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Warranty 
 
New Micros, Inc. warrants its products against defects in materials and workmanship for a period of 90 days. If you 
discover a defect, New Micros, Inc. will, at its option, repair, replace, or refund the purchase price. Simply call our 
sales department for an RMA number, write it on the label and return the product with a description of the problem. We 
will return your product, or its replacement, using the same shipping method used to ship the product to New Micros, 
Inc. (for instance, if you ship your product via overnight express, we will do the same). This warranty does not apply if 
the product has been modified or damaged by accident, abuse, or misuse. 
 

Copyrights and Trademarks 
 
Copyright © 2002 by New Micros, Inc. All rights reserved. IsoPodX™, IsoMax™ and Virtually Parallel Machine 
Architecture™ are trademarks of New Micros, Inc.  Windows is a registered trademark of Microsoft Corporation. 1-
wire is a registered trademark of Dallas Semiconductor. Other brand and product names are trademarks or registered 
trademarks of their respective holders. 
 

Disclaimer of Liability 
 
New Micros, Inc. is not responsible for special, incidental, or consequential damages resulting from any breach of 
warranty, or under any legal theory, including lost profits, downtime, goodwill, damage to or replacement of equipment 
or property, and any costs of recovering, reprogramming, or reproducing any data stored in or used with New Micros, 
Inc. products. 
 

Internet Access 
 
Web site: http://www.newmicros.com 
 
This manual: http://www.newmicros.com/store/product_manual/IsoPodX.zip 
 
Email technical questions: nmitech@newmicros.com 
 
Email sales questions: nmisales@newmicros.com 
 
Also see “Manufacturer” information near the end of this manual. 

Internet IsoPodX™ Discussion List 
 
We maintain the IsoPodX™ discussion list on our web site. Members can have all questions and answers forwarded to 
them. It’s a way to discuss IsoPodX™ issues.  
 
To subscribe to the IsoPodX™ list, visit the Discussion section of the New Micros, Inc. website. 
 
This manual is valid with the following software and firmware versions: 
IsoPodX V0.5 or newer 
 
If you have any questions about what you need to upgrade your product, please contact New Micros, Inc. 
 



GETTING STARTED 
 
Thank you for buying the IsoPodX™. We hope you will find the IsoPodX™ to be the 
incredibly useful small controller board we intended it to be, and easy to use as possible. 
 

 
 
If you are new to the IsoPodX™, we know you will be in a hurry to see it working.  
 
That’s okay. We understand. 
 
Let’s skip the features and the tour and discussion of Virtually Parallel Machine 
Architecture™ (VPMA) and get right to the operation. Those points can come later. Once 
we’ve got communications, then we can make some lights blink and know for sure we’re 
in business. Let’s make this “pod” talk to us! 
 
We’ll need PC running a terminal program. Then we’ll need a serial cable to connect 
from the PC to the IsoPodX™. Then we need power, such as from a 6VDC wall 
transformer (which you’ve already gotten from us).  If we have those connections correct, 
we will be able to talk to the IsoPodX™ interactively. 
 



 
 

These connections are made on the serial DB9 on the IsoPodX, and the barrel connector 
for accepting the 6 VDC power. 
 
Once you have your serial cable, and wall transformer ready, follow these steps. 
 
Start with the PC: Install and run the MaxTerm program for DOS, or NMITerm for 
Windows. Set the terminal program for communications channel (COM1, COM2, etc.) 
you wish to use, and set communications settings to (9600 8N1). Operate the program to 
get past the opening set ups and to the terminal screen, so it is ready to communicate. (If 
necessary, visit the chapters on MaxTerm or NMITerm or Hyperterm if you have trouble 
understanding how to accomplish any of this.) 
 
Hook the computer end of the serial cable (usually a DB-9 connector, but may be a DB-
25, or other, on older PC’s) to the PC’s communication channel selected in the terminal 
program.  
 

 
 

Now hook the IsoPodX™ end of the serial cable to the IsoPodX™ with connections as 
shown in the instructions.  

 
 



All three LED’s should come on if the power switch is on and power cable connected. If 
the LED’s do not light, unplug the power or switch off the IsoPodX™ quickly.  
 

 
 
Now check the screen on the computer. When the power is applied, before any user 
program installed, the PC terminal program should show “IsoMax™ V1.0” (or whatever 
the version currently is, see upgrade policy later at the end of this chapter).  
 
If the LED’s don’t light, and the screen doesn’t show the message, unplug the power to 
the IsoPodX™. Go back through the instructions again. Check the power connections, 
particularly for polarity. (The outer ring of the barrel connector should be negative or 
ground, the inner connection should be positive 6 volts.) If the LED’s come on but there 
is no communication, check the terminal program. Check the serial connections, to make 
sure everything is plugged in, and that you are using an ordinary serial cable. A null 
modem cable will not work. Try once more. If you have no success, see the trouble 
shooting section of this manual and then contact technical support for help, before going 
further. Do not leave power on the board for more than a few seconds if it does not 
appear to be operational. 
 
Normally at this point you will see the prompt on the computer screen “IsoMax™ Vx.x”. 
Odds are you’re there. Congratulations!  Now let’s do something interactive with the 
IsoPodX™.  
 
In the terminal program on the PC, type in, “WORDS” (all in “caps” as the language is case 
sensitive), and then hit “Enter”. A stream of words in the language should now scroll up 



the screen. Good, we’re making progress. You are now talking interactively with the 
language in the IsoPodX™. 
Now let’s blink the LED’s. Port lines control the LED’s. Type: 
 
 REDLED OFF 

 
 
To turn it back on type: 
 
 REDLED ON 

 
 
Now let’s use the Yellow and Green LED’s. Type: 
 
 YELLED OFF GRNLED OFF 
 

 
 
 
To turn it back on type: 

 
 YELLED ON GRNLED ON 

 

 



 
   Now you should have a good feeling because you can tell your IsoPodX™ is working. 
It’s time for an overview of what your IsoPodX™ has for features. 
 
First though, a few comments on IsoMax™ revision level. The first port of IsoMax™ 
occurred on May 27, 2002. We called this version V0.1, but it never shipped. While the 
core language was functional as it then was, we really wanted to add many I/O support 
words. We added a small number of words to identify the port lines and turn them on and 
off and shipped the first public release on June 3, 2002. This version was V0.2. Currently 
V0.3 is under development which will have support words for many of the built in 
hardware functions, and V0.4 is already planned which will had emulation of hardware 
features on the port lines. As we approach a more complete version, eventually we will 
release V1.0. We want all our original customers to have the benefit of the extensions we 
add to the language. Any IsoPodX™ purchased prior to V1.0 release can be returned to 
the factory (at customer’s expense for shipping) and we will upgrade the V0.x release to 
V1.0 without charge.  
 



INTRODUCTION 
 
Okay. We should be running. Back to the basics. 
 
What is neat about the IsoPodX™? Several things. First it is a very good micro 
controller. The IsoPodX™ was intended to be as small as possible, while still being 
useable. A careful balance between dense features, and access to connections is made 
here. Feature density is very high. So secondly, having connectors you can actually “get 
at” is also a big plus. What is the use of a neat little computer with lots of features, if you 
can conveniently only use one of those features at a time?  
 
The answer is very important. The neatest thing about the 
IsoPodX™ is software giving Virtually Parallel Machine 
Architecture! 
 
Virtually Parallel Machine Architecture (VPMA) is a new 
programming paradigm. VPMA allows small, independent 
machines to be constructed, then added seamlessly to the 
system. All these installed machines run in a virtually parallel 
fashion.  
 

 In an ordinary high level language, such as C, Basic, Forth or Java, most anyone 
can make a small computer do one thing well. Programs are written flowing 
from top to bottom. Flow charts are the preferred diagramming tools for these 
languages. Any time a program must wait on something, it simply loops in 
place. Most conventional languages follow the structured procedural 
programming paradigm. Structured programming enforces this style.  

 
Getting two things done at the same time gets tricky. Add a few 
more things concurrently competing for processor attention, and 
most projects start running into serious trouble. Much beyond 
that, and only the best programmers can weave a program 
together running many tasks in one application.  
 
Most of us have to resort to a multitasking system. (Windows and Linux are the most 
obvious examples of multitasking systems.) For a dedicated processor, a multitasking 
operating system adds a great amount of overhead for each task and an unpleasant 
amount of program complexity.  

 
The breakthrough in IsoMax™ is the language is inherently 
“multitasking” without the overhead or complexity of a multitasking 
operating system. There’s really been nothing quite like it before. 
Anyone can write a few simple machines in IsoMax™ and string them 
together so they work.  
 



 
 
Old constrained ways of thinking must be left behind to get this new level of efficiency. 
IsoMax™ is therefore not, and cannot be, like a conventional procedural language. 
Likewise, conventional languages cannot become IsoMax™ like without loosing a 
number of key features which enforces Structured Programming at the expense of 
Isostructure. 
 

 
 
In IsoMax™, all tasks are handled on the same level, each running like its own separate 
little machine. (Tasks don’t come and go, like they do in multitasking, any more than 
you’d want your leg to come and go while you’re running.) Each machine in the program 
is like hardware component in a mechanical solution. Parts are installed in place, each 
associated with their own place and function. 
 
Programming means create a new processor task fashioned as a machine, and debug it 
interactively in the foreground. When satisfied with performance, you install the new 
machine in a chain of machines. The machine chain becomes a background feature of the 
IsoPodX™ until you remove it or replace it. 
 
The combination of VPMA software and diverse hardware makes IsoPodX™ very 
versatile. It can be used as a stand-alone computer board, deeply embedded inside some 
project. Perhaps in a mobile robot mounted with double sided sticky tape or tie wraps 
(although this would be less than a permanent or professional approach to mounting). It 
can be the controller on a larger PCB board. An IsoPodX™ brings an amazing amount 
power to a very small space, at a very reasonable cost. You’ll undoubtedly want to have a 
few IsoPodX™ ‘s on hand for your future projects.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



QUIK TOUR 
 
Start by comparing your board to the diagram below. Most of the important features on 
the top board are labeled. 
 

 
 
The features most important to you will be the connectors. The following list gives a brief 
description of each connector and the signals involved. 

    
J1 Serial, Power, General Purpose I/O 
J2 CAN BUS Network Port & 2nd Serial Port 
J3 SPI 
J4 Alternate power input, Vin 
J5 Analog 0 to 7 
J6 External Memory Enable/Disable  
J7  PWM’s Fault & Current Sense 
J8 JTAG connector 
J9 PWMA0-5 & PWMB0-5 
J10 Timer A&B/Quadrature decoders 
J11 Timer C&D/Interrupts  
J12 Primary Serial Connector 
J13 Int/Ext Memory Boot 
  
  
  
  



  
  
  
  
  
  
  

On the right is connector J1. Digital I/O, the power and serial connections are found here. 
J1 is a male connector. To attach the power and serial connections we need either female 
pins. 
 
Other connectors are also dual or triple row male headers. Connection can be made with 
male headers with crimped wire inserts, or IDC headers with soldered or cabled wires.  
 
Signals were put on separate connectors where possible, such as with the SPI, RS-422, 
the Can Bus, and PWM connectors. The male headers allow insertion of individually 
hand-crimped wires in connectors where signals are combined. For instance, R/C Servo 
motor headers often come in this size connection with a 3x1 header. These can plug 
directly onto the board side by side on the PWM, Quadrature, and Timer connectors on 
J9, J10, and J11 respectively. 
 
The large chip in the center is the CPU.  
 
Three LED’s, Red, Yellow, and Green are on the bottom left of the board, and are 
dedicated to user control.  
 
U3 and U4 solder pads are RS-422/485 drivers which is optional for RS-422/485 
network. 
 
Along the bottom of the board the largest components are the voltage regulators. If the 
total current draw were smaller, we could make a smaller supply, but to be sure every 
user could get enough power to run at full speed, these larger parts were necessary. A 
smaller module, which will replace the regulators, is also planned. 
 
A few smaller chips are also on the bottom side, the RS-232 transceiver and the LED 
driver, and a handful of resistors and capacitors.  
 
 



PROGRAMMING 
 
 
IsoMax is a programming language based on Finite State Machine (FSM) concepts 
applied to software, with a procedural language (derived from Forth) underneath it. The 
closest description to the FSM construction type is a “One-Hot” Mealy type of Timer 
Augmented Finite State Machines. More on these concepts will come later.  
 

QUICK OVERVIEW  
 
What is IsoMax™? IsoMax™ is a real time operating system / language.  
 
How do you program in IsoMax™? You create state machines that can run in a virtually 
parallel architecture.  
 

Step Programming Action Syntax 
1 Name a state machine 

 

 
 

MACHINE <name> 

2 Select this state 
 

ON-MACHINE <name> 

3 Name any states appended on the machine 
 

 
 

APPEND-STATE <name> 
APPEND-STATE <name> 
… 

4 Describe transitions from states to states 
 

 

IN-STATE  
  <state> 
CONDITION 
  <Boolean> 
CAUSES 
  <action> 
THEN-STATE 
  <state> 
TO-HAPPEN 

5 Test and Install {as required} 
 
What do you have to write to make a state machine in IsoMax™? You give a machine a 
name, and then tell the system that’s the name you want to work on. You append any 



number of states to the machine. You describe any number of transitions between states. 
Then you test the machine and when satisfied, install it into the machine chain.  
 
What is a transition? A transition is how a state machine changes states. What’s in a 
transition? A transition has four components; 1) which state it starts in, 2) the condition 
necessary to leave, 3) the action to take when the condition comes true, and 4) the state to 
go to next time. Why are transitions so verbose? The structure makes the transitions easy 
to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are like the five brackets around a table of four things.  
 
 

IN-STATE 
\ 

CONDITION 
/\ 

CAUSES 
/\ 

THEN-STATE 
/\ 

TO-HAPPEN 
/ 

<from state> <Boolean> <action> <to state> 
 
In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE 
and TO-HAPPEN are always there (with some possible options to be set out later). The 
“meat slices” between the “slices of bread” are the hearty stuffing of the description. You 
will fill in those portions to your own needs and liking. The language provides “the 
bread” (with only a few options to be discussed later). 
 
So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states 
appended. The transitions are laid out in a pattern, with certain words surrounding others. 
Procedural parts are inserted in the transitions between the standard clauses.  
 
The syntax is very loose compared to some languages. What is important is the order or 
sequence these words come in. Whether they occur on one line or many lines, with one 
space or many spaces between them doesn’t matter. Only the order is important.  
 

THREE MACHINES 
 
Now let’s take a first step at exploring IsoMax™ the language by looking at some very 
simple examples. We’ll explore the language with what we’ve just tested earlier, the LED 
words. We’ll add some machines that will use the LED’s as outputs, so we can visually 
“see” how we’re coming along.  
 

REDTRIGGER  
 
First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s 
presented first without detailed explanation, entered and tested. Then we will explain the 
language to create the machine step by step  
 
 
( THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 



( IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.  
( IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE 
 
HEX 
: OFF?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 0= 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=  
  THEN 
; 
DECIMAL 

 
MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 
 

There you have it, a complete real time program in two lines of IsoMax™, and one 
additional line to install it. A useful virtual machine is made here with one state and one 
transition.  
 
