
 SMART ARM-based Microcontrollers

 AT09381: SAM D - Debugging Watchdog Timer
Reset

 APPLICATION NOTE

Introduction

This application note shows how the early warning interrupt can be used to
debug a WDT reset situation.

Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

Table of Contents

Introduction..1

1. Prerequisites..3

2. SAM D Watchdog Timer Reset Debugging... 4
2.1. The Early Warning Interrupt... 4
2.2. Reading Flash.. 7

2.2.1. Intel Hex Files.. 8
2.3. Precautions...8
2.4. Determining the Reset Cause.. 8

3. Revision History...10

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

2

1. Prerequisites
This application note requires:

• Atmel® Studio 6.1 or newer
• A SAM D Xplained PRO
• Example code

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

3

2. SAM D Watchdog Timer Reset Debugging
The Watchdog Timer (WDT) is used to reset the device to recover from error situations such as runaway
or deadlocked code. This appnote does not show how to use or setup the WDT. This appnote shows how
it is possible to determine what code was being executed before the WDT resets the device.

This appnote is bundled with an Atmel Studio project that can be used as a reference to the appnote.

This appnote should be applicable to any device with a WDT with the Early Warning Interrupt present.

2.1. The Early Warning Interrupt
The WDT in the SAM D has got an Early Warning interrupt. This interrupt can be enabled to indicate an
upcoming WDT watchdog time-out condition. This can be used to find out which address the WDT
interrupt handler will jump back to when the interrupt handler is done executing.

The address that the interrupt handler jumps back to is the address of the code that is being executed. It
may be possible to see if the device is stuck in a loop or something else that keeps it from issuing a reset
of the WDT timer.

The link register value can be checked by placing a breakpoint inside the interrupt handler. When the
program enters the handler, the link register can be read by Atmel Studio by checking the Processor
View, see the figure below.

Figure 2-1. Enabling Processor View

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

4

When checking the processor view (see the figure below) in Atmel Studio when inside the
WDT_Handler() function in the project code, it can be seen that the value of the link register is
0xFFFFFFF9. According to ARM® "Cortex®-M0+ Devices Generic User Guide" under "Home > The
Cortex-M0+ Processor > Exception model > Exception entry and return" this means that the return
address of the handler will be found in the stack.

Figure 2-2. Processor View

In the processor view we can find the main stack pointer. This points to the top of the stack. It is possible
to read out what is in the stack when in a debug session by going to Debug->Windows->Memory-
>"Memory 1" and checking what is at the address pointed to by the main stack pointer. But in order to
debug a device that is not connected to a debugger it is necessary to copy the stack to flash.

This can be done by copying the main stack address to a pointer and then copying the content of the top
of the stack. The following WDT_Handler will do this:

#define FLASH_ADDRESS 0x3FF80;
uint32_t *spReg;
uint32_t *pointer_to_page_in_flash = FLASH_ADDRESS;

void WDT_Handler(void) {
 spReg = __get_MSP();
 //copy 15 top values of stack to flash:
 for (int i = 0; i < 15; i++) {
 *pointer_to_page_in_flash = *spReg;
 pointer_to_page_in_flash++;
 spReg++;
 }
 //write page buffer to flash:
 NVMCTRL->CTRLA.reg = NVMCTRL_CTRLA_CMDEX_KEY | NVMCTRL_CTRLA_CMD_WP;

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

5

 //Clear EW interrupt flag
 WDT->INTFLAG.bit.EW = 1;
}

After this code has been executed, the FLASH will be updated at the page starting with address 0x3FF80.
In the example project, this flash page is not used by the application code. For a different application or a
smaller device the page that is written to should be chosen differently.

It is necessary to check what is written in flash by going to the Memory view (in Atmel Studio) and see
what is in flash after the interrupt handler has written to flash. This should be done before the WDT has
time to reset the device. In order to do this place a break point in the interrupt handler at the end of the
write to flash.

When looking at the Memory view (see the figure below) we can see that some of the content does not
look like addresses to flash and some of it looks like it would point to the interrupt vector table. The
reason for this is that the stack is used for temporary storage and that some of the values are register
values that are stored in RAM before the device enters the interrupt handler. These values will be popped
back before leaving the interrupt handler.

Note:  Atmel Studio will by default cache what is in flash and RAM so that not all of flash will be read
from the device and updated in the Memory view. To be certain that the values shown in Memory view are
updated press "Alt + F7" and after the "Cache all flash memory except" write the memory range of flash
that is being written to (in the project code this range is 0x3FF80, 0x3FFC0). The reason to not turn of all
caching is that debugging will be very slow as the device will then have to transmit all of flash and RAM
memory after each break point.

