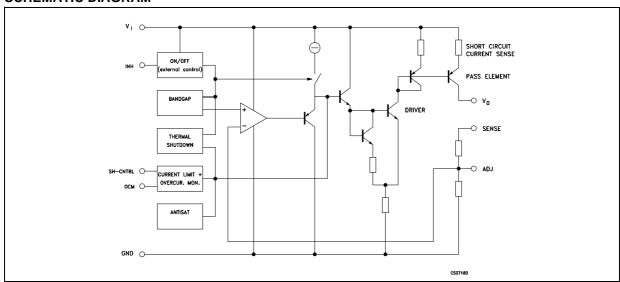


LHC4913 SERIES

3A POSITIVE LOW DROP VOLTAGE REGULATOR WITH INHIBIT FUNCTION

ADVANCE DATA

- LOW OUTPUT CAPACITANCE: 1µF
- LOW DROP VOLTAGE:
 0.5V @ I_O=1A
 1.5V @ I_O=3A
- OVERTEMPERATURE PROTECTION
- OVERCURRENT PROTECTION
- OUTPUT SHORT CIRCUIT MONITORING, SIGNALLED BY TTL OUTPUT
- ON/OFF EXTERNAL CONTROL BY MEANS OF TTL COMPATIBLE INPUT
- ADJUSTABLE CURRENT LIMITATION PROTECTS OUTPUTS FROM DAMAGING SHORTCIRCUITS
- REMOTE SENSING OPERATION



DESCRIPTION

The LHC4913 is a positive Voltage Regulator family including both fixed and adjustable versions. Housed into SO-20 slug-up package with stand off zero, it is specifically intended for

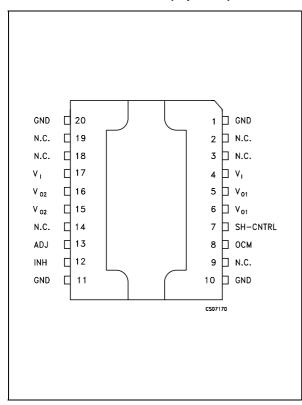
applications in rugged environments, such as Nuclear Physics, in which it has to withstand large amounts of radiation doses during operating life. The fixed output voltages available are 2.5, 3.0, 3.3, 5.0 and 8.0V. Input voltage ranges from 3 to 12V.

SCHEMATIC DIAGRAM

August 2002 1/6

This is preliminary information on a new product now in development. Details are subject to change without notice.

ABSOLUTE MAXIMUM RATINGS

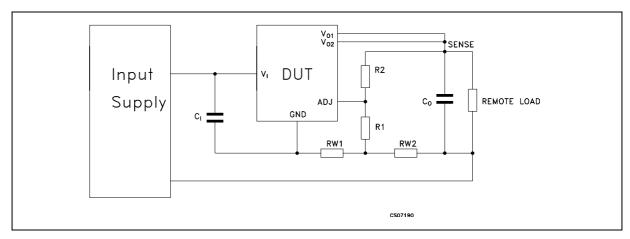

Symbol	Parameter	Value	Unit
V _I	DC Input Voltage	14	V
V _{INH}	INHIBIT Input Voltage	V _I + 0.5	V
Io	Output Current	Internally limited	
P _{tot}	Power Dissipation	Internally limited	
T _{stg}	Storage Temperature Range	-40 to +150	°C
T _{op}	Operating Junction Temperature Range	-40 to +125	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.

THERMAL DATA

Symbol	Parameter	PowerSO-20 slug-up	Unit
R _{thj-case}	Thermal Resistance Junction-case	2	°C/W

CONNECTION DIAGRAM (top view)


PIN DESCRIPTION FOR ADJUSTABLE VERSION

Pin N°	Symbol	Name and Function
1	GND	Ground Pin
2	NC	Not Connected
3	NC	Not Connected
4	V _I	Positive Supply Voltage
5	V _{O1}	Output Pin
6	V _{O1}	Output Pin
7	SH-CNTRL	Short Circuit Valve Controlling
8	OCM	Over Current Monitoring
9	NC	Not Connected
10	GND	Ground Pin
11	GND	Ground Pin
12	INH	Inhibit
13	ADJ	Adjustable pin
14	NC	Not Connected
15	V_{O2}	Output Pin
16	V_{O2}	Output Pin
17	V _I	Positive Supply Voltage
18	NC	Not Connected
19	NC	Not Connected
20	GND	Ground Pin

