August 12", 2016 Curiosity “ReadMe” Document Version 2.00

INTRODUCTION

The following labs are designed for Microchip’s Curiosity board. The Curiosity Development Board
supports Microchip's 8, 14 and 20-pin 8-bit PIC® MCUs. The MPLAB X project that you downloaded from
the Curiosity Website contains 10 (or 11 for some devices) lab exercises that demonstrate the myriad
basic capabilities of PIC® devices and can also be used to test the condition of your board. In this
document, you can find tutorials on the basic tasks and peripherals of the PIC® devices. You can also find
information on the different registers and bits associated with the peripherals that might be of use in your
next microcontroller project.

This document also details steps on how to set-up and generate your code using the MPLAB Code
Configurator which was also used in the creation of these labs. Also provided in this document are the
basic code snippets upon which the Curiosity lab codes were built upon and a discussion of said codes.
The rest of the document is a description of what each lab does and what the user should see on the
LEDs. All the labs are written in C language compatible with the latest XC8 compilers.

LESSONS

The lessons in this document are presented in the same order as they appear on the programmed labs.
You can progress through each of the labs by simply pressing the S1 button of your board.

e Lesson 1: Hello World (Turn On an LED)

e Lesson 2: Blink

e Lesson 3: Rotate (Moving the Light Across LEDSs)
e Lesson 4: Analog-to-Digital Conversion (ADC)

e Lesson 5: Variable Speed Rotate

e Lesson 6: Pulse-Width Modulation (PWM)

e Lesson 7: Timerl

e Lesson 8: Interrupts

e Lesson 9: Wake-up from Sleep Using Watchdog Timer
e Lesson 10: EEPROM"

e Lesson 11: High-Endurance Flash (HEF)(”

NOTE 1: These labs may not be applicable to all devices. Some devices have EEPROM only, HEF
only, both, or none of the two. See your device datasheet for supported features.

INPUTS AND DISPLAY

e Push Button Switch — One push button switch S1 is provided on the board. S1 is connected to
the PIC MCU’s RC4 pin and is used to switch to the next lab.

¢ Potentiometer — A 10kQ potentiometer POT1 is used in labs requiring analog inputs.

e LEDs - The Curiosity Development Board has four red LEDs (D7 through D4) that are connected
to I/O ports RC5, RA2, RA1 and RADb, respectively. These LEDs are used to display the output of
the different labs.

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 1: HELLO WORLD (TURN ON AN LED)

Introduction

The first lesson shows how to turn on an LED.

Hardware Effects

LED D4 will light up and stay lit.

Summary

The LEDs are connected to the input-output (1/O) pins. First, the I/O pin must be configured to be
an output. In this case, when one of these pins is driven high (LED_D4 = 1), the LED will turn on.
These two logic levels are derived from the power pins of the PIC MCU. Since the PIC's power
pin (VDD) is connected to 5V and the source (VSS) to ground (0V), a logic level of ‘1’ is
equivalent to 5V, and a logic level of ‘0’ is OV.

New Registers

Register Purpose
LATX Data latch
PORTX Holds the status of all pins
TRISX Determines if pins are input (1) or output (0)

LATX

The data latch (LATX registers) is useful for read-modify-write operations on the value that the 1/0
pins are driving. A write operation to the LATX register has the same effect as a write to the
corresponding PORTX register. A read from the LATX register reads the values held in the 1/O
port latches.

PORTX
A read of the PORTX register reads the actual I/O pin value. Writes should be performed on the
LAT register instead on the port directly.

TRISX
This register specifies the data direction of each pin.

TRIS Value Direction
1 Input
0 Output

An easy way to remember this is that the number ‘1’ looks like the letter ‘i’ for input and the
number ‘0’ looks like the letter ‘0’ for output.

The programmer should always write to the LATx registers and read from the PORTX registers.

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

MCC Instructions

During code generation using the MPLAB Code Configurator, a pin_manager.h header file and
a pin manager.c source file are automatically created. pin manager.h includes all the
macro definitions and instructions for the different 1/O pins (both analog and digital), whereas
pin manager.c includes the initialization code for these pins. Two of these macro instructions
are used in this lab as shown below.

Instruction Purpose
LED D4 SetHigh() Make the bit value of LED_ D4 (LATA5) a ‘1’ (5V)
LED D4 SetLow () Make the bit value of LEDD4 (LATA5) a ‘0’ (OV)

EXAMPLE 1.1: SETTING A BIT INTO ‘1’
LED D4 SetHigh();

Before Instruction:
LATA5 = 0;

After Instruction:
LATAS = 1;

EXAMPLE 1.2: SETTING A BIT INTO ‘0’
LED D4 SetLow();

Before Instruction:
LATAS = 1;

After Instruction:
LATAS = 0;

C Language
A sample code written in C language for the “Hello World” lab is provided below.

EXAMPLE 1.3: C CODE FOR “HELLO WORLD” LAB

/**

Section: Included Files

*/
#include "../../mcc_generated files/pin manager.h"
#include "../../labHeader.h"
/*

Application

*/

void HelloWorld(void) {
if (labState != RUNNING) {

3

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LED D4 LAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

labState = RUNNING;
}

if (labState == RUNNING) {
LED D4 SetHigh();
}

//Check if a switch event occurs
if (switchEvent) {
labState = NOT_RUNNING;

}

/**

End of File
*/

L// |
This starts a comment. Any of the following text on this line is ignored by the compiler.

|#include "../../mcc generated files/pin manager.h" I
The header file pin manager.h is generated automatically by the MPLAB Code
Configurator (MCC). It provides implementations for pin APIs for all pins selected in the
MCC GUI.

| #include "../../labHeader.h"
This header file contains the macro definitions, the variable declarations, and the function
prototypes necessary for the different labs in the project.

if (labState != RUNNING) {
LED D4 IAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;
labState = RUNNING;
}
This statement checks whether the HelloWorld (Lab 01) is running or not. If the state of
this lab is currently NOT RUNNING, then the code above will clear all the LED PORTSs and

change the state of the lab to RUNNING.

if (labState == RUNNING) {
LED D4 SetHigh();

}
This statement calls the function LED D4 SetHigh () if the state of the lab is RUNNING.

LED D4 SetHigh () turns on LED DA4.

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

LED D4 SetHigh();

Equivalent:

#define LED D4 SetHigh() do { LATAS = 1; } while(0)

This function is defined in pin manager.h under the MCC Generated Files folder.
It sets the LAT register of RA5 to 1 making it “high”.

if (switchEvent) {
labState = NOT RUNNING;

}
This statement checks if the S1 button is pressed. If the button is pressed
(switchEvent = 1), the state of the lab will be changed to NOT RUNNING.

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 2: BLINK

Introduction

This lesson blinks the same LED used in the previous lesson (D4).

Hardware Effects

LED D4 blinks at a rate of approximately 1.5 seconds.

Summary

One way to create a delay is to spend time decrementing a value. In assembly, the timing can be
accurately programmed since the user will have direct control on how the code is executed. In 'C',
the compiler takes the 'C' and compiles it into assembly before creating the file to program to the
actual PIC MCU (HEX file). Because of this, it is hard to predict exactly how many instructions it
takes for a line of 'C' to execute. For a more accurate timing in C, this lab uses the MCU'’s
TIMER1 module to produce the desired delay. TIMER1 is discussed in detail in LESSON 7:
TIMERL.

New Registers

This utilizes Timerl registers which will be discussed in LESSON 7: TIMERL1.

MCC Instructions

Like the “Hello World” lab, this lab also uses an MCC-generated macro instruction which can be
found in pin manager.h.

Instruction Purpose
LED D4 Toggle () Changes the bit value of LED_D4 (LATAbD)
from ‘0’ to ‘1’, or ‘1’ to ‘0’

EXAMPLE 2.1: TOGGLING A BIT

LED D4 Toggle();

Before Instruction:

LATAS = 0;

After Instruction:
LATAS = 1;

Or

Before Instruction:
LATAS5 = 1;

After Instruction:
LATAS = 0;

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

C Language
A sample code written in C language for the “Blink” lab is provided below.