This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the 
occurrence of an input signal. The timed output response may begin on either the leading 
edge or the trailing edge of the input signal. The preset time (in this case: infinity) is 
independent of the duration of the input signal.) For an example of a hardware non-
retriggerable one-shot, see http://www.philipslogic.com/products/hc/pdf/74hc221.pdf. 
 

 
 

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes. 
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is attached. 



So attaching push button from PA7 to ground, or even hooking a jumper test lead to 
ground and pushing the other end into contact with the wire lead in PA7, will cause PA7 
to go “off” or “low”, and the REDLED will come on.  
 

 
(In these examples, any port line that can be an input could be used. PA7 here, PB7 and 
PB6 later, were chosen because they are on J1 and the easy to access.) 
 
Now if you want, type these lines shown above in. (If you are reading this manual 
electronically, you should be able to highlight the text on screen and copy the text to the 
clipboard with Cntl-C. Then you may be able to paste into your terminal program. On 
MaxTerm, the command to down load the clipboard is Alt-V. On other windows 
programs it might be Cntl-V.) 
 
Odds are your red LED is already on. When the IsoPodX™ powers up, it’s designed to 
have the LED’s on, unless programmed otherwise by the user. So to be useful we must 
reset this one-shot. Enter:  
 
REDLED OFF  

 
Now install the REDTRIGGER by installing it in the (now empty) machine chain. 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 

 



 
 

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove 
the ground or release the push button. The red LED does not go back off. The program is 
still running, even though all visible changes end at that point. To see that, we’ll need to 
manually reset the LED off so we can see something happen again. Enter. 
 
REDLED OFF  

 
If we ground PA7 again, the red LED will come back on, so even though we are still fully 
interactive with the IsoPodX™ able to type commands like REDLED OFF in manually, the 
REDTRIGGER machine is running in the background. 
 
Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll take 
the time explain the concepts of this new language we skipped over previously.  
 
Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the 
elements of the program relate to a state machine diagram. Usually you start to learn a 
language by learning the syntax, or how and where elements of the program must be 
placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on 
any line with any amount of white space between them as long as the sequence remains 
the same. So in the pretty printing, most things are put on a separate line and have spaces 
in front of them just to make the relationships easy to see. Beyond the basic language 
syntax, a few words have a further syntax associated to them. They must have new names 
on the same line as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE 
require a name following. You will see that they do. More on syntax will come later. 



 

 
In this example, the first program line, we tell IsoMax™ we’re making a new virtual 
machine, named REDTRIGGER. (Any group of characters without a space or a backspace 
or return will do for a name. You can be very creative. Use up to 32 characters. Here the 
syntax is MACHINE followed by the chosen name.) 
 
MACHINE REDTRIGGER 

 
That’s it. We now have a new machine. This particular new machine is named 
REDTRIGGER. It doesn’t do anything yet, but it is part of the language, a piece of our 
program. 
 
For our second program line, we’ll identify REDTRIGGER as the machine we want to 
append things to. The syntax to do this is to say ON-MACHINE and the name of the 
machine we want to work on, which we named REDTRIGGER so the second program line 
looks like this: 
 
  ON-MACHINE REDTRIGGER 
  

(Right now, we only have one machine installed. We could have skipped this second line. 
Since there could be several machines already in the IsoPodX™ at the moment, it is good 
policy to be explicit. Always use this line before appending states. When you have 
several machines defined, and you want to add a state or transition to one of them, you 
will need that line to pick the machine being appended to. Otherwise, the new state or 
transition will be appended to the last machine worked on.) 
 
All right. We add the machine to the language. We have told the language the name of 
the machine to add states to. Now we’ll add a state with a name. The syntax to do this is 
to say APPEND-STATE followed by another made-up name of our own. Here we add 
one state RT like this: 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE REDTRIGGER  
 
  ON-MACHINE REDTRIGGER  
    APPEND-STATE RT 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-STATE  
  RT  
TO-HAPPEN 
 
 

RT 

REDLED ON

PA7 OFF? 
ADD A STATE

ADD A TRANSITION

MAKE A MACHINE

ACTION 

BOOLEAN 

FROM STATE TO STATE 



    APPEND-STATE RT 

 
States are the fundamental parts of our virtual machine. States help us factor our program 
down into the important parts. A state is a place where the computer’s outputs are stable, 
or static. Said another way, a state is place where the computer waits. Since all real time 
programs have places where they wait, we can use the waits to allow other programs to 
have other processes. There is really nothing for a computer to do while its outputs are 
stable, except to check if it is time to change the outputs.  
 
(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the 
computer to waste time in a wait, no backwards branches allowed. It allows a check for 
the need to leave the state once per scheduled time, per machine.) 
 
To review, we’ve designed a machine and a sub component state. Now we can set up 
something like a loop, or jump, where we go out from the static state when required to do 
some processing and come back again to a static wait state.  
 
The rules for changing states along with the actions to do if the rule is met are called 
transitions. A transition contains the name of the state the rule applies to, the rules called 
the condition, what to do called the action, and “where to go” to get into another state. 
(We have only one state in this example, so the last part is easy. There is no choice. We 
go back into the same state. In machines with more than one state, it is obviously 
important to have this final piece.) 
 
There’s really no point in have a state in a machine without a transition into or out of it. If 
there is no transition into or out of a state, it is like designing a wait that cannot start, 
cannot end, and cannot do anything else either.  
 
On the other hand, a state that has no transition into it, but does have one out of it, might 
be an “initial state” or a “beginning state”. A state that has a transition into it, but doesn’t 
have one out of it, might be a “final state” or an “ending state”. However, most states will 
have at least one (or more) transition entering the state and one (or more) transition 
leaving the state. In our example, we have one transition that leaves the state, and one 
that comes into the state. It just happens to be the same one. 
 
Together a condition and action makes up a transition, and transitions go from one 
specific state to another specific state. So there are four pieces necessary to describe a 
transition; 1) The state the machine starts in. 2) the condition to leave that state 3) the 
action taken between states and 4) the new state the machine goes to.  
 
Looking at the text box with the graphic in it, we can see the transitions four elements 
clearly labeled. In the text version, these four elements are printed in bold. In the 
equivalent graphic they are labeled as “FROM STATE”, “BOOLEAN”, “ACTION” and 
“TO STATE”.  
 
The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7 
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT. 



 

So to complete our state machine program, we must define the transition we need. The 
syntax to make a transition, then, is to fill in the blanks between this form: IN-STATE 
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN. 
 
Whether the transition is written on one line as it was at first: 
 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 

  
Or pretty printed on several lines as it was in the text box: 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-STATE  
  RT  
TO-HAPPEN 
 
The effect is the same. The five bordering words are there, and the four user supplied 
states, condition and action are in the same order and either way do the same thing. 
 
After the transition is added to the program, the program can be tested and installed as 
shown above. 
 
State machine diagrams (the graphic above being an example) are 
nothing new. They are widely used to design hardware. They come 
with a few minor style variations, mostly related to how the 
outputs are done. But they are all very similar. The figure to the 
right is a hardware Quadrature design with four states. 
 
While FSM diagrams are also widely known in programming as an abstract 
computational element, there are few instances where they are used to design software. 
Usually, the tools for writing software in state machines are very hard to follow. The 
programming style doesn’t seem to resemble the state machine design, and is often a 
slow, table-driven “read, process all inputs, computation and output” scheme. 
 
IsoMax™ technology has overcome this barrier, and gives you the ability to design 
software that looks “like” hardware and runs “like” hardware (not quite as fast of course, 
but in the style, or thought process, or “paradigm” of hardware) and is extremely 
efficient. The Virtually Parallel Machine Architecture lets you design many little, 
hardware-like, machines, rather than one megalith software program that lumbers through 
layer after layer of if-then statements. (You might want to refer to the IsoMax Reference 
Manual to understand the language and its origins.) 
 
 
 



ANDGATE1 
 
Let’s do another quick little machine and install both machines so you can see them 
running concurrently. 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
 
HEX 
: ON?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT 
  THEN 
; 
DECIMAL 

 
MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X 
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE 
X TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE1 
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN 
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1 
 

There you have it, another complete real time program in three lines of IsoMax™, and 
one additional line to install it. A useful virtual machine is made here with one state and 
one transition. This virtual machine acts (almost) like an AND gate made in hardware.  
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf 
 



  
 
Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of 
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this 
little program could be used like an interlock system detecting “cover closed”. 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE1  
 
  ON-MACHINE ANDGATE1  
    APPEND-STATE X 
 
IN-STATE 
  X 
CONDITION 
  YELLED OFF 
  PA7 ON? 
  PB7 ON? AND  
CAUSES  
  YELLED ON  
THEN-STATE  
  X  
TO-HAPPEN 

X

YELLED ON

YELLED OFF 
PA7 ON? 

PB7 ON? AND ADD A STATE

ADD A TRANSITION

MAKE A MACHINE



 
 
(Now it is worth mentioning, the example is a bit contrived. When you try to make a state 
machine too simple, you wind up stretching things you shouldn’t. This example could 
have acted exactly like an AND gate if two transitions were used, rather than just one. 
Instead, a “trick” was used to turn the LED off every time in the condition, then turn it on 
only when the condition was true. So a noise spike is generated a real “and” gate doesn’t 
have. The trick made the machine simpler, it has half the transitions, but it is less 
functional. Later we’ll revisit this machine in detail to improve it.) 
 
Notice both machines share an input, but are using the opposite sense on that input. 
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make 
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down. 
 
Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet 
the two machines coexist peacefully on the same processor, even sharing the same inputs 
in different ways. 
 
To see these machines running enter the new code, if you are still running REDTRIGGER, 
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or cycle 
power) and download the whole of both programs. 
 
Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now 
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect for 
the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the yellow 
LED back on, but the red LED remains on.  
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no 
effect on the red LED, but turns off the yellow LED while grounded. Grounding both 
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED if 
not yet set. 
 
 

 
 



Notice how the tightly the two machines are intertwined. Perhaps you can imagine how 
very simple machines with combinatory logic and sharing inputs and feeding back 
outputs can quickly start showing some complex behaviors. Let’s add some more 
complexity with another machine sharing the PA7 input. 
 

BOUNCELESS 
 
We have another quick example of a little more complex machine, one with one state and 
two transitions. 
 
MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y 
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN 
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN 
 
Y SET-STATE ( INSTALL BOUNCELESS 

 
MACHINE-CHAIN 3EASY 
REDTRIGGER 
ANDGATE 
BOUNCELESS 
END-MACHINE-CHAIN 
 
EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY 

 
There you have yet another complete design, initialization and installation of a virtual 
machine in four lines of IsoMax™ code.  
 
Another name for the machine in this program is “a bounceless switch”. 
 

 

 
 
Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge 
output signals. They do this by toggling state when an input first becomes active, and 
remaining in that state. If you are familiar with hardware, you might recognize the two 
gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable 
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input 
is grounded, and will not flip back until the other input is grounded. 
 
By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off 
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button 
acts as a reset switch, and the PB6 acts as a set switch.  



 
You can see here, in IsoMax™, you can simulate hardware machines and circuits, with 
just a few lines of code. Here we created one machine, gave it one state, and appended 
two transitions to that state. Then we installed the finished machine along with the two 
previous machines. All run in the background, freeing us to program more virtual 
machines that can also run in parallel, or interactively monitor existing machines from the 
foreground. 
 

 
 
Notice all three virtual hardware circuits are installed at the same time, they operate 
virtually in parallel, and the IsoPodX™ is still not visibly taxed by having these machines 
run in parallel. Further, all three machines share one input, so their behavior is strongly 
linked. 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS  
 
  ON-MACHINE BOUNCELESS  
    APPEND-STATE Y 
 
IN-STATE 
  Y 
CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 
 
IN-STATE 
  Y 
CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-HAPPEN 

ADD A STATE

Y

GRNLED OFF

PA7 OFF?

PB6 OFF?

GRNLED ON

ADD A TRANSITION

ADD A TRANSITION

MAKE A MACHINE



SYNTAX AND FORMATTING 
 
Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax 
again, you’ll need to remember the following. Everything in IsoMax™ is a word or a 
number. Words and numbers are separated spaces (or returns).  
 
Some words have a little syntax of their own. The most common cases for such words are 
those that require a name to follow them. When you add a new name, you can use any 
combinations of characters or letters except (obviously) spaces and backspaces, and 
carriage returns. So, when it comes to pretty formatting, you can put as much on one line 
as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long 
as you keep your words whole. However, some words will require a name to follow 
them, so those names will have to be on the same line. 
 
In the examples you will see white space (blanks) used to add some formatting to the 
source text. MACHINE starts at the left, and is followed by the name of the new machine 
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-STATE 
X is indented two additional spaces. This is the suggested, but not mandatory, offset to 
achieve pretty formatting. Use two spaces to indent for levels. The transitions are 
similarly laid out, where the required words are positioned at the left, and the user 
programming is stepped in two spaces. 
 
 

MULTIPLE STATES/MULTIPLE TRANSITIONS 
 
Before we leave the previous “Three Machines”, let’s review the AND machine again, 
since it had a little trick in it to keep it simple, just one state and one transition. The trick 
does simplify things, but goes too far, and causes a glitch in the output. To make an AND 
gate which is just like the hardware AND we need at least two transitions. The previous 
example, BOUNCELESS was the first state machine with more than one transition. We’ll 
follow this precedent and redo ANDGATE2 with two transitions.  
 

ANDGATE2 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM  

 
MACHINE ANDGATE2 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
 
IN-STATE  
  X 
CONDITION 
  PA7 ON? 
  PB7 ON? AND 
CAUSES 



  YELLED ON 
THEN-STATE 
  X 
TO-HAPPEN 
 
IN-STATE  
  X 
CONDITION 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF 
THEN-STATE 
  X 
TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE2 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2 
 

 
 

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Notice 
there is an “action” included in the ANDGATE1 condition clause. See the YELLED OFF 
statement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further notice the 
same phrase YELLED OFF appears in the second transition of ANDGATE2 as the object 
action of that transition.  
 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE2  
 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
 
IN-STATE 
  X  
CONDITION  
  PA7 ON? 
  PB7 ON? AND 
CAUSES  
  YELLED ON  
THEN-STATE 
  X 
TO-HAPPEN 
 
IN-STATE 
  X 
CONDITION 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF  
THEN-STATE 
  X 
TO-HAPPEN 

   X 

YELLED ON 

PA7 ON? PB7 ON? AND 

ADD A TRANSITION

MAKE A MACHINE

APPEND STATE 

PA7 OFF? PB7 OFF? OR 

YELLED OFF

ADD A TRANSITION



TRANSITION COMPARISON 
 

ANDGATE1 
 

ANDGATE2 
IN-STATE 
  X 
CONDITION 
  YELLED OFF 
  PA7 ON? 
  PB7 ON? AND  
CAUSES  
  YELLED ON  
THEN-STATE  
  X  
TO-HAPPEN 

IN-STATE 
  X  
CONDITION 
 
  PA7 ON? 
  PB7 ON? AND 
CAUSES  
  YELLED ON  
THEN-STATE 
  X 
TO-HAPPEN 

IN-STATE 
  X 
CONDITION 
 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF  
THEN-STATE 
  X 
TO-HAPPEN 

 

The way this trick worked was by using an action in the condition clause, every time the 
scheduler ran the chain of machines, it would execute the conditions clauses of all 
transitions on any active state. Only if the condition was true, did any action of a 
transition get executed. Consequently, the trick used in ANDGATE1 caused the action of the 
second transition to happen when conditionals (only) should be running. This meant it 
was as if the second transition of ANDGATE2 happened every time. Then if the condition 
found the action to be a “wrong” output in the conditional, the action of ANDGATE1 ran 
and corrected the situation. The brief time the processor took to correct the wrong output 
was the “glitch” in ANDGATE1’s output. 
 
