
IsoPodX™ Users Manual

Warranty

New Micros, Inc. warrants its products against defects in materials and workmanship for a period of 90 days. If you
discover a defect, New Micros, Inc. will, at its option, repair, replace, or refund the purchase price. Simply call our
sales department for an RMA number, write it on the label and return the product with a description of the problem. We
will return your product, or its replacement, using the same shipping method used to ship the product to New Micros,
Inc. (for instance, if you ship your product via overnight express, we will do the same). This warranty does not apply if
the product has been modified or damaged by accident, abuse, or misuse.

Copyrights and Trademarks

Copyright © 2002 by New Micros, Inc. All rights reserved. IsoPodX™, IsoMax™ and Virtually Parallel Machine
Architecture™ are trademarks of New Micros, Inc. Windows is a registered trademark of Microsoft Corporation. 1-
wire is a registered trademark of Dallas Semiconductor. Other brand and product names are trademarks or registered
trademarks of their respective holders.

Disclaimer of Liability

New Micros, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment
or property, and any costs of recovering, reprogramming, or reproducing any data stored in or used with New Micros,
Inc. products.

Internet Access

Web site: http://www.newmicros.com

This manual: http://www.newmicros.com/store/product_manual/IsoPodX.zip

Email technical questions: nmitech@newmicros.com

Email sales questions: nmisales@newmicros.com

Also see “Manufacturer” information near the end of this manual.

Internet IsoPodX™ Discussion List

We maintain the IsoPodX™ discussion list on our web site. Members can have all questions and answers forwarded to
them. It’s a way to discuss IsoPodX™ issues.

To subscribe to the IsoPodX™ list, visit the Discussion section of the New Micros, Inc. website.

This manual is valid with the following software and firmware versions:
IsoPodX V0.5 or newer

If you have any questions about what you need to upgrade your product, please contact New Micros, Inc.

GETTING STARTED

Thank you for buying the IsoPodX™. We hope you will find the IsoPodX™ to be the
incredibly useful small controller board we intended it to be, and easy to use as possible.

If you are new to the IsoPodX™, we know you will be in a hurry to see it working.

That’s okay. We understand.

Let’s skip the features and the tour and discussion of Virtually Parallel Machine
Architecture™ (VPMA) and get right to the operation. Those points can come later. Once
we’ve got communications, then we can make some lights blink and know for sure we’re
in business. Let’s make this “pod” talk to us!

We’ll need PC running a terminal program. Then we’ll need a serial cable to connect
from the PC to the IsoPodX™. Then we need power, such as from a 6VDC wall
transformer (which you’ve already gotten from us). If we have those connections correct,
we will be able to talk to the IsoPodX™ interactively.

These connections are made on the serial DB9 on the IsoPodX, and the barrel connector
for accepting the 6 VDC power.

Once you have your serial cable, and wall transformer ready, follow these steps.

Start with the PC: Install and run the MaxTerm program for DOS, or NMITerm for
Windows. Set the terminal program for communications channel (COM1, COM2, etc.)
you wish to use, and set communications settings to (9600 8N1). Operate the program to
get past the opening set ups and to the terminal screen, so it is ready to communicate. (If
necessary, visit the chapters on MaxTerm or NMITerm or Hyperterm if you have trouble
understanding how to accomplish any of this.)

Hook the computer end of the serial cable (usually a DB-9 connector, but may be a DB-
25, or other, on older PC’s) to the PC’s communication channel selected in the terminal
program.

Now hook the IsoPodX™ end of the serial cable to the IsoPodX™ with connections as
shown in the instructions.

All three LED’s should come on if the power switch is on and power cable connected. If
the LED’s do not light, unplug the power or switch off the IsoPodX™ quickly.

Now check the screen on the computer. When the power is applied, before any user
program installed, the PC terminal program should show “IsoMax™ V1.0” (or whatever
the version currently is, see upgrade policy later at the end of this chapter).

If the LED’s don’t light, and the screen doesn’t show the message, unplug the power to
the IsoPodX™. Go back through the instructions again. Check the power connections,
particularly for polarity. (The outer ring of the barrel connector should be negative or
ground, the inner connection should be positive 6 volts.) If the LED’s come on but there
is no communication, check the terminal program. Check the serial connections, to make
sure everything is plugged in, and that you are using an ordinary serial cable. A null
modem cable will not work. Try once more. If you have no success, see the trouble
shooting section of this manual and then contact technical support for help, before going
further. Do not leave power on the board for more than a few seconds if it does not
appear to be operational.

Normally at this point you will see the prompt on the computer screen “IsoMax™ Vx.x”.
Odds are you’re there. Congratulations! Now let’s do something interactive with the
IsoPodX™.

In the terminal program on the PC, type in, “WORDS” (all in “caps” as the language is case
sensitive), and then hit “Enter”. A stream of words in the language should now scroll up

the screen. Good, we’re making progress. You are now talking interactively with the
language in the IsoPodX™.
Now let’s blink the LED’s. Port lines control the LED’s. Type:

 REDLED OFF

To turn it back on type:

 REDLED ON

Now let’s use the Yellow and Green LED’s. Type:

 YELLED OFF GRNLED OFF

To turn it back on type:

 YELLED ON GRNLED ON

 Now you should have a good feeling because you can tell your IsoPodX™ is working.
It’s time for an overview of what your IsoPodX™ has for features.

First though, a few comments on IsoMax™ revision level. The first port of IsoMax™
occurred on May 27, 2002. We called this version V0.1, but it never shipped. While the
core language was functional as it then was, we really wanted to add many I/O support
words. We added a small number of words to identify the port lines and turn them on and
off and shipped the first public release on June 3, 2002. This version was V0.2. Currently
V0.3 is under development which will have support words for many of the built in
hardware functions, and V0.4 is already planned which will had emulation of hardware
features on the port lines. As we approach a more complete version, eventually we will
release V1.0. We want all our original customers to have the benefit of the extensions we
add to the language. Any IsoPodX™ purchased prior to V1.0 release can be returned to
the factory (at customer’s expense for shipping) and we will upgrade the V0.x release to
V1.0 without charge.

INTRODUCTION

Okay. We should be running. Back to the basics.

What is neat about the IsoPodX™? Several things. First it is a very good micro
controller. The IsoPodX™ was intended to be as small as possible, while still being
useable. A careful balance between dense features, and access to connections is made
here. Feature density is very high. So secondly, having connectors you can actually “get
at” is also a big plus. What is the use of a neat little computer with lots of features, if you
can conveniently only use one of those features at a time?

The answer is very important. The neatest thing about the
IsoPodX™ is software giving Virtually Parallel Machine
Architecture!

Virtually Parallel Machine Architecture (VPMA) is a new
programming paradigm. VPMA allows small, independent
machines to be constructed, then added seamlessly to the
system. All these installed machines run in a virtually parallel
fashion.

 In an ordinary high level language, such as C, Basic, Forth or Java, most anyone
can make a small computer do one thing well. Programs are written flowing
from top to bottom. Flow charts are the preferred diagramming tools for these
languages. Any time a program must wait on something, it simply loops in
place. Most conventional languages follow the structured procedural
programming paradigm. Structured programming enforces this style.

Getting two things done at the same time gets tricky. Add a few
more things concurrently competing for processor attention, and
most projects start running into serious trouble. Much beyond
that, and only the best programmers can weave a program
together running many tasks in one application.

Most of us have to resort to a multitasking system. (Windows and Linux are the most
obvious examples of multitasking systems.) For a dedicated processor, a multitasking
operating system adds a great amount of overhead for each task and an unpleasant
amount of program complexity.

The breakthrough in IsoMax™ is the language is inherently
“multitasking” without the overhead or complexity of a multitasking
operating system. There’s really been nothing quite like it before.
Anyone can write a few simple machines in IsoMax™ and string them
together so they work.

Old constrained ways of thinking must be left behind to get this new level of efficiency.
IsoMax™ is therefore not, and cannot be, like a conventional procedural language.
Likewise, conventional languages cannot become IsoMax™ like without loosing a
number of key features which enforces Structured Programming at the expense of
Isostructure.

In IsoMax™, all tasks are handled on the same level, each running like its own separate
little machine. (Tasks don’t come and go, like they do in multitasking, any more than
you’d want your leg to come and go while you’re running.) Each machine in the program
is like hardware component in a mechanical solution. Parts are installed in place, each
associated with their own place and function.

Programming means create a new processor task fashioned as a machine, and debug it
interactively in the foreground. When satisfied with performance, you install the new
machine in a chain of machines. The machine chain becomes a background feature of the
IsoPodX™ until you remove it or replace it.

The combination of VPMA software and diverse hardware makes IsoPodX™ very
versatile. It can be used as a stand-alone computer board, deeply embedded inside some
project. Perhaps in a mobile robot mounted with double sided sticky tape or tie wraps
(although this would be less than a permanent or professional approach to mounting). It
can be the controller on a larger PCB board. An IsoPodX™ brings an amazing amount
power to a very small space, at a very reasonable cost. You’ll undoubtedly want to have a
few IsoPodX™ ‘s on hand for your future projects.

QUIK TOUR

Start by comparing your board to the diagram below. Most of the important features on
the top board are labeled.

The features most important to you will be the connectors. The following list gives a brief
description of each connector and the signals involved.

J1 Serial, Power, General Purpose I/O
J2 CAN BUS Network Port & 2nd Serial Port
J3 SPI
J4 Alternate power input, Vin
J5 Analog 0 to 7
J6 External Memory Enable/Disable
J7 PWM’s Fault & Current Sense
J8 JTAG connector
J9 PWMA0-5 & PWMB0-5
J10 Timer A&B/Quadrature decoders
J11 Timer C&D/Interrupts
J12 Primary Serial Connector
J13 Int/Ext Memory Boot

On the right is connector J1. Digital I/O, the power and serial connections are found here.
J1 is a male connector. To attach the power and serial connections we need either female
pins.

Other connectors are also dual or triple row male headers. Connection can be made with
male headers with crimped wire inserts, or IDC headers with soldered or cabled wires.

Signals were put on separate connectors where possible, such as with the SPI, RS-422,
the Can Bus, and PWM connectors. The male headers allow insertion of individually
hand-crimped wires in connectors where signals are combined. For instance, R/C Servo
motor headers often come in this size connection with a 3x1 header. These can plug
directly onto the board side by side on the PWM, Quadrature, and Timer connectors on
J9, J10, and J11 respectively.

The large chip in the center is the CPU.

Three LED’s, Red, Yellow, and Green are on the bottom left of the board, and are
dedicated to user control.

U3 and U4 solder pads are RS-422/485 drivers which is optional for RS-422/485
network.

Along the bottom of the board the largest components are the voltage regulators. If the
total current draw were smaller, we could make a smaller supply, but to be sure every
user could get enough power to run at full speed, these larger parts were necessary. A
smaller module, which will replace the regulators, is also planned.

A few smaller chips are also on the bottom side, the RS-232 transceiver and the LED
driver, and a handful of resistors and capacitors.

PROGRAMMING

IsoMax is a programming language based on Finite State Machine (FSM) concepts
applied to software, with a procedural language (derived from Forth) underneath it. The
closest description to the FSM construction type is a “One-Hot” Mealy type of Timer
Augmented Finite State Machines. More on these concepts will come later.

QUICK OVERVIEW

What is IsoMax™? IsoMax™ is a real time operating system / language.

How do you program in IsoMax™? You create state machines that can run in a virtually
parallel architecture.

Step Programming Action Syntax
1 Name a state machine

MACHINE <name>

2 Select this state

ON-MACHINE <name>

3 Name any states appended on the machine

APPEND-STATE <name>
APPEND-STATE <name>
…

4 Describe transitions from states to states

IN-STATE
 <state>
CONDITION
 <Boolean>
CAUSES
 <action>
THEN-STATE
 <state>
TO-HAPPEN

5 Test and Install {as required}

What do you have to write to make a state machine in IsoMax™? You give a machine a
name, and then tell the system that’s the name you want to work on. You append any

number of states to the machine. You describe any number of transitions between states.
Then you test the machine and when satisfied, install it into the machine chain.

What is a transition? A transition is how a state machine changes states. What’s in a
transition? A transition has four components; 1) which state it starts in, 2) the condition
necessary to leave, 3) the action to take when the condition comes true, and 4) the state to
go to next time. Why are transitions so verbose? The structure makes the transitions easy
to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are like the five brackets around a table of four things.

IN-STATE
\

CONDITION
/\

CAUSES
/\

THEN-STATE
/\

TO-HAPPEN
/

<from state> <Boolean> <action> <to state>

In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE
and TO-HAPPEN are always there (with some possible options to be set out later). The
“meat slices” between the “slices of bread” are the hearty stuffing of the description. You
will fill in those portions to your own needs and liking. The language provides “the
bread” (with only a few options to be discussed later).

So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states
appended. The transitions are laid out in a pattern, with certain words surrounding others.
Procedural parts are inserted in the transitions between the standard clauses.

The syntax is very loose compared to some languages. What is important is the order or
sequence these words come in. Whether they occur on one line or many lines, with one
space or many spaces between them doesn’t matter. Only the order is important.

THREE MACHINES

Now let’s take a first step at exploring IsoMax™ the language by looking at some very
simple examples. We’ll explore the language with what we’ve just tested earlier, the LED
words. We’ll add some machines that will use the LED’s as outputs, so we can visually
“see” how we’re coming along.