EXAMPLE 2.2: C CODE FOR “BLINK” LAB

/**
Section: Included Files
*/
#include "../../mcc_generated files/pin manager.h"
#include "../../mcc_generated files/tmrl.h"
#include "../../labHeader.h"
/*
Application
*/
#define OVERFLOW 3
void Blink (void) {
static uint8 t counter;
if (labState != RUNNING) {

TMR1 StartTimer();
LED D4 LAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

labState = RUNNING;
}

if (labState == RUNNING) {
//Wait for Timerl to overflow
while (!TMR1IF);
TMR1 Reload();

counter++;

//Wait for overflow for 1.5 secs delay

if (counter == OVERFLOW) {
LED D4 Toggle();
counter = 0;

}

//Clear TMR1 Overflow flag
TMR1IF = 0;
}

//Check if a switch event occurs
if (switchEvent) ({
TMR1 StopTimer () ;

labState = NOT_RUNNING;

August 12", 2016 Curiosity “ReadMe” Document Version 2.00
}
/ * *
End of File
*/
[#define OVERFLOW 3 |
A variable ‘OVERFLOW is defined with a constant decimal value of ‘3’.
| static uint8 t counter; |
A static variable ‘counter’ variable is declared.
if (labState != RUNNING) {
TMR1 StartTimer ();
LED D4 LAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;
labState = RUNNING;
}

The MCC-generated macro TMR1 StartTimer ()is used to start Timerl and all LEDs
are initially turned off. If the state of the lab is RUNNING, the program will first wait for the
Timerl flag (for approximately 500 ms) to be set before executing the next instructions,
and will reload the same value of 500 ms to the Timerl (see LESSON 7: TIMER1).

if (labState == RUNNING) {
//Wait for Timerl to overflow
while (!TMR1IF);

TMR1 Reload();
counter++;

//Wait for overflow for 1.5 secs delay

if (counter == OVERFLOW) {
LED D4 Toggle();
counter = 0;

}

//Clear TMR1 Overflow flag
TMR1IF = 0;

}
The static variable ‘counter’ increments every time ‘TMR1IF’ is set until it reaches a

value equal to ‘'OVERFLOW which is previously defined as a variable having a constant
value of ‘3’. This signifies that Timerl has overflowed after 500 ms three times for a total
of 1.5 secs, before LED D4 is toggled. ‘counter’ is then reset to ‘0’ and the process is
repeated.

LED D4 Toggle();

Equivalent:
#define LED D4 Toggle ()

do { LATA5 = ~LATA5; } while(0)

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

This function is defined in pin manager.h under the MCC Generated Files folder.
It writes the complement of the previously written logic state on the RA5 PORT data latch
(LATADS), making the pin “high” if previously “low” or vice versa.

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 3: ROTATE (MOVING THE LIGHT ACROSS LEDS)

Introduction

This lesson would build on Lessons 1 and 2, which showed how to light up a LED and then make
it blink with using loops. This lesson incorporates four onboard LEDs (D4, D5, D6 and D7) and
the program will light each LED up in turn.

Hardware Effects

Program will each light up D4, D5, D6 and D7 in turn every 500 milliseconds. Once D7 is lit, D4
lights up and the pattern repeats.

Summary

In C, we use Binary Left Shift and Right Shift Operators (<< and >>, respectively) to move bits
around in the registers. The shift operations are 9-bit operations involving the 8-bit register being
manipulated and the Carry bit in the STATUS register as the ninth bit. With the rotate instructions,
the register contents are rotated through the Carry bit.

For example, for a certain register rotateReg, we want to push a ‘1’ into the LSB of the register
and have the rest of the bits shift to the left, we can use the Binary Left Shift Operator (<<). We
would first have to set up the Carry bit with the value that we want to push into the register before
we execute shift instruction, as seen in Figure 3-1A. The result of the operation is seen in Figure
3-1B.

FIGURE 3-1: LEFT SHIFT BINARY OPERATION

rotateReg before instruction: rotateReg before instruction:
<7.0> <7:0>
I 1JoJof[1[1]oTo o[1JoJof1[1To I
STATUS register before instruction: STATUS register before instruction:
IRP JRPLJRPOJITO[PD]| Z [DC | C IRP [RPL]RPOJITO[PD] z [DC | C
0 1 0 0 1 1 0 0 1 0 0 1 1 0
(A) (B)

Similarly, if we want to push a ‘1’ into the MSB of the register and have the rest of the bits shift to
the right, we can use the Binary Right Shift Operator (>>). We would first have to set up the Carry
bit with the value that we want to push into the register before we execute shift instruction, as
seen in Figure 3.2A. The result of the operation is seen in Figure 3.2B.

10

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

FIGURE 3-2: RIGHT SHIFT BINARY OPERATION

rotateReg before instruction: rotateReg before instruction:

<7:0> <7:0>
0o[1JofJof[1T1To | | 1JoJoJ1J1JoTJo
STATUS register before instruction: STATUS register before instruction:
IRP [RPL[RPOJ[ITO[IPD] Z [DC | C IRP [RPL[RPOJITO[IPD] Z [DC | C
0 1 0 0 1 1 0 0 1 0 0 1 1 0

(A) (B)

New Register

Register Purpose
STATUS Multi-purpose; depends on which bits are accessed.

STATUS

The STATUS register contains the arithmetic status of the ALU (Arithmetic Logic Unit), the Reset
status and the bank select bits for data memory. For more details, please see the device

datasheet.
STATUS Register <7:0>
RP_ | RPL | RPO | T [P0 | z [bCc [cC
e Bit 7: IRP — Register Bank Select Bit
e Bit 6-5: RP<1:0> - Register Bank Select
e Bit4: TO — Time Out bit
e Bit 3: PD — Power Down bit
e Bit2: Z - Zero bit
e Bit 1: DC — Digit Carry bit
e Bit0: C — Carry bit

C Language
A sample C code using binary shift operators is provided below.

EXAMPLE 3.1: SAMPLE C CODE FOR BINARY SHIFT OPERATORS

/**

Section: Included Files

*/
#include "../../mcc generated files/pin manager.h"
#include "../../labHeader.h"
/*

Application
*/

11

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

#define LAST 16
static uint8 t rotateReg;
void Rotate (void) {

if (labState != RUNNING) {
LED D4 LAT = ON;
LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

//Initialize temporary register to begin at 1
rotateReg = 1;

labState = RUNNING;
}

if (labState == RUNNING) ({
Delay500ms () ;
rotateReg <<= 1;

//If the last LED has been 1lit, restart the pattern
if (rotateReg == LAST)
rotateReg = 1;

//Determine which LED will light up

//ie. which bit in the register the 1 has rotated to.
LED D4 LAT = rotateReg & 1;

LED D5 LAT (rotateReg & 2) >> 1;
LED D6 LAT = (rotateReg & 4) >> 2;
LED D7 LAT (rotateReg & 8) >> 3

’

}

//Check if a switch event occurs
if (switchEvent) {
labState = NOT RUNNING;

}

//Delay function to keep the LED on for 0.5 secs before rotating

void Delay500ms (void) {
uint8 t i = 0;
for (i = 0; 1 < 25; 1i++)
__delay ms (20);
}

/**

End of File

*/
D4 LAT = rotateReg & 1;
D5 LAT = (rotateReg & 2) >> 1;
D6 LAT = (rotateReg & 4) >> 2;
D7 LAT = (rotateReg & 8) >> 3;

12

August 12" 2016

Curiosity “ReadMe” Document Version 2.00

The above statements are used to reflect the value stored in rotateReg onto the LEDs.
The Bitwise AND operator is used to determine whether the LEDs output is high or low.
Then the bits are shifted with respect to its position. The following shows how the bitwise
AND operation reflects the value of rotateReg (0b1000 in this example) onto the
LEDs.

