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Introduction Stratix® II, Stratix, Stratix GX, Cyclone™ II, and Cyclone devices have 
dedicated architectural features that make it easy to implement high-
performance multipliers. Stratix II, Stratix, and Stratix GX devices feature 
embedded high-performance multiplier-accumulators (MACs) in 
dedicated digital signal processing (DSP) blocks. DSP blocks can operate 
at data rates above 300 million samples per second (MSPS), making 
Stratix II, Stratix, and Stratix GX devices ideal for high-speed DSP 
applications. Cyclone II devices have embedded multiplier blocks for 
DSP.

In addition to the dedicated DSP blocks, designers can also use the 
Stratix II, Stratix, and Stratix GX devices’ TriMatrix™ memory blocks to 
implement high-performance soft multipliers of variable depths and 
widths. For example, designers can useTriMatrix memory blocks as look-
up tables (LUTs) that contain partial results from multiplication of input 
data with coefficients. Cyclone II and Cyclone devices have M4K memory 
blocks which can be used as LUTs to implement variable depth/width 
high-performance soft multipliers for low cost, high volume DSP 
applications.
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Implementing Multipliers in FPGA Devices
Stratix II, Stratix, Stratix GX, Cyclone II, and Cyclone devices can 
implement the multiplier types shown in Table 1.

Tables 2 through 4 show the total number of multipliers available in 
Stratix II, Stratix, and Stratix GX devices using DSP blocks and soft 
multipliers. Table 5 shows the total number of multipliers available in 

Table 1. Supported Multiplier Implementations 

Multiplier Type Description
Devices

Stratix II Stratix Stratix GX Cyclone II Cyclone

Soft multiplier These multipliers are implemented as 
LUTs in memory, which contains all 
possible partial results from 
multiplication. There are five soft 
multiplier modes:

■ Parallel multiplication
■ Semi-parallel multiplication
■ Sum of multiplication
■ Hybrid multiplication
■ Fully variable multipliers

v v v v v

Multipliers 
using DSP 
blocks, 
embedded 
multipliers, or 
logic resources

These multipliers are implemented in 
dedicated DSP blocks, embedded 
multipliers, or logic resources using 
the lpm_mult, altmult_add, or 
altmult_accum megafunctions.

v v v v (1)

Firm multiplier These multipliers are implemented in a 
combination of DSP blocks or 
embedded multipliers and logic 
resources.

v v v v -

Note to Table 1:
(1) Cyclone devices can implement these multiplication functions using logic resources only.
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Introduction
Cyclone II devices using embedded multipliers and soft multipliers. 
Table 6 shows the total number of soft multipliers available in Cyclone 
devices.

Table 2. Number of Multipliers in Stratix II Devices

Device
DSP Blocks
(18 × 18)

Soft Multipliers (16 × 16) 
(1)

Total Multipliers 
(2), (3)

EP2S15 48 100 148 (3.08)

EP2S30 64 189 253 (3.95)

EP2S60 144 325 469 (3.26)

EP2S90 192 509 701 (3.65)

EP2S130 252 750 1,002 (3.98)

EP2S180 384 962 1,346 (3.51)

Notes to Table 2:
(1) Soft multipliers implemented in sum of multiplication mode. RAM blocks are 

configured with 18-bit data widths and sum of coefficients up to 18-bits.
(2) The number in parentheses represents the increase factor, which is the total 

number of multipliers with soft multipliers divided by the number of 
18 × 18 multipliers supported by DSP blocks only.

(3) The total number of multipliers may vary according to the multiplier mode used.

Table 3. Number of Multipliers in Stratix Devices

Device
DSP Blocks 
(18 × 18)

Soft Multipliers (16 × 16) 
(1)

Total Multipliers 
(2), (3)

EP1S10 24 89 113 (4.71)

EP1S20 40 142 182 (4.55)

EP1S25 40 208 248 (6.20)

EP1S30 48 263 311 (6.48)

EP1S40 56 303 359 (6.41)

EP1S60 72 471 543 (7.54)

EP1S80 88 603 691 (7.85)

Notes to Table 3:
(1) Soft multipliers implemented in sum of multiplication mode. RAM blocks 

configured with 18-bit data widths and sum of coefficients up to 18 bits.
(2) The number in parentheses represents the increase factor, which is the total 

number of multipliers with soft multipliers divided by the number of 
18 × 18 multipliers supported by DSP blocks only.

(3) The total number of multipliers may vary according to the multiplier mode used.
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Implementing Multipliers in FPGA Devices
Table 4. Number of Multipliers in Stratix GX Devices

Device
DSP Blocks 
(18 × 18)

Soft Multipliers (16 × 16) 
(1)

Total Multipliers 
(2), (3)

EP1SGX10C 24 89 113 (4.71)

EP1SGX10D 24 89 113 (4.71)

EP1SGX25C 40 208 248 (6.20)

EP1SGX25D 40 208 248 (6.20)

EP1SGX25F 40 208 248 (6.20)

EP1SGX40D 56 303 359 (6.41)

EP1SGX40G 56 303 359 (6.41)

Notes to Table 4:
(1) Soft multipliers implemented in sum of multiplication mode. RAM blocks 

configured with 18-bit data widths and sum of coefficients up to 18 bits.
(2) The number in parentheses represents the increase factor, which is the total 

number of multipliers with soft multipliers divided by the number of 
18 × 18 multipliers supported by DSP blocks only.

(3) The total number of multipliers may vary according to the multiplier mode used.

Table 5. Number of Multipliers in Cyclone II Devices

Device
Embedded 
Multipliers
(18 × 18)

Soft Multipliers (16 × 16) 
(1)

Total Multipliers 
(2), (3)

EP2C5 13 26 39 (3.00)

EP2C8 18 36 54 (3.00)

EP2C20 26 52 78 (3.00)

EP2C35 35 105 140 (4.00)

EP2C50 86 129 215 (2.50)

EP2C70 150 250 400 (2.67)

Notes to Table 4:
(1) Soft multipliers implemented in sum of multiplication mode. RAM blocks 

configured with 18-bit data widths and sum of coefficients up to 18 bits.
(2) The number in parentheses represents the increase factor, which is the total 

number of multipliers with soft multipliers divided by the number of 
18 × 18 multipliers supported by DSP blocks only.

(3) The total number of multipliers may vary according to the multiplier mode used.
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Memory Blocks
This application note describes the dedicated memory and DSP blocks, 
the supported multiplier types, and includes an example of each type. 

Memory Blocks The Stratix II, Stratix, and Stratix GX TriMatrix memory blocks consist of 
three types of RAM blocks: M512, M4K, and M-RAM. The M512 and M4K 
RAM blocks are memory blocks with a maximum width of 18 and 36 bits, 
respectively, and a maximum performance of approximately 300 MHz, 
which is ideal for implementing soft multipliers.

Tables 7 through 9 show the available TriMatrix memory blocks in 
Stratix II, Stratix, and Stratix GX devices, respectively.

Table 6. Number of Multipliers in Cyclone Devices 

Device Soft Multipliers (16 × 16) (1), (2)

EP1C3 13

EP1C4 17

EP1C6 20

EP1C12 52

EP1C20 64

Notes to Table 6:
(1) Soft multipliers implemented in sum of multiplication mode. RAM blocks 

configured with 18-bit data widths and sum of coefficients up to 18 bits.
(2) The total number of multipliers may vary according to the multiplier mode used.