Now this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as most 
modern versions of AND gates implemented in random logic on silicon. The latency of 
the outputs of ANDGATE2 are determined by how many times ANDGATE2 runs per second. 
The programmer determines the rate, so has control of the latency, to the limits of the 
CPU’s processing power. 
 
The original ANDGATE1 serves as an example of what not to do, yet also just how flexible 
you can be with the language model. Using an action between the CONDITION and CAUSES 
phrase is not prohibited, but is considered not appropriate in the paradigm of Isostructure.  
 
An algorithm flowing to determine a single Boolean value should be the only thing in the 
condition clause of a transition. Any other action there slows the machine down, being 
executed every time the machine chain runs.  
 
Most of the time, states wait. A state is meant to take no action, and have no output. They 
run the condition only to check if it is time to stop the wait, time to take an action in a 
transition.  
 
The actions we have taken in these simple machines if very short. More complex 
machines can have very complex actions, which should only be run when it is absolutely 
necessary. Putting actions in the conditional lengthens the time it takes to operate waiting 
machines, and steals time from other transitions.  
 



Why was it necessary to have two transitions to do a proper AND gate? To find the 
answer look at the output of an AND gate. There are two possible mutually exclusive 
outputs, a “1” or a “0”. Once action cannot set an output high or low. One output can set 
a bit high. It takes a different output to set a bit low. Hence, two separate outputs are 
required.  
 

ANDOUT 
 
Couldn’t we just slip an action into the condition spot and do away with both transitions? 
Couldn’t we just make a “thread” to do the work periodically? Yes, perhaps, but that 
would break the paradigm. Let’s make a non-machine definition. The output of our 
conditional is in fact a Boolean itself. Why not define: 
 
: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ; 

 
Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine 
chain instead? There are no backwards branches in this code. It has no Program Counter 
Capture (PCC) Loops. It runs straight through to termination. It would work. 
 
This, however, is another trick you should avoid. Again, why? This code does one of two 
actions every time the scheduler runs. The actions take longer than the Boolean test and 
transfer to another thread. The system will run slower, because the same outputs are 
being generated time after time, whether they have changed or not. While the speed 
penalty in this example is exceedingly small, it could be considerable for larger state 
machines with more detailed actions. 
 
A deeper reason exists that reveals a great truth about state machines. Notice we have 
used a state machine to simulate a hardware gate. What the AND gate outputs next is 
completely dependent on what the inputs are next. An AND gate has an output which has 
no feedback. An AND gate has no memory. State machines can have memory. Their 
future outputs depend on more than the inputs present. A state machine’s outputs can also 
depend on the history of previous states. To appreciate this great difference between state 
machines and simple gates, we must first look a bit further at some examples with 
multiple states and multiple transitions. 
 

ANDGATE3 
 
We are going to do another AND gate version, ANDGATE3, to illustrate this point about 
state machines having multiple states. This version will have two transitions and two 
states. Up until now, our machines have had a single state. Machines with a single state in 
general are not very versatile or interesting. You need to start thinking in terms of 
machines with many states. This is a gentle introduction starting with a familiar problem. 
Another change is in effect here. We have previously first written the code so as to make 
the program small in terms of lines. We used this style to emphasize small program 



length. From now on, we are going to pretty print it so it reads as easily as possible, 
instead.  
 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED  

 
MACHINE ANDGATE3 
  ON-MACHINE ANDGATE3 
    APPEND-STATE X0 
    APPEND-STATE X1 
 
IN-STATE  
  X0 
CONDITION 
  PA7 ON? PB7 ON? AND 
CAUSES 
  YELLED ON 
  PB0 ON 
THEN-STATE 
  X1 
TO-HAPPEN 
 
IN-STATE  
  X1 
CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 
  YELLED OFF 
  PB0 OFF 
THEN-STATE 
  X0 
TO-HAPPEN 
 
X0 SET-STATE ( INSTALL ANDGATE3 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3 



 

 
Notice how similar this version of an AND gate, ANDGATE3, is to the previous version, 
ANDGATE2. The major difference is that there are two states instead of one. We also added 
some “spice” to the action clauses, doing another output on PB0, to show how actions 
can be more complicated. 
 
 

INTER-MACHINE COMMUNICATIONS 
 
Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem. 
Now let’s say another machine needs to know if both PA7 and PB7 are both high? If we 
had only one state, it would have to recalculate the AND phrase, or read back what 
ANDGATE3 had written as outputs. Rereading written outputs is sometimes dangerous, 
because there are hardware outputs which is cannot be read back. If we use different 
states for each different output, the state information itself stores which state is active. All 
an additional machine has to do to discover the status of PA7 and PB7 AND’ed together 
is check the stored state information of ANDGATE3. To accomplish this, simply query the 
state this way. 
 
X0 IS-STATE?  
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE3  
 
  ON-MACHINE ANDGATE3 
    APPEND-STATE X0 
    APPEND-STATE X1 
 

 
IN-STATE 
  X0  
CONDITION  
  PA7 ON? PB7 ON? AND 
CAUSES  
  YELLED ON  
  PB0 ON 
THEN-STATE 
  X1  
TO-HAPPEN 
 
IN-STATE 
  X1 
CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 
  YELLED OFF 
  PB0 OFF 
THEN-STATE 
   X0  
TO-HAPPEN 

X0 

YELLED ON 
PB0 ON

PA7 ON? PB7 ON? AND 

ADD A TRANSITION

MAKE A MACHINE

 

X1 

PA7 OFF? PB7 OFF? OR 

YELLED OFF
PB0 OFF 

ADD A TRANSITION



A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This 
Boolean can be part of a condition in another state. On the other hand: 
 
X1 IS-STATE?  
 
will return a TRUE value only if PA7 and PB7 are both high.  
 

STATE MEMORY 
 
So you see, a state machine’s current state is as much as an output as the outputs PB0 ON 
and YELLOW LED ON are, less likely to have read back problems, and faster to check. The 
current state contains more information than other outputs. It can also contain history. 
The current state is so versatile, in fact, it can store all the pertinent history necessary to 
make any decision on past inputs and transitions. This is the deep truth about state 
machines we sought.  
 
 

 
No similar solution is possible with short code threads. While variables can indeed be 
used in threads, and threads can again reference those variable, using threads and 
variables leads to deeply nested IF ELSE THEN structures and dreaded spaghetti code which 
often invades and complicates real time programs. 

BOUNCELESS+ 
 
To put the application of state history to the test, let’s revisit our previous version of the 
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.  
 

 
STATE Y 

IN-STATE 
  Y 
CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 

IN-STATE 
  Y 
CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION 
 
The behavior of a finite-state machine is described as a sequence of events 
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a 
machine M has been receiving inputs signals and has been responding by 
producing output signals. If now, at time t, we were to apply an input 
signal x(t) to M, its response z(t) would depend on x(t), as well as the past 
inputs to M.  
 
From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI 



THEN-STATE 
  Y 
TO-HAPPEN 

THEN-STATE 
  Y 
TO-HAPPEN 

 
This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green 
LED would go on and off without noise or bounces between states. Notice however, PA7 
and PB6 being low at the same time is not excluded from the code. If both lines go low at 
the same time, the output of our machine is not well determined. One state output will 
take precedence over the other, but which it will be cannot be determined from just 
looking at the program. Whichever transition gets first service will win. 
 

 
Now consider how BOUNCELESS+ can be improved if the state machines history is 
integrated into the problem. In order to have state history of any significance, however, 
we must have multiple states. As we did with our ANDGATE3 let’s add one more state. The 
new states are WAITON and WAITOFF and run our two transitions between the two states.  
At first blush, the new machine looks more complicated, probably slower, but not 
significantly different from the previous version. This is not true however. When the 
scheduler calls a machine, only the active state and its transitions are considered. So in 
the previous version each time Y was executed, two conditionals on two transitions were 
tested (assuming no true condition). In this machine, two conditionals on only one 
transition are tested. As a result this machine runs slightly faster. 
 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS+  
 
  ON-MACHINE BOUNCELESS+ 
    APPEND-STATE WAITOFF 
    APPEND-STATE WAITON 
 

 
IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  
  GRNLED ON  
THEN-STATE 
  WAITON  
TO-HAPPEN 
 
IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 
  GRNLED OFF 
THEN-STATE 
  WAITOFF  
TO-HAPPEN 

WAITOFF

GRNLED ON

PA7 OFF? PB7 ON? AND 

WAITON 

 PB7 OFF? PA7 ON? AND 

GRNLED OFF 



Further, the new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved 
than the original hardware circuit shown!) It is truly bounceless, even if both switches are 
pressed at once. The first input detected down either takes us to its state or inhibits the 
release of its state. The other input can dance all it wants, as long as the one first down 
remains down. Only when the original input is released can a new input cause a change 
of state. In the rare case where both signals occur at once, it is the history, the existing 
state, which determines the status of the machine. 
 

 
STATE WAITOFF 

 
STATE WAITON 

IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  
  GRNLED ON  
THEN-STATE 
  WAITON  
TO-HAPPEN 

IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 
  GRNLED OFF 
THEN-STATE 
  WAITOFF  
TO-HAPPEN 

 
 

DELAYS 
 
Let’s say we want to make a steady blinker out of the green LED. In a conventional 
procedural language, like BASIC, C, FORTH, or Java, etc., you’d probably program a 
loop blinking the LED on then off. Between each loop would be a delay of some kind, 
perhaps a subroutine you call which also spins in a loop wasting time.  
 

Assembler  BASIC  C  JAVA FORTH  
LOOP1 LDX # 0 FOR I=1 TO N While ( 1 ) BEGIN 
LOOP2 DEX 
      BNE LOOP2 

GOSUB DELAY { delay(x);   DELAY 

      LDAA #1 
      STAA PORTA 
      LDX # 0 

LET PB=TRUE   out(1,portA1);   LED-ON 

LOOP3 DEX 
      BNE LOOP3 

GOSUB DELAY   delay(x);   DELAY 

      LDAA #N 
      STAA PORTA 

Let PB=FALSE   out(0,portA1);   LED-OFF 

      JMP LOOP1 NEXT } AGAIN 

 
Here’s where IsoMax™ will start to look different from any other language you’re likely 
to have ever seen before. The idea behind Virtually Parallel Machine Architecture is 
constructing virtual machines, each a little “state machine” in its own right. But this 
IsoStructure requires a limitation on the machine, themselves. In IsoMax™, there are no 
program loops, there are no backwards branches, there are no calls to time wasting delays 
allowed. Instead we design machines with states. If we want a loop, we can make a state, 
then write a transition from that state that returns to that state, and accomplish roughly the 
same thing. Also in IsoMax™, there are no delay loops.  
 



The whole point of having a state is to allow “being in the state” to be “the delay”.  
 
Breaking this restriction will break the functionality of IsoStructure, and the parallel 
machines will stop running in parallel. If you’ve ever programmed in any other language, 
your hardest habit to break will be to get away from the idea of looping in your program, 
and using the states and transitions to do the equivalent of looping for you. 
 
A valid condition to leave a state might be a count down of passes through the state until 
a 0 count reached. Given the periodicity of the scheduler calling the machine chain, and 
the initial value in the counter, this would make a delay that didn’t “wait” in the 
conventional sense of backwards branching.  
 

BLINKGRN 
 
Now for an example of a delay using the count down to zero, we make a machine 
BLINKGRN. Reset your IsoPodX™ so it is clean and clear of any programs, and then 
begin. 
 
MACHINE BLINKGRN 
  ON-MACHINE BLINKGRN 
    APPEND-STATE BG1 
    APPEND-STATE BG2 

 
The action taken when we leave the state will be to turn the LED off and reinitialize the 
counter. The other half of the problem in the other state we go to is just the reversed. We 
delay for a count, then turn the LED back on.  
 
Since we’re going to count, we need two variables to work with. One contains the count, 
the other the initial value we count down from. Let’s add a place for those variables now, 
and initialize them 
 
: -LOOPVAR <BUILDS HERE P, 1- DUP , , DOES> 
  P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;  
100 -LOOPVAR CNT 

 
 
IN-STATE 
   BG1  
CONDITION  
   CNT 
CAUSES  
   GRNLED OFF  
THEN-STATE 
   BG2  
TO-HAPPEN 

 
IN-STATE 
   BG2 
CONDITION 



   CNT 
CAUSES 
   GRNLED ON  
THEN-STATE 
   BG1  
TO-HAPPEN 
 

 
Above, the two transitions are “pretty printed” to make the four components of a 
transition stand out. As discussed previously, as long as the structure is in this order it 
could just as well been run together on a single line (or so) per transition, like this 
 
IN-STATE BG1 CONDITION CNT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN 

 
IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN 

 
Finally, the new machine must be installed and tested 
 
BG1 SET-STATE ( INSTALL BLINKGRN 
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN 
 

The result of this program is that the green LED blinks on and off. Every time the 
scheduler runs the machine chain, control is passed to whichever state BG1 or BG2 is 
active. The -LOOPVAR created word CNT is decremented and tested. When the CNT reaches 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BLINKGRN  
 
  ON-MACHINE BLINKGRN 
    APPEND-STATE BG1 
    APPEND-STATE BG2 
 
100 0 LOOPVAR CNT   
 
IN-STATE 
  BG1  
CONDITION  
  CNT  
CAUSES  
  GRNLED OFF  
THEN-STATE 
  BG2  
TO-HAPPEN 
 
IN-STATE 
  BG2 
CONDITION 
  CNT 
CAUSES 
  GRNLED ON  
THEN-STATE 
  BG1  
TO-HAPPEN 

BG1

GRNLED OFF

CNT

BG2 

 CNT

GRNLED ON 



zero, it is reinitialize back to the originally set value, and passes a Boolean on to be tested 
by the transition. If the Boolean is TRUE, the action is initiated.  
 

 
 
The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is 
set to happen the next control returns to this machine. 
 

SPEED 
 
You’ve seen how to write a machine that delays based on a counter. Let’s now try a 
slightly less useful machine just to illustrate how fast the IsoPodX™ can change state. 
First reset your machine to get rid of the existing machines. 
 

ZIPGRN 
 
MACHINE ZIPGRN 
 
  ON-MACHINE ZIPGRN 
    APPEND-STATE ZIPON 
    APPEND-STATE ZIPOFF 
 
IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF  
TO-HAPPEN 
 
IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON  
TO-HAPPEN 
 
ZIPON SET-STATE  

 
Now rather than install our new machine we’re going to test it by running it “by hand” 
interactively. Type in: 
 
ZPON SET-STATE 
ZIPGRN 

 

 
 



ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can to 
termination, through one state transition, and stops. Run it again. Type:  
 
ZIPGRN                                        

 

 
 
Once again, the green LED should change. This time the machine starts in the state with 
the LED off. The always TRUE condition makes the transition’s action happen and the 
next state is set to again, back to the original state. As many times as you run it, the 
machine will change the green LED back and forth.  
 