D4_IAT = rotateReg & 1;

rotateReqg: 1000
1 : & 0001
D4 LAT : 0000 (OFF)

D5 LAT = (rotateReg & 2) >> 1;

rotateReqg: 1000
2 : & 0010
0000
>> 1 0000
D5 LAT : 0000 (OFF)

D6_LAT = (rotateReg & 4) >> 2;

rotateReg: 1000
4 : & 0100
0000
>> 2 0000
D6 LAT : 0000 (OFF)

D7_LAT = (rotateReg & 8) >> 3;

rotateReqg: 1000

8 : & 1000
1000

>> 3 0001

D7 LAT : 0001 (ON)

13

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 4: ANALOG-TO-DIGITAL CONVERSION (ADC)
Introduction

This lesson shows how to configure the ADC, run a conversion, read the analog voltage
controlled by the on-board potentiometer (POT1), and display the high order four bits on the
display.

Hardware Effects

The top four MSBs of the ADC are reflected onto the LEDs. Rotate the potentiometer to change
the display.

Summary

The PIC devices have an on-board Analog-to-Digital Converter (ADC) with 10 bits of resolution
on any of 12 the channels available (Note: The resolution and channels vary amongst the
devices. Refer to the datasheet.).The converter can be referenced to the device’s VDD or an
external voltage reference. This lesson references it to VDD. The result from the ADC is
represented by a ratio of the voltage to the reference.

EQUATION 4-1: ADC WITH 10-BIT RESOLUTION

ADC = (V/Vrer)*1023

Converting the answer from the ADC back to voltage requires solving for V.

V= (ADC/].OZS)*VREF

Here’s the checklist for this lesson:

1. Configure the ADC pin as an analog input.

2. Select ADC clock.

3. Select channel, result justification, and Vgge source.

4

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

FIGURE 4-1: MCC WINDOW - ADC MODULE

Projects| Files | Servic...| %[=1|[Eapc.e s|ms MPLAS® Code Configurator & [AI3][=) [2] [pin Manager: Package (McC] % =
Project Resources Generate ADC =
v System 2% Easy Setup | (= Registers | /) Nofifications : 1
System Modul
ystem Moadle Hardware Settings
Pin Module
Interrupt Module Enable ADC]
- o 16
Peripherals ADC Clack Result Alignment = - MicrOCHIP
& T™RO X PICI6F1709
%ADC Izl Clock Source FOSC/2 v Positive Reference VDD .
& memory [x] 17AD apus Auto-conversion Trigger .
O irz Sampling Frequency 21.7391kHz
faaleas Conversion Time =115°TAD= 460 us
) TmR1 X
x] [Evebie ADC ntermomt Pin Manager: Grid [MCC] % | =
Device Resources Package: ‘ POP2O | - ‘ ‘ PinNo: |16 |15 14| 7 | 6
Selected Channels !
¥ Documents PortC ¥
PIC16F1709 Datasheet Pin Channel Custom Name Module Function Direction | 0 |1 2|3 |4
¥ Peripherals Internal Channe Temo channel Temp aocw AMx input dla Bl
> fcce Internal Channe FVRBUfferl channel_FVRBUfferl VREF- input
> ac Internal Channe FVRBUfTer2 channel_FVRBuffer2 ccP1 ccp1 output O RCIN
> oG Internal Channe: DAC channel_DAC CLKIN input
» Lull comparator Rco ANZ POTL CLKOUT output
oscv
> L Dac osc1 input
> [EIEUSART 0sc2 input
> —FVR GPIO input AR]
=]

ANSELX

The ANSELX register determines whether the pin is a digital (1 or 0) or analog (varying voltage)
I/0. 1/0 pins configured as analog input have their digital input detectors disabled and therefore
always read ‘0’ and allow analog functions on the pin to operate correctly. The state of the
ANSELX bits has no effect on digital output functions. When setting a pin to an analog input, the
corresponding TRISX bit must be set to input mode in order to allow external control of the
voltage on the pin.

This lesson sets RCO as an analog input since the potentiometer (POT1) will vary the voltage.
C Language
A sample code written in C language for the “ADC” lab is provided below.

EXAMPLE 4.1: C CODE FOR “ADC” LAB

/**
Section: Included Files
*/

#include "../../mcc_generated files/pin manager.h"
#include "../../mcc_generated files/adc.h"
#include "../../labHeader.h"

/*
Application
*/

15

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

static uint8 t adcResult;
void ADC (void) {

if (labState != RUNNING) ({
LED D4 IAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

labState = RUNNING;
}

if (labState == RUNNING) {
//Get the top 4 MSBs and display it on the LEDs
adcResult = ADC GetConversion (POT1) >> 12;

//Determine which LEDs will light up

LED D4 LAT = adcResult & 1;

LED D5 LAT = (adcResult & 2) >> 1;
LED D6 LAT = (adcResult & 4) >> 2;
LED D7 LAT = (adcResult & 8) >> 3;

}

//Check if a switch event occurs
if (switchEvent) {
labState = NOT_RUNNING;

}

/**

End of File
*/

adcResult = ADC GetConversion (POT1) >> 12;
ADC_GetConversion (POT1)
Equivalent:

adc_result t ADC GetConversion (adc_channel t channel)
{

// select the A/D channel

ADCONObits.CHS = channel;

// Turn on the ADC module
ADCONQObits.ADON = 1;

// Acquisition time delay
__delay us(ACQ US DELAY);

// Start the conversion
ADCONObitS.GO_nDONE =1;

// Wait for the conversion to finish
while (ADCONObits.GO nDONE)

{

}

16

August 12" 2016

Curiosity “ReadMe” Document Version 2.00

// Conversion finished, return the result
return ((ADRESH << 8) + ADRESL);

}

The function ADC_GetConversion () is generated automatically by the MCC. It selects
the ADC channel, turns on the ADC module, sets up the acquisition time delay, starts the
conversion, and returns the result of the conversion. The result of the conversion is
stored in the adc_result t, which is defined as “unsigned 16-bit integer” in adc.h.
Then the bits of the adcResult are shifted to the right by 12 places so that only the top
4 MSBs are left.

The following shows how the top 4 MSBs are extracted from the result of the conversion.

Initialization:

adc result t

<15:8> <7:0>

- r . rr L]

After the initialization, adc_result t is still empty and waiting for the conversion to be
finished.

After conversion:

adc result t
ADRESH <15:8>
1]JoJa1]a1]o]o]1]1

ADRESL <7:0>
1 /1]1]ofJof[1]o]1

Once the conversion is done, the content of ADRESH and ADRESL are stored in
adc_result t. In this illustration, let's say that the value of ADRESH is 0010110011
and ADRESL iS 0b11100101.

After shifting:

adcResult

<15:8> <7:0>
oJ]oJo]JoJoJoJoJoJo]J]oJo]JoJ1]oJ1]1

Shifting the value of adcResult 12 places to the right leaves us only with the top 4
MSBs which is 0b1011.

LED D4 LAT = adcResult & 1;

LED D5 LAT = (adcResult & 2) >> 1;
LED LAT = (adcResult & 4) >> 2;
LED LAT = (adcResult & 8) >> 3;

These statements are used to reflect the value stored in adcResult onto the LEDs. The
Bitwise AND operator is used to determine whether the LEDs output is high or low. Then
the bits are shifted with respect to its position. The following shows the bitwise AND
operation on how the value of adcResult (1011) is reflected to the LEDs.