REDTRIGGER

First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s
presented first without detailed explanation, entered and tested. Then we will explain the
language to create the machine step by step

(THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3

(IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.
(IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE

HEX
: OFF?
 1 =
 IF
 2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
 2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
 1 + @ AND 0=
 ELSE
 SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=
 THEN
;
DECIMAL

MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

There you have it, a complete real time program in two lines of IsoMax™, and one
additional line to install it. A useful virtual machine is made here with one state and one
transition.

This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the
occurrence of an input signal. The timed output response may begin on either the leading
edge or the trailing edge of the input signal. The preset time (in this case: infinity) is
independent of the duration of the input signal.) For an example of a hardware non-
retriggerable one-shot, see http://www.philipslogic.com/products/hc/pdf/74hc221.pdf.

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes.
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is attached.

So attaching push button from PA7 to ground, or even hooking a jumper test lead to
ground and pushing the other end into contact with the wire lead in PA7, will cause PA7
to go “off” or “low”, and the REDLED will come on.

(In these examples, any port line that can be an input could be used. PA7 here, PB7 and
PB6 later, were chosen because they are on J1 and the easy to access.)

Now if you want, type these lines shown above in. (If you are reading this manual
electronically, you should be able to highlight the text on screen and copy the text to the
clipboard with Cntl-C. Then you may be able to paste into your terminal program. On
MaxTerm, the command to down load the clipboard is Alt-V. On other windows
programs it might be Cntl-V.)

Odds are your red LED is already on. When the IsoPodX™ powers up, it’s designed to
have the LED’s on, unless programmed otherwise by the user. So to be useful we must
reset this one-shot. Enter:

REDLED OFF

Now install the REDTRIGGER by installing it in the (now empty) machine chain.

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove
the ground or release the push button. The red LED does not go back off. The program is
still running, even though all visible changes end at that point. To see that, we’ll need to
manually reset the LED off so we can see something happen again. Enter.

REDLED OFF

If we ground PA7 again, the red LED will come back on, so even though we are still fully
interactive with the IsoPodX™ able to type commands like REDLED OFF in manually, the
REDTRIGGER machine is running in the background.

Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll take
the time explain the concepts of this new language we skipped over previously.

Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the
elements of the program relate to a state machine diagram. Usually you start to learn a
language by learning the syntax, or how and where elements of the program must be
placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on
any line with any amount of white space between them as long as the sequence remains
the same. So in the pretty printing, most things are put on a separate line and have spaces
in front of them just to make the relationships easy to see. Beyond the basic language
syntax, a few words have a further syntax associated to them. They must have new names
on the same line as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE
require a name following. You will see that they do. More on syntax will come later.

In this example, the first program line, we tell IsoMax™ we’re making a new virtual
machine, named REDTRIGGER. (Any group of characters without a space or a backspace
or return will do for a name. You can be very creative. Use up to 32 characters. Here the
syntax is MACHINE followed by the chosen name.)

MACHINE REDTRIGGER

That’s it. We now have a new machine. This particular new machine is named
REDTRIGGER. It doesn’t do anything yet, but it is part of the language, a piece of our
program.

For our second program line, we’ll identify REDTRIGGER as the machine we want to
append things to. The syntax to do this is to say ON-MACHINE and the name of the
machine we want to work on, which we named REDTRIGGER so the second program line
looks like this:

 ON-MACHINE REDTRIGGER

(Right now, we only have one machine installed. We could have skipped this second line.
Since there could be several machines already in the IsoPodX™ at the moment, it is good
policy to be explicit. Always use this line before appending states. When you have
several machines defined, and you want to add a state or transition to one of them, you
will need that line to pick the machine being appended to. Otherwise, the new state or
transition will be appended to the last machine worked on.)

All right. We add the machine to the language. We have told the language the name of
the machine to add states to. Now we’ll add a state with a name. The syntax to do this is
to say APPEND-STATE followed by another made-up name of our own. Here we add
one state RT like this:

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE REDTRIGGER

 ON-MACHINE REDTRIGGER
 APPEND-STATE RT

IN-STATE
 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-STATE
 RT
TO-HAPPEN

RT

REDLED ON

PA7 OFF?
ADD A STATE

ADD A TRANSITION

MAKE A MACHINE

ACTION

BOOLEAN

FROM STATE TO STATE

 APPEND-STATE RT

States are the fundamental parts of our virtual machine. States help us factor our program
down into the important parts. A state is a place where the computer’s outputs are stable,
or static. Said another way, a state is place where the computer waits. Since all real time
programs have places where they wait, we can use the waits to allow other programs to
have other processes. There is really nothing for a computer to do while its outputs are
stable, except to check if it is time to change the outputs.

(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the
computer to waste time in a wait, no backwards branches allowed. It allows a check for
the need to leave the state once per scheduled time, per machine.)

To review, we’ve designed a machine and a sub component state. Now we can set up
something like a loop, or jump, where we go out from the static state when required to do
some processing and come back again to a static wait state.

The rules for changing states along with the actions to do if the rule is met are called
transitions. A transition contains the name of the state the rule applies to, the rules called
the condition, what to do called the action, and “where to go” to get into another state.
(We have only one state in this example, so the last part is easy. There is no choice. We
go back into the same state. In machines with more than one state, it is obviously
important to have this final piece.)

There’s really no point in have a state in a machine without a transition into or out of it. If
there is no transition into or out of a state, it is like designing a wait that cannot start,
cannot end, and cannot do anything else either.

On the other hand, a state that has no transition into it, but does have one out of it, might
be an “initial state” or a “beginning state”. A state that has a transition into it, but doesn’t
have one out of it, might be a “final state” or an “ending state”. However, most states will
have at least one (or more) transition entering the state and one (or more) transition
leaving the state. In our example, we have one transition that leaves the state, and one
that comes into the state. It just happens to be the same one.

Together a condition and action makes up a transition, and transitions go from one
specific state to another specific state. So there are four pieces necessary to describe a
transition; 1) The state the machine starts in. 2) the condition to leave that state 3) the
action taken between states and 4) the new state the machine goes to.

Looking at the text box with the graphic in it, we can see the transitions four elements
clearly labeled. In the text version, these four elements are printed in bold. In the
equivalent graphic they are labeled as “FROM STATE”, “BOOLEAN”, “ACTION” and
“TO STATE”.

The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT.

So to complete our state machine program, we must define the transition we need. The
syntax to make a transition, then, is to fill in the blanks between this form: IN-STATE
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN.

Whether the transition is written on one line as it was at first:

IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

Or pretty printed on several lines as it was in the text box:

IN-STATE
 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-STATE
 RT
TO-HAPPEN

The effect is the same. The five bordering words are there, and the four user supplied
states, condition and action are in the same order and either way do the same thing.

After the transition is added to the program, the program can be tested and installed as
shown above.

State machine diagrams (the graphic above being an example) are
nothing new. They are widely used to design hardware. They come
with a few minor style variations, mostly related to how the
outputs are done. But they are all very similar. The figure to the
right is a hardware Quadrature design with four states.

While FSM diagrams are also widely known in programming as an abstract
computational element, there are few instances where they are used to design software.
Usually, the tools for writing software in state machines are very hard to follow. The
programming style doesn’t seem to resemble the state machine design, and is often a
slow, table-driven “read, process all inputs, computation and output” scheme.

IsoMax™ technology has overcome this barrier, and gives you the ability to design
software that looks “like” hardware and runs “like” hardware (not quite as fast of course,
but in the style, or thought process, or “paradigm” of hardware) and is extremely
efficient. The Virtually Parallel Machine Architecture lets you design many little,
hardware-like, machines, rather than one megalith software program that lumbers through
layer after layer of if-then statements. (You might want to refer to the IsoMax Reference
Manual to understand the language and its origins.)

ANDGATE1

Let’s do another quick little machine and install both machines so you can see them
running concurrently.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3

HEX
: ON?
 1 =
 IF
 2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
 2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
 1 + @ AND
 ELSE
 SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT
 THEN
;
DECIMAL

MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE
X TO-HAPPEN

X SET-STATE (INSTALL ANDGATE1
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1

There you have it, another complete real time program in three lines of IsoMax™, and
one additional line to install it. A useful virtual machine is made here with one state and
one transition. This virtual machine acts (almost) like an AND gate made in hardware.
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this
little program could be used like an interlock system detecting “cover closed”.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE1

 ON-MACHINE ANDGATE1
 APPEND-STATE X

IN-STATE
 X
CONDITION
 YELLED OFF
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

X

YELLED ON

YELLED OFF
PA7 ON?

PB7 ON? AND ADD A STATE

ADD A TRANSITION

MAKE A MACHINE

(Now it is worth mentioning, the example is a bit contrived. When you try to make a state
machine too simple, you wind up stretching things you shouldn’t. This example could
have acted exactly like an AND gate if two transitions were used, rather than just one.
Instead, a “trick” was used to turn the LED off every time in the condition, then turn it on
only when the condition was true. So a noise spike is generated a real “and” gate doesn’t
have. The trick made the machine simpler, it has half the transitions, but it is less
functional. Later we’ll revisit this machine in detail to improve it.)

Notice both machines share an input, but are using the opposite sense on that input.
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down.

Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet
the two machines coexist peacefully on the same processor, even sharing the same inputs
in different ways.

To see these machines running enter the new code, if you are still running REDTRIGGER,
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or cycle
power) and download the whole of both programs.

Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect for
the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the yellow
LED back on, but the red LED remains on.
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no
effect on the red LED, but turns off the yellow LED while grounded. Grounding both
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED if
not yet set.

Notice how the tightly the two machines are intertwined. Perhaps you can imagine how
very simple machines with combinatory logic and sharing inputs and feeding back
outputs can quickly start showing some complex behaviors. Let’s add some more
complexity with another machine sharing the PA7 input.

BOUNCELESS

We have another quick example of a little more complex machine, one with one state and
two transitions.

MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN

Y SET-STATE (INSTALL BOUNCELESS

MACHINE-CHAIN 3EASY
REDTRIGGER
ANDGATE
BOUNCELESS
END-MACHINE-CHAIN

EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY

There you have yet another complete design, initialization and installation of a virtual
machine in four lines of IsoMax™ code.

Another name for the machine in this program is “a bounceless switch”.

Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge
output signals. They do this by toggling state when an input first becomes active, and
remaining in that state. If you are familiar with hardware, you might recognize the two
gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input
is grounded, and will not flip back until the other input is grounded.

By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button
acts as a reset switch, and the PB6 acts as a set switch.

You can see here, in IsoMax™, you can simulate hardware machines and circuits, with
just a few lines of code. Here we created one machine, gave it one state, and appended
two transitions to that state. Then we installed the finished machine along with the two
previous machines. All run in the background, freeing us to program more virtual
machines that can also run in parallel, or interactively monitor existing machines from the
foreground.

Notice all three virtual hardware circuits are installed at the same time, they operate
virtually in parallel, and the IsoPodX™ is still not visibly taxed by having these machines
run in parallel. Further, all three machines share one input, so their behavior is strongly
linked.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS

 ON-MACHINE BOUNCELESS
 APPEND-STATE Y

IN-STATE
 Y
CONDITION
 PA7 OFF?
CAUSES
 GRNLED OFF
THEN-STATE
 Y
TO-HAPPEN

IN-STATE
 Y
CONDITION
 PB6 OFF?
CAUSES
 GRNLED ON
THEN-STATE
 Y
TO-HAPPEN

ADD A STATE

Y

GRNLED OFF

PA7 OFF?

PB6 OFF?

GRNLED ON

ADD A TRANSITION

ADD A TRANSITION

MAKE A MACHINE

SYNTAX AND FORMATTING

Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax
again, you’ll need to remember the following. Everything in IsoMax™ is a word or a
number. Words and numbers are separated spaces (or returns).

Some words have a little syntax of their own. The most common cases for such words are
those that require a name to follow them. When you add a new name, you can use any
combinations of characters or letters except (obviously) spaces and backspaces, and
carriage returns. So, when it comes to pretty formatting, you can put as much on one line
as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long
as you keep your words whole. However, some words will require a name to follow
them, so those names will have to be on the same line.

In the examples you will see white space (blanks) used to add some formatting to the
source text. MACHINE starts at the left, and is followed by the name of the new machine
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-STATE
X is indented two additional spaces. This is the suggested, but not mandatory, offset to
achieve pretty formatting. Use two spaces to indent for levels. The transitions are
similarly laid out, where the required words are positioned at the left, and the user
programming is stepped in two spaces.

MULTIPLE STATES/MULTIPLE TRANSITIONS

Before we leave the previous “Three Machines”, let’s review the AND machine again,
since it had a little trick in it to keep it simple, just one state and one transition. The trick
does simplify things, but goes too far, and causes a glitch in the output. To make an AND
gate which is just like the hardware AND we need at least two transitions. The previous
example, BOUNCELESS was the first state machine with more than one transition. We’ll
follow this precedent and redo ANDGATE2 with two transitions.

ANDGATE2

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM

MACHINE ANDGATE2
 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE
 X
CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES

 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

X SET-STATE (INSTALL ANDGATE2
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Notice
there is an “action” included in the ANDGATE1 condition clause. See the YELLED OFF
statement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further notice the
same phrase YELLED OFF appears in the second transition of ANDGATE2 as the object
action of that transition.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE2

 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE
 X
CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

 X

YELLED ON

PA7 ON? PB7 ON? AND

ADD A TRANSITION

MAKE A MACHINE

APPEND STATE

PA7 OFF? PB7 OFF? OR

YELLED OFF

ADD A TRANSITION

TRANSITION COMPARISON

ANDGATE1

ANDGATE2
IN-STATE
 X
CONDITION
 YELLED OFF
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION

 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION

 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

The way this trick worked was by using an action in the condition clause, every time the
scheduler ran the chain of machines, it would execute the conditions clauses of all
transitions on any active state. Only if the condition was true, did any action of a
transition get executed. Consequently, the trick used in ANDGATE1 caused the action of the
second transition to happen when conditionals (only) should be running. This meant it
was as if the second transition of ANDGATE2 happened every time. Then if the condition
found the action to be a “wrong” output in the conditional, the action of ANDGATE1 ran
and corrected the situation. The brief time the processor took to correct the wrong output
was the “glitch” in ANDGATE1’s output.

