1loop <can be seen
easily due to their indentation.

5.4 I/0BASIC REAL-TIME CONTROL STATEMENTS

The BASYS System allows you to communicate with external devices
connected to it under the control of your I/0OBASIC programs,
Your I/OBASIC programs can collect data, control processes and
instruments, and schedule events in a wide variety of
applications. To reduce your programming overhead and to make
your programs more powerful without being more complicated, the
I/0OBASIC interpreter includes statements which will perform many
of these real-time control operations.

I/0BASIC Extensions PAGE 5-4

I/0OBASIC real-time control statements are listed below:

1. ANALOG_IN reads high-level analog input channels.

2. ANALOG_LOW_IN reads low-level analog input channels.

3. ANALOG_OUT writes to analog output channels.

4, BIT_CLEAR clears a digital output bit.

5. BIT _SET sets a digital output bit.

6. BIT _TEST tests a digital input or output bit.

7. CHAR_IN reads characters from serial channels.

8. CLOCK_OUT operates the 1601GPT Real-Time Clock.

9. CONVERT_OCTAL converts octal values to and from decimal.

10, DIGITAL_IN reads a digital input or output channel.

11. DIGITAL_OUT writes to a digital output channel.

12. GET_DATE and SET_DATE get and set the system date.

13. GET_TIME and SET_TIME get and set the system time.

14, ON ERROR GOTO enables error processing.

15. ON EVENT GOSUB enables event processing.

16. PEEK reads memory locations.

17. POKE writes to memory locations,.

18. TEMPERATURE_IN reads a thermocouple temperature,.

19. TEST_ADDRESS tests for valid bus addresses.

20. TIME_OUT starts a software timer.

21. WAIT delays the progranm,
In addition to the above real-time control statements, there are
also a number of SET statements that can be used to select
particular operating parameters for the above statements. One
example is the SET_ANALOG_VOLTS statement, which =sets the
engineering units to volts for the analog input anrd output
statements, '
Chapter 6 tells you how and when to use each statement and gives
examples of programs in which +the statements are wused.

Additional programming examples can be found throughout this
manual and also the I/0BASIC Language Reference Manual.

A :
R

s’

CHAPTER 6

I/0OBASIC REAL-TIME CONTROL STATEMENTS

I/OBASIC includes real-time control statements which allow you to
perform input and output (I/0) of data between your BASYS System
and a variety of external devices., These statements are powerful
programming aids that give you the ability to monitor and
control external hardware using analog and digital I/0
devices in the BASYS systen, Your programs control the
statements and the statements control the I/0 devices.

This chapter describes I/0BASIC statements and gives examples of
their use., General information about the use of statements is
also given. The following are the main features of the I/0BASIC
real-time control statements:

1. Analog and digital I/0 statements support programmed
I/0, interrupt, and DMA modes of operation. These three
modes of operation are explained in Section 6.1.

2., All analog input and output statements can be passed
numbers in engineering units, or if desired, in binary
format (as an octal ASCII string). The engineering
units supported are percent full-scale, volts, and
degrees centigrade,

3. Analog, digital, and timer I/0 statements <can operate
either synchronously or asynchronously. When operated
asynchronously, it means that the I/0 c¢an take place
concurrently with I/OBASIC program execution, I/0
completion is signalled by the setting of a flag. When
operated synchronously, these statements behave like all
other I/OBASIC statements, in that they complete all
required processing before the next program statement is
executed, Use of asynchronous operation is enhanced
significantly by use of the "ON EVENT GOSUB"™ statement.

4, Several statements provide time-related support,
Setting and reading the system date and time, operating
the real-time clock, issuing programmed delays, and
gqueueing timer flags have all been included,

5. Several miscellaneous statements have been included that
permit such things as converting decimal numbers to

octal numbers, performing memory PEEK and POKE
functions, and testing if an address 1is present on the
bus.

I/0OBASIC Real-time Control Statements PAGE 6-2

6.1 STATEMENT OPERATING MODES

I/0BASIC statements operate like statements in any other version
of BASIC, whereby one program statement at a time is executed,
and when it 1is done, the next program statement executes,
However, unlike other versions of BASIC, several real-time
control statements available in I/OBASIC can also operate
asynchronously, so that they perform I/0 simultaneously with the
execution of other program statements. The real-time control
statements that support a flag argument are the ones that can
operate asynchronously. The following three modes of operation
apply to these statements and are explained in the following
sections:

1. Programmed I/0 mode,
2. Interrupt mode.

3. Direct Memory Access (DMA) mode.

6.1.1 PROGRAMMED I/0 MODE

When an I/0BASIC program executes a real-time control statement
that can ©be passed an optional flag argument, but no flag
argument is passed, that statement will operate in programmed I/O

mode. When a statement wuses programmed I/0, it completes all
processing before the next I/0BASIC program statement is
executed, Therefore, the statement is said to operate

synchronously, since it always completes at a known place within
the I/0BASIC program f(actually prior to the next progranm
statement).

6.1.2 INTERRUPT MODE

When an I/0BASIC program executes a real-time control statement
and a flag argument is specified, that statement will operate in
interrupt mode. When the statement operates in interrupt mode it
will begin execution, perform as much processing as possible, and
then pass control to the next program statement so it can be
executed. At some later point, when the appropriate hardware
interrupt needed by the real-time control statement occurs, the
statement will finish processing, and then set the value of the
flag argument to a one, Therefore, the statement 1is said to
operate asynchronously, since it will actually complete at some
indeterminate point later in the program.

This mode of operation can be used to improve the real-time
response of the system, to overlap program execution and I/0, and
to permit multiple I/0 to occur simultaneously.

S’

'\\
s

”wwﬂ

I/0OBASIC Real-time Control Statements PAGE 6-3

6.1.3 DIRECT MEMORY ACCESS MODE

This mode is identical in operation to interrupt mode, except
that it makes use of DMA hardware to perform the actual I/0. DMA
mode can only be used with systems that are configured with an
ADAC 1622DMA controller board. This mode uses the least amount
of computer time to operate. It will, for instance, permit
high-level analog input to occur at aggregate rates up to 100,000
samples per second, simultaneously with program execution.

DMA mode is supported by the ANALOG_IN, statements. It will be
used automatically when a flag argument is specified in the
statement and DMA hardware is configured on the system. If a
flag argument is specified but no DMA hardware exists, then
interrupt mode will always be used.

6.2 I/0BASIC ARGUMENT TYPES

Arguments for real-time control statements can be of type
integer, real, or string. An integer is a number in the range
-32768 to +32767. It cannot have a fractional part or a decimal
point, Constants and variables of type integer that appear in an
I/OBASIC program must be followed by a percent (%) =sign, as in
the examples listed below:

123%, count$%, -16%, employee_age?®

Integer constants and variables take up less memory than other
I/0BASIC variable names so they are useful in applications where
memory is scarce. Also, program execution is always faster with
integer constants and variables than with real constants and
variables.

Real numbers are numbers within the absolute range of
approximately 1E+38 to 1E=-37. A real number can contain a
fractional part and a decimal point. Constants and variables of
type real that appear in an I/0BASIC program are not followed by
any special character, Some sample real variables and constants
are: 3.14159, flow_rate, =-123.0, 8.1E+3, tank _volume

Real variables and constants have a larger range than integers
and are useful in most applications. However real variables and
constants take up more memory than integers, and also require
more computer time when used in calculations.

String constants and variables are groups of letters, numbers and
symbol s. In an I/O0OBASIC program string constants must be
enclosed in either single or double quotes (" or '). String
variables must be followed by a dollar sign ($). Some typical
string constants are:

"Hello.", ‘'anything goes', ™":)$#"22n

and some typical string variables are:

a$, name$, user_password$, addressiz$

I/0BASIC Real-time Control Statements PAGE 6-14

String variables are useful for storing words, names, phrases,
and anything that cannot be =stored as a number. I/0BASIC
supports a wide range of string handling functions that can be
used to manipulate strings and perform operations on them, These
functions are listed in the I/OBASIC Language Reference Manual.

A11 I/0BASIC real-time control statements support a special |use
of string variables for expressing octal (base 8) numbers, If
the string "123" is an argument in an I/OBASIC real-time control
statement, for example, it will be interpreted as the octal
number 123 (83 decimal). If a string is specified as the
variable where an I/0BASIC statement should return a value, the
statement will place the octal representation of the value in the
string variable,

6.3 DOCUMENTATION NOTES

The following documentation notes apply to the descriptions of
the I/CBASIC real-time control statements found in this chapter:

1. All ranges given for legal argument values are inclusive
unless otherwise specified.

2. Arguments passed as strings in the statement must
contain valid octal numbers. Example: "0123" or "177777"

3. All optional parameters and arguments are enclosed in
brackets "[]n,

6.4 INTERRUPT SERVICING AND THE USE OF FLAGS

In real-time control applications, it is often desirable to
trigger, or start, an action based upon some event happening.
The event may be indicated by a contact closure or a signal level
change. The BASYS systems are capable of sensing these events,
and reacting to them, as dictated by the application programs,

When an event occurs, the CPU is interrupted, and an interrupt
service routine is exercised. The action taken is a function of
the type of card through which the interrupt occurs and the
I/0BASIC statement being executed.

6.4.1 INPUT/0UTPUT STATEMENTS

Each of the analog and digital I/0 statements, as well as a few
other statements, have an optional FLAG argument. When an
I/0BASIC statement is executed with a specified flag, the
statement operates in the interrupt, or asynchronous, mode. In
this mode it will begin execution, perform as much processing as
possible, and then pass control to the next program statement for
execution, At some later point, when the appropriate hardware
interrupt needed by the real-time statement occurs, the statement
being processed will finish, and then the value of the flag
argument will be set to a one,

St

s

%,

e W\;j\g
-

I/OBASIC Real-Time Control Statements PAGE 6~5

With the DIGITAL_IN and DIGITAL_OUT statements, if the flag is
not used, the statements are executed synchronously, which means
that the input or output of data occurs when the statement is
encountered in the program, Advancing to the next statement
occurs only after the statement is completed. If the flag is
used, the flag is set to zero when the statement is encountered,
and then the program immediately moves on to the next statement.
Meanwhile, the DIGITAL_IN or DIGITAL_OUT statement is not
executed until the interrupt circuit on the board being acted
upon is activated. When the interrupt signal does come, data is
transferred through the card, and the flag is set to a one.

If the val argument of the DIGITAL_IN or DIGITAL_OUT statement
was specified as an array, then one element of the array would be
transferred for each interrupt that occurred. When the last
el ement of the array is transferred, the flag is set to a one,

For the ANALOG_IN, ANALOG_LOW_IN and TEMPERATURE _IN statements,
if no flag is used, the A/D converter operates in the programmed
I/0 mode, and all processing of the input statement is completed
before advancing to the next statement. If a flag argument is
used, the A/D converter operates in the interrupt mode. In this
mode execution is begun and as much processing as possible is
performed before the program transfers to the next statement.
Meanwhile, the A/D continues its digitizing process. When the A/D
finishes, it requests an interrupt and then the processing of
the input statement is completed. At this time the flag is set to
a one,

If the val argument in the input statement is specified as an
array, then the A/D, once started, continues to digitize until
the array is filled. Each conversion operates through the
interrupt circuit. When the array is full, processing of the
input statement is completed, and the flag is set to a one,
Depending upon whether SET_AIN_SCAN or SET_AIN_NOSCAN was used,
the array will contain data from a number of channels or from one
channel, In filling an array, successive triggers for the A/D can
come from the software (if SET_AIN _NOTRIGGER is used) or from an
external clock such as the 1601GPT if SET_ AIN_TRIGGER IS USED.

For input statements, if the flag is used and DMA hardware is
present, then the A/D will always operate in DMA mode. (See sec.
6.1.3). In DMA mode, the flag operates the same as interrupt mode
with array,.

For the ANALOG_OUT statement, use of the flag means that the D/A
converter(s) will operate in DMA mode. The val argument would
normally specify the name of the array (must be integer) that
will be transferred to the D/A. The flag will be set to a one
when the array is fully transferred.

6.4.2 ON EVENT GOSUB

The ON EVENT GOSUB statement enables event processing within an
I/0BASIC program. When a flag argument from any real-time control
statement is set to a one, the program will branch to the line
specified in the ON EVENT GOSUB statement,

I/OBASIC Real-Time Control Statements PAGE 6-6

When event processing is desired in an I/0BASIC program, the ON
EVENT GOSUB statement is generally placed at the beginning of the
progranm,

Event processing is very useful for creating powerful real-time
control programs that do not have to poll for completion of I/0

or timed events.

Al though there is only one event processing subroutine possible
within an I/OBASIC program, the event processing subroutine can
determine what flag caused the event by checking to see if a flag
is a zero or a one, Control branches to the subroutine when a
flag is set only after the current I/0BASIC statement completes
entirely. Therefore, statements such as INPUT should be avoided
in a program if real-time response is required. The CHAR_IN
statement can be used in its place,

EXAMPLE:

10 REM Collect 200 samples from each of 5 channels
and then output data through digital channel 0

20 ON EVENT GOSUB 1000

30 DIM temp(1000)

40 SET_AIN_SCAN

50 ANALOG_IN(4,temp(),full)

perform other processing here

1000 REM event processing subroutine starts here
1010 DIGITAL_OUT(O0,temp())
1020 EVENT RETURN

other program statements

2000 END

6.5 STATEMENT DESCRIPTIONS

The real-time control statements are described below. They are
grouped for easier understanding:

1. Analog input statements

2. Temperature measurement statements
3. Analog output statements

4, Digital I/0 statements

5. Time and timing statements

6. Miscellaneous statements

g

p—

S

i
S

»'\‘

I/0BASIC Real-Time Control Statements PAGE 6-7

6.5.1 ANALOG INPUT STATEMENTS:
6.5.1.1 ANALOG_IN - Reads high-level analog input channels.
FORM: ANALOG_IN(chan, val [,flag])

or

AIN(chan, val [,flagl)

This statement reads a channel on the high-level analog input
board, and places the values in the argument val., If argument
flag is specified, the channel is read in interrupt mode, or
DMA mode if a 1622DMA controller is present. (Not supported in
PICOBASYS).

The chan argument specifies the channel to be read; it can be
either a <constant or variable, and it can be of type integer,
real, or string., Chan must be in the range 0 to 191.

