
August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 1

INTRODUCTION

The following labs are designed for Microchip’s Curiosity board. The Curiosity Development Board

supports Microchip's 8, 14 and 20-pin 8-bit PIC
®
 MCUs. The MPLAB X project that you downloaded from

the Curiosity Website contains 10 (or 11 for some devices) lab exercises that demonstrate the myriad

basic capabilities of PIC
®
 devices and can also be used to test the condition of your board. In this

document, you can find tutorials on the basic tasks and peripherals of the PIC
®
 devices. You can also find

information on the different registers and bits associated with the peripherals that might be of use in your

next microcontroller project.

This document also details steps on how to set-up and generate your code using the MPLAB Code

Configurator which was also used in the creation of these labs. Also provided in this document are the

basic code snippets upon which the Curiosity lab codes were built upon and a discussion of said codes.

The rest of the document is a description of what each lab does and what the user should see on the

LEDs. All the labs are written in C language compatible with the latest XC8 compilers.

LESSONS

The lessons in this document are presented in the same order as they appear on the programmed labs.

You can progress through each of the labs by simply pressing the S1 button of your board.

 Lesson 1: Hello World (Turn On an LED)

 Lesson 2: Blink

 Lesson 3: Rotate (Moving the Light Across LEDs)

 Lesson 4: Analog-to-Digital Conversion (ADC)

 Lesson 5: Variable Speed Rotate

 Lesson 6: Pulse-Width Modulation (PWM)

 Lesson 7: Timer1

 Lesson 8: Interrupts

 Lesson 9: Wake-up from Sleep Using Watchdog Timer

 Lesson 10: EEPROM
(1)

 Lesson 11: High-Endurance Flash (HEF)
(1)

NOTE 1: These labs may not be applicable to all devices. Some devices have EEPROM only, HEF

only, both, or none of the two. See your device datasheet for supported features.

INPUTS AND DISPLAY

 Push Button Switch – One push button switch S1 is provided on the board. S1 is connected to

the PIC MCU’s RC4 pin and is used to switch to the next lab.

 Potentiometer – A 10kΩ potentiometer POT1 is used in labs requiring analog inputs.

 LEDs - The Curiosity Development Board has four red LEDs (D7 through D4) that are connected

to I/O ports RC5, RA2, RA1 and RA5, respectively. These LEDs are used to display the output of

the different labs.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 2

LESSON 1: HELLO WORLD (TURN ON AN LED)

Introduction

The first lesson shows how to turn on an LED.

Hardware Effects

LED D4 will light up and stay lit.

Summary

The LEDs are connected to the input-output (I/O) pins. First, the I/O pin must be configured to be

an output. In this case, when one of these pins is driven high (LED_D4 = 1), the LED will turn on.

These two logic levels are derived from the power pins of the PIC MCU. Since the PIC's power

pin (VDD) is connected to 5V and the source (VSS) to ground (0V), a logic level of ‘1’ is

equivalent to 5V, and a logic level of ‘0’ is 0V.

New Registers

Register Purpose

LATx Data latch

PORTx Holds the status of all pins

TRISx Determines if pins are input (1) or output (0)

LATx

The data latch (LATx registers) is useful for read-modify-write operations on the value that the I/O

pins are driving. A write operation to the LATx register has the same effect as a write to the

corresponding PORTx register. A read from the LATx register reads the values held in the I/O

port latches.

PORTx

A read of the PORTx register reads the actual I/O pin value. Writes should be performed on the

LAT register instead on the port directly.

TRISx

This register specifies the data direction of each pin.

TRIS Value Direction

1 Input

0 Output

An easy way to remember this is that the number ‘1’ looks like the letter ‘i’ for input and the

number ‘0’ looks like the letter ‘o’ for output.

The programmer should always write to the LATx registers and read from the PORTx registers.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 3

MCC Instructions

During code generation using the MPLAB Code Configurator, a pin_manager.h header file and

a pin_manager.c source file are automatically created. pin_manager.h includes all the

macro definitions and instructions for the different I/O pins (both analog and digital), whereas

pin_manager.c includes the initialization code for these pins. Two of these macro instructions

are used in this lab as shown below.

Instruction Purpose
LED_D4_SetHigh() Make the bit value of LED_D4 (LATA5) a ‘1’ (5V)
LED_D4_SetLow() Make the bit value of LEDD4 (LATA5) a ‘0’ (0V)

 EXAMPLE 1.1: SETTING A BIT INTO ‘1’

LED_D4_SetHigh();

Before Instruction:
LATA5 = 0;

After Instruction:
LATA5 = 1;

EXAMPLE 1.2: SETTING A BIT INTO ‘0’

LED_D4_SetLow();

Before Instruction:
LATA5 = 1;

After Instruction:
LATA5 = 0;

C Language

 A sample code written in C language for the “Hello World” lab is provided below.

EXAMPLE 1.3: C CODE FOR “HELLO WORLD” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../labHeader.h"

/*

 Application

 */

void HelloWorld(void) {

 if (labState != RUNNING) {

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 4

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 LED_D4_SetHigh();

 }

 //Check if a switch event occurs

 if (switchEvent) {

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

//

This starts a comment. Any of the following text on this line is ignored by the compiler.

#include "../../mcc_generated_files/pin_manager.h"

The header file pin_manager.h is generated automatically by the MPLAB Code

Configurator (MCC). It provides implementations for pin APIs for all pins selected in the

MCC GUI.

#include "../../labHeader.h"

This header file contains the macro definitions, the variable declarations, and the function

prototypes necessary for the different labs in the project.

if (labState != RUNNING) {

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

}

This statement checks whether the HelloWorld (Lab 01) is running or not. If the state of

this lab is currently NOT_RUNNING, then the code above will clear all the LED PORTs and

change the state of the lab to RUNNING.

if (labState == RUNNING) {

 LED_D4_SetHigh();

}

This statement calls the function LED_D4_SetHigh() if the state of the lab is RUNNING.

LED_D4_SetHigh() turns on LED D4.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 5

LED_D4_SetHigh();

Equivalent:
#define LED_D4_SetHigh() do { LATA5 = 1; } while(0)

This function is defined in pin_manager.h under the MCC Generated Files folder.

It sets the LAT register of RA5 to 1 making it “high”.

if (switchEvent) {

 labState = NOT_RUNNING;

}

This statement checks if the S1 button is pressed. If the button is pressed

(switchEvent = 1), the state of the lab will be changed to NOT_RUNNING.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 6

LESSON 2: BLINK

Introduction

This lesson blinks the same LED used in the previous lesson (D4).