Now this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as most
modern versions of AND gates implemented in random logic on silicon. The latency of
the outputs of ANDGATE2 are determined by how many times ANDGATE2 runs per second.
The programmer determines the rate, so has control of the latency, to the limits of the
CPU’s processing power.

The original ANDGATE1 serves as an example of what not to do, yet also just how flexible
you can be with the language model. Using an action between the CONDITION and CAUSES
phrase is not prohibited, but is considered not appropriate in the paradigm of Isostructure.

An algorithm flowing to determine a single Boolean value should be the only thing in the
condition clause of a transition. Any other action there slows the machine down, being
executed every time the machine chain runs.

Most of the time, states wait. A state is meant to take no action, and have no output. They
run the condition only to check if it is time to stop the wait, time to take an action in a
transition.

The actions we have taken in these simple machines if very short. More complex
machines can have very complex actions, which should only be run when it is absolutely
necessary. Putting actions in the conditional lengthens the time it takes to operate waiting
machines, and steals time from other transitions.

Why was it necessary to have two transitions to do a proper AND gate? To find the
answer look at the output of an AND gate. There are two possible mutually exclusive
outputs, a “1” or a “0”. Once action cannot set an output high or low. One output can set
a bit high. It takes a different output to set a bit low. Hence, two separate outputs are
required.

ANDOUT

Couldn’t we just slip an action into the condition spot and do away with both transitions?
Couldn’t we just make a “thread” to do the work periodically? Yes, perhaps, but that
would break the paradigm. Let’s make a non-machine definition. The output of our
conditional is in fact a Boolean itself. Why not define:

: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ;

Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine
chain instead? There are no backwards branches in this code. It has no Program Counter
Capture (PCC) Loops. It runs straight through to termination. It would work.

This, however, is another trick you should avoid. Again, why? This code does one of two
actions every time the scheduler runs. The actions take longer than the Boolean test and
transfer to another thread. The system will run slower, because the same outputs are
being generated time after time, whether they have changed or not. While the speed
penalty in this example is exceedingly small, it could be considerable for larger state
machines with more detailed actions.

A deeper reason exists that reveals a great truth about state machines. Notice we have
used a state machine to simulate a hardware gate. What the AND gate outputs next is
completely dependent on what the inputs are next. An AND gate has an output which has
no feedback. An AND gate has no memory. State machines can have memory. Their
future outputs depend on more than the inputs present. A state machine’s outputs can also
depend on the history of previous states. To appreciate this great difference between state
machines and simple gates, we must first look a bit further at some examples with
multiple states and multiple transitions.

ANDGATE3

We are going to do another AND gate version, ANDGATE3, to illustrate this point about
state machines having multiple states. This version will have two transitions and two
states. Up until now, our machines have had a single state. Machines with a single state in
general are not very versatile or interesting. You need to start thinking in terms of
machines with many states. This is a gentle introduction starting with a familiar problem.
Another change is in effect here. We have previously first written the code so as to make
the program small in terms of lines. We used this style to emphasize small program

length. From now on, we are going to pretty print it so it reads as easily as possible,
instead.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED

MACHINE ANDGATE3
 ON-MACHINE ANDGATE3
 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
THEN-STATE
 X1
TO-HAPPEN

IN-STATE
 X1
CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES
 YELLED OFF
 PB0 OFF
THEN-STATE
 X0
TO-HAPPEN

X0 SET-STATE (INSTALL ANDGATE3
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3

Notice how similar this version of an AND gate, ANDGATE3, is to the previous version,
ANDGATE2. The major difference is that there are two states instead of one. We also added
some “spice” to the action clauses, doing another output on PB0, to show how actions
can be more complicated.

INTER-MACHINE COMMUNICATIONS

Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem.
Now let’s say another machine needs to know if both PA7 and PB7 are both high? If we
had only one state, it would have to recalculate the AND phrase, or read back what
ANDGATE3 had written as outputs. Rereading written outputs is sometimes dangerous,
because there are hardware outputs which is cannot be read back. If we use different
states for each different output, the state information itself stores which state is active. All
an additional machine has to do to discover the status of PA7 and PB7 AND’ed together
is check the stored state information of ANDGATE3. To accomplish this, simply query the
state this way.

X0 IS-STATE?

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE3

 ON-MACHINE ANDGATE3
 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
THEN-STATE
 X1
TO-HAPPEN

IN-STATE
 X1
CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES
 YELLED OFF
 PB0 OFF
THEN-STATE
 X0
TO-HAPPEN

X0

YELLED ON
PB0 ON

PA7 ON? PB7 ON? AND

ADD A TRANSITION

MAKE A MACHINE

X1

PA7 OFF? PB7 OFF? OR

YELLED OFF
PB0 OFF

ADD A TRANSITION

A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This
Boolean can be part of a condition in another state. On the other hand:

X1 IS-STATE?

will return a TRUE value only if PA7 and PB7 are both high.

STATE MEMORY

So you see, a state machine’s current state is as much as an output as the outputs PB0 ON
and YELLOW LED ON are, less likely to have read back problems, and faster to check. The
current state contains more information than other outputs. It can also contain history.
The current state is so versatile, in fact, it can store all the pertinent history necessary to
make any decision on past inputs and transitions. This is the deep truth about state
machines we sought.

No similar solution is possible with short code threads. While variables can indeed be
used in threads, and threads can again reference those variable, using threads and
variables leads to deeply nested IF ELSE THEN structures and dreaded spaghetti code which
often invades and complicates real time programs.

BOUNCELESS+

To put the application of state history to the test, let’s revisit our previous version of the
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.

STATE Y

IN-STATE
 Y
CONDITION
 PA7 OFF?
CAUSES
 GRNLED OFF

IN-STATE
 Y
CONDITION
 PB6 OFF?
CAUSES
 GRNLED ON

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION

The behavior of a finite-state machine is described as a sequence of events
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a
machine M has been receiving inputs signals and has been responding by
producing output signals. If now, at time t, we were to apply an input
signal x(t) to M, its response z(t) would depend on x(t), as well as the past
inputs to M.

From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI

THEN-STATE
 Y
TO-HAPPEN

THEN-STATE
 Y
TO-HAPPEN

This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green
LED would go on and off without noise or bounces between states. Notice however, PA7
and PB6 being low at the same time is not excluded from the code. If both lines go low at
the same time, the output of our machine is not well determined. One state output will
take precedence over the other, but which it will be cannot be determined from just
looking at the program. Whichever transition gets first service will win.

Now consider how BOUNCELESS+ can be improved if the state machines history is
integrated into the problem. In order to have state history of any significance, however,
we must have multiple states. As we did with our ANDGATE3 let’s add one more state. The
new states are WAITON and WAITOFF and run our two transitions between the two states.
At first blush, the new machine looks more complicated, probably slower, but not
significantly different from the previous version. This is not true however. When the
scheduler calls a machine, only the active state and its transitions are considered. So in
the previous version each time Y was executed, two conditionals on two transitions were
tested (assuming no true condition). In this machine, two conditionals on only one
transition are tested. As a result this machine runs slightly faster.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS+

 ON-MACHINE BOUNCELESS+
 APPEND-STATE WAITOFF
 APPEND-STATE WAITON

IN-STATE
 WAITOFF
CONDITION
 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON
TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

WAITOFF

GRNLED ON

PA7 OFF? PB7 ON? AND

WAITON

 PB7 OFF? PA7 ON? AND

GRNLED OFF

Further, the new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved
than the original hardware circuit shown!) It is truly bounceless, even if both switches are
pressed at once. The first input detected down either takes us to its state or inhibits the
release of its state. The other input can dance all it wants, as long as the one first down
remains down. Only when the original input is released can a new input cause a change
of state. In the rare case where both signals occur at once, it is the history, the existing
state, which determines the status of the machine.

STATE WAITOFF

STATE WAITON

IN-STATE
 WAITOFF
CONDITION
 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON
TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

DELAYS

Let’s say we want to make a steady blinker out of the green LED. In a conventional
procedural language, like BASIC, C, FORTH, or Java, etc., you’d probably program a
loop blinking the LED on then off. Between each loop would be a delay of some kind,
perhaps a subroutine you call which also spins in a loop wasting time.

Assembler BASIC C JAVA FORTH
LOOP1 LDX # 0 FOR I=1 TO N While (1) BEGIN
LOOP2 DEX
 BNE LOOP2

GOSUB DELAY { delay(x); DELAY

 LDAA #1
 STAA PORTA
 LDX # 0

LET PB=TRUE out(1,portA1); LED-ON

LOOP3 DEX
 BNE LOOP3

GOSUB DELAY delay(x); DELAY

 LDAA #N
 STAA PORTA

Let PB=FALSE out(0,portA1); LED-OFF

 JMP LOOP1 NEXT } AGAIN

Here’s where IsoMax™ will start to look different from any other language you’re likely
to have ever seen before. The idea behind Virtually Parallel Machine Architecture is
constructing virtual machines, each a little “state machine” in its own right. But this
IsoStructure requires a limitation on the machine, themselves. In IsoMax™, there are no
program loops, there are no backwards branches, there are no calls to time wasting delays
allowed. Instead we design machines with states. If we want a loop, we can make a state,
then write a transition from that state that returns to that state, and accomplish roughly the
same thing. Also in IsoMax™, there are no delay loops.

The whole point of having a state is to allow “being in the state” to be “the delay”.

Breaking this restriction will break the functionality of IsoStructure, and the parallel
machines will stop running in parallel. If you’ve ever programmed in any other language,
your hardest habit to break will be to get away from the idea of looping in your program,
and using the states and transitions to do the equivalent of looping for you.

A valid condition to leave a state might be a count down of passes through the state until
a 0 count reached. Given the periodicity of the scheduler calling the machine chain, and
the initial value in the counter, this would make a delay that didn’t “wait” in the
conventional sense of backwards branching.

BLINKGRN

Now for an example of a delay using the count down to zero, we make a machine
BLINKGRN. Reset your IsoPodX™ so it is clean and clear of any programs, and then
begin.

MACHINE BLINKGRN
 ON-MACHINE BLINKGRN
 APPEND-STATE BG1
 APPEND-STATE BG2

The action taken when we leave the state will be to turn the LED off and reinitialize the
counter. The other half of the problem in the other state we go to is just the reversed. We
delay for a count, then turn the LED back on.

Since we’re going to count, we need two variables to work with. One contains the count,
the other the initial value we count down from. Let’s add a place for those variables now,
and initialize them

: -LOOPVAR <BUILDS HERE P, 1- DUP , , DOES>
 P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;
100 -LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION

 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

Above, the two transitions are “pretty printed” to make the four components of a
transition stand out. As discussed previously, as long as the structure is in this order it
could just as well been run together on a single line (or so) per transition, like this

IN-STATE BG1 CONDITION CNT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN

IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN

Finally, the new machine must be installed and tested

BG1 SET-STATE (INSTALL BLINKGRN
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN

The result of this program is that the green LED blinks on and off. Every time the
scheduler runs the machine chain, control is passed to whichever state BG1 or BG2 is
active. The -LOOPVAR created word CNT is decremented and tested. When the CNT reaches

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BLINKGRN

 ON-MACHINE BLINKGRN
 APPEND-STATE BG1
 APPEND-STATE BG2

100 0 LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

BG1

GRNLED OFF

CNT

BG2

 CNT

GRNLED ON

zero, it is reinitialize back to the originally set value, and passes a Boolean on to be tested
by the transition. If the Boolean is TRUE, the action is initiated.

The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is
set to happen the next control returns to this machine.

SPEED

You’ve seen how to write a machine that delays based on a counter. Let’s now try a
slightly less useful machine just to illustrate how fast the IsoPodX™ can change state.
First reset your machine to get rid of the existing machines.

ZIPGRN

MACHINE ZIPGRN

 ON-MACHINE ZIPGRN
 APPEND-STATE ZIPON
 APPEND-STATE ZIPOFF

IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF
TO-HAPPEN

IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON
TO-HAPPEN

ZIPON SET-STATE

Now rather than install our new machine we’re going to test it by running it “by hand”
interactively. Type in:

ZPON SET-STATE
ZIPGRN

ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can to
termination, through one state transition, and stops. Run it again. Type:

ZIPGRN

Once again, the green LED should change. This time the machine starts in the state with
the LED off. The always TRUE condition makes the transition’s action happen and the
next state is set to again, back to the original state. As many times as you run it, the
machine will change the green LED back and forth.

Now with the machine program and tested, we’re ready to install the machine into the
machine chain. The phrase to install a machine is :

 EVERY n CYCLES SCHEDULE-RUNS word

So for our single machine we’d say:

 ZIPON SET-STATE
 EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN

Now if you look at your green LED, you’ll see it is slightly dimmed.

That’s because it is being turned off half the time, and is on half the time. But it is
happening so fast you can’t even see it.