The first of two allowable high-level boards is accessed by
channel values 0-63 and the second (if any) is accessed by chan
values 128-191. Chan values 0-63 correspond to channels on the
first board, and chan values 128-191 correspond to channels
on the second board. The boards operate independently with
respect to channel scanning and DMA (if present), so it is
possible to to have two ANALOG_IN statements with flags
specified operating simultaneously. In DX11 & PX11 the high
level A/D board is model 1023AD, 4012HLAD, and 4112WRAD,

The val argument is a variable of type integer, real, or string
or an array of type integer or real. If argument val is of type
real, the values returned are in units of either volts or percent
full-scale (see the SET_ANALOG_PERCENT and SET_ANALOG_VOLTS
statements). If argument val is of type integer or string the
values returned are the unscaled binary readings from the A/D,

When val is an array, the array elements either contain multiple
readings of the same channel (argument chan) or contain readings
for channels 0 to the value specified by chan (or from chan 128
to the value specified for the 2nd AD). The former is the default
and is selected by the SET_AIN_NOSCAN and the latter is selected
by SET_AIN_SCAN. If an array is dimensioned for n elements and
the array is integer, 2n memory locations are reserved for
storage,. If the array is real (such as volts or percent full
scale), 4n elements are reserved,

I/0BASIC Real-Time Control Statements PAGE 6-8

The flag argument must be a variable of type integer or real.

NOTE

The ANALOG_IN statement also
supports direct transfer of analog
input channel data to a virtual
array. The wvirtual array must be
located onan XM memory disk, and
it must be of type integer, For
complete information on this
feature, see the chapter Data Files
and Virtual Arrays in this manual,

If the ANALOG_IN statement is used with a flag and DMA hardware
is present, data is collected via DMA mode, Since the frame
trigger for DMA is a hardware trigger, the ANALOG _IN statement
must be preceded with a SET_AIN_TRIGGER statement.

EXAMPLE:
The sample program below will read analog input channels 0 to 10
and print their values in units of volts.
>listnh <ret>
100 SET_ANALOG_VOLTS
110 FOR channel = 0 TO 10
120 ANALOG_IN(channel,value)
130 PRINT channel,value
140 NEXT channel
150 END
>

The following program will read analog input channel one, wait
for the interrupt and then print the channel voltage expressed as
percent full-scale,

>listnh <ret>

100 SET_ANALOG_PERCENT

110 ANALOG_IN(1,value,flag)

120 IF flag = 0 THEN 120

130 REM flag = 1 means ANALOG_IN statement is done

140 PRINT value

150 END

>

6.5.1.2 SET_AIN_GAIN - Sets the high-level analog gain.
FORM: SET_AIN_GAIN(val)

This statement will set the hardware programmable gain on the
high-level analog input device. Programmable gain can be used to
amplify small analog input signals, thereby increasing the
resolution of the converted value,

S

Y i
§ 7
Mg

I/0BASIC Real-time Control Statements PAGE 6-9

The actual programmable gain that is set by this statement 1is
determined by passing a gain tcode' in the argument val. There
is a different code {(or number) for each possible gain. Argument
val can be either a constant or variable of type integer, real,
or string. The following table shows the legal gain codes for
argument val, and the corresponding gain that will be set on the
analog input device:

val Gain

0 8
1 i
2 2
3 1 Default

The default code is 3, which sets the gain to 1. This means that
the analog input signal is passed unchanged to the analog input
device, For example, if the range of the analog input board is
10 volts and the gain is set to 4, then the new range will be
10/4 = 2.5 volts. Thus, the maximum value read from the board
will Dbe 2.5 volts. If avoltage greater thanthe range is input
to the board, the value returned will equal the maximum value,
If the analog engineering units are set to percent (using
statement SET_ANALOG_PERCENT), analog input values will always be
in the range 0 to 100 for unipolar and -100 to 100 for bipolar
configurations.

The following program will read 10 voltages from the analog input
channel s. It is assumed that the maximumvoltage to bereadis
1.25 volts and that the board is configured with a range of 10
volts.

>listnh <ret>

100 SET_ANALOG_VOLTS

110 SET_AIN_GAIN(O) \ REM set gain to 8§
120 FOR count = 1 to 10

130 ANALOG_IN(1,value)

140 PRINT value

150 NEXT count

170 END

>

6.5.1.3 SET_AIN_SCAN / SET_AIN_NOSCAN - Sets high-level analog
input channel scanning.

FORM: SET_AIN_SCAN
FORM: SET_AIN_NOSCAN

These statements will enable or disable channel scanning for the
ANALOG_IN statement. When channel scanning is enabled, the chan
argument specifies the highest channel to be scanned so that the
first channel of a multiplexer connected to the A/D (chan 0 or
64) up to the selected high channel are read in the ANALOG_IN
statement, If two A/D converters are used, the SET commands must
be established for each converter separately.

I/0BASIC Real-time Control Statements PAGE 6-10

The default setting for I/0BASIC is NOSCAN. The default setting
is restored each time a run command is issued.

The following program will scan channels 0 - 5 and output their
values 10 times.

>listnh <ret>

100 DIM scan_values(5)

110 SET_AIN_SCAN

120 FOR output_counter = 1 to 10

130 ANALOG_IN(5,scan-values())

140 _ FOR print_counter = 0 to 5

150 PRINT scan_values(print_counter)
160 NEXT print_counter

170 NEXT output_counter

180 END

>

See the ANALOG_IN statement description for a programming
example,

6.5.1.4 SET_AIN_TRIGGER / SET_AIN_NOTRIGGER - Sets the high-
level analog input triggering mode.

FORM: SET_AIN_TRIGGER
FORM: SET_AIN_NOTRIGGER

These statements will enable or disable external (hardware)
triggering for the ANALOG_IN statement.

The default setting for I/OBASIC 1is NOTRIGGER. The default
setting is restored when a RUN command is issued.

If the analog input device is triggered faster than it is capable
of operating, I/0OBASIC will issue the error message "?A/D trigger
too fast®,

When using the A/D converter in DMA mode, the ANALOG_IN statement
must be preceded by the SET_AIN_TRIGGER statement in order to
enable the external clock for channel to channel triggering. The
external clock can be the on-board potentiometer controlled clock
or it can be generated by the 1601GPT card. The on-board clock
has a range of 800Hz to 25 KHZ. Standard jumper position selects
on-board clock unless a 1601GPT is ordered with the system. See
BASYS Hardware Manual, Sec. 5.2.10.5 for jumper options.

s

I/0BASIC Real-time Control Statements PAGE 6-~11

The following program will set the high-level analog input device
to external triggering and then wait for the analog input to
change.

>listnh <ret>

100 SET_AIN_TRIGGER

110 ANALOG_IN(5,0ld_val)

120 ANALOG_IN(5,new_val)

130 IF old_value = new_value THEN 120

140 PRINT "Input changed from ";old-val;"™ to ";new_val
150 END

>

6.5.1.5 ANALOG_LOW_IN - Reads low-level analog input channels.
FORM: ANALOG_LOW_IN(chan, val [,flag]l)

or

AINL(chan, val [,flag]l)

This statement reads a channel on the low-level analog input
board, and places the values in the argument val, If argument
flag is specified, then the channel is read in interrupt mode.

Arguments for this statement are identical to those for the
ANALOG_IN statement,. The chan argument must be in the range 0 to
1023 for DX11 and PX11. If the cold-junction compensation is
hardwired on the ADAC low level analog input board, then each
board will contain 128 channels (0-127). (See Appendix A, Sec.
2a). If however, the cold-junction compensation is software
programmable, then channels 64-127 will not be present on that
board. (See Appendix A, BASYS Configuration Program 1). This
will have +the effect of creating 'holes*' in the channel
number range. The val argument must be a variable of type
integer, real, or string or an array variable of type
integer or real, If argument val is of type real, the values
returned are in units of either volts or percent full-scale
(see the SET_ANALOG_PERCENT and SET_ANALOG_VOLTS statements).
If argument val is of type integer or string the values
returned are the unscaled binary readings from the A/D.

I/0BASIC Real-time Control Statements PAGE 6-12

EXAMPLE:

The sample program below will read 1low-level analog input
channels 3zero to ten, and store their values in an array called
table:

>listnh <ret>
100 DIM table(10)
110 FOR channel = 0 TO 10

120 ANALOG_LOW_IN(channel,voltage)
130 table(channel) = voltage

140 NEXT channel

150 END

>

The following program will produce results identical to the
program above by using a single ANALOG_LOW_IN statement:

>listnh <ret>

100 DIM table(10)

110 SET_AINL_SCAN

120 ANALOG_LOW_IN(10,table())
130 END

>

Notice the use of two features, the SET_AINL_SCAN statement to
enable low-level channel scanning, and the use of an array as an
argument in the ANALOG_LOW_IN statement. When an array is
passed, the entire array is filled with analog channel values.

6.5.1.6 SET_AINL GAIN - Sets the low-level analog gain.

FORM: SET_AINL_GAIN(val)

This statement will set the hardware programmable gain on the
low-level analog input device. Programmable gain can be used to
amplify small analog input signals, thereby increasing the
resolution of the converted value.

The actual programmable gain that is set by this statement is
determined by passing a gain 'code!' in the argument val. There
is a different code (or number) for each possible gain, Argument
val can Dbe either a constant or variable of type integer, real,
or string. The following table shows the legal gain codes for
argument val, and the corresponding gain that will be set on the
analog input device:

-

! i
s

\%«Wy i

I/0BASIC Real-time Control Statements PAGE 6-13

Gain

<3
N
=

1000
500
200
100
20
10

5

1 Default

ST O EWLWN O l

The default code is 7, which sets the gain to 1. This means that
the full-scale analog input signal range is 10.0 volts/1 or 10.0
volts., Therefore, the maximum signal input to the 1low-level
analog input device should be 10.0 volts,

The program below will read a voltage between -0.02 and +0.02,
print it as a percent of full scale (-100 to +100). This assumes
that the low-level analog device 1is configured for bipolar
operation and a range of 10 volts,

>listnh <ret>

100 SET _ANALOG_PERCENT

110 SET_AINL_GAIN(1) \ REM set gain to 500

130 ANALOG_LOW_IN(4,reading)

140 PRINT "The value is"; reading; " percent."
150 END

>

6.5.1.7 SET _AINL SCAN / SET_AINL_NOSCAN - Sets low-level analog
input channel scanning.

FORM: SET_AINL SCAN
FORM: SET_AINL_NOSCAN

These statements will enable or disable channel scanning for the
ANALOG_LOW_IN statements. When channel scanning is enabled, the
chan argument specifies the high channel to be scanned so that
the first channel of the multiplexers connected to an 1114AD
(chan 0, 128, 256, etc.) to the selected high channel are read in
the ANALOG_LOW_IN statement. SET_AINL_SCAN must be specified for
each of multiple, low level A/D cards.

The default setting for I/OBASIC is NOSCAN. The default setting
is restored when a RUN command is issued.

PAGE 6-14

The program below will repeatedly scan channels 0 to 7 and fill
up array scan_values with their values. When the array has been
completely filled, the channels will not be read anymore:

>listnh <ret>

100 DIM scan_values(200)

120 SET_AINL__SCAN

130 ANALOG_LOW_IN(7,scanvalues())

[perform other processing here]

300 GO TO 130
>

6.5.1.8 SET_AINL TRIGGER / SET_AINL_NOTRIGGER - Sets the low-
level analog input triggering mode.

FORM: SET_AINL TRIGGER
FORM: SET_AINL_NOTRIGGER

These statements will enable or disable external {(hardware)
triggering for the ANALOG_LOW_IN statement.

The default setting for I/OBASIC is NOTRIGGER. The default
setting is restored when a RUN command is issued.

See the description of the SET_AIN_TRIGGER statement for an
example.

6.5.2 TEMPERATURE MEASUREMENT STATEMENTS:
6.5.2.1 TEMPERATURE_IN - Reads a thermocouple temperature.
FORM: TEMPERATURE_IN(chan, val [,flagl)

or

TMPIN(chan, val [,flag]l)

This statement reads a channel on the 1low-level analog input
board, returning the values 1in degrees centigrade in the val
argument. If argument flag is specified, then the <channel is
read in interrupt mode, or DMA mode if a 1622DMA controller is
present.

The operation of TEMPERATURE_IN is identical to that for the
ANALOG_LOW_IN statement, except the val arguments of type real
are returned as temperatures in degrees centigrade. If val is
specified as an array, dimensioned for n elements, 4n memory
locations are reserved for the array.

S’

% 7
g

I/0BASIC Real-time Control Statements PAGE 6-15

All of the SET statements that affect the ANALOG_LOW_IN statement
will also affect the TEMPERATURE IN statement, This means, for
example, that the SET_AINL_SCAN will enable channel scanning for
the TEMPERATURE_IN statement as well., See Appendix A, Sec. 2a
for Programmable Cold Junction,

The following sample program reads and displays the temperature
readings of the first 16 channels:

>listnh <ret>

100 FOR chan = 0 TO 15

110 TEMPERATURE_IN(chan, temp)
120 PRINT chan,temp

130 NEXT chan

140 END

>

The program below reads a temperature using interrupt mode, Note
that the program fills an array while it iswaiting for the TMPIN
statement to complete. The TMPIN statement is the short form for
the TEMPERATURE IN statement,

>listnh <ret>

100 DIM some_array(10)

110 TMPIN(3,temp,int_flag)

120 FOR count = 0 TO 10 \ REM This operation occurs

130 some_array(count) = 1 \ REM asynchronously with the
140 NEXT count \ REM TMPIN statement.

150 IF int_flag = 0 THEN 150

160 PRINT temp

170 END

>

6.5.2.2 SET_THERMOCOUPLE -~ Sets the thermocouple type and
temperature range.

FORM: SET_THERMOCOUPLE(val)

This statement will set the thermocouple type and its temperature

range to be used with the TEMPERATURE_IN statement. The
thermocouple types supported are J, K, and T, Only one
thermocouple type may be selected for the TEMPERATURE_IN
statement, but it may be changed during program execution,
Selecting a narrower temperature range will increase the accuracy
of the thermocouple readings.

In the syntax above, argument val is a variable or constant that
specifies a c¢ode for selecting the thermocouple type and
temperature range. It must be in the range from one to six., The
following table lists the thermocouple types and ranges that are
selected for each value of argument val:

val Type Range (degrees C)

1 d -210 to 870 Default
2 J -210 to 366

3 d -210 to 185

'l K 0 to 1232

5 K 0 to 484

6 T

-200 to 385

I/0BASIC Real-time Control Statements PAGE 6-16

The default value is 1, which selects thermocouple type J and a
range of -210 to 870 degrees C. The default value is restored

when a RUN command is issued.