Hardware Effects

LED D4 blinks at a rate of approximately 1.5 seconds.

Summary

One way to create a delay is to spend time decrementing a value. In assembly, the timing can be
accurately programmed since the user will have direct control on how the code is executed. In 'C',
the compiler takes the 'C' and compiles it into assembly before creating the file to program to the
actual PIC MCU (HEX file). Because of this, it is hard to predict exactly how many instructions it
takes for a line of 'C' to execute. For a more accurate timing in C, this lab uses the MCU’s
TIMER1 module to produce the desired delay. TIMER1 is discussed in detail in LESSON 7:
TIMER1.

New Registers

 This utilizes Timer1 registers which will be discussed in LESSON 7: TIMER1.

MCC Instructions

Like the “Hello World” lab, this lab also uses an MCC-generated macro instruction which can be

found in pin_manager.h.

Instruction Purpose
LED_D4_Toggle() Changes the bit value of LED_D4 (LATA5)

from ‘0’ to ‘1’, or ‘1’ to ‘0’

 EXAMPLE 2.1: TOGGLING A BIT

LED D4_Toggle();

Before Instruction:
LATA5 = 0;

After Instruction:
LATA5 = 1;

Or

Before Instruction:
LATA5 = 1;

After Instruction:
LATA5 = 0;

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 7

C Language

A sample code written in C language for the “Blink” lab is provided below.

EXAMPLE 2.2: C CODE FOR “BLINK” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/tmr1.h"

#include "../../labHeader.h"

/*

 Application

 */

#define OVERFLOW 3

void Blink(void) {

 static uint8_t counter;

 if (labState != RUNNING) {

 TMR1_StartTimer();

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 //Wait for Timer1 to overflow

 while (!TMR1IF);

 TMR1_Reload();

 counter++;

 //Wait for overflow for 1.5 secs delay

 if (counter == OVERFLOW) {

 LED_D4_Toggle();

 counter = 0;

 }

 //Clear TMR1 Overflow flag

 TMR1IF = 0;

 }

 //Check if a switch event occurs

 if (switchEvent) {

 TMR1_StopTimer();

 labState = NOT_RUNNING;

 }

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 8

}

/**

 End of File

 */

#define OVERFLOW 3

A variable ‘OVERFLOW’ is defined with a constant decimal value of ‘3’.

static uint8_t counter;

A static variable ‘counter’ variable is declared.

if (labState != RUNNING) {

 TMR1_StartTimer();

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

}

The MCC-generated macro TMR1_StartTimer()is used to start Timer1 and all LEDs

are initially turned off. If the state of the lab is RUNNING, the program will first wait for the

Timer1 flag (for approximately 500 ms) to be set before executing the next instructions,

and will reload the same value of 500 ms to the Timer1 (see LESSON 7: TIMER1).

if (labState == RUNNING) {

 //Wait for Timer1 to overflow

 while (!TMR1IF);

 TMR1_Reload();

 counter++;

 //Wait for overflow for 1.5 secs delay

 if (counter == OVERFLOW) {

 LED_D4_Toggle();

 counter = 0;

 }

 //Clear TMR1 Overflow flag

 TMR1IF = 0;

}

The static variable ‘counter’ increments every time ‘TMR1IF’ is set until it reaches a

value equal to ‘OVERFLOW’ which is previously defined as a variable having a constant

value of ‘3’. This signifies that Timer1 has overflowed after 500 ms three times for a total

of 1.5 secs, before LED D4 is toggled. ‘counter’ is then reset to ‘0’ and the process is

repeated.

LED_D4_Toggle();

Equivalent:
#define LED_D4_Toggle() do { LATA5 = ~LATA5; } while(0)

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 9

This function is defined in pin_manager.h under the MCC Generated Files folder.

It writes the complement of the previously written logic state on the RA5 PORT data latch

(LATA5), making the pin “high” if previously “low” or vice versa.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 10

LESSON 3: ROTATE (MOVING THE LIGHT ACROSS LEDS)

Introduction

This lesson would build on Lessons 1 and 2, which showed how to light up a LED and then make

it blink with using loops. This lesson incorporates four onboard LEDs (D4, D5, D6 and D7) and

the program will light each LED up in turn.

Hardware Effects

Program will each light up D4, D5, D6 and D7 in turn every 500 milliseconds. Once D7 is lit, D4

lights up and the pattern repeats.

Summary

In C, we use Binary Left Shift and Right Shift Operators (<< and >>, respectively) to move bits

around in the registers. The shift operations are 9-bit operations involving the 8-bit register being

manipulated and the Carry bit in the STATUS register as the ninth bit. With the rotate instructions,

the register contents are rotated through the Carry bit.

For example, for a certain register rotateReg, we want to push a ‘1’ into the LSB of the register

and have the rest of the bits shift to the left, we can use the Binary Left Shift Operator (<<). We

would first have to set up the Carry bit with the value that we want to push into the register before

we execute shift instruction, as seen in Figure 3-1A. The result of the operation is seen in Figure

3-1B.

FIGURE 3-1: LEFT SHIFT BINARY OPERATION

(A) (B)

Similarly, if we want to push a ‘1’ into the MSB of the register and have the rest of the bits shift to

the right, we can use the Binary Right Shift Operator (>>). We would first have to set up the Carry

bit with the value that we want to push into the register before we execute shift instruction, as

seen in Figure 3.2A. The result of the operation is seen in Figure 3.2B.

rotateReg before instruction:

<7:0>

0 1 0 0 1 1 0 0

STATUS register before instruction:
IRP RP1 RP0 !TO !PD Z DC C

0 1 0 0 1 1 0 1

rotateReg before instruction:

<7:0>

0 1 0 0 1 1 0 1

STATUS register before instruction:
IRP RP1 RP0 !TO !PD Z DC C

0 1 0 0 1 1 0 0

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 11

FIGURE 3-2: RIGHT SHIFT BINARY OPERATION

(A) (B)

New Register

Register Purpose

STATUS Multi-purpose; depends on which bits are accessed.

 STATUS

The STATUS register contains the arithmetic status of the ALU (Arithmetic Logic Unit), the Reset
status and the bank select bits for data memory. For more details, please see the device
datasheet.

