Technical Report

Subject: JLab Q1 JSA-09-C1564 Author: FD / PDD

Instrumentation Design Summary

Milestone D-13 - Issue 3

Ref No.: P0425SPM Date: 22nd November 2010

Dist: PB, SL (JLab) CC: SRM, PNP

The Instrumentation design details provided in the JSA-09-C1564 contract documentation includes the following documents and descriptions for subcontractor supplied parts:

- Temperature sensors as defined in section 8.1 of the SHMS technical specification dated 14th July 2008 and wiring with pin outs defined on drawing 67125-E-00110 RevF.
- Strain Gauges for cold to warm support as defined in section 8.6 of the SHMS technical specification dated 14th July 2008 and wiring with pin outs defined on drawing 67125-E-00112_RevA.
- Voltage taps for magnet and current leads as defined in section 8.7 of the SHMS technical specification dated 14th July 2008 and wiring with pin outs defined on drawing 67125-E-00111 RevA and overall schematic 67125-D-00113.

Each temperature and strain sensor has a duplicate redundant sensor to allow use of an alternative if the primary stops functioning.

Generally the sensor layout is understood by Scientific Magnetics and no changes would be proposed except those outlined in this document which require a response from JLab. There are several questions arising from review of the proposed instrumentation scheme before implementation directly which are summarised below as requested actions for JLab:

Temperature Sensors

- JLab to confirm they will furnish fully pre-wired 41 pin connector with flying lead to the CCR contractor who will use the appropriate leads, leaving the remaining flying leads for use by Scientific Magnetics when the CCR is delivered.
- JLab to confirm that all sensor requirements for the magnet assembly are shown on tables below and that connection pins and responsibilities are correct.
- Exact location for all temperature sensors is to be clarified.

Strain gauge sensors:

• The 8 strain gauges in full bridge configuration per rod are understood by SM and will be implemented as defined by JLab.

Recommendations for voltage taps

 JLab to confirm they will furnish fully pre-wired 41 pin connector with flying lead to the CCR contractor who will use the appropriate leads, leaving the remaining flying leads for use by Scientific Magnetics when the CCR is delivered.

Temperature Sensors Ref 67125-E-00110

PT100 temperature sensors:

We propose to use our standard PT100 sensor which conforms with IEC751 class B which is equivalent to the required DIN 43760 (Class B). A data sheet is attached in Appendix 1 for information. It has successfully been used on superconducting magnet systems for measurement of temperatures above 10K (with the use of a suitable calibration curve).

It is noted that these sensors have been configured in three wire mode, mainly due to the lack of pins on the CCR connectors.

Carbon Sensors:

We propose to use our standard carbon-ceramic sensor TVO type D2 which is 3 point calibrated, a calibration curve to interpolate between these 3 points will be provided. A data sheet on this sensor is attached in Appendix 2 for information:

The responsibility for PT100 and Carbon temperature sensor wiring is shown in the following four tables

Primary Sensors as defined in 67125-E-00110 RevF

Sensor ID	Location	Connector	Pins	Fit and Wiring Responsibility
CG-1	Magnet coil 1	1	1,2,3,4	Scientific
T_Coil_1				Magnetics
CG-2	Magnet coil 2	1	5,6,7,8	Scientific
T_Coil_2				Magnetics
CG_3	Magnet coil 3	1	9,10,11,12	Scientific
T_Coil_3				Magnetics
CG_4	Magnet coil 4	1	13,14,15,16	Scientific
T_Coil_4				Magnetics
CG_5	Current lead	1	17,18,19,20	CCR Contractor
T_CL_N_C	negative in CCR			
CG_6	Current Lead	1	21,22,23,24	CCR Contractor
T_CL_P_C	positive in CCR			
PT102-1	Yoke	1	25,26,27	Scientific
PT_Yoke_1				Magnetics
PT102-2	Yoke	1	28,29,30	Scientific
PT_Yoke_2				Magnetics
PT102-3	Yoke	1	31,32,33	Scientific
PT_Yoke_3				Magnetics
PT102-4	Yoke	1	34,35,36	Scientific
PT_Yoke_4				Magnetics
Short		1	40, 41	CCR Contractor