The example below reads the temperature of a K type thermocouple
and prints it:

>listnh <ret>

100 SET_THERMOCOUPLE(Y4)

110 TEMPERATURE_IN(1,temp)

120 PRINT "Temperature: "; temp; "degrees centigrade,”
130 END

>

The next example shows how to use the SET-THERMOCOUPLE statement
to read different types of thermocouples connected to the same
low-level analog input board:

>listnh <ret>

100 READ channel, type

110 IF channel = 999 THEN 170

120 SET_THERMOCOUPLE(type)

130 TEMPERATURE_IN(channel,value)
140 PRINT channel,value

150 GO TO 100

160 DATA 0,4,1,1,2,6,7,1,9,2,999,999
170 END

>

6.5.3 ANALOG OUTPUT STATEMENTS:

6.5.3.1 ANALOG_OUT - Writes analog output channels.

FORM: ANALOG_OUT(chan, val)
or
AOT(chan, val,[FLAG])

This statement writes to an analog output channel. If argument
flag is specified and the channel is part of a
1023AD/1023EX/1622DMA board set, the output will occur using DMA
mode.

NOTE

Specifying the optional flag
argument requires the 1622DMA
board. If the flag argument is
specified in the statement and no
1622DMA board is configured in the
system a "?3yntax error?" is
returned.

it

S

A

I/0BASIC Real-time Control Statements PAGE 6-17

The flag argument must be a variable of type integer or real.

The chan argument specifies the channel to be updated with the
value in argument val. Chan can be a constant or variable of
type integer, real, or string. Chan should be in the range 0 to
127 for DX11 and PX11 systemn,

The val argument contains the value to be output to the channel
specified in argument chan, Val can be a constant or variable of
type integer, real, or string or an integer array (real arrays
are valid only for non-DMA output operations -- those excluding
the flag argument),

If argument val is a real array, it should contain numbers in the
engineering wunits currently selected, <either volts or percent
full-scale.

If argument val is an integer array, it should contain Dbinary
numbers within the range of the analog output channel.
Engineering units are not applicable to argument val when it 1is
of type integer,. These numbers should be in the range:

1. =zero to 4,095 for full-scale unipolar 12 bits, or
2., =-2,048 to +2,047 for full-scale bipolar 12 bits.

To output analog data in DMA mode, the BASYS System must be
configured 8o that one or two of the analog output channels are
DMA channels, This is done by specifying the channel's address
to be the same as the address of the DMA Dboard's
digital-to-analog converters (see configuration program, Appendix
A).

For DMA operations (flag is specified and val is an integer
array) the SET_AOT_NOTOGGLE (default) and SET AOT_TOGGLE
statements are used to control the output. When NOTOGGLE setting
is in effect, output is to the channel specified by chan. When
TOGGLE setting is in effect, the output alternates between the
two DMA channels starting with the channel specified in chan,

NOTE

The ANALOG_OUT statement al so
supports direct transfer data in a
virtual array to an analog output
channel, The virtual array must be
located on an XM memory disk, and
it must be of type integer, For
complete information on this
teature, see the chapter Data Files
and Virtual Arrays in this manual,

I/0BASIC Real-time Control Statements PAGE 6-18

EXAMPLE: ”}
The sample program below outputs the values from 0 to 99 to
analog output channel 3. These values are in units of percent
full-scale, which is the default engineering unit when a progranm
is run,
>listnh <ret>
100 FOR value = 0 TO 99
110 ANALOG_OUT(3,value)
120 NEXT value
130 END
>
Note that these values are in percent full-scale, which 1is the
default engineering unit when a program is run.
The following program outputs the values 0 to 2047 to analog
output channel 5 using DMA mode. This assumes DMA hardware is
present:
>listnh <ret>
100 DIM values%(2047)
110 FOR count = 0 TO 2047 \ REM fill array
120 values®(count) = count Y
130 NEXT count o/

140 ANALOG_OUT(5,values%(),flag)
150 IF flag = 0 THEN 150
160 END

>

Note that in this example the analog output values are not in
units of either percent full-scale or volts, but are binary
numbers in the proper range, as discussed above, This
requirement 1is unique to this statement when performing analog
output with an integer argument for val,. All other analog input
and output statements will always operate using engineering units
of percent full-scale or volts.

6.5.3.2 SET_AOT_TOGGLE / SET_AOT_NOTOGGLE - Sets DMA analog
output toggling.

FORM: SET_AOT _TOGGLE

FORM: SET_AOT_NOTOGGLE

These statements will enable or disable channel toggling for the

ANALOG_OUT statement when using DMA mode. This mode can only be
used with systems that include the appropriate DMA hardware,

i\%&w

s

Sgsaes”

I/OBASIC Real-time Control Statements PAGE 6-19

In toggle mode, the data being output will be alternated between
the two DMA output channel s, In no-toggle mode, the data will be
output to only the one DMA channel that 1is specified 1in the

ANALOG_OUT statement.

The default setting for I/0BASIC is NOTOGGLE. The default
setting is restored when a RUN command is issued.

EXAMPLE:

The following program will output the contents of the integer
array called data_values using DMA toggle mode. It is assumed
that analog output channel 10 has been configured for DMA mode.
In this mode data-values%(0) will be output to DAC hardware
channel 1, data_values%(1) will be output to DAC channel 2,
data_values%(2) will be output to DAC channel 1, and so on,

>listnh <ret>

100 DIM data_values®(2047)

110 FOR count = 0 to 2047 \ REM fill array
120 data_values$(count) = count

130 NEXT count

150 SET_AOT_TOGGLE

160 ANALOG_OUT(10,data_values%(),flag)

170 IF flag = 0 THEN 170

180 END

>

6.5.3.3 SET _AOT_TRIGGER / SET_AOT_NOTRIGGER - Sets the DMA
analog output triggering mode,

FORM: SET_AOT_TRIGGER
FORM: SET_AOT_NOTRIGGER

These statements will enable and disable external triggering for
the ANALOG_OUT statement when using DMA mode, This option is
only valid for systems with the appropriate DMA hardware,

When external triggering is enabled, the DMA analog output will
proceed at the rate specified by an external triggering signal.
When external triggering is disabled, the DMA analog output takes
place at maximum DMA rate.

The program below will output an array to the analog output
device at a rate specified by an external trigger signal,

>listnh <retb

100 DIM data_array%(100)

110 FOR count = 0 to 100 \ REM fill array
120 data_array%(count) = count

130 NEXT count

140 SET_AOT_TRIGGER

150 ANALOG_OUT(3,data_array%(),dma_flag)
>

I/0BASIC Real-time Control Statements » PAGE 6-20

6.5.4 DIGITAL I/O STATEMENTS:
6.5.4.1 BIT_CLEAR - Clears a digital output bit.
FORM: BIT_CLEAR(chan, bit)

or

BIC(chan, bit)

This statement clears a single bit in a digital output channel.
This statement operates only in programmed I/0 mode,

The chan argument specifies the 16-bit digital channel containing
the bit to be cleared. Chan can be a constant or variable of
type integer, real, or string. Chan should be in the range 0 to
127 for DX11 and PX11 system.

Argument bit specifies the digital bit within the digital channel
to be <cleared. Argument bit can be a constant or variable of
type integer, real, or string. Its value must be in the range O

to 15.
EXAMPLE:

The sample program below clears bits 1, 3, and T of output
channel 1,

>listnh <ret>

100 BIT_CLEAR(1,1)
110 BIT_CLEAR(1,3)
120 BIT_CLEAR(1,7)
>

6.5.4.2 BIT_SET - Sets a digital output bit.
FORM: BIT SET(chan, bit)
or

BIS(chan, bit)

This statement sets a single bit ina digital output channel. It
operates only in programmed I/0 mode.

The chan argument specifies the digital channel containing the
bit to be set. Chan can be a constant or variable of type
integer real or string. Chan should be in the range 0 to 127 for
DX11 and PX11 systems.

Argument bit specifies the digital bit to be set, Argument bit
may be a constant or variable of type integer, real, or string.
Its value must be in the range 0 to 15.

e

R——

K“*www

I/0BASIC Real-time Control Statements PAGE 6-21

EXAMPLE:

The sample following below sets bits 1, 3, and 7 of output
channel 1.

>listnh <ret>
100 BIT_SET(1,1)
110 BIT_SET(1,3)
130 BIT _SET(1,7)
140 END

>

6.5.4.3 BIT_TEST - Tests a digital input or output bit.
FORM: BIT_TEST(chan, bit, val)

or

BIT(chan, bit, val)

This statement will test a single bit in a digital input or
output channel and place it in argument val. This statement

operates only in programmed I/0 mode,

The chan argument specifies the channel containing the bit to be
tested, Chan <can be a constant or variable of type integer,
real, or string., Chan should be in the range 0 to 127 for
DX11 and PX11 systems.

Argument bit specifies the digital bit to be tested in the
channel. Its value must be in the range 0 to 15. Argument bit
may be a constant or variable of type integer, real, or string.

The val argument must be a variable of type integer, real, or
string. The val argument is returnedwith the result of the bit
test. The value returned is either 0 or 1, depending on whether
the bit is cleared or set.

EXAMPLE:
The program below determines the state of each dinput bit in
channel =zero and duplicates that state for the corresponding

output bit of channel one, The program loops indefinitely.

>listnh <ret>>
100 FOR bit = 0 TO 15

110 BIT TEST(0,bit,bitvalue)
120 IF bitvalue = 0 THEN BIT_CLEAR(1,bit)
130 IF bitvalue = 1 THEN BIT_SET(1,bit)

140 NEXT bit
150 GO TO 100
>

I/0OBASIC Real~-time Control Statements PAGE 6-22

6.5.4.4 DIGITAL_IN - Reads a digital input or output channel.
FORM: DIGITAL IN(chan, val [,flag])

or
DIN(chan, val [,flagl)

This statement reads a digital input channel, If argument flag
is specified and the channel supports interrupts, the statement
will operate asynchronously.

The chan argument can be a variable or constant of type integer,
real, or string in the range 0 to 127 for DX11 and PX11 system,

The val argument can be a variable of type integer, real, or
string or an integer or real array. The flag argument can be a
variable of type integer or real,

In the case where argument flag is specified in the statement,
argument val 1is restricted to being of type integer.

When val is an array and flagis not specified, the array is
filled with input values from the channel. When val is an array
and flag is specified, then only one value is read and stored in
the first element of the array.

EXAMPLE:

The sample program below duplicates the program presented in
Section 6.3.6 (copies the input channel bits to the output
channel):

>listnh <ret>

100 DIGITAL_IN(O,value)
110 DIGITAL OUT(1,value)
120 GO TO 100

130 END

>

The following program reads 256 values from an input channel, and
stores the data into an array called datavalues:

>listnh <ret?>

100 input_channel = 2

110 DIM datavalues(255)

120 DIGITAL_IN(input_channel,datavalues())
>

The following program reads channels 3 to 6 and puts their
values, as 16-bit decimal numbers, into the real array called
d_data:

>listnh <ret>

100 DIM d_data(10)

110 FOR in_chan = 3 TO 6

120 DIGITAL_IN(in_chan,d _data(in_chan))

130 NEXT in_chan

>

i 7
St s

Mg

S

%, E
e

S

I/0BASIC Real-time Control Statements PAGE 6-23

6.5.4.5 DIGITAL_OUT - Writes to a digital output channel.
FORM: DIGITAL OUT(chan, val [,flag]l)
or

DOT(chan, val [,flag]l)

This statement writes to a digital output channel, If argument
flag is specified and the channel supports interrupts, then the
statement will operate asynchronously.

The chan argument can be a variable or constant of type integer,
real, or string in the range 0 to 127 for DX11 and PX11 system.

The val argument can be a variable or constant of type integer,
real, or string or can be an integer or real array. The flag
argument can be a variable of type integer or real.

In the case where argument flag is specified in the statement,
argument val is restricted to being of type integer.

When argument val is an array and argument flag is not specified,
the entire array is output to the channel, When argument val is

an array and argument flag is specified, only the first element
of the array is output to the channel,

EXAMPLE:

The following sample program outputs the values 0 to 256 to
digital output channel one,

>listnh <ret>
100 FOR count = 0 to 256

110 DIGITAL_OUT(1,count)
120 NEXT count

130 END

>

The program below outputs the values 0 to 256 to digital output
channel 2 using an array.

>listnh <ret>

100 DIM values(256)

110 FOR count = 0 to 256

120 values(count) = count
130 NEXT count

140 DIGITAL 0UT(2,values())
150 END

>

I/0BASIC Real-time Control Statements PAGE 6-24

6.5.5 TIME AND TIMING STATEMENTS:

6.5.5.1 CLOCK_OUT - Operates the 1601GPT real-time clock and the
on-board PICOBASYS timer.

FORM: CLOCK_OUT(rate, val [,flagl)

Argument rate is a constant or variable of type integer, real,
or string in the range 0 to 7. Valid values for the argument rate
are given in the table below.

Argument val is a constant or variable of type integer, real, or
string that specifies the number of time units given by argument
rate that are to elapse before the event is triggered. Its
value must be in the range 1 to 32767 (2 to 32767 on PICOBASYS).

The flag argument must be a variable of type integer or real.

RATE MEANING
0 Stop
1 1 MHz
2 100KHz
3 10 KHz
4 1 KHz
5 100 Hz
6 EXT CLK (user supplied)
7 EVENT CLK (60 Hz),

(10 Hz on PICOBASYS)

When the optional flag argument is not present, the real-time
clock operates in Mode 3 of the 1601GPT (recurring mode) and
pul ses are generated at the frequency specified by argument rate
divided by argument value. The interval is reloaded each time
the pulse occurs. When the optional flag argument 1is present,
the real-time clock operates in Mode 2 and a single pulse and an
interrupt are generated after the specified time interval. The
flag variable is set to indicate completion when the interrupt is
fielded by I/OBASIC. In interrupt mode the <c¢lock must be
reloaded after each interrupt if it is to keep running.

EXAMPLE:
The sample program below will set the clock torunat 2.5 KHz
(10 KHz/4) for 10 seconds and then stop.