REDYEL

Let’s do another of the same kind. This time lets do the red and yellow LED, and have
them toggle, only one on at a time. Here we go:

MACHINE REDYEL

 ON-MACHINE REDYEL
 APPEND-STATE REDON
 APPEND-STATE YELON

IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE

YELON TO-HAPPEN

IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE
REDON TO-HAPPEN

Notice we have more things happening in the action this time. One LED is turned on and
one off in the action. You can have multiple instructions in an action.

Test it. Type:

REDON SET-STATE
REDYEL
REDYEL
REDYEL
REDYEL

See the red and yellow LED’s trade back and forth from on to off and vice versa.

All this time, the ZIPGRN machine has been running in the background, because it is in
the installed machine chain. Let’s replace the installed machine chain with another. So
we define a new machine chain with both our virtual machines in it, and install it.

MACHINE-CHAIN CHN2
 ZIPGRN
 REDYEL
END-MACHINE-CHAIN

REDON SET-STATE
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2

With the new machine chain installed, all three LED’s look slightly dimmed.

Again, they are being turned on and off a thousand times a second. But to your eye, you
can’t see the individual transitions. Both our virtual machines are running in virtual
parallel, and we still don’t see any slow down in the interactive nature of the IsoPodX™.

So what was the point of making these two machines? Well, these two machines are
running faster than the previous ones. The previous ones were installed with 50,000

cycles between runs. That gave a scan-loop repetition of 100 times a second. Fine for
many mechanical issues, on the edge of being slow for electronic interfaces. These last
examples were installed with 5,000 cycles between runs. The scan-loop repetition was
1000 times a second. Fine for many electronic interfaces, that is fast enough. Now let’s
change the timing value. Redo the installation with the SCHEDULE-RUNS command.

The scan-loop repetition is 10,000 times a second.

EVERY 500 CYCLES SCHEDULE-RUNS CHN2

Let’s see if we can press our luck.

EVERY 100 CYCLES SCHEDULE-RUNS CHN2

Even running two machines 50,000 times a second in high-level language, there is still
time left over to run the foreground routine. This means, two separate tasks are being
started and running a series of high-level instructions 50,000 times a second. This shows
the IsoPodX™ is running more than four hundred thousand high-level instructions per
second. The IsoPodX™ performance is unparalleled in any small computer available
today.

TRINARIES

With the state machine structures already given, and a simple input and output words
many useful machines can be built. Almost all binary digital control applications can be
written with the trinary operators.

As an example, let’s consider a digital thermostat. The thermostat works on a digital
input with a temperature sensor that indicates the current temperature is either above or
below the current set point. The old style thermostats had a coil made of two dissimilar
metals, so as the temperature rose, the outside metal expanded more rapidly than the
interior one, causing a mercury capsule to tip over. The mercury moving to one end of the
capsule or the other made or broke the circuit. The additional weight of mercury caused a
slight feedback widening the set point. Most heater systems are digital in nature as well.
They are either on or off. They have no proportional range of heating settings, only
heating and not heating. So in the case of a thermostat, everything necessary can be
programmed with the machine format already known, and a digital input for temperature
and a digital output for the heater, which can be programmed with trinaries.

Input trinary operators need three parameters to operate. Using the trinary operation
mode of testing bits and masking unwanted bits out would be convenient. This mode
requires: 1) a mask telling which bits in to be checked for high or low settings, 2) a mask
telling which of the 1 possible bits are to be considered, and 3) the address of the I/O port
you are using. The keywords which separate the parameters are, in order: 1) SET-MASK,
2) CLR-MASK and 3) AT-ADDRESS. Finally, the keyword FOR-INPUT finishes the
defining process, identifying the trinary operator in effect.

DEFINE <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRESS <address> FOR-INPUT

Putting the keywords and parameters together produces the following lines of IsoMax™
code. Before entering hexadecimal numbers, the keyword HEX invokes the use of the
hexadecimal number system. This remains in effect until it is change by a later command.
The numbering system can be returned to decimal using the keyword DECIMAL:

HEX
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT
DEFINE TOO-HOT? TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT
DECIMAL

Output trinary operators also need three parameters. In this instance, using the trinary
operation mode of setting and clearing bits would be convenient. This mode requires: 1) a
mask telling which bits in the output port are to be set, 2) a mask telling which bits in the
output port are to be cleared, and 3) the address of the I/O port. The keywords which
proceed the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process, identifying
which trinary operator is in effect.

DEFINE <name> AND-MASK <mask> XOR-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT
DEFINE <name> CLR-MASK <mask> SET-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT

A single output port line is needed to turn the heater on and off. The act of turning the
heater on is unique and different from turning the heater off, however. Two actions need
to be defined, therefore, even though only one I/O line is involved. PA1 was selected for
the heater control signal.

When PA1 is high, or set, the heater is turned on. To make PA1 high, requires PA1 to be
set, without changing any other bit of the port. Therefore, a set mask of 02 indicates the
next to least significant bit in the port, corresponding to PA1, is to be set. All other bits
are to be left alone without being set. A clear mask of 00 indicates no other bits of the
port are to be cleared.

When PA1 is low, or clear, the heater is turned off. To make PA1 low, requires PA1 to be
cleared, without changing any other bit of the port. Therefore, a set mask of 00 indicates
no other bits of the port are to be set. A clear mask of 02 indicates the next to least
significant bit in the port, corresponding to PA1, is to be cleared. All other bits are to be
left alone without being cleared.

Putting the keywords and parameters together produces the following lines of IsoMax™
code:

HEX
DEFINE HEATER-ON SET-MASK 02 CLR-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT
DECIMAL

Only a handful of system words need to be covered to allow programming at a system
level, now.

FLASH AND AUTOSTARTING

Here’s everything you need to copy an application to Flash and to autostart it. Here,
briefly, are the steps:

1. You should start with a clean IsoPodX, by doing SCRUB. This will erase
the Program Flash and remove any previous autostart patterns.

2. In the program file, each Forth word should be followed by EEWORD. This
applies to colon definitions, CODE and CODE-SUB words, constants,
variables, "defined" words (those created with <BUILDS..DOES>), and objects
(those created with OBJECT).

3. If IMMEDIATE is used, it must come *before* EEWORD (i.e., you must do
IMMEDIATE EEWORD and *not* EEWORD IMMEDIATE).

4. For IsoMax code the following rules apply:
 a. MACHINE <name> must be followed by EEWORD.
 b. APPEND-STATE <name> must be followed by EEWORD.
 c. IN-STATE ... TO-HAPPEN (or THIS-TIME or NEXT-TIME) must be followed by
IN-EE.
 d. MACHINE-CHAIN ... END-MACHINE-CHAIN must be followed by EEWORD.
 e. ON-MACHINE <name> is *not* followed by any EE command.
[Note that we can make EEWORD and IN-EE automatic, if you want all state
machines to be built in Flash and never in RAM.]

5. When the application is complete, you must use SAVE-RAM to preserve the
state machine variables in Data Flash. (This does *not* save kernel
variables.)

6. Finally you can set the autostart vector in Program Flash. You need to
provide an address on a 400h boundary, within unused Program Flash, thus
after the end of the application program. (Right now 1400-3FFF is
available for applications.) I often use 3C00, near the end of Flash.
Then type
 <address> AUTOSTART <wordname>
E.g., HEX 3C00 AUTOSTART MAIN

The board should now reset into the application program.

PROCEDURAL PROGRAMMING

The FSM portions of IsoMax™ are now covered. What remains to be discussed is the
procedural portions of the conditions and actions.

END-MACHINE-CHAIN
MACHINE-CHAIN
SCHEDULE-RUNS
CYCLES
EVERY
DINT
EINT
STOP-TIMER
TCFOVFLO
TCFTICKS
END-PROC
PROC
AS-TAG
FOR-INPUT
FOR-OUTPUT
WITH-VALUE
SET-MASK
CLR-MASK
XOR-MASK
AND-MASK
DATA-MASK
TEST-MASK
AT-ADDR
IS-STATE?
SET-STATE
TO-HAPPEN
NEXT-TIME
THIS-TIME
THEN-STATE
CAUSES
CONDITION
IN-STATE
ON-MACHINE
APPEND-STATE
MACHINE
CURSTATE

ALLOC
RAM
DEFINE
\
PFMOVE
PFDP
PFERASE
PF!
EEERASE
PTYPE

PCOUNT
P,
PC,
PALLOT
PHERE
PDP
PC!
PC@
P@
P!
TD3
TD2
RS422XCV
RS232XMT
PD0
PD1
PD2
PD3
PB0
PB1
PB2
PB3
PB4
PB5
PB6
PB7
PA0
PA1
PA2
PA3
PA4
PA5
PA6
PA7
GRNLED
YELLED
REDLED
I/O
OFF
ON
IS
FALSE
TRUE

(
@
C@
!
C!
2@
2!
:
;
+
-
1-!
1+!

+!
*
/
><
SWAP
2OVER
2SWAP
DUP
2DUP
OVER
ROT
2ROT
PICK
ROLL
-ROLL
DROP
2DROP
>R
R>
=
NOT
0=
D0=
0>
0<
U<
<
DU<
D<
D=
>
AND
OR
XOR
IF
THEN
ELSE
BEGIN
UNTIL
REPEAT
WHILE
AGAIN
END
DO
LOOP
+LOOP
K
J
I
R@
LEAVE
EXIT
KEY
EMIT
?TERMINAL
S->D
ABS

DABS
MIN
DMIN
MAX
DMAX
SPACES
DEPTH
CR
TYPE
COUNT
-TRAILING
1+
2+
1-
2-
2/
2*
D+
D-
D2/
/MOD
MOD
*/MOD
*/
UM*
UM/MOD
NEGATE
DNEGATE
CONSTANT
VARIABLE
2CONSTANT
2VARIABLE

SF!
SF@
FTAN
FCOS
FSIN
FATAN2
FATAN
F?
FSQRT
F2/
F2*
F.S
FNUMBER
E.
F.
(E.)
(F.)
F**
FALOG
FEXP
2**X
FLN
FLOG
LOG2

ODD-POLY
POLY
FLOOR
FROUND
FLITERAL
PI
E
PLACES
FLOAT+
FLOATS
FVARIABLE
FCONSTANT
F,
F!
F@
FABS
FMIN
FMAX
F<
F0<
F0=
FNEGATE
F>D
S>F
D>F
F/
F*
F-
F+
FDROP
FSWAP
FOVER
FDUP
FNIP
FDEPTH
FSP
FSP0

TOGGLE
SP!
RP@
RP!
UABORT
WARNING
R0
SMUDGE
DLITERAL
MESSAGE
ERROR
?ERROR
?COMP
?EXEC
?PAIRS
?CSP
?STACK
@!
@@

EXECUTE
SP@
CMOVE>
CMOVE
;S
CODE-SUB
CODE
END-CODE
USER
.
.R
D.
U.
U.R
D.R
#S

SIGN
#>
<#
?
EXPECT
QUERY
BL
STATE
CURRENT
CONTEXT
BLK
DP
FLD
DPL
>IN
BASE
S0
TIB
#TIB
SPAN
C/L
PAD
HERE
ALLOT
,

C,
SPACE
?DUP
TRAVERSE
LATEST
COMPILE
[
]
HEX
DECIMAL
;CODE
<BUILDS
DOES>
."

.(
FILL
ERASE
BLANK
HOLD
WORD
CONVERT
NUMBER
FIND
ID.
CREATE
[COMPILE]
LITERAL
INTERPRET
IMMEDIATE
RECURSE
>MARK
<MARK
>RESOLVE
<RESOLVE
:CASE
'
[']
LFA
>BODY
CFA
NFA
PFAPTR
B/BUF
AUTOSTART
UNDO
FORGET
DUMP
.S
WORDS
QUIT
ABORT"
ABORT
COLD
BRANCH
?BRANCH
ATO4
EEWORD
EEMOVE
EEC!
EE!
EDP
EDELAY
FLASH
EXRAM
Seed
FORTH-83

SOFTWARE

IsoMax™ is an interactive, real time control, computer language based on the concept of
the State Machine.

WORD SYNTAX

STATE-MACHINE <name-of-machine>

ON-MACHINE <name-of-machine>

APPEND-STATE <name-of-new-state>
...

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a>
AS-TAG

IN-STATE <parent-state-name> CONDITION ...boolean computation... CAUSES
<compound action> THEN-STATE <next-state-name> TO-HAPPEN

DEFINE <word-name> TEST-MASK <n> DATA-MASK <n> AT-ADDRESS <a>
FOR-INPUT

DEFINE <word-name> SET-MASK <n> CLR-MASK <n> AT-ADDRESS <a> FOR-
OUTPUT

DEFINE <word-name> PROC ...forth code... END-PROC

DEFINE <word-name> COUNTDOWN-TIMER
<n> TIMER-INIT <timer-name>

EVERY <n> CYCLES SCHEDULE-RUNS ALL-TASKS

Under construction…

WITH-VALUE (-- 7100) stacks the tag 7100.
AT-ADDRESS (-- 7001) stacks the tag 7001. This will be topmost after
ORDER.
AS-TAG (tag n tag n --)

Requires tags 7100,7001. Requires the latest word to be a State word. If it is, removes
DUMMYTAG, 0 and replaces them with Address, Value.

THIS-TIME (spfa --) previously TO-HAPPEN ?

Requires CSP=HERE. Requires the given word to be a State word. Then:
Removes last compiled cell. Compiles the CFA of the given State word. Compiles PTHIST.