Now with the machine program and tested, we’re ready to install the machine into the 
machine chain. The phrase to install a machine is : 
 
   EVERY n CYCLES SCHEDULE-RUNS word 
 

So for our single machine we’d say: 
 
   ZIPON SET-STATE 
   EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN 
 

Now if you look at your green LED, you’ll see it is slightly dimmed.  
 

 
 
That’s because it is being turned off half the time, and is on half the time. But it is 
happening so fast you can’t even see it. 
 

REDYEL 
 
Let’s do another of the same kind. This time lets do the red and yellow LED, and have 
them toggle, only one on at a time. Here we go: 
 
MACHINE REDYEL 
 
  ON-MACHINE REDYEL 
    APPEND-STATE REDON 
    APPEND-STATE YELON 
 
IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE  



YELON TO-HAPPEN 
 
IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE  
REDON TO-HAPPEN 
 

Notice we have more things happening in the action this time. One LED is turned on and 
one off in the action. You can have multiple instructions in an action. 
 
Test it. Type: 
 
REDON SET-STATE 
REDYEL 
REDYEL 
REDYEL 
REDYEL 
 

See the red and yellow LED’s trade back and forth from on to off and vice versa.  
 
 

 
 
All this time, the ZIPGRN machine has been running in the background, because it is in 
the installed machine chain. Let’s replace the installed machine chain with another. So 
we define a new machine chain with both our virtual machines in it, and install it. 
 
 
MACHINE-CHAIN CHN2 
  ZIPGRN 
  REDYEL 
END-MACHINE-CHAIN  
 
REDON SET-STATE 
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2 
 

With the new machine chain installed, all three LED’s look slightly dimmed.  
 

 
 
Again, they are being turned on and off a thousand times a second. But to your eye, you 
can’t see the individual transitions. Both our virtual machines are running in virtual 
parallel, and we still don’t see any slow down in the interactive nature of the IsoPodX™. 
 
So what was the point of making these two machines? Well, these two machines are 
running faster than the previous ones. The previous ones were installed with 50,000 



cycles between runs. That gave a scan-loop repetition of 100 times a second. Fine for 
many mechanical issues, on the edge of being slow for electronic interfaces. These last 
examples were installed with 5,000 cycles between runs. The scan-loop repetition was 
1000 times a second. Fine for many electronic interfaces, that is fast enough. Now let’s 
change the timing value. Redo the installation with the SCHEDULE-RUNS command. 
 
The scan-loop repetition is 10,000 times a second.  
 
EVERY 500 CYCLES SCHEDULE-RUNS CHN2 
 

Let’s see if we can press our luck. 
 
EVERY 100 CYCLES SCHEDULE-RUNS CHN2 

 
Even running two machines 50,000 times a second in high-level language, there is still 
time left over to run the foreground routine. This means, two separate tasks are being 
started and running a series of high-level instructions 50,000 times a second. This shows 
the IsoPodX™ is running more than four hundred thousand high-level instructions per 
second. The IsoPodX™ performance is unparalleled in any small computer available 
today. 
 

TRINARIES 
 
With the state machine structures already given, and a simple input and output words 
many useful machines can be built. Almost all binary digital control applications can be 
written with the trinary operators.  
 
As an example, let’s consider a digital thermostat. The thermostat works on a digital 
input with a temperature sensor that indicates the current temperature is either above or 
below the current set point. The old style thermostats had a coil made of two dissimilar 
metals, so as the temperature rose, the outside metal expanded more rapidly than the 
interior one, causing a mercury capsule to tip over. The mercury moving to one end of the 
capsule or the other made or broke the circuit. The additional weight of mercury caused a 
slight feedback widening the set point. Most heater systems are digital in nature as well. 
They are either on or off. They have no proportional range of heating settings, only 
heating and not heating. So in the case of a thermostat, everything necessary can be 
programmed with the machine format already known, and a digital input for temperature 
and a digital output for the heater, which can be programmed with trinaries. 
 
Input trinary operators need three parameters to operate. Using the trinary operation 
mode of testing bits and masking unwanted bits out would be convenient. This mode 
requires: 1) a mask telling which bits in to be checked for high or low settings, 2) a mask 
telling which of the 1 possible bits are to be considered, and 3) the address of the I/O port 
you are using. The keywords which separate the parameters are, in order: 1) SET-MASK, 
2) CLR-MASK and 3) AT-ADDRESS. Finally, the keyword FOR-INPUT finishes the 
defining process, identifying the trinary operator in effect. 



 
 
DEFINE <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRESS <address> FOR-INPUT 

 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code. Before entering hexadecimal numbers, the keyword HEX invokes the use of the 
hexadecimal number system. This remains in effect until it is change by a later command. 
The numbering system can be returned to decimal using the keyword DECIMAL: 
 
HEX 
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT 
DEFINE TOO-HOT?  TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT 
DECIMAL 

 
Output trinary operators also need three parameters. In this instance, using the trinary 
operation mode of setting and clearing bits would be convenient. This mode requires: 1) a 
mask telling which bits in the output port are to be set, 2) a mask telling which bits in the 
output port are to be cleared, and 3) the address of the I/O port. The keywords which 
proceed the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process, identifying 
which trinary operator is in effect. 
 
DEFINE <name> AND-MASK <mask> XOR-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT 
DEFINE <name> CLR-MASK <mask> SET-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT 

 
A single output port line is needed to turn the heater on and off. The act of turning the 
heater on is unique and different from turning the heater off, however. Two actions need 
to be defined, therefore, even though only one I/O line is involved. PA1 was selected for 
the heater control signal.  
 
When PA1 is high, or set, the heater is turned on. To make PA1 high, requires PA1 to be 
set, without changing any other bit of the port. Therefore, a set mask of 02 indicates the 
next to least significant bit in the port, corresponding to PA1, is to be set. All other bits 
are to be left alone without being set. A clear mask of 00 indicates no other bits of the 
port are to be cleared.  
 
When PA1 is low, or clear, the heater is turned off. To make PA1 low, requires PA1 to be 
cleared, without changing any other bit of the port. Therefore, a set mask of 00 indicates 
no other bits of the port are to be set. A clear mask of 02 indicates the next to least 
significant bit in the port, corresponding to PA1, is to be cleared. All other bits are to be 
left alone without being cleared.  
 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code: 
 
HEX 
DEFINE HEATER-ON  SET-MASK 02 CLR-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT 
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT 
DECIMAL 



 
Only a handful of system words need to be covered to allow programming at a system 
level, now. 
 

FLASH AND AUTOSTARTING 
 
Here’s everything you need to copy an application to Flash and to autostart it.  Here, 
briefly, are the steps: 
 
1. You should start with a clean IsoPodX, by doing SCRUB.  This will erase 
the Program Flash and remove any previous autostart patterns. 
 
2. In the program file, each Forth word should be followed by EEWORD.  This 
applies to colon definitions, CODE and CODE-SUB words, constants, 
variables, "defined" words (those created with <BUILDS..DOES>), and objects 
(those created with OBJECT).   
 
3. If IMMEDIATE is used, it must come *before* EEWORD (i.e., you must do 
IMMEDIATE EEWORD and *not* EEWORD IMMEDIATE). 
 
4. For IsoMax code the following rules apply: 
  a. MACHINE <name>  must be followed by EEWORD. 
  b. APPEND-STATE <name>  must be followed by EEWORD. 
  c. IN-STATE ... TO-HAPPEN (or THIS-TIME or NEXT-TIME) must be followed by 
IN-EE. 
  d. MACHINE-CHAIN ... END-MACHINE-CHAIN must be followed by EEWORD. 
  e. ON-MACHINE <name>  is *not* followed by any EE command. 
[Note that we can make EEWORD and IN-EE automatic, if you want all state 
machines to be built in Flash and never in RAM.] 
 
5. When the application is complete, you must use SAVE-RAM to preserve the 
state machine variables in Data Flash.  (This does *not* save kernel 
variables.) 
 
6. Finally you can set the autostart vector in Program Flash.  You need to 
provide an address on a 400h boundary, within unused Program Flash, thus 
after the end of the application program.  (Right now 1400-3FFF is 
available for applications.)  I often use 3C00, near the end of Flash. 
Then type 
  <address> AUTOSTART <wordname> 
E.g., HEX 3C00 AUTOSTART MAIN 
 
The board should now reset into the application program. 
 
 



PROCEDURAL PROGRAMMING 
 
The FSM portions of IsoMax™ are now covered. What remains to be discussed is the 
procedural portions of the conditions and actions.  
 
 
 
END-MACHINE-CHAIN                     
MACHINE-CHAIN 
SCHEDULE-RUNS 
CYCLES 
EVERY 
DINT 
EINT 
STOP-TIMER 
TCFOVFLO 
TCFTICKS 
END-PROC 
PROC 
AS-TAG 
FOR-INPUT 
FOR-OUTPUT 
WITH-VALUE 
SET-MASK 
CLR-MASK 
XOR-MASK 
AND-MASK 
DATA-MASK 
TEST-MASK 
AT-ADDR 
IS-STATE? 
SET-STATE 
TO-HAPPEN 
NEXT-TIME 
THIS-TIME 
THEN-STATE 
CAUSES 
CONDITION 
IN-STATE 
ON-MACHINE 
APPEND-STATE 
MACHINE 
CURSTATE 
 
 
ALLOC 
RAM 
DEFINE 
\ 
PFMOVE 
PFDP 
PFERASE 
PF! 
EEERASE 
PTYPE 



PCOUNT 
P, 
PC, 
PALLOT 
PHERE 
PDP 
PC! 
PC@ 
P@ 
P! 
TD3 
TD2 
RS422XCV 
RS232XMT 
PD0 
PD1 
PD2 
PD3 
PB0 
PB1 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 
PA0 
PA1 
PA2 
PA3 
PA4 
PA5 
PA6 
PA7 
GRNLED 
YELLED 
REDLED 
I/O 
OFF 
ON 
IS 
FALSE 
TRUE 
 
( 
@ 
C@ 
! 
C! 
2@ 
2! 
: 
; 
+ 
- 
1-! 
1+! 



+! 
* 
/ 
>< 
SWAP 
2OVER 
2SWAP 
DUP 
2DUP 
OVER 
ROT 
2ROT 
PICK 
ROLL 
-ROLL 
DROP 
2DROP 
>R 
R> 
= 
NOT 
0= 
D0= 
0> 
0< 
U< 
< 
DU< 
D< 
D= 
> 
AND 
OR 
XOR 
IF 
THEN 
ELSE 
BEGIN 
UNTIL 
REPEAT 
WHILE 
AGAIN 
END 
DO 
LOOP 
+LOOP 
K 
J 
I 
R@ 
LEAVE 
EXIT 
KEY 
EMIT 
?TERMINAL 
S->D 
ABS 



DABS 
MIN 
DMIN 
MAX 
DMAX 
SPACES 
DEPTH 
CR 
TYPE 
COUNT 
-TRAILING 
1+ 
2+ 
1- 
2- 
2/ 
2* 
D+ 
D- 
D2/ 
/MOD 
MOD 
*/MOD 
*/ 
UM* 
UM/MOD 
NEGATE 
DNEGATE 
CONSTANT 
VARIABLE 
2CONSTANT 
2VARIABLE 
 
SF! 
SF@ 
FTAN 
FCOS 
FSIN 
FATAN2 
FATAN 
F? 
FSQRT 
F2/ 
F2* 
F.S 
FNUMBER 
E. 
F. 
(E.) 
(F.) 
F** 
FALOG 
FEXP 
2**X 
FLN 
FLOG 
LOG2 



ODD-POLY 
POLY 
FLOOR 
FROUND 
FLITERAL 
PI 
E 
PLACES 
FLOAT+ 
FLOATS 
FVARIABLE 
FCONSTANT 
F, 
F! 
F@ 
FABS 
FMIN 
FMAX 
F< 
F0< 
F0= 
FNEGATE 
F>D 
S>F 
D>F 
F/ 
F* 
F- 
F+ 
FDROP 
FSWAP 
FOVER 
FDUP 
FNIP 
FDEPTH 
FSP 
FSP0 
 
TOGGLE 
SP! 
RP@ 
RP! 
UABORT 
WARNING 
R0 
SMUDGE 
DLITERAL 
MESSAGE 
ERROR 
?ERROR 
?COMP 
?EXEC 
?PAIRS 
?CSP 
?STACK 
@! 
@@ 



EXECUTE 
SP@ 
CMOVE> 
CMOVE 
;S 
CODE-SUB 
CODE 
END-CODE 
USER 
. 
.R 
D. 
U. 
U.R 
D.R 
#S 
# 
SIGN 
#> 
<# 
? 
EXPECT 
QUERY 
BL 
STATE 
CURRENT 
CONTEXT 
BLK 
DP 
FLD 
DPL 
>IN 
BASE 
S0 
TIB 
#TIB 
SPAN 
C/L 
PAD 
HERE 
ALLOT 
, 
 
C, 
SPACE 
?DUP 
TRAVERSE 
LATEST 
COMPILE 
[ 
] 
HEX 
DECIMAL 
;CODE 
<BUILDS 
DOES> 
." 



.( 
FILL 
ERASE 
BLANK 
HOLD 
WORD 
CONVERT 
NUMBER 
FIND 
ID. 
CREATE 
[COMPILE] 
LITERAL 
INTERPRET 
IMMEDIATE 
RECURSE 
>MARK 
<MARK 
>RESOLVE 
<RESOLVE 
:CASE 
' 
['] 
LFA 
>BODY 
CFA 
NFA 
PFAPTR 
B/BUF 
AUTOSTART 
UNDO 
FORGET 
DUMP 
.S 
WORDS 
QUIT 
ABORT" 
ABORT 
COLD 
BRANCH 
?BRANCH 
ATO4 
EEWORD 
EEMOVE 
EEC! 
EE! 
EDP 
EDELAY 
FLASH 
EXRAM 
Seed 
FORTH-83  



SOFTWARE 
 
IsoMax™ is an interactive, real time control, computer language based on the concept of 
the State Machine. 
 

WORD SYNTAX 
 
STATE-MACHINE <name-of-machine> 
 
ON-MACHINE <name-of-machine>  

APPEND-STATE <name-of-new-state> 
... 

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> 
AS-TAG 
 
IN-STATE <parent-state-name> CONDITION ...boolean computation... CAUSES 
<compound action> THEN-STATE <next-state-name> TO-HAPPEN 
 
DEFINE <word-name> TEST-MASK <n> DATA-MASK <n> AT-ADDRESS <a> 
FOR-INPUT 
 
DEFINE <word-name> SET-MASK <n> CLR-MASK <n> AT-ADDRESS <a> FOR-
OUTPUT 
 
DEFINE <word-name> PROC ...forth code... END-PROC 
 
DEFINE <word-name> COUNTDOWN-TIMER 
<n> TIMER-INIT <timer-name> 
 
EVERY <n> CYCLES SCHEDULE-RUNS ALL-TASKS 
 
 
 
Under construction… 
 
WITH-VALUE ( -- 7100 ) stacks the tag 7100. 
AT-ADDRESS  ( -- 7001 ) stacks the tag 7001.  This will be topmost after 
ORDER. 
AS-TAG ( tag n tag n -- ) 

Requires tags 7100,7001.  Requires the latest word to be a State word.  If it is, removes 
DUMMYTAG, 0 and replaces them with Address, Value. 

