

Description:

The Universal Capacitive ReadoutTM (MS3110) is a general purpose ultra-low noise CMOS IC intended to support a variety of MEMS sensors that require a high resolution capacitive readout interface. The MS3110 requires only a single +5VDC supply and some decoupling components. No additional components are required.

MEMS sensors (such as accelerometers, rate sensors, and other sensors that can be modeled as variable capacitors) require a readout electronic interface that can sense small changes in capacitance. The MS3110 is capable of sensing capacitance changes down to 4.0 aF/rtHz.

The MS3110 interfaces to either a differential capacitor pair or a single capacitive sensor. A high level voltage output signal that is linear with full range of sense capacitance is provided. The MS3110 also includes an on-chip capacitive DAC (up to 10pF) for initial differential adjustments and/or for quasi-differential operation with a dummy capacitor. The MS3110 has provisions for trimming the gain and output offset. Bandwidth is also user programmable. An on-chip EEPROM is provided to store trim and program settings.

Features:

- Capacitance resolution: 4.0aF/rtHz
- Sensor modes: single variable or dual differential variable
- On-chip dummy capacitor for quasi-differential operation and initial adjustment
- Blanking control for fast recovery from input transients
- Gain and DC offset trim
- Programmable bandwidth adjustment 0.1 to 8kHz (16 steps)
- Oscillator reference output available.
- 2.25VDC output for ADC reference/ratiometric operation
- Single supply of +5.0VDC
- On-chip EEPROM for storage of settings
- Available in die or 16-pin SOIC

Applications:

Accelerometers (low g) Displacement Fluid Control Flow Sensors Gas Sensors

MICROSENSORS

Functional Block Diagram:

Electrical Characteristics	Min	Тур	Max	Unit
Power Supply Voltage (+V)	4.75	5.00	5.25	V
Power Supply Current on +V		2.2	2.5	mA
Power Supply Ripple Requirement on +V			100	μV
Digital DM Inputs	-0.5		V+	V
EEPROM Programming Voltage		16	18	V
All other Inputs	-0.5		V+	V
V2P25 (2.25V Reference) Trimmed	2.237		2.263	V
V2P25(2.25V Reference) Temperature Stability, Trimmed	-50		50	μV/°C
Input Sense Capacitance(CS1 _T ,CS2 _T)	0.25		10	pF
Resolution/Input-referred Noise			4.0	aF/rtHz
CS1 Array Coarse Offset Trimmable Range, Nominal	0		1.197	pF
CS2 Array Coarse Offset Trimmable Range, Nominal	0		9.709	pF
CF Array Coarse Gain Trimmable Range, Nominal	0		19.44	pF
CF, CS1, and CS2 Trim steps	0.018	0.020	0.022	pF
Bandwidth Selection(16 steps)	100		8000	Hz
Bandwidth Tolerance	-25		+25	%
Output Voltage Range	0.5		4.0	V
Output Offset @ CS2 _T -CS1 _T =0, SOFF=0		2.25		V

Page 2 of 15 MicroSensors, Inc., 3001 Redhill Avenue, Building 3; Costa Mesa, CA 92626-4529

MS3110 Universal Capacitive ReadoutTM

Electrical Characteristics	Min	Тур	Max	Unit
Output Offset @ CS1IN=CS2IN, SOFF=1		0.5		V
Output Fine Offset Trim Step		6		mV/step
Output Fine Gain Selectable range	-15		+15	%
Output Fine Gain Trim Step		0.12		%
Output Load Resistance			10	KΩ
Output Load Capacitance		100	250	pF
Output Source and Sink Currents	3	5	9	mA
Operating Temperature Range (T _{op})	-40		+85	°C
ESD Rating			2.0	KV

THEORY OF OPERATION

The MS3110 senses the change in capacitance between two capacitors and provides an output voltage proportional to that change. The capacitors to be sensed are an external balanced pair CS1IN and CS2IN. The output voltage is a function of the change between the sensing capacitances $CS2_T$ and $CS1_T$ according to the following:

Transfer Function: $VO = GAIN * V2P25 * (CS2_T-CS1_T)/CF + VREF$

Where Vo is the output Voltage Gain = 2 V/V nominal V2P25 = 2.25 VDC nominal CS2_T = CS2IN + CS2 CS1_T = CS1IN + CS1 CF is selected to optimize for input sense capacitance range VREF can be set to 0.5V or 2.25V DC for Δ CS= CS2_T-CS1_T =0. For 0.5V DC, the dynamic sensor capacity is constrained by CS2_T greater or equal to CS1_T.