Redundant Sensors as defined in 67125-E-00110 Rev F

Sensor ID	Location	Connector	Pins	Fit and Wiring Responsibility
CG-1_R	Magnet coil 1	2	1,2,3,4	Scientific
T_Coil_1				Magnetics
CG-2-R	Magnet coil 2	2	5,6,7,8	Scientific
T_Coil_2				Magnetics
CG_3-R	Magnet coil 3	2	9,10,11,12	Scientific
T_Coil_3				Magnetics
CG_4-R	Magnet coil 4	2	13,14,15,16	Scientific
T_Coil_4				Magnetics
CG_5-R	Current lead	2	17,18,19,20	CCR Contractor
T_CL_N_C	negative in CCR			
CG_6-R	Current Lead	2	21,22,23,24	CCR Contractor
T_CL_P_C	positive in CCR			
PT102-1-R	Yoke	2	25,26,27	Scientific
PT_Yoke_1				Magnetics
PT102-2-R	Yoke	2	28,29,30	Scientific
PT_Yoke_2				Magnetics
PT102-3-R	Yoke	2	31,32,33	Scientific
PT_Yoke_3				Magnetics
PT102-4-R	Yoke	2	34,35,36	Scientific
PT_Yoke_4				Magnetics
Short		2	40,41	CCR Contractor

Primary Sensors as defined in 67125-E-00110 Rev. F

Sensor ID	Location	Connector	Pins	Fit and Wiring Responsibility
PT102_6 PT_N2_OUTER_TOP	Magnet outer nitrogen shield top	A	1,2,3	Scientific Magnetics
PT102_7 PT_N2_OUTER_BOTTOM	Magnet outer nitrogen shield bottom	A	4,5,6	Scientific Magnetics
PT102_8 PT_N2_BORE_TOP	Magnet bore nitrogen shield top	A	7,8,9	Scientific Magnetics
PT102_9 PT_N2_BORE_BOTTOM	Magnet bore nitrogen shield bottom	A	10,11,12	Scientific Magnetics
PT102_5 PT_N2_IN	Nitrogen feed line	В	1,2,3	CCR Contractor
PT102_10 PT_N2_RETURN	Nitrogen return line	В	4,5,6	CCR Contractor
DIODE-1 TD_HE_COOLDOWN	He pipework	В	7,8,9,10	CCR Contractor
DIODE-2 TD_HE_SUPPLY	He pipework	В	11,12,13,14	CCR Contractor
DIODE-3 TD_HE_COLD_RETURN	He pipework	В	15,16,17,18	CCR Contractor
DIODE-4 TD_HE_WARM_RETURN	He pipework	В	19,20,21,22	CCR Contractor
CG_7 T_HE_RESV	Helium reservoir	В	23,24,25,26	CCR Contractor
Short		В	40,41	CCR Contractor

Redundant Sensors as defined in 67125-E-00110

Sensor ID	Location	Connector	Pins	Fit and Wiring Responsibility
PT102_6_R PT_N2_OUTER_TOP	Magnet outer nitrogen shield top	A	13,14,15	Scientific Magnetics
PT102_7_R PT_N2_OUTER_BOTTOM	Magnet outer nitrogen shield bottom	A	16,17,18	Scientific Magnetics
PT102_8_R PT_N2_BORE_TOP	Magnet bore nitrogen shield top	A	19,20,21	Scientific Magnetics
PT102_9_R PT_N2_BORE_BOTTOM	Magnet bore nitrogen shield bottom	A	22,23,24	Scientific Magnetics
Short		Α	40,41	CCR Contractor
PT102_5_R PT_N2_IN	Nitrogen feed line	С	1,2,3	CCR Contractor
PT102_10_R PT_N2_RETURN	Nitrogen return line	С	4,5,6	CCR Contractor
DIODE-1_R TD_HE_COOLDOWN	He pipework	С	7,8,9,10	CCR Contractor
DIODE-2_R TD_HE_SUPPLY	He pipework	С	11,12,13,14	CCR Contractor
DIODE-3_R TD_HE_COLD_RETURN	He pipework	С	15,16,17,18	CCR Contractor
DIODE-4_R TD_HE_WARM_RETURN	He pipework	С	19,20,21,22	CCR Contractor
CG-7_R T_HE_RESV	Helium reservoir	С	23,24,25,26	CCR Contractor
Short		С	40,41	CCR Contractor

Recommendations for Temperature Sensors

For connectors A, 1 and 2 there is a mix of responsibility for wiring the connector, and the pins to be used by the CCR contractor and Scientific Magnetics are not separated by pin such that it is highly likely that the current configuration will be damaged during the two step wiring operation because the pin selection is not aligned to the construction by two separate contractors.