 
 
THIS-TIME ( spfa -- ) previously TO-HAPPEN ? 



Requires CSP=HERE.  Requires the given word to be a State word.  Then: 
Removes last compiled cell.  Compiles the CFA of the given State word.  Compiles PTHIST. 

 
NEXT-TIME ( spfa -- ) 

Requires CSP=HERE.  Requires the given word to be a State word.  Then: 
Removes last compiled cell.  Compiles the CFA of the given State word.  Compiles PNEXTT. 

 
SET-STATE ( spfa -- ) 

Given the pfa of a State word on the stack.  Requires the given word to be a State word.  Then: 
Fetches the thread pointer and RAM pointer from the State word, and stores the thread pointer in 
the RAM pointer. 
 

IS-STATE? ( spfa -- ) 
Given the pfa of a State word on the stack.  Requires the given word to be a State word.  Then: 
Fetches the thread pointer and RAM pointer from the State word.  Returns true if the current state 
of the machine is this state. 
 

IN-EE 

TIMING CONTROL 
EVERY  ( -- 6000 ) stacks the value 6000. 
CYCLES ( -- 9000 ) stacks the value 9000. 
 
SCHEDULE-RUNS not defined in source file 
ALL-TASKS  not defined in source file 
COUNTDOWN-TIMER not defined in source file 
TIMER-INIT  not defined in source file 
 

INPUT/OUTPUT TRINARIES 
DEFINE <word-name> ( -- 1111 ) 
 Creates a new word in the Forth dictionary (CREATE SMUDGE) and stacks the 
pair-tag 1111. 
 
PROC  not defined in source file 
END-PROC not defined in source file 
 
TEST-MASK  ( -- 7002 ) stacks the tag 7002. 
DATA-MASK ( -- 7004 ) stacks the tag 7004. 
 
FOR-INPUT ( 1111 tag n tag n tag n -- ) 

If tags 7001, 7002, 7004 are stacked, compiles Address, Test-Mask (byte), and Data-Mask (byte), 
then changes the code field of the latest word to XCPAT.  Requires pair-tag 1111. 

 
XCPAT 

Fetches the data byte from the stored Address, masks it with the Test-Mask, and xors it with the 
Data-Mask.  If the result is zero (equal), stacks TRUE, else stacks FALSE. 

 
AND-MASK ( -- 7008 ) stacks the tag 7008. 



XOR-MASK ( -- 7010 ) stacks the tag 7010. 
 
CLR-MASK ( -- 7020 ) stacks the tag 7020. 
SET-MASK ( -- 7040 ) stacks the tag 7040. 
 
FOR-OUTPUT ( 1111 tag n tag n tag n -- ) 

If tags 7001, 7008, 7010 are stacked, compiles Address, And-Mask (byte), and Xor-Mask (byte), 
then changes the code field of the latest word to AXOUT. 
If tags 7001, 7020, 7040 are stacked, compiles Address, Clr-Mask (byte), and Set-Mask (byte), 
then changes the code field of the latest word to SROUT. 
Requires pair-tag 1111. 

 



REGISTERS 
 
 ( BASE REGISTERS)  
0C00 SIM 
0C40 PFIU2 
0D00 TMRA 
0D20 TMRB  
0D40 TMRC  
0D60 TMRD  
0D80 CAN  
0E00 PWMA  
0E20 PWMB  
0E40 DEC0  
0E50 DEC1  
0E60 ITCN  
0E80 ADCA  
0EC0 ADCB  
0F00 SCI0  
0F10 SCI1  
0F20 SPI  
0F30 COP  
0F40 PFIU  
0F60 DFIU  
0F80 BFIU  
0FA0 CLKGEN  
0FB0 GPIOA  
0FC0 GPIOB  
0FE0 GPIOD  
0FF0 GPIOE   
 
( TIMER REGISTERS. OFFSET IS CHANNEL  * 8 )     
0 CMP1 
1 CMP2 
2 CAP  
3 LOAD  
4 HOLD  
5 CNTR  
6 CTRL  
7 SCR  
 
( GPIO ) 
0 PUR  
1 DR  
2 DDR  
3 PER  



4 IAR  
5 IENR  
6 IPOLR  
7 IPR  
8 IESR  
 
 ( A/D CONVERTER )  
0 ADCR1  
1 ADCR2  
2 ADZCC  
3 ADLST1  
4 ADLST2  
5 ADSDIS  
6 ADSTAT  
7 ADLSTAT  
8 ADZCSTAT  
9 ADRSLT0  
A ADRSLT1  
B ADRSLT2  
C ADRSLT3  
D ADRSLT4  
E ADRSLT5  
F ADRSLT6  
10 ADRSLT7  
11 ADLLMT0  
12 ADLLMT1  
13 ADLLMT2  
14 ADLLMT3  
15 ADLLMT4  
16 ADLLMT5  
17 ADLLMT6  
18 ADLLMT7  
19 ADHLMT0  
1A ADHLMT1  
1B ADHLMT2  
1C ADHLMT3  
1D ADHLMT4  
1E ADHLMT5  
1F ADHLMT6  
20 ADHLMT7  
21 ADOFS0  
22 ADOFS1  
23 ADOFS2  
24 ADOFS3  
25 ADOFS4  
26 ADOFS5  



27 ADOFS6  
28 ADOFS7  
 
( PWM )  
0 PMCTL  
1 PMFCTL  
2 PMFSA  
3 PMOUT  
4 PMCNT  
5 PWMCM  
6 PWMVAL0  
7 PWMVAL1  
8 PWMVAL2  
9 PWMVAL3  
A PWMVAL4  
B PWMVAL5  
C PMDEADTM  
D PMDISMAP1  
E PMDISMAP2  
F PMCFG  
10 PMCCR  
11 PMPORT  
   
( QUAD )   
0 DECCR  
1 FIR  
2 WTR  
3 POSD  
4 POSDH  
5 REV  
6 REVH  
7 UPOS  
8 LPOS  
9 UPOSH  
A LPOSH  
B UIR  
C LIR  
D IMR  
E TSTREG  
 
( SCI )   
0 SCIBR  
1 SCICR  
2 SCISR  
3 SCIDR  
   



( SPI )    
0 SPSCR  
1 SPDSR  
2 SPDRR  
3 SPDTR  
 

IsoMax v0.6 Memory Map – DSP56805 
 

 
 

HARVARD MEMORY MODEL 
 
The IsoPodX Processor uses a "Harvard" memory model, which means that it has 
separate memories for Program and Data storage.  Each of these memory spaces uses a 
16-bit address, so there can be 64K 16-bit words of Program ("P") memory, and 64K 16-
bit words of Data ("X") memory. 
 

04B0*

0550*

0000

07FF 

Data RAM 

kernel 
variables, 
buffers, 
stacks 

application 
variables 
and data 

structures 

User Variables

1FFF

1CB0*

1000

1C00*
erased 

Data Flash ROM 

RAM image 

1800

available 
for 

application 

*typical addresses; may vary 
depending on IsoMax version



MEMORY OPERATORS 
 
Most applications need to manipulate data, so the memory operators use Data space.  
These include 
 

@   !   C@   C!   +!   HERE   ALLOT   ,   C, 

 
Occasionally you will need to manipulate Program memory.  This is accomplished 
through a separate set of memory operators having a "P" prefix: 
 

P@   P!   PC@   PC!   PHERE   PALLOT   P,   PC, 

 
Note that on the IsoPodX™, the smallest addressable unit of memory is one 16-bit word.  
This is the unpacked character size.  This is also the "cell" size used for arithmetic and 
addressing.  Therefore, @ and C@ are equivalent, and ! and C! are equivalent. 
 

WORD STRUCTURE 
 
The executable "body" of a IsoMax™ word is kept in Program space.  This includes the 
Code Field of the word, and the threaded definition of high-level words or the machine 
code definition of CODE words. 
 
The "header" of a IsoMax™ word is kept in Data space.  This includes the Name Field, 
the Link Field, and the PFA Pointer. 
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  Threaded code 

(high level words) 
 

or 
 

Machine code 
(CODE words) 

 . 
. 
. 

 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 . 

. 

. 
 
 

 

VARIABLES 
 
Since the Program space is normally ROM, and variables must reside in RAM and in 
Data space, the "body" of a VARIABLE definition does not contain the data.   Instead, it 
holds a pointer to a RAM location where the data is stored.   



 
Program Space 

 . 
. 
. 

CFA  Code Field 
PFA  RAM Pointer 

 . 
. 
. 

 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 data 
 . 

. 

. 
 
 

<BUILDS DOES> 
 
"Defining words" created with <BUILDS and DOES> may have a variety of purposes.  
Sometimes they are used to build Data objects in RAM, and sometimes they are used to 
build objects in ROM (i.e., in Program space).  In the <BUILDS code you can allocate 
either space by using the appropriate memory operators. 
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  DOES> Action Pointer 

 Allocate with  
PHERE PALLOT 

P, PC, 
 . 

. 

. 
 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 Allocate with  

HERE ALLOT 
, C, 

 . 
. 
. 

 
 

 
For maximum flexibility, DOES> will leave on the stack the address in Program 
space of the user-allocated data.  If you need to allocate data in Data space, you must 
also store (in Program space) a pointer to that data.   For example, here is how you might 
define VARIABLE using <BUILDS and DOES>. 
 
: VARIABLE 

  <BUILDS Defines a new Forth word, header and empty body; 
    HERE P, gets the address in Data space (HERE) and appends that to Program space; 



    0  , appends a zero cell to Data space. 
  DOES> The "run-time" action will start with the Program address on the stack; 
    P@ fetch the cell stored at that address (a pointer to Data) and return that. 
; 

 
This constructs the following: 
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  DOES> Action Pointer 

 RAM pointer 
 . 

. 

. 
 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 0 (data) 
 . 

. 

. 
 
 

Words with constant data, on the other hand, can be allocated entirely in Program space.  
Here's how you might define CONSTANT: 
 
: CONSTANT  ( n -- ) 

  <BUILDS Defines a new Forth word, header and empty body; 
    P,  appends the constant value (n) to Program space. 
  DOES>  The "run-time" action will start with the Program address on the stack; 
    P@    fetch the cell stored at that address (the constant) and return that. 
; 
 
This constructs the following: 
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  DOES> Action Pointer 

 N (constant value) 
 . 

. 

. 
 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 . 

. 

. 



 

 



IsoPodX™ Reset Sequence 
The IsoPodX employs a flexible initialization that gives you many options for starting and running application 
programs.  Sophisticated applications can elect to run with or without IsoMax, and with the default or custom processor 
initialization.  This requires some knowledge of the steps that the IsoPodX takes upon a processor reset: 
1. Perform basic CPU initialization.  This includes the PLL clock generator and the RS232 serial port. 
2. Do the QUICK-START routine.  If a QUICK-START vector is present in RAM, execute the corresponding routine.  
QUICK-START is designed to be used before any other startup code, normally just to provide some additional 
initialization.  In particular, this is performed before RAM is re-initialized.  This gives you the opportunity to save any 
RAM status, for example on the occurrence of a watchdog reset.  Note that a power failure which clears the RAM will 
also clear the QUICK-START vector. 
3. Stop IsoMax.  This is in case of a "software reset" that would otherwise leave the timer running. 
4. Check for "autostart bypass."  Configure the SCLK/PE4 pin as an input with pullup resistor.  If the SCLK/PE4 pin 
then reads a continuous "0" (ground level) for 1 millisecond, skip the autostart sequence and "coldstart" the IsoPodX.  
This will initialize RAM to factory defaults and start the IsoMax interpreter. 

This is intended to recover from a situation where an autostart application locks up the IsoPodX.  
Simply jumper the SCLK/PE4 pin to ground, and reset the IsoPodX.  This will reset the RAM and start 
the interpreter, but please note that it will not erase any Flash ROM.  Flash ROM can be erased with 
the SCRUB command from the IsoMax interpreter.   

This behavior should be kept in mind when designing hardware around the IsoPodX.  If the IsoPodX is 
installed as an SPI master, or if the SCLK/PE4 pin is used as a programmed output, there will be no 
problem.  If the IsoPodX is installed as an SPI slave, the presence of SPI clock pulses will not cause a 
coldstart, but a coldstart will happen if SCLK is held low in the "idle" state and a CPU reset occurs.  
For this reason, if the IsoPodX is an SPI slave, we recommend configuring the SPI devices with 
CPOL=1, so the "idle" state of SCLK is high.  If the SCLK/PE4 pin is used as a programmed input, 
avoid applications where this pin might be held low when a CPU reset occurs. 

If SCLK/PE4 is not grounded, proceed with the autostart sequence. 
5. Check the contents of RAM and initialize as required. 

a. If the RAM contents are valid1, use them.  This will normally be the case if the CPU is reset with no 
power cycle, e.g., reset by MaxTerm, a watchdog, or an external reset signal. 

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash ROM.  If this RAM 
image is valid, use it.  This gives you a convenient method to initialize your application RAM. 

c. If the Flash ROM contents are invalid, then reinitialize RAM to factory defaults.  Note that this will 
reset the dictionary pointer but will not erase any Flash ROM. 

6. Look for a "boot first" routine.  Search for an $A44A pattern in Program Flash ROM.  The search looks at 1K 
($400) boundaries, starting at Program address $400 and proceeding to $7C00.  If found, execute the corresponding 
"boot first" routine.  IsoMax is not running at this point.   

a. If the "boot first" routine never exits, only it will be run. 

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the autostart sequence. 

7. Start IsoMax with an "empty" list of state machines.  After this, you can begin INSTALLing state machines.  Any 
state machines INSTALLed before this point will be disabled.   
8. Look for an "autostart" routine.  Search for an $A55A pattern in Program Flash ROM.  The search looks at 1K 
($400) boundaries, starting at Program address $400 and proceeding to $7C00.   If found, execute the corresponding 
"autostart" routine.   

a. If the "autostart" routine never exits, only it will be run.  (Of course, any IsoMax state machines 
INSTALLed by this routine will also run.) 

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax interpreter.   

 

                                                
1   RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address 
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234. 



In summary: 
Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip initialization which must occur 
immediately. 
Use an $A44A "boot first" vector for initialization which must precede IsoMax activation, but which needs initialized 
RAM. 
Use an $A55A "autostart" vector to install IsoMax state machines, and for your main application program. 
To bypass the autostart sequence, jumper SCLK/PE4 to ground. 



Object Oriented Extensions 
These words provide a fast and compact object-oriented capability to MaxForth.  It 
defines Forth words as "methods" which are associated only with objects of a specific 
class. 

Action of an Object  
An object is very much like a <BUILDS DOES> defined word.  It has a user-defined data 
structure which may involve both Program ROM and Data RAM.  When it is executed, it 
makes the address of that structure available (though not on the stack...more on this in a 
moment). 
 
What makes an object different is that there is a "hidden" list of Forth words which can 
only be used by that object (and by other objects of the same class).  These are the 
"methods," and they are stored in a private wordlist.  Note that this is not the same as a 
Forth "vocabulary."  Vocabularies are not used, and the programmer never  has to worry 
about word lists. 
 
