Distributed by:

The content and copyrights of the attached material are the property of its owner.

Jameco Part Number 26446MOT

Quad General Purpose Transistors

NPN Silicon

*Motorola Preferred Device

CASE 646-06, STYLE 1 TO-116

MAXIMUM RATINGS

Rating	Symbol	MPQ2222	MPQ2222A	Unit
Collector-Emitter Voltage	VCEO	30	40	Vdc
Collector-Base Voltage	V _{CBO}		50	Vdc
Emitter-Base Voltage	VEBO	Ę	5.0	Vdc
Collector Current Continuous	1c	500		mAdc
		Each Transistor	Total Device	
Total Device Dissipation @ $T_A \approx 25^{\circ}C$ Derate above 25°C	PD	0.65 5.2	1.9 15.2	Watts mW/ºC
Operating and Storage Junction Temperature Range	TJ, Tstg	-55 t	0 +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Ambient	R _{0JA}	66	°C/W

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector~Emitter Breakdown Voltage ⁽¹⁾ (I _C = 10 mAdc, I _B = 0)	MPQ2222 MPQ2222A	V(BR)CEO	40 40		Vdc
Collector~Base Breakdown Voltage $(I_C \approx 10 \ \mu Adc, I_E \approx 0)$	MPQ2222 MPQ2222A	V(BR)CBO	60 75		Vdc
Emitter-Base Breakdown Voltage $(I_E = 10 \mu Adc, I_C = 0)$	MPQ2222 MPQ2222A	V(BR)EBO	5.0 6.0		Vdc
Collector Cutoff Current (V _{CB} = 50 Vdc, I _E = 0) (V _{CB} = 60 Vdc, I _E = 0)	MPQ2222 MPQ2222A	СВО		50 10	nAdc
Emitter Cutoff Current (VEB = 3.0 Vdc, IC = 0)		IEBO		100	nAdc

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

Preferred devices are Motorola recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) (Continued)

Characteristic		Symbol	Min	Max	Unit
ON CHARACTERISTICS			•	•	
DC Current Gain ⁽¹⁾		hFE		[
(I _C = 100 μAdc, V _{CE} = 10 Vdc)	MPQ2222A		35	- 1	
$(I_{C} = 1.0 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPQ2222A		50		
$(I_C = 10 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPQ2222,A		75	- 1	
$(I_{C} = 150 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPQ2222,A		100	300	
(I _C = 300 mAdc, V _{CE} = 10 Vdc)	MPQ2222		30	-	
$(I_{C} = 500 \text{ mAdc}, V_{CE} = 10 \text{ Vdc})$	MPQ2222A		40	-	
Collector-Emitter Saturation Voltage		V _{CE(sat)}	T		Vdc
(I _C = 150 mAdc, I _B = 15 mAdc)	MPQ2222			0.4	
	MPQ2222A			0.3	
$(I_{C} = 300 \text{ mAdc}, I_{B} = 30 \text{ mAdc})$	MPQ2222			1.6	
(I _C = 500 mA, I _B = 50 mA)	MPQ2222A			1.0	
Base – Emitter Saturation Voltage		V _{BE(sat)}	1		Vdc
(I _C = 150 mAdc, I _B = 15 mAdc)	MPQ2222		- 1	1.3	
• · · ·	MPQ2222A		0.6	1.2	
(I _C = 300 mAdc, I _B = 30 mAdc)	MPQ2222		-	2.6	
(I _C = 500 mA, I _B = 50 mA)	MPQ2222A		- 1	2.0	1
SMALL-SIGNAL CHARACTERISTICS					
Current-Gain - Bandwidth Product(1)		fT	200		MHz
(I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)					
Output Capacitance ($V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$)		Cobo		8.0	pF
Input Capacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz)		C _{ibo}	-	30	pF
WITCHING CHARACTERISTICS			· · · · · · · · · · · · · · · · · · ·	.	
Turn–On Time		ton		35	ns
$(V_{CC} = 30 \text{ Vdc}, V_{BE(off)} = -0.5 \text{ Vdc},$				}	
$I_{C} = 150 \text{ mAdc}, I_{B1} = 15 \text{ mAdc})$	MPQ2222A	ļ		l	
Turn-Off Time		toff		285	ns
(V _{CC} = 30 Vdc, I _C = 150 mAdc,		1	1]	
$I_{B1} = I_{B2} = 15 \text{ mAdc}$	MPQ2222A	1	[l	

1. Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.