NEXT-TIME (spfa --)

Requires CSP=HERE. Requires the given word to be a State word. Then:
Removes last compiled cell. Compiles the CFA of the given State word. Compiles PNEXTT.

SET-STATE (spfa --)

Given the pfa of a State word on the stack. Requires the given word to be a State word. Then:
Fetches the thread pointer and RAM pointer from the State word, and stores the thread pointer in
the RAM pointer.

IS-STATE? (spfa --)
Given the pfa of a State word on the stack. Requires the given word to be a State word. Then:
Fetches the thread pointer and RAM pointer from the State word. Returns true if the current state
of the machine is this state.

IN-EE

TIMING CONTROL
EVERY (-- 6000) stacks the value 6000.
CYCLES (-- 9000) stacks the value 9000.

SCHEDULE-RUNS not defined in source file
ALL-TASKS not defined in source file
COUNTDOWN-TIMER not defined in source file
TIMER-INIT not defined in source file

INPUT/OUTPUT TRINARIES
DEFINE <word-name> (-- 1111)
 Creates a new word in the Forth dictionary (CREATE SMUDGE) and stacks the
pair-tag 1111.

PROC not defined in source file
END-PROC not defined in source file

TEST-MASK (-- 7002) stacks the tag 7002.
DATA-MASK (-- 7004) stacks the tag 7004.

FOR-INPUT (1111 tag n tag n tag n --)

If tags 7001, 7002, 7004 are stacked, compiles Address, Test-Mask (byte), and Data-Mask (byte),
then changes the code field of the latest word to XCPAT. Requires pair-tag 1111.

XCPAT

Fetches the data byte from the stored Address, masks it with the Test-Mask, and xors it with the
Data-Mask. If the result is zero (equal), stacks TRUE, else stacks FALSE.

AND-MASK (-- 7008) stacks the tag 7008.

XOR-MASK (-- 7010) stacks the tag 7010.

CLR-MASK (-- 7020) stacks the tag 7020.
SET-MASK (-- 7040) stacks the tag 7040.

FOR-OUTPUT (1111 tag n tag n tag n --)

If tags 7001, 7008, 7010 are stacked, compiles Address, And-Mask (byte), and Xor-Mask (byte),
then changes the code field of the latest word to AXOUT.
If tags 7001, 7020, 7040 are stacked, compiles Address, Clr-Mask (byte), and Set-Mask (byte),
then changes the code field of the latest word to SROUT.
Requires pair-tag 1111.

REGISTERS

 (BASE REGISTERS)
0C00 SIM
0C40 PFIU2
0D00 TMRA
0D20 TMRB
0D40 TMRC
0D60 TMRD
0D80 CAN
0E00 PWMA
0E20 PWMB
0E40 DEC0
0E50 DEC1
0E60 ITCN
0E80 ADCA
0EC0 ADCB
0F00 SCI0
0F10 SCI1
0F20 SPI
0F30 COP
0F40 PFIU
0F60 DFIU
0F80 BFIU
0FA0 CLKGEN
0FB0 GPIOA
0FC0 GPIOB
0FE0 GPIOD
0FF0 GPIOE

(TIMER REGISTERS. OFFSET IS CHANNEL * 8)
0 CMP1
1 CMP2
2 CAP
3 LOAD
4 HOLD
5 CNTR
6 CTRL
7 SCR

(GPIO)
0 PUR
1 DR
2 DDR
3 PER

4 IAR
5 IENR
6 IPOLR
7 IPR
8 IESR

 (A/D CONVERTER)
0 ADCR1
1 ADCR2
2 ADZCC
3 ADLST1
4 ADLST2
5 ADSDIS
6 ADSTAT
7 ADLSTAT
8 ADZCSTAT
9 ADRSLT0
A ADRSLT1
B ADRSLT2
C ADRSLT3
D ADRSLT4
E ADRSLT5
F ADRSLT6
10 ADRSLT7
11 ADLLMT0
12 ADLLMT1
13 ADLLMT2
14 ADLLMT3
15 ADLLMT4
16 ADLLMT5
17 ADLLMT6
18 ADLLMT7
19 ADHLMT0
1A ADHLMT1
1B ADHLMT2
1C ADHLMT3
1D ADHLMT4
1E ADHLMT5
1F ADHLMT6
20 ADHLMT7
21 ADOFS0
22 ADOFS1
23 ADOFS2
24 ADOFS3
25 ADOFS4
26 ADOFS5

27 ADOFS6
28 ADOFS7

(PWM)
0 PMCTL
1 PMFCTL
2 PMFSA
3 PMOUT
4 PMCNT
5 PWMCM
6 PWMVAL0
7 PWMVAL1
8 PWMVAL2
9 PWMVAL3
A PWMVAL4
B PWMVAL5
C PMDEADTM
D PMDISMAP1
E PMDISMAP2
F PMCFG
10 PMCCR
11 PMPORT

(QUAD)
0 DECCR
1 FIR
2 WTR
3 POSD
4 POSDH
5 REV
6 REVH
7 UPOS
8 LPOS
9 UPOSH
A LPOSH
B UIR
C LIR
D IMR
E TSTREG

(SCI)
0 SCIBR
1 SCICR
2 SCISR
3 SCIDR

(SPI)
0 SPSCR
1 SPDSR
2 SPDRR
3 SPDTR

IsoMax v0.6 Memory Map – DSP56805

HARVARD MEMORY MODEL

The IsoPodX Processor uses a "Harvard" memory model, which means that it has
separate memories for Program and Data storage. Each of these memory spaces uses a
16-bit address, so there can be 64K 16-bit words of Program ("P") memory, and 64K 16-
bit words of Data ("X") memory.

04B0*

0550*

0000

07FF

Data RAM

kernel
variables,
buffers,
stacks

application
variables
and data

structures

User Variables

1FFF

1CB0*

1000

1C00*
erased

Data Flash ROM

RAM image

1800

available
for

application

*typical addresses; may vary
depending on IsoMax version

MEMORY OPERATORS

Most applications need to manipulate data, so the memory operators use Data space.
These include

@ ! C@ C! +! HERE ALLOT , C,

Occasionally you will need to manipulate Program memory. This is accomplished
through a separate set of memory operators having a "P" prefix:

P@ P! PC@ PC! PHERE PALLOT P, PC,

Note that on the IsoPodX™, the smallest addressable unit of memory is one 16-bit word.
This is the unpacked character size. This is also the "cell" size used for arithmetic and
addressing. Therefore, @ and C@ are equivalent, and ! and C! are equivalent.

WORD STRUCTURE

The executable "body" of a IsoMax™ word is kept in Program space. This includes the
Code Field of the word, and the threaded definition of high-level words or the machine
code definition of CODE words.

The "header" of a IsoMax™ word is kept in Data space. This includes the Name Field,
the Link Field, and the PFA Pointer.

Program Space
 .

.

.
CFA Code Field
PFA Threaded code

(high level words)

or

Machine code
(CODE words)

 .
.
.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

VARIABLES

Since the Program space is normally ROM, and variables must reside in RAM and in
Data space, the "body" of a VARIABLE definition does not contain the data. Instead, it
holds a pointer to a RAM location where the data is stored.

Program Space

 .
.
.

CFA Code Field
PFA RAM Pointer

 .
.
.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 data
 .

.

.

<BUILDS DOES>

"Defining words" created with <BUILDS and DOES> may have a variety of purposes.
Sometimes they are used to build Data objects in RAM, and sometimes they are used to
build objects in ROM (i.e., in Program space). In the <BUILDS code you can allocate
either space by using the appropriate memory operators.

Program Space
 .

.

.
CFA Code Field
PFA DOES> Action Pointer

 Allocate with
PHERE PALLOT

P, PC,
 .

.

.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 Allocate with

HERE ALLOT
, C,

 .
.
.

For maximum flexibility, DOES> will leave on the stack the address in Program
space of the user-allocated data. If you need to allocate data in Data space, you must
also store (in Program space) a pointer to that data. For example, here is how you might
define VARIABLE using <BUILDS and DOES>.

: VARIABLE

 <BUILDS Defines a new Forth word, header and empty body;
 HERE P, gets the address in Data space (HERE) and appends that to Program space;

 0 , appends a zero cell to Data space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (a pointer to Data) and return that.
;

This constructs the following:

Program Space
 .

.

.
CFA Code Field
PFA DOES> Action Pointer

 RAM pointer
 .

.

.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 0 (data)
 .

.

.

Words with constant data, on the other hand, can be allocated entirely in Program space.
Here's how you might define CONSTANT:

: CONSTANT (n --)

 <BUILDS Defines a new Forth word, header and empty body;
 P, appends the constant value (n) to Program space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (the constant) and return that.
;

This constructs the following:

Program Space
 .

.

.
CFA Code Field
PFA DOES> Action Pointer

 N (constant value)
 .

.

.

Data Space
 .

.

.
NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

IsoPodX™ Reset Sequence
The IsoPodX employs a flexible initialization that gives you many options for starting and running application
programs. Sophisticated applications can elect to run with or without IsoMax, and with the default or custom processor
initialization. This requires some knowledge of the steps that the IsoPodX takes upon a processor reset:
1. Perform basic CPU initialization. This includes the PLL clock generator and the RS232 serial port.
2. Do the QUICK-START routine. If a QUICK-START vector is present in RAM, execute the corresponding routine.
QUICK-START is designed to be used before any other startup code, normally just to provide some additional
initialization. In particular, this is performed before RAM is re-initialized. This gives you the opportunity to save any
RAM status, for example on the occurrence of a watchdog reset. Note that a power failure which clears the RAM will
also clear the QUICK-START vector.
3. Stop IsoMax. This is in case of a "software reset" that would otherwise leave the timer running.
4. Check for "autostart bypass." Configure the SCLK/PE4 pin as an input with pullup resistor. If the SCLK/PE4 pin
then reads a continuous "0" (ground level) for 1 millisecond, skip the autostart sequence and "coldstart" the IsoPodX.
This will initialize RAM to factory defaults and start the IsoMax interpreter.

This is intended to recover from a situation where an autostart application locks up the IsoPodX.
Simply jumper the SCLK/PE4 pin to ground, and reset the IsoPodX. This will reset the RAM and start
the interpreter, but please note that it will not erase any Flash ROM. Flash ROM can be erased with
the SCRUB command from the IsoMax interpreter.

This behavior should be kept in mind when designing hardware around the IsoPodX. If the IsoPodX is
installed as an SPI master, or if the SCLK/PE4 pin is used as a programmed output, there will be no
problem. If the IsoPodX is installed as an SPI slave, the presence of SPI clock pulses will not cause a
coldstart, but a coldstart will happen if SCLK is held low in the "idle" state and a CPU reset occurs.
For this reason, if the IsoPodX is an SPI slave, we recommend configuring the SPI devices with
CPOL=1, so the "idle" state of SCLK is high. If the SCLK/PE4 pin is used as a programmed input,
avoid applications where this pin might be held low when a CPU reset occurs.

If SCLK/PE4 is not grounded, proceed with the autostart sequence.
5. Check the contents of RAM and initialize as required.

a. If the RAM contents are valid1, use them. This will normally be the case if the CPU is reset with no
power cycle, e.g., reset by MaxTerm, a watchdog, or an external reset signal.

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash ROM. If this RAM
image is valid, use it. This gives you a convenient method to initialize your application RAM.

c. If the Flash ROM contents are invalid, then reinitialize RAM to factory defaults. Note that this will
reset the dictionary pointer but will not erase any Flash ROM.

6. Look for a "boot first" routine. Search for an $A44A pattern in Program Flash ROM. The search looks at 1K
($400) boundaries, starting at Program address $400 and proceeding to $7C00. If found, execute the corresponding
"boot first" routine. IsoMax is not running at this point.

a. If the "boot first" routine never exits, only it will be run.

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the autostart sequence.

7. Start IsoMax with an "empty" list of state machines. After this, you can begin INSTALLing state machines. Any
state machines INSTALLed before this point will be disabled.
8. Look for an "autostart" routine. Search for an $A55A pattern in Program Flash ROM. The search looks at 1K
($400) boundaries, starting at Program address $400 and proceeding to $7C00. If found, execute the corresponding
"autostart" routine.

a. If the "autostart" routine never exits, only it will be run. (Of course, any IsoMax state machines
INSTALLed by this routine will also run.)

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax interpreter.

1 RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234.

In summary:
Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip initialization which must occur
immediately.
Use an $A44A "boot first" vector for initialization which must precede IsoMax activation, but which needs initialized
RAM.
Use an $A55A "autostart" vector to install IsoMax state machines, and for your main application program.
To bypass the autostart sequence, jumper SCLK/PE4 to ground.

Object Oriented Extensions
These words provide a fast and compact object-oriented capability to MaxForth. It
defines Forth words as "methods" which are associated only with objects of a specific
class.

Action of an Object
An object is very much like a <BUILDS DOES> defined word. It has a user-defined data
structure which may involve both Program ROM and Data RAM. When it is executed, it
makes the address of that structure available (though not on the stack...more on this in a
moment).

What makes an object different is that there is a "hidden" list of Forth words which can
only be used by that object (and by other objects of the same class). These are the
"methods," and they are stored in a private wordlist. Note that this is not the same as a
Forth "vocabulary." Vocabularies are not used, and the programmer never has to worry
about word lists.

Each method will typically make several references to an object, and may call other
methods for that object. If the object's address were kept on the stack, this would place a
large burden of stack management on the programmer. To make object programming
simpler and faster, the address of the current object is stored in a variable, OBJREF. The
contents of this variable (the address of the current object) can always be obtained with
the word SELF.