ORDERING CODES

TYPE	Power-SO20 slug-up	OUTPUT VOLTAGES
LHC4913	LHC4913PDU	Adjustable

APPLICATION DIAGRAM FOR REMOTE SENSINS OPERATION FOR ADJUSTABLE VERSION

FUNCTIONAL DESCRIPTION

ADJUSTABLE VERSION

The ADJUST pin shall be set at 1.225V with the adequated fraction of V_O generated by a resistive divider inserted between V_O and GND. The ADJ-GROUND resistor value must not be greater than 2.5 K Ω . For a given V_O the following holds: $V_O = V_{ADJ}(1+R_2/R_1)$.

OVERTEMPERATURE PROTECTION OPTION

The LHC4913 is protected by a junction-temperature detection circuit, turning the device "OFF" when the temperature attains 175°C. The recovery of the ON mode occurs with a hysteresys of 40 °C.

OVERCURRENT PROTECTION

The device is equipped with a circuit having the purpose of limiting the maximum load current, in order to protect the output stage against possible overcurrent-related damages. Its threshold can be modified externally by means of a resistor put between the pins SH-CNTRL and $V_{\rm l}$.

For this characteristic, when the load current gets close to the above threshold, the regulation is inhibited. Thus, an excellent operation is granted only up to 66% of preset maximum current.

SHORT CIRCUIT MONITORING / SIGNALLING In the event of an overcurrent at the output, a voltage level of 0.4V is present at the OCM pin. In others conditions, this voltage equals V_I .

REMOTE SENSING FOR ADJ VERSION

As pointed out in the pin configuration plot, V_O and SENSE are not linked to each other in order to get a regulation with a load located far away from the

chip. Under ordinary applications, the SENSE shall be connected to both $V_{O1}\ \&\ V_{O2}$. To obtain the best performances it is recommended to be compliant with the configuration shown in the figure at top page.

What can degrade the regulation performances of this configuration is the variable voltage drop between the chip ground and the load termination Lv.

This is brought mostly by the current Ib coming from the output power base and going to ground through the driver stage. The degradation amount to $(1+R_2/R_1) \times R_{W1} \times I_{Bmax} + R_{W2} \times I_{Bmax}$

APPLICATION INFORMATION

Recommended V_I=12V Max, V_O= 1.225V Min.

The device is designed to operate with any V_l - V_O value according to above mentioned and thermal dissipation limits.

An input filtering capacitor of 100nF is always mandatory.

The two $V_{\rm I}$ pins shall always be connected in parallel, this applies also for the four $V_{\rm O}$ pins.

Device stability is granted in any circumstance with a $1\mu\text{F}$ output capacitor.

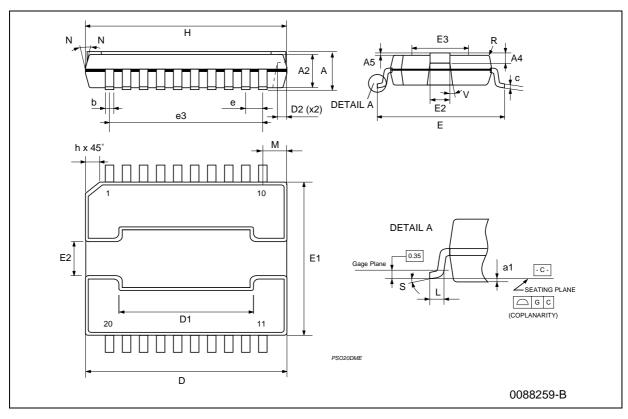
The device operation is guaranteed with any Vin-Vout dropout under the above thermal constraints.