Figure 2-3. Processor View

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

6

To find the return address it is necessary to know where to look in the stack. To start with we should setup
a test where we know what to look for. To find this we can force the interrupt to be fired when we know
where the code is executing. The easiest way to do this is to add a while(1) loop in the code that will not
let us reset the WDT timer.

Now that it is known where the code will execute when it is interrupted, it is possible to find the address
for this execution. The easiest way to do so is to run the code in a debug session, break it and open the
Disassembly view in Atmel Studio (Alt + 8).

As can be seen from Figure 2-4 Disassembly in Debug Mode the while loop can be found on address
0x000008AE. Now we can match this with what is in the Memory view. In the Memory view we see that
this value can be found in flash address 0x0003FFA0 this is 9 words (a word is 32-bits) below the top of
the stack. If we run this code on a project where it is not known where the WDT_Handler returns this is
where we can expect to find the return address.

Figure 2-4. Disassembly in Debug Mode

Note:  The use of the breakpoint in the code can help find the correct line in disassembly.

Note:  How many words below the top of the stack the return address can be found may change with
compiler options and the code size of the WDT_Handler() function. Always check this position on the
project that is being debugged with the same compiler options and the same interrupt handler.

2.2. Reading Flash
When a device has failed and it is not connected to a debugger it is necessary to read out the flash in
order to find out what happened.

To do this connect the device to a debugger and open Atmel Studio. Open the "Device Programing" view
(CTRL+SHIFT+p). Select the tool that is used for debugging the device and select the correct device and
press "Apply". Now go into the "Memories" menu and under the flash heeding select "Read". A prompt
will open up where it is necessary to select a name of the hex file and the folder where to store it. Save
the file.

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

7

2.2.1. Intel Hex Files

The file can now be opened and inspected. The hex file follows the Intel® hex standard:

:llaaaattFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFcc

• The colon starts the record
• ll is the length of the record
• aaaa is the last 16-bytes of the address
• tt is the record type

• 00 - data record
• 01 - end-of-file record
• 02 - extended segment address record
• 04 - extended linear address record
• 05 - start linear address record (MDK-ARM only)

• F is the data field. Can be any length but in this case 16-bytes
• cc is the one byte checksum of the record

Note:  The endianes is different for the data in this file than what is seen in Atmel Studios Memory
viewer.

2.3. Precautions

Some precautions must be taken with this debug method.

Writing to flash takes some time and must be factored into how long before the WDT resets the device
the early warning interrupt is set to fire. The maximum time of a page write to flash is 2.5ms.

The OSCULP32 is designed for low power, not to be highly accurate. If this oscillator is used for the WDT
this must be taken into account for the timing.

If the WDT does a chip reset due to the CPU trying to access a register in a peripheral where the
synchronous APB clock is turned off this will cause a bus stall. In this case the CPU will never enter the
interrupt handler and flash will never be written to. If this is the case, check the Power Manager registers
in a debug session and see if any of the synchronous clocks are turned off that should not be.

In the Atmel Studio project the WDT_Handler writes 15 32-bit values into one flash page. If 16 values had
been written the NVM write command can/must be omitted depending on the value of NVM-
>CTRLB.bit.MANW.

2.4. Determining the Reset Cause

If it is not certain that the device is being reset by the WDT there is a way to check what the reset cause
is.

In the device there is a Reset Cause (RCAUSE) register that contains the latest reset source. What
peripheral the RCAUSE register is located in may differ from device to device, see the datasheet for the
device for more information.

This register shows the last reset cause and for that reason it is not possible to use a debug session in
studio to show the last reset cause. This because Atmel Studio will reset the device before entering

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

8

debug mode. It is possible to write the reset cause to flash and then read out the hex file without causing
a reset.

The register value can be written to flash each time main is entered. Note that bits in flash that are not
written contains a one. The register value should therefore be inverted to get as few one-to-zero transition
as possible. If this is done then all the ways in which a device has been reset can be stored in one 8-bit
value in flash.

Note:  Check the cache settings in Atmel Studio before reading values from flash in the Memory view.

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

9

3. Revision History
Doc. Rev. Date Comments

42248B 04/2016 New template and some minor corrections

42248A 04/2015 Initial document release

Atmel AT09381: SAM D - Debugging Watchdog Timer Reset [APPLICATION NOTE]
Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

10

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-42393B-SAMD-Debugging-Watchdog-Timer-Reset_AT09381_Application Note-04/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, and others are registered trademarks or trademarks of Atmel Corporation in U.S. and
other countries. ARM®, ARM Connected® logo and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be
trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Table of Contents
	1. Prerequisites
	2. SAM D Watchdog Timer Reset Debugging
	2.1. The Early Warning Interrupt
	2.2. Reading Flash
	2.2.1. Intel Hex Files

	2.3. Precautions
	2.4. Determining the Reset Cause

	3. Revision History