When executed (interpreted), an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Store the object's address into OBJREF.
After this, the private methods of the object can be executed. (These will remain
available until an object of a different class is executed.)

When compiled, an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Compile code into the current definition which will store the object's address into

OBJREF.
After this, the private methods of the object can be compiled. (These will remain
available until an object of a different class is compiled.) Note that both the object
address and the method are resolved at compile time. This is "early binding" and results
in code that is as fast as normal Forth code.

In either case, the syntax is identical:
 object method
For example:
 REDLED TOGGLE

Defining a new class

BEGIN-CLASS name

Words defined here will only be visible to objects of this class.
These will normally be the "methods" which act upon objects of this class.

PUBLIC

Words defined here will be visible at all times.
These will normally be the "objects" which are used in the main program.

END-CLASS name

Defining an object

OBJECT name This defines a Forth word "name" which will be an object of the

current class. The object will initially be "empty", that is, it will have no
ROM or RAM allocated to it. The programmer can add data structure to
the object using P, , PALLOT and ALLOT, in the same manner as for
<BUILDS DOES> words. Like <BUILDS DOES>, the action of an
object is to leave its Program memory address.

Referencing an object

SELF This will return the address of the object last executed. Note that this is an

address in Program memory. If the object will use Data RAM, it is the
responsibility of the programmer to store a pointer to that RAM space.
See the example below.

Object Structure
An object may have associated data in both Program and Data spaces. This allows ROM
parameters which specify the object (e.g., port numbers for an I/O object); and private
variables ("instance variables") which are associated with the object. By default, objects
return their Program (ROM) address. If there are RAM variables associated with the
object, a pointer to those variables must be included in the ROM data.

Program space Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

Note that also OBJECT creates a pointer to Program space, it does not reserve any
Program or Data memory. That is the responsibility of the programmer. This is done in
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or
PALLOT to add cells to Program space and , or ALLOT to add cells to Data space. The
programmer can use OBJECT to build a custom defining word for each class. See the
example below.

Example using ROM and RAM
This is an example of an object which has both ROM data (a port address) and RAM data
(a timebase value).

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;
PUBLIC
 0D00 TIMER TA0
 0D08 TIMER TA1
END-CLASS TIMERS

The word TIMER expects a port address on the stack. It builds a new (empty) OBJECT.
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that
RAM (HERE) into Program memory (P,). This builds the RAM pointer as shown above.
Finally, it stores the I/O port address "a" into the second cell of Program memory (the
second P,). Each object built with TIMER will have its own copy of this data structure.

After the object is executed, SELF will return the address of the Program data for that
object. Because we've stored a RAM pointer as the first Program cell, the phrase SELF
P@ will return the address of the RAM data for the object. It is not required that the first
Program cell be the RAM pointer, but this is strongly recommended as a programming
convention for all objects using RAM storage.

Likewise, SELF CELL+ P@ will return the I/O port address associated with this object
(since that was stored in the second cell of Program memory by TIMER).

We can simplify programming by making these phrases into Forth words. We can also
build them into other Forth words. All of this will normally go in the "private" class
dictionary:

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;

 : TMR_PERIOD (-- a) SELF P@ ; (RAM variable for
this timer)
 : BASEADDR (-- a) SELF CELL+ P@ ; (I/O addr for
this timer)
 : TMR_SCR (-- a) BASEADDR 7 + ; (Control
register)

 : SET-PERIOD (n --) TMR_PERIOD ! ;
 : ACTIVE-HIGH (--) 0202 TMR_SCR CLEAR-BITS ;
PUBLIC
 0D00 TIMER TA0 (Timer with I/O address 0D00)
 0D08 TIMER TA1 (Timer with I/O address 0D08)
END-CLASS TIMERS

After this, the phrase 100 TA0 SET-PERIOD will store the RAM variable for timer
object TA0, and 200 TA1 SET-PERIOD will store the RAM variable for timer object
TA1. TA0 ACTIVE-HIGH will clear bits in timer A0 (at port address 0D07), and TA1
ACTIVE-HIGH will clear bits in timer A1 (at port address 0D0F).

In a WORDS listing, only TA0 and TA1 will be visible. But after executing TA0 or TA1,
all of the words in the TIMERS class will be found in a dictionary search.

Because the "methods" are stored in private word lists, you can re-use method names in
different classes. For example, it is possible to have an ON method for timers, a different
ON method for GPIO pins, a third ON method for PWM pins, and so on. When the object
is named, it will automatically select the correct set of methods to be used! Also, if a
particular method has not been defined for a given object, you will get an error message
if you attempt to use that method with that object. (One caution: if there is word in the
Forth dictionary with the same name, and there is no method of that name, the Forth word
will be found instead. An example of this is TOGGLE. If you have a TOGGLE method,
that will be compiled. But if you use an object that doesn't have a TOGGLE method,
Forth's TOGGLE will be compiled. For this reason, methods should not use the same
names as "ordinary" Forth words.)

Because the "objects" are in the main Forth dictionary, they must all have unique names.
For example, you can't have a Timer named A0 and a GPIO pin named A0. You must
give them unique names like TA0 and PA0.

GPIO Bit I/O Class
These words support the GPIO I/O of the DSP56F80x. The following GPIO pins are
defined as objects:

PA7 PA6 PA5 PA4 PA3 PA2 PA1 PA0
PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
PD3 PD2 PD1 PD0
REDLED YELLED GRNLED

For each pin, the following methods can be performed:

ON Makes the pin an output, and outputs a '1' (high level).
OFF Makes the pin an output, and outputs a '0' (low level).
TOGGLE Makes the pin an output, and inverts its level.
n SET Stores a T/F value to the pin, e.g., 1 PA0 SET. Any nonzero
value is "true."
GETBIT Makes the pin an input, and returns pin value (as a bit mask).
ON? Makes the pin an input, and returns true if pin is '1' (high level).
OFF? Makes the pin an input, and returns true if pin is '0' (low level).
IS-INPUT Makes pin an input (hi-Z).
IS-OUTPUT Makes pin an output. Pin will output the last programmed level.

Examples of use:

PA0 OFF (output a low level on PA0)
0 PA0 SET (also outputs a low level on PA0)
REDLED ON (output a high level, turn the red LED on)
PD3 ON? (check if PD3 is a logic '1')

GPIO Byte I/O Class
These words support the GPIO I/O of the DSP56F80x as bytes. The following GPIO
ports are defined as objects:

PORTA PORTB

For each pin, the following methods can be performed:

IS-INPUT Makes port an input (hi-Z).
IS-OUTPUT Makes port an output. Pin will output the last programmed level.
PUTBYTE Makes port an output, and outputs the given byte (8 bits).
GETBYTE Makes port an input, and reads it as a byte (8 bits).

Examples of use:

55 PORTA PUTBYTE (output 55 to GPIO Port A)
PORTB GETBYTE . (read GPIO Port B and type its numeric
value)

Timer I/O Class
These words support the Counter/Timers of the DSP56F80x. The following timers are
defined as objects:

TA0 TA1 TA2 TA3
TB0 TB1 TB2 TB3
TC0 TC1 TC2 TC3
TD0 TD1 TD2

For each Counter/Timer, the following methods can be performed:

ON Makes the counter/timer pin an output, and outputs a '1' (high level).
OFF Makes the counter/timer pin an output, and outputs a '0' (low level).
TOGGLE Makes the counter/timer pin an output, and inverts its level.
n SET Stores a T/F value to the pin, e.g., 1 TA0 SET. Any nonzero
value is "true."
GETBIT Makes the counter/timer pin an input, and returns pin value (as a bit
mask).
ON? Makes the counter/timer pin an input, and returns true if pin is '1' (high
level).
OFF? Makes the counter/timer pin an input, and returns true if pin is '0' (low
level).

The following methods can be used to generate PWM signals and to measure pulse
width:

ACTIVE-HIGH Makes the pin "active high" for PWM output or input. For

output, PWM-OUT will control the high pulse width. For input, PWM-IN
will measure the width of the high pulse. The reset default is ACTIVE-
HIGH.

ACTIVE-LOW Makes the pin "active low" for PWM output or input. For output,
PWM-OUT will control the low pulse width. For input, PWM-IN will
measure the width of the low pulse.

n PWM-PERIOD Specifies the period (frequency) of the PWM output. Values from
100 to FFFF hex are valid. The counter frequency is 2.5 MHz; FFFF hex
corresponds to a period of 26.214 msec (38 Hz). PWM-PERIOD must be
specified before using PWM-OUT.

n PWM-OUT Makes the counter/timer pin an output, and outputs a continuous PWM
signal with the given duty cycle. Values from 0 to FFFF hex are valid. 0
is a duty cycle of 0% (always off); FFFF is a duty cycle of 100% (always
on). 8000 hex gives a duty cycle of 50%. PWM-PERIOD must be
specified before using PWM-OUT.

PWM-IN Makes the counter/timer pin an input, and measures the width of one pulse
on that input. Returns a value from 1 to FFFF hex. The counter rate is 2.5

MHz, thus each count is 0.4 usec, and a returned value of 10000 decimal
corresponds to 4 msec.

Examples of use:

TC0 ON (output a high level on the TC0 pin)
TA3 ON? (check if TA3 pin, HOME0, is a logic '1')

DECIMAL 50000 TC1 PWM-PERIOD (specify 20 msec period = 50 Hz)
TC1 ACTIVE-HIGH (specify active-high output)
HEX 4000 TC1 PWM-OUT (output 25% high, 75% low)

PWM I/O Class
These words support the PWM generators of the DSP56F80x. The following PWM
outputs are defined as objects:

PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5
PWMB0 PWMB1 PWMB2 PWMB3 PWMB4 PWMB5

For each PWM output, the following methods can be performed:

ON Outputs a '1' (high level).
OFF Outputs a '0' (low level).
TOGGLE Inverts the output level.
n SET Stores a T/F value to the pin, e.g., 1 PWMA0 SET. Any nonzero
value is "true."

The following methods can be used to generate PWM signals:

n PWM-PERIOD Initializes the PWM output, and specifies its period (frequency).

Values from 100 to 7FFF hex are valid. The effective counter frequency
is 2.5 MHz; 7FFF hex corresponds to a period of 13.106 msec (76 Hz).
PWM-PERIOD must be specified before using PWM-OUT. Note: setting
the period for any "A" PWM will affect all six "A" PWMs. Setting the
period for any "B" PWM will affect all six "B" PWMs.

n PWM-OUT Outputs a continuous PWM signal with the given duty cycle. Values from
0 to FFFF hex are valid. 0 is a duty cycle of 0% (always off); FFFF is a
duty cycle of 100% (always on). 8000 hex gives a duty cycle of 50%.
PWM-PERIOD must be specified before using PWM-OUT.

The following PWM inputs are defined as objects:

FAULTA0 FAULTA1 FAULTA2 FAULTA3 ISA0 ISA1 ISA2
FAULTB0 FAULTB1 FAULTB2 FAULTB3 ISB0 ISB1 ISB2

For each PWM input, the following methods can be performed:

GETBIT Returns pin value (as a bit mask).
ON? Returns true if pin is '1' (high level).
OFF? Returns true if pin is '0' (low level).

Examples of use:

PWMB0 ON (output a high level on the PWMB0 pin)
ISA1 ON? (check if ISA1 pin is a logic '1')

DECIMAL 25000 PWMA1 PWM-PERIOD (specify 10 msec period = 100 Hz)
HEX 4000 PWMA1 PWM-OUT (output 25% high, 75% low)

SPI I/O Class
These words support the SPI port of the DSP56F80x. Only one SPI port is present; it is
referenced as object

SPI0

The following methods can be performed for the SPI port:

MASTER Specifies that the DSP56F80x will act as an SPI Master.
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.

Values from 2 to 16 are valid.
MSB-FIRST Specifies that words should be sent and received MSB first.
LSB-FIRST Specifies that words should be sent and received LSB first.
n MBAUD Specifies the bit rate to be used for the SPI port. Four values can be

specified: 20 (20 Mbits/sec), 5 (5 Mbits/sec), 2 (2.5 Mbits/sec), and 1
(1.25 Mbits/sec). All other values will be ignored and will leave the baud
rate unchanged.

n TX-SPI Transmits one word on the SPI port. This will output 2 to 16 bits on the
MOSI pin (Master mode) and generate 16 clocks on the SCLK pin. This
will simultaneously input 2 to 16 bits on the MISO pin (Master mode).

RX-SPI Receives one word from the SPI port. This word must already have been
shifted into the receive shift register; if it has not, RX-SPI will wait for it
to be shifted in. In Master mode, data will only be shifted in when a word
is transmitted by TX-SPI. In this mode you should use RX-SPI
immediately after TX-SPI to read the data that was received.

It is acceptable to specify all the SPI parameters after selecting the SPI port. Example of
use:

SPI0 MASTER 16 BITS MSB-FIRST 5 MBAUD
SPI0 TX-SPI SPI0 RX-SPI

The default polarity for the SPI port is CPHA=0, CPOL=1. This means that the SCLK
line will be high between words, and that the slave should clock data on the falling edge.
(Refer to figure 13-4 in the Motorola DSP56F801-7 Users Manual.)

ADC I/O Class
These words support the A/D converter of the DSP56F80x. The following ADC inputs
are defined as objects:

ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7

Only one method can be used with A/D inputs:

ANALOGIN Reads the A/D input and returns its value. The result is in the range 0-
7FF8. (The 12-bit A/D result is left-shifted 3 places.) 7FF8 corresponds
to an input of Vref. 0 corresponds to an input of 0 volts.