17

August 12" 2016

Curiosity “ReadMe” Document

Version 2.00

LED D4 LAT = adcResult & 1;

adcResult: 1011
1 : & 0011
LED D4 LAT 0001 (ON)

LED D5_LAT = (adcResult & 2) >> 1;

adcResult: 1011
2 : & 0010
0010
>> 1 0001
LED D5 LAT : 0001 (ON)

LED D6 LAT = (adcResult & 4) >> 2;

adcResult: 1011
4 : & 0100
0000
>> 2 0000
LED D6 LAT : 0000 (OFF)

LED D7_LAT = (adcResult & 8) >> 3;

adcResult: 1011
8 : & 1000
1000
>> 3 0001
LED D7 LAT : 0001 (ON)

18

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 5: VARIABLE SPEED ROTATE

Introduction

This lesson combines all of the previous lessons to produce a variable speed rotating LED
display that is proportional to the ADC value. The ADC value and LED rotate speed are inversely
proportional to each other.

Hardware Effects

Rotate POT1 counterclockwise to see the LEDs shift faster.

Summary

A crucial step in this lesson is to check if the ADC value is 0. If it does not perform the zero check,
and the ADC result is zero, the LEDs will rotate at an incorrect speed. This is an effect of the
delay value underflowing from 0 to 255.

FIGURE 5-1: PROGRAM FLOW

Initialize

v

Clear all LED Ports

v

Configure the ADC channel

v

Get the ADC Measurement €

v

Check if ADC resultis 0’

v

Delay according to ADC result

v

Rotate LEDs

19

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

C Language
A sample code written in C language for the “Variable Speed Rotate” lab is provided below.

Example 5.1: C CODE FOR “VSR” LAB

/**

Section: Included Files

*/
#include "../../mcc_generated files/pin manager.h"
#include "../../mcc_generated files/adc.h"
#include "../../labHeader.h"
/*

Application

*/

#define LAST 16

static uint8 t delay;
static uint8 t adcResult;
static uint8 t rotateReg;

void VSR (void) {

if (labState != RUNNING) {
LED D4 LAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

//Initialize temporary register to begin at 1
rotateReg = 1;

labState = RUNNING;
}

if (labState == RUNNING) ({
delay = adcResult = ADC GetConversion (POT1l) >> 8;
__delay ms(5);

//Delay 2 ms until delay decrements to 0
while (delay-- != 0){

__delay ms(2);
}

//Determine which LED will light up
LED D4 LAT = rotateReg & 1;

LED D5 LAT (rotateReg & 2) >> 1;
LED D6 LAT = (rotateReg & 4) >> 2;
LED D7 LAT (rotateReg & 8) >> 3;

rotateReg = rotateReg << 1 ;

//Return to initial position of LED
if (rotateReg == LAST) {

20

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

rotateReg = 1;

}

//Check if a switch event occurs
if (switchEvent) {
labState = NOT RUNNING;
}
}

/**
End of File
*/

delay = adcResult = ADC GetConversion (POT1l) >> 8;

At RUNNING state, the 8 MSbs of the value resulting from the ADC is stored in a static
variable ‘delay’ which determines the speed of rotation.

__delay ms(5);

//Delay 2 ms until delay decrements to 0

while (delay-- != 0){
__delay ms(2);

}
A minimum delay of 5 ms is set then the ‘delay’ variable decrements until it reaches ‘0’.

After which, another delay of 2 ms is set before the code for rotation is executed.

21

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 6: PULSE-WIDTH MODULATION (PWM)

Introduction

In this lesson, the PIC MCU generates a PWM signal that lights an LED with the POT1 thereby
controlling the brightness.

Hardware Effects

Rotating potentiometer POT1 will adjust the brightness of LED D7.

Summary

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly
between fully on and fully off states. The PWM signal resembles a square wave where the high
portion of the signal is considered the ON state and the low portion of the signal is considered the
OFF state. The high portion, also known as the pulse width, can vary in time and is defined in
steps. A longer, high on time will illuminate the LED brighter. The frequency or period of the PWM
does not change. The PWM period is defined as the duration of one cycle or the total amount of
on and off time combined. Another important term to take note is the PWM duty cycle which is the
ratio of the pulse width to the period and is often expressed in percentage. A lower duty cycle
corresponds to less power applied and a higher duty cycle corresponds to more power applied.

It is recommended that the reader refer to the Capture/Compare/PWM section in the data sheet
to learn about each register. This lesson will briefly cover how to setup a single PWM.

The PWM period is specified by the PRx register. Timer 2/4/6 is used to count up to the value in
CCPRxH combined with two LSBs in CCPxXCON. CCPRxL is used to load CCPRxH. One can
think of CCPRXxL as a buffer which can be read or written to, but CCPRxH is read-only. When the
timer is equal to PRX, the following three events occur on the next increment cycle:

1. TMRXx is cleared
2. The CCPx pin is set
3. The PWM duty cycle is latched from CCPRXxL into CCPRxH

EQUATION 6-1: PWM RESOULUTION

log[4(PRx + 1
gl4()] bits

Resolution =
esolution log 2

Two conditions must hold true for this lesson:

1. 10 bits of resolution
2. No flicker in LED

Figure 6-1 and Figure 6-2 show how to configure both the Timer2 and CCP modules for
standard PWM operation. Take note that some devices have independent PWM modules instead
of a CCP module.

22

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

FIGURE 6-1: MCC WINDOW - TMR2 MODULE

Projects| Files | Servic...| %[Gl|[EjPwmc] MPLAB® Code Configurator | [E1 (=] [E] [Pin Manager: Package [MCC] % =

Project Resources \ Generate \ TMR2 \ @ \ [
v System || €82 casy setup || 5 Registers | 4@ wotications: 1 VD e
System Module
oo Hardware Settings Ras|Lep_ DalGPIo[|2 [Jrao
in Module
raa[3 18| RA1|LED_DSIGPIO
Interrupt Module Enable Timer
mclrR[]4 1/[_]ra2|LED DEIGFIO
¥ Peripheral
ereners Timer Clock Timer peried RCS|LED_D7|GPIO MicrocHie [IrcojpaTijana
ADC
% & RC4|51/GPIO 15[Rt
Postscale Timer Period Bus < 2048 ms < 2048 ms
& ™vro B3} - PIC16F1709 W=
Actual Period 2.048 Pe d calculated via Ti Period]
3 mEmoRr Bl Prescaier TR ctual Perio ms (Period calculated via Timer Period) ace e
o
o+ CCPL X - FE o Jres
e =] [] enabie Timer Interrupt =
RB7 RBS
2) TMR1 x 1
Software Settings T 9 M
Device Resources
+ Documents =]{| caliback Function Rate 0x0 xTime Period = 0.0 ns Pin Manager: Grid [MCC] ‘
meu:lvmmlv‘ ‘ Pin No: 19‘1&‘11‘4‘3|2 13‘11‘11”
PIC16F1709 Datasheet
peripheral PortA'Y PortB
¥ Peripherals
v acc Module Function Direction | 0 |1|2|3|45/[4|5]|6"
'cLkouT output]
» Pcc i 05CY
» A"COG losc1 input B
» Lull comparator 0sc2 input L]
GPIO input
P o7 DAC Pin Module V' R CICHCHCHCE
v Eeusarr GrI0 output RN E CHCNC GG
Q- RESET MCLR input a 1
g <] 5

FIGURE 6-2: MCC WINDOW - CCP1::PWM MODULE

n

Projects|Files | servic...|) PWM.c] 15 MPLAB® Code Configurator 31| T[S pin Manager: Package mMcc) [=]

ccPL @ 1

¥ System £53 easy setup | [Registers | /8 Notfications 11

System Module

Project Resources \ Generate

Hardware Settings

Pin Module
Interrupt Module
P Mode| PUM | ~ ‘
¥ Peripnerals
% anc MicrocHIP
Select Timer | Timer 2 Please refer to the assigned timer to adjust the PWM frequency.
@ TR0 B < g aueney: PIC16F1709
& Memory x Duty Cycie PWM Parzmeters
£ CCPL X
PWM Period 2048 ms
© TMR2 X Duty cyce 800 %
PWM Frequency 48828 Hz
© ™™RL X CCPR Value 818 1
PWM Resolution 19 bits
. T T] >
Device Resources
= Pin Manager: Grid (MCC] = | =]
¥ Documents a
Package: | 20520 | - | ‘ Pin No: 19‘19‘11‘4‘3‘2 u‘
PIC16F1709 Datasheet
PortA Y
¥ Peripherals
Module Function Direction 0|12 3 4|5 4
[
AN input
> 3=ac i ApC Y LRI u L
VREF+ mput
[gEsaleeld] 3
CCPL (<38 loutput B ala B alB
» il Comparator
CLKIN input
» . DAC P i:]
CLKOUT output
» EleuUsarT oscw " u
osc1 input B
> PR ~
- fl] >

23

August 12" 2016 Curiosity “ReadMe” Document

C Language

A sample code written in C language for the “PWM” lab is provided below.