>listnh <ret>

100 CLOCK_OQOUT(3,4)
110 WAIT(10)

120 CLOCK_OUT(0,0)
130 END

>

R

A

Sgsi?

A

I/0BASIC Real-time Control Statements PAGE 6-25

The following program will set the clock to interrupt after 200
milliseconds and then wait for the interrupt.
>listnh <ret>

100 CLOCK_OUT(4,200,flag)
110 IF flag = 0 THEN 110 \ REM Wait for interrupt

120 PRINT %200 milliseconds have elapsed"
130 END

>

6.5.5.2 GET_DATE / SET_DATE - Gets and sets the system date.
FORM: GET_DATE(month, day, year)

The GET_DATE statement returns the current date, The month is
returned in argument month, the day in argument day, and the year
in argument year, The year is returned as two digits only, for
example 83 is returned for 1983). All three arguments must be
variables of type integer, real, or string.

EXAMPLE:

The following program displays the current date:

>listnh <ret>

100 GET_DATE(month,day,year)
110 PRINT "The month is ";month
120 PRINT "The day is ";day

130 PRINT "The year is ";year
140 END

>

FORM: SET_DATE(month, day, year)

The SET_DATE statement sets the date to that specified by the
arguments month, day, and year, All three arguments must be
constants or variables of type integer, real, or string. The
argument month is in the range 1 to 12. The argument day is in
the range 1 to 31. The argument year is in the range 72 to 103
(for 1972 to 2003).

NCTE

Al though each argument must be
within the range specified, the
date is not checked for validity.
For example, the date could be set
to 31-FEB-83 by the SET-DATE (2,
31, 83) statement.

EXAMPLE:

The sample program below asks for the month, day, and year and
then sets the date to that entered.

I/0BASIC Real-time Control Statements PAGE 6-26

>listnh <ret>

100 PRINT "Month W

110 INPUT month

120 PRINT "Day ";

130 INPUT day

130 PRINT "Year %;

140 INPUT year

150 SET_DATE(month,day,year)
160 END

>

The following example of the GET_DATE and SET_DATE statement
updates by one day (caution:it does not account for 1leap

years):

>listnh <ret>

100 GET_DATE(month,day,year)

110 day = day + 1

120 FOR temp = 1 TO month

130 READ days

140 NEXT temp

150 IF day <= days THEN 180

160 day = day - days -
170 month = month + 1 ’

180 IF month <= 12 THEN 210

190 month = month - 12

200 year = year + 1

210 SET_DATE(month,day,year)

220 DATA 31,28,31,30,31,30,31,31,30
230 DATA 31,30,31

230 END

>

6.5.5.3 GET_TIME / SET_TIME - Gets and sets the system time.
FORM: GET_TIME(val)

This statement returns the system time.

The val argument must be a variable of type 4integer, real, or

string. Val is returned with the number of seconds past midnight
(fractional seconds are returned if val is a real variable).

FORM: SET _TIME(val)
This statement sets the time in seconds past midnight.
The val argument can be a constant or variable of type integer,

real, or string. The argument contains the number of seconds
past midnight (fractional seconds can be specified for reals).

\\mmw"y

—?

% i
S

I/0BASIC Real-time Control Statements PAGE 6-27

NOTE
If argument val is of type integer
or string and the time is greater
than 65,535 seconds past midnight a
numeric overflow error will result,
To avoid this, specify argument val
as a real variable or constant,

SPECIAL FORMS for PICOBASYS: GET_TIME(hh, mm, ss8)
SET-TIME(hh, mm, ss)

These statements return or set system time on the battery backed
clock in hours (hh), minutes (mm), and seconds (ss) as indicated.
Variables used may be of type integer or real (fractional seconds
can be specified for reals).

EXAMPLE:

The sample program below determines the execution time for the
statement at line 170 (x = x + 1):

>listnh <ret>
100 GET_TIME(start)
110 FOR y = 1 TO 1000

120 NEXT y
130 GET_TIME(finish)
140 overhead = finish - start

150 GET_TIME(start)

160 FOR y = 1 TO 1000

170 x = x + 1

180 NEXT y

190 GET_TIME(finish)

200 time = finish - start - overhead

210 PRINT time;" milliseconds per instruction®
220 END

>

6.5.5.4 TIME_OUT - Starts a timer channel.
FORM: TIME_OUT(chan, val [,flag]l)

The chan argument identifies the timer request (a2 maximum of 8
timer requests may be outstanding). The chan argument can be a
constant or variable of type integer, real, or string. It must
be within the range of 0 to 7.

The val argument is a constant or variable of type integer, real,
or string. It contains the number of seconds (reals may contain
fractional seconds) for the timer request. The minimum

resolution is 1/60th of a second.

I/0BASIC Real-time Control Statements

"PAGE 6-28

The flag argument must be a variable of type integer or real. If
the flag argument is specified, the I/OBASIC program continues

execution and the flag variable 1is signalled

expires. If the flag argument is not supplied,
suspended until the timer expires (this mode is

using the WAIT statement below).

EXAMPLE:

when the time
the program is
identical ¢to

The example below reads the value of the high-level analog input

channel entered every 60 seconds:
>listnh <ret>
100 PRINT "Enter Analog Input Channel ";
110 INPUT channel
120 TIME_OUT(1,60,timer)
130 ANALOG_IN(channel,value)
140 PRINT value
150 IF timer = 0 THEN 150
160 GO TO 120
170 END
>

The following program reads high-level analog input channel 1
every 20 seconds and reads digital input channel 4 every 45

seconds:

>listnh <ret>
100 digtimer = 1 \ antimer = 1

110 IF digtimer = 1 THEN 140 \ REM wait for timers

120 IF antimer = 1 THEN 180
130 GO TO 110

140 DIGITAL__IN(4,digvalue)
150 PRINT digvalue

160 TIME_OUT(1,45,digtimer)
170 GO TO 110

180 ANALOG_IN(1,anvalue)
190 PRINT anvalue

200 TIME_OUT(2,20,antimer)
210 GO TO 110

220 END

>

Note that the digital and analog service routines

at lines 140

and 180 respectively use different timer channels (1 and 2) since

they are timed at different rates.

i i
i

\me

I/0BASIC Real~time Control Statements PAGE 6-29

6.5.5.5 WAIT - Causes a program wait.
FORM: WAIT(val)

The WAIT statement delays program execution for a specified
number of seconds. This serves the same function as SLEEP
statements found in some versions of BASIC.

The val argument specifies the number of seconds the program is
to wait. Val is a constant or variable of type integer, real, or
string and contains the number of seconds to wait. Fractional
seconds may be specified with real arguments,

EXAMPLE:

The example below duplicates the previous example using the WAIT
statement. It reads an analog input channel every 60 seconds:

>listnh <ret>

100 PRINT "Enter Analog Input Channel ";
110 INPUT channel

120 WAIT(60)

130 ANALOG_IN(channel,value)

140 PRINT value

150 GO TO 120

160 END

>

6.5.6 MISCELLANEOUS STATEMENTS:

6.5.6.1 CHAR_IN - Reads characters from serial channels.

FORM: CHAR_IN(chan, var)

The CHAR_IN statement will read one or more characters from a
serial channel, This statement can be used to read characters
already contained in the input buffer for a serial channel. The
CHAR_IN statement is different from the INPUT € and LINPUT €
statements, since it does not wait for input, but rather reads
one or more characters already typed at the serial channel
specified. It is therefore useful for polling serial channels
for input, without causing the program to 'hang' at one spot.

When the CHAR_IN statement is executed, all characters
subsequently typed at the serial channel will not be echoed until
an INPUT € or LINPUT € statement is executed for +that serial
channel (or INPUT and LINPUT statements for the console serial
channel).

Argument chan is a variable or constant of any type that contains
the serial channel number., The value of this argument must be
supplied by the program. Legal range is 0 to 7 for DX11 and PX11
sy stem, Note that serial channel number zZzero is the console
terminal,

I/0BASIC Real-time Control Statements PAGE 6-30

The CHAR_IN statement acts differently depending upon whether the
type of argument var is numeric (integer or real) or string.

e o
g

If argument var is of type string, all characters currently
residing in the input buffer for the serial channel are placed in
the string. More than one character can therefore be read using
a string variable, If no characters are present in the input
buffer when the CHAR-IN statement executes a null string will Dbe
returned.

If argument var is of type integer or real, only one character
will be read from the input buffer. Its ASCII code equivalent
will be returned in the numeric variable. If no characters are
present in the input buffer when the CHAR_IN statement executes,
a -1 will be returned.

EXAMPLE:

>listnh <ret>

10 REM poll serial channels and send input to console
20 FOR term_no = 1 to 3

30 CHAR_-_IN(term_no,as$)

40 IF a$ = "" GO TO 60

50 PRINT "Channel ";term_no;" ";a$

60 NEXT term_no

70 END

>

Mg

6.5.6.2 CONVERT_OCTAL - Converts octal and decimal values.
FORM: CONVERT_OCTAL(argt, arg2)

The CONVERT_OCTAL statement converts values from decimal to octal
and vice versa. The decimal argument is specified as an integer
or real and the octal argument is specified as a string. The
input argument argl is converted to output argument arg2.

EXAMPLE:

The following example demonstrates decimal to octal conversion:

>listnh <ret>

100 PRINT "Enter decimal value ";

110 INPUT value

120 CONVERT_OCTAL(value,octal$)

130 PRINT "Octal equivalent is ";octal$
140 GO TO 100

150 END

% ;
S

>

S

St

I/0BASIC Real-time Control Statements PAGE 6-31

The following example demonstrates octal to decimal conversion:

>listnh <ret>

100 PRINT "Enter octal value ";

110 LINPUT octal$

120 CONVERT_OCTAL(octal$,value)

130 PRINT "Decimal equivalent is ";value
140 GO TO 100

150 END

> .

6.5.6.3 PEEK - Reads a memory location.
FORM: PEEK(address, val)

This statement reads a memory location. It returns the value of
the memory location specified in argument address. Argument val
contains the value of the location. The argument address must be
even (or word aligned). The address argument can be a constant
or a variable of type integer, real, or string. Argument val
must be a variable of type integer, real, or string.

The statement is useful for access to devices in the I/0 page or
to access specific monitor or other memory locations.

NOTE

If the address specified does not
exist, the "?Hardware not present™"
error message is generated.

The following program displays the current RT-11 monitor version
number and release level (by PEEKing at the appropriate monitor
offsets):

>listnh <ret>

100 PEEK("S54" rmon_base)

110 PEEK(rmon_base + OCT("276"),value)

120 sysver = INT(value / 256)

130 sysupd = value - (sysver ¥* 256)

150 PRINT "RT-11 Version",sysver

160 PRINT "Release Level",sysupd

170 END

6.5.6.4 POKE - Writes to a memory location,
FORM: POKE(address, val)

The POKE statement is used to write to speecific memory locations.
The argument address specifies the address of the location to be
written., The val argument specifies the value to be written,

The address and val arguments can be comstants or variables of
type integer, real, or string.

I/0BASIC Real~-time Control Statements PAGE 6-32

The example below will prompt for a string and then output the
string to the terminal, The string is output without the use of

the PRINT statement.

>listnh <ret>

100 PRINT "Enter a string";

110 LINPUT a$

120 FOR y% = 1% TO LEN(a$)

130 char% = ASC(SEG$(a$,y%,v%))
140 GOSUB 1000

150 NEXT y%

160 PRINT

170 STOP

1000 PEEK("177564",output_csr$)
1010 temp% = output_ecsrg / 128%
1020 IF temp%/2% = temp% / 2 THEN 1000
1030 POKE("177566",char$)

1040 RETURN

>

6.5.6.5 SET_ANALOG_PERCENT / SET_ANALOG_VOLTS - Sets the analog
I/0 engineering units,

FORM: SET_ANALOG_PERCENT
FORM: SET _ANALOG-VOLTS

These statements will set the analog input and output engineering
units to either percent full-scale, or volts, All subsequent
values specified in analog input or output commands will be in
volts or percentages accordingly.

In PERCENT mode, the voltages will be expressed as the percentage
of the full scale (maximum voltage), The values are 0 - 100 for
unipolar operation and -100 to 100 for bipolar operation. In
VOLTS mode, the voltages will be expressed in volts.

For example, if the analog input device 1is set for Dbipolar
operation with a range of 10 volts and the analog input channel
is fed -5 volts, then the ANALOG_IN statement will give a value
of ~50 in PERCENT mode and -5 in volts mode,

The default setting for I/0BASIC is PERCENT. The default setting
is restored when a RUN command is issued.

6.5.6.6 TEST ADDRESS - Tests for a valid bus address.
FORM: TEST _ADDRESS(address, val)

This statement tests whether the address specified by argument
address 1is present on the bus, The argument address is a
constant or variable of type integer, real, or string. The val
argument must be a variable of type integer, real, or string.
Val must be an even number, Val isreturnedas a zero if the
address does not respond and a one if it does.

L
gt

PAGE 6-33

The following program outputs the addresses that exist in the 1I/0
page (addresses 160000 to 177777 octal).

>listnh <ret>

100 address = OCT("160000%)

110 stop_address = OCT("177776")
120 TEST_ADDRESS(address,temp)

130 IF temp = 0 THEN 160

140 CONVERT_OCTAL(address,address$)
150 PRINT address$

160 IF address = stop_address THEN 190
170 address = address + 2

180 GO TO 120

190 END

>

6.5.7 ERROR PROCESSING

The ON ERROR GOTO statement enables error processing within an
I/0BASIC program. When error processing is enabled and a program
error occurs (such as division by zero) the program will branch
to the line number specified in the ON ERROR GOTO statement,
Error processing enables you to correct for some fatal and
nonfatal error conditions that could occur within a program,

When error processing is desired in an I/0BASIC program, the ON
ERROR GOTO statement is generally placed at the beginning of the
program, Specifying a line number of zero will disable error
processing. By default, error processing is disabled when a
program is run.

The error processing routine that starts at the line number given
in the ON ERROR GOTO statement can make use of the ERL and ERR
functions to determine the type and location of a program error,
In general, the error processing routine is specific to a given
program, and it is written to process only certain types of
errors that would be likely to occur because of the programs
particular application (such a frequent numeric overflows during
calculations).

The RESUME statement is used to exit the error processing routine

and either retry the program statement that caused the error or
resume execution at another line number,

6.6 ADDITIONAL INFORMATION

The following sections provide general information relevant to
the statements described above.