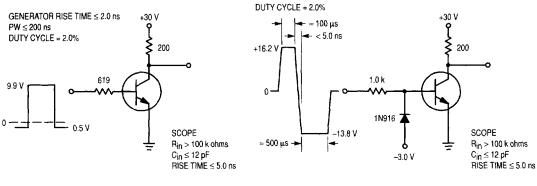
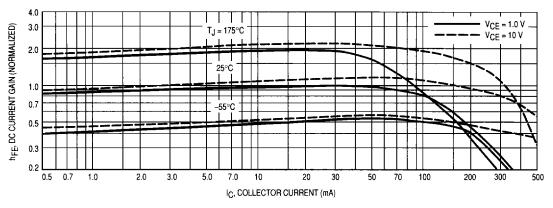



Figure 1. Delay and Rise Time Equivalent Test Circuit Figure 2. Storage Time and Fall Time Equivalent Test Circuit

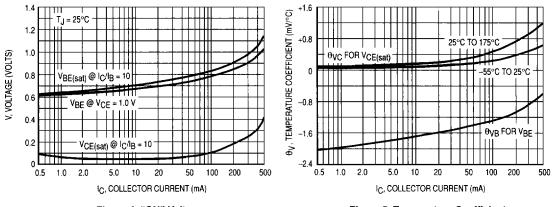


Figure 4. "ON" Voltages

Figure 5. Temperature Coefficients

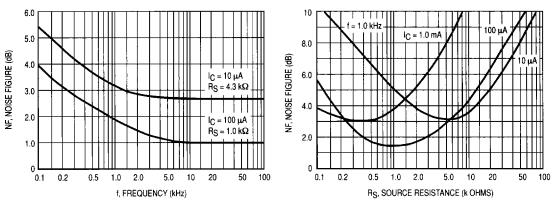
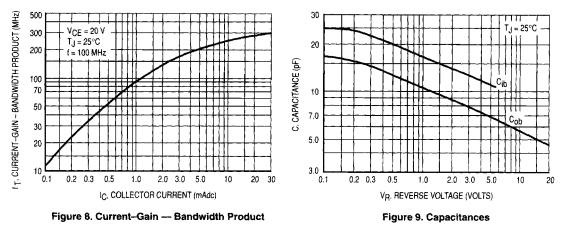


Figure 6. Frequency Effects

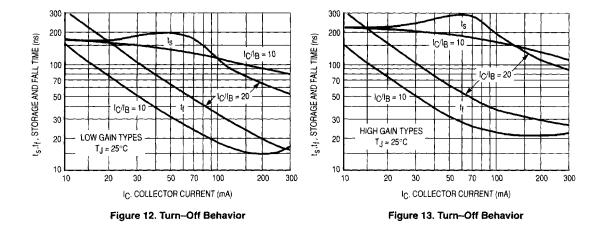

Figure 7. Source Resistance Effects

QT. TOTAL CONTROL

50 70 100

CHARGE

200 300



200 10 k = 25°C Tj = 25°C Τ.ι 5 k $I_{C}/I_{B} = 10$ $|C||_{B} = 10$ ì 'n nt 100 2 k Vcc = 5 V V_{CC} = 30 V UNLESS NOTED UNLESS NOTED 1 k CHARGE (pC) t, TIME (ns) 50 500 HIGH GAIN TYPES 30 200 LOW GAIN TYPES V_{CC} = 30 V td @ VEB(off) = 0 100 ACTIVE REGION 20 QA. ALL TYPE tr@5V 50 1d @ VEB(off) = 2 \ 10 20 100 200 300 5.0 7.0 10 30 3.0 5.0 10 20 30 50 3.0 20 IC, COLLECTOR CURRENT (mA) IC, COLLECTOR CURRENT (mA)

SWITCHING TIME CHARACTERISTICS

Figure 11. Charge Data

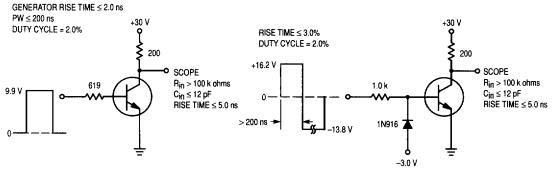


Figure 14. Delay and Rise Time Equivalent Test Circuit

Figure 15. Storage Time and Fall Time Equivalent Test Circuit