EXAMPLE 6.1: C CODE FOR “PWM” LAB

Version 2.00

/**

Section: Included Files

*/
#include "../../mcc_generated files/pin manager.h"
#include "../../mcc_generated files/adc.h"
#include "../../mcc_generated files/pwml.h"
#include "../../mcc_generated files/tmr2.h"
#include "../../labHeader.h"
/*

Application

*/
uintl6_t adcResult;
void PWM(void) {

if (labState != RUNNING) {

LED D4 IAT = LED D5 LAT = LED D6 LAT = LED D7 LAT =

//Set RC5 (LED D7) as output of CCPl using PPS
RC5PPS = 0b00001100;

TMR2_ StartTimer () ;

labState = RUNNING;
}

if (labState == RUNNING) {
//Start ADC conversion
adcResult = ADC GetConversion (POT1) >> 6;

//Make the adcResult the PWM duty cycle
PWM1 LoadDutyValue (adcResult) ;

}

//Check if a switch event occurs
if (switchEvent) {
TMR2 StopTimer();

//Restore RC5 (LED D7) as a normal output
RC5PPS = 0b00000000;

labState = NOT_RUNNING;

}

/**

End of File
*/

OFF;

24

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

| TMR2 StartTimer () |
This MCC-generated function simply starts the Timer2 module of the PIC MCU by setting
the TMR2ON bit of the T2CON register.

| RC5PPS = 0b00001100; |
This statement sets RC5 as the output pin of the CPP1 module.

|achesult = ADC GetConversion (POT1) >> 6; |
This statement gets the ADC result from the POT1 channel. Since the ADC module is
configured to be left-justified and has a 10-bit resolution, the result is written to the upper
10 bits of the 16-bit return value of ADC GetConversion (POT1). The result is shifted 6
bits to the right to copy the 10-bit ADC result to the lower 10 bits of the adcResult
variable.

|PWM1 LoadDutyValue (adcResult) ; |
This uses the adcResult as the PWM duty cycle value. This function writes the 8
MSBs and 2 LSBs of the PWM duty cycle to the CPPRL and CCPCON registers,
respectively.

|TMR2 StopTimer () ;
This function stops the Timer2 module by clearing the TMR20ON bit of the T2CON
register.

| RC5PPS = 0b00000000; |
This restores RC5 as a normal output pin.

25

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 7: TIMER1

Introduction

This lesson will produce the same output as LESSON 3: ROTATE. The only difference is that this
version uses Timerl to provide the delay routine.

Hardware Effects
LEDs rotate from right to left, similar to Lesson 3.
Summary

Timerl is a counter module that uses two 8-bit paired registers (TMR1H:TMR1L) to implement a
16-bit timer/counter in the processor. It may be used to count instruction cycles or external events
that occur at or below the instruction cycle rate.

This lesson configures Timerl to count instruction cycles and to set a flag when it rolls over. This
frees up the processor to do meaningful work rather than wasting instruction cycles in a timing
loop. Using a counter provides a convenient method of measuring time or delay loops as it allows
the processor to work on other tasks rather than counting instruction cycles.

New Registers

Register Purpose
T1CON Sets the timer enable, Prescaler, and clock
source bits
TMR1H:TMR1L 16-bit timer/counter register pair
PIR1 Contains the Timerl flag bit

T1CON

The Timerl control register contains the bits needed to enable the timer, set-up the Prescaler and
clock source. TMR1ON turns the timer on or off. The TLICKPS<1:0> bits are used to set the
Prescaler, while TMR1CS<1:0> bits select the clock source.

TMR1H:TMR1L

TMR1H and TMRI1L are 8-bit registers that form a 16-bit timer/counter register pair. This
timer/counter increments from a defined value until it reaches a value of 255 or OxFF each, and
overflows. An overflow will set the Timer1 flag bit ‘high’ and trigger an interrupt when enabled.

PIR1
This register contains TMRL1IF, an interrupt flag that will be set to ‘High’ whenever Timer1
overflows.

When using MCC, select TMR1 from the list of modules and configure the respective settings as
shown in Figure 7-1. After generating the source codes, new functions will be made available.

26

August 12" 2016

FIGURE 7-1:

Curiosity “ReadMe” Document

Version 2.00

MCC COMPOSER AREA - TMR1 MODULE

TMR1

(]

@3} Easy Setup E Registers ,L, Motifications : 1

Hardware Settings

I Enable Timer I

Timer Clock

Timer Period

Clock Source FOSC/A4 .

External Frequency 32,768 kHz

O R

Enable Synchronization
[_] Enable osciliator Circuit

Timer Pericd

Period count

Calculated Period

ol = IxEDC = OxFFFF

500 ms

l:‘ Enable Gate

l:‘ Enable Gate Toggle

l:‘ Enable Gate Single-Pulse mode Gate Polarity

£}

Gate Signal Source

|:| Enable Timer Interrupt
|:| Enable Timer Gate Interrupt

Software Seitings

Callback Function Rate 0

¥ Time Period = 0.0 ns

MCC Instructions

Instruction

Purpose

TMR1 Initialize()

Initializes the TMR1

TMR1 StartTimer ()

Starts the TMR1 operation

TMR1 StopTimer ()

Stops the TMR1 operation

TMR1 Reload()

Reloads the TMR1 register

EXAMPLE 7.1: INITIALIZING TIMER1

TMR1 Initialize();

Before Instruction:

After Instruction:

the MCC. These include:
T1CON,

T1GCON,

TMR1H,

TMR1L,
PIRlbits.TMRLIF,
and timerlReloadval.

All registers/bits related to Timerl are disabled or set to default.

Registers/bits and variables related to Timerl are enabled or set according to the user’s input in

TMR1 StartTimer (); instruction is also called.

27

August 12", 2016 Curiosity “ReadMe” Document

EXAMPLE 7.2: STARTING TIMER1

Version 2.00

TMR1 StartTimer ();

Before Instruction:

T1CONbits.TMRION = ©;
After Instruction:
T1CONbits.TMRION = 1;

EXAMPLE 7.3: STOPPING TIMER1

TMR1 StopTimer () ;

Before Instruction:

T1CONbits.TMRION = 1;
After Instruction:
T1CONbits.TMRI1ON = ©;

EXAMPLE 7.4: RELOADING TIMER1

TMR1 Reload();
Before Instruction:
TMR1H = 0;
TMR1L = 0;

After Instruction:

TMR1H = (timerlReloadVal >> 8);
TMR1L = timerlReloadVal;
C Language

A sample code written in C language for the “Timer1” lab is provided below.