Each method will typically make several references to an object, and may call other 
methods for that object.  If the object's address were kept on the stack, this would place a 
large burden of stack management on the programmer.  To make object programming 
simpler and faster, the address of the current object is stored in a variable, OBJREF.  The 
contents of this variable (the address of the current object) can always be obtained with 
the word SELF. 
 
When executed (interpreted), an object does the following: 
1. Make the "hidden" word list of the object available for searching. 
2. Store the object's address into OBJREF. 
After this, the private methods of the object can be executed.  (These will remain 
available until an object of a different class is executed.) 
 
When compiled, an object does the following: 
1. Make the "hidden" word list of the object available for searching. 
2. Compile code into the current definition which will store the object's address into 

OBJREF. 
After this, the private methods of the object can be compiled.  (These will remain 
available until an object of a different class is compiled.)  Note that both the object 
address and the method are resolved at compile time.  This is "early binding" and results 
in code that is as fast as normal Forth code. 
 
In either case, the syntax is identical: 
 object method 
For example: 
 REDLED TOGGLE 
 



Defining a new class 
 
BEGIN-CLASS name 
 

Words defined here will only be visible to objects of this class. 
These will normally be the "methods" which act upon objects of this class. 

 
PUBLIC 
 

Words defined here will be visible at all times. 
These will  normally be the "objects" which are used in the main program. 

 
END-CLASS name 
 

Defining an object 
 
OBJECT name   This defines a Forth word "name" which will be an object of the 

current class.  The object will initially be "empty", that is, it will have no 
ROM or RAM allocated to it.  The programmer can add data structure to 
the object using P, , PALLOT and ALLOT, in the same manner as for 
<BUILDS DOES> words.  Like <BUILDS DOES>, the action of an 
object is to leave its Program memory address. 

Referencing an object 
 
SELF This will return the address of the object last executed.  Note that this is an 

address in Program memory.  If the object will use Data RAM, it is the 
responsibility of the programmer to store a pointer to that RAM space.  
See the example below. 

Object Structure 
An object may have associated data in both Program and Data spaces.  This allows ROM 
parameters which specify the object (e.g., port numbers for an I/O object); and private 
variables ("instance variables") which are associated with the object.  By default, objects 
return their Program (ROM) address.  If there are RAM variables associated with the 
object, a pointer to those variables must be included in the ROM data. 
 



Program space Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

 
 
Note that also OBJECT creates a pointer to Program space, it does not reserve any 
Program or Data memory.  That is the responsibility of the programmer.  This is done in 
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or 
PALLOT  to add cells to Program space and , or ALLOT to add cells to Data space.  The 
programmer can use OBJECT to build a custom defining word for each class.  See the 
example below. 

Example using ROM and RAM 
This is an example of an object which has both ROM data (a port address) and RAM data 
(a timebase value).   
 
BEGIN-CLASS TIMERS 
  : TIMER ( a -- )  OBJECT  HERE 1 ALLOT P,  P, ; 
PUBLIC 
  0D00 TIMER TA0       
  0D08 TIMER TA1 
END-CLASS TIMERS 
 
The word TIMER expects a port address on the stack.  It builds a new (empty) OBJECT.  
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that 
RAM (HERE) into Program memory (P,).  This builds the RAM pointer as shown above.  
Finally, it stores the I/O port address "a" into the second cell of Program memory (the 
second P,).  Each object built with TIMER will have its own copy of this data structure. 
 
After the object is executed, SELF will return the address of the Program data for that 
object.  Because we've stored a RAM pointer as the first Program cell, the phrase SELF 
P@ will return the address of the RAM data for the object.  It is not required that the first 
Program cell be the RAM pointer, but this is strongly recommended as a programming 
convention for all objects using RAM storage. 
 
Likewise,  SELF CELL+ P@  will return the I/O port address associated with this object 
(since that was stored in the second cell of Program memory by TIMER). 
 



We can simplify programming by making these phrases into Forth words.  We can also 
build them into other Forth words.  All of this will normally go in the "private" class 
dictionary: 
 
BEGIN-CLASS TIMERS 
  : TIMER      ( a -- )  OBJECT  HERE 1 ALLOT P,  P, ; 
 
  : TMR_PERIOD ( -- a )  SELF P@ ;    ( RAM variable for 
this timer) 
  : BASEADDR   ( -- a )  SELF CELL+ P@ ;  ( I/O addr for 
this timer) 
  : TMR_SCR    ( -- a )  BASEADDR 7 + ;   ( Control 
register ) 
 
  : SET-PERIOD ( n -- )  TMR_PERIOD ! ; 
  : ACTIVE-HIGH ( -- )   0202 TMR_SCR CLEAR-BITS ; 
PUBLIC 
  0D00 TIMER TA0      ( Timer with I/O address 0D00 ) 
  0D08 TIMER TA1      ( Timer with I/O address 0D08 ) 
END-CLASS TIMERS 
 
After this, the phrase  100 TA0 SET-PERIOD  will store the RAM variable for timer 
object TA0, and 200 TA1 SET-PERIOD  will store the RAM variable for timer object 
TA1.  TA0 ACTIVE-HIGH will clear bits in timer A0 (at port address 0D07), and TA1 
ACTIVE-HIGH will clear bits in timer A1 (at port address 0D0F). 
 
In a WORDS listing, only TA0 and TA1 will be visible.  But after executing TA0 or TA1, 
all of the words in the TIMERS class will be found in a dictionary search.  
 
Because the "methods" are stored in private word lists, you can re-use method names in 
different classes.  For example, it is possible to have an ON method for timers, a different 
ON method for GPIO pins, a third ON method for PWM pins, and so on.  When the object 
is named, it will automatically select the correct set of methods to be used!  Also, if a 
particular method has not been defined for a given object, you will get an error message 
if you attempt to use that method with that object.  (One caution: if there is word in the 
Forth dictionary with the same name, and there is no method of that name, the Forth word 
will be found instead. An example of this is TOGGLE.  If you have a TOGGLE method, 
that will be compiled.  But if you use an object that doesn't have a TOGGLE method, 
Forth's TOGGLE will be compiled.  For this reason, methods should not use the same 
names as "ordinary" Forth words.) 
 
Because the "objects" are in the main Forth dictionary, they must all have unique names.  
For example, you can't have a Timer named A0 and a GPIO pin named A0.  You must 
give them unique names like TA0 and PA0.



 

GPIO Bit I/O Class 
These words support the GPIO I/O of the DSP56F80x.  The following GPIO pins are 
defined as objects: 
 
PA7   PA6   PA5   PA4   PA3   PA2   PA1   PA0    
PB7   PB6   PB5   PB4   PB3   PB2   PB1   PB0          
PD3   PD2   PD1   PD0      
REDLED  YELLED  GRNLED 
 
For each pin, the following methods can be performed: 
 
ON  Makes the pin an output, and outputs a '1' (high level). 
OFF  Makes the pin an output, and outputs a '0' (low level). 
TOGGLE Makes the pin an output, and inverts its level.   
n SET  Stores a T/F value to the pin, e.g., 1 PA0 SET.  Any nonzero 
value is "true." 
GETBIT Makes the pin an input, and returns pin value (as a bit mask). 
ON?  Makes the pin an input, and returns true if pin is '1' (high level). 
OFF?  Makes the pin an input, and returns true if pin is '0' (low level). 
IS-INPUT Makes pin an input (hi-Z). 
IS-OUTPUT Makes pin an output.  Pin will output the last programmed level. 
 
Examples of use: 
 
PA0 OFF ( output a low level on PA0 ) 
0 PA0 SET ( also outputs a low level on PA0 ) 
REDLED ON ( output a high level, turn the red LED on ) 
PD3 ON? ( check if PD3 is a logic '1' ) 

GPIO Byte I/O Class 
These words support the GPIO I/O of the DSP56F80x as bytes.  The following GPIO 
ports are defined as objects: 
 
PORTA   PORTB 
 
For each pin, the following methods can be performed: 
 
IS-INPUT Makes port an input (hi-Z). 
IS-OUTPUT Makes port an output.  Pin will output the last programmed level. 
PUTBYTE Makes port an output, and outputs the given byte (8 bits). 
GETBYTE Makes port an input, and reads it as a byte (8 bits). 
 
Examples of use: 



 
55 PORTA PUTBYTE ( output 55 to GPIO Port A ) 
PORTB GETBYTE . ( read GPIO Port B and type its numeric 
value ) 
 



Timer I/O Class 
These words support the Counter/Timers of the DSP56F80x.  The following timers are 
defined as objects: 
 
TA0   TA1   TA2   TA3  
TB0   TB1   TB2   TB3  
TC0   TC1   TC2   TC3  
TD0   TD1   TD2    
 
For each Counter/Timer, the following methods can be performed: 
 
ON  Makes the counter/timer pin an output, and outputs a '1' (high level). 
OFF  Makes the counter/timer pin an output, and outputs a '0' (low level). 
TOGGLE Makes the counter/timer pin an output, and inverts its level.   
n SET  Stores a T/F value to the pin, e.g., 1 TA0 SET.  Any nonzero 
value is "true." 
GETBIT Makes the counter/timer pin an input, and returns pin value (as a bit 
mask). 
ON?  Makes the counter/timer pin an input, and returns true if pin is '1' (high 
level). 
OFF?  Makes the counter/timer pin an input, and returns true if pin is '0' (low 
level). 
 
The following methods can be used to generate PWM signals and to measure pulse 
width: 
 
ACTIVE-HIGH  Makes the pin "active high" for PWM output or input.  For 

output, PWM-OUT will control the high pulse width.  For input, PWM-IN 
will measure the width of the high pulse.  The reset default is ACTIVE-
HIGH. 

ACTIVE-LOW Makes the pin "active low" for PWM output or input.  For output, 
PWM-OUT will control the low pulse width.  For input, PWM-IN will 
measure the width of the low pulse. 

n PWM-PERIOD  Specifies the period (frequency) of the PWM output.  Values from 
100 to FFFF hex are valid.  The counter frequency is 2.5 MHz; FFFF hex 
corresponds to a period of  26.214 msec (38 Hz).  PWM-PERIOD must be 
specified before using PWM-OUT. 

n PWM-OUT Makes the counter/timer pin an output, and outputs a continuous PWM 
signal with the given duty cycle.  Values from 0 to FFFF hex are valid.  0 
is a duty cycle of 0% (always off); FFFF is a duty cycle of 100% (always 
on).  8000 hex gives a duty cycle of 50%.  PWM-PERIOD must be 
specified before using PWM-OUT. 

PWM-IN Makes the counter/timer pin an input, and measures the width of one pulse 
on that input.  Returns a value from 1 to FFFF hex.  The counter rate is 2.5 



MHz, thus each count is 0.4 usec, and a returned value of  10000 decimal 
corresponds to 4 msec. 

  
Examples of use: 
 
TC0 ON ( output a high level on the TC0 pin ) 
TA3 ON? ( check if TA3 pin, HOME0, is a logic '1' ) 
 
DECIMAL 50000 TC1 PWM-PERIOD ( specify 20 msec period = 50 Hz ) 
TC1 ACTIVE-HIGH              ( specify active-high output ) 
HEX 4000 TC1 PWM-OUT             ( output 25% high, 75% low ) 
 



PWM I/O Class 
These words support the PWM generators of the DSP56F80x.  The following PWM 
outputs are defined as objects: 
 
PWMA0   PWMA1   PWMA2   PWMA3   PWMA4   PWMA5    
PWMB0   PWMB1   PWMB2   PWMB3   PWMB4   PWMB5    
 
For each PWM output, the following methods can be performed: 
 
ON  Outputs a '1' (high level). 
OFF  Outputs a '0' (low level). 
TOGGLE Inverts the output level.   
n SET  Stores a T/F value to the pin, e.g., 1 PWMA0 SET.  Any nonzero 
value is "true." 
 
The following methods can be used to generate PWM signals: 
 
n PWM-PERIOD  Initializes the PWM output, and specifies its period (frequency).  

Values from 100 to 7FFF hex are valid.  The effective counter frequency 
is 2.5 MHz; 7FFF hex corresponds to a period of 13.106 msec (76 Hz).  
PWM-PERIOD must be specified before using PWM-OUT.  Note: setting 
the period for any "A" PWM will affect all six "A" PWMs.  Setting the 
period for any "B" PWM will affect all six "B" PWMs. 

n PWM-OUT Outputs a continuous PWM signal with the given duty cycle.  Values from 
0 to FFFF hex are valid.  0 is a duty cycle of 0% (always off); FFFF is a 
duty cycle of 100% (always on).  8000 hex gives a duty cycle of 50%.  
PWM-PERIOD must be specified before using PWM-OUT. 

 
 
The following PWM inputs are defined as objects: 
 
FAULTA0   FAULTA1   FAULTA2   FAULTA3   ISA0      ISA1      ISA2       
FAULTB0   FAULTB1   FAULTB2   FAULTB3   ISB0      ISB1      ISB2       
 
For each PWM input, the following methods can be performed: 
 
GETBIT Returns pin value (as a bit mask). 
ON?  Returns true if pin is '1' (high level). 
OFF?  Returns true if pin is '0' (low level). 
 
Examples of use: 
 
PWMB0 ON ( output a high level on the PWMB0 pin ) 
ISA1 ON? ( check if ISA1 pin is a logic '1' ) 



 
DECIMAL 25000 PWMA1 PWM-PERIOD ( specify 10 msec period = 100 Hz ) 
HEX 4000 PWMA1 PWM-OUT    ( output 25% high, 75% low ) 
 
 



SPI I/O Class 
These words support the SPI port of the DSP56F80x.  Only one SPI port is present; it is 
referenced as object 
 
SPI0 
 
The following methods can be performed for the SPI port: 
 
MASTER Specifies that the DSP56F80x will act as an SPI Master. 
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.  

Values from 2 to 16 are valid. 
MSB-FIRST Specifies that words should be sent and received MSB first. 
LSB-FIRST Specifies that words should be sent and received LSB first. 
n MBAUD Specifies the bit rate to be used for the SPI port.  Four values can be 

specified: 20 (20 Mbits/sec), 5 (5 Mbits/sec), 2 (2.5 Mbits/sec), and 1 
(1.25 Mbits/sec).  All other values will be ignored and will leave the baud 
rate unchanged. 

n TX-SPI Transmits one word on the SPI port.  This will output 2 to 16 bits on the 
MOSI pin (Master mode) and generate 16 clocks on the SCLK pin.  This 
will simultaneously input 2 to 16 bits on the MISO pin (Master mode). 

RX-SPI Receives one word from the SPI port.  This word must already have been 
shifted into the receive shift register; if it has not, RX-SPI will wait for it 
to be shifted in.  In Master mode, data will only be shifted in when a word 
is transmitted by TX-SPI.  In this mode you should use RX-SPI 
immediately after TX-SPI to read the data that was received. 

 
It is acceptable to specify all the SPI parameters after selecting the SPI port.  Example of 
use: 
 
SPI0 MASTER 16 BITS MSB-FIRST 5 MBAUD 
SPI0 TX-SPI SPI0 RX-SPI 
 
The default polarity for the SPI port is CPHA=0, CPOL=1.  This means that the SCLK 
line will be high between words, and that the slave should clock data on the falling edge.  
(Refer to figure 13-4 in the Motorola DSP56F801-7 Users Manual.)   

