#### **FEATURES**

- Wide Supply Voltage Range: 6...35V
- Wide Operating Temperature Range: -40°C...+85°C
- High Detection Sensitivity of Relative Capacitive Changes: 5% – 100%
- Detection Frequency up to 2kHz
- Adjustable Voltage Range: 0...5/10V, other
- Reference Voltage Source: 5V
- Protection against Reverse Polarity
- Output Current Limitation
- Adjustable with only two Resistors

#### **APPLICATIONS**

- Industrial Process Control
- Distance Measurement
- Pressure Measurement
- Humidity Measurement
- Level Control

#### **GENERAL DESCRIPTION**

The CAV414 is an universal multipurpose interface for capacitive sensors and contains the complete signal processing unit on chip. The CAV414 detects the relative capacitive change of a measuring capacity to a fixed reference capacity. The IC is optimised for capacities in the wide range of 10pF to 2nF with possible changes of capacity of 5% to 100% of the reference capacity.

The voltage output is formed by a high accuracy instrumentation amplifier in combination with an operational amplifier.

With only a few external components, the CAV414 is suitable for a great variety of applications including a zero compensation.

#### **DELIVERY**

- DIL16 packages (samples)
- SO16(n) packages
- Dice on 5" blue foil

#### **BLOCK DIAGRAM**

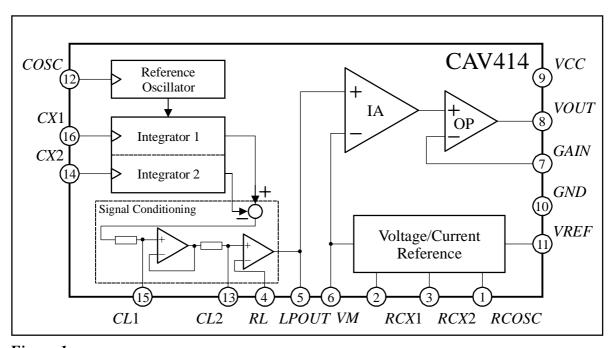



Figure 1

### analog microelectronics

January 2001 1/6

Rev. 2.1

### **ELECTRICAL SPECIFICATIONS**

 $T_{amb} = 25$ °C,  $V_{CC} = 24$ V,  $I_{REF} = 1$ mA (unless otherwise noted)