PROGRAMMING SPECIFICATIONS

To allow for such a large range of options, several program modes and trims are incorporated into the MS3110. The user has the option to store the settings into an on-chip EEPROM which sends the data to the on-chip control registers, or program the control registers directly (without memory storage). Both require serial input data, clock, and write signals. Programming the EEPROM requires a +16 VDC supply.

MiCROSENSORS

Nomenclature, definitions, and mapping into the EEPROM is provided below. Information regarding the ranges which the bias and reference frequency should be set is also provided.

Programming Map and Modes

EEPROM Nomenclature and Description

The following programming bit descriptions and their programming map are presented below.

Name	No. bits	Description				
R[2:0]	3	Current Reference Trim Bits				
T[3:0]	4	Voltage Reference Trim Bits				
D[2:0]	3	Oscillator Trim Bits				
OSCON	1	Oscillator Output Enable				
B[7:0]	8	Output Buffer Gain Trim				
OFF[4:0]	5	Output Buffer Offset Trim				
SOFF	1	Output Buffer Output Offset Level Control				
CSELCT[3:0]	4	Continuous-Time LPF Bandwidth Trim				
CSEL[1:0]	2	Switch-Capacitor LPF Bandwidth Trim				
SHEN	1	CT or SC Lowpass Filter Select				
ENBW	1	CTIA Bandwidth Control				
CF[9:0]	10	CTIA Feedback Capacitor Selection				
CS2_[8:0]	9	CTIA Balance Capacitor Trim				
CS1_[5:0]	6	CTIA Balance Trim Capacitor Selection				

Nomenclature and Descriptions

MiCROSENSORS

EEPROM Location Mapping:

	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0
ADDR 9	R2	R1	R0	T3	T2	T1	T0	D0	D1	D2
ADDR 8	OSCon	B0	B1	B2	B3	B4	B5	B6	B7	OFF0
ADDR 7	OFF1	OFF2	OFF3	OFF4	SOFF	CSELCT	CSELCT	CSELCT	CSELCT0	CSEL1
						3	2	1		
ADDR 6	CSEL0	SHEN	ENBW	CF9	CF8	CF7	CF6	CF5	CF4	CF3
ADDR 5	CF2	CF1	CF0	CS2_8	CS2_7	CS2_6	CS2_5	CS2_4	CS2_3	CS2_2
				_	_	_	_	_	_	_
ADDR 4	CS2 1	CS2 0	CS1 0	CS1 1	CS1 2	CS1 3	CS1 4	CS1 5		
	_	_	_	_	_	_	_	_		
ADDR 3-0										

All other locations are unused.

Programming Truth Tables

Bias Control Registers

Two trims are included in the master bias circuitry, bandgap trim and current reference trim. The bandgap reference voltage can be trimmed to an optimum voltage with a trim range of +/-5.1%. Since

Page 5 of 15

MicroSensors, Inc., 3001 Redhill Avenue, Building 3; Costa Mesa, CA 92626-4529

the 2.25VDC reference tracks the bandgap reference voltage, the user can monitor the variation through pin V2P25. The reference level can be trimmed in 20 mV steps. Thus variations of the 2.25V Reference can be trimmed over process. An abridged version of the truth table is included below.

V2P25 Reference Voltage Trim (~19mV /step)										
	T3	T2	T1	T0	Voltage Trim					
	0	0	0	0	+5.1%					
	1	0	0	0	Nominal					
	1	1	1	1	-5.1%					

FOR ALL APPLICATIONS, the V2P25 voltage reference should be trimmed to 2.25V +\- 10mV.

The current reference can also be monitored and trimmed. The current monitor point is brought out to the TESTSEL pin that normally selects the mode of operation for the MS3110. It also serves to monitor the internal bias current of 10µA typical when the pin is tied to logic low. The Current reference can be trimmed in 0.4 µA steps. An abridged version of the truth table is included below.

(Current Reference Trim (~0.4µA/step)									
R2	R1	R0	Current Trim							
0	0	0	-32%							
1	0	0	Nominal							
1	1	1	+32%							

FOR ALL APPLICATIONS, the current reference should be trimmed to $10\mu A + - 2\mu A$.

Note that if an external pull-up resistor is placed on the TESTSEL pin of the MS3110 IC this pull-up current must be factored into the total current or the external pull-up resistor needs to be removed before the current measurement is performed.