ADC I/O Class 
These words support the A/D converter of the DSP56F80x.  The following ADC inputs 
are defined as objects: 
 
ADC0   ADC1   ADC2   ADC3   ADC4   ADC5   ADC6   ADC7    
 
Only one method can be used with A/D inputs: 
 



ANALOGIN Reads the A/D input and returns its value.  The result is in the range 0-
7FF8.  (The 12-bit A/D result is left-shifted 3 places.)  7FF8 corresponds 
to an input of Vref.  0 corresponds to an input of 0 volts. 

 
Example of use: 
 
ADC7 ANALOGIN  ( read A/D channel 7, pin AN7 ) 

 

LOOPINDEX Class 
These words support the Looping structure of IsoMax™.  The following are defined as 
objects: 
 
LOOPINDEX 

 
LOOPINDEX name          ...to define a loop variable. 

 
 
The following methods can be performed for LOOP INDEX: 
 
MASTER Specifies that the DSP56F80x will act as an SPI Master. 
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.  

Values from 2 to 16 are valid. 
 
name n START          ...set starting value (default 0) 
name n END            ...set ending value (default 1) 
name n STEP           ...set increment (default 1) 
name COUNT            ...count, and return a truth value  
name RESET            ...reset to starting value 
name VALUE            ...return the current loop index 
 
Here's the test code that I've used: 
 
\ TESTING CODE 
DECIMAL            
 
\ CYCLE expects an object to be named, e.g. FRED CYCLE 
LOOPINDEXES 
: CYCLE   RESET  BEGIN VALUE . COUNT UNTIL ; 
 
LOOPINDEX FRED   FRED 1 START 10 END 1 STEP 
LOOPINDEX WILMA  WILMA 10 START 1 END -1 STEP 
 



IsoPodX™ HARDWARE FEATURES 
 

. Three On Board LED’s 
Red, Yellow, Green 

. 16 GPIO lines 
Programmable Edge sensitive interrupts 

. Serial Communication Interface (SCI) full-duplex serial channel 
Two RS-232  
One RS422/485 optional 
Programmable Baud Rates, 38,400, 19,200, 9600, 4800, 1200 

. Serial Peripheral Interface  (SPI) 
Full-duplex synchronous operation on four-wire interface 
Master or Slave  

. 16-ch 12-bit AD 
Continuous Conversions @ 1.2us (6 ADC cycles) 
Single ended or differential inputs 

. 12-channel PWM module  
15-bit counter with programmable resolutions down to 25ns 
Twelve independent outputs, 
  or Six complementary pairs of outputs, or combinations 

. Eight Timers 
16-bit timers 
Count up/down, Cascadable 

. Two Quadrature Decoder 
32-bit position counter 
16-bit position difference register 
16-bit revolution counter  
40MHz count frequency (up to)  

. CAN 2.0 A/B module for networking 
Programmable bit rate up to 1Mbit: Multiple boards can be networked (MSCAN) 
Ideal for harsh or noisy environments, like automotive applications 

. JTAG port for CPU debugging 
Examine registers, memory, peripherals 
Set breakpoints 
Step or trace instructions 

. WatchDog Timer/COP module, Low Voltage Detector for Reset 

. Low Voltage, Stop and Wait Modes 

. On Board level translation for RS232, RS422 (optional), CAN 

. On Board Voltage Regulation  



CIRCUIT DESCRIPTION 
 
The processor chip contains the vast majority of the circuitry. The remaining support 
circuitry is described here. The power for the system can be handled several different 
way, but as the board comes, power will normally be supplied from the VIN pin on J1.  
 

RS-232 Levels Translation 
 
The MAX3222 converts the 3.3V supply to the voltages necessary to drive the RS-232 
interface. Since a typical RS-232 line requires 10 mA of outputs at 10V or more, the 
MAX3222 uses about 30 mA from the 3.3V supply. A shutdown is provided, controlled 
by TD0.  
 
The RS-232 interface allows the processor to be reset by the host computer through 
manipulation of the ATN line. When the ATN line is low (a logical “1” in RS-232 terms) 
the processor runs normally. When the ATN line is high (a logical “0” in RS-232 terms) 
the processor is held in reset.  
 
 
http://pdfserv.maxim-ic.com/arpdf/MAX3222-MAX3241.pdf) 
 

RS-422/485 Levels Translation 
 
Two MAX3483 buffer the digital signals to RS-422/485 levels. One, U3, always 
transmits. The other can receive, or transmit. It will normally be used for the receiver in 
RS-422 double twisted pair communications applications, and the transceiver in RS-485 
single twisted pair communications applications. TD1 controls the turn around on U4 
allowing RS-485 communications. 
 
http://pdfserv.maxim-ic.com/arpdf/MAX3483-MAX3491.pdf 
 

CAN BUS Levels Translation 
 
A VP230 buffers the CAN BUS signal. 
 http://focus.ti.com/lit/ds/symlink/sn65hvd230.pdf  
 
 

LED’s 
 
A 74AC05 drives the on-board LED’s. Each LED has a current limiting resistor to the 
+3.3V supply. 
http://www.fairchildsemi.com/ds/74/74AC05.pdf 



 

RESET 
 
A S80728HN Low Voltage Detector asserts reset when the voltage is below operating 
levels. This prevents brown out runaway, and a power-on-reset function. 
 
http://www.seiko-instruments.de/documents/ic_documents/power_e/s807_e.pdf 
 

POWER SUPPLY 
 
A LM2937 reduces the VIN DC to a regulated 5V. In early versions a 7805C was used. 
The LM2937 was rated a bit less for current (500 mA Max), but had reverse voltage 
protection and a low drop out which was more favorable. A  drops the 5V to the 3.3V 
needed for the processor. At full current, 200 mA, these two regulators will get hot. They 
can provide current to external circuits if care is taken to keep them cool. Each are rated 
at 1A but will have to have heat sinking added to run there. 
 
http://www.national.com/ds/LM/LM2937.pdf 
http://www.national.com/ds/LM/LM3940.pdf 



TROUBLE SHOOTING 
 
There are no user serviceable parts on the IsoPodX™. If connections are made correctly, 
operation should follow, or there are serious problems on the board. As always, the first 
thing to check in case of trouble is checking power and ground are present. Measuring 
these with a voltmeter can save hours of head scratching from overlooking the obvious. 
After power and ground, signal connections should be checked next. If the serial cable 
comes loose, on either end, using your PC to debug your program just won’t help. Also, 
if your terminal program has locked up, you can experience some very “quiet” results. 
Don’t overlook these sources of frustrating delays when looking for a problem. They are 
easy to check, and will make a monkey of you more times than not, if you ignore them. 
  
One of the great advantages of having an interactive language embedded in a processor, 
is if communications can be established, then program tools can be built to test 
operations. If the RS-232 channel is not in use in your application, or if it can be 
optionally assigned to debugging, talking to the board through the language will provide 
a wealth of debugging information. 
 
The LED’s can be wonderful windows to show operation. This takes some planning in 
design of the program. A clever user will make good use of these little light. Even if the 
RS-232 channel is in use in your application and not available for debugging, don’t 
overlook the LED’s as a way to follow program execution looking for problems. 
 
The IsoPodX™ is designed so no soldering to the board should be required, and the 
practice of soldering to the board is not recommended. Instead, all signals are brought to 
connectors. That’s one of the reasons it is called a “Pod”, it can be plugged in and pulled 
out as a module.  
 
So, the best trouble shooting technique would be to unplug the IsoPodX™ and try to 
operate it separately with a known good serial cable on power supply.  
 
If the original connections have been tested to assure no out-of-range voltages are 
present, a second IsoPodX™ can then be programmed and plugged into the circuit in 
question. But don’t be too anxious to take this step. If the first IsoPodX™ should be 
burned out, you really want to be sure you know what caused it, before sacrificing 
another one in the same circuit. 
 
Finally, for advanced users, the JTAG connection can give trace, single step and memory 
examination information with the use of special debugging hardware. This level of access 
is beyond the expected average user of the IsoPodX™ and will not be addressed in this 
manual. 
 
 
 



IsoPodX™ website: http://www.newmicros.com 

 

MaxFORTH™ Glossary Reference Page 
http://www.ee.ualberta.ca/~rchapman/MFwebsite/V50/Alphabetical/Brief/index.html 
 
This has explanations for the definitions for the procedural language "under" the 
IsoMax(TM) Finite State Machine language. 

 

Motorola DSP56F80x Users Manual  
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56F801-7UM.pdf 

 

Motorola DSP56F800 Processor Reference Manual 
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf    



CONNECTORS for the IsoPodX 
 
The IsoPodX™ has connectors: J1, J2, J3, J4, J5, J6, J7, J8, J9, J10, J11,J12,J13  shown 
below: 
 

J1 Ser., Power, General Purpose I/O Serial, Power, Ports PA0 – PA7, PB0 – PB7 
J2 CAN / SCI 1 CANH, CANL and RS232 or RS422 
J3 SPI SCLK, MISO, MOSI, SS, PE2, PE3, RSTO 
J4 Alternate power +5 to +9 volts outer pin, ground inner pin 
J5 A/D 0 to 7 First 8 ADC channels 
J6 Enable/Disable Added Memory Enable/Disable or switch added memory (PD0) 
J7 Fault and Status for PWM FaultA0-3, FaultB0-3,  ISA0-2, ISB0-2 
J8 JTAG connector CPU Port 
J9 PWM pins PWMA0-5, PWMB0-5 
J10 Motor Encoder x 2/Timers Phase A, B, Index, Home x 2( or Timer A & B) 
J11 Timers and Interrupts TC0, TC1, TD0-3, IRQA, IRQB 
J12 Serial RS-232 Primary serial RS-232 DB9 Connector 
J13 Internal or External Boot Boot from internal flash or added memory 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

J1 GPIO 
+VIN 1 2 SOUT 
GND 3 4 SIN 
RST’ 5 6 ATN’ 
+5V 7 8 GND 
PA0 9 10 PB0 
PA1 11 12 PB1 
PA2 13 14 PB2 
PA3 15 16 PB3 
PA4 17 18 PB4 
PA5 19 20 PB5 
PA6 21 22 PB6 
PA7 23 24 PB7 

 
 
 
Note: In picture above, Pin 1 is at upper left viewing CPU side with J1 at left.  
This connector pin out and pin numbering scheme is unique to this one instance. Origin 
of pin out and numbering is to match stamp-like connection pin outs. 
 
 
 



 
 

Connectors in above “top view, J1-to-right” picture and on page below, 
 have same oriented (pin 1 upper left)

J3 SPI - IO 
 

+5V 1 2 GND 
+3V 3 4 SCLK 

RSTO 5 6 MOSI 
PE2 7 8 MISO 
PE3 9 10 SS’ 

 

J2  RS-232 (or 422) -  CAN 
 

TXD1/+XMT 1 2 +3V 
RXD1/-XMT 3 4 GND 

GND 5 6 CANL 
SIN1/-RCV 7 8 GND 

SOUT1/+RCV 9 10 CANH

J5 ADC 0-7 
 

VSSA ANA1 ANA3 ANA5 ANA7
2 4 6 8 10 
1 3 5 7 9 

VREF ANA0 ANA2 ANA4 ANA6
 

 

J6  Memory Disable/Enable 
 

Enable 1 to 2 - Memory enabled 1 
Mem Open -- disabled 2 
PD0 2 to 3 - Memory controlled 3 



 
Connectors in above “top view, J1-to-left” picture and on page below, 

 have same oriented (pin 1 upper left).
 

J7 Various Inputs
 

+3V ISA0 ISA1 ISA2 ISB0 ISB1 ISB2 GND 
2 4 6 8 10 12 14 16 
1 3 5 7 9 11 13 15 

FAULT0 FAULT1 FAULT2 FAULT3 FAULT4 FAULT5 FAULT6 FAULT7

J9 PWM Servo Output           
 

 Sig. +V GND 
PWMA0 1 2 3 
PWMA1 4 5 6 
PWMA2 7 8 9 
PWMA3 10 11 12 
PWMA4 13 14 15 
PWMA5 16 17 18 
PWMB0 19 20 21 
PWMB1 22 23 24 
PWMB2 25 26 27 
PWMB3 28 29 30 
PWMB4 31 32 33 
PWMB5 34 35 36 

J10 Motor Encoder x 2 /Timers 
 

Sig. +V GND 
+5V 1 2 3  +3 V 

GND 4 5 GND 6 
PHA0/TA0 7 8 9 
PHB0/TA1 10 11 12 
IND0/TA2 13 14 15 
HM0/TA3 16 17 18 

+5V 19 20 21  +3 V
GND 22 23 GND 24 

PHA1/TB0 25 26 27 
PHB1/TB1 28 29 30 
IND1/TB2 31 32 33 
HM1/TB3 34 35 36 



 

 

J11 Timers and IRQ 

 
 

 

 
 
 
 
 
 

 

J13  Memory Boot 
 

Closed Boot from 
External Memory 

        Open  Boot from MCU 
Flash  

 

J8 JTAG 
 

+3 V 1 2 GND 
TDI 3 4 GND 
TDO 5 6 TMS 
TCK 7 8 DE 

RESET 9 10 TRST 

 Sig. +V GND 
+5V 1 2 3  +3 V 
GND 4 5 GND 6 
TC0 7 8 9 
TC1 10 11 12 

IRQA 13 14 15 
IRQB 16 17 18 
+5V 19 20 21  +3 V
GND 22 23 GND 24 
TD0 25 26 27 
TD1 28 29 30 
TD2 31 32 33 
TD3 34 35 36 



Instructions for Wiring a Serial Cable on J1 Connector 
 

Transformer hook up 
 

Black w/Striped 
White    +VIN 

1 2 SOUT 

Solid Black 
GND 

3 4 SIN 

RST’ 5 6 ATN’ 
+5V 7 8 GND 
PA0 9 10 PB0 
PA1 11 12 PB1 
PA2 13 14 PB2 
PA3 15 16 PB3 
PA4 17 18 PB4 
PA5 19 20 PB5 
PA6 21 21 PB6 
PA7 23 24 PB7 

 

Serial Cable hook up 
 

+VIN 1 2 SOUT RED 
GND 3 4 SIN ORANGE 
RST’ 5 6 ATN’YELLOW
+5V 7 8 GND GREEN 
PA0 9 10 PB0 
PA1 11 12 PB1 
PA2 13 14 PB2 
PA3 15 16 PB3 
PA4 17 18 PB4 
PA5 19 20 PB5 
PA6 21 22 PB6 
PA7 23 24 PB7 

 
 

 
 
 

J1 Pin Preferred Color DB-9 Pin DB-25 Pin 
2 SOUT RED 2 RX 3 TX 

    4 SIN ORANGE 3 TX 2 RX  
    6 ATN YELLOW 4 DTR 20 DTR 
    8 GND GREEN 5 GND 7 GND 

  6 DSR 6 DSR 
  7  RTS 20  RTS 



 JUMPERS  
 
The IsoPodX™ has  memory jumpers at J6. Jumper setting on J6 has 3 choices: with pin 
1 and 2 together for Enabling the added memory, by default configuration.  Connect pin 2 
and 3 together for PD0 controlled enable/ disable of the added memory, and open for 
disabling the memory.  Keep in mind, PD0 is also sharing port with RED LED buffer. 
 
Jumper J13 is to allow booting from either the DSP internal memory (open) or from the 
external memory (jumpered). This jumper provides the flexible options for use with 
CodeWarrior development tool. 
 