| Parameter                                                       | Symbol                           | Conditions                                                           | Min.        | Тур.     | Max.        | Unit                 |
|-----------------------------------------------------------------|----------------------------------|----------------------------------------------------------------------|-------------|----------|-------------|----------------------|
| Supply                                                          | <u> </u>                         |                                                                      | <u> </u>    | <u>'</u> |             | <u> </u>             |
| Supply Voltage                                                  | $V_{CC}$                         |                                                                      | 6           |          | 35          | V                    |
| Quiescent Current                                               | $I_{CC}$                         | $T_{amb} = -40 \dots 85^{\circ}\text{C}, I_{REF} = 0\text{mA}$       |             | 1.55     | 2.7         | mA                   |
| Temperature Specifications                                      |                                  |                                                                      | Ш           | I        | L           | II.                  |
| Operating                                                       | $T_{amb}$                        |                                                                      | -40         |          | 85          | °C                   |
| Storage                                                         | $T_{st}$                         |                                                                      | -55         |          | 125         | °C                   |
| Junction                                                        | $T_j$                            |                                                                      |             |          | 150         | °C                   |
| Thermal Resistance                                              | $\Theta_{ja}$                    | DIL16 plastic package                                                |             | 70       |             | °C/W                 |
| Oscillator Current                                              | $\Theta_{ja}$                    | SO16 (n) plastic package                                             |             | 140      |             | °C/W                 |
| Reference Oscillator                                            |                                  | 1                                                                    |             |          |             |                      |
| Oscillator Capacitor Range                                      | $C_{OSC}$                        | $C_{OSC} = 1.6 \cdot C_{X1}$                                         | 14          |          | 1800        | pF                   |
| Oscillator Frequency Range                                      | fosc                             |                                                                      | 1           |          | 130         | kHz                  |
| Oscillator Current                                              | $I_{OSC}$                        | $R_{OSC} = 200 \text{k}\Omega$                                       | 9.5         | 10       | 10.75       | μΑ                   |
| Capacitive Integrator 1 and 2                                   |                                  |                                                                      | Ш           | I        | L           | II                   |
| Capacitor Range 1                                               | $C_{X1}$                         |                                                                      | 10          |          | 1000        | pF                   |
| Capacitive Integrator Current 1                                 | $I_{X1}$                         | $R_{CX1} = 400 \text{k}\Omega$                                       | 4.75        | 5        | 5.38        | μA                   |
| Capacitor Detection Sensitivity                                 | $\Delta C_X$                     | $\Delta C_X = (C_{X2} - C_{X1})/C_{X1}$                              | 5           |          | 100         | %                    |
| Capacitor Range 2                                               | $C_{X2}$                         | $C_{X2} = C_{X1} \cdot (1 + \Delta C_X)$                             | 10.5        |          | 2000        | pF                   |
| Capacitive Integrator Current 2                                 | $I_{X2}$                         | $R_{CX2} = 400 \text{k}\Omega$                                       | 4.75        | 5        | 5.38        | μA                   |
| Detection Frequency                                             | $f_{DET}$                        | $C_{L1} = C_{L2} = 1 \text{nF}$                                      |             |          | 2           | kHz                  |
| Lowpass                                                         | <u> </u>                         |                                                                      | Ш           | I        | L           | II.                  |
| Adjustable Gain                                                 | $G_{LP}$                         |                                                                      | 1           |          | 10          |                      |
| Output Voltage                                                  | $V_{LPOUT}$                      |                                                                      | $V_M - 0.4$ |          | $V_M + 0.4$ | V                    |
| Corner Frequency 1                                              | $f_{C1}$                         | $R_{01} = 20 \text{k}\Omega, C_{L1} = 1 \text{nF}$                   |             |          | 10          | kHz                  |
| Corner Frequency 2                                              | $f_{C2}$                         | $R_{02} = 20 \text{k}\Omega, C_{L2} = 1 \text{nF}$                   |             |          | 10          | kHz                  |
| Resistive Load at PIN LPOUT                                     | $R_{LOAD}$                       |                                                                      | 200         |          |             | kΩ                   |
| Capacitive Load at PIN LPOUT                                    | $C_{LOAD}$                       |                                                                      |             |          | 50          | pF                   |
| Temperature Coefficient $V_{DIFF}$ (together with Input Stages) | $\mathrm{d}V_{DIFF}/\mathrm{d}T$ | $V_{DIFF} = V_{LPOUT} - V_M$ ,<br>$T_{amb} = -40 \dots 85^{\circ}$ C |             | ±100     |             | ppm/°C               |
| Internal Resistor 1 and 2                                       | $R_{01}, R_{02}$                 |                                                                      |             | 20       |             | kΩ                   |
| Temperature Coefficient $R_{01,02}$                             | $dR_{01,02}/dT$                  | $T_{amb} = -40 \dots 85^{\circ}\text{C}$                             |             | 1.9      |             | 10 <sup>-3</sup> /°C |
| Power Supply Rejection Ratio (together with Input Stages)       | PSRR                             | $I_{OUT} \le 1 \text{mA}$                                            | 80          | 90       |             | dB                   |
| Voltage Reference V <sub>REF</sub>                              |                                  | 1                                                                    |             |          |             |                      |
| Voltage                                                         | $V_{REF}$                        |                                                                      | 4.75        | 5        | 5.25        | V                    |
| Current                                                         | $I_{REF}$                        |                                                                      | 0           |          | 9           | mA                   |
| $V_{REF}$ vs. Temperature                                       | $\mathrm{d}V_{REF}/\mathrm{d}T$  | $T_{amb} = -40+85$ °C                                                |             | ±90      | ±140        | ppm/°C               |
| Line Regulation                                                 | $\mathrm{d}V_{REF}/\mathrm{d}V$  | Vcc = 6V35V                                                          |             | 30       | 80          | ppm/V                |
|                                                                 | $\mathrm{d}V_{REF}/\mathrm{d}V$  | $Vcc = 6V35V, I_{REF} \approx 4\text{mA}$                            |             | 60       | 150         | ppm/V                |
| Load Regulation                                                 | $\mathrm{d}V_{REF}/\mathrm{d}I$  |                                                                      |             | 0.05     | 0.10        | %/mA                 |
|                                                                 | $\mathrm{d}V_{REF}/\mathrm{d}I$  | $I_{REF} \approx 4 \text{mA}$                                        |             | 0.06     | 0.15        | %/mA                 |
| Load Capacitance                                                | $C_{REF}$                        |                                                                      | 1.9         | 2.2      | 5.0         | μF                   |