Table 7. Stratix II TriMatrix Memory Blocks

Device
M512 RAM 

(32 × 18 Bits)
M4K RAM 

(128 × 36 Bits)
M-RAM 

(4K × 144 Bits)
Total RAM Bits

EP2S15 104 78 0 419,328

EP2S30 202 144 1 1,369,728

EP2S60 329 255 2 2,544,192

EP2S90 488 408 4 4,520,448

EP2S130 699 609 6 6,747,840

EP2S180 930 768 9 9,383,040
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The Cyclone II and Cyclone M4K memory blocks have a maximum width 
of 36 bits and a maximum performance of 250 MHz (200 MHz for Cyclone 
M4K blocks). Tables 10 and 11 show the number of Cyclone II and 
Cyclone M4K memory blocks in each device, respectively.

Table 8. Stratix TriMatrix Memory Blocks

Device
M512 RAM 

(32 × 18 Bits)
M4K RAM 

(128 × 36 Bits)
M-RAM 

(4K × 144 Bits)
Total RAM Bits

EP1S10 94 60 1 920,448

EP1S20 194 82 2 1,669,248

EP1S25 224 138 2 1,944,576

EP1S30 295 171 4 3,317,184

EP1S40 384 183 4 3,423,744

EP1S60 574 292 6 5,215,104

EP1S80 767 364 9 7,427,520

Table 9. Stratix GX TriMatrix Memory Blocks

Device
M512 RAM 

(32 × 18 Bits)
M4K RAM 

(128 × 36 Bits)
M-RAM 

(4K × 144 Bits)
Total RAM Bits

EP1SGX10C 94 60 1 920,448

EP1SGX10D 94 60 1 920,448

EP1SGX25C 224 138 2 1,944,576

EP1SGX25D 224 138 2 1,944,576

EP1SGX25F 224 138 2 1,944,576

EP1SGX40D 384 183 4 3,423,744

EP1SGX40G 384 183 4 3,423,744

Table 10. Cyclone II M4K Memory Blocks

Device M4K RAM (128 × 36 Bits)

EP2C5 26

EP2C8 36

EP2C20 52

EP2C35 105

EP2C50 129

EP2C70 250
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DSP Blocks
Table 12 shows the possible configurations of the M512, M4K, and 
M-RAM blocks found in Stratix II, Stratix, Stratix GX, Cyclone II, and 
Cyclone devices.

DSP Blocks Stratix II, Stratix, and Stratix GX devices contain dedicated DSP blocks for 
implementing high-speed multiplication functions within the device. 
Tables 13 through 15 show the number of DSP blocks in Stratix II, Stratix, 
and Stratix GX devices, respectively.

Table 11. Cyclone M4K Memory Blocks

Device M4K RAM (128 × 36 Bits)

EP1C3 13

EP1C4 17

EP1C6 20

EP1C12 52

EP1C20 64

Table 12. M512, M4K & M-RAM Memory Configurations

M512 RAM Block 
(32 × 18 Bits)

M4K RAM Block
(128 × 36 Bits)

M-RAM Block 
(4K × 144 Bits)

512 × 1 4K × 1 64K × 8

256 × 2 2K × 2 64K × 9

128 × 4 1K × 4 32K × 16

64 × 8 512 × 8 32K × 18

64 × 9 512 × 9 16K × 32

32 × 16 256 × 16 16K × 36

32 × 18 256 × 18 8K × 64

- 128 × 32 8K × 72

- 128 × 36 4K × 128

- - 4K × 144

Table 13. Number of DSP Blocks in Stratix II Devices (Part 1 of 2) Note (1)

Device DSP Blocks 9 × 9 Multipliers 18 × 18 Multipliers 36 × 36 Multipliers

EP2S15 12 96 48 48

EP2S30 16 128 64 64
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EP2S60 36 288 144 144

EP2S90 48 384 192 192

EP2S130 63 504 252 252

EP2S180 96 768 384 384

Note to Table 13:
(1) Each device has either the number of 9 × 9, 18 × 18, or 36 × 36 multipliers shown. The total number of multipliers 

for each device is not the sum of all the multipliers.

Table 14. Number of DSP Blocks in Stratix Devices Note (1)

Device DSP Blocks 9 × 9 Multipliers 18 × 18 Multipliers 36 × 36 Multipliers

EP1S10 6 48 24 6

EP1S20 10 80 40 10

EP1S25 10 80 40 10

EP1S30 12 96 48 12

EP1S40 14 112 56 14

EP1S60 18 144 72 18

EP1S80 22 176 88 22

Note to Table 14:
(1) Each device has either the number of 9 × 9, 18 × 18, or 36 × 36 multipliers shown. The total number of multipliers 

for each device is not the sum of all the multipliers.

Table 15. Number of DSP Blocks in Stratix GX Devices Note (1)

Device DSP Blocks 9 × 9 Multipliers 18 × 18 Multipliers 36 × 36 Multipliers

EP1SGX10C 6 48 24 6

EP1SGX10D 6 48 24 6

EP1SGX25C 10 80 40 10

EP1SGX25D 10 80 40 10

EP1SGX25F 10 80 40 10

EP1SGX40D 14 112 56 14

EP1SGX40G 14 112 56 14

Note to Table 15:
(1) Each device has either the number of 9 × 9, 18 × 18, or 36 × 36 multipliers shown. The total number of multipliers 

for each device is not the sum of all the multipliers.

Table 13. Number of DSP Blocks in Stratix II Devices (Part 2 of 2) Note (1)

Device DSP Blocks 9 × 9 Multipliers 18 × 18 Multipliers 36 × 36 Multipliers
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DSP Arithmetic
DSP Arithmetic DSP is a multiplication-intensive technology and to achieve high speeds, 
these multiplication operations must be accelerated. This section 
provides information on the mathematical theory and algorithms behind 
common DSP arithmetic implementations.

Multiplication

The base of many DSP algorithms is multiplication in which a multiplier 
is multiplied to a multiplicand. In this operation, each element of the 
multiplier is multiplied by each bit of the multiplicand. Then, the partial 
product of each multiplication is accumulated according to the weight of 
the partial product, where the weight indicates the location of a bit 
corresponding to other bits. For example, if a partial product of bits 4 
through 7 is added to a partial product of bits 0 through 3, the partial 
product of 4 through 7 is shifted according to their weight and then 
accumulated to the partial product of previous stages. Figure 1 shows a 
simple 2 × 2 multiplication of multiplier a1a0 to multiplicand b1b0.

Figure 1. Multiplication of Two 2-Bit Numbers 

Half Adder

carry_out sum

Half Adder

carry_out sum

carry_in

a1

b1
b0

b1

b0

a0

c3 c2 c0
c1

b1        b0
x       a1        a0

a0b1    a0b0
      +        a1b1    a1b0

c3         c2         c1        c0
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Distributed Arithmetic

Distributed arithmetic is a method of performing multiplication by 
distributing the operation over many LUTs. Figure 2 shows a four-
product MAC function that uses sequential shift and add to multiply four 
pairs, and then sums their partial product to obtain a final result. Each 
multiplier forms partial products by multiplying the multiplicand by one 
bit of the input data (multiplier) at a time, using an AND gate.

Figure 2. Distributed Arithmetic with Four Constant Multiplicands

At the end of the process, each partial product result of each input bit is 
summed prior to the final scaling accumulator stage, which performs a 
shift-accumulate.

The distributed-arithmetic circuit simultaneously performs four 
multiplications and sums the results when all of the products are 
completed. The scaling accumulator shifts the sums of partial products 
according to the appropriate number of bits and accumulates the result to 
provide the final multiplier output.

Distributed Arithmetic in LUTs

Figure 3 shows how to implement distributed arithmetic using LUTs. The 
combined product and adder tree are reduced for the LUT 
implementation. In this example, the LUT contains the sums of constant 
coefficients for all possible input combinations to the LUT. The sums of 
the bits from the LUTs are added together in the scaling accumulator and 
shifted by the appropriate weights. 
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Implementing Soft Multipliers Using Memory Blocks
Figure 3. Four-Bit Multiplication with Constant Coefficients Note (1)

 
Note to Figure 3:
(1) c0 to c3 are constant coefficients.

