
1. Autostarting an IsoMax Application

2. The Autostart Search
When the IsoPod is reset, it searches the Program Flash ROM for an autostart pattern. This is
a special pattern in memory which identifies an autostart routine. It consists of the value $A55A,
followed by the address of the routine to be executed.

 xx00: $A55A
 xx01: address of routine

It must reside on an address within Program ROM which is a multiple of $400, i.e., $0400,
$0800, $0C00, ... $7400, $7800, $7C00.

The search proceeds from $0400 to $7C00, and terminates when the first autostart pattern is
found. This routine is then executed. If the routine exits, the IsoMax interpreter will then be
started.

3. Writing an Application to be Autostarted
Any defined word can be installed as an autostart routine. For embedded applications, this
routine will probably be an endless loop that never returns.

Here's a simple routine that reads characters from terminal input, and outputs their hex
equivalent:

 : MAIN HEX BEGIN KEY . AGAIN ; EEWORD

Note the use of EEWORD to put this routine into Flash ROM. An autostart routine must reside in
Flash ROM, because when the IsoPod is powered off, the contents of RAM will be lost. If you
install a routine in Program RAM as the autostart routine, the IsoPod will crash when you power
it on. (To recover from such a crash, see "Bypassing the Autostart" below.)

Because this definition of MAIN uses a BEGIN...AGAIN loop, it will run forever. You can
define this word from the keyboard and then type MAIN to try it out (but you'll have to reset the
IsoPod to get back to the command interpreter). This is how you would write an application that
is to run forever when the IsoPod is reset.

You can also write an autostart routine that exits after performing some action. One common
example is a routine that starts some IsoMax state machines. For this discussion, we'll use a
version of MAIN that returns when an escape character is input:

 HEX
: MAIN2 HEX BEGIN KEY DUP . 1B = UNTIL ; EEWORD

In this example the loop will run continuously until the ESC character is received, then it exits
normally. If this is installed as the autostart routine, when it exits, the IsoPod will proceed to
start the IsoMax command interpreter.

4. Installing an Autostart Application
One the autostart routine is written, it can be installed into Flash ROM with the command

 address AUTOSTART routine-name

This will build the autostart pattern in ROM. The address is the location in Flash ROM to use
for the pattern, and must be a multiple of $400. Often the address $7C00 is used. This leaves
the largest amount of Flash ROM for the application program, and leaves the option of later
programming a new autostart pattern at a lower address. (Remember, the autostart search starts
low and works up until the first pattern found, so an autostart at $7800 will override an autostart
at $7C00.) So, for example, you could use

 HEX 3C00 AUTOSTART MAIN2 (IsoMax V0.6 or newer)

 HEX 7C00 AUTOSTART MAIN2 (IsoMax V0.5 or earlier)

to cause the word MAIN2 to be autostarted. (Note the use of the word HEX to input a hex
number.)

Try this now, and then reset the IsoPod. You'll see that no "IsoMax" prompt is displayed. If you
start typing characters at the terminal, you'll see the hex equivalents displayed. This will
continue forever until you hit the ESC key, at which point the "IsoMax" prompt is displayed and
the IsoPod will accept commands.

5. Saving the RAM data for Autostart
Power the IsoPod off, and back on, and observe that the autostart routine still works. Then press
the ESC key to exit to the IsoMax command interpreter. Now try typing MAIN2. IsoMax
doesn't recognize the word, even though you programmed it into Flash ROM! If you type
WORDS you won't see MAIN2 in the listing. Why?

The reason is that some information about the words you have defined is kept in RAM1. If you
just reset the board from MaxTerm, the RAM contents will be preserved. But if you power the
board off and back on, the RAM contents will be lost, and IsoMax will reset RAM to known
defaults. If you type WORDS after a power cycle, all you will see are the standard IsoMax words:
all of your user-defined words are lost.

To prevent this from happening, you must save the RAM data to be restored on reset. This is
done with the word SAVE-RAM:

 SAVE-RAM

1 To be specific, what is lost is the LATEST pointer, which always points to the last-defined word in the dictionary
linked list. The power-up default for this is the last-defined word in the IsoMax kernel.