I/0BASIC Real-time Control Statements PAGE 6-34
6.6.1 DEFAULTS FOR SET STATEMENTS

The following are the default SET configurations when the
I/0BASIC RUN command is issued:

SET_AIN_GAIN(3) - high-level analog gain = 1

SET_AINL_GAIN(T) - low-level analog gain = 1

SET_AIN_NOSCAN channel scanning disabl ed.

channel scanning disabled.

SET_AINL_NOSCAN

SET_AIN_NOTRIGGER external triggering disabled.

SET_AINL_NOTRIGGER external triggering disabled.

SET_AOT_NOTOGGLE channel toggling disabled.

SET-_AOT_NOTRIGGER external triggering disabled.

SET_ANALOG_PERCENT analog units set to percent.

SET_THERMOCOUPLE(1) - thermocouple is type J.

These default settings can be altered using the appropriate SET
statement. The default settings are restored each time a RUN
command is issued so each program that requires changes to the
default must execute the appropriate SET statement. The SET
configurations can be changed as many times as desired within a
progranm, but a SET statement should not be issued when I/0 is
active on the device that the SET statement affects.

6.6.2 NULL ARGUMENTS

I/0BASIC real-time control statements cannot be passed null
arguments, If null arguments are passed to any statement, the
results will be unpredictable,.

The following program statement contains a null argument for the
chan argument, and is therefore illegal:

ANALOG_IN(, val) *will NOT work#

6.6.3 FLAG ARGUMENT

The flag argument is optional in all of the real~time control
statements that support it. The argument controls whether the
statement operates synchronously or asynchronously.

When the flag argument is not specified, the statement will not
return control to the next I/OBASIC statement until all required
operations have been completed. When the flag argument is
speciftied, the next I/OBASIC statement is executed after the
statement has initiated (but not necessarily completed) the
operation,

Fga

v‘mww’gi

I/0OBASIC Real-time Control Statements PAGE 6-35

When a statement specifies the flag argument, the value of the
variable 1is set to zero. After the statement has completed its
operation (for example, all values have been read from the analog
input channels) the flag variable is set to a one, Therefore, a
program may execute the statement, continue processing subsequent
statements, and then loop until the flag variable is set to a one
(using an IF THEN statement).

CAUTION

When real-time control statements
are operated asynchronously the
values of the arguments that are
specified with the statement must
not be altered or read until the
statement has completed all of its
processing. This is indicated by
the flag argument being set to a
one,

For example, if you issue the statement ANALOG_IN(1,value,flag)
in a program, the control is passed back to the next statement in
your I/OBASIC program immediately. If the next 1line of the
program uses the variable value, the program will not work
because the ANALOG_IN statement has not finished updating
argument value from the high-level analog input device,
Therefore, your program must wait for the ANALOG_IN statement to
complete before reading or modifying the arguments value or flag.
The way to determine if the statement has completed is to check
the flag variable. Argument flag will be zero if the statement
is not completed yet; argument flag will be one when the
statement has finished. A simple way to wait for the statement
to complete is to wuse an IF/THEN statement that checks 1if
argument flag has been set toone, as in the following example:

>listnh <ret>

100 ANALOG_IN(1,value,flag)

110 IF flag = 0 THEN 110 \ REM wait for flag to be 1

120 REM continue on with rest of program.

>

It should be apparent, however, that the program above 'does not
do anything different than the following program lines that
operate in programmed I/0 mode:

>100 ANALOG_IN(1,value)
>110 REM continue on with rest of program.

So, when should interrupt mode be used?

Let's assume that we need to write a program that will read the
high-level analog input and the digital input at the same time.
We write a program as follows:

>listnh <ret>

100 ANALOG_IN(1,analog_value)

120 DIGITAL_IN(3,digital_value)

130 REM continue with rest of progranm
>

I/0BASIC Real-time Control Statements PAGE 6-36

This does not quite do the trick because the two inputs are not
really being read at the same time., What is happening is that
the analog input is read and the entire ANALOG-IN routine must
complete before the digital input is read. What is needed is a
'way to start the DIGITAL_IN routine before the ANALOG_IN routine
finishes, This can be implemented using interrupt mode.

>listnh <ret>

100 ANALOG_IN(1,analog value,analog-_flag)

110 DIGITAL_IN(3,digital_value%,digital _flag)
120 REMwait for both routines to finish

130 IF analog_flag = 0 THEN 130

140 IF digital_flag = 0 THEN 140

150 REM both routines are finished

160 REM proceed with progranm,

>

The above program allows both ANALOG_IN and DIGITAL_IN statements
to operate asynchronously at the same time, so that it is not
necessary for one real-time statement to complete before starting

another one,

Another application of interrupt mode is in time~critical
situations. Take the program below:

>listnh <ret)
100 FOR channel = 1 TO 10

110 ANALOG_LOW_IN(channel,value)

120 PRINT "The value of" ;channel;" is ";
130 PRINT value

140 NEXT channel

150 END

>

Assume that, for some reason, it is necessary to speed up the
above progranm, One way to do this is to use asynchronous
operation. Looking at the program, it can be seen that the PRINT
statement at 1line 120 could be executed at the same time as the
ANALOG_LOW IN statement. The result of line 120 is not affected
in any way by the result of the analog input, thus, there is no
reason to wait for the ANALOG_LOW_IN to finish ©before executing
the PRINT statement.

>listnh <ret>
100 FOR channel = 1 TO 10

110 ANALOG_LOW_IN(channel,value,flag)

120 PRINT "The value of ";channel;" is ";

130 REM wait for analog input statement to complete
140 IF flag = 0 THEN 140

150 PRINT value

160 NEXT channel

170 END

>

R—

M

S

s

S8

CHAPTER 7T

DATA FILES AND VIRTUAL ARRAYS

DX11 and PX11 I/OBASIC programs can write data permanently onto
a storage volume, as well as read data that has been previously
stored. This data is stored in RT=-11 formatted files on the
storage volume, The size of the storage volume is the only limit
to the number of files or the amount of data in each file that
can be stored.

There are two different kinds of I/OBASIC data files; sequential
files, and virtual array files,

A sequential file is treated in the same way as the console
terminal is for INPUT, LINPUT, and PRINT statements. The INPUT #
and LINPUT # statements can be wused to read data from a
sequential file, and the PRINT # statement can be used towrite
data to a sequential file,

A virtual array file is treated in the same way that I/0BASIC
treats arrays in memory. An array is declared to be a virtual
array by using the DIM # statement. The only difference between
a virtual array and a memory array is that virtual array values
are always stored in a file on a storage volume, whereas memory
array values are stored directly in computer memory. Virtual
arrays can therefore be much larger than memory arrays, but they
also will take more time for an I/0BASIC statement using them to
execute,

A special feature of BASYS is the support for virtual arrays with
the ANALOG_IN, ANALOG_LOW_IN, and ANALOG_OUT statements. This
feature allows direct transfer of analog channel values between
the analog I/0 hardware and an I/0OBASIC virtual array. There are
certain restrictions in using this feature, See the section
'Virtual Arrays with AIN, AINL, and AOT' in this chapter for more
information on this feature,

NOTE

PX11 & DX11 treats semiconductor
memory as a disk, and therefore
virtual arrayson the sy stem sare
actually stored in semiconductor

memory. Do not confuse this
'disk!' memory with the normal
systen memory used for

nonvirtual arrays. There are still
virtual and nonvirtual arrays in
both systems,

Data Files and Virtual Arrays PAGE T7=2

T.1 OPENING A FILE

Before a sequential file or virtual array file can be used, you
must open the file by associating the filewith a channel number,
This is done by using the I/OBASIC OPEN statement, The open

statement «can either open an existing file or create a new file,
The format of the OPEN statement is:

OPEN string [FOR INPUT] AS FILE [#]expr

or

OPEN string [FOR OUTPUT] AS FILE ([#]expr
where:

string is a BASYS file specification. It can be either
a string constant, variable, or expression.

FOR INPUT specifies opening an existing file. This means
that you can only read (INPUT) from the file,

FOR OUTPUT specifies creating a new file. For sequential
files, this means that you can only write (PRINT) to the

file, For virtual array files, you can either read to or
write from the file.

expr is the channel number of the file, The channel number
can have any integer value between 1 and 12.

The following are three examples of using the OPEN statement for
sequential and virtual array files:

>100 OPEN "DATA1"™ FOR INPUT AS FILE #1

>100 my_file$ = "JOHNI®
>110 OPEN my_file$ FOR OUTPUT AS FILE #3

>100 OPEN "JUNE.DAT"™ FOR INPUT AS FILE #file_number

p

S’

Data Files and Virtual Arrays PAGE 7-3

7.2 CLOSING A FILE

The CLOSE statement is used to closea file once 1t has been
opened. This is generally done at the end of a program to insure
that the data in the file will not be lost, but it can also occur
anywhere 1in a program. For example, a file that has been opened
for output and then filled with data can then be closed and
reopened for input within the same program, -

The format of the CLOSE statement is:
CLOSE [[#]expr, [#]expr,...]

where expr specifies the channel number of a file to be <closed.
If expr 1is not specified, then I/OBASIC will close all open
files.

The following are several examples of the CLOSE statement:

>100 CLOSE
>100 CLOSE #1, #3

>100 CLOSE #file_no

If a program opens but does not close files, I/OBASIC will <close
all files when a CHAIN or END statement executes, or when the
highest program line number executes.

T.3 USING SEQUENTIAL FILES

I/0BASIC programs access data stored in sequential files using
the INPUT #, VLINPUT #, and PRINT # statements. The data is
always accessed serially, which means that each data item can
only be read orwrittenoncewhile the file is open. The file
must be closed and reopened to read a data item again.

The INPUT # and LINPUT # statement will read data from a
sequential file opened for input. Data isread from the file in
the same way that it is read from the terminal,

The PRINT # statement writes data to a sequential file opened for
output. I/0BASIC writes the data in the files in the same format
it would use to print it on the console terminal.

The following is a sample program that will write data to an
output file:

Data Files and Virtual Arrays PAGE T7-4

>listnh <ret>

10 OPEN "TEST1"™ FOR OUTPUT AS FILE #2

20 PRINT #2, "This is a test output file"
30 FOR count = 1 TO 20

4o PRINT #2, count

50 NEXT count

60 CLOSE #2

T0 END

>

The following sample program will read the data file that was
written by the above program:

>listnh <ret>

10 OPEN "TEST1" FOR INPUT AS FILE #4
20 INPUT #4, string$

30 PRINT string$

40 FOR loop = 1 TO 20

50 INPUT #4, number

60 PRINT number

70 NEXT loop

80 CLOSE

90 END

>

7.4 CHECKING FOR THE END OF AN INPUT FILE

The IF END # statement can be used to test if the end of an input
file has been reached. The format of the statement is:

IF END [#]expr THEN {statement | linenumber}
where expression is the channel number of the file to be tested.

If, in the course of using INPUT # or LINPUT # statements, the
end of the input file has been reached, then the IF END #
statement can be used to either execute a statement or transfer
control to another program line, The following sample program
operates the same as the one given in the preceding section to
input data from a file., However, this program uses the IF END #
statement:

i

p——

Data Files and Virtual Arrays PAGE T7-5

>listnh <ret>

10 OPEN "TEST1" FOR INPUT AS FILE #4
20 IF END #4 THEN 80

25 INPUT #4, string$

30 PRINT string$

40 IF END #4 THEN 80

50 INPUT #4, number

60 PRINT number

70 GO TO 40

80 PRINT "End of file reached."

90 CLOSE
100 END
>

7.5 RESTORING A FILE TO THE BEGINNING

The RESTORE # statement will reset the data pointer for a
specified input file to the beginning. The format of the
statement is:

RESTORE #expr
where expr is the channel number of the file to be restored.

This statement is useful for reading a file a multiple number of
times, since the file does not have to be closed and reopened
each time. The statement operates in a similar manner to the
RESTORE statement that is used to reset the READ pointer for data
contained in DATA statements.

7.6 USING VIRTUAL ARRAY FILES

Virtual array files are used when random access of data is
desired, or when arrays are too large to fit in memory. Virtual
arrays are also supported with the ANALOG_IN, ANALOG_LOW_IN, and
ANALOG_OUT statements.

Virtual array files have several advantages over sequential
files:

1. They can be accessed randomly, rather than sequentially.
Any element in a virtual array is accessed in the same
time as any other element.

2. Data stored in virtual array files is in binary format,
and is not converted to ASCII as for sequential files,
Therefore, there is no loss of precision caused by data
conversion.

3. You can simul taneously write to and read from a virtual
array file without having to OPEN and CLOSE it,

Data Files and Virtual Arrays PAGE 7-6

Virtual array files also have several advantages over arrays
stored in memory:

1. Virtual array files <c¢an be much larger than arrays
stored in memory.

2. Data is permanently stored in a virtual array, whereas
data in a memory array is lost whenever a new program is
run, or the system is turned off.

Virtual arrays also have several restriction, which do not apply
to arrays in memory:

1. Accessing elements in a virtual array is slower than a
memory array because the data must be read from the file
first.

2, Virtual string arrays cannot have dynamic lengths, but
must have a preallocated maximum length, which 1is
specified in the DIM # statement.

3. Only one virtual array can be declared in each DIM ¢
statement.

4y, Virtual arrays or virtual array elements cannot be
passed as arguments to certain of the real-time control
statements. The statements that restrict this wusage
are:

ANALOG_IN
ANALOG_OUT
BIT_CLEAR
BIT_SET
BIT_TEST
CHAR_IN
CLOCK_OUT
CONVERT_OCTAL
DIGITAL_IN
DIGITAL_OUT
GET_DATE
GET_TIME

ON ERROR GOSUB
ON EVENT GOSUB
PEEK

POKE
SET_AIN_GAIN
SET_AINL_GAIN
SET_DATE
SET_TIME
TEMPERATURE_IN
TEST_ADDRESS
TIME_OUT

WAILT

#
s

S

i

i

% #
i

Data Files and Virtual Arrays PAGE 7-17

Exceptions to the above list are the ANALOG_IN, and ANALOG_OUT
statements, which permit virtual arrays to be used for the val

argument.

T.7 DIMENSIONING VIRTUAL ARRAYS

To use a virtual array, you should include a DIM # and an OPEN #
statement in your progranm, After the virtual array file is
opened, the elements of the array can be used in the same way as
el ements of an array in memory.