The addressing method and data values stored in the LUT in Figure 3 
apply to the sum of multiplication operation mode. The addressing 
method and LUT data values vary depending on the multiplier 
implementation mode.

Implementing 
Soft Multipliers 
Using Memory 
Blocks

You can use the Stratix II, Stratix, and Stratix GX M512 or M4K RAM 
memory blocks and Cyclone II and Cyclone M4K RAM memory blocks as 
LUTs to implement multiplication for DSP applications. Combinations of 
the coefficient results are pre-calculated and stored in the M512 or M4K 
RAM blocks as a LUT. The address port of the RAM block represents one 
of the multiplication operands. The content of the RAM block at each 
address represents a unique multiplication result calculated between the 
input operand and a known coefficient value based on the multiplier 
mode implemented. 

The five soft multiplier modes supported by Stratix II, Stratix, Stratix GX, 
Cyclone II, and Cyclone devices are:

■ Parallel multiplication—Multiple memory blocks produce one 
multiplication result every clock cycle. This mode is useful for high-
speed data scaling.

■ Semi-parallel multiplication—Each memory block produces one 
multiplication with multi-cycle operation. This mode is useful for 
coefficient update of least mean squares (LMSs) and coefficient 
update of equalizers.

c0

c1

c2

c3

w

x

y

z

Addr Data

0000 0

0001 c0

0010 c1

0011 c0 + c 1

1110 c1 + c 2 + c 3

1111 c0 + c 1 + c 2 + c 3
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Implementing Multipliers in FPGA Devices
■ Sum of multiplication—One memory block or group of memory 
blocks produces the sum of multiplication results. This mode is 
useful in applications such as finite impulse response (FIR) filtering 
and discrete cosine transforms (DCTs).

■ Hybrid multiplication—Combination and optimization of semi-
parallel and sum of multiplication modes of operation. This mode is 
ideal for a complex number of multiplications in complex fast 
Fourier transforms (FFTs) and infinite impulse response (IIR) filters.

■ Fully variable multiplication—This mode is useful for a soft 
multiplier implementations in which both the input data and 
coefficients are varying. This mode is ideal for low-resolution 
multiplication functions.

The following sections describe each of these modes and provide 
examples.

Parallel Multiplication

Parallel multiplication involves multiplying all sections of a single input 
bus or multiplier value with a single multiplicand or coefficient and 
summing the partial product of each multiplication to obtain the final 
result. All of the input bits are parallel-loaded into the RAM block address 
port registers and a new multiplication is completed each clock cycle. For 
example, a 16-bit input bus can be separated into two groups of eight bits 
(one group of eight least significant bits [LSBs] and another group of eight 
most significant bits [MSBs]) and simultaneously shifted into the address 
ports of two RAM blocks. The output of the RAM blocks indicate the 
multiplication result for the particular set of bits with the coefficient. 
Figure 4 represents the decomposition of a 16-bit data input, 10-bit 
constant coefficient parallel multiplier.
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Implementing Soft Multipliers Using Memory Blocks
Figure 4. Decomposition of a 16-Bit Input, 10-Bit Coefficient Parallel Multiplier

Figure 5 shows the RAM LUT implementation of the parallel multiplier 
decomposition shown in Figure 4. Because a parallel multiplier accepts a 
new input every clock cycle, this implementation takes three clock cycles 
(one to load the input values into the RAM block address ports and two 
pipeline delays) to compute the final multiplication result. New partial 
products are obtained from the RAM blocks every clock cycle and the 
partial products are summed according to their weights. Each partial 
product multiplication generates an output of 18 bits. At the end of the 
partial product accumulation, the multiplier generates a 26-bit output. 

Sum MSB & LSB
Partial Product Results

Sign Extend

Shift 8 Bits

Input[15..8]
(Signed, MSB)

Input[7..0]
(Unsigned, LSB)

Input [15..0]

Coefficient [9..0]

LSB Partial Product [17..0]

MSB Partial Product [25..8]

Mult_Results [25..0]
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Figure 5. 16-Bit Input, 10-Bit Coefficient Parallel Multiplication Implementation Using M4K RAM Blocks as 
LUTs Note (1)

Note to Figure 5:
(1) This is an optional pipeline register to increase system performance.

Figure 5 shows an implementation for a 16-bit data input, split into two 
8-bit sections implemented using two M4K RAM blocks, one for the MSB 
section and the other for the LSB section. For signed input buses, the M4K 
RAM block that accepts the MSB bits must contain precalculated 
coefficient values for signed inputs because the eight MSB bits that feed 
this RAM block are treated as signed values. The M4K RAM block that 
accepts the LSB bits must contain precalculated coefficient values for 
unsigned inputs because the eight LSB bits that feed this RAM blocks are 
unsigned values.
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<< 8

Input [15..0]
16 8

8
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LSB

ADDRESS MULT_RESULT

00000000 0
00000001 C
00000010 2 × C
00000011 3 × C

11111110 254 × C
11111111 255 × C

ADDRESS MULT_RESULT

00000000 0
00000001 C
00000010 2 × C
00000011 3 × C

11111110 -2 × C
11111111 -1 × C

M4K RAM
Block (LUT)

256 × 18
(MSB)

M4K RAM
Block (LUT)

256 × 18
(LSB)

(1)

(1)
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Implementing Soft Multipliers Using Memory Blocks
M4K RAM blocks are 256 × 18 bits, so the maximum number of bits per 
section for each M4K RAM block for this coefficient size is eight (28 = 256 
addresses). The input bus and coefficient size directly affects the number 
and configuration of RAM blocks used to implement the multiplier. The 
parallel multiplication mode ensures maximum data throughput (i.e., a 
new data value every clock cycle).

You can also implement the parallel fixed-coefficient multiplier using the 
altmemmult Quartus II megafunction. You can use the 
MegaWizard® Plug-In Manager to customize the altmemmult 
megafunction to specify a parallel, fixed coefficient soft multiplier in your 
design. The input and coefficient bit width settings as well as RAM block 
selection type determine whether the altmemmult function implements 
a semi-parallel or parallel mode soft multiplier, whichever is more 
efficient. Figures 6 and 7 show the appropriate settings required to 
implement both the MSB and LSB M4K RAM blocks respectively, for the 
16-bit input, 10-bit parallel multiplier example shown in Figure 14. The 
coefficient implemented in this example is a constant value of five.

Figure 6. altmemmult MegaWizard Settings for the MSB RAM Block 16-Bit 
Input, 10-Bit Constant Coefficient Parallel Multiplier 
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Implementing Multipliers in FPGA Devices
Figure 7. altmemmult MegaWizard Settings for the LSB RAM Block for a 16-Bit 
Input, 10-Bit Constant Coefficient Parallel Multiplier 

 

The sload_data signal and the message located at the bottom right 
hand corner of the MegaWizard window indicates whether the 
altmemmult function chose to implement a semi-parallel or parallel 
mode soft multiplier. A parallel soft multiplier does not have the 
sload_data signal and the megafunction can accept a new input every 
clock cycle. The altmemmult megafunction can only implement small 
parallel mode soft multipliers (i.e., 8-bit input, 10-bit coefficient 
multipliers). Larger parallel multipliers require multiple altmemmult 
megafunctions to generate partial product results. To obtain the final 
multiplication result, these partial products must be summed in an end-
stage adder implemented externally to the altmemmult function.

Fixed-Coefficient Multiplication

Figure 8 shows the simulation results for the example shown in Figure 5. 
This example multiplies the input, which has a decimal value of 297, with 
a coefficient, which has a value of 5.
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Implementing Soft Multipliers Using Memory Blocks
Figure 8. Parallel Multiplication Simulation Results

Tables 16 and 17 shows the implementation results for the parallel fixed 
coefficient multiplication example shown in Figure 5 for Stratix II and 
Stratix devices, respectively. The example is implemented using the 
altmemmult megafunction.