STATUS Register <7:0>

IRP RP1 RP0 TO̅̅ ̅̅ PD̅̅ ̅̅ Z DC C

 Bit 7 : IRP – Register Bank Select Bit

 Bit 6-5 : RP<1:0> - Register Bank Select

 Bit 4: TO̅̅ ̅̅ – Time Out bit

 Bit 3: PD̅̅ ̅̅ – Power Down bit

 Bit 2: Z – Zero bit

 Bit 1: DC – Digit Carry bit

 Bit 0: C – Carry bit

C Language

A sample C code using binary shift operators is provided below.

EXAMPLE 3.1: SAMPLE C CODE FOR BINARY SHIFT OPERATORS

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../labHeader.h"

/*

 Application

 */

rotateReg before instruction:

<7:0>

0 1 0 0 1 1 0 0

STATUS register before instruction:
IRP RP1 RP0 !TO !PD Z DC C

0 1 0 0 1 1 0 1

rotateReg before instruction:

<7:0>

1 1 0 0 1 1 0 0

STATUS register before instruction:
IRP RP1 RP0 !TO !PD Z DC C

0 1 0 0 1 1 0 0

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 12

#define LAST 16

static uint8_t rotateReg;

void Rotate(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = ON;

 LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 //Initialize temporary register to begin at 1

 rotateReg = 1;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 Delay500ms();

 rotateReg <<= 1;

 //If the last LED has been lit, restart the pattern

 if (rotateReg == LAST)

 rotateReg = 1;

 //Determine which LED will light up

 //ie. which bit in the register the 1 has rotated to.

 LED_D4_LAT = rotateReg & 1;

 LED_D5_LAT = (rotateReg & 2) >> 1;

 LED_D6_LAT = (rotateReg & 4) >> 2;

 LED_D7_LAT = (rotateReg & 8) >> 3;

 }

 //Check if a switch event occurs

 if (switchEvent) {

 labState = NOT_RUNNING;

 }

}

//Delay function to keep the LED on for 0.5 secs before rotating

void Delay500ms(void) {

 uint8_t i = 0;

 for (i = 0; i < 25; i++)

 __delay_ms(20);

}

/**

 End of File

 */

D4_LAT = rotateReg & 1;

D5_LAT = (rotateReg & 2) >> 1;

D6_LAT = (rotateReg & 4) >> 2;

D7_LAT = (rotateReg & 8) >> 3;

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 13

The above statements are used to reflect the value stored in rotateReg onto the LEDs.

The Bitwise AND operator is used to determine whether the LEDs output is high or low.

Then the bits are shifted with respect to its position. The following shows how the bitwise

AND operation reflects the value of rotateReg (0b1000 in this example) onto the

LEDs.

D4_LAT = rotateReg & 1;

rotateReg: 1000

1 : & 0001

D4_LAT : 0000 (OFF)

D5_LAT = (rotateReg & 2) >> 1;

rotateReg: 1000

2 : & 0010

 0000

>> 1 : 0000

D5_LAT : 0000 (OFF)

D6_LAT = (rotateReg & 4) >> 2;

rotateReg: 1000

4 : & 0100

 0000

>> 2 : 0000

D6_LAT : 0000 (OFF)

D7_LAT = (rotateReg & 8) >> 3;

rotateReg: 1000

8 : & 1000

 1000

>> 3 : 0001

D7_LAT : 0001 (ON)

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 14

LESSON 4: ANALOG-TO-DIGITAL CONVERSION (ADC)

Introduction

This lesson shows how to configure the ADC, run a conversion, read the analog voltage

controlled by the on-board potentiometer (POT1), and display the high order four bits on the

display.

Hardware Effects

The top four MSBs of the ADC are reflected onto the LEDs. Rotate the potentiometer to change

the display.

Summary

The PIC devices have an on-board Analog-to-Digital Converter (ADC) with 10 bits of resolution

on any of 12 the channels available (Note: The resolution and channels vary amongst the

devices. Refer to the datasheet.).The converter can be referenced to the device’s VDD or an

external voltage reference. This lesson references it to VDD. The result from the ADC is

represented by a ratio of the voltage to the reference.

EQUATION 4-1: ADC WITH 10-BIT RESOLUTION

ADC = (V/VREF)*1023

Converting the answer from the ADC back to voltage requires solving for V.

V = (ADC/1023)*VREF

Here’s the checklist for this lesson:

1. Configure the ADC pin as an analog input.

2. Select ADC clock.

3. Select channel, result justification, and VREF source.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 15

FIGURE 4-1: MCC WINDOW – ADC MODULE

New Register

Register Purpose

ANSELx Determines if the pin is digital or analog.

ANSELx

The ANSELx register determines whether the pin is a digital (1 or 0) or analog (varying voltage)

I/O. I/O pins configured as analog input have their digital input detectors disabled and therefore

always read ‘0’ and allow analog functions on the pin to operate correctly. The state of the

ANSELx bits has no effect on digital output functions. When setting a pin to an analog input, the

corresponding TRISx bit must be set to input mode in order to allow external control of the

voltage on the pin.

This lesson sets RC0 as an analog input since the potentiometer (POT1) will vary the voltage.

C Language

A sample code written in C language for the “ADC” lab is provided below.

EXAMPLE 4.1: C CODE FOR “ADC” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/adc.h"

#include "../../labHeader.h"

/*

 Application

 */

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 16

static uint8_t adcResult;

void ADC(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 //Get the top 4 MSBs and display it on the LEDs

 adcResult = ADC_GetConversion(POT1) >> 12;

 //Determine which LEDs will light up

 LED_D4_LAT = adcResult & 1;

 LED_D5_LAT = (adcResult & 2) >> 1;

 LED_D6_LAT = (adcResult & 4) >> 2;

 LED_D7_LAT = (adcResult & 8) >> 3;

 }

 //Check if a switch event occurs

 if (switchEvent) {

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

adcResult = ADC_GetConversion(POT1) >> 12;

ADC_GetConversion(POT1)

Equivalent:

adc_result_t ADC_GetConversion(adc_channel_t channel)

{

 // select the A/D channel

 ADCON0bits.CHS = channel;

 // Turn on the ADC module

 ADCON0bits.ADON = 1;

 // Acquisition time delay

 __delay_us(ACQ_US_DELAY);

 // Start the conversion

 ADCON0bits.GO_nDONE = 1;

 // Wait for the conversion to finish

 while (ADCON0bits.GO_nDONE)

 {

 }

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 17

The function ADC_GetConversion() is generated automatically by the MCC. It selects

the ADC channel, turns on the ADC module, sets up the acquisition time delay, starts the

conversion, and returns the result of the conversion. The result of the conversion is

stored in the adc_result_t, which is defined as “unsigned 16-bit integer” in adc.h.

