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The following projects are intended to provide a framework for putting together an instructional laboratory using a PIC16C74A microcontroller.  They make use of Microchip Technology’s new PIC Laboratory Board.  They assume that each station of the laboratory consists of a PC for creating and assembling code, either an emulator (preferred) or a programmer and ultraviolet eraser to put assembled code into a PIC chip, and a PIC Laboratory Board.  An emulator speeds up the development cycle and gives quicker insight into the sources of bugs in student-generated code.  

The laboratory projects make reference to Design with PIC Microcontrollers (see www.picbook.com ).  My experience is to use the same first project each new time our microcontroller course is taught.  The intent of this first project is to get students into the laboratory, to become familiar with the tools available and the lab procedures. As a lead-in to this first lab, my teaching assistants provide several one-hour demos during the first week of the course explaining lab procedures and then going through the first lab project.  We encourage students to work in teams of two, both to be more efficient in the use of the lab equipment and, perhaps more importantly, to have code debugging supported by two people who presumably understand their code in addition to the help of the TA.


 

Comments regarding Project One
Working code for the first project is provided in the lab.  Each team copies the code onto a floppy (or into their own account on a server).  Students learn to use the text editor and assembler in the lab.  They make several minor modifications to the code, print a listing, and run their code.  Since they don=t understand anything about the PIC yet, any modifications must be well directed.

In the course, I begin with an explanation of the CPU register structure and addressing modes. Then, instead of going through an explanation of the instructions one by one, I use this code as the introduction to what each instruction in the code does.  This places its use in the context of a program which does something they can understand as well as quickly arming students to carry out Project Two in which they will need to understand enough about their code and the PIC to make a small functional addition to the code of Project One.

The code for this first project has a ten-millisecond mainline loop used to time slow events.  The PIC=s Timer0 is used to define each ten-millisecond interval as the sum of two parts, with the ratio of these two parts controlled by one of the three potentiometers on the laboratory board.  Selected LEDs of the bargraph display on the board are then turned on for one of these two parts, off for the other.  In this way we not only get a useful ten-millisecond looptime (which we can subsequently use to time slower events as multiples of the looptime), but we also can vary the intensity of the LEDs by turning the potentiometer.  The output of the potentiometer is a voltage which ranges between 0V and 5V and which serves as the input to one of the analog-to-digital converter channels of the PIC, which converts it to an eight-bit number ranging between 0 and 255.  This number is scaled and then used to set up two alternating times between interrupts to the CPU from Timer0 such that every second interrupt occurs roughly ten milliseconds apart.  

The code for this project uses a second interrupt source from the rotary pulse generator on the board. Each incremental change of the RPG causes the light pattern of the bargraph display to shift one position to the right.

 The intent is to provide students with a template of code which includes

· a header saying what the code does and to identify their names

· a program hierarchy showing the relationship of subroutines within the mainline code and interrupt handlers within the interrupt service routine

· Alist@ and Ainclude@ and A__config@ directives

· equates of names used in the code

· definitions of variables  used in the code

· macro definitions 

· reset and interrupt vectors

· tables used by the code (actually just a place where future tables will be located in the program code)

· the mainline program and its subroutines

· the interrupt service routine and its handlers

Different code for the first project from that provided here can of course be substituted for this project.  However, it is my experience that even if the code used for Project One is never changed, this no impediment to having richly varied subsequent projects from one quarter (or semester) to the next.

Text references for Project One
Section 6.3
Pages 100-102

Timer0 and its prescaler and its interrupt mechanism

Section 4.3
Pages 60-61

Interrupt logic

Section 4.5
Pages 65-66

Interrupt service routine

Section 6.2
Pages 95-100

RPG and RB0/INT interrupts

Sections 10.2-3 
Pages 181-187

ADC use

Functioning of Project One code
The Initial subroutine initializes every PIC I/O pin as either an input or an output, as determined by the circuitry of the laboratory board.  It also sets up two variables, E_LEDS and D_LEDS, to hold which LEDs are to be turned on.  (During each ten-millisecond interval, these variables are copied to PORTE and PORTD for a portion of the interval, to turn on selected LEDs. During the other portion of the ten-millisecond interval all pins of PORTE and PORTD are driven low, to turn off the ten LEDs.)  This subroutine also initializes two flag bits defined for use by one of the interrupt handlers.  It finishes up by enabling both the RB0/INT interrupt source and the Timer0 interrupt source.