Example of use:

ADC7 ANALOGIN (read A/D channel 7, pin AN7)

LOOPINDEX Class
These words support the Looping structure of IsoMax™. The following are defined as
objects:

LOOPINDEX

LOOPINDEX name ...to define a loop variable.

The following methods can be performed for LOOP INDEX:

MASTER Specifies that the DSP56F80x will act as an SPI Master.
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.

Values from 2 to 16 are valid.

name n START ...set starting value (default 0)
name n END ...set ending value (default 1)
name n STEP ...set increment (default 1)
name COUNT ...count, and return a truth value
name RESET ...reset to starting value
name VALUE ...return the current loop index

Here's the test code that I've used:

\ TESTING CODE
DECIMAL

\ CYCLE expects an object to be named, e.g. FRED CYCLE
LOOPINDEXES
: CYCLE RESET BEGIN VALUE . COUNT UNTIL ;

LOOPINDEX FRED FRED 1 START 10 END 1 STEP
LOOPINDEX WILMA WILMA 10 START 1 END -1 STEP

IsoPodX™ HARDWARE FEATURES

. Three On Board LED’s
Red, Yellow, Green

. 16 GPIO lines
Programmable Edge sensitive interrupts

. Serial Communication Interface (SCI) full-duplex serial channel
Two RS-232
One RS422/485 optional
Programmable Baud Rates, 38,400, 19,200, 9600, 4800, 1200

. Serial Peripheral Interface (SPI)
Full-duplex synchronous operation on four-wire interface
Master or Slave

. 16-ch 12-bit AD
Continuous Conversions @ 1.2us (6 ADC cycles)
Single ended or differential inputs

. 12-channel PWM module
15-bit counter with programmable resolutions down to 25ns
Twelve independent outputs,
 or Six complementary pairs of outputs, or combinations

. Eight Timers
16-bit timers
Count up/down, Cascadable

. Two Quadrature Decoder
32-bit position counter
16-bit position difference register
16-bit revolution counter
40MHz count frequency (up to)

. CAN 2.0 A/B module for networking
Programmable bit rate up to 1Mbit: Multiple boards can be networked (MSCAN)
Ideal for harsh or noisy environments, like automotive applications

. JTAG port for CPU debugging
Examine registers, memory, peripherals
Set breakpoints
Step or trace instructions

. WatchDog Timer/COP module, Low Voltage Detector for Reset

. Low Voltage, Stop and Wait Modes

. On Board level translation for RS232, RS422 (optional), CAN

. On Board Voltage Regulation

CIRCUIT DESCRIPTION

The processor chip contains the vast majority of the circuitry. The remaining support
circuitry is described here. The power for the system can be handled several different
way, but as the board comes, power will normally be supplied from the VIN pin on J1.

RS-232 Levels Translation

The MAX3222 converts the 3.3V supply to the voltages necessary to drive the RS-232
interface. Since a typical RS-232 line requires 10 mA of outputs at 10V or more, the
MAX3222 uses about 30 mA from the 3.3V supply. A shutdown is provided, controlled
by TD0.

The RS-232 interface allows the processor to be reset by the host computer through
manipulation of the ATN line. When the ATN line is low (a logical “1” in RS-232 terms)
the processor runs normally. When the ATN line is high (a logical “0” in RS-232 terms)
the processor is held in reset.

http://pdfserv.maxim-ic.com/arpdf/MAX3222-MAX3241.pdf)

RS-422/485 Levels Translation

Two MAX3483 buffer the digital signals to RS-422/485 levels. One, U3, always
transmits. The other can receive, or transmit. It will normally be used for the receiver in
RS-422 double twisted pair communications applications, and the transceiver in RS-485
single twisted pair communications applications. TD1 controls the turn around on U4
allowing RS-485 communications.

http://pdfserv.maxim-ic.com/arpdf/MAX3483-MAX3491.pdf

CAN BUS Levels Translation

A VP230 buffers the CAN BUS signal.
 http://focus.ti.com/lit/ds/symlink/sn65hvd230.pdf

LED’s

A 74AC05 drives the on-board LED’s. Each LED has a current limiting resistor to the
+3.3V supply.
http://www.fairchildsemi.com/ds/74/74AC05.pdf

RESET

A S80728HN Low Voltage Detector asserts reset when the voltage is below operating
levels. This prevents brown out runaway, and a power-on-reset function.

http://www.seiko-instruments.de/documents/ic_documents/power_e/s807_e.pdf

POWER SUPPLY

A LM2937 reduces the VIN DC to a regulated 5V. In early versions a 7805C was used.
The LM2937 was rated a bit less for current (500 mA Max), but had reverse voltage
protection and a low drop out which was more favorable. A drops the 5V to the 3.3V
needed for the processor. At full current, 200 mA, these two regulators will get hot. They
can provide current to external circuits if care is taken to keep them cool. Each are rated
at 1A but will have to have heat sinking added to run there.

http://www.national.com/ds/LM/LM2937.pdf
http://www.national.com/ds/LM/LM3940.pdf

TROUBLE SHOOTING

There are no user serviceable parts on the IsoPodX™. If connections are made correctly,
operation should follow, or there are serious problems on the board. As always, the first
thing to check in case of trouble is checking power and ground are present. Measuring
these with a voltmeter can save hours of head scratching from overlooking the obvious.
After power and ground, signal connections should be checked next. If the serial cable
comes loose, on either end, using your PC to debug your program just won’t help. Also,
if your terminal program has locked up, you can experience some very “quiet” results.
Don’t overlook these sources of frustrating delays when looking for a problem. They are
easy to check, and will make a monkey of you more times than not, if you ignore them.

One of the great advantages of having an interactive language embedded in a processor,
is if communications can be established, then program tools can be built to test
operations. If the RS-232 channel is not in use in your application, or if it can be
optionally assigned to debugging, talking to the board through the language will provide
a wealth of debugging information.

The LED’s can be wonderful windows to show operation. This takes some planning in
design of the program. A clever user will make good use of these little light. Even if the
RS-232 channel is in use in your application and not available for debugging, don’t
overlook the LED’s as a way to follow program execution looking for problems.

The IsoPodX™ is designed so no soldering to the board should be required, and the
practice of soldering to the board is not recommended. Instead, all signals are brought to
connectors. That’s one of the reasons it is called a “Pod”, it can be plugged in and pulled
out as a module.

So, the best trouble shooting technique would be to unplug the IsoPodX™ and try to
operate it separately with a known good serial cable on power supply.

If the original connections have been tested to assure no out-of-range voltages are
present, a second IsoPodX™ can then be programmed and plugged into the circuit in
question. But don’t be too anxious to take this step. If the first IsoPodX™ should be
burned out, you really want to be sure you know what caused it, before sacrificing
another one in the same circuit.

Finally, for advanced users, the JTAG connection can give trace, single step and memory
examination information with the use of special debugging hardware. This level of access
is beyond the expected average user of the IsoPodX™ and will not be addressed in this
manual.

IsoPodX™ website: http://www.newmicros.com

MaxFORTH™ Glossary Reference Page
http://www.ee.ualberta.ca/~rchapman/MFwebsite/V50/Alphabetical/Brief/index.html

This has explanations for the definitions for the procedural language "under" the
IsoMax(TM) Finite State Machine language.

Motorola DSP56F80x Users Manual
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56F801-7UM.pdf

Motorola DSP56F800 Processor Reference Manual
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

CONNECTORS for the IsoPodX

The IsoPodX™ has connectors: J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11,J12,J13 shown
below:

J1 Ser., Power, General Purpose I/O Serial, Power, Ports PA0 – PA7, PB0 – PB7
J2 CAN / SCI 1 CANH, CANL and RS232 or RS422
J3 SPI SCLK, MISO, MOSI, SS, PE2, PE3, RSTO
J4 Alternate power +5 to +9 volts outer pin, ground inner pin
J5 A/D 0 to 7 First 8 ADC channels
J6 Enable/Disable Added Memory Enable/Disable or switch added memory (PD0)
J7 Fault and Status for PWM FaultA0-3, FaultB0-3, ISA0-2, ISB0-2
J8 JTAG connector CPU Port
J9 PWM pins PWMA0-5, PWMB0-5
J10 Motor Encoder x 2/Timers Phase A, B, Index, Home x 2(or Timer A & B)
J11 Timers and Interrupts TC0, TC1, TD0-3, IRQA, IRQB
J12 Serial RS-232 Primary serial RS-232 DB9 Connector
J13 Internal or External Boot Boot from internal flash or added memory

J1 GPIO
+VIN 1 2 SOUT
GND 3 4 SIN
RST’ 5 6 ATN’
+5V 7 8 GND
PA0 9 10 PB0
PA1 11 12 PB1
PA2 13 14 PB2
PA3 15 16 PB3
PA4 17 18 PB4
PA5 19 20 PB5
PA6 21 22 PB6
PA7 23 24 PB7

Note: In picture above, Pin 1 is at upper left viewing CPU side with J1 at left.
This connector pin out and pin numbering scheme is unique to this one instance. Origin
of pin out and numbering is to match stamp-like connection pin outs.

Connectors in above “top view, J1-to-right” picture and on page below,
 have same oriented (pin 1 upper left)

J3 SPI - IO

+5V 1 2 GND
+3V 3 4 SCLK

RSTO 5 6 MOSI
PE2 7 8 MISO
PE3 9 10 SS’

J2 RS-232 (or 422) - CAN

TXD1/+XMT 1 2 +3V
RXD1/-XMT 3 4 GND

GND 5 6 CANL
SIN1/-RCV 7 8 GND

SOUT1/+RCV 9 10 CANH

J5 ADC 0-7

VSSA ANA1 ANA3 ANA5 ANA7
2 4 6 8 10
1 3 5 7 9

VREF ANA0 ANA2 ANA4 ANA6

J6 Memory Disable/Enable

Enable 1 to 2 - Memory enabled 1
Mem Open -- disabled 2
PD0 2 to 3 - Memory controlled 3

Connectors in above “top view, J1-to-left” picture and on page below,

 have same oriented (pin 1 upper left).

J7 Various Inputs

+3V ISA0 ISA1 ISA2 ISB0 ISB1 ISB2 GND
2 4 6 8 10 12 14 16
1 3 5 7 9 11 13 15

FAULT0 FAULT1 FAULT2 FAULT3 FAULT4 FAULT5 FAULT6 FAULT7

J9 PWM Servo Output

 Sig. +V GND
PWMA0 1 2 3
PWMA1 4 5 6
PWMA2 7 8 9
PWMA3 10 11 12
PWMA4 13 14 15
PWMA5 16 17 18
PWMB0 19 20 21
PWMB1 22 23 24
PWMB2 25 26 27
PWMB3 28 29 30
PWMB4 31 32 33
PWMB5 34 35 36

J10 Motor Encoder x 2 /Timers

Sig. +V GND
+5V 1 2 3 +3 V

GND 4 5 GND 6
PHA0/TA0 7 8 9
PHB0/TA1 10 11 12
IND0/TA2 13 14 15
HM0/TA3 16 17 18

+5V 19 20 21 +3 V
GND 22 23 GND 24

PHA1/TB0 25 26 27
PHB1/TB1 28 29 30
IND1/TB2 31 32 33
HM1/TB3 34 35 36

J11 Timers and IRQ

J13 Memory Boot

Closed Boot from
External Memory

 Open Boot from MCU
Flash

J8 JTAG

+3 V 1 2 GND
TDI 3 4 GND
TDO 5 6 TMS
TCK 7 8 DE

RESET 9 10 TRST

 Sig. +V GND
+5V 1 2 3 +3 V
GND 4 5 GND 6
TC0 7 8 9
TC1 10 11 12

IRQA 13 14 15
IRQB 16 17 18
+5V 19 20 21 +3 V
GND 22 23 GND 24
TD0 25 26 27
TD1 28 29 30
TD2 31 32 33
TD3 34 35 36

Instructions for Wiring a Serial Cable on J1 Connector

Transformer hook up

Black w/Striped
White +VIN

1 2 SOUT

Solid Black
GND

3 4 SIN

RST’ 5 6 ATN’
+5V 7 8 GND
PA0 9 10 PB0
PA1 11 12 PB1
PA2 13 14 PB2
PA3 15 16 PB3
PA4 17 18 PB4
PA5 19 20 PB5
PA6 21 21 PB6
PA7 23 24 PB7

Serial Cable hook up

+VIN 1 2 SOUT RED
GND 3 4 SIN ORANGE
RST’ 5 6 ATN’YELLOW
+5V 7 8 GND GREEN
PA0 9 10 PB0
PA1 11 12 PB1
PA2 13 14 PB2
PA3 15 16 PB3
PA4 17 18 PB4
PA5 19 20 PB5
PA6 21 22 PB6
PA7 23 24 PB7

J1 Pin Preferred Color DB-9 Pin DB-25 Pin
2 SOUT RED 2 RX 3 TX

 4 SIN ORANGE 3 TX 2 RX
 6 ATN YELLOW 4 DTR 20 DTR
 8 GND GREEN 5 GND 7 GND

 6 DSR 6 DSR
 7 RTS 20 RTS

 JUMPERS

The IsoPodX™ has memory jumpers at J6. Jumper setting on J6 has 3 choices: with pin
1 and 2 together for Enabling the added memory, by default configuration. Connect pin 2
and 3 together for PD0 controlled enable/ disable of the added memory, and open for
disabling the memory. Keep in mind, PD0 is also sharing port with RED LED buffer.