The format of the DIM # statement for declaring a virtual array
is:

DIM #integer1, array [=integer2]

where:

integer1 is a constant that specifies the channel number of
the virtual array file to be used.

array is any one or two-dimensional array name, It has the
same format as in the DIM statement,.

integer2 is an optional constant that specifies the maximum
length for elements in a virtual string array. It must be
in the range 1 to 255.

To access data in an existing virtual array file, ensure that the
DIM ¢ statement specifies the same data type and subscripts that
are specified in the program that created the file.

The following is a sample program that creates a virtual array
file, and then writes values read from an analog input channel to
each array element:

>listnh <ret>

10 DIM #1, virt_array(10000)

20 OPEN "DATA" FOR OUTPUT AS FILE #1
30 FOR index = 1 to 10000

4o ANALOG_IN(4,value)

50 virt_array(index) = value

60 NEXT index

70 CLOSE #1

80 END

>

Data Files and Virtual Arrays PAGE 7-8

7.8 VIRTUAL ARRAYS WITH AIN AND AOT

Virtual arrays can be used for the val argument in the ANALOG_IN,
and ANALOG_OUT statements. This feature permits direct transfer
of data between a virtual array and an analog input or
output device, allowing for large amounts of data to be input or
output at high speed. The following restrictions apply when
usingvirtualarrays for thevalargumentinthese statements:

1. An ADAC 1622DMA hardware controller must be present in
order to make use of this feature,. A 1622DMA
controller may be used in DX11 systems if the maximum
desired memory for real-time virtual array storage is
within the first 256 K bytes (18 bit addressing). The
device must be configured with the analog input or
output hardware,

2. The virtual array must be present in an extended memory
disk (such as XM4: or XM1: for PX11 & DX11

3. The virtual array must be of type integer, and cannot
have more than 32,767 elements. The array reserves two
bytes for each element to be stored.

4, No engineering unit conversion takes place, so that the
unscaled binary analog data 1is stored in the virtual
array. It is easy to convert this data into engineering
units. Simply multiply it by the full scale engineering
value (e.g., 10 volts) and divide by 2048 for bipolar
data or 4096 for unipolar data.

5. The highest virtual array element to be input or output
must first be referenced (as in a LET statement) before
the AIN, or AOT statements are used withthe virtual
array.

The following sample program reads analog input channel zero into
a virtual array. A total of 10000 points are read and stored in
the virtual array.

>listnh <ret>

10 DIM #1, virt_array%(10000)

20 OPEN "XM1:DATA" FOR OUTPUT AS FILE #1

30 virt_array%(10000) = dummy% REM do before AIN
35 SET_AIN_TRIGGER

40 ANALOG_IN(O,virt_array%(),flag)

50 CLOSE #1

60 END

>

o

-

Data Files and Virtual Arrays PAGE 7-~9

The next sample program reads analog input <channel 4 into a
virtual array. A total of 30000 pointsareread and stored in
the virtual array. After the points are collected, the largest
value is found and stored in variable max. The data is stored as
unscaled binary data (with values between -2048 and +2047 for
bipolar operation).

The ANALOG_IN statement causes analog input data to be
transferred directly to disk (actually extended memory), using
the 1622DMA direct memory access controller,

>listnh <ret>

10 DIM #1, virt_array%(30000)

20 OPEN "XM1:VALUES.DAT"™ FOR OUTPUT AS FILE #1
30 virt_array%(30000) = dummy% REM do before AIN
35 SET_AIN_TRIGGER

40 ANALOG_IN(O,virt_array%(),flag)

50 max = =-20U47

60 FOR index = 1 to 30000

70 IF virt_array%(index) < max THEN

80 max = virt_array%(index)

90 NEXT index

100 PRINT "Maximum value is ";max

110 CLOSE #1

120 END

>

S

i
T

S

CHAPTER 8
FORMATTED PRINTING

I/0BASIC supports a variation of the PRINT statement that can be
used to format the output sent to a terminal or a file, This
variation is the PRINT USING statement.

The following formats for numbers c¢an be controlled with the
PRINT USING statement:

1. Number of digits.
2. Location of decimal point.

3. Inclusion of symbols (trailing minus signs, asterisks,
dollar signs, commas).

4, Exponential format.

The following formats for strings can be <controlled with the
PRINT USING statement:

1. Number of characters.
2. Left-justified format.
3. Right-justified format.
4, Centered format.
5. Extended field format.
The format of the PRINT USING statement is:
PRINT USING string, list
or
PRINT #channel, USING string, list
or
PRINT €channel, USING string, 1list
where:
string is a coded format image of the line to be printed.
The =string is called the format string. If it is a string
constant, it must be enclosed in double gquotation mark.

list contains the items to be printed.

channel is the serial channel number for the PRINT €& form,
and the file channel number for the PRINT # form.

Formatted Printing

8.1 FORMATTING NUMBERS WITH PRINT USING

The pound sign symbol (#) is used to
numeric field.
For example:

>listnh <ret>
10 alpha = 123
20 beta = 1234
30 PRINT USING "####",alpha
40 PRINT USING "####",beta

>runnh <ret>>

123
1234

>
Numbers are rounded when printed with PRINT USING.
>listnh <ret>
10 alpha = 123.6
20 beta = 1234.2
30 PRINT USING "####",alpha
40 PRINT USING "####",beta

>runnh <ret>

124
1234

>

A decimal point, aswell as digits to the right of

specify the
The numbers are left justified within the field.

PAGE 8-2

size of a

For example:

the decimal

point, can also be printed, as in the following example:

>listnh <ret>

10 alpha = 123.6

20 beta = 1234.2

30 PRINT USING "#4###.#",alpha
40 PRINT USING "####.#",beta

>runnh <ret)

123.6
1234.2

>

. &
g

P

Nty

Formatted Printing PAGE 8-3

If youhave not reserved enough digits for a number in the PRINT
USING statement, I/OBASIC will print a percent sign (%) before
the number and ignore the format for the number as specified in
the PRINT USING statement. Also, be sure to include an extra a
pound sign (#) in the format specification for the minus sign of
negative numbers,

The following special formatting can also be done with the PRINT
USING statement:

1. Trailing minus signs can replace preceding minus signs
for negative numbers by following the last pound sign
with a minus sign, as in: "##é#. ##=-".

2. Preceding spaces can be asterisk filled by starting the
format field with two astericks, as in: wk R, H T,

3. A floating dollar sign can be placed in front of the
number by starting the format field with two dollars

signs, as in: "$SH#4. #40.

4. Commas can be printed as part of the number by placing a
comma in the format field, as in: Wi, FH, FHEEET.

5. Numbers can be printed in exponential format by placing
four circumflexes at the end of the format field, as in:
UE'2'2 302 2R N

8.2 FORMATTING STRINGS WITH PRINT USING

The PRINT USING statement can also format strings. String fields
are specified with a starting single quotation mark ('), and
optionally followed by a contiguous series of the uppercase
letters L, R, c, or E, representing left-justified,
right-justified, centered, and extended string fields,
respectively.

If a string is larger than its specified string field, I/0BASIC
will print asmuch of the stringaswill fit, and the rest will
be ignored. The only exception is that for extended fields
J/0BASIC will print the entire string.

Formatted Printing

The following are some examples of the PRINT USING statement with

strings:

>listnh <ret>

10 REM single character field
20 string$ = MABCDE"

30 PRINT USING ™ ' ", string$

>runnh <ret>

A

>o0ld prog1l <ret>

>listnh <ret>

10 REM right-justified field

20 string1$ = "ABCDE"
30 string2$ = "ABCH"

40 PRINT USING "'RRRRR",stringil$

50 PRINT USING "'RRRRR",string2$
>runnh <ret>

ABCDE
ABC

>old prog2 <ret>

>listnh <ret>

10 field$ = "+4+'CCCC++'EEEE++'LLLL++"
20 INPUT any_string$

30 IF any_string$ = "STOP™ THEN 100
40 PRINT USING field$,any_strings$

50 GO TO 20

100 END

>runnh <ret)>

?ABCD <ret>

++ABCD ++ABCD ++ABCD ++
?ABCDEFG <ret>
++ABCDE++ABCDEFG++ABCDE++
2STOP <ret>

>

PAGE 8-4

-

i

%, 7
s

APPENDIX A

BASYS CONFIGURATION PROGRAMS

A program is provided with PX11 and DX11 systems that can be
ised to redefine the software control blocks (use with I/O
call) to match the hardware configuration. This progran,
called CONFIG.BAS, allows you to establish what hardware options
are present, and what their individual configurations are.
Many of the I/OBASIC real-time control statements directly
manipulate hardware I/0 devices on the system, and therefore they
require information on how the hardware is configured.

NOTE
For PX11 and DX11 systems, the
CONFIG.BAS program is supplied on

the system disk (device SY: XMQO: for
PX11 and DLO: for DX11).

A1 PX11 AND DX11 PROGRAM

All PX11 and DX11 systems are shipped with hardware

configuration which the I/O0OBASIC interpreter is compatible
with, The information on this <configuration 1is contained
within the file CONFIG.CNF. If the hardware

configuration is changed, the corresponding information in the
CONFIG.CNF file must be modified. The CONFIG.BAS program can be
used to modify this configuration file so that it will contain
the correct hardware information, The program can also be used
to show the current configuration information from the

configuration file,

The I/OBASIC interpreter attempts to load the hardware
configuration information from the file CNF:CONFIG.CNF, where
CNF: 1is a logical device name, If this file cannot be found,
the I/0BASIC interpreter uses the standard, or default,
configuration contained within itself (CONFIG.CNF file). Both
the distributed CONFIG.CNF file and the I/0BASIC interpreter
have the standard hardware configuration., The appendix ¢that
follows 1lists the default, BASYS System hardware configuration.

On PX11 systems the CONFIG.CNF file is located in PROM on device
XMO:, and therefore +the file cannot be modified. On DX11
systems this file is located on the read/write system disk, and
the file can be modified directly.

BASYS Configuration Programs PAGE A-2

In order

to change the configuration on a PX11 system ¢the

following steps are necessary:

1.

Use the following RT-11 COPY command to copy the
CONFIG.CNF file to the read/write disk XMi:

.COPY XMO:CONFIG.CNF XM4:

Create a startup file called START.COM on XMAU:. 1Include
the following line in this file:

ASSIGN XM4: CNF:

This file can be created using the RT-11 KED editor if
you are using a VT-100 terminal, oryoucanwrite an
I/0BASIC program to create this file using the OPEN and
PRINT # statements.

Use the OPEN command when running the CONFIG.BAS program
to open file XMU:CONFIG.CNF. See instructions on the
OPEN command bel ow.

Operation of the CONFIG program is easy and straight forward. It
is written in I/OBASIC, and will support the following commands:

1.

MODIFY =~ wused to modify the configuration of the
configuration file.

SHOW - used to display the current configuration of the
configuration file,

EXIT - used to exit the configuration program. Any open
files are automatically closed.

HELP - gives a brief 1list and description of the
available commands.

SAVE - used to save responses from the MODIFY command,
The user is prompted for a file name,

OPEN - used to open a configuration file. The active
(if any) configuration file is closed and the user is
prompted for the file name of another configuration
file,

€file - used to retrieve commands and responses from a
previously saved file.

e

s

“, vd

BASYS Configuration Progranms PAGE A-3

All commands must be entered in upper case. Comments may be
entered on a command line since all inputs preceeded by either a
semicolon (;) or an exclamation mark (!) are ignored.

When CONFIG is started, it automatically attempts to open the
configuration file CNF:CONFIG.CNF. If this file does not exist
the "?File not found" error results and CONFIG cannot be |used.
To configure a file other than CNF:CONFIG.CNF, use the OPEN
command (see below).

A2 MODIFY

The MODIFY command is used to modify the current configuration of
the open configuration file.

The user is asked for the new hardware configuration ‘for the
following devices:

1. High-~Level Analog Input:

Base Address

Vector Address

DMA Base Address

DMA Vector Address

UNIPOLAR or BIPOLAR Operation
Voltage Range (5 or 10 Volts)

Up to two ADAC 1023AD High-Level Analog Input cards are
supported.

2. Low-Level Analog Input:

Base Address

Vector Address

DMA Base Address

DMA Vector Address

UNIPOLAR or BIPOLAR Operation
Programmable Cold-Junction Enabled

Up to eight ADAC 4112XXAD Low-Level Analog Input cards
can be supported.

2a. Programmable Cold Junction

When the cold junction compensation option is purchased
onthed112XXAD, softwareselectionofthethermocouple

type tobemeasuredisprovided onachannel tochannel
basis.

BASYS Configuration Programs PAGE A-1Y4

(Caution: A change of thermocouple type or range must
be made prior to a conversion request by using the
SET_THERMOCOUPLE statement).

To provide even further flexibility, the user is
allowed, by jumper selection and the Configuration
Program, the ability to make full use of 128 input
channels for each 4112XXAD used. The other choice is to
software control the cold junction circuit on a channel
to channel basis. (See Sec. 5.5 of BASYS Hardware
Manual). When the answer is "Yes"™ to the query "Program-
mable Cold-Junction Enabled?" the second choice is made.

This choice allows the user to operate the board as a
straight millivolt digitizer (with choice of 8 gains) or
as a thermocouple digitizer (with choice of 6
thermocouple types and ranges). The configuration is
determined by the choice of input statement wused -
ANALOG_LOW_IN allows straight millivolt digitizing while
TEMPERATURE_IN allows thermocouple digitizing. With
Programmable Cold-Junction Enabled, only 64 channels of
multiplexing can be addressed with one Model 4112XXAD.

If it desired to operate with 128 channels actively
connectedto one 4112XXAD,the answer to the query "Pro-
grammable Cold-Junction Enabled?" should be NO. See
BASYS Hardware Manual, Sec. 5.5, for how to reconfigure
the jumpers to accommodate this mode. In this mode,
hardware jumpers determine whether the board is to be
used as a straight millivolt digitizer (and use the
ANALOG_LOW_IN statement) or as a (Thermocouple digitizer
and use the TEMPERATURE_IN) statement,

The unit as shipped is configured to allow software
control of cold junction and 64 channels of multiplexing
per 4112XXAD.
Analog Output:

Channel Address

UNIPOLAR or BIPOLAR Operation

Voltage Range (2.5, 5, or 10 Volts)

A maximum of 128 Analog Output channels may be
configured.