Then the bits of the adcResult are shifted to the right by 12 places so that only the top

4 MSBs are left.

The following shows how the top 4 MSBs are extracted from the result of the conversion.

Initialization:

adc_result_t

<15:8> <7:0>

After the initialization, adc_result_t is still empty and waiting for the conversion to be

finished.

After conversion:

adc_result_t

ADRESH <15:8> ADRESL <7:0>

1 0 1 1 0 0 1 1 1 1 1 0 0 1 0 1

Once the conversion is done, the content of ADRESH and ADRESL are stored in

adc_result_t. In this illustration, let’s say that the value of ADRESH is 0b10110011

and ADRESL is 0b11100101.

After shifting:

adcResult

<15:8> <7:0>

0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1

Shifting the value of adcResult 12 places to the right leaves us only with the top 4

MSBs which is 0b1011.

LED_D4_LAT = adcResult & 1;

LED_D5_LAT = (adcResult & 2) >> 1;

LED_LAT = (adcResult & 4) >> 2;

LED_LAT = (adcResult & 8) >> 3;

These statements are used to reflect the value stored in adcResult onto the LEDs. The

Bitwise AND operator is used to determine whether the LEDs output is high or low. Then

the bits are shifted with respect to its position. The following shows the bitwise AND

operation on how the value of adcResult (1011) is reflected to the LEDs.

 // Conversion finished, return the result

 return ((ADRESH << 8) + ADRESL);

}

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 18

LED_D4_LAT = adcResult & 1;

adcResult: 1011

1 : & 0011

LED_D4_LAT : 0001 (ON)

LED_D5_LAT = (adcResult & 2) >> 1;

adcResult: 1011

2 : & 0010

 0010

>> 1 : 0001

LED_D5_LAT : 0001 (ON)

LED_D6_LAT = (adcResult & 4) >> 2;

adcResult: 1011

4 : & 0100

 0000

>> 2 : 0000

LED_D6_LAT : 0000 (OFF)

LED_D7_LAT = (adcResult & 8) >> 3;

adcResult: 1011

8 : & 1000

 1000

>> 3 : 0001

LED_D7_LAT : 0001 (ON)

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 19

LESSON 5: VARIABLE SPEED ROTATE

Introduction

This lesson combines all of the previous lessons to produce a variable speed rotating LED
display that is proportional to the ADC value. The ADC value and LED rotate speed are inversely
proportional to each other.

Hardware Effects

Rotate POT1 counterclockwise to see the LEDs shift faster.

Summary

A crucial step in this lesson is to check if the ADC value is 0. If it does not perform the zero check,
and the ADC result is zero, the LEDs will rotate at an incorrect speed. This is an effect of the
delay value underflowing from 0 to 255.

FIGURE 5-1: PROGRAM FLOW

Initialize

Clear all LED Ports

Configure the ADC channel

Get the ADC Measurement

Check if ADC result is ‘0’

Delay according to ADC result

Rotate LEDs

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 20

C Language

A sample code written in C language for the “Variable Speed Rotate” lab is provided below.

Example 5.1: C CODE FOR “VSR” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/adc.h"

#include "../../labHeader.h"

/*

 Application

 */

#define LAST 16

static uint8_t delay;

static uint8_t adcResult;

static uint8_t rotateReg;

void VSR(void){

 if(labState != RUNNING){

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 //Initialize temporary register to begin at 1

 rotateReg = 1;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 delay = adcResult = ADC_GetConversion(POT1) >> 8;

 __delay_ms(5);

 //Delay 2 ms until delay decrements to 0

 while (delay-- != 0){

 __delay_ms(2);

 }

 //Determine which LED will light up

 LED_D4_LAT = rotateReg & 1;

 LED_D5_LAT = (rotateReg & 2) >> 1;

 LED_D6_LAT = (rotateReg & 4) >> 2;

 LED_D7_LAT = (rotateReg & 8) >> 3;

 rotateReg = rotateReg << 1 ;

 //Return to initial position of LED

 if (rotateReg == LAST){

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 21

 rotateReg = 1;

 }

 }

 //Check if a switch event occurs

 if(switchEvent){

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

delay = adcResult = ADC_GetConversion(POT1) >> 8;

At RUNNING state, the 8 MSbs of the value resulting from the ADC is stored in a static

variable ‘delay’ which determines the speed of rotation.

__delay_ms(5);

//Delay 2 ms until delay decrements to 0

while (delay-- != 0){

 __delay_ms(2);

}

A minimum delay of 5 ms is set then the ‘delay’ variable decrements until it reaches ‘0’.

After which, another delay of 2 ms is set before the code for rotation is executed.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 22

LESSON 6: PULSE-WIDTH MODULATION (PWM)

Introduction

In this lesson, the PIC MCU generates a PWM signal that lights an LED with the POT1 thereby

controlling the brightness.

Hardware Effects

Rotating potentiometer POT1 will adjust the brightness of LED D7.

Summary

Pulse-Width Modulation (PWM) is a scheme that provides power to a load by switching quickly

between fully on and fully off states. The PWM signal resembles a square wave where the high

portion of the signal is considered the ON state and the low portion of the signal is considered the

OFF state. The high portion, also known as the pulse width, can vary in time and is defined in

steps. A longer, high on time will illuminate the LED brighter. The frequency or period of the PWM

does not change. The PWM period is defined as the duration of one cycle or the total amount of

on and off time combined. Another important term to take note is the PWM duty cycle which is the

ratio of the pulse width to the period and is often expressed in percentage. A lower duty cycle

corresponds to less power applied and a higher duty cycle corresponds to more power applied.

It is recommended that the reader refer to the Capture/Compare/PWM section in the data sheet

to learn about each register. This lesson will briefly cover how to setup a single PWM.