Oscillator Control Registers

The MS3110 has the option to monitor and trim the oscillator over process. The truth table for both control and trim is presented below.

Oscillator (Output
--------------	--------

OSCON	Function
0	Disabled, High Output at OSCOUT
1	Enables Oscillator Output OSCOUT

MS3110 Universal Capacitive ReadoutTM

, c	Jsem	ator	11111
D2	D1	D0	Frequency Trim
0	0	0	Nominal
0	0	1	+15%
0	1	0	+24%
0	1	1	+33%
1	0	0	Nominal
1	0	1	-35%
1	1	0	-47%
1	1	1	-81%

Oscillator Trim

FOR ALL APPLICATIONS, the Oscillator frequency reference should be trimmed to 100KHz + > 5KHz. Set OSCON = 0 except when frequency is being monitored and trimmed.

Input Amplifier Control Registers

The analog front-end includes a capacitance transimpedance amplifier (CTIA) with a programmable feedback capacitor. The capacitor includes 10 bits of programmability in 19 fF +/- 20% steps. The programmability allows the user to optimize the feedback capacitor for range and performance. An abridged version of the programming truth table is included below.

				1		· ·	,		0	1 /
CF9	CF8	CF7	CF6	CF5	CF4	CF3	CF2	CF1	CF0	Capacitor(pF)
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	1	0.019
0	0	0	0	0	0	0	0	1	0	0.038
:	:	:	:	:	:	:	:	:	:	:
1	0	0	0	0	0	0	0	0	0	9.728
:	:	:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	1	1	19.437

Feedback Capacitor Array CF(9:0) Binary Weighted(in 19fF steps)

The MS3110 is designed to receive a pseudo-differential input sense capacitor arrangement. However, the user may wish to configure the MS3110 to sense a single-ended sense capacitor. For singled-ended operation, the balanced capacitor array CS2 is provided. The CS2 capacitor array gives the user the option to operate in single-ended mode over the entire 0.2pF-10pF range if desired. The capacitor includes 9 bits of programmability in 19fF+/-20% steps. The resolution of 19fF allows the user to balance the CS2 capacitance with the CS1 external capacitance to minimize offset. An abridged version of the programming truth table is included below and the block diagram shows the location which the feedback capacitor in the signal path.

MiCRO

CS2_8	CS2_7	CS2_6	CS2_5	CS2_4	CS2_3	CS2_2	CS2_1	CS2_0	Cap (pF)
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0.019
0	0	0	0	0	0	0	1	0	0.038
:	:	:	:	:	:	:	:	:	:
1	0	0	0	0	0	0	0	0	4.864
:	:	:	:	:	:	:	:	:	:
1	1	1	1	1	1	1	1	1	9.709

Balance Canacitor Array CS2(8:0) Binary Weighted(in 19fF steps)

NSORS

When the MS3110 is operated differentially, the external sensing capacitors that are connected to the CS1IN and CS2IN are usually mismatched; this leads to a DC offset in the output signal path. The CS1 Capacitor array along with the CS2 Capacitor array assists in reducing the DC offset by balancing the common-mode capacitance to within 19fF+/-20% resolution. An abridged version of the programming truth table for the CS1 array is also included below.

	1	5	(/	0	`
CS1_5	CS1_4	CS1_3	CS1_2	CS 1_1	CS1_0	Cap (pF)
0	0	0	0	0	0	0
0	0	0	0	0	1	0.019
0	0	0	0	1	0	0.038
:	:	:	:	:	:	:
1	0	0	0	0	0	0.608
:	:	:	:	:	:	:
1	1	1	1	1	1	1.197

Trim Capacitor Array CS1(5:0) Binary Weighted(in 19fF steps)

An additional feature included in the CTIA amplifier is the user's ability to increase or decrease the bandwidth/transconductance. The truth table is included below.

CTIA Bandwidth/Transconductance Control					
ENBW	Bandwidth				
0	Low				
1	High(~4X higher)				

FOR ALL APPLICATIONS, set ENBW=0.

Lowpass Filter Control Registers

The two-pole lowpass filter section is designed with a programmable bandwidth ranging from 100Hz to 8kHz. This is achieved with two cascaded lowpass filters. The first LPF in the signal path is a switch-capacitor lowpass filter that handles the bandwidth from 100Hz to 400Hz. The second LPF is a continuous-time lowpass filter that handles the bandwidth from 400Hz to 8kHz. Additional trim capability is designed into the continuous time filter such that the bandwidth selection error falls within +/-21% for any desired filter frequency within this filter range.