| Parameter                           | Symbol                             | Conditions                                      | Min. | Тур. | Max.                      | Unit        |
|-------------------------------------|------------------------------------|-------------------------------------------------|------|------|---------------------------|-------------|
| Voltage Reference $V_M$             |                                    |                                                 |      |      |                           | <del></del> |
| Voltage                             | $V_M$                              |                                                 | 1.90 | 2    | 2.15                      | V           |
| $V_M$ vs. Temperature               | $\mathrm{d}V_M/\mathrm{d}T$        | $T_{amb} = -40+85$ °C                           |      | ±90  |                           | ppm/°C      |
| Current                             | $I_{VM}$                           | Source                                          |      |      | 5                         | μΑ          |
|                                     | $I_{VM}$                           | Sink                                            |      |      | -5                        | μΑ          |
| Load Capacitance                    | $C_{VM}$                           |                                                 | 80   | 100  | 120                       | nF          |
| Instrumentation Amplifier Input St  | tage                               |                                                 |      |      |                           |             |
| Internal Gain                       | $G_{IA}$                           |                                                 | 4.9  | 5    | 5.1                       |             |
| Differential Range                  | $V_{IN}$                           |                                                 | 0    |      | 400                       | mV          |
| Common Mode Input Range             | CMIR                               | $V_{CC}$ < 9V, $I_{CV}$ < 2mA                   | 1.5  |      | <i>V<sub>CC</sub></i> - 3 | V           |
|                                     | CMIR                               | $V_{CC} \ge 9V$ , $I_{CV} < 2mA$                | 1.5  |      | 6.0                       | V           |
| Common Mode Rejection Ratio         | CMRR                               |                                                 | 80   | 90   |                           | dB          |
| Power Supply Rejection Ratio        | PSRR                               | $I_{OUT} \le 1 \mathrm{mA}$                     | 80   | 90   |                           | dB          |
| Offset Voltage                      | $V_{OS}$                           |                                                 |      | ±1.5 | ±6                        | mV          |
| $V_{OS}$ vs. Temperature            | $\mathrm{d}V_{OS}$ / $\mathrm{d}T$ |                                                 |      | ±5   |                           | μV/°C       |
| Output Stage                        |                                    |                                                 |      |      |                           |             |
| Adjustable Gain                     | $G_{OP}$                           |                                                 | 1    |      |                           |             |
| Input Range                         | IR                                 | <i>V<sub>CC</sub></i> < 11V                     | 0    |      | <i>V<sub>CC</sub></i> - 5 | V           |
|                                     | IR                                 | $V_{CC} \ge 11 \text{V}$                        | 0    |      | 6                         | V           |
| Power Supply Rejection Ratio        | PSRR                               | $I_{OUT} \le 1 \mathrm{mA}$                     | 80   | 90   |                           | dB          |
| Offset Voltage                      | $V_{OS}$                           |                                                 |      | ±0.5 | ±2                        | mV          |
| $V_{OS}$ vs. Temperature            | $\mathrm{d}V_{OS}/\mathrm{d}T$     |                                                 |      | ±3   | ±7                        | μV/°C       |
| Input Bias Current                  | $I_B$                              |                                                 |      | 10   | 25                        | nA          |
| $I_B$ vs. Temperature               | $\mathrm{d}I_B/\mathrm{d}T$        |                                                 |      | 7    | 20                        | pA/°C       |
| Output Voltage Range                | $V_{OUT}$                          | $V_{CC}$ < 19V                                  | 0    |      | <i>V<sub>CC</sub></i> - 5 | V           |
|                                     | $V_{OUT}$                          | $V_{CC} \ge 19V$                                | 0    |      | 14                        | V           |
| Output Current Limitation           | $I_{LIM}$                          | $V_{CC} \ge 10 \text{V}$                        | 5    | 7    | 10                        | mA          |
| Output Current                      | $I_{OUT}$                          |                                                 | 0    |      | $I_{LIM}$                 | mA          |
| Load Resistance                     | $R_L$                              |                                                 | 2    |      |                           | kΩ          |
| Load Capacitance                    | $C_L$                              |                                                 |      |      | 500                       | nF          |
| <b>Protection Functions</b>         |                                    |                                                 |      |      |                           |             |
| Protection Against Reverse Polarity |                                    | Ground vs. V <sub>CC</sub> vs. V <sub>OUT</sub> |      |      | 35                        | V           |
|                                     |                                    |                                                 |      |      |                           |             |

