Relay rack spacing is in terms of 1.75 inch units. Hole spacing is 5/8 inch, 5/8 inch and 1/2 inch. From the edge of the "unit" come down 1/4 inch to the first hole ( holes are tapped for 10-32 screws ). The second hole down is 5/8 inch below the first. The third hole is 5/8 inch below the second. The bottom edge of the "unit" is 1/4 inch below the third hole.
Thermocouple Type | Junction Materials | Wire Color | Temperature Range |
J | (+) Iron | White | 0 to 750 deg C |
(-) Constantan | Red | 32 to 1382 deg F | |
K | (+) Nickel - Chromium | Yellow | -200 to 1250 deg C |
(-) Nickel - Aluminum | Red | -328 to 2282 deg F | |
T | (+) Copper | Blue | -200 to 350 deg C |
(-) Constantan | Red | -328 to 662 deg F | |
E | (+) Nickel - Chromium | Purple | -200 to 900 deg C |
(-) Copper - Nickel | Red | -328 to 1652 deg F | |
S | (+) Platinum - 10% Rhodium | Black | 0 to 1450 deg C |
(-) Platinum | Red | 32 to 2642 deg F | |
R | (+) Platinum - 13% Rhodium | Black | 0 to 1450 deg C |
(-) Platinum | Red | 32 to 2642 deg F | |
B | (+) Platinum - 30% Rhodium | Gray | 0 to 1700 deg C |
(-) Platinum - 6% Rhodium | Red | 32 to 3092 deg F |
Reflection Coefficient ( resistive load and ideal transmission line )
( Rload - Rcharacteristic) ÷ ( Rload + Rcharacteristic )
Assuming refractive index is not complex
Skin Depth for good conductors = ( 2 ÷ ( 2 × PI × ƒ × µ × conductivity ))**½
ƒ = frequency
µ = relative permeability
Loss = Absorbtion + Reflection + Correction for multiple reflections
1/e ~= 0.37
A = 8.69 * (thickness/skin depth)
A = 20 * (thickness/skin depth) * LOG(e) dB
A = 3.34 * (thickness) * (((frequency) * (permeability relative to copper) * (conductivity relative to copper))**0.5)
R = 168 + 10 * LOG((conductivity relative to copper) / (frequency) * (permeability relative to copper)) dB
Conductor | 60 Hertz (centimeters) |
1 Kilohertz (millimeters) |
1 Megahertz (millimeters) |
3 Gigahertz (microns) |
---|---|---|---|---|
Aluminum | 1.10 | 2.7 | 0.085 | 1.6 |
Brass (65.8 Cu, 34.2 Zn) | 1.63 | 3.98 | 0.126 | 2.3 |
Chromium | 1.00 | 2.60 | 0.081 | 1.5 |
Copper | 0.85 | 2.10 | 0.066 | 1.2 |
Gold | 0.97 | 2.38 | 0.075 | 1.4 |
Graphite | 20.5 | 50.3 | 1.59 | 29.0 |
Magnetic Iron | 0.14 | 0.35 | 0.011 | 0.20 |
Mumetal (75 Ni, 2 Cr, 5 Cu, 18 Fe) | 0.037 | 0.092 | 0.0029 | 0.053 |
Nickel | 0.18 | 4.40 | 0.014 | 0.26 |
Sea Water | 3E3 | 7E3 | 2E2 | NA |
Silver | 0.83 | 2.03 | 0.064 | 1.2 |
Tin | 2.21 | 5.41 | 0.171 | 3.12 |
Zinc | 1.51 | 3.70 | 0.117 | 2.14 |
50 ohm passive splitter
Total number of ports = N ( total number of inputs/outputs ).
We want to see Z ohms looking into any port.
We need one resistor, R, on each port for impedance match.
This leads to Z = R + ((Z+R)/(N-1))
which leads to R = (Z*(N-2)/N)
For Z = 50 ohms and N = 3
( to split a pulse in two )
R = 16.67 ohms
The signal amplitude is reduced to Vout = Vin*(Z/(Z+(R*N)))
For Z = 50 ohms and N = 3
Vout = Vin*0.5
1% | 5% | 10% | 20% |
---|---|---|---|
100 | 10 | 10 | 10 |
102 | |||
105 | |||
107 | |||
110 | 11 | ||
113 | |||
115 | |||
118 | |||
121 | 12 | 12 | |
124 | |||
127 | |||
130 | 13 | ||
133 | |||
137 | |||
140 | |||
143 | |||
147 | |||
150 | 15 | 15 | 15 |
154 | |||
158 | |||
162 | |||
165 | 16 | ||
169 | |||
174 | |||
178 | |||
182 | 18 | 18 | |
187 | |||
191 | |||
196 | |||
200 | 20 | ||
205 | |||
210 | |||
215 | |||
221 | 22 | 22 | 22 |
226 | |||
232 | |||
237 | |||
243 | 24 | ||
249 | |||
255 | |||
261 | |||
267 | |||
274 | 27 | 27 | |
280 | |||
287 | |||
294 | |||
301 | 30 | ||
309 | |||
316 | |||
324 | |||
332 | 33 | 33 | 33 |
340 | |||
348 | |||
357 | |||
365 | 36 | ||
374 | |||
383 | |||
392 | 39 | 39 | |
402 | |||
412 | |||
422 | |||
432 | 43 | ||
442 | |||
453 | |||
464 | |||
475 | 47 | 47 | 47 |
487 | |||
499 | |||
511 | 51 | ||
523 | |||
536 | |||
549 | |||
562 | 56 | 56 | |
576 | |||
590 | |||
604 | |||
619 | 62 | ||
634 | |||
649 | |||
665 | |||
681 | 68 | 68 | 68 |
698 | |||
715 | |||
732 | |||
750 | 75 | ||
768 | |||
787 | |||
806 | |||
825 | 82 | 82 | |
845 | |||
866 | |||
887 | |||
909 | 91 | ||
931 | |||
953 | |||
976 |