In order to prevent this it is proposed that JLab consider the following:

JLab furnish a completely pre-wired plug to the CCR contractor with sufficient
flying lead that both the CCR contractor and Scientific Magnetics can join their
sensors to the wires, by use of a connector or soldered joint in the relevant vacuum
space as appropriate. For avoidance of doubt this means the CCR contractor will
use the JLab furnished pre wired 41 way connector to attach its sensors via
appropriate pins, leaving the remaining flying leads accessible in the CCR base so
that Scientific Magnetics can use the assigned leads for wiring its sensors later. This
avoids any possibility of damaging leads already connected to the 41 way
connector.

Note: Exact location for all temperature sensors is to be clarified.

Strain Gauges Ref 67125-E-00012 Rev A

Strain gauge sensors:

The wiring for the strain gauge sensors for the top vertical supports are detailed in the following table. The strain gauges are bonded to the support rods on a 20mm diameter section such that they make up a full bridge transducer configuration with four wires from each bridge connected to an 8 way lemo connector. The transducer is configured to measure tension along the axis of the rod (effectively 2.6ϵ) and inherently corrects for bending of the rod. Each bridge has a redundant / spare installation and this is accessed on another four pins on the 8 way connector.

Strain Gauge ID	Location	Connector	Pins	Fit and Wiring Responsibility
SG1/1	Active strain gauge bridge - top rod	A	1-4	Scientific Magnetics
SG1/2	Redundant strain gauge bridge - top rod	A	5-8	Scientific Magnetics
SG2/1	Active strain gauge bridge - top rod	В	1-4	Scientific Magnetics
SG2/2	Redundant strain gauge bridge - top rod	В	5-8	Scientific Magnetics
SG3/1	Active strain gauge bridge - top rod	С	1-4	Scientific Magnetics
SG3/2	Redundant strain gauge bridge - top rod	С	5-8	Scientific Magnetics
SG4/1	Active strain gauge bridge - top rod	D	1-4	Scientific Magnetics
SG4/2	Redundant strain gauge bridge - top rod	D	5-8	Scientific Magnetics

The wiring for the strain gauge sensors for the side supports are detailed in the following table. The gauge configuration is identical to that on the vertical rods.

Strain Gauge ID	Location	Connector	Pins	Fit and Wiring Responsibility
SG5/1	Active strain gauge bridge - side rod	E	1-4	Scientific Magnetics
SG5/2	Redundant strain gauge bridge - side rod	E	5-8	Scientific Magnetics
SG6/1	Active strain gauge bridge - side rod	F	1-4	Scientific Magnetics
SG6/2	Redundant strain gauge bridge - side rod	F	5-8	Scientific Magnetics
SG7/1	Active strain gauge bridge - side rod	G	1-4	Scientific Magnetics
SG7/2	Redundant strain gauge bridge - side rod	G	5-8	Scientific Magnetics
SG8/1	Active strain gauge bridge - side rod	Н	1-4	Scientific Magnetics
SG8/2	Redundant strain gauge bridge - side rod	Н	5-8	Scientific Magnetics

Voltage Taps Ref 67125-E-00111 and 67125-D-00113

Voltage taps and the responsibility for making them are shown in the following tables Flying cable

Pot Tap ID	Location	Connector	Pins	Fit and Wiring Responsibility
POT TAP I+U	+ current lead top	N/A	N/A	CCR Contractor
POT TAP I-U	- current lead top	N/A	N/A	CCR Contractor
POT TAP I+U_R	Magnet outer nitrogen shield bottom	N/A	N/A	CCR Contractor
POT TAP I-U_R	Magnet bore nitrogen shield top	N/A	N/A	CCR Contractor