Input Data Sent in 
on Clock Cycle 1 

(Held for One 
Clock Cycle

Partial Products 
Available on 

Clock Cycle 3
Final Result Available 

on Clock Cycle 4

Table 16. 16-Bit Input, 10-Bit Constant Coefficient Parallel Multiplication 
Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 26/12,480 (<1%)
M4K RAM blocks: 2/78 (2%)

Latency (1) 3 clock cycles

Throughput 351 megasamples per second

Performance 351.0 MHz

Note to Table 16:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.

Table 17. 16-Bit Input, 10-Bit Constant Coefficient Parallel Multiplication 
Implementation Results Using Stratix Devices (Part 1 of 2)

Device EP1S10F484C5

Utilization Logic cells: 26/10,570 (1%)
M4K RAM blocks: 2/60 (3%)

Latency (1) 3 clock cycles

Throughput 291 megasamples per second
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Implementing Multipliers in FPGA Devices
f You can download the files (parallel_fixed.zip) for the design described 
in Tables 16 and 17 from the Design Examples section of the Altera web 
site www.altera.com.

Variable Coefficient Multiplication

To perform constant coefficient multiplication, you can implement the 
Stratix II, Stratix, Stratix GX, Cyclone II, and Cyclone memory blocks as 
ROM. For variable coefficient multiplication, these memory blocks must 
be implemented as RAM blocks, which allow you to rewrite blocks with 
new precalculated coefficients. Figure 9 shows an implementation for 
variable coefficient parallel multiplication implementation using M4K 
single-port RAM blocks. Using the method shown in Figure 9, the 
multiplier function is stalled while the coefficients are updated. However, 
by implementing multiple sets of RAM blocks for storing different 
precalculated coefficient sets, you can switch multiplication between two 
different sets of coefficients in a single clock cycle. One way of doing this 
is to partition the RAM block to store two unique sets of coefficients and 
to use the MSB address bit to select which coefficient set to use. Also, with 
the use of dual-port RAM blocks, you can write or update the values of a 
set of coefficients in a partition while simultaneously using a different set 
of coefficients in another partition to perform multiplication.

Performance 291.0 Mhz

Note to Table 17:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.

Table 17. 16-Bit Input, 10-Bit Constant Coefficient Parallel Multiplication 
Implementation Results Using Stratix Devices (Part 2 of 2)
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Implementing Soft Multipliers Using Memory Blocks
Figure 9. 16-Bit Input, 10-Bit Variable Coefficient Parallel Multiplication Implementation Using M4K Single-
Port RAM Blocks as LUTs

Note to Figure 9:
(1) This is an optional pipeline register to increase system performance.

1 The altmemmult megafunction also supports variable 
coefficient parallel and semi-parallel soft multipliers by 
enabling the Create ports to allow loading coefficients option 
in the MegaWizard window.
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Implementing Multipliers in FPGA Devices
Tables 18 and 19 show the implementation results for a parallel variable 
coefficient multiplication example for Stratix II and Stratix devices, 
respectively.

You can download the files (parallel_var.zip) for the design described in 
Tables 18 and 19 from the Design Examples section of the Altera web site 
(www.altera.com).

Semi-Parallel Multiplication

Semi-parallel multiplication involves multiplying sections of a single 
input bus or multiplier value with a single multiplicand or coefficient and 
shift accumulating the partial product of each multiplication to obtain the 
final result. For example, a 16-bit input bus can be separated into four 
groups of four bits that are consecutively shifted into the address port of 
the RAM block once every clock cycle, beginning with the first four LSB 
bits. The output of the RAM block indicates the multiplication result for 

Table 18. 16-Bit Input, 10-Bit Variable Coefficient Parallel Multiplication 
Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 43/12,480 (<1%)
M4K RAM blocks: 2/78 (3%)

Latency (1) 3 clock cycles

Throughput 350 megasamples per second

Performance 350.0 MHz

Note to Table 18:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.

Table 19. 16-Bit Input, 10-Bit Variable Coefficient Parallel Multiplication 
Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 43/10,570 (<1%)
M4K RAM blocks: 2/60 (3%)

Latency (1) 3 clock cycles

Throughput 291 megasamples per second

Performance 291.0 MHz

Note to Table 19:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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Implementing Soft Multipliers Using Memory Blocks
a particular set of bits with the coefficient, every clock cycle. Figure 10 
shows the decomposition of a 16-bit data input, 14-bit coefficient semi-
parallel multiplier.

Figure 10. Decomposition of a 16-Bit Input, 14-Bit Coefficient Semi-Parallel Multiplier

Figure 11 shows the RAM LUT implementation of the semi-parallel 
multiplier decomposition shown in Figure 10. This implementation loads 
four bits of the input data every clock cycle, taking six clock cycles (four 
to load the input values into the RAM block plus two pipeline delays) to 
complete the multiplication operation by shift-accumulating the partial 
products obtained from the RAM block once per clock cycle, according to 
their weights. Each shift-accumulation of a partial product generates four 
extra bits. At the end of the fourth partial product accumulation, the 
multiplier generates a 30-bit output. 

Sign Extend

Sign Extend

Sign Extend

Accumulate Results
from Each Multiply

Shift 12 Bits

Shift 8 Bits

Shift 4 Bits

Input [15..0]

Coefficient [13..0]

Partial Product [17..0]

Partial Product [21..4]

Partial Product [25..8]

Partial Product [29..12]

Mult_Result [29..0]

Input [15..12] Input [7..4]
Input [11..8] Input [3..0]
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Figure 11. 16-Bit Input, 14-Bit Coefficient Semi-Parallel Multiplication Implementation Using M512 RAM 
Blocks as LUTs Note (1)

 
Notes to Figure 11:
(1) The input bus is 16 bits wide, but it is sent to the RAM block 4 bits at a time. This is why the bus line is only 4 bits 

wide.
(2) This is an optional pipeline register to increase system performance.

Figure 11 shows an implementation for a 16-bit data input, split into four 
4-bit sections implemented using a single M512 RAM block. In this 
example, for the same memory block utilization, factors like the input bus 
size help determine the output bit width and the latency of the multiplier. 
Increasing the bit width of the sections (i.e., implementing more than 
4-bit sections in this case) can reduce the latency of the multiplier. This 
implementation may require more M512 RAM blocks or that you use 
M4K RAM blocks.

You can also implement the semi-parallel fixed coefficient multiplier 
using the altmemmult Quartus II megafunction. You can use the 
MegaWizard Plug-In Manager to customize the altmemmult 
megafunction to specify a semi-parallel, fixed coefficient soft multiplier in 
your design. The input and coefficient bit width settings as well as RAM 
block selection type determine whether the altmemmult function 
implements a semi-parallel or parallel mode soft multiplier; it 
implements whichever is more efficient. Figure 12 shows the settings 
required to implement the 16-bit input, 14-bit semi-parallel multiplier 
example shown in Figure 11. The coefficient implemented in this example 
is a constant value of two.

18

30

30

30
>> 4

4 4
Input [15..0] Output [29..0]

ADDRESS MULT_RESULT

0000 0
0001 C
0010 2 × C
0011 3 × C

1110 14 × C
1111 15 × C

Semi-Parallel Multiplications Table

M512 RAM
Block (LUT)

16 x 18

(2)
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Figure 12. altmemmult MegaWizard Settings for a 16-Bit Input, 14-Bit 
Constant Coefficient Semi-Parallel Multiplier 

 

The sload_data signal and the message located at the bottom 
right-hand corner of the MegaWizard window indicate whether the 
altmemmult function chose to implement a semi-parallel or parallel 
mode soft multiplier. A semi-parallel soft multiplier has an sload_data 
signal and can only accept a new input after more than one clock cycle. 
The semi-parallel multiplier in Figure 11 indicates that the 16-bit input is 
split into four groups of four bits each. Because it takes four clock cycles 
to load the entire 16-bits into the RAM block, the current input must 
remain stable for four clock cycles prior to loading the new input. A high 
signal on sload_data for one clock cycle indicates the start of a new 
block of input data.

f For information on implementing variable coefficient soft multipliers, 
refer to the “Variable Coefficient Multiplication” on page 18.