Real-time Clock OQutput:

Base Address
Vector Address

Only one ADAC 1601GPT real-time clock is supported.

s

BASYSConfigurationPrograms PAGE A-5

5. Digital Input and Output:
Channel Address
CSR Address
Vector Address
Board Type (INPUT or OUTPUT)

A maximum of 128 Digital I/0 channels may be configured.

NOTE

The digital I/0 channel address 1is
the address of the 16-bit data
buffer register associated with the
board. The CSR address is the
control and status register address
for the Dboard. Some boards will
not have a CSR address (specify it~
as zero), in which case there is no
vector address al so. If a board
supports more than one 16-bit data
buffer, a separate digital channel

should be configured for each
buffer,
The program will prompt for each of the above parameters, The

current value for each parameter is printed in square brackets
(such as [170010] for a CSR address). This current value can be
selected as the default by simply pressing the return key. If
the current value is not appropriate, a new parameter may Dbe
entered. All input must be in upper case,

The program checks all responses for validity and prompts only
for required parameters (for example, the Vector Address prompt
does not appear if no CSR Address has been provided).

Parameters are displayed and entered as follows:
1. Device, Channel, and CSR addresses are in octal.
2. Vectors are in octal,

3. Special fields (such as voltages and polarity) are
entered as text strings. UNIPOLAR or BIPOLAR are valid
for polarity prompts; 2.5, 5, 10, 2.5 VOLTS, 5 VOLTS,
or 10 VOLTS are valid for voltage ranges (unless
otherwise restricted); and INPUT or OUTPUT are valid
for direction (board type) prompts.

BASYSConfiguration Programs PAGE A-6

The following warnings may appear during the MODIFY operation:

1. ?CONFIG-F-Invalid xx Address. This occurs when an
entered address is not even or within the valid range
160010 to 177776 (octal) or O. The prompt for an
address reappears.

2. ?CONFIG-W~Nonexistent xx Address. This occurs when an
entered address if not on the bus. This is only a
warning and does not cause the prompt to reappear.

3. ?CONFIG-F~Invalid VECTOR Address. This occurs when an
entered VECTOR address is not a multiple of 4 and within
the valid range 0 to 774 (octal). The prompt for a
vector reappears.

4, ?CONFIG~F-Invalid response. This occurs when an entered
text parameter is invalid. The prompt for the parameter
reappears,

A.3 SHOW

The SHOW command is used to display the current configuration of
the open configuration file.

The SHOW command will display the current values for all
parameters described for the MODIFY command above. The SHOW
command will only display the active information; nonexistent
channels and vectors are not displayed.

The information is displayed on the user's terminal.

NOTE
The message '(Nonexistent):® may
appear next to CSR, Base, and DMA
addresses to indicate that the
hardware 1is not currently present
on the systemn, This is only an

informational message.

A4 EXIT

The EXIT command is used to exit the configuration program and
return control to I/OBASIC. All open files are closed.

WARNING

The in-memory I/OBASIC interpreter
is not modified. To use the new
configuration, you must either
bootstrap your BASYS System or
exit and restart the interpreter.

T,

-

it

S,

BASYS Configuration Programs PAGE A-T7

A.5 HELP

The HELP command will display a list and brief description of
each CONFIG command. This 1list and brief description is also
displayed when CONFIG is started.

A6 SAVE

The SAVE command can be used to save the CONFIG dialog. All
commands and other input entered by the user are saved in a file.
This saved file may later be used as an indirect command file for
the CONFIG program,

CAUTION

The SAVEd answer file will probably
have to be edited to remove
unwanted commands before it can be
used as an indirect command file
for the CONFIG program.

A.7T OPEN

The OPEN command is used to open the configuration file ¢to be
contfigured. CONFIG.BAS automatically opens the file
CNF:CONFIG.CNF for you; therefore, you need not use this
command unless you wish to configure a different configuration
file,

The command causes the configuration file that is currently open
to be closed. Then, the user is prompted for the name of the
configuration file to be used in subsequent commands.

Please note:

1. The configuration files opened must exist,
CONFIG.BAS checks that the file wexists Dby first
opening the file FOR INPUT, <closing it, and finally
opening if for read/write access, If the file does
not exist, the "?File not found" error will occur and
CONFIG.BAS must be restarted using the RUN command.

2. CONFIG does not provide a facility for creating new
configuration files. The CONFIG.CNF file must be copied
(using the RT-11 COPY command) to create new
configuration files., These may then be opened using the
OPEN command.

3. The only configuration file read by the I/0BASIC
interpreter is the CNF:CONFIG.CNF file. All other
configuration files must be renamed or copied to
CNF:CONFIG.CNF before they can be used by the I/0BASIC
interpreter,

BASYS Configuration Programs PAGE A-8

A.8 INDIRECT COMMAND FILES

CONFIG supports indirect command files. A command file may be
specified using the €file convention and is valid at any prompt,
These command files may contain any input that would normally
come from the terminal.

All data read from the indirect command file is displayed at the
terminal as it is processed. The output is almost identical to
what it would be if the user entered the information directly
from the terminal.

NOTE

Indirect command files used by
CONFIG may NOT be nested. That is,
a file cannot invoke another file
using 'éfile!.

A.9 ADDITIONAL INFORMATION

Mul tiple Control/C's may be used to abort any of the CONFIG
commands during operation. CONFIG will return to the CONFIG>
prompt to await a new command.

CONFIG automatically enables terminal output before displaying
the CONFIG> prompt if it was disabled by typing Controcl/O.

s’

APPENDIX B

DEFAULT BASYS SYSTEM CONFIGURATION

The suggested default BASYS System hardware configuration is
listed below. The software on every BASYS system that is
distributed by ADAC Corporation is set to matech all I/0 hardware
purchase. All other hardware options are set to the suggested
defaul ts, The software settings can be changed by the use of a
configuration program described in the previous appendix.

NOTE
The suggested default hardware

configuration listed below 1is not
the maximum hardware configuration

possible. The maximum hardware
configuration is outlined in the
Introduction chapter of this manual.
Additional hardware can be con-

figured by running the CONFIG.BAS or
CNFIGM.BAS program as described in
the previous appendix.

HIGH-LEVEL ANALOG INPUT #1: @903
Base address 17 6770—
Vector address ~43-0- /D
DMA base address 32U T0
DMA vector address ~3 34—
UNIPOLAR or BIPOLAR BIPOLAR
Range (5 or 10 Volts) 10 VOLTS

HIGH~-LEVEL ANALOG INPUTBOARD #2: 10
Base address 174060
Vector address 370
DMA base address A7-24800.— 0
DMA vector address —3T4%
UNIPOLAR or BIPOLAR BIPOLAR

Range (5 or 10 Volts) 10 VOLTS

Default BASYS System Configuration ; PAGE B-2

LOW ~LEVEL ANALOG INPUT #1:

Base address 174010
Vector address 170
DMA base address TYR2H20
DMA vector address —T4—
UNIPOLAR or BIPOLAR BIPOLAR
Programmable Cold-junction Enabled TYES.
LOW -LEVEL ANALOG INPUT BOARD #2:
Base address 174020
Vector address 370
DMA base address 372430
DMA vector address Tl
UNIPOLAR or BIPOLAR BIPOLAR

Programmable Cold-junction Enabled —YES

ANALOG OQUTPUT:

Channel number 0: 41 o0
Channel address 172600
UNIPOLAR or BIPOLAR BIPOLAR
Range (2.5, 5, or 10 Volts) 10 VOLTS

Channel number 1: LioZ-
Channel address 1726062
UNIPOLAR or BIPOLAR BIPOL AR
Range (2.5, 5, or 10 Volts) 10 VOLTS

Channel number 2: Lol
Channel address 172604
UNIPOLAR or BIPOLAR BIPOLAR
Range (2.5, 5, or 10 Volts) 10 VOLTS

.

Channel number 31:

Channel address 172076
UNIPOLAR or BIPOLAR BIPOLAR
Range (2.5, 5, or 10 Volts) 10 VOLTS

CLOCK OUTPUT:
Base address 170420
Vector address 104

Default BASYS System Configuration PAGE B-3

DIGITAL INPUT AND OUTPUT:

j
g

Channel number O0O: \ ol ;
Channel address) 170016~ ‘
CSR address Lo 72 Lo
Vector address 200 .
Direction (INPUT or OUTPUT) OQUTPUT

Channel number 1: wzlels
Channel address 176-6-1+2
CSR address 9 174TL L
Vector address 204 704t
Direction (INPUT or OQUTPUT) OUTPUT

Channel number 2:

Channel address 170014
CSR address o i 0
Vector address 210
Direction (INPUT or OUTPUT) QUTPUT
Channel number 3:
Channel address 170016
CSR address 0
Vector address 214
Direction (INPUT or OUTPUT) QUTPUT

Channel number 15:

%
S
gt

Channel address 170046

CSR address 0

Vector address ’ 274

Direction (INPUT or OUTPUT) QUTPUT
NOTE

The digital I/0 channels are
assigned consecutive vectors from
200 to 274, except those for
channels 9, 10, and 13. These
channels are assigned vectors 144,
150, and 164 respectively. This is
done to avoid confliects with
already preassigned system vectors,

NOTE

The vector for digital I/0 channel
zero (vector 200) conflicts with
the RT-11 parallel 1line printer
device (LP). If a DISKBASYS or
PROMBASYS system is configured with
this device, then the vector for
digital <channel zero should be
reassigned to vector 120, if that
digital channel is used for
interrupts.

%
%,
g

PAGE B-4

The following are the serial channel addresses for the PX11
& DX11 systems. Al though these addresses cannot be <changed
by a configuration program, they are listed here for reference.

The DX11 and PX11 serial channel addresses are identical
and are listed below:

Base Vector
Channel Address Address
0 (console) 177560 60
1 176500 300
2 176510 310
3 176520 320
y 176530 330
5 176540 340
6 176550 350
7 176560 360

45

%,
N

. 5
g

o

i
S

APPENDIX C

I/0BASIC INSTRUCTION TIMES

The following chart lists several I/0BASIC program instruction
times. The times listed are inmilliseconds. The DX11 and
PX11 systems used both a DEC LSI-11/23 CPU with FPU
installed, and a DEC LSI-11/73 CPU. The times for the LSI-11/23
CPU are listed on the 1left under the DX11 and PX11 colunn,
and the times for the LSI-11/73 CPU are 1listed on the right.
The instruction times are only approximate and should not be
considered exact,

DX11 & PX11

1123CPU 1173CPU

integer addition 0.63 / 0.32
integer multiplication 0.75 / 0.38
integer division 0.77 / 0.40
real addition 1.13 / 0.58
real multiplication 1.38 / 0.65
real division 1.31 / 0.65
sine function 2.76 / 0.77
GO TO line number 0.18 / 0.08
IF i%$=0% THEN line number

condition true: 0.68 / 0.37
condition fal se 0.65 / 0.35
CHAR_IN(0%,i%)

no characters waiting 3.62 / 1.68
CHAR_IN(0%,a$)

no characters waiting 3.99 / 1.80

s

S

b
S

APPENDIX D

IMMEDIATE MODE COMMANDS

I/OBASIC allows commands to be entered in immediate mode. This
means that statements need not be entered as part of programs;
they can be given directly to the I/0BASIC interpreter which will
process them immediately.

Most I/OBASIC commands can be wused in 1immediate mode. The
commands are entered at I/0BASIC command level, when the prompt

(>) is displayed.
Some examples of immediate mode operation are:

>print "hello" <ret>
hello

>print 546 <ret>
11

>x=2 <ret>
>print x <ret>
2

>ain(1,val) <ret>
>print val <ret>
13.62

>

Immediate mode is good for doing quick calculations, trying out
commands, and debugging.

One feature of immediate mode is that it allows you to examine
the values of your program variables after running your program,
After your program finishes execution, simply type PRINT followed
by the name of the variable that you are interested in and
I/OBASIC will type the value of that variable. For example:

>listnh <ret>

10 alpha = 2

20 FOR beta = 1 TO 5
30 alpha = alpha + 2
40 NEXT beta

50 END

>runnh <ret>

>print alpha <ret>
12

>

Immediate Mode Commands PAGE D-2

Another useful feature of immediate mode is that the GOTO
statement can be wused to start your program at any line number
you wish. Iir, instead of typing RUN, you type GOTO <line
number>, your program will begin execution at that line number.
Note that when you type RUN, all the variables in your program
are automatically =set to =zero. This does not happen when
executing a program using an immediate mode GOTO statement. The
variables and the defaults do not get reset,

One typical debugging method using immediate mode is to insert
STOP statements after parts of your program that you are having
trouble with. When the program hits the STOP statement, control
will be returned to you, You may then examine any variables
using the PRINT statement in immediate mode to see if they are
what you expect them to be, The values of any variables in your
program may be changed in immediate mode as well. Your program
may then be continued by issuing an immediate mode GOTQO statement
using the line number after the STOP statement in your program.

N

4 :
R
i

it

% y
N’

APPENDIX E

MEMORY CONSIDERATIONS

The BASYS System provides a fixed amount a physical memory for a
user-written program to run in, The amount of memory available
depends on the exact hardware and processor configuration of ‘the
sy stem. Because there is a fixed amount of memory available, you
should be aware of several techniques that can be wused to gain
more wusable memory for either additional program statements or
data. The followingisa list of some techniques that can be
used to obtain more usable memory:

1. Eliminate or reduce unnecessary items in a program, such
as REM statements and optional keywords, such as LET.

2. If possible, consolidate the variables wused 1in your
program so that they are used for multiple purposes,

3. Make maximum use of multiple statement lines.
4, Use the short form of the real-time control statements.

5. Make efficient use of program 1loops, subroutines, and
user-defined functions,

6. Split up large programs into several smaller programs by
using the CHAIN or OVERLAY statements. When doing this,
you can make use of the memory disk handler so that the
CHAINed or OVERLAYed programs are brought into memory
quickly.

7. Reduce the size of arrays in memory to the size required
(using the DIM statement).

8. Use virtual array files for arrays that are too large to
it into memory. If you wish, you can make use of the
memory disk handler, described in another section of
this manual, so that virtual array access will be fast.

9. Reduce the number of simultaneously open files by
opening a file just beforeyouneed it and closing it
immediately after the last use.

10. After you delete program lines, store the program with
the SAVE command and restore it with the OLD command to
further optimize program memory requirements.