Example 7.5: C CODE FOR “TIMER1” LAB

/**

Section: Included Files

*/
#include "../../mcc generated files/pin manager.h"
#include "../../mcc_generated files/tmrl.h"
#include "../../labHeader.h"
/*

Application

*/

#define LAST 16

28

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

static uint8 t rotateReg;

void Timerl (void) {

if (labState != RUNNING) {
LED D4 LAT = ON;
LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

//Initialize temporary register to begin at 1
rotateReg = 1;

TMR1 StartTimer () ;

labState = RUNNING;
}

if (labState == RUNNING) {
//Wait for Timerl to overflow
while (!TMR1IF);

TMR1 Reload();
rotateReg = rotateReg << 1;

//Return to initial position of LED
if (rotateReg == LAST) {

rotateReg = 1;
}

//Determine which LED will light up
LED D4 LAT rotateReg & 1;
LED D5 LAT = (rotateReg & 2) >> 1;
LED D6 LAT (rotateReg & 4) >> 2;
LED D7 LAT (rotateReg & 8) >> 3;

//Clear the TMR1 interrupt flag
TMR1IF = 0;
}

//Check if a switch event occurs
if (switchEvent) {
TMR1 StopTimer () ;

labState = NOT RUNNING;

}

/**

End of File
*/

TMR1 StartTimer ();

Equivalent:
void TMR1 StartTimer (void)

{

29

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

// Start the Timer by writing to TMRxON bit
T1CONbits.TMRION = 1;

}

This function simply starts the Timer1 module of the PIC MCU by setting the ‘TMR10N’ bit
of the ‘T1CON’ register.

//Wait for Timerl to overflow
while (! TMR1IF) ;

This statement waits for the Timerl to overflow and its corresponding flag to set.

TMR1 Reload();

Equivalent:

void TMR1 Reload(void)

{
//Write to the Timerl register
TMR1H = (timerlReloadVal >> 8);
TMR1L = timerlReloadVal;

}

As ‘TMR1TIF’ bitis set, “TMR1H’ and ‘TMR1L’ are cleared. These registers need to reload

its initial value stated in ‘timerlReloadval’ at ‘TMR1 Initialize ()’ for the delay to
be consistent.

During initialization:

TMR1H = 0x0B; TMR1L = 0xDC; //500ms with Prescaler of 1:1
timerlReloadVal =(TMR1H << 8) | TMR1L;

TMR1H <15:8> TMRIL <7:0>
ofJoJo]JoJ1]JoJ1Ja1]arJ1]Jo]1Ja1]arafJo]o

TMR1IF = 0;
‘TMR1IF bitis then cleared for the next cycle of Timerl.

TMR1 StopTimer();

Equivalent:
void TMR1 StopTimer (void)
{

// Stop the Timer by writing to TMRxON bit
T1CONbits.TMR1ON = O0;

}
This disables the use of Timerl for the next labs.

30

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 8: INTERRUPTS
Introduction

This lesson discusses all about interrupts — its purpose, capabilities and how to set them up. Most
interrupts are sourced from MCU peripheral modules. Some 1/O pins can also be configured to
generate interrupts when they change state. Interrupts usually signal events that require servicing
by the software’s Interrupt Service Routine (ISR). Once an interrupt occurs, the program counter
immediately jumps to the ISR and once the Interrupt Flag is cleared, resumes what it was doing
before. It is a rather more efficient way of watching out for events than continuously polling a bit
or register.

Hardware Effects
LEDs D4, D5, D6 and D7 rotate from left to right at a constant rate of 500 ms.
Summary

This lab demonstrates the advantage of using interrupts over polling. An interrupt is generated
whenever the TimerO0 register reaches OxFF and goes back to reset value. This indicates that 500
ms has passed and it is time to rotate the light. This interrupt is serviced by the TMRO ISR()
function. Note that this is the same for Lesson 7: Timerl but this time, we are not continuously
watching the TMR1IF flag.

New Register

Register Purpose
INTCON Contains the various enable and flag bits for
the usual interrupt sources.
Note: INTCON register bit assignments vary from device to device. Please check the datasheet
of your device for more details.

INTCON Register <7:0>

GIE | PEIE | TMROIE | INTE [IOCIE | TMROIF | INTF_ [IOCIF
e Bit 7 : GIE — Global Interrupt Enable Bit

e Bit 6 : PEIE — Peripheral Interrupt Enable Bit

e Bit5: TMROIE — TimerO Interrupt Enable Bit

e Bit4:INTE — INT External Interrupt Enable Bit

e Bit 3: IOCIE - Interrupt-on-change Enable Bit

e Bit 2: TMROIF — Timer0 Overflow Interrupt Flag Bit

e Bit1:INTF —INT External Interrupt Flag Bit

e Bit0: I0CIF — Interrupt-on-change Flag Bit

31

August 12" 2016 Curiosity “ReadMe” Document

Version 2.00

FIGURE 8-1: MCC COMPOSER AREA FOR TIMERO MODULE WITH INTERRUPTS

TMRO

£0% Easy Setup | = Registers | /) Netifications : 1

Hardware Settings

Timer Clock Timer Period

iod : g
Clock Source: FOSC/4 = Actual Peried : 495,712 ms

Enable Prescaler - Requested Period : 2048 ms = 500 ms £ 524,288 ms

External Frequency : 100 kHz

I Zl Enable Timer Interrupt I

Software Seitings

Callback Function Rate [o00] % Time Period = 05

C Language

The codes below demonstrate how to set up interrupts for TimerO peripheral. Please note that different
peripherals have different set-up procedures. This can be taken care of by the MCC for you. Please refer

to the datasheet of your device if you wish to set them up manually.

Main Program and Set-up

/**

Section: Included Files

*/
#include "../../mcc_generated files/pin manager.h"
#include "../../mcc_generated files/interrupt manager.h"
#include "../../labHeader.h"
/*

Application

*/

void Interrupt (void) {
if (labState != RUNNING) {

LED D4 LAT = ON;
LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

INTERRUPT GlobalInterruptEnable();
INTERRUPT PeripheralInterruptEnable();

//Enable the TMRO Interrupts
TMROIE = 1;

labState = RUNNING;

32

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

//Check if a switch event occurs
if (switchEvent) {
//Disable the TMRO Interrupts
TMROIE = O;

INTERRUPT GloballInterruptDisable();
INTERRUPT PeripherallInterruptDisable();

labState = NOT_ RUNNING;

}

/**

End of File
*/

The following are MCC-defined functions that enable the Global and Peripheral Interrupts
respectively. This is equivalent to setting the GIE and PEIE bits in the INTCON register.

INTERRUPT GlobalInterruptEnable();
INTERRUPT PeripheralInterruptEnable();

Interrupt Service Routine

If any interrupts occur, the program will jump to this subroutine and identify which interrupt occurred by
checking which flag is set and if the corresponding enable bit is set. If both conditions are met, it would
proceed to the function designated to handle the interrupt. Shown below is the MCC-generated
interrupt manager.c code.

#include "interrupt manager.h"
#include "mcc.h"

void interrupt INTERRUPT InterruptManager (void)
{
// interrupt handler
if (INTCONbits.TMROIE == 1 && INTCONbits.TMROIF == 1)
{
TMRO ISR();
}
else
{
//Unhandled Interrupt
}

}

Timer0 Overflow Interrupt Handler (TMRO_ISR)

When using MCC to set up interrupts, the ISR handler function is generated with the source file of the
peripheral (i.e. Timer0 ISR function is found in tmr0.c). You might need to modify the MCC-generated
file to include your custom code to handle the interrupt and to make sure that all necessary headers are
included for your code to work. The following code is a custom code that rotates the LED to the right
every time the timer rolls over.

33

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

void TMRO ISR (void)
{

// clear the TMRO interrupt flag
INTCONbits.TMROIF = 0;

TMRO = timerOReloadVal;

// add your TMRO interrupt custom code
//If the last LED has been 1lit, restart the pattern
if (rotateReg == 1) {

rotateReg = LAST;

rotateReg >>= 1;

//Check which LED should be 1lit
LED D4 LAT = rotateReg & 1;

LED D5 LAT (rotateReg & 2) >> 1;
LED D6 LAT = (rotateReg & 4) >> 2;
LED D7 LAT (rotateReg & 8) >> 3;

//Added for Lab Number 8: Interrupts

static uint8 t rotateReg = 1;
The static variable rotateReq is declared within the tmr0. c file. It is used to rotate the light
among the LEDs every 500 ms.