41 pin connector - Primary pot taps

Pot Tap ID	Location	Connector	Pins	Fit and Wiring Responsibility
POT TAP I+M1	+ current lead lap joint in CCR top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	1	CCR Contractor
POT TAP I+M2	+ current lead lap joint in CCR bottom	Item 10 on dwg 67125- E-00111 Rev A sheet 2	2	CCR Contractor
POT TAP I+L1	+ current lead lap joint in interface top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	3	Scientific Magnetics
POT TAP I+L2	+ current lead lap joint in interface bottom / coil 1 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	4	Scientific Magnetics
POT TAP 1/1B	Coil 1 end/ coil 2 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	5	Scientific Magnetics
POT TAP 2/1A	Coil 1 end / Coil 2 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	6	Scientific Magnetics
POT TAP 2/1B	Coil 2 end / Coil 3 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	7	Scientific Magnetics
POT TAP 3/1A	Coil 2 end / Coil 3 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	8	Scientific Magnetics
POT TAP 3/1B	Coil 3 end / Coil 4 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	9	Scientific Magnetics
POT TAP 4/1A	Coil 3 end / Coil 4 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	10	Scientific Magnetics
POT TAP I-L2	- current lead lap joint in interface bottom / coil 4 end	Item 10 on dwg 67125- E-00111 Rev A sheet 2	11	Scientific Magnetics
POT TAP I-L1	- current lead lap joint in interface top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	12	Scientific Magnetics
POT TAP I-M2	- current lead lap joint in CCR top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	13	CCR Contractor
POT TAP I-M1	+-current lead lap joint in CCR bottom	Item 10 on dwg 67125- E-00111 Rev A sheet 2	14	CCR Contractor

41 pin connector - Redundant pot taps

Pot Tap ID	Location	Connector	Pins	Fit and Wiring Responsibility
POT TAP I+M1_R	+ current lead lap joint in CCR top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	15	CCR Contractor
POT TAP I+M2_R	+ current lead lap joint in CCR bottom	Item 10 on dwg 67125- E-00111 Rev A sheet 2	16	CCR Contractor
POT TAP I+L1_R	+ current lead lap joint in interface top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	17	Scientific Magnetics
POT TAP I+L2_R	+ current lead lap joint in interface bottom / coil 1 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	18	Scientific Magnetics
POT TAP 1/1B_R	Coil 1 end/ coil 2 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	19	Scientific Magnetics
POT TAP 2/1A_R	Coil 1 end / Coil 2 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	20	Scientific Magnetics
POT TAP 2/1B_R	Coil 2 end / Coil 3 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	21	Scientific Magnetics
POT TAP 3/1A_R	Coil 2 end / Coil 3 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	22	Scientific Magnetics
POT TAP 3/1B_R	Coil 3 end / Coil 4 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	23	Scientific Magnetics
POT TAP 4/1A_R	Coil 3 end / Coil 4 start	Item 10 on dwg 67125- E-00111 Rev A sheet 2	24	Scientific Magnetics
POT TAP I-L2_R	- current lead lap joint in interface bottom / coil 4 end	Item 10 on dwg 67125- E-00111 Rev A sheet 2	25	Scientific Magnetics
POT TAP I-L1_R	- current lead lap joint in interface top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	26	Scientific Magnetics
POT TAP I-M2_R	- current lead lap joint in CCR top	Item 10 on dwg 67125- E-00111 Rev A sheet 2	27	CCR Contractor
POT TAP I-M1_R	+-current lead lap joint in CCR bottom	Item 10 on dwg 67125- E-00111 Rev A sheet 2	28	CCR Contractor
Short		Item 10 on dwg 67125- E-00111 Rev A sheet 2	40, 41	CCR Contractor

Recommendations for voltage taps

For this connector there is a mix of responsibility for wiring the connector, and the pins to be used by the CCR contractor and Scientific Magnetics are not separated by pin such that it is highly likely that the current configuration will be damaged during the two step wiring operation because the pin selection is not aligned to the construction by two separate contractors. In order to prevent this it is proposed that JLab consider the following:

• JLab furnish a completely pre-wired plug to the CCR contractor with sufficient flying lead that both the CCR contractor and Scientific Magnetics can join their voltage taps to the wires, by use of a connector or soldered joint in the relevant helium space as appropriate.