11. Use integer arrays, variables, and constants, wherever
possible.

12. Use short or single-letter variable names, Each
character in a variable name requires one byte of
storage for the first occurrence of that variable name
within a program. Keeping variable names short will
reduce program memory requirements.

W g
“ogd®

J

S

%

APPENDIX F

PROGRAMMING PROMS FOR PX11 SYSTEMS

This appendix describes how to program PROMs <containing user
developed software for PX11 systems., PX11 systems are supplied
with a program, called EPROM.BAS, that is designed to
interface with a PROM programmer, The PROM programmer is an
optional hardware item available from ADAC Corporation. A user
can develop I/0BASIC programs and have them permanently
programmed into a PROM memory disk, rather than residing in a
battery-backed up CMOS memory disk, The following steps are
required to do this:

1. Create a disk image of the software that is to be placed
into PROM. For example, if two I/0OBASIC programs,
called TEST1.BAS and TEST2.BAS are to be placed into
PROM, then they should be the only two programs that
reside on the disk. Typically, the XM1 or XM4 disk can
be used for this.

2. Use the RT-11 SQUEEZE command tomove all fileson ¢this
disk to the physical beginning of the disk,

3. Connect the PROM programmer to a serial 1line on the
BASYS system. This is usually serial 1line 1, The 1line
must be configured for 1200 baud and SPACE parity.

4, Press KEY on the programmer to turn it on. If you Jjust
plugged it in it will say "POWER FAIL". Then press CLR,
and the programmer will do a self test. Press CLR again
to get it to command level.

5. Select function '0' on the programmer, Press NEXT to
see the next value for the current parameter (successive
NEXTs can be wused to see all possible values for
parameters). Press ENTR to store the displayed option
and move on to the next parameter, You should set the
programmer for 1200 baud with SPACE ©parity. The
remainder of the parameters can have their default
values.

6. Press ENTR on the programmer until "SELECT FUNCTION" is
displayed to get to command level. Then press REM to
enter remote mode. This completes the interaction with
the programmer,

Programming PROMs for PROMBASYS Systems PAGE F-2

T. Run program EPROM,BAS on the PX11 systen. The
following questions will need to be answered:

1.

2.

Enter the device name to be burned into PROM. You
should enter the name of the disk that was created
and contains the programs to be placed into PROM

(for example XM1:).

Bad directory, please enter device length in blocks,
This question is only asked if a non RT-11
structured device is being programmed,

Enter the serial line number of PROM programmer,
Usually this is serial line 1. Serial line 0 is the

console terminal and cannot be used.

Enter the PROM type (2716, 2732, 2764, 27128,
27256). Select one of the PROM types. The program
will then the tell you how many PROM chips will be
needed to program the disk.

Enter the socket number you wish to burn (zero to
stop). The socket number corresponds to the
silk-screen socket numbers (1 to 16) on the ADAC
1822PROM board. The program will then tell you to
insert a PROM chip into the programmer. It will
then begin programming the PROM chip.

When programming of a particular PROM chip is
complete the console terminal bell will ring and the
following message will be printed by EPROM.BAS:

Programming complete, remove the PROM

Remove the PROM chip. The program will then ask for
the socket number of the next chip to be programmed,

The following are the possible error messages that can
be produced by program EPROM.BAS:

?ERROR - Unknown PROM type

?ERROR - Bad PROM code

?2ERROR - Starting address outside device
?ERROR - PROM not erased

?ERROR - Programmer not responding
?ERROR - Down line loading aborted
?ERROR - Programming failure

R
—

;
i

N’

s

APPENDIX G

AUTOSTARTING DX11 AND PX11

DX11 and PX11 systems <can be made to automatically execute
a user-written I/0BASIC program upon system power-up.
Normally, when the system powers up the I/OBASIC interpreter is
waiting for keyboard input commands from the user (the '>' prompt
appears).

To set up a PX11 systenm for executing a user-written
I/0BASIC program on power-up, simply create the file START.COM on
either XM1:, XM2:, XM3:, or XM4: containing the following lines:

RUN SYO0:IOBAS
RUN filespec

Where filespec is the I/0BASIC program name that should be
executed.

To set up a DX11 system for executing a user-written
I/0BASIC program on power-up, include the two lines given above
in the existing file STARTS.COM located on the system disk.:

Adding the above lines can be done using the RT-11 KED editor if
you have a VT-100 terminal, or an 1/0BASIC program can be written
that treats the file as a datafile using the I/OBASIC PRINT #
and OPEN statements as in the following example:

10 OPEN "XM1:START.COM"™ FOR OUTPUT AS FILE #1
20 PRINT #1, "RUN SY:IOBAS"

30 PRINT #1, "RUN TEST1.BAS"

40 CLOSE #1

50 END

% 5
O

APPENDIX H

SUMMARY OF LANGUAGE ELEMENTS

This appendix gives a brief summary of all of the various
commands, statements, and functions that are supported in
DX11, & PX11, systems. Refer to sections in this manual, the
JI/0BASIC Language Reference Manual, and the Digital Equipment
Corporation RT-11 and RT-11 BASIC manuals for further
information on each of these elements,

H. 1 RT-11 COMMANDS
RT~11 commands are used to interact with the DISKBASYS and

PROMBASYS operating system, called RT-11. The following are the
RT-11 commands that are available on DX11 and PX11 systems.

ASSIGN Assigns a logical device name to a physical device,
COPY Makes a copy of a file,

DATE Sets or displays the current system date.
DELETE Deletes the files you specify.

DIRECTORY Lists the files stored on a device.

FORMAT Formats floppy diskettes (DISKBASYS only)
INITIALIZE Clears and initializes a device directory.
RENAME Assigns a new name to an existing file.
SQUEEZE Consolidates free space on a volume,

TIME Sets or displays the current time of day.
TYPE Lists a file on the terminal.

H.2 REAL-TIME CONTROL STATEMENTS

Real-time control statements are used within I/OBASIC programs

for interacting with external devices. Listed below are the
real-time control statements that have been added to the I/0BASIC
interpreter for this purpose, Some of these statements have

short forms that can also be used. The short forms are indicated
in parenthesis:

Summary of Language Elements

ANALOG_IN
ANALOG_LOW_IN

PAGE H-2

(AIN) Reads high-level analog input channels.
(AINL) Reads low-level analog input channels.

ANALOG_OUT
BIT_CLEAR

BIT_ SET
BIT_TEST
CHAR_IN
CLOCK_OUT
CONVERT_OCTAL
DIGITAL IN
DIGITAL_OUT
EVENT RETURN
GET_DATE
GET_TIME

ON EVENT GOSUB
PEEK

POKE
TEMPERATURE_IN
TEST_ADDRESS
TIME OUT

WAIT

SET Statements:

SET_AIN_GAIN
SET_AINL_GAIN
SET_AIN_NOSCAN

SET_AIN_SCAN
SET_AINL_NOSCAN
SET_AINL_.SCAN
SET_AIN_NOTRIGGER
SET_AIN_TRIGGER
SET_AINL_NOTRIGGER
SET_AINL_TRIGGER
SET_ANALOG_PERCENT
SET_ANALOG_VOLTS
SET_AOT_NOTOGGLE

SET_AOT_TOGGLE
SET_AOT_NOTRIGGER

SET_AOT _TRIGGER
SET_DATE

SET_THERMOCOUPLE
SET_TIME

(AOT) Writes to an analog output channel.
(BIC) Clears a digital output bit.
(BIS) Sets a digital output bit.

(BIT) Tests a digital input or output
Reads characters from serial channels.
Operates the 1601GPT real-time clock.
Converts octal and decimal values,
(DIN) Reads a digital input or output channel.
(DOT) Writes to a digital output channel.
Returns from an event processing subroutine,
Gets the current system date.

Gets the current system time.

Declares an event processing subroutine,

Reads a memory location.

Writes to a memory location.

(TMPIN) Reads thermocouple temperatures.

Tests for a valid bus address.

Starts a software timer,

Causes a program delay.

bit.

Sets the high-level analog gain,
Sets the low-level analog gain. S
Disables high-level analog channel J
scanning. ”
Enables high-level analog channel scanning.
Disables low-~-level analog channel scanning.
Enables low-level analog channel scanning.
Disables hardware triggering for high-level
analog channels.

Enables hardware triggering for high-level
analog channels.

Disables hardware triggering for low-level
analog channels.

Enables hardware triggering for low-level
analog channels.

Sets analog units to percent full-scale.
Sets analog units to volts.

Disables DMA analog output channel
toggling.

Enables DMA analog output channel toggling.
Disables hardware triggering for DMA analog
output channel s,

Enables hardware triggering for DMA analog
output channel s,

Sets the current system date,

Sets the thermocouple type and range.

Sets the current system time,

g

S

Summary of Language Elements PAGE H-3
H.3 STANDARD BASIC STATEMENTS

The following are the programming statements that are supported
by I/O0BASIC. These statements are found in the standard Digital
Equipment Corporation RT-11 BASIC interpreter:

CHAIN Loads and executes the program specified.

CLOSE Closes the file associated with a channel number.
COMMON Preserves variables when CHAINing beftween programs.
DATA Contains data for READ statements.

DEF FN Define a one-line user function,

DIM Declares arrays,

DIM # Declares virtual arrays.

END Defines the physical end of the program.

FOR NEXT Sets up a loop to be executed a number of times.
GOSUB Transfers control to a subroutine,

GOTO Transfers control to a specified line number,

IF END Detects end-of-file condition for sequential files.
IF THEN Conditional branch or execution of a statement.
INPUT Reads data from the console terminal.

INPUT # Reads data from the console terminal or a file,.
INPUT € Read data from a serial 1line.

KILL Deletes the file.

LET Assigns the value of an expression to a variable.
LINPUT Reads an entire record from the console terminal.
LINPUT # Reads a record from the console terminal or a file.
LINPUT € Reads a record from a serial line.

NAME Renames a file.

ON ERROR GOTO Transfers control after a program error.

ON GOSUB Transfers control to a subroutine using an index

ON GOTO Transfers control to a statement using an index,

OPEN Opens a file and associates it with a channel number.
OVERLAY Merges/replaces program lines with those from a file,
PRINT Prints items on the console terminal.

PRINT # Prints items on the console terminal or a file.
PRINT €€ Prints items on a serial 1line.

PRINT USING Prints items using special formatting.
RANDOMIZE Starts a random sequence for the RND function.
READ Reads data contained in DATA statements,

REM Inserts comments into the program.

RESTORE Rewinds the READ/DATA pointer.

RESTORE # Rewinds a sequential file.

RESUME Continues execution after on ON ERROR condition.
RETURN Returns from a subroutine (complement of GOSUB).
STOP Terminates program execution.

H.4 TERMINAL CONTROL COMMANDS
Terminal control commands are used for controlling the input and
output at the console terminal., They are useful for correcting
typing mistakes, and regulate the flow of the display at the
terminal. All of these commands are single keystroke commands
that do not need to be followed by a carriage return,

CTRL/C Stops program execution.

CTRL/O Discards further terminal output.

CTRL/Q Cancels effect of CTRL/S.

CTRL/S Suspends output to the terminal,.

CTRL/U Deletes the current input line,

DELETE Erases the last character typed.

Summary of Language Elements PAGE H-4

H.5 I/0BASIC COMMANDS
The following commands are used when running the I/OBASIC
interpreter, They are executed as soon as they are typed, and

therefore cannot be part of a progran:

H.6

APPEND
BYE
CLEAR
COMPILE
DEL
LENGTH
LIST
LISTNH
NEW

OLD
RENA ME
REPLACE
RESEQ
RUN
RUNNH
SAVE
SUB
UNSAVE

Arithmetic functions return a value when executed in a
line within an I1/0BASIC program,
type integer or real,

ABS
ATN
Ccos
EXP
INT
LOG
LOG10
PI
RND
SGN
SIN
SQR
TAB

Merges/replaces program lines with those from a file.
Returns control to the RT-11 monitor.

Sets variables to zero, deletes strings and arrays.
Saves a compiled version of the program,

Deletes program lines.

Displays used and available memory in 16-bit words.
Prints the specified program lines on the terminal.
Same as LIST with header message suppressed.

Erases the current program and variables from memory.
Loads a SAVEd program into memory.

Changes the current program name,

Writes the program to an existing program file.
Resequences program line numbers, ;
Executes the program.

Same as RUN with header message suppressed.

Writes the program to a new program file,

Used to edit program lines.

Deletes the specified file.

ARITHMETIC FUNCTIONS

program
The value returned is either of
depending upon the function,

Absolute val ue.

Arctangent of angle in radians.
Cosine of angle in radians.
Exponential; e raised to a power.
Integer value.

Natural logarithm.

Base 10 logarithm,

Value of pi (approximately 3.141593).
Random number between 0 and 1.

Sign of an expression.

Sine of angle in radians.

Square root,

Horizontal print tab (only for PRINT statement).

\ww‘f

K

Summary of Language El ements PAGE H-5

H.T STRING FUNCTIONS

String functions are wused for manipulating strings. Some
functions return string values, while other functions simply
operate on strings and return numeric values. They are very

useful when working with character input and output.

ASC Returns the ASCII value for the 1-character string.
BIN Converts binary number string to decimal value.
CHR$ Generates a 1-character string of the ASCII value.
CLK$ Returns the time as a string in the form hh:imm:ss.
DATS$ Returns the date as a string in the form dd-mmn-yy.
LEN Returns the number of characters in the string.

0oCT Converts octal number string to decimal value.

POS Returns position of a substring.

SEG$ Extracts a substring from a string.

STR$ Returns string representation for the numeric value,
TRM$ Removes trailing blanks from a string.

VAL Converts decimal number string to decimal value,

H.8 MISCELLANEOUS FUNCTIONS AND STATEMENTS

The following functions and statements perform miscellaneous
operations, In general, most programs do not need to make use of
these functions, but they are documented here as a reference for
the advanced programmer,

ABORT Terminates a program and removes it from memory.
CANCEL_CTLO Restores terminal output after a CTRL/O.
CTLC Checks for CTRL/C typed at console terminal.

DISABLE_CTLC Disables CTRL/C from interrupting program.
ENABLE_CTLC Allows CTRL/C to interrupt program execution.
ERL Returns the line number of a program error.

ERR Returns the error code of an ON ERROR condition.
SET_WIDTH Used to set the terminal's margin (width).