34

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 9: WAKE-UP FROM SLEEP USING WATCHDOG TIMER
Introduction

This lesson will introduce the Sleep mode. SLEEP () function is used to put the device into a low-
power standby mode.

Hardware Effects

Once this lab is on RUNNING state, the watchdog timer will start counting. LEDs D4 and D6 are
ON while the MCU is in Sleep mode. Pressing the switch won't go to the next lab since the PIC is
in Sleep mode. After the watchdog timer has reached its period, which is approximately 4
seconds for this lab, the PIC exits sleep mode and the four LEDs, D4 through D7, are toggled.

Summary

The Power-Down mode is entered by executing the SLEEP instruction. Upon entering Sleep
mode, there are different conditions that can exist such as:

WDT will be cleared but keeps running, if enabled for operation during Sleep.
PD bit of the STATUS register is cleared.

TO bit of the STATUS register is set.

CPU clock is disabled.

Different PICs have different condition once they enter Sleep mode so it is recommended that the
reader refer to the datasheet to know more of these conditions.

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not
issue a CLRWDT instruction within the time-out period. WDT is typically used to recover the
system from unexpected events. When the device enters Sleep, the WDT is cleared. If the WDT
is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is
cleared again. When a WDT time-out occurs while the device is in Sleep, no Reset is generated.

WDT can be configured through MCC as shown in Figure 9-1.

35

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

FIGURE 9-1: MCC WINDOW - WATCHDOG TIMER CONFIGURATION

Projects | Resource Managem... % | 1| i) SkeepWakeUp.c] [MPLAB® Code Configurator 5 [ETHE(E] [pin Manager: Package mcc] # =]
Project Resources Generate System Module &)
> System £5% Easy Setup || [Registers | /& Notifications : 1 VD Es
SEEm Ll v INTERNAL OSCILLATOR Ras|Len_pajario [|2 15[Jra0
Pin Module
raaA__|3 18] |RA1|LED_DS|GPIC
Interrupt Module Current System clock 500 kHz "
MCR[_ |4 1/[_|RAZ|LED D6|GPIC
¥ Peripherals Oscillator Select INTOSC llatc 'O functi CLKIN -
(; sellztorae | oslletor /0 function on o I I RESILED D7lGRIo |5 MicRBEHIP 16]__JRCO[POTI|AN4
TMRO
E system Clock Select RredjsiGrio |6 15[JRC1
ADC PIC16F170%
% & R[] 1 TJre
MEMORY Internal Clock 500KHz_MF —PLL Capable Frequent
e i . © o aueny res[8 13_Jrea
SR E External Clock 1 MHz re/ |9 12[|REs
£ CCP1
e & PLLEnabled | _| Software PLL Enabled re7[_ 10 [Jree
) TMRL [x]

Low-voltage programming Enable

Device Resources

v wor
¥ Documents
PICL6F1709 Datasheet IWatmung Timer Enahe‘ WDT controlled by the SWDTEN bit in the WDTCON register I - II
¥ peripherals
» SCCce Pin Manager: Grid [MCC] =‘ EL
B ruinge [w [| | v [1a]]]]2] 2 [sz [][sa] 2«] =] o] o i
» &7 C06 PortA Y PortB Y PortCV
» Jul comparator Module Function Direction |0 |1 (2|3 |a[5s|a|s|6|7|0|1|2[3|a|5|6]|7
» . Dac P input OO GG
» (=1EUsaRT P10 output R R W AR A T
> —FRR RESET MCLR input []
> B MSSP ™MRO Tockt input CIECHE CAC GG GG R
» I>oe < Tackr input BlalElthlhlhlElEl sl hlE R R RlE R

C Language
A sample code written in C language for the “Sleep Wake-Up” lab is provided below.

EXAMPLE 9.1: C CODE FOR “SLEEP WAKE-UP” LAB

/**
Section: Included Files

*/

#include "../../mcc generated files/pin manager.h"
#include "../../labHeader.h"

/*
Application
*/

void SleepWakeUp (void) {
if (labState != RUNNING) ({

LED D4 IAT = LED D6 LAT = ON;
LED D5 LAT = LED D7 LAT = OFF;

//Set the WDT period to 4s
WDTCONbits.WDTPS = 0b01100;

//Enable Watchdog Timer
WDTCONbits.SWDTEN = 1;

SLEEP () ;

labState = RUNNING;

36

August 12" 2016 Curiosity “ReadMe” Document

Version 2.00

}

if (labState == RUNNING) {
//Wait 4 seconds for the WDT time out
//and reverse the states of the LEDs
LED D4 LAT = LED D6 LAT = OFF;
LED D5 LAT = LED D7 LAT = ON;

//Disable Watchdog Timer
if (WDTCONbits.SWDTEN) ({
WDTCONbits.SWDTEN = O0;

}

//Check i1f a switch event occurs
if (switchEvent) {
labState = NOT_RUNNING;

}

/**

End of File
*/

| SLEEP () ;

This function tells the PIC to enter Sleep mode.

37

August 12" 2016

LESSON 10: EEPROM

Introduction

Curiosity “ReadMe” Document

Version 2.00

This lesson provides code for writing and reading a single byte onto the on-board EEPROM.
EEPROM is nonvolatile memory, meaning that it does not lose its value when power is shut off.
This is unlike RAM, which will lose its value when no power is applied. The EEPROM is useful for
storing variables that must still be present during no power. It is also convenient to use if the
entire RAM space is used up. PIC16F1829 is used for this example and has 256 bytes of
EEPROM available. Writes and reads to the EEPROM are relatively quick, and are much faster
than program memory operations.

Hardware Effects

The top 4 MSBs of the ADC is written to EEPROM. These are read afterwards and displayed on
the LEDs. Rotating POT1 changes value of the ADC to be written to and read from EEPROM.

Summary

This lab has a similar appearance to LESSON 4: ADC. But instead of directly moving the ADC
result directly onto the LEDs, it performs a simple “write” and “read” on the EEPROM. As shown
on FIGURE 10-1 below, the top 4 MSBs of the ADC result is first written to EEPROM, and
retrieved later from the same address before moving onto the LEDs.

FIGURE 10-1: PROGRAM FLOW

Initialize

v

Clear all LED Ports

v

Configure the ADC channel

v

Get the ADC Measurement

A

v

Write the top 4 MSBs to EEPROM

v

Read EEPROM from the same address

v

Move read data onto LEDs

38

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

New Registers

Register Purpose
EECON1 and EECON2 Controls EEPROM read/write access
EEDATH:EEDATL Data register pair
EEADRH:EEADRL Address register pair

EECON1 and EECON2

EECONL1 contains specific bits used to access and enable EEPROM. Commonly used bits are
EEPGD to determine if the PIC will access EEPROM or flash memory; RD and WR bits to initiate
read and write respectively; and WREN bit to enable write operation. EECON2 contains the Data

EEPROM Unlock Pattern bits. A specific pattern must be written to the register for unlocking
writes.

EEDATH:EEDATL
EEDATH:EEDATL form a register pair which holds the 14-bit data for read/write.

EEADRH:EEADRL

EEADRH:EEADRL form a register pair which holds the 15-bit address of the program memory
location being read.

MCC Instructions

Instruction Purpose
DATAEE WriteByte (uint8 t bAdd, Writes a data byte bbData to Data EEPROM
uint8_t bData) address baAdd
DATAEE ReadByte (uint8 t bAdd) Reads a data byte from Data EEPROM
address badd

The instructions above are automatically generated by the MCC when the Memory module is
configured as shown in FIGURE 10-2.These functions can be found in memory.c.