Figure 13 shows the simulation results for the example shown in 
Figure 11. This example multiplies the input, which has a decimal value 
of 10, with a coefficient, which has a value of 2.
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Figure 13. Semi-Parallel Simulation Results

Tables 20 and 21 show the implementation result for the semi-parallel 
fixed coefficient multiplication example shown in Figure 11 for Stratix II 
and Stratix devices, respectively.

Start of Input Sequence 
Indicated by Pulse of 

sload_data on Clock Cycle 1
Input Data Held for 
Four Clock Cycles

First Partial Product 
Available on Clock Cycle 4

Final Result Available 
on Clock Cycle 8

Table 20. 16-Bit Input, 14-Bit Constant Coefficient Semi-Parallel 
Multiplication Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 67/12,480 (<1%)
M512 RAM blocks: 1/104 (<1%)

Latency (1) 7 clock cycles

Throughput 93 megasamples per second

Performance 370.0 MHz

Note to Table 20:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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f You can download the files (semi_prl_fixed.zip) for the design 
described in Tables 20 and 21 from the Design Examples section of the 
Altera web site (www.altera.com).

Tables 22 and 23 show the implementation results for a semi-parallel 
variable coefficient multiplication example for Stratix II and Stratix 
devices, respectively. 

Table 21. 16-Bit Input, 14-Bit Constant Coefficient Semi-Parallel 
Multiplication Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 61/10,570 (1%)
M512 RAM blocks: 1/94 (2%)

Latency (1) 7 clock cycles

Throughput 80 megasamples per second

Performance 321.0 MHz

Note to Table 21:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.

Table 22. 16-Bit Input, 14-Bit Variable Coefficient Semi-Parallel 
Multiplication Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 94/12,480 (<1%)
M512 RAM blocks: 1/104 (<1%)

Latency (1) 7 clock cycles

Throughput 78 megasamples per second

Performance 310.0 MHz

Note to Table 22:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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f You can download the files (semi_prl_var.zip) for the design described 
in Tables 22 and 23 from the Design Examples section of the Altera web 
site (www.altera.com).

Sum of Multiplication

The sum of multiplication mode result is the weighted summation of 
results produced by multiplying a set of input data (multiplier) to a set of 
multiplicands. This sum forms the basis of a MAC function that is useful 
in functions such as FIR filters, where each input data (multiplier) value 
is multiplied with a particular coefficient (or multiplicand) and summed 
to provide the final result.

In the sum of multiplication mode, each input bus shifts into the address 
port of the memory block one bit per clock cycle, starting with the LSB. If 
there are four inputs (called A, B, C, and D) to the multiplier block, at the 
first clock cycle, the LSB of inputs A, B, C, and D forms the 4-bit address 
value to the RAM block. The next clock cycle, the second LSB bit for each 
input forms the next address value to the RAM block, and so on. For an 
n-bit input data width, it takes n clock cycles to load in all of the data bits 
required to compute the multiplication result. The RAM block output 
indicates the multiplication result for a specific bit position at each clock 
cycle.

Figure 14 shows the RAM LUT implementation of four 4-bit data inputs 
and up to 16-bit constant coefficients. This fixed coefficient 
implementation takes six clock cycles (four to load the input values into 
the RAM block plus two pipeline delays) to complete the multiplication 
operation by shift-accumulating the partial products obtained from the 
RAM block once per clock cycle, according to their weights. Each shift-
accumulation of a partial product generates an extra carry bit. At the end 

Table 23. 16-Bit Input, 14-Bit Variable Coefficient Semi-Parallel 
Multiplication Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 118/10,570 (1%)
M512 RAM blocks: 1/94 (2%)

Latency (1) 7 clock cycles

Throughput 65 megasamples per second

Performance 261.0 MHz

Note to Table 23:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
26  Altera Corporation
 

http://www.altera.com


Implementing Soft Multipliers Using Memory Blocks
of the fourth partial product accumulation, the multiplier generates a 
22-bit output. The size of the input data helps determine the output bit 
width and the latency of the multiplier.

Figure 14. 4-Input Sum of Multiplication Implementation Using M512 RAM Blocks as LUTs

Note to Figure 14:
(1) This is an optional pipeline register to increase system performance.

Figure 15 shows the equivalent circuit of the sum of multiplication 
implementation shown in Figure 14.

Figure 15. Equivalent Circuit of a Four Multiplier Sum of Multiplication 
Function

Figure 14 shows an implementation for four 4-bit data inputs. Because 
M512 RAM blocks are 32 × 18 bits, the maximum number of inputs for 
each M512 RAM block for this coefficient size is five (25 = 32 addresses). 

M512 RAM
Block (LUT)

16 × 18

18

22

22

22
>> 1

A

B

C

D
ADDRESS MULT_RESULT

0000 0
0001 c0

0010 c1

0011 c0 + c1

1110 c1 + c2 + c3

1111 c0 + c1 + c2 + c3

Output [21..0]

Sum of Multiplications Table

(1)

A DCB

c3c2c1c0

Output
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Depending on the number of inputs, size and number of coefficients, and 
the required operating speed, the number of RAM blocks used varies. The 
example shown in Figure 14 requires only one M512 RAM block.

f For information on implementing variable coefficient soft multipliers, 
refer to “Variable Coefficient Multiplication” on page 18.

Figure 16 shows the simulation result for an example based on Figure 14. 
This example has additional pipeline stages and multiplies input A, 
which has a binary value of 0001, with the c0 coefficient, which has a 
value of -3.

1 You can choose to reduce the number of pipeline stages to 
reduce the latency, but your design may have reduced fMAX as a 
result.

Figure 16. Sum of Multiplication Simulation Results

Tables 24 and 25 show the implementation results of the four input, 16-bit 
fixed coefficient sum of multiplication example shown in Figure 14 for 
Stratix II and Stratix devices, respectively.

Input D
Input C

Input B

Final ResultFirst Partial Product
Available on Clock
Cycle 3

LSB Bits Sent
on Clock Cycle 1

Input A

Available on
Clock Cycle 8

Table 24. 4-Input, 16-Bit Fixed Coefficient Sum of Multiplication 
Implementation Results Using Stratix II Devices (Part 1 of 2)

Device EP2S15F484C3

Utilization ALUTs: 80/12,480 (<1%)
M512 RAM blocks: 1/104 (<1%)
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f You can download the files (sum_mult_fixed.zip) for the design 
described in Tables 24 and 25 from the Design Examples section of the 
Altera web site (www.altera.com).

Tables 26 and 27 show the implementation results of a four input, 16-bit 
variable coefficient sum of multiplication example for Stratix II and 
Stratix devices, respectively.

Latency (1) 7 clock cycles

Throughput 66 megasamples per second

Performance 265.0 MHz

Note to Table 24:
(1) Latency is the number of clock cycles required to complete an entire sum of 

multiplication computation.

Table 25. 4-Input, 16-Bit Fixed Coefficient Sum of Multiplication 
Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 67/10,570 (1%)
M512 RAM blocks: 1/94 (2%)

Latency (1) 7 clock cycles

Throughput 53 megasamples per second

Performance 212.0 MHz

Note to Table 25:
(1) Latency is the number of clock cycles required to complete an entire sum of 

multiplication computation.