Jumper J13 is to allow booting from either the DSP internal memory (open) or from the
external memory (jumpered). This jumper provides the flexible options for use with
CodeWarrior development tool.

 A few sites exist where termination resistors can be added. A few port lines are used to
control programmable options on the board.

Port line PD5 controls the RS-232 transmitter shutdown. A pull up resistor normally
disenables shutdown, if the port line is inactive.

Port line PD4 controls the RS-232 receiver enable. A pull down resistor normally enables
the receivers, if the port line is inactive.

Port line PD3 controls the RS-485 transceiver turn-around. A pull down resistor normally
enables the receiver, if the port line is inactive.

Port line PD2 controls the GREEN LED. When PD2 is high, the AC05 output will be
inverted and the GREEN LED will turn on, and turn off when PD2 is low.

Port line PD1 controls the YELLOW LED. When PD1 is high, the AC05 output will be
inverted and the YELLOW LED will turn on, and turn off when PD1 is low.

Port line PD0 controls the RED LED. When PD0 is high, the AC05 output will be
inverted and the RED LED will turn on, and turn off when PD0 is low.

Port line PE2 can be connected in series with a 10K resistor (on the left of R8) to controls
the CAN Bus mode if the speed controls is required. By default, the CAN chip is
configured for high-speed mode with a 100K resistor R8 installs.

 MANUFACTURER

New Micros, Inc.
1601 Chalk Hill Rd.
Dallas, TX 75212

Tel: (214) 339-2204
Fax: (214) 339-1585

Web site: http://www.newmicros.com

This manual: http://www.newmicros.com/store/product_manual/IsoPodX.zip

Email technical questions: nmitech@newmicros.com

Email sales questions: nmisales@newmicros.com

MECHANICAL

Board size is 2.5” x 3.0”

ELECTRICAL

The total draw for the IsoPodX™ under maximum speed is approximately 200 mA.

Sleeping or slowing the processor can substantially reduce current consumption.

The TD0 signal can shut down the RS-232 converter, saving about 10 mA, when not used
for transmission, if the receiving unit will not sense this as noise.

The TD1 signal can shut down the RS-485 transceiver, U4, saving about 10 mA, when
not used for transmission, if the other RS-485 receiving units will not sense this as noise.
The other RS-485 transceiver, U3, cannot be shut down, but can be left uninstalled by
arrangement with the factory.

Each digital pin is capable of sinking 4 mA and sourcing –4 mA. Each LED draws 1.2
mA when lit.

Absolute Maximum Ratings
Characteristic Symbol Min Max Unit
Supply voltage VDD VSS – 0.3 VSS + 4.0 V
All other input voltages, excluding Analog inputs VIN VSS – 0.3 VSS + 5.5V V

Analog Inputs ANAx, VREF VIN VSS – 0.3 VDDA + 0.3V V
Current drain per pin excluding VDD, VSS, PWM outputs,
TCS, VPP, VDDA, VSSA

I — 10 mA

Current drain per pin for PWM outputs I — 20 mA
Junction temperature TJ — 150 °C
Storage temperature range TSTG -55 150 °C

Recommended Operating Conditions
Characteristic Symbol Min Max Unit
Supply voltage VDD 3.0 3.6 V
Ambient operating temperature TA -40 85 °C

DC Electrical Characteristics
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL ≤ 50 pF, fop = 80
MHz
Characteristic Symbol Min Typ Max Unit
Input high voltage VIH 2.0 — 5.5 V
Input low voltage VIL -0.3 — 0.8 V
Input current low (pullups/pulldowns disabled) IIL -1 — 1 µA
Input current high (pullups/pulldowns disabled) IIH -1 — 1 µA
Typical pullup or pulldown resistance RPU, RPD — 30 — KΩ
Input/output tri-state current low IOZL -10 — 10 µA
Input/output tri-state current low IOZH -10 — 10 µA
Output High Voltage (at IOH) VOH VDD – 0.7 — — V
Output Low Voltage (at IOL) VOL — — 0.4 V
Output High Current IOH — — -4 mA
Output Low Current IOL — — 4 mA
Input capacitance CIN — 8 — pF
Output capacitance COUT — 12 — pF
PWM pin output source current 1 IOHP — — -10 mA
PWM pin output sink current 2 IOLP — — 16 mA
Total supply current IDDT 3
Run 4 — 126 162 mA
Wait 5 — 72 98 mA
Stop — 60 84 mA
Low Voltage Interrupt 6 VEI 2.4 2.7 2.9 V
Power on Reset 7 VPOR — 1.7 2.0 V

1. PWM pin output source current measured with 50% duty cycle.

2. PWM pin output sink current measured with 50% duty cycle.

3. IDDT = IDD + IDDA (Total supply current for VDD + VDDA)

4. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports
configured as inputs; measured with all modules enabled.

5. Wait IDD measured using external square wave clock source (fosc = 8 MHz) into XTAL; all inputs 0.2V from rail;
no DC loads; less than 50 pF on all outputs. CL = 20 pF on EXTAL; all ports configured as inputs; EXTAL capacitance
linearly affects wait IDD; measured with PLL enabled.

6. Low voltage interrupt monitors the VDDA supply. When VDDA drops below VEI value, an interrupt is generated.
For correct operation, set VDDA=VDD. Functionality of the device is guaranteed under transient conditions when
VDDA>VEI.

7. Power-on reset occurs whenever the internally regulated 2.5V digital supply drops below VPOR. While power is

ramping up, this signal remains active for as long as the internal 2.5V supply is below 1.5V no matter how long the
ramp up rate is. The internally regulated voltage is typically 100 mV less than VDD during ramp up until 2.5V is
reached, at which time it self regulates.

NMITerm

Provided Windows terminal program from New Micros, Inc. Usually provided in a ZIP.
Un ZIP in a subdirectory, such as C:\NMITerm. To start the program: click, or double
click, the program icon.

NMITerm.LNK

NMITerm is a simple Windows-based communications package designed for program
development on serial port based embedded controllers. It runs under Windows.

NMITerm provides:

 1. Support for COM1 through COM16.
 2. Baud rates from 110 through 256000.
 3. Control over RTS and DTR lines.
 4. Capture files, which record all terminal activity to disk.
 5. Scroll-back buffer, editable and savable as a file.
 6. On-line Programmer's Editor.
 7. File downloader.
 8. Programmable function keys.

Quick start commands:

1. Baud: default 9600
2. DTR On/Off : ALT+T
3. Download: ALT+D

For further information use the F1 Help screen.

This program can be downloaded from:

http://www.newmicros.com/download/NMITerm.zip

MaxTerm

Provided DOS terminal program from New Micros, Inc. Usually provided in a ZIP. Un
ZIP in a subdirectory, such as C:\MAXTERM. To start the program: click, or double
click, the program icon.

Maxterm.ico

MaxTerm is a simple DOS-based communications package designed for program
development on serial port based embedded controllers. It can run under stand-alone
DOS or in a DOS session under Windows.

MaxTerm provides:

 1. Support for COM1 through COM4.
 2. Baud rates from 300 through 38400.
 3. Control over RTS and DTR lines.
 4. Capture files, which record all terminal activity to disk.
 5. 32K scroll-back buffer, editable and savable as a file.
 6. On-line Interactive Programmer's Editor (OPIE).
 7. File downloader.
 8. Programmable function keys.
 9. Received character monitor, which displays all data in HEX.

Quick start commands:

4. Set comport: ALT+1 or ALT+2 It does not support com3 & 4.
5. Baud: default 9600
6. DTR On/Off : ALT+T
7. Download: ALT+D
8. PACING: ALT+P (IsoMax default decimal 10)

For further information use the Help screen (ALT-H) or the program documentation.

 MAXTERM Help
 alt-B Change baud rate alt-M Character monitor mode
 alt-C Open (or close) capture file alt-O Toggle sounds
 alt-D Download a file (all text) alt-P Change line pace char
 alt-E Edit a file (Split screen) alt-R Toggle RTS
 alt-F Edit function keys alt-S Unsplit the screen
 alt-H Help alt-T Toggle DTR
 alt-I Program Information alt-U Change colors
 alt-K Toggle redefinition catcher alt-W Wipe the screen
 alt-L Open scrollback log alt-X Exit
 alt-1 (2 3 4) Select Com port alt-Z Download a file (no fat)
 f1-f10 Programmable function keys f12 Re-enter OPIE

Status line mode indicators: r = rts, d = dtr, L = log file, S =
sounds, K = redefinition, P = line pacing active

HyperTerminal

Usually provided in Programs/Accessories/Communications/HyperTerminal. If not
present, it can be loaded from the Windows installation disk. Use “Add/Remove
Software” feature in Settings/Control Panel, choose Windows Setup, choose
Communications, click on Hyperterm, then Okay and Okay. Follow any instructions to
add additional features to windows.

Hypertrm.exe

C:\Program Files\Accessories\HyperTerminal

Run HyperTerminal, select an icon that pleases you and give the new connection a name,
such as ISOPODX. Now in the “Connect To” dialog box, in the bottom “Connect Using”
line, select the communications port you wish to use, with Direct Comm1, Direct
Comm2, Direct Comm3, Direct Comm4 as appropriate, then Okay. In the COMMx
Dialog box which follows set up the port as follows: Bits per second: 9600 , Data bits: 8,
Parity: None, Flow Control: None, then Okay.

REFERENCE

Decimal - Hex - ASCII Chart
DEC HEX Char Function
000 00 NUL Null

001 01 SOH Start of heading

002 02 STX Start of text

003 03 ETX End of text

004 04 EOT End of transmit

005 05 ENQ Enquiry

006 06 ACK Acknowledge

007 07 BEL Bell

008 08 BS Back Space

009 09 HT Horizontal Tab

010 0A LF Line Feed

011 0B VT Vertical Tab

012 0C FF Form Feed

013 0D CR Carriage Return

014 0E SO Shift Out

015 0F SI Shift In

016 10 DLE Data Line Escape

017 11 DC1 Device Control 1

018 12 DC2 Device Control 2

019 13 DC3 Device Control 3

020 14 DC4 Device Control 4

021 15 NAK Non Acknowledge

022 16 SYN Synchronous Idle

023 17 ETB End Transmit Block

024 18 CAN Cancel

025 19 EM End of Medium

026 1A SUB Substitute

027 1B ESC Escape

028 1C FS File Separator

029 1D GS Group Separator

030 1E RS Record Separator

031 1F US Unit Separator

032 20 Space
033 21 !

034 22 "
035 23 #

036 24 $
037 25 %

038 26 &
039 27 '

040 28 (
041 29)
042 2A *
043 2B +
044 2C ,
045 2D -
046 2E .
047 2F /
048 30 0
049 31 1
050 32 2
051 33 3
052 34 4
053 35 5
054 36 6
055 37 7
056 38 8
057 39 9
058 3A :
059 3B ;
060 3C <
061 3D =

062 3E >
063 3F ?
064 40 @
065 41 A
066 42 B
067 43 C
068 44 D
069 45 E
070 46 F
071 47 G
072 48 H
073 49 I
074 4A J
075 4B K
076 4C L
077 4D M
078 4E N
079 4F O
080 50 P
081 51 Q
082 52 R
083 53 S

084 54 T
085 55 U
086 56 V
087 57 W
088 58 X
089 59 Y
090 5A Z
091 5B [
092 5C \
093 5D]
094 5E ^
095 5F _
096 60 `
097 61 a
098 62 b
099 63 c
100 64 d
101 65 e
102 66 f
103 67 g
104 68 h
105 69 I

106 6A J
107 6B K
108 6C L
109 6D M
110 6E N
111 6F O
112 70 P
113 71 Q
114 72 R
115 73 S
116 74 T
117 75 U
118 76 V
119 77 W
120 78 X
121 79 Y
122 7A Z
123 7B {
124 7C |
125 7D }
126 7E ~
127 7F DEL

ASCII Chart
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! " # $ % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _’
6 ` a b c d e f g h I j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

More on ASCII on another web site: http://www.jimprice.com/jim-asc.htm

GLOSSARY

.1” double and triple row connectors
24-pin socket
74AC05
9600 8N1
A/D
adapter
ASCII
CAN BUS
Caps
carrier board
computer “pod”
computing and control function
communications channel
communications settings
COMM2
COMM3
COMM4
controller
controller interface board
dedicated computer
deeply embedded
double male right angle connector
double sided sticky tape
embedded
embedded tasks
female
hand-crimped wires
headers
high-density connectors
High-Level-Language
HyperTerminal
IDC headers and ribbon cable
interactive
IsoMax™
IsoPodX™
language
Levels Translation
LED
LM3940
LM78L05
Low Voltage Detector
male

MaxTerm
mating force of the connectors

Mealy, G. H. State machine pioneer, wrote “A Method for Synthesizing Sequential
Circuits,” Bell System Tech. J. vol 34, pp. 1045 –1079, September 1955

mobile robot

Moore, E. F. State machine pioneer, wrote “Gedanken-experiments on Sequential
Machines,” pp 129 – 153, Automata Studies, Annals of Mathematical Studies, no. 34,
Princeton University Press, Princeton, N. J., 1956

Multitasking
PCB board
PWM
PWM connectors
Power Supply
Programming environment
prototyping
RS-232
RS-422
RS-485
R/C Servo motor
real time applications.
real time control
registers
RESET
Resistor
S80728HN
SCI
SPI
serial cable
 “stamp-type” controller
stand-alone computer board
TJA1050
terminal program
upgrade an existing application.
Virtually Parallel Machine Architecture™ (VPMA)
wall transformer