#### Note:

- 1) The oscillator capacity has to be chosen in the following way:  $C_{OSC} = 1.6 \cdot C_{X1}$
- 2) The capacitor range of  $C_{X1}$  and  $C_{X2}$  can be extended whereby the system performance is reduced and the electrical limits are exceeded.
- 3) Currents flowing into the IC, are negative.

#### **BOUNDARY CONDITIONS**

| Parameter                                    | Symbol           | Min.                          | Тур.                          | Max.                          | Unit |
|----------------------------------------------|------------------|-------------------------------|-------------------------------|-------------------------------|------|
| Current Definition of Ref. Oscillator        | $R_{COSC}$       | 190                           | 200                           | 210                           | kΩ   |
| Current Adjustment of Cap. Integrator 1      | $R_{CX1}$        | 350                           | 400                           | 450                           | kΩ   |
| Current Adjustment of Cap. Integrator 2      | R <sub>CX2</sub> | 350                           | 400                           | 450                           | kΩ   |
| Lowpass Stage Resistor Sum                   | $R_{L1}+R_{L2}$  | 90                            |                               | 200                           | kΩ   |
| Output Stage Resistor Sum                    | $R_1 + R_2$      | 90                            |                               | 200                           | kΩ   |
| Reference Voltage 5V                         | $C_{REF}$        | 1.9                           | 2.2                           | 5                             | μF   |
| Reference Voltage 2V (only for internal use) | $C_{VM}$         | 80                            | 100                           | 120                           | nF   |
| Lowpass Capacitance 1                        | $C_{L1}$         | $100 \cdot C_{X1}$            | $200 \cdot C_{X1}$            |                               |      |
| Lowpass Capacitance 2                        | $C_{L2}$         | $100 \cdot C_{X1}$            | $200 \cdot C_{X1}$            |                               |      |
| Oscillator Capacitance                       | $C_{OSC}$        | $C_{OSC} = 1.55 \cdot C_{X1}$ | $C_{OSC} = 1.60 \cdot C_{X1}$ | $C_{OSC} = 1.65 \cdot C_{X1}$ |      |

**Note:** The system performance over temperature forces that the resistors  $R_{CX1}$ ,  $R_{CX2}$  and  $R_{OSC}$  have the same temperature coefficient and a very close placement of them in the circuit. The capacities  $C_{X1}$ ,  $C_{X2}$  and  $C_{OSC}$  are also forced to have the same temperature coefficient and a very close placement of them in the circuit.

#### **FUNCTIONAL DIAGRAM**

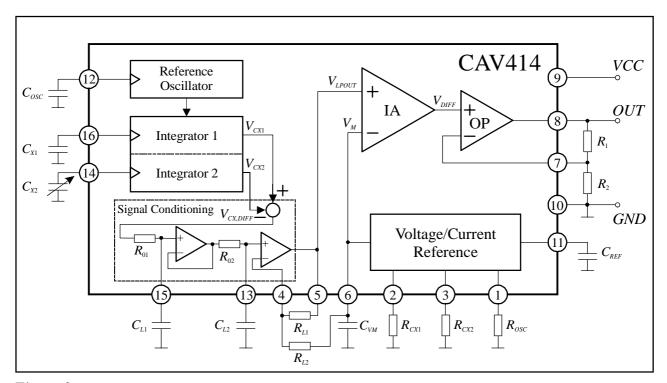



Figure 2

#### **FUNCTIONAL DESCRIPTION**

A reference oscillator with a frequency adjusted by the capacity  $C_{OSC}$  drives two symmetrically built integrators synchronously to its clock and its phase. The capacitors  $C_{X1}$  and  $C_{X2}$  determine the amplitude of the two driven integrators. The difference of the integrator amplitudes gives the relative change of the capacities  $C_{X1}$  and  $C_{X2}$  to each other with high common mode rejection and high resolution. The difference signal is conditioned by a lowpass filter. The corner frequency and gain of it can be adjusted with a few external components. The output of the lowpass filter is connected to an instrumentation amplifier and an output stage. These two stages transform the signal into an adjustable voltage.