Table 24. 4-Input, 16-Bit Fixed Coefficient Sum of Multiplication 
Implementation Results Using Stratix II Devices (Part 2 of 2)
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f You can download the files (sum_mult_var.zip) for the design described 
in Tables 26 and 27 from the Design Examples section of the Altera web 
site (www.altera.com).

You can combine multiple M512 blocks and/or M4K blocks to create 
larger multiplier structures that are capable of multiplying more data 
inputs and coefficients simultaneously. Figure 17 shows the 
multiplication of eight 4-bit data inputs to eight 16-bit constant 
coefficients in two M512 RAM blocks.

Table 26. Four Input, 16-Bit Variable Coefficient Sum of Multiplication 
Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 88/12,480 (<1%)
M512 RAM blocks: 1/104 (<1%)

Latency (1) 8 clock cycles

Throughput 76 megasamples per second

Performance 305.0 MHz

Note to Table 26:
(1) Latency is the number of clock cycles required to complete an entire sum of 

multiplication computation.

Table 27. Four Input, 16-Bit Variable Coefficient Sum of Multiplication 
Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 96/10,570 (1%)
M512 RAM blocks: 1/94 (1%)

Latency (1) 8 clock cycles

Throughput 48 megasamples per second

Performance 191.0 MHz

Note to Table 27:
(1) Latency is the number of clock cycles required to complete an entire sum of 

multiplication computation.
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Figure 17. Using Multiple M512 RAM Blocks for an 8-Coefficient Multiplier

 
Note to Figure 17:
(1) This is an optional pipeline register to increase system performance.

f For information on implementing variable coefficient soft multipliers, 
refer to “Variable Coefficient Multiplication” on page 18.

You can also create similar implementations using M4K RAM blocks, 
particularly if the coefficients are larger than 16 bits. Figure 18 shows 
multiplication of seven 16-bit data inputs to a 20-bit constant coefficient 
in one M4K RAM block. The 128 addressed lines correspond to seven data 
inputs or unique coefficients in a M4K RAM block. Performing seven 
16 × 20 multiplications generates a 23-bit output from a M4K RAM block. 
It takes 18 clock cycles to complete accumulation of the partial products 
(16 clock cycles to shift the input values into the address port of the RAM 
block plus two pipeline delays). After each partial product accumulation, 
one bit is added to the total number of output bits, making the final 
output 39 bits wide.

M512 RAM
Block (LUT)

16 × 18

18

23

23

23
>> 1

A

B

C

D

M512 RAM

Block (LUT)
16 × 18

E

F

G

H

18

19
Output [22..0]

(1)  

(1)

(1)
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Figure 18. Using a M4K RAM Block for a 7-Coefficient Multiplier

 
Note to Figure 18:
(1) This is an optional pipeline register to increase system performance.

f For information on implementing variable coefficient soft multipliers, 
refer to “Variable Coefficient Multiplication” on page 18.

Hybrid Multiplication

The hybrid multiplication mode is a combination of the semi-parallel and 
sum of multiplication modes where bit sections from two unique input 
streams are multiplied with two different coefficients values. This mode 
is useful in applications that require complex multiplication like FFTs 
where each signal generally has a real and imaginary component that 
could be multiplied by two unique coefficient values. The partial 
products obtained from each bit section within the components are shift 
accumulated to obtain the final result.

In the hybrid multiplication mode, an equal number of bits from each 
input is concatenated and shifted into the address port of the RAM block 
every clock cycle, starting with the LSB. If the address port to the RAM 
block is four bits wide, each input contributes two bits to the partial 
product calculation every clock cycle until the entire bit width of the 
inputs have completely shifted into the RAM block. In this case, for an 
input bus of 16-bits, it takes eight clock cycles to shift in all of the data bits 
of that particular input. The output of the RAM block indicates the sum 
of multiplication result for a particular set of bits with the coefficients, 
every clock cycle. 

Figure 19 shows the RAM LUT implementation of two 16-bit inputs, 
labeled Input I and Input Q, respectively, and up to 15-bit constant 
coefficients. This implementation takes 11 clock cycles (eight to load the 
input values into the RAM block plus three pipeline delays) to complete 
the multiplication operation by shift-accumulating the partial products 
obtained from the RAM once per clock cycle, according to their weights. 
Each shift-accumulation of a partial product generates two extra bits. At 

23

39

39

39
>> 1

A

B

C

D

M4K RAM

Block (LUT)

128 × 23E

F

G

Output [38..0]

(1)
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Implementing Soft Multipliers Using Memory Blocks
the end of the last (eighth) partial product accumulation, the multiplier 
generates a 32-bit output. The size of the input data helps determine the 
output bit width and the latency of the multiplier.

Figure 19. Two-Input Hybrid Multiplication Implementation Using M512 RAM Blocks as LUTs Note (1)

 
Notes to Figure 19:
(1) The input bus is 16 bits wide, but it is sent to the RAM block 2 bits at a time. This is why the bus line is only 2 bits 

wide.
(2) Optional pipeline register to increase system performance.
(3) Ci means I Coefficient.
(4) Cq means Q Coefficient.

Figure 19 shows an implementation for two 16-bit data inputs. Even 
though the 32 × 18-bit configured M512 RAM block can accept five 
address bits (25 = 32 addresses), the maximum number of bits equally 
contributed by each input is two bits (totaling four bits). In this example, 
for the same memory block utilization, factors such as the input bus size 
help determine the output bit width and the latency of the multiplier. 
Increasing the number of M512 RAM blocks used or moving to larger 
memory blocks like M4K RAM blocks can reduce the latency of the 
multiplier an support larger coefficient bit widths.

f For information on implementing variable coefficient soft multipliers, 
refer to “Variable Coefficient Multiplication” on page 18.

Figure 20 shows the simulation results for an example based on Figure 19. 
This example has additional pipeline stages and multiplies Input_I and 
Input_Q , which have values of 300 and 55, respectively, with coefficients 
Ci and Cq, which have values of 10 and 25, respectively. The result is:

(Input_I × Ci) + (Input_Q × Cq) = (300 × 10) + (55 × 25) = 4375

M512 RAM
Block (LUT)

32 × 18

18

32

32

32
>> 2

2 2
Input Q [15..0]

Output [31..0]

Hybrid Multiplications Table

2 2
Input I [15..0]

MSB LSB

ADDRESS MULT_RESULT

0000 0
0001 Ci (3)
0010 2 × Ci 
0011 3 × Ci

1110 (3 × Cq) + (2 × Ci) (4)
1111 (3 × Cq) + (3 × Ci)

(2)
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1 You can choose to reduce the number of pipeline stages to 
reduce the latency, but your design may have reduced fMAX as a 
result.

Figure 20. Hybrid Multiplication Simulation Results

Tables 28 and 29 show the implementation results of the two 16-bit input, 
15-bit constant coefficient hybrid multiplication example shown in 
Figure 19 for Stratix II and Stratix devices, respectively.

Start of Input Data Sequence
Indicated by Pulse of sload_data
on Clock Cycle 1

Final ResultFirst Partial Product Input Data Held
for 8 Clock Cycles Available on Clock

Cycle 5
Available on Clock 
Cycle 13

Table 28. Two Input, 15-Bit Constant Coefficient Hybrid Multiplication 
Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 126/12,480 (1%)
M512 RAM blocks: 1/104 (<1%)

Latency (1) 12 clock cycles

Throughput 33 megasamples per second

Performance 266.0 MHz

Note to Table 28:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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f You can download the files (hybrid_fixed.zip) for the design described 
in Tables 28 and 29 from the Design Examples section of the Altera web 
site (www.altera.com).

Tables 30 and 31 show the implementation results for a hybrid variable 
coefficient multiplication example for Stratix II and Stratix devices, 
respectively.