This can be done either just before, or just after, you use AUTOSTART. SAVE-RAM takes a
"snapshot" of the RAM contents, and stores it in Data Flash ROM. Then, the next time you
power-cycle the board, those preserved contents will be reloaded into RAM. This includes both
the IsoMax system variables, and any variables or data structures you have defined.

Note: a simple reset will not reload the RAM. When the IsoPod is reset, it first checks to see if it
has lost its RAM data. Only if the RAM has been corrupted -- as it is by a power loss -- will the
IsoPod attempt to load the SAVE-RAM snapshot. (And only if there is no SAVE-RAM snapshot
will it restore the factory defaults.) If you use MaxTerm to reset the IsoPod, the RAM contents
will be preserved.

6. Removing an Autostart Application
Don't try to reprogram MAIN2 just yet. Even though the RAM has been reset to factory defaults,
MAIN2 is still programmed into Flash ROM, and IsoMax doesn't know about it. In fact, if you
try to redefine MAIN2 at this point, you might crash the IsoPod, as it attempts to re-use Flash
ROM which hasn't been erased. (To recover from this, see "Bypassing the Autostart," below.)

To completely remove all traces of your previous work, use the word SCRUB:

 SCRUB

This will erase all of your definitions from Program Flash ROM -- including any AUTOSTART
patterns which have been stored -- and will also erase any SAVE-RAM snapshot from Data Flash
ROM. Basically, the word SCRUB restores the IsoPod to its factory-fresh state.

7. Bypassing the Autostart
What if your autostart routine locks up? If you can't get access to the IsoMax command
interpreter, how do you SCRUB the application and restore the IsoPod to usability?

You can bypass the autostart search, and go directly to the IsoMax interpreter, by jumpering
together pins 2 and 4 on connector J3 and J5 of IsoPod V1 and IsoPod V2 respectively, and then
resetting the IsoPod. You can do this with a common jumper block:

CPU

J3 1

J2 1

PIN 2 (GND)
PIN 4 (SCLK)

IsoPod V1

CPU

J5 1

J4
1

PIN 2 (GND)
PIN 4 (SCLK)

J3

IsoPod V2

This connects the SCLK/PE4 pin to ground. When the IsoPod detects this condition on reset, it
does not perform the autostart search.

Note that this does not erase your autostart application or your SAVE-RAM snapshot from Flash
ROM. These are still available for your inspection2. If you remove the jumper block and reset
the IsoPod, it will again try to run your autostart application. (This can be a useful field
diagnostic tool.)

To remove your application and start over, you'll need to use the SCRUB command. The steps
are as follows:

1. Connect a terminal (or MaxTerm) to the RS-232 port.

2 The IsoPod RAM will be reset to factory defaults instead of to the saved values, but you can still examine the
SAVE-RAM snapshot in Flash ROM.

2. Jumper pins 2 and 4 on J5 of IsoPod V2,(or Jumper pins 2 and 4 on J3 of IsoPod V1).

3. Reset the IsoPod. You will see the "IsoMax" prompt.

4. Type the command SCRUB .

5. You can now remove the jumper from J3.

8. Summary
Use EEWORD to ensure that all of your application routines are in Flash ROM.

When your application is completely loaded, use SAVE-RAM to preserve your RAM data in
Flash ROM.

Use address AUTOSTART routine-name to install your routine for autostarting.
"address" must be a multiple of $0400 in empty Flash ROM; HEX 7C00 is commonly used
on IsoMax V0.5 or earlier version, and HEX 3C00 is commonly used on IsoMax V0.6 or newer
version.

To clear your application and remove the autostart, use SCRUB. This restores the IsoPod to its
factory-new state.

If the autostart application locks up, jumper together SCLK & GND pins, and reset the IsoPod.
This will give you access to the IsoMax command interpreter.