Page 8 of 15

MicroSensors, Inc., 3001 Redhill Avenue, Building 3; Costa Mesa, CA 92626-4529

The design of the two LPF is intended to operate in the following manner. If the user programs a bandwidth between 100Hz and 400Hz, the switch-capacitor LPF is selected to operate and the continuous-time LPF defaults to the lowest programmable bandwidth for clock feed-through attenuation. If the user programs a bandwidth between 400Hz and 8KHz, the continuous-time LPF is asserted and the switch-capacitor LPF functions as a sample/hold circuit for the CTIA. SHEN selects which LPF to use. The truth table and the respective nominal 3dB bandwidths are included below.

SHEN	Controls
DITTIN	COHUOIS

SHEN	FILTER TYPE
0	Switch Capacitor Filter
1	Continuous Time Filter

Switch-Capacitor LPF Controls

SHEN	CSEL1	CSEL0	Bandwidth(Hz)
0	0	0	465
0	0	1	350
0	1	0	200
0	1	1	100
1	Х	Х	CT_LPF

Continuous-Time LPF Controls

SHEN	CSELCT3	CSELCT2	CSELCT1	CSELCT0	Bandwidth(KHz)
0	Х	Х	Х	Х	SC_LPF
1	0	0	0	0	8.0
1	0	0	0	1	5.8
1	0	0	1	0	4.2
1	0	0	1	1	3.0
1	0	1	0	0	2.0
1	0	1	0	1	1.4
1	0	1	1	0	1.0
1	0	1	1	1	0.8
1	1	0	0	0	0.5

*11001-11111 are unused states

Output Buffer Control Registers

The output buffer is designed with three programmable features; offset reference level control, fine trim of DC offset, and fine trim of signal path gain. The offset reference level control allows two reference levels for the output signal. They are nominally 0.5V and 2.25V. The truth table is provided below.

Offset Reference Level Control

SOFF	Output Offset
0	VREF~2.25V
1	~0.5V

The fine trim for DC offset for the output buffer ranges +/- 100mV in 6.25mV steps. An abridged version of the truth table is included below.

OFF	OFF	OFF	OFF	OFF	Offset Trim			
4	3	2	1	0				
0	0	0	0	0	-100mV			
1	0	0	0	0	Nominal			
1	1	1	1	1	100mV			

DC Offset Trim Control (~6.25mV/step)

The fine trim for signal path gain for the output buffer ranges +/- 0.3V/V in 0.0024V/V steps, the nominal gain is 2V/V. An abridged version of the truth table is included below.

	Gain Control (~0.0024 V/V per step)								
B7	B6	B5	B4	B3	B2	B1	B0	Gain Trim	
0	0	0	0	0	0	0	0	-15%	
1	0	0	0	0	0	0	0	Nominal	
1	1	1	1	1	1	1	1	+15%	

Gain Control (~0.0024 V/V per step)

TIMING SPECIFICATIONS:

Write into EEPROM

+16 VDC Specifications

Programming the EEPROM in the MS3110 requires a +16V +/-0.5V DC supply. In addition, the EEPROM is limited to a ramp-up slew rate of 0.02 V/ μ s or less, and a ramp-down slew rate of 16.5 V/ μ s.

Serial Data Stream Definition and Timing

Four pins are required for programming the on-chip EEPROM. They are HV16(+16VDC), SDATA, SCLK, and WRT. SDATA, SCLK, and WRT are detailed as follows.

The 16-bit input data stream per address for writing to the EEPROM Memory Map is defined below. The first bit into the shift register is SP and the last bit is ERN. This represents a portion of the SDATA, or serial data stream.

ERN D9 D8 D7 D6 D5 D4 D3 D2 D1 D0 A3 A2 A1 A0 SP(first in)

During the Erase mode, ERN is set to logic 0 and the bits following ERN are all don't care conditions. This will erase the entire memory map. Then ERN is set to logic 1 followed by the D(9:0) and A(3:0) and SP. D(9:0) writes the bits in the location map, A(3:0) represent the address location to write to, and SP is a spare bit. A timing diagram showing the relationship of these waveforms is shown. Note that the first two lines represents an expanded picture of the latter three lines.

Note that not all ten addresses need to be included in the timing diagram. Only the addresses that require a change in the memory need be included.