The PWM period is specified by the PRx register. Timer 2/4/6 is used to count up to the value in

CCPRxH combined with two LSBs in CCPxCON. CCPRxL is used to load CCPRxH. One can

think of CCPRxL as a buffer which can be read or written to, but CCPRxH is read-only. When the

timer is equal to PRx, the following three events occur on the next increment cycle:

1. TMRx is cleared
2. The CCPx pin is set
3. The PWM duty cycle is latched from CCPRxL into CCPRxH

EQUATION 6-1: PWM RESOULUTION

𝑅𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =
𝑙𝑜𝑔[4(𝑃𝑅𝑥 + 1)]

𝑙𝑜𝑔 2
 𝑏𝑖𝑡𝑠

Two conditions must hold true for this lesson:

1. 10 bits of resolution
2. No flicker in LED

Figure 6-1 and Figure 6-2 show how to configure both the Timer2 and CCP modules for

standard PWM operation. Take note that some devices have independent PWM modules instead

of a CCP module.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 23

FIGURE 6-1: MCC WINDOW – TMR2 MODULE

FIGURE 6-2: MCC WINDOW – CCP1::PWM MODULE

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 24

C Language

A sample code written in C language for the “PWM” lab is provided below.

EXAMPLE 6.1: C CODE FOR “PWM” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/adc.h"

#include "../../mcc_generated_files/pwm1.h"

#include "../../mcc_generated_files/tmr2.h"

#include "../../labHeader.h"

/*

 Application

 */

uint16_t adcResult;

void PWM(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 //Set RC5 (LED_D7) as output of CCP1 using PPS

 RC5PPS = 0b00001100;

 TMR2_StartTimer();

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 //Start ADC conversion

 adcResult = ADC_GetConversion(POT1) >> 6;

 //Make the adcResult the PWM duty cycle

 PWM1_LoadDutyValue(adcResult);

 }

 //Check if a switch event occurs

 if (switchEvent) {

 TMR2_StopTimer();

 //Restore RC5 (LED_D7) as a normal output

 RC5PPS = 0b00000000;

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 25

This MCC-generated function simply starts the Timer2 module of the PIC MCU by setting
the TMR2ON bit of the T2CON register.

This statement sets RC5 as the output pin of the CPP1 module.

This statement gets the ADC result from the POT1 channel. Since the ADC module is
configured to be left-justified and has a 10-bit resolution, the result is written to the upper

10 bits of the 16-bit return value of ADC_GetConversion(POT1). The result is shifted 6

bits to the right to copy the 10-bit ADC result to the lower 10 bits of the adcResult

variable.

PWM1_LoadDutyValue(adcResult);

This uses the adcResult as the PWM duty cycle value. This function writes the 8

MSBs and 2 LSBs of the PWM duty cycle to the CPPRL and CCPCON registers,
respectively.

This function stops the Timer2 module by clearing the TMR2ON bit of the T2CON
register.

This restores RC5 as a normal output pin.

TMR2_StartTimer()

RC5PPS = 0b00001100;

adcResult = ADC_GetConversion(POT1) >> 6;

TMR2_StopTimer();

RC5PPS = 0b00000000;

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 26

LESSON 7: TIMER1

Introduction

This lesson will produce the same output as LESSON 3: ROTATE. The only difference is that this
version uses Timer1 to provide the delay routine.

Hardware Effects

LEDs rotate from right to left, similar to Lesson 3.

Summary

Timer1 is a counter module that uses two 8-bit paired registers (TMR1H:TMR1L) to implement a
16-bit timer/counter in the processor. It may be used to count instruction cycles or external events
that occur at or below the instruction cycle rate.

This lesson configures Timer1 to count instruction cycles and to set a flag when it rolls over. This
frees up the processor to do meaningful work rather than wasting instruction cycles in a timing
loop. Using a counter provides a convenient method of measuring time or delay loops as it allows
the processor to work on other tasks rather than counting instruction cycles.

New Registers

Register Purpose

T1CON Sets the timer enable, Prescaler, and clock
source bits

TMR1H:TMR1L 16-bit timer/counter register pair

PIR1 Contains the Timer1 flag bit

T1CON

The Timer1 control register contains the bits needed to enable the timer, set-up the Prescaler and

clock source. TMR1ON turns the timer on or off. The T1CKPS<1:0> bits are used to set the

Prescaler, while TMR1CS<1:0> bits select the clock source.

TMR1H:TMR1L

TMR1H and TMR1L are 8-bit registers that form a 16-bit timer/counter register pair. This

timer/counter increments from a defined value until it reaches a value of 255 or 0xFF each, and

overflows. An overflow will set the Timer1 flag bit ‘high’ and trigger an interrupt when enabled.

PIR1

This register contains TMR1IF, an interrupt flag that will be set to ‘High’ whenever Timer1

overflows.

When using MCC, select TMR1 from the list of modules and configure the respective settings as
shown in Figure 7-1. After generating the source codes, new functions will be made available.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 27

FIGURE 7-1: MCC COMPOSER AREA – TMR1 MODULE

MCC Instructions

Instruction Purpose
TMR1_Initialize() Initializes the TMR1
TMR1_StartTimer() Starts the TMR1 operation
TMR1_StopTimer() Stops the TMR1 operation
TMR1_Reload() Reloads the TMR1 register

EXAMPLE 7.1: INITIALIZING TIMER1

TMR1_Initialize();

Before Instruction:
All registers/bits related to Timer1 are disabled or set to default.

After Instruction:
Registers/bits and variables related to Timer1 are enabled or set according to the user’s input in
the MCC. These include:

T1CON,

T1GCON,

TMR1H,

TMR1L,

PIR1bits.TMR1IF,

and timer1ReloadVal.

TMR1_StartTimer(); instruction is also called.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 28

EXAMPLE 7.2: STARTING TIMER1

TMR1_StartTimer();

Before Instruction:
T1CONbits.TMR1ON = 0;

After Instruction:

T1CONbits.TMR1ON = 1;

 EXAMPLE 7.3: STOPPING TIMER1

TMR1_StopTimer();

Before Instruction:

T1CONbits.TMR1ON = 1;

After Instruction:

T1CONbits.TMR1ON = 0;

EXAMPLE 7.4: RELOADING TIMER1

TMR1_Reload();

Before Instruction:
TMR1H = 0;

TMR1L = 0;

After Instruction:
TMR1H = (timer1ReloadVal >> 8);

TMR1L = timer1ReloadVal;

C Language

A sample code written in C language for the “Timer1” lab is provided below.