Table 29. Two Input, 15-Bit Constant Coefficient Hybrid Multiplication 
Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 170/10,570 (2%)
M512 RAM blocks: 1/94 (1%)

Latency (1) 12 clock cycles

Throughput 25 megasamples per second

Performance 198.0 MHz

Note to Table 29:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.

Table 30. Two Input, 15-Bit Variable Coefficient Hybrid Multiplication 
Implementation Results Using Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 213/12,480 (2%)
M512 RAM blocks: 1/104 (<1%)

Latency (1) 12 clock cycles

Throughput 32 megasamples per second

Performance 254.0 MHz

Note to Table 30:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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f You can download the files (hybrid_var.zip) for the design described in 
Tables 30 and 31 from the Design Examples section of the Altera web site 
at (www.altera.com).

Fully Variable Multipliers

The fully variable multiplier mode allows you to implement a soft 
multiplier in which both the input and the coefficient can vary every clock 
cycle. The partial product values, which are stored in the RAM blocks, are 
calculated based on the algebraic expansion of the following equation:

(a + b)2 - (a - b)2 = a2 + 2ab + b2 - (a2 - 2ab + b2) 

= 4ab

therefore:

ab = ((a + b)2 / 4) - ((a - b)2 / 4)

Where a and b are both variable inputs to the multiplier.

Figure 21 shows the RAM LUT implementation of the fully variable 
multiplier calculated using these equations. Two unique RAM blocks are 
required, to store the (a + b)2/4 and (a – b)2/4 precalculated values, 
respectively. The address inputs of (a + b) for the former and (a – b) for the 
latter RAM block are precalculated in logic prior to the RAM block. The 
final result of the multiplication is obtained by subtracting the result of 
the (a – b) RAM block by the result from the (a + b) RAM block. The fully 
variable multiplier can accept a new input every clock cycle, and takes 
three clock cycles to compute the final multiplication result. 

Table 31. Two Input, 15-Bit Variable Coefficient Hybrid Multiplication 
Implementation Results Using Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 240/10,570 (2%)
M512 RAM blocks: 1/94 (1%)

Latency (1) 12 clock cycles

Throughput 25 megasamples per second

Performance 202.0 MHz

Note to Table 31:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
36  Altera Corporation
 

http://www.altera.com


Implementing Soft Multipliers Using Memory Blocks
Figure 21. 8-Bit Fully Variable Multiplier Implementation Using M4K RAM Blocks as LUTs

 
Note to Figure 21:
(1) This is an optional pipeline register to increase system performance.

Figure 21 shows an implementation for two 8-bit data inputs. 8-bit inputs 
result in 16-bit outputs and 9-bit addresses per partial product RAM 
block. Therefore, for each partial product, two M4K RAM blocks are 
required in a 256 × 16 configuration (29 = 512 addresses). In this multiplier 
mode, the size of the inputs directly affects the total number of RAM 
blocks required.

Figure 22 shows the simulation results for the example shown in 
Figure 21.

M4K RAM
Block (LUT) × 2

256 × 16 × 2
(512 × 16)

M4K RAM
Block (LUT) × 2

256 × 16 × 2
(512 × 16)

((a + b)
2

)/4

((a - b)
2

)/4

Data A [7..0]

Data B [7..0]

8

8 9

9 (a + b) [8..0]

(a - b) [8..0]

16

16

Output [15..0]

(1) (1)

(1)(1)
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Figure 22. Fully Variable Multiplier Simulation Results

Tables 32 and 33 show the implementation results of the 8-bit fully 
variable multiplier example shown in Figure 21 for Stratix II and Stratix 
devices, respectively. The fully variable multiplication mode is ideal for 
low-resolution multiplication in which the input and coefficient bit 
widths are not too large. Larger input and coefficient bit widths require a 
significant amount of memory block resources compared with other 
variable soft multiplier modes of the same size.  

Input Sent in on
Clock Cycle 1 (Held
for 1 Clock Cycle)

Partial Product Final Result Available
Available on Clock
Cycle 4

on Clock Cycle 5

Table 32. 8-Bit Fully Variable Multiplier Implementation Results Using 
Stratix II Devices

Device EP2S15F484C3

Utilization ALUTs: 36/12,480 (<1%)
M4K RAM blocks: 4/78 (5%)

Latency (1) Four clock cycles

Throughput 351 megasamples per second

Performance 351.0 MHz

Note to Table 32:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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f You can download the files (fully_var.zip) for the design described in 
Tables 32 and 33 from the Design Examples section of the Altera web site 
at (www.altera.com).

Implementing 
Multipliers 
Using DSP 
Blocks or Logic 
Resources

Altera provides three Quartus II megafunctions for implementing 
various multiply, multiply-accumulate, and multiply-add functions 
using DSP blocks or logic resources:

■ The lpm_mult megafunction performs multiply functions only.
■ The altmult_add megafunction performs multiply or multiply-

add functions.
■ The altmult_accum megafunction performs multiply-accumulate 

functions only.

f See Quartus II Online Help for instructions on using the megafunctions 
and the MegaWizard Plug-In Manager.

Firm Multipliers Stratix II, Stratix, and Stratix GX firm multipliers use a combination of 
DSP blocks and logic resources. Cyclone II firm multipliers use a 
combination of embedded multipliers and logic resources. Firm 
multipliers allow you to increase the utilization efficiency of the DSP 
blocks or embedded multipliers within your Stratix II, Stratix, Stratix GX, 
or Cyclone II device. Stratix II, Stratix, and Stratix GX DSP blocks support 
9 × 9, 18 × 18, and 36 × 36 multipliers. Cyclone II device embedded 
multipliers support 9 × 9 and 18 × 18 multipliers. If you implement a 
multiplier of a different size, some DSP blocks or embedded multipliers 
may be partially used. For example, a 12 × 9 multiplier uses two 9 × 9 DSP 
blocks or embedded multipliers because the 12-bit input exceeds the 
maximum requirement of a single 9 × 9 DSP block or embedded 
multiplier. The first 9 × 9 DSP block or embedded multiplier is fully 
utilized but the second 9 × 9 DSP block or embedded multiplier is 

Table 33. 8-Bit Fully Variable Multiplier Implementation Results Using 
Stratix Devices

Device EP1S10F484C5

Utilization Logic cells: 34/10,570 (1%)
M4K RAM blocks: 4/60 (6%)

Latency (1) Four clock cycles

Throughput 291 megasamples per second

Performance 291.0 MHz

Note to Table 33:
(1) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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partially used. Instead of partially utilizing a DSP block or embedded 
multiplier for the remaining logic, you can use logic resources to 
implement it, freeing the DSP block or embedded multiplier for other use. 
This method is particularly useful if your design requires a lot of DSP 
blocks or embedded multipliers but has logic resources available.

To implement a firm 12 × 9 multiplier, split up the 12-bit input and 
decompose the multiplication into smaller, partial products that can be 
implemented in DSP blocks or embedded multipliers and logic resources. 
To maximize DSP block or embedded multiplier usage, split the 12-bit 
input into two sections: a 9-bit section that is multiplied using the DSP 
block or embedded multiplier and a 3-bit section that is multiplied using 
logic resources. If the 9-bit section consists of LSBs, it becomes an 
unsigned value while the 3-bit section becomes a signed value and vice 
versa. 

When deciding whether to select the 3-bit section from the MSB or the 
LSB of the 12-bit input, keep in mind that an adaptive logic module 
(ALM) or LE multiplier is more resource efficient when implemented as 
a signed multiplier than as an unsigned multiplier. If the 9-bit input is 
unsigned, the 3-bit section is chosen from the MSB so that the ALM or LE 
multiplier performs signed multiplication. If the 9-bit input is signed, you 
can choose the 3-bit section from the MSB or LSB because either 
implementation results in a signed multiplier implemented in ALMSs or 
LEs.