9. SAVE-RAM
The IsoPod contains 4K words of nonvolatile “Flash” data storage. This can be used to save
system variables and your application variables so that they are automatically initialized when
the IsoPod is powered up. This is done with the word SAVE-RAM.

10. Data Memory Map
The internal RAM of the IsoPod is divided into three regions: kernel buffers, User Variables, and
application variables.

Data Flash ROM

04B0*

0550*

*typical addresses; may vary
depending on IsoMax version

available for
application

1800

RAM image

erased
1C00*

1000

1CB0*

1FFF

User Variables

application
variables and

data
structures

kernel
variables,
buffers,
stacks

Data RAM

07FF

0000

Kernel buffers include the stacks, working “registers,” and other scratch data that are used by the
IsoMax interpreter. These are considered “volatile” and are always cleared when the IsoPod is
powered up. These are also private to IsoMax and not available to you.

“User Variables” are IsoMax working variables which you may need to examine or change.
These include such values as the current number base (BASE), the current ROM and RAM
allocation pointers, and the Terminal Input Buffer. This region also includes RAM for the
IsoMax state machine and the predefined IsoPod I/O objects.

Application data is whatever variables, objects, and buffers you define in your application
program. This can extend up to the end of RAM (address 07FF hex in the IsoPod).

11. Saving the RAM image

ge

The word SAVE-RAM copies the User Variables and application data to the end of Data Flash
ROM. All of internal RAM, starting at the first User Variable (currently C/L) and continuing to
the end of RAM, is copied to corresponding addresses in the Flash ROM.

Note that this will copy all VARIABLEs and the RAM contents of all objects, but it will not copy
the stacks.

Normally you will use SAVE-RAM to take a “snapshot”of your RAM data when all your
variables are initialized and your application is ready to run.

12. Flash erasure
Because the SAVE-RAM uses Flash memory, it must erase the Flash ROM before it can copy to
it. This is automatically done by SAVE-RAM, and you need not perform any explicit erase
function. However, you should be aware that SAVE-RAM will erase more Flash ROM than is
needed for the RAM image.

Flash ROM is erased in “pages” of 256 words each. To ensure that all of the RAM image is
erased, SAVE-RAM must erase starting at the next lower page boundary. A page boundary
address is always of the form $XX00 (the low eight bits are zero). So, in the illustrated example,
Flash ROM is erased starting at address $1C00.

If you use Data Flash ROM directly in your application, you can be sure that your data will be
safe if you restrict your usage to addresses $1000-$17FF. Some of the space above $1800 is
currently unused, but this is not guaranteed for future IsoMax releases.

13. Restoring the RAM ima
The IsoPod will automatically copy the saved RAM image from Flash ROM back to RAM when
it is first powered up. This will occur before your application program is started. So, you can
use SAVE-RAM to create an “initial RAM state” for your application.

If the IsoPod is reset and the RAM contents appear to be valid, the saved RAM image will not be
used. This may happen if the IsoPod receives a hardware reset signal while power is maintained.
Usually this is the desired behavior.

14. Restoring the RAM image manually
You can force RAM to be copied from the saved image by using RESTORE-RAM. This does
exactly the reverse of SAVE-RAM: it copies the contents of Data Flash ROM to Data RAM. The
address range copied is the same as used by SAVE-RAM.

So, if your application needs RAM to be initialized on every hardware reset (and not just on a
power failure), you can put RESTORE-RAM at the beginning of your autostart routine.

Note: do not use RESTORE-RAM if SAVE-RAM has not been performed. This will cause invalid
data to be written to the User Variables (and to your application variables as well), which will
almost certainly crash the IsoPod. For most applications it is sufficient, and safer, to use the
default RAM restore which is built into the IsoPod kernel.

	Autostarting an IsoMax Application
	The Autostart Search
	Writing an Application to be Autostarted
	Installing an Autostart Application
	Saving the RAM data for Autostart
	Removing an Autostart Application
	Bypassing the Autostart
	Summary

	SAVE-RAM
	Data Memory Map
	Saving the RAM image
	Flash erasure

	Restoring the RAM image
	Restoring the RAM image manually