 A few sites exist where termination resistors can be added. A few port lines are used to 
control programmable options on the board.  
 
Port line PD5 controls the RS-232 transmitter shutdown. A pull up resistor normally 
disenables shutdown, if the port line is inactive. 
 
Port line PD4 controls the RS-232 receiver enable. A pull down resistor normally enables 
the receivers, if the port line is inactive.  
 
Port line PD3 controls the RS-485 transceiver turn-around. A pull down resistor normally 
enables the receiver, if the port line is inactive.  
 
Port line PD2 controls the GREEN LED. When PD2 is high, the AC05 output will be 
inverted and the GREEN LED will turn on, and turn off when PD2 is low. 
 
Port line PD1 controls the YELLOW LED. When PD1 is high, the AC05 output will be 
inverted and the YELLOW LED will turn on, and turn off when PD1 is low. 
 
Port line PD0 controls the RED LED. When PD0 is high, the AC05 output will be 
inverted and the RED LED will turn on, and turn off when PD0 is low. 
 
 
Port line PE2 can be connected in series with a 10K resistor (on the left of R8) to controls 
the CAN Bus mode if the speed controls is required.  By default, the CAN chip is 
configured for high-speed mode with a 100K resistor R8 installs. 



 MANUFACTURER 
 
New Micros, Inc. 
1601 Chalk Hill Rd. 
Dallas, TX 75212 
 
Tel: (214) 339-2204 
Fax: (214) 339-1585 
 
Web site: http://www.newmicros.com 
 
This manual: http://www.newmicros.com/store/product_manual/IsoPodX.zip 
 
Email technical questions: nmitech@newmicros.com 
 
Email sales questions: nmisales@newmicros.com 
 

MECHANICAL 
 
 
Board size is 2.5” x 3.0”  
 

ELECTRICAL 
 
The total draw for the IsoPodX™ under maximum speed is approximately 200 mA.  
 
Sleeping or slowing the processor can substantially reduce current consumption. 
 
The TD0 signal can shut down the RS-232 converter, saving about 10 mA, when not used 
for transmission, if the receiving unit will not sense this as noise. 
 
The TD1 signal can shut down the RS-485 transceiver, U4, saving about 10 mA, when 
not used for transmission, if the other RS-485 receiving units will not sense this as noise. 
The other RS-485 transceiver, U3, cannot be shut down, but can be left uninstalled by 
arrangement with the factory. 
 
Each digital pin is capable of sinking 4 mA and sourcing –4 mA. Each LED draws 1.2 
mA when lit. 
  
Absolute Maximum Ratings 
Characteristic  Symbol Min Max Unit 
Supply voltage  VDD VSS – 0.3 VSS + 4.0  V 
All other input voltages, excluding Analog inputs  VIN VSS – 0.3 VSS + 5.5V V 



Analog Inputs ANAx, VREF VIN VSS – 0.3 VDDA + 0.3V V 
Current drain per pin excluding VDD, VSS, PWM outputs, 
TCS, VPP, VDDA, VSSA 

I — 10 mA 

Current drain per pin for PWM outputs  I — 20 mA 
Junction temperature  TJ — 150 °C 
Storage temperature range  TSTG -55 150 °C 

 
Recommended Operating Conditions 
Characteristic  Symbol Min Max Unit 
Supply voltage  VDD 3.0 3.6 V 
Ambient operating temperature  TA -40 85 °C 
 
DC Electrical Characteristics 
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL ≤ 50 pF, fop = 80 
MHz 
Characteristic  Symbol Min Typ Max Unit 
Input high voltage  VIH 2.0 — 5.5 V 
Input low voltage  VIL -0.3 — 0.8 V 
Input current low (pullups/pulldowns disabled)  IIL -1 — 1 µA 
Input current high (pullups/pulldowns disabled)  IIH -1 — 1 µA 
Typical pullup or pulldown resistance  RPU, RPD — 30 — KΩ 
Input/output tri-state current  low IOZL -10 — 10 µA 
Input/output tri-state current  low IOZH -10 — 10 µA 
Output High Voltage (at IOH)  VOH VDD – 0.7 — — V 
Output Low Voltage (at IOL)  VOL — — 0.4 V 
Output High Current  IOH — — -4 mA 
Output Low Current  IOL — — 4 mA 
Input capacitance  CIN — 8 — pF 
Output capacitance  COUT — 12 — pF 
PWM pin output source current 1  IOHP — — -10 mA 
PWM pin output sink current 2  IOLP — — 16  mA 
Total supply current  IDDT 3     
Run 4   — 126 162 mA 
Wait 5   — 72 98 mA 
Stop   — 60 84 mA 
Low Voltage Interrupt 6  VEI 2.4 2.7 2.9 V 
Power on Reset 7  VPOR — 1.7 2.0 V 
 
1. PWM pin output source current measured with 50% duty cycle. 
 
2. PWM pin output sink current measured with 50% duty cycle. 
 
3. IDDT = IDD + IDDA (Total supply current for VDD + VDDA) 
 
4. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports  
configured as inputs; measured with all modules enabled. 
 
5. Wait IDD measured using external square wave clock source (fosc = 8 MHz) into XTAL; all inputs 0.2V from rail;  
no DC loads; less than 50 pF on all outputs. CL = 20 pF on EXTAL; all ports configured as inputs; EXTAL capacitance 
linearly affects wait IDD; measured with PLL enabled. 
 
6. Low voltage interrupt monitors the VDDA supply. When VDDA drops below VEI value, an interrupt is generated. 
For correct operation, set VDDA=VDD. Functionality of the device is guaranteed under transient conditions when 
VDDA>VEI. 
 
7. Power-on reset occurs whenever the internally regulated 2.5V digital supply drops below VPOR. While power is 



ramping up, this signal remains active for as long as the internal 2.5V supply is below 1.5V no matter how long the 
ramp up rate is. The internally regulated voltage is typically 100 mV less than VDD during ramp up until 2.5V is 
reached, at which time it self regulates. 



NMITerm 
 
Provided Windows terminal program from New Micros, Inc. Usually provided in a ZIP. 
Un ZIP in a subdirectory, such as C:\NMITerm. To start the program: click, or double 
click, the program icon. 
 

NMITerm.LNK  
 
NMITerm is a simple Windows-based communications package designed for program 
development on serial port based embedded controllers. It runs under Windows. 
 
NMITerm provides: 
 
        1. Support for COM1 through COM16. 
        2. Baud rates from 110 through 256000. 
        3. Control over RTS and DTR lines. 
        4. Capture files, which record all terminal activity to disk. 
        5. Scroll-back buffer, editable and savable as a file. 
        6. On-line Programmer's Editor. 
        7. File downloader. 
        8. Programmable function keys. 

 
Quick start commands: 
 

1. Baud: default 9600 
2. DTR On/Off : ALT+T 
3. Download: ALT+D 

 
For further information use the F1 Help screen.  

 
This program can be downloaded from:  

http://www.newmicros.com/download/NMITerm.zip



MaxTerm 
 
Provided DOS terminal program from New Micros, Inc. Usually provided in a ZIP. Un 
ZIP in a subdirectory, such as C:\MAXTERM. To start the program: click, or double 
click, the program icon. 
 

Maxterm.ico  
 
MaxTerm is a simple DOS-based communications package designed for program 
development on serial port based embedded controllers. It can run under stand-alone 
DOS or in a DOS session under Windows. 
 
MaxTerm provides: 
 
        1. Support for COM1 through COM4. 
        2. Baud rates from 300 through 38400. 
        3. Control over RTS and DTR lines. 
        4. Capture files, which record all terminal activity to disk. 
        5. 32K scroll-back buffer, editable and savable as a file. 
        6. On-line Interactive Programmer's Editor (OPIE). 
        7. File downloader. 
        8. Programmable function keys. 
        9. Received character monitor, which displays all data in HEX. 

 
Quick start commands: 
 

4. Set comport: ALT+1 or ALT+2 It does not support com3 & 4. 
5. Baud: default 9600 
6. DTR On/Off : ALT+T 
7. Download: ALT+D 
8. PACING: ALT+P (IsoMax default decimal 10) 

 

For further information use the Help screen (ALT-H) or the program documentation.  
 
                  MAXTERM Help                
   alt-B Change baud rate               alt-M Character monitor mode      
   alt-C Open (or close) capture file   alt-O Toggle sounds               
   alt-D Download a file (all text)     alt-P Change line pace char       
   alt-E Edit a file (Split screen)     alt-R Toggle RTS                  
   alt-F Edit function keys             alt-S Unsplit the screen          
   alt-H Help                           alt-T Toggle DTR                  
   alt-I Program Information            alt-U Change colors               
   alt-K Toggle redefinition catcher    alt-W Wipe the screen             
   alt-L Open scrollback log            alt-X Exit                        
   alt-1 (2 3 4) Select Com port        alt-Z Download a file (no fat)    
   f1-f10 Programmable function keys    f12   Re-enter OPIE  
 
Status line mode indicators: r = rts, d = dtr, L = log file, S = 
sounds, K = redefinition, P = line pacing active  
 



HyperTerminal 
 
Usually provided in Programs/Accessories/Communications/HyperTerminal. If not 
present, it can be loaded from the Windows installation disk. Use “Add/Remove 
Software” feature in Settings/Control Panel, choose Windows Setup, choose 
Communications, click on Hyperterm, then Okay and Okay. Follow any instructions to 
add additional features to windows. 
 

Hypertrm.exe  
 
C:\Program Files\Accessories\HyperTerminal 
 
Run HyperTerminal, select an icon that pleases you and give the new connection a name, 
such as ISOPODX. Now in the “Connect To” dialog box, in the bottom “Connect Using” 
line, select the communications port you wish to use, with Direct Comm1, Direct 
Comm2, Direct Comm3, Direct Comm4 as appropriate, then Okay. In the COMMx 
Dialog box which follows set up the port as follows: Bits per second: 9600 ,  Data bits: 8, 
Parity: None, Flow Control: None, then Okay. 
 

 

REFERENCE 

Decimal - Hex - ASCII Chart 
DEC HEX Char Function 
000 00 NUL Null 

001 01 SOH Start of heading 

002 02 STX Start of text 

003 03 ETX End of text 

004 04 EOT End of transmit 

005 05 ENQ Enquiry 

006 06 ACK Acknowledge 

007 07 BEL Bell 

008 08 BS Back Space 

009 09 HT Horizontal Tab 

010 0A LF Line Feed 

011 0B VT Vertical Tab 

012 0C FF Form Feed 

013 0D CR Carriage Return 

014 0E SO Shift Out 

015 0F SI Shift In 

 
016 10 DLE Data Line Escape 

017 11 DC1 Device Control 1 

018 12 DC2 Device Control 2 

019 13 DC3 Device Control 3 

020 14 DC4 Device Control 4 

021 15 NAK Non Acknowledge 

022 16 SYN Synchronous Idle 

023 17 ETB End Transmit Block 

024 18 CAN Cancel 

025 19 EM End of Medium 

026 1A SUB Substitute 

027 1B ESC Escape 

028 1C FS File Separator 

029 1D GS Group Separator 

030 1E RS Record Separator 

031 1F US Unit Separator 

 
 
032 20 Space 
033 21 ! 

034 22 " 
035 23 # 

036 24 $ 
037 25 % 

038 26 & 
039 27 ' 



040 28 ( 
041 29 ) 
042 2A * 
043 2B + 
044 2C , 
045 2D - 
046 2E . 
047 2F / 
048 30 0 
049 31 1 
050 32 2 
051 33 3 
052 34 4 
053 35 5 
054 36 6 
055 37 7 
056 38 8 
057 39 9 
058 3A : 
059 3B ; 
060 3C < 
061 3D = 

062 3E > 
063 3F ? 
064 40 @ 
065 41 A 
066 42 B 
067 43 C 
068 44 D 
069 45 E 
070 46 F 
071 47 G 
072 48 H 
073 49 I 
074 4A J 
075 4B K 
076 4C L 
077 4D M 
078 4E N 
079 4F O 
080 50 P 
081 51 Q 
082 52 R 
083 53 S 

084 54 T 
085 55 U 
086 56 V 
087 57 W 
088 58 X 
089 59 Y 
090 5A Z 
091 5B [ 
092 5C \ 
093 5D ] 
094 5E ^ 
095 5F _ 
096 60 ` 
097 61 a 
098 62 b 
099 63 c 
100 64 d 
101 65 e 
102 66 f 
103 67 g 
104 68 h 
105 69 I 

106 6A J 
107 6B K 
108 6C L 
109 6D M 
110 6E N 
111 6F O 
112 70 P 
113 71 Q 
114 72 R 
115 73 S 
116 74 T 
117 75 U 
118 76 V 
119 77 W 
120 78 X 
121 79 Y 
122 7A Z 
123 7B { 
124 7C | 
125 7D } 
126 7E ~ 
127 7F DEL 

 
 
 
 

ASCII Chart 
   0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI 
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 
2  SP !  "  #  $  %  &  '  (  )  *  + ,   -  .  / 
3  0  1  2  3  4  5  6  7  8  9  :  ;  <  =  >  ? 
4  @  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O 
5  P  Q  R  S  T  U  V  W  X  Y  Z  [  \  ]  ^  _’
6  `  a  b  c  d  e  f  g  h  I  j  k  l  m  n  o 
7  p  q  r  s  t  u  v  w  x  y  z  {  |  }  ~ DEL

 
More on ASCII on another web site: http://www.jimprice.com/jim-asc.htm 

 



GLOSSARY 
 
 
.1” double and triple row connectors  
24-pin socket 
74AC05 
9600 8N1 
A/D 
adapter 
ASCII 
CAN BUS  
Caps 
carrier board 
computer “pod” 
computing and control function 
communications channel  
communications settings 
COMM2  
COMM3  
COMM4  
controller 
controller interface board 
dedicated computer 
deeply embedded 
double male right angle connector 
double sided sticky tape 
embedded 
embedded tasks 
female  
hand-crimped wires 
headers  
high-density connectors 
High-Level-Language  
HyperTerminal 
IDC headers and ribbon cable 
interactive 
IsoMax™ 
IsoPodX™  
language 
Levels Translation 
LED 
LM3940 
LM78L05 
Low Voltage Detector 
male  



MaxTerm 
mating force of the connectors 
 
Mealy, G. H.  State machine pioneer, wrote “A Method for Synthesizing Sequential 
Circuits,” Bell System Tech. J. vol 34, pp. 1045 –1079, September 1955  
 
mobile robot 
 
Moore, E. F. State machine pioneer, wrote “Gedanken-experiments on Sequential 
Machines,” pp 129 – 153, Automata Studies, Annals of Mathematical Studies, no. 34, 
Princeton University Press, Princeton, N. J., 1956 
 
Multitasking 
PCB board 
PWM  
PWM connectors 
Power Supply 
Programming environment 
prototyping  
RS-232 
RS-422 
RS-485 
R/C Servo motor 
real time applications.  
real time control 
registers 
RESET 
Resistor 
S80728HN  
SCI 
SPI  
serial cable  
 “stamp-type” controller 
stand-alone computer board 
TJA1050 
terminal program 
upgrade an existing application.  
Virtually Parallel Machine Architecture™ (VPMA)  
wall transformer 
 

 