FIGURE 10-2: MCC WINDOW - MEMORY MODULE TO GENERATE DATAEE ROUTINES

Projects |Resouroe Managem... | [=] @EEPROM.E ﬁl['I-IB MPLAB® Code Configurator 58 :JEJ@
Project Resources Generate MEMORY 45

¥ Syst eris

system £07 Easy Setup | = Registers || /8 Notifications : 2
System Module
i) Flash Routines are included

I Add DataEE Routines

Pin Module

Interrupt Module

¥ Peripherals

® T™ro
%5 apc [x]
(& MEMORY
#* ECCPL
® TMR2
(&) TMRL

39

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

C Language
A sample code written in C language for the “EEPROM?” lab is provided below.

EXAMPLE 10.1: C CODE FOR “EEPROM” LAB

/**

Section: Included Files

*/
#include "../../mcc_generated files/pin manager.h"
#include "../../mcc_generated files/adc.h"
#include "../../mcc_generated files/memory.h"
#include "../../labHeader.h"
/*

Application
*/

static uint8 t adcResult;
static uint8 t ledDisplay;

void EEPROM (void) {

if (labState != RUNNING) {
LED D4 IAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

labState = RUNNING;
}

if (labState == RUNNING) {
uint8 t eeAddr = 0x00;

//Get the top 4 MSBs of the ADC and write them to EEPROM
adcResult = ADC GetConversion (POT1) >> 12;
DATAEE WriteByte (eeAddr, adcResult);

//Load whatever is in EEPROM to the LED Display
ledDisplay = DATAEE ReadByte (eeAddr);

//Determine which LEDs will light up
LED D4 LAT = ledDisplay & 1;

LED D5 LAT (ledDisplay & 2) >> 1;

LED D6 LAT (ledDisplay & 4) >> 2;

LED D7 LAT (ledDisplay & 8) >> 3

’

}

//Check if a switch event occurs
if (switchEvent) {
labState = NOT_RUNNING;

}

/*

End of File
*/

40

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

[uint8 t eeAddr = 0x00; |

For this lab, we are going to access EEPROM address ‘0x00’. Please see your device
datasheet for valid EEPROM address range.

| DATAEE WriteByte (eeAddr, adcResult); |

This function writes the values stored within ‘adcResult’ (see LESSON 4: ADC) to the
data EEPROM memory at address eeAddr.

| ledDisplay = DATAEE ReadByte (eeAddr); |
The function above reads the EEPROM data byte located at address eeAddr then stores

the read data to a user-defined global variable ‘1edDisplay’. This data will be reflected
on the LED ports.

41

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

LESSON 11: HIGH-ENDURANCE FLASH MEMORY

Introduction

In this lesson, we will discuss High-Endurance Flash (HEF) Memory, an alternative to Data
EEPROM memory present in many devices. Most new devices have both types of memory but
others have only one or the other. As we progress, we will also discuss the similarities and
differences between these two as well as the purpose and set-up procedures to use the available
HEF memory block on devices.

Hardware Effects
LEDs D4 and D6 will light up as we write ‘5’ into the HEF memory of the device.
Summary

High-Endurance Flash (HEF) Memory is a type of non-volatile memory much like the Data
EEPROM. Data stored in this type of memory is retained in spite of power outages. HEF’s
advantage over regular Flash Memory lies in its superior Erase-Write cycle endurance. While
regular Flash could only sustain around 10,000 E/W cycles before breaking down, HEF can go for
around 100,000 E/W cycles, within the range of average EEPROM endurance. Between true
EEPROM and HEF, the difference lies in how operations are handled in both types of memory. In
HEF, erase and write operations are performed in fixed blocks as opposed to data EEPROMs
that are designed to allow byte-by-byte erase and write. Another difference is that writing to HEF
stalls the processor for a few milliseconds as the MCU is unable to fetch new instructions form
the Flash memory array. This is in contrast to true data EEPROMs which do not stall MCU
executions during a write cycle.

MCC Instructions

Instruction Purpose
FLASH WriteWord (uintl6 t Writes the given word on the given flash
flashAddr, uintlé t *ramBuf, address flashAddr

uintl6 t word)
FLASH ReadWord(uintl6_t flashAddr) | Reads a word from the given flash address
flashAddr

The instructions above are automatically generated by the MCC when the Memory module is
selected (see Figure 11-1). These functions can be found in memory. c.

Declaration Purpose
WRITE FLASH BLOCKSIZE Maximum number of words that can be
written in one block write.
ERASE FLASH BLOCKSIZE Number of words in one erase block.

The macro declarations above can be found on the MCC-generated memory . h.

A block is the minimum program flash memory size that can be erased by user software. Before
writing to a program memory, the block where the word(s) should be written to must be erased.
Please see your device datasheet for valid HEF memory address range.

42

August 12" 2016 Curiosity “ReadMe” Document Version 2.00

FIGURE 11-1: MCC WINDOW — MEMORY MODULE TO GENERATE FLASH ROUTINES

Projects |Resouroe Managem... | =1 |] HEF.c $|IIIBB MPLAE® Code Configurator ETI3] €3]]

et
5=)

Project Resources Generate MEMORY

v o
System £8% Easy Setup | =] Reaisters | /&, Notifications : 1
—

System Module N N
Flash Routines are included

Pin Module
Interrupt Module

¥ Peripherals

Bg aDC
(*) TMRO
(&4 MEMORY

@TMM

" CCP1

() TMR1

ESYESIES (3] ESES

C Language
A sample code written in C language for the “HEF” lab is provided below.

EXAMPLE 11.1: C CODE FOR “HEF” LAB

/**

Section: Included Files

*/
#include "../../mcc generated files/pin manager.h"
#include "../../mcc_generated files/memory.h"
#include "../../labHeader.h"
/*

Application
*/

static uint8 t rotateReg;
void HEF (void) {

if (labState != RUNNING) {
LED D4 LAT = LED D5 LAT = LED D6 LAT = LED D7 LAT = OFF;

labState = RUNNING;
}

if (labState == RUNNING) {
uintl6é t writeData = 0x0005;
uintl6 t HefAddr = 0x1F80;
uintl6é t Buf [ERASE FLASH BLOCKSIZE];

FLASH WriteWord (HefAddr, Buf, writeData);

43

August 12", 2016 Curiosity “ReadMe” Document Version 2.00

}
/*‘k

*/

}

//Check if a switch event occurs
(switchEvent) {
labState = NOT_RUNNING;

if

End of File

//Read back value and store to LED display
rotateReg = FLASH ReadWord (HefAddr) ;

//Determine which LED will light up
//ie. which bit in the register the 1 has rotated to.
LED D4 LAT = rotateReg & 1;

LED D5 LAT = (rotateReg & 2) >> 1;
LED D6 LAT = (rotateReg & 4) >> 2;
LED D7 LAT = (rotateReg & 8) >> 3;

| uintl6 t writeData = 0x0005; |
Data to be written is equal to ‘5.

[uintl6 t HefAddr = 0x1F80; |
HEF memory address 0x1F80 is selected for this lab. For this example, the HEF memory
address range is 1F80h to 1FFFh (using PIC16F1709).

|uint16 t Buf [ERASE FLASH BLOCKSIZE]; |
This is a declaration for an array with size ERASE FLASH BLOCKSIZE.

|FLASH WriteWord (HefAddr, Buf, writeData):; I
This routine saves all existing data within the block where HefAddr is located to the
previously declared array Buf. Thus, it is necessary for Buf to be declared with size of at
least one erase block. The location where the new data (writeData) will be written to
within the buffer is automatically identified by software. The updated data words in Buf
are then written to one complete block in the HEF memaory.

| rotateReg = FLASH ReadWord (HefAddr) ;
This function reads the data from the previously written HEF memory address HefAddr
and reflects them on the LEDs.

44