Example 7.5: C CODE FOR “TIMER1” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/tmr1.h"

#include "../../labHeader.h"

/*

 Application

 */

#define LAST 16

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 29

static uint8_t rotateReg;

void Timer1(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = ON;

 LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 //Initialize temporary register to begin at 1

 rotateReg = 1;

 TMR1_StartTimer();

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 //Wait for Timer1 to overflow

 while (!TMR1IF);

 TMR1_Reload();

 rotateReg = rotateReg << 1;

 //Return to initial position of LED

 if (rotateReg == LAST) {

 rotateReg = 1;

 }

 //Determine which LED will light up

 LED_D4_LAT = rotateReg & 1;

 LED_D5_LAT = (rotateReg & 2) >> 1;

 LED_D6_LAT = (rotateReg & 4) >> 2;

 LED_D7_LAT = (rotateReg & 8) >> 3;

 //Clear the TMR1 interrupt flag

 TMR1IF = 0;

 }

 //Check if a switch event occurs

 if (switchEvent) {

 TMR1_StopTimer();

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

TMR1_StartTimer();

Equivalent:
void TMR1_StartTimer(void)

{

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 30

This function simply starts the Timer1 module of the PIC MCU by setting the ‘TMR1ON’ bit

of the ‘T1CON’ register.

This statement waits for the Timer1 to overflow and its corresponding flag to set.

As ‘TMR1IF’ bit is set, ‘TMR1H’ and ‘TMR1L’ are cleared. These registers need to reload

its initial value stated in ‘timer1ReloadVal’ at ‘TMR1_Initialize()’ for the delay to

be consistent.

During initialization:
TMR1H = 0x0B; TMR1L = 0xDC; //500ms with Prescaler of 1:1
timer1ReloadVal =(TMR1H << 8) | TMR1L;

TMR1H <15:8> TMR1L <7:0>

0 0 0 0 1 0 1 1 1 1 0 1 1 1 0 0

‘TMR1IF’ bit is then cleared for the next cycle of Timer1.

This disables the use of Timer1 for the next labs.

 // Start the Timer by writing to TMRxON bit

 T1CONbits.TMR1ON = 1;

}

//Wait for Timer1 to overflow

while(!TMR1IF);

TMR1_Reload();

Equivalent:
void TMR1_Reload(void)

{

 //Write to the Timer1 register

 TMR1H = (timer1ReloadVal >> 8);

 TMR1L = timer1ReloadVal;

}

TMR1IF = 0;

TMR1_StopTimer();

Equivalent:
void TMR1_StopTimer(void)

{

 // Stop the Timer by writing to TMRxON bit

 T1CONbits.TMR1ON = 0;

}

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 31

LESSON 8: INTERRUPTS

Introduction

This lesson discusses all about interrupts – its purpose, capabilities and how to set them up. Most

interrupts are sourced from MCU peripheral modules. Some I/O pins can also be configured to

generate interrupts when they change state. Interrupts usually signal events that require servicing

by the software’s Interrupt Service Routine (ISR). Once an interrupt occurs, the program counter

immediately jumps to the ISR and once the Interrupt Flag is cleared, resumes what it was doing

before. It is a rather more efficient way of watching out for events than continuously polling a bit

or register.

Hardware Effects

LEDs D4, D5, D6 and D7 rotate from left to right at a constant rate of 500 ms.

Summary

This lab demonstrates the advantage of using interrupts over polling. An interrupt is generated

whenever the Timer0 register reaches 0xFF and goes back to reset value. This indicates that 500

ms has passed and it is time to rotate the light. This interrupt is serviced by the TMR0_ISR()

function. Note that this is the same for Lesson 7: Timer1 but this time, we are not continuously

watching the TMR1IF flag.

New Register

Register Purpose

INTCON Contains the various enable and flag bits for
the usual interrupt sources.

 Note: INTCON register bit assignments vary from device to device. Please check the datasheet

of your device for more details.

INTCON Register <7:0>

GIE PEIE TMR0IE INTE IOCIE TMR0IF INTF IOCIF

 Bit 7 : GIE – Global Interrupt Enable Bit

 Bit 6 : PEIE – Peripheral Interrupt Enable Bit

 Bit 5 : TMR0IE – Timer0 Interrupt Enable Bit

 Bit 4 : INTE – INT External Interrupt Enable Bit

 Bit 3 : IOCIE – Interrupt-on-change Enable Bit

 Bit 2 : TMR0IF – Timer0 Overflow Interrupt Flag Bit

 Bit 1 : INTF – INT External Interrupt Flag Bit

 Bit 0 : IOCIF – Interrupt-on-change Flag Bit

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 32

FIGURE 8-1: MCC COMPOSER AREA FOR TIMER0 MODULE WITH INTERRUPTS

C Language

The codes below demonstrate how to set up interrupts for Timer0 peripheral. Please note that different

peripherals have different set-up procedures. This can be taken care of by the MCC for you. Please refer

to the datasheet of your device if you wish to set them up manually.

Main Program and Set-up

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/interrupt_manager.h"

#include "../../labHeader.h"

/*

 Application

 */

void Interrupt(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = ON;

 LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 INTERRUPT_GlobalInterruptEnable();

 INTERRUPT_PeripheralInterruptEnable();

 //Enable the TMR0 Interrupts

 TMR0IE = 1;

 labState = RUNNING;

 }

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 33

 //Check if a switch event occurs

 if (switchEvent) {

 //Disable the TMR0 Interrupts

 TMR0IE = 0;

 INTERRUPT_GlobalInterruptDisable();

 INTERRUPT_PeripheralInterruptDisable();

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

The following are MCC-defined functions that enable the Global and Peripheral Interrupts

respectively. This is equivalent to setting the GIE and PEIE bits in the INTCON register.

INTERRUPT_GlobalInterruptEnable();

INTERRUPT_PeripheralInterruptEnable();

Interrupt Service Routine

If any interrupts occur, the program will jump to this subroutine and identify which interrupt occurred by

checking which flag is set and if the corresponding enable bit is set. If both conditions are met, it would

proceed to the function designated to handle the interrupt. Shown below is the MCC-generated

interrupt_manager.c code.

