Project Six
Squarewave Output

References

Compare Mode (Section 6.4)

Microchip Application Note AN617 AFixed Point Routines@
File containing a math subroutine (taken from AN617)

Project Description

Using the entered value from Project Five, generate a squarewave on the PIC=s CCP1 output (Test Point TP7) with a frequency equal to the displayed value. Initialize the frequency to 1000 Hz.

CCP1 Initialization
Refer to Figure 6-7 on page 104. Change the initialization of TRISC so that bit 2 is cleared. Add the initialization of T1CON (H01) and CCP1CON (H09). Define a new sixteen-bit variable with the two one-byte variables HALFPERH and HALFPERL. Initialize these variables to one-half of the period of the initial frequency setting; that is, 500 microseconds or 500 cycles of the PIC=s internal 1 MHz clock. Thus initialize HALFPERH to H01 and HALFPERL to HF4 since D500 = H01F4.

An interrupt to the CPU must be made to occur whenever the sixteen-bit register TMR1 equals CCPR1. Accordingly, the interrupt source must be enabled by setting the CCP1IE bit in the PIE1 register. Incidently, you can use a bsf PIE1,CCP1IE instruction to do this since the power-on-reset content of the PIE1 register is H00 (refer to the AValue on POR@ column of the table on page 250). Finally, change the initialization of INTCON so that bit 6 is set. (This bit plus bit 7 represent the PEIE and GIE bits of Figure 6-7.)

Be sure to take into account the bank location of each of these registers as you add code into the initial subroutine.

CCP1 Interrupt Handler
Referring again to Figure 6-7, the sixteen-bit counter, TMR1, will increment continuously every microsecond (with our external crystal having a frequency of OSC = 4 MHz). A CCP1 interrupt will occur when the sixteen-bit counter, TMR1, equals the sixteen-bit register CCPR1. At the same time, the CCP1 pin (Test Point TP7), will be either set or cleared, depending upon whether bit 0 of the CCP1CON register is cleared or set. This setting or clearing of the CCP1 pin takes place at this time even though the CPU is probably executing code in the mainline program at that time. That is, the CCP1-TMR1 circuitry controls the time of each edge, not the CPU. Thus, the output waveform can be made jitter free by using the timer circuitry in this way.

The handler has three jobs. It must toggle bit 0 of CCP1CON (leaving the other bits unchanged) so that the opposite edge will occur on the CCP1 pin when the next interrupt occurs. It must add HALFPER to CCPR1 so that the next compare will occur exactly one-half of the period of the waveform after the one which has just occurred. (Add the lower bytes, increment the upper byte if a carry occurs, then add the upper bytes.) Finally, clear the CCP1IF flag in the PIR1 register. Incidently, if this flag is cleared first rather than last, erroneous behavior of the output waveform will occur occasionally, for some values of frequency. Why is this?

RPG_Count Subroutine
Modify this subroutine with the introduction of a new two-byte variable called FREQH,FREQL. Initialize it to D1000 = H03E8. Each time that the value of the frequency is changed in response to the turning of the RPG (when not at one of the end points), change both RPGSTR and FREQ. Thus, these should always represent the same number, one in ASCII string form, the other as a two-byte binary number. Also, set a flag called RPGchg in the FLAGS RAM variable when such a change occurs. This flag will serve as a signal to the Period subroutine, below, to recalculate the half-period value, HALFPER., from the new frequency.

Period Subroutine
This subroutine checks the RPGchg flag. If set, the subroutine clears it, recalculates the value of HALFPER, and returns. If clear, the subroutine simply returns.

The relationship between HALFPER and FREQ is given by

FREQ x10= 1,000,000/(2xHALFPER)

or

HALFPER = 50,000/FREQ
where FREQ has units of 10 Hertz while HALFPER has units of clock cycles (or microseconds). Accordingly, we need to execute a division of a sixteen-bit unsigned binary number by a sixteen-bit unsigned binary number, which will produce a result which , even with FREQ=1, will fit in a sixteen-bit binary number.

Microchip Technology=s web site includes Application Note AN617 AFixed Point Routines.@ We will use one of these, FXD1616U. It=s use requires the addition of the following variables to the RAM area:

AARGB1
;Least-significant byte of argument A (dividend = 50000)

AARGB0
;Most-significant byte of argument A

BARGB1
;Least-significant byte of argument B (divisor = FREQ)

BARGB0
;Most-significant byte of argument B

REMB1
;Least-significant byte of remainder

REMB0
;Most-significant byte of remainder

LOOPCOUNT ;Iteration counter

It also requires the following status bit definition which can be added to the AEquates@ section at the beginning of the source file:

#define
_C
STATUS,C

The actual subroutine for carrying out the division is:

;;;;;;; FXD1616U subroutine ;;;

;

; 16/16 bit Unsigned Fixed Point Divide

;

; Input: dividend in AARGB0,AARBGB1

; divisor in BARGB0,BARGB1

; Output: quotient in AARGB0,AARGB1

; remainder in REMB0,REMB1

; 27 instructions; maximum execution time = 373 clocks

FXD1616U

clrf
REMB0

clrf
REMB1

UDIV1616L

retlw
H00
The Microchip application note is organized into many files. Both the subroutine above and the macro which it invokes, below, are buried in an AN617 file called Fxd66.a16 (which means Fixed-point divide, 16/16, for the PIC16CXX family of parts) . For your understanding, the macro is listed below and should be added to the AMacro definitions@ section of your code.

UDIV1616L macro

; restore = 23 clks, nonrestore = 17 clks

; Max Timing: 2+15*23+22 = 369 clks

; Min Timing: 2+15*17+16 = 273 clks

; PM: 24 DM: 7

 MOVLW 16

 MOVWF LOOPCOUNT

LOOPU1616 RLF ACCB0,W

 RLF REMB1, F

 RLF REMB0, F

 MOVF BARGB1,W

 SUBWF REMB1, F

 MOVF BARGB0,W

 BTFSS _C

 INCFSZ BARGB0,W

 SUBWF REMB0, F

 BTFSC _C

 GOTO UOK66LL

 MOVF BARGB1,W

 ADDWF REMB1, F

 MOVF BARGB0,W

 BTFSC _C

 INCFSZ BARGB0,W

 ADDWF REMB0, F

 BCF _C

UOK66LL RLF ACCB1, F

 RLF ACCB0, F

 DECFSZ LOOPCOUNT, F

 GOTO LOOPU1616

 endm

To use the FXD1616U subroutine, simply copy the variables to AARG and BARG, call the FXD1616U subroutine, and upon the return read the quotient out of AARG.
The above subroutine and macro are contained in the file AP6_math.asm.@ Ask your TA for it.

ADVANCE \d2Project Six
Squarewave Output
Page 3 of 3