Appendix 1 - PT100 Sensor data sheet

Platinum Resistance Thermometry

Platinum Resistance Thermometers (PRT), constructed using thin film element

The sensor is platinum layered, laser trimmed and sits on a ceramic substrate, ideal for gas and surface measurements, giving rapid response due to low mass and good thermal transfer.

Pt100 Element, Thin Film Type (100 Ohm)

- Conforms to IEC751 Class B
 -50°C to +550°C temperature measurement range
 10mm tails
 Ideal solution for surface mounting measurement applications
 Immersion applications where protected
 Fast response times
 Good vibration resistance
 Long-term stability

Specifications of element

•	Temperature range	-50°C to +550°C
•	Ice point resistance	100Ω
•	Fundamental interval (0°C to 100°C)	38.5Ω nom.
•	Self heating	0.005°C/mW
•	Thermal response	0.1s
	Stability	+0.05%

Dimensions & Class

RS Stock No

Dimensions L x W x H 2 x 5 x 1.1mm Class B

290-5070

RS Data 290-5070 12.11-08 GC

Appendix 2 - TVO Carbon ceramic sensor data sheet

MODEL TMI-A1 CCS

CCS Carbon-Ceramic Resistor

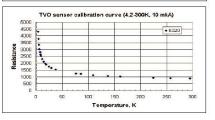
The Series TMi-A1 CCS, from the TVO family of resistors, is based on a carbon-ceramic composite construction which adheres to a single resistance verses temperature curve. They offer excellent performance and stability characteristics in magnetic field and high dose radiation environments. TMI-CCS resistors have little magneto-resistance in fields up to 6T over their range. No orientation dependence of resistor mounting relative to the magnetic field has been observed. TMi-CCS resistors are available in calibrated, sorted and un-calibrated forms featuring fast response times, excellent repeatability and high mechanical, thermal and radiation stability - all at reasonable cost.

CCS-A1 Specifications

Useful Temperature Range

1.5K - 375K

Maximum Operating Temperature


Nominal Resistivity (typical)

4363 Ω @ 4.2K 1900 Ω @ 20K 1238 Ω @ 77K 1156 Ω @ 100K 850 Ω @ 295K

Key Product Features

- excellent long-term stability (< 0.015K/15yr)
- thermal response < 1mS @ 4.2K
- high sensitivity 1000-1500 Ω/K @ 4.2K low magnetic field error <1% for B<6T
- low neutron-radiation error <1% for F<10¹⁷n/m²
- superior mechanical stability

Typical Sensitivity R/T (Ohm/K) 300 250 200 150 100 77 30 20 10 4,2 Ohm R_{4.2}=6300 1 1,25 1,7 2,5 4 0,85 1,1 1,5 2,4 3,8 6 20 40 165 1005 R_{4.2}=4500 0,83 1 1,5 2,3 3,7 5 20 35 120 620 R_{4.2}=3500 0,6 0,8 1 1,4 2,5 3,5 15 25 75 390

Standard Configuration

Special glass coated carbon-ceramic matrix approximately 2mm x 8mm x 1mm (deep)

Available Models

Band	Temp. Range	Ω @4.2k	Sensitivity (Ω/K)	Status
A1	1.5K - 375k	4000 - 5000	1000 - 1500	calibrated
A2	1.5K - 375k	3000 - 4000	600 - 1000	calibrated
B1	2.5K - 375k	3500 - 4000	800 - 1200	calibrated
B2	2.5K - 375k	2800 - 3500	500 - 800	calibrated
C1	4.2K - 375k	3500 - 4000	800 - 1200	calibrated
C2	4.2K - 375k	2800 - 3500	500 - 800	calibrated
D1	1.5K - 375k	4000 - 6000		selected
D2	4.2K - 375k	2600 - 4000		selected

Contact Information:

Tmi, Business Logistix Ltd,
Fraternity House, 1 Harborne Road, Tackley, Oxford, UK, OX5 3BL
Felephone:+44 (0) 1869 331108 Fax: +44 (0) 1869 331641
web: http://www.temati-uk.com/ email: info@temati-uk.com/ email: info@temati-uk.com