#include "interrupt_manager.h"

#include "mcc.h"

void interrupt INTERRUPT_InterruptManager (void)

{

 // interrupt handler

 if(INTCONbits.TMR0IE == 1 && INTCONbits.TMR0IF == 1)

 {

 TMR0_ISR();

 }

 else

 {

 //Unhandled Interrupt

 }

}

Timer0 Overflow Interrupt Handler (TMR0_ISR)

When using MCC to set up interrupts, the ISR handler function is generated with the source file of the

peripheral (i.e. Timer0 ISR function is found in tmr0.c). You might need to modify the MCC-generated

file to include your custom code to handle the interrupt and to make sure that all necessary headers are

included for your code to work. The following code is a custom code that rotates the LED to the right

every time the timer rolls over.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 34

void TMR0_ISR(void)

{

 // clear the TMR0 interrupt flag

 INTCONbits.TMR0IF = 0;

 TMR0 = timer0ReloadVal;

 // add your TMR0 interrupt custom code

 //If the last LED has been lit, restart the pattern

 if (rotateReg == 1) {

 rotateReg = LAST;

 }

 rotateReg >>= 1;

 //Check which LED should be lit

 LED_D4_LAT = rotateReg & 1;

 LED_D5_LAT = (rotateReg & 2) >> 1;

 LED_D6_LAT = (rotateReg & 4) >> 2;

 LED_D7_LAT = (rotateReg & 8) >> 3;

}

//Added for Lab Number 8: Interrupts

static uint8_t rotateReg = 1;

The static variable rotateReg is declared within the tmr0.c file. It is used to rotate the light

among the LEDs every 500 ms.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 35

LESSON 9: WAKE-UP FROM SLEEP USING WATCHDOG TIMER

Introduction

This lesson will introduce the Sleep mode. SLEEP() function is used to put the device into a low-

power standby mode.

Hardware Effects

Once this lab is on RUNNING state, the watchdog timer will start counting. LEDs D4 and D6 are

ON while the MCU is in Sleep mode. Pressing the switch won't go to the next lab since the PIC is

in Sleep mode. After the watchdog timer has reached its period, which is approximately 4

seconds for this lab, the PIC exits sleep mode and the four LEDs, D4 through D7, are toggled.

Summary

The Power-Down mode is entered by executing the SLEEP instruction. Upon entering Sleep

mode, there are different conditions that can exist such as:

 WDT will be cleared but keeps running, if enabled for operation during Sleep.

 PD bit of the STATUS register is cleared.

 TO bit of the STATUS register is set.

 CPU clock is disabled.

Different PICs have different condition once they enter Sleep mode so it is recommended that the
reader refer to the datasheet to know more of these conditions.

The Watchdog Timer (WDT) is a system timer that generates a Reset if the firmware does not

issue a CLRWDT instruction within the time-out period. WDT is typically used to recover the

system from unexpected events. When the device enters Sleep, the WDT is cleared. If the WDT
is enabled during Sleep, the WDT resumes counting. When the device exits Sleep, the WDT is
cleared again. When a WDT time-out occurs while the device is in Sleep, no Reset is generated.

WDT can be configured through MCC as shown in Figure 9-1.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 36

FIGURE 9-1: MCC WINDOW – WATCHDOG TIMER CONFIGURATION

C Language

A sample code written in C language for the “Sleep Wake-Up” lab is provided below.

EXAMPLE 9.1: C CODE FOR “SLEEP WAKE-UP” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../labHeader.h"

/*

 Application

 */

void SleepWakeUp(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = LED_D6_LAT = ON;

 LED_D5_LAT = LED_D7_LAT = OFF;

 //Set the WDT period to 4s

 WDTCONbits.WDTPS = 0b01100;

 //Enable Watchdog Timer

 WDTCONbits.SWDTEN = 1;

 SLEEP();

 labState = RUNNING;

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 37

 }

 if (labState == RUNNING) {

 //Wait 4 seconds for the WDT time out

 //and reverse the states of the LEDs

 LED_D4_LAT = LED_D6_LAT = OFF;

 LED_D5_LAT = LED_D7_LAT = ON;

 //Disable Watchdog Timer

 if (WDTCONbits.SWDTEN) {

 WDTCONbits.SWDTEN = 0;

 }

 }

 //Check if a switch event occurs

 if (switchEvent) {

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

This function tells the PIC to enter Sleep mode.

SLEEP();

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 38

LESSON 10: EEPROM

Introduction

This lesson provides code for writing and reading a single byte onto the on-board EEPROM.
EEPROM is nonvolatile memory, meaning that it does not lose its value when power is shut off.
This is unlike RAM, which will lose its value when no power is applied. The EEPROM is useful for
storing variables that must still be present during no power. It is also convenient to use if the
entire RAM space is used up. PIC16F1829 is used for this example and has 256 bytes of
EEPROM available. Writes and reads to the EEPROM are relatively quick, and are much faster
than program memory operations.

Hardware Effects

The top 4 MSBs of the ADC is written to EEPROM. These are read afterwards and displayed on
the LEDs. Rotating POT1 changes value of the ADC to be written to and read from EEPROM.

Summary

This lab has a similar appearance to LESSON 4: ADC. But instead of directly moving the ADC
result directly onto the LEDs, it performs a simple “write” and “read” on the EEPROM. As shown
on FIGURE 10-1 below, the top 4 MSBs of the ADC result is first written to EEPROM, and
retrieved later from the same address before moving onto the LEDs.

FIGURE 10-1: PROGRAM FLOW

Initialize

Clear all LED Ports

Configure the ADC channel

Get the ADC Measurement

Write the top 4 MSBs to EEPROM

Read EEPROM from the same address

Move read data onto LEDs

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 39

New Registers

Register Purpose

EECON1 and EECON2 Controls EEPROM read/write access

EEDATH:EEDATL Data register pair

EEADRH:EEADRL Address register pair

EECON1 and EECON2

EECON1 contains specific bits used to access and enable EEPROM. Commonly used bits are

EEPGD to determine if the PIC will access EEPROM or flash memory; RD and WR bits to initiate

read and write respectively; and WREN bit to enable write operation. EECON2 contains the Data

EEPROM Unlock Pattern bits. A specific pattern must be written to the register for unlocking

writes.

EEDATH:EEDATL

EEDATH:EEDATL form a register pair which holds the 14-bit data for read/write.

EEADRH:EEADRL

EEADRH:EEADRL form a register pair which holds the 15-bit address of the program memory

location being read.

MCC Instructions

Instruction Purpose
DATAEE_WriteByte(uint8_t bAdd,

uint8_t bData)

Writes a data byte bData to Data EEPROM

address bAdd

DATAEE_ReadByte(uint8_t bAdd) Reads a data byte from Data EEPROM

address bAdd

The instructions above are automatically generated by the MCC when the Memory module is

configured as shown in FIGURE 10-2.These functions can be found in memory.c.

FIGURE 10-2: MCC WINDOW – MEMORY MODULE TO GENERATE DATAEE ROUTINES

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 40

C Language

A sample code written in C language for the “EEPROM” lab is provided below.