The Brightness subroutine enables channel 0 of the ADC and then initiates a conversion.  Nineteen microseconds later the conversion will be completed and the result available in ADRES.  This subroutine then calls the Scale subroutine to multiply this result by a fractional constant to obtain a smaller range, as needed by the Timer0 interrupt handler, as we will discuss shortly.

The Scale subroutine uses a sequence of shifts and adds to obtain a number proportional to ADRES but which will be less than the maximum value which the Timer0 interrupt handler can deal with, even for the largest possible value of ADRES (i.e., 255).  Dividing 255 successively by two gives 127, 63, 31, 15, 7, 3, and 1.  It is the sum of the selected combination of these which will determine the maximum value which must be dealt with by the Timer0 interrupt handler.

The LoopTime subroutine simply waits for a ALoopDone@ flag to be set by the Timer0 interrupt handler (which actually determines when each ten-millisecond interval has been completed).  What this subroutine does is to fill out the mainline loop with repeated tests of the ALoopDone@ flag, making each pass around the mainline loop take ten milliseconds even though the subroutines called during each pass take less than ten milliseconds.  For this to work, we assume that even in the worst case, these calls of mainline subroutines plus all possible interrupt service routines never add up to more than ten milliseconds.  Given this, we can count loops to time longer intervals (e.g., an action which is to be taken every second can be controlled by taking action every hundredth time around the mainline loop).

The Mainline program first calls Initial to initialize everything.  Then it repeatedly calls the Brightness subroutine every ten milliseconds.  Subsequent projects will add further tasks which need to be checked upon every ten milliseconds. 

The IntService interrupt service routine is entered whenever any interrupt occurs.  It sets aside W and the STATUS register before polling the various possible interrupt sources to determine which one caused the interrupt.  After servicing all interrupts requiring service, STATUS and W are restored and the CPU returns to the execution of the mainline program.  Note that each interrupt handler is called with a Agoto@ instruction and terminates with Agoto@ instruction.  As discussed in Chapter 5, this is needed for the PIC to assign priority to interrupt sources; simple Acalls@ will not achieve the desired priority.

The Timer0 interrupt handler is executed each time that Timer0's TMR0 counter rolls over from 255 to 0.  TMR0 is incremented every 64th clock cycle by the output of Timer0's prescaler.  At the beginning of each ten-millisecond looptime, the AFirst@ code is executed.  Selected LEDs are turned on by copying the two RAM variables (E_LEDS and D_LEDS) to the corresponding ports.  Then a value is loaded into TMR0 which will cause the next Timer0 interrupt to occur at a time which is proportional to the potentiometer reading obtained by the Brightness subroutine in the mainline code.  Subsequently, that interrupt will lead to the execution of the ASecond@ code which turns off all LEDs and then loads TMR0 with a second value such that the total time between every other interrupt is a constant and is about ten milliseconds.  A value of 156 for the total number of counts of TMR0 produces 64 (clock cycles per count) x 156 (counts) = 9984 cycles, just slightly under the desired ten milliseconds.  The actual looptime is somewhat longer than this because Timer0's prescaler is reset whenever a write to TMR0 takes place.  It is also lengthened whenever an independent interrupt (e.g., an RPG interrupt, in the case of this project) puts off the execution of the Timer0 handler.  In any case, this method of obtaining a looptime will be sufficiently accurate for our purposes on these projects.  If an alternative project calls for a looptime having the same 0.01% accuracy as the crystal clock (0.01%), the scheme of Chapter 4 can be used.  It isn=t used here in order to free the versatile Timer2 (at the expense of tying up the more limited capability Timer0). When the LEDs are turned on, an otherwise unused pin (at this point), bit 7 of PORT, is set.  When the LEDs are turned off, this pin is cleared.   A counter or an oscilloscope connected to this pin (test point TP11)  should show a squarewave with a period of about 10 milliseconds.  Since the 4MHz crystal oscillator should be accurate to better than 0.01%, 10 milliseconds is almost exactly 10000 internal clock cycles.  A more accurate determination of the clock period can be made by connecting a counter to pin 14 (OSC2) and multiplying this measured crystal clock period by four to get the internal clock period.

The RPG handler clears its interrupt flag and then manipulates the RAM copy of the ports which drive the LEDs.  To be somewhat interesting, the LED pattern is shifted right one place by each interrupt.  The leftmost bit is made to be the complement of the previous state of the rightmost bit.

Students= ATo Do@ Handout for Project One
Project No. 1 is prepared assuming the use of Advanced Transdata=s RICE16 emulator.  For whatever tools are actually used, this project should be rewritten to engage students in their use.