MS3110 Universal Capacitive ReadoutTM

Control Register Write Via External Serial Data

The MS3110 is designed with the ability to bypass the EEPROM and load the trim and control data externally into the on-chip Shift Registers. With the TESTSEL pin tied to logic low (active), the user can apply the serial data stream and the clock which the registers strobe to program the trim and controls into the shift registers. There are 58 positions to fill in the data stream. The timing diagram is shown below. The order which the trims and controls are shown below based on 60 strobe edges. Note that the user can option for 58 strobe edges and ignore the first two don't care bits and that the HV16 and WRT pins remain unused in this mode.

SERIAL DATA WRITE SEQUENCE & MAPPING

DX	CNTL NAME	DX	CNTL NAME	DX	CNTL NAME	DX	CNTL NAME
D0	Don't Care	D15	CS2_7	D30	CSEL1	D45	B3
D1	Don't Care	D16	CS2_8	D31	CSELCT0	D46	B2
D2	CS1_5	D17	CF0	D32	CSELCT1	D47	B1
D3	CS1_4	D18	CF1	D33	CSELCT2	D48	B0
D4	CS1_3	D19	CF2	D34	CSELCT3	D49	OSCON
D5	CS1_2	D20	CF3	D35	SOFF	D50	D2
D6	CS1_1	D21	CF4	D36	OFF4	D51	D1
D7	CS1_0	D22	CF5	D37	OFF3	D52	D0
D8	CS2_0	D23	CF6	D38	OFF2	D53	TO
D9	CS2_1	D24	CF7	D39	OFF1	D54	T1
D10	CS2_2	D25	CF8	D40	OFF0	D55	T2
D11	CS2_3	D26	CF9	D41	B7	D56	T3
D12	CS2_4	D27	ENBW	D42	B6	D57	R0
D13	CS2_5	D28	SHEN	D43	B5	D58	R1
D14	CS2_6	D29	CSEL0	D44	B4	D59	R2

MICROSENSORS

MS3110 Universal Capacitive ReadoutTM

PIN DESCRIPTION 16-SOIC and DIE

SOIC	Die Pad	Name	Description
Pin No.	No.		
1	1	CHPRST	IC Reset, internally pulled up
2	2	V2P25	2.25V DC Reference
3	3	TESTSEL	Test Select. Enables the user to bypass the on-chip EEPROM and
			program the IC directly. This node is internally pulled up
4	4	CS2IN	Capacitor sensor input 2, to be connected with the upper electrode
5	5	CSCOM	Capacitor sensor common, to be connected to the common sensor node
6	6	CS1IN	Capacitor sensor input 1, to be connected with the upper sensor
			electrode
7	7	SDATA	Serial Data Input, used for the serial data input port for programming
			the EEPROM or the IC registers directly. This node is internally
			pulled down.
8	8	SCLK	Serial Clock Input, serves as the strobe which the IC latches the serial
			data. This node is internally pulled down.
9		NC	No Connect
10	9	HV16	16V DC input port, tied to 16V when Writing to EEPROM and
			Grounded otherwise.
11	10	WRT	Write Select. Enables the user to program the on-chip EEPROM.
12	11	OSCOUT	Oscillator output port. Enables the user to monitor the Oscillator
			Frequency. Output normally disabled unless user enables this port for
			monitoring.
13	12,13	-V	Negative Voltage Rail, usually 0V
14	14	VO	IC Signal Path Voltage Output
15	15,16	+V	Positive Voltage Rail, usually +5V
16	17	BLANK	IC Blank, Disables the IC. This node is internally pulled down.

Page 14 of 15 MicroSensors, Inc., 3001 Redhill Avenue, Building 3; Costa Mesa, CA 92626-4529

MS3110 Universal Capacitive ReadoutTM

PROGRAMMING/EVALUATION BOARD

A Programming/Evaluation Board is available from Microsensors for testing the MS3110 and serves two major functions in the evaluation of Microsensors, Inc IC Part Number MS3110. The first function allows the end user the ability to program the EEPROM of the MS3110 as well as serially program the IC in test mode and bypassing the EEPROM. The end user is then able to customize the MS3110 to their applications by enabling various features and adjusting trims. The second function allows the end user to break-away a section of the test board for further evaluation. An MS3110 IC can be placed on the break-away section as well as other external components for characterization and evaluation.

A Drawing of the board is shown below.

Page 15 of 15 MicroSensors, Inc., 3001 Redhill Avenue, Building 3; Costa Mesa, CA 92626-4529