#### **Adjustment:**

The zero-adjustment is made by the resistors  $R_{CX1}$  or  $R_{CX2}$  for the case that the varying capacitance  $C_{X2}$  has nearly the same (and its smallest) value as the fixed capacitance  $C_{X1}$  (reference capacitance). Therefore one of this resistors is varied until the differential voltage

$$V_{DIFF} = V_{LPOUT} - V_{M}$$

is zero:

$$V_{DIFF} = 0$$

#### **Application Example:**

The following values are given:

• fixed capacitance  $C_{X1}$ : 50pF

• varying capacitance  $C_{X2}$ : 50 ... 100pF

#### **Calculation:**

With the equations given in the boundary conditions, the following values for the devices can be calculated:

•  $C_{OSC}$ : 80pF

•  $C_{I,1}$ : 10nF

•  $C_{I.2}$ : 10nF

If the signal  $V_{DIFF}$  is amplified, it has to fulfil the unequation:

 $V_{DIFF} \le 400 \text{mV}$ 

Detailed calculations are shown in a separately available Application Note.

#### **PINOUT**

| RCOSC [        | 1 | U | 16 <i>CX</i> 1 |
|----------------|---|---|----------------|
| RCX1           | 2 |   | 15 <i>CL</i> 1 |
| RCX2           | 3 |   | 14 CX2         |
| RL 🗆           | 4 |   | 13             |
| LPOUT [        | 5 |   | 12             |
| VM             | 6 |   | 11 VREF        |
| GAIN $\square$ | 7 |   | 10 GND         |
| VOUT □         | 8 |   | 9              |
|                |   |   |                |

Figure 3

| PIN | NAME  | DESIGNATION                             |
|-----|-------|-----------------------------------------|
| 1   | RCOSC | Current Definition of Ref. Oscillator   |
| 2   | RCX1  | Current Adjustment of Cap. Integrator 1 |
| 3   | RCX2  | Current Adjustment of Cap. Integrator 2 |
| 4   | RL    | Gain Adjustment of Lowpass Filter       |
| 5   | LPOUT | Output of Lowpass Filter                |
| 6   | VM    | Reference Voltage 2V                    |
| 7   | GAIN  | Gain Adjustment                         |
| 8   | VOUT  | Voltage Output                          |
| 9   | VCC   | Supply Voltage                          |
| 10  | GND   | IC Ground                               |
| 11  | VREF  | Reference Voltage 5V                    |
| 12  | COSC  | Capacitor of Reference Oscillator       |
| 13  | CL2   | Corner Frequency of Lowpass 2           |
| 14  | CX2   | Integrator Capacitor 2                  |
| 15  | CL1   | Corner Frequency of Lowpass 1           |
| 16  | CX1   | Integrator Capacitor 1                  |

#### **DELIVERY**

The CAV414 is available in version:

- 16–Pin–DIL (samples)
- SO 16 (n) (Maximum Power Dissipation  $P_D = 300 \text{mW}$ )
- Dice on 5" blue foil

### **PACKAGE DIMENSIONS SO16 (n)**

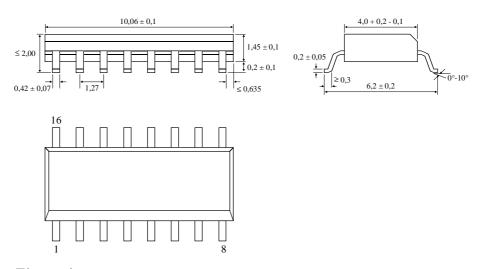



Figure 4

The information provided herein is believed to be reliable; however, Analog Microelectronics assumes no responsibility for inaccuracies or omissions. Analog Microelectronics assumes no responsibility for the use of this information, and all use of such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licences to any of the circuits described herein are implied or granted to any third party. Analog Microelectronics does not authorise or warrant any Analog Microelectronics product use in life support devices and/or systems.