EXAMPLE 10.1: C CODE FOR “EEPROM” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/adc.h"

#include "../../mcc_generated_files/memory.h"

#include "../../labHeader.h"

/*

 Application

 */

static uint8_t adcResult;

static uint8_t ledDisplay;

void EEPROM(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 uint8_t eeAddr = 0x00;

 //Get the top 4 MSBs of the ADC and write them to EEPROM

 adcResult = ADC_GetConversion(POT1) >> 12;

 DATAEE_WriteByte(eeAddr, adcResult);

 //Load whatever is in EEPROM to the LED Display

 ledDisplay = DATAEE_ReadByte(eeAddr);

 //Determine which LEDs will light up

 LED_D4_LAT = ledDisplay & 1;

 LED_D5_LAT = (ledDisplay & 2) >> 1;

 LED_D6_LAT = (ledDisplay & 4) >> 2;

 LED_D7_LAT = (ledDisplay & 8) >> 3;

 }

 //Check if a switch event occurs

 if (switchEvent) {

 labState = NOT_RUNNING;

 }

}

/*

 End of File

 */

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 41

uint8_t eeAddr = 0x00;

For this lab, we are going to access EEPROM address ‘0x00’. Please see your device

datasheet for valid EEPROM address range.

This function writes the values stored within ‘adcResult’ (see LESSON 4: ADC) to the

data EEPROM memory at address eeAddr.

The function above reads the EEPROM data byte located at address eeAddr then stores

the read data to a user-defined global variable ‘ledDisplay’. This data will be reflected

on the LED ports.

DATAEE_WriteByte(eeAddr, adcResult);

ledDisplay = DATAEE_ReadByte(eeAddr);

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 42

LESSON 11: HIGH-ENDURANCE FLASH MEMORY

Introduction

In this lesson, we will discuss High-Endurance Flash (HEF) Memory, an alternative to Data

EEPROM memory present in many devices. Most new devices have both types of memory but

others have only one or the other. As we progress, we will also discuss the similarities and

differences between these two as well as the purpose and set-up procedures to use the available

HEF memory block on devices.

Hardware Effects

LEDs D4 and D6 will light up as we write ‘5’ into the HEF memory of the device.

Summary

High-Endurance Flash (HEF) Memory is a type of non-volatile memory much like the Data

EEPROM. Data stored in this type of memory is retained in spite of power outages. HEF’s

advantage over regular Flash Memory lies in its superior Erase-Write cycle endurance. While

regular Flash could only sustain around 10,000 E/W cycles before breaking down, HEF can go for

around 100,000 E/W cycles, within the range of average EEPROM endurance. Between true

EEPROM and HEF, the difference lies in how operations are handled in both types of memory. In

HEF, erase and write operations are performed in fixed blocks as opposed to data EEPROMs

that are designed to allow byte-by-byte erase and write. Another difference is that writing to HEF

stalls the processor for a few milliseconds as the MCU is unable to fetch new instructions form

the Flash memory array. This is in contrast to true data EEPROMs which do not stall MCU

executions during a write cycle.

MCC Instructions

Instruction Purpose
FLASH_WriteWord(uint16_t

flashAddr, uint16_t *ramBuf,

uint16_t word)

Writes the given word on the given flash

address flashAddr

FLASH_ReadWord(uint16_t flashAddr) Reads a word from the given flash address
flashAddr

The instructions above are automatically generated by the MCC when the Memory module is

selected (see Figure 11-1). These functions can be found in memory.c.

Declaration Purpose
WRITE_FLASH_BLOCKSIZE Maximum number of words that can be

written in one block write.
ERASE_FLASH_BLOCKSIZE Number of words in one erase block.

The macro declarations above can be found on the MCC-generated memory.h.

A block is the minimum program flash memory size that can be erased by user software. Before

writing to a program memory, the block where the word(s) should be written to must be erased.

Please see your device datasheet for valid HEF memory address range.

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 43

FIGURE 11-1: MCC WINDOW – MEMORY MODULE TO GENERATE FLASH ROUTINES

C Language

A sample code written in C language for the “HEF” lab is provided below.

EXAMPLE 11.1: C CODE FOR “HEF” LAB

/**

 Section: Included Files

 */

#include "../../mcc_generated_files/pin_manager.h"

#include "../../mcc_generated_files/memory.h"

#include "../../labHeader.h"

/*

 Application

 */

static uint8_t rotateReg;

void HEF(void) {

 if (labState != RUNNING) {

 LED_D4_LAT = LED_D5_LAT = LED_D6_LAT = LED_D7_LAT = OFF;

 labState = RUNNING;

 }

 if (labState == RUNNING) {

 uint16_t writeData = 0x0005;

 uint16_t HefAddr = 0x1F80;

 uint16_t Buf[ERASE_FLASH_BLOCKSIZE];

 FLASH_WriteWord(HefAddr, Buf, writeData);

August 12th, 2016 Curiosity “ReadMe” Document Version 2.00

 44

 //Read back value and store to LED display

 rotateReg = FLASH_ReadWord(HefAddr);

 //Determine which LED will light up

 //ie. which bit in the register the 1 has rotated to.

 LED_D4_LAT = rotateReg & 1;

 LED_D5_LAT = (rotateReg & 2) >> 1;

 LED_D6_LAT = (rotateReg & 4) >> 2;

 LED_D7_LAT = (rotateReg & 8) >> 3;

 }

 //Check if a switch event occurs

 if (switchEvent) {

 labState = NOT_RUNNING;

 }

}

/**

 End of File

 */

Data to be written is equal to ‘5’.

uint16_t HefAddr = 0x1F80;

HEF memory address 0x1F80 is selected for this lab. For this example, the HEF memory

address range is 1F80h to 1FFFh (using PIC16F1709).

uint16_t Buf[ERASE_FLASH_BLOCKSIZE];

This is a declaration for an array with size ERASE_FLASH_BLOCKSIZE.

FLASH_WriteWord(HefAddr, Buf, writeData);

This routine saves all existing data within the block where HefAddr is located to the

previously declared array Buf. Thus, it is necessary for Buf to be declared with size of at

least one erase block. The location where the new data (writeData) will be written to

within the buffer is automatically identified by software. The updated data words in Buf

are then written to one complete block in the HEF memory.

rotateReg = FLASH_ReadWord(HefAddr);

This function reads the data from the previously written HEF memory address HefAddr

and reflects them on the LEDs.

uint16_t writeData = 0x0005;