Figure 23 shows the decomposition of the 12 × 9 firm multiplier.

Figure 23. Decomposition of the 12 × 9 Multiplier
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Based on this decomposition, you can build the circuit for the firm 
multiplier using three main blocks:

■ DSP block or embedded multiplier—Built using either the 
lpm_mult or altmult_add megafunctions

■ ALM- or LE-based multiplier—Built using either the lpm_mult or 
altmult_add megafunctions

■ End-stage adder—Built using the lpm_add_sub megafunction

The DSP block or embedded multiplier multiplies the 9-bit input by the 
9-bit LSB section of the 12-bit input. The ALM- or LE-based multiplier 
multiplies the 9-bit input with the 3-bit MSB section of the 12-bit input. 
The result of both multipliers is the partial products of the decomposition. 
The results of the partial products are weighted prior to being summed in 
the end-stage adder. This weighting and addition restores the bit-
alignment of the partial products to ensure proper result values. Based on 
Figure 23, the 9 × 3 multiplication partial product is weighted by a shift to 
the left of nine bits. The 12-bit end-stage adder has to accommodate the 
12-bit result of the 9 × 3 multiplication and the nine MSBs of the 
9 × 9 multiplication, sign extended.

Figure 24 shows the circuit of the 12 × 9 firm multiplier.

Figure 24. 12 × 9 Firm Multiplier Circuit Note (1)

 

Notes to Figure 24:
(1) Using the altmult_add megafunction to implement the multipliers allows you to mix signed and unsigned 

inputs.
(2) This is an optional pipeline register to increase system performance.

Figure 25 shows the simulation results for the example shown in 
Figure 24.
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Figure 25. 12 × 9 Firm Multiplier Simulation Results

Tables 34 and 35 show the implementation results for the 12 × 9 firm 
multiplier circuit example shown in Figure 24 for Stratix II and Stratix 
devices, respectively.

Input Sent in on
Clock Cycle 1 (Held
for 1 Clock Cycle)

Final Result Available
on Clock Cycle 3

Table 34. 12 × 9 Firm Multiplier Implementation Results Using Stratix II 
Devices Note (1)

Device EP2S15F484C3

Utilization Logic cells: 60/12,480 (<1%)
DSP block 9-bit elements: 1/96 (1%)

Latency (2) 2 clock cycles

Throughput 317 megasamples per second

Performance 317.0 MHz

Notes to Table 34:
(1) The altmult_add megafunction implements both the ALM or LE and DSP 

block multipliers.
(2) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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f You can download the files (12x9_firm_mult.zip) for the design 
described in Tables 34 and 35 from the Design Examples section of the 
Altera web site (www.altera.com).

The example shown in Figure 24 is suitable when only one of the 
multiplier inputs exceeds the 9-bit input width of a single DSP block or 
embedded multiplier. When both multiplier inputs exceed 9-bits, as in the 
case of a 12 × 12 multiplier, the multiplication must be decomposed into 
three partial products instead of two. The 12-bit inputs must be sectioned 
to maximize the use of the 9 × 9 DSP blocks or embedded multipliers and 
the utilization efficiency of implementing signed multiplication in logic 
resources. Therefore, both inputs should be sectioned into a 3-bit MSB 
section and a 9-bit LSB section.

Figure 26 shows the decomposition of the 12 × 12 multiplier.

Table 35. 12 × 9 Firm Multiplier Implementation Results Using Stratix 
Devices Note (1)

Device EP1S10F484C5

Utilization Logic cells: 68/10,570 (1%)
DSP block 9-bit elements: 1/48 (2%)

Latency (2) 2 clock cycles

Throughput 274 megasamples per second

Performance 274.0 MHz

Notes to Table 35:
(1) The altmult_add megafunction implements both the ALM or LE and DSP 

block multipliers.
(2) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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Figure 26. Decomposition of the 12 × 12 Multiplier

 

The circuit for the firm multiplier can now be extracted from the 
decomposition. The firm multiplier circuit consists of five main blocks:

■ One DSP block multiplier or embedded multiplier—Built using 
either the lpm_mult or altmult_add megafunctions

■ Two ALM- or LE-based multipliers—Built using either the 
lpm_mult or altmult_add megafunctions

■ Two adders—Built using the lpm_add_sub megafunction

The DSP block or embedded multiplier multiplies the two 9-bit LSB 
sections of the 12-bit inputs. The first ALM- or LE-based multiplier 
multiplies the 9-bit LSB section of one 12-bit input with the 3-bit MSB 
section of the other 12-bit input. The other ALM- or LE-based multiplier 
multiplies the 3-bit MSB of one 12-bit input with the entire 12-bits of the 
other input. The results of these three multipliers are the three partial 
products of the decomposition. The results of these partial products are 
summed in two stages (using two adders) prior to producing the final 
output.

Figure 27 shows the two adder stages within the final circuit of the 
12 × 12 firm multiplier.
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Figure 27. 12 × 12 Firm Multiplier Circuit Note (1)

 

Notes to Figure 27:
(1) Using the altmult_add megafunction to implement the multipliers allows you to mix signed and unsigned 

inputs.
(2) This is an optional pipeline register to increase system performance.

Figure 28 shows the simulation results for the example shown in 
Figure 27.

Figure 28. 12 × 12 Firm Multiplier Simulation Results

Tables 36 and 37 show the implementation results for the 12 × 12 firm 
multiplier example shown in Figure 27 for Stratix II and Stratix devices, 
respectively.
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f You can download the files (12x12_firm_mult.zip) for the design 
described in Tables 36 and 37 from the Design Examples section of the 
Altera web site (www.altera.com).

Conclusion Stratix II, Stratix, and Stratix GX DSP blocks and Cyclone II embedded 
multipliers are designed for implementing DSP applications. However, 
you can also use Stratix II, Stratix, and Stratix GX TriMatrix blocks (M512 
or M4K RAM blocks) or Cyclone II and Cyclone M4K RAM blocks for 
designs that need more multipliers than are available using DSP blocks or 
embedded multipliers alone. For example, using soft multipliers, you can 
increase the number of 16 × 16 multipliers in a Stratix E1S80 device by a 
factor of more than 7 (see Table 14 on page 8). Another example is that the 
fully variable soft multiplier is an ideal implementation for applications 

Table 36. 12 × 12 Firm Multiplier Implementation Results Using Stratix II 
Devices Note (1)

Device EP2S15F484C3

Utilization ALUTs: 126/12,480 (1%)
DSP block 9-bit elements: 1/96 (1%)

Latency (2) 2 clock cycles

Throughput 238 megasamples per second

Performance 238.0 MHz

Notes to Table 36:
(1) The altmult_add megafunction implements both the ALM or LE and DSP 

block multipliers.
(2) Latency is the number of clock cycles required to complete a single multiplication 

computation.

Table 37. 12 × 12 Firm Multiplier Implementation Results Using Stratix 
Devices Note (1)

Device EP1S10F484C5

Utilization Logic cells: 144/10,570 (1%)
DSP block 9-bit elements: 1/48 (2%)

Latency (2) 2 clock cycles

Throughput 180 megasamples per second

Performance 180.0 MHz

Notes to Table 37:
(1) The altmult_add megafunction implements both the ALM or LE and DSP 

block multipliers.
(2) Latency is the number of clock cycles required to complete a single multiplication 

computation.
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requiring smaller multipliers with frequently varying coefficients. Other 
soft multiplier modes are more resource efficient and better suited for 
applications that do not require frequent coefficient updates. The firm 
multiplier allows you to balance the use of DSP block or embedded 
multipliers with ALM- or LE-based multipliers, allowing more efficient 
use of the Stratix II, Stratix, and Stratix GX DSP blocks and Cyclone II 
embedded multipliers.
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