Although two embedded protections first mentioned (the overtemperature and the overcurrent) ensure the L4913 integrity against any fault load condition, it is recommended to comply with the specified absolute maximum ratings also in applications involving fast switching of output currents.

To achieve this, a polyester capacitor of at least 470nF, put close to the regulator between input and ground, improves the L4913 reliability by

filtering the overvoltages spikes coming out during this particular operation.

To avoid undervoltages spikes leading both input and output well below ground, it is in addition


recommended to put one reverse-biased Schottky diodes between output and ground.

ELECTRICAL CHARACTERISTICS (T_J = 25°C, V_I=V_O+2.5V, V_O=3V, C_I = 0.1 μ F, C_O = 1 μ F (tantalium), unless otherwise specified)

Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
V _I	Input Voltage	$I_O = 3A$ $T_J = -55 \text{ to}$	125°C	3		12	V
Vo	Output Voltage	$I_O = 5mA$ $T_J = -55 \text{ to}$	125°C	2		2	%
		$I_O = 3A$ $T_J = -55 \text{ to}$	125°C	1.23		9	V
I _{SHORT}	Output Current Limit	Adjustable			3.8		Α
$\Delta V_{O}/\Delta V_{I}$	Line Regulation	$V_I = V_O + 2.5V \text{ to } 12V,$ $I_O = 0.00$	= 5mA		0.1		%
$\Delta V_{O}/\Delta V_{I}$	Load Regulation	$I_O = 5$ mA to 3A			0.4		%
V_d	Dropout Voltage	$I_{O} = 400 \text{mA}$ $T_{J} = -55 \text{ to}$	125°C		0.35	0.7	V
		$I_O = 1A$ $T_J = -55$ to	125°C		0.5	1	V
		$I_{O} = 2A$ $T_{J} = -55 \text{ to}$	125°C		0.75	1.5	V
		$I_{O} = 3A$ $T_{J} = -55 \text{ to}$	125°C		1	2	V
I _d	Quiescent Current	$V_I = V_O + 2.5V \text{ to } 12V,$ On $V_O = 1.23V$ $I_O = 5\text{mA}$	Mode		1.6	4	mA
		$V_I = V_O + 2.5 V \text{ to } 12 V,$ On $V_O = 1.23 V$ $I_O = 30 \text{mA}$	Mode		2.7	8	mA
		$V_I = V_O + 2.5 V \text{ to } 12 V,$ On $V_O = 1.23 V$ $I_O = 300 \text{mA}$	Mode		11	24	mA
		$V_I = V_O + 2.5 V \text{ to } 12 V,$ On $V_O = 1.23 V$ $I_O = 1 A$	Mode		32	64	mA
		$V_I = V_O + 2.5 V \text{ to } 12 V,$ On $V_O = 1.23 V$ $I_O = 2 A$	Mode		64	130	mA
		$V_I = V_O + 2.5V \text{ to } 12V,$ On $V_O = 1.23V$ $I_O = 3A$	Mode		94	200	mA
		$V_I = 12V$ $V_{INH} = 3V$ Off	Mode		0.3		mA
SVR	Supply Voltage Rejection		= 120Hz		70		dB
			33KHz		50		
V _{INH(OFF)}	Turn Off Voltage	T _J = 0 to 125°C		2			V
		$T_J = -55 \text{ to } 0^{\circ}\text{C}$		2.4			V
V _{INH(ON)}	Turn On Voltage	T _J = -55 to 125°C				0.8	V
I _{INH}	Shutdown Input Current	$V_I = 12V$ $V_{INH} = 5V$			120		μΑ
Co	Output Capacitance	$I_O = 5$ mA to 3A			1		μF
ESR	Electrical Series Resistance	$I_O = 5$ mA to 3A		2		6	Ω
V _{OCML}	Overcurrent Monitor Voltage Low	I _{OCM} = 10mA (sinked current)\			0.4		V
V _{OCMH}	Overcurrent Monitor Voltage High		= V _O +2.5V = 12V		V _O +2.5		V
eN	Output Noise Voltage		= 1A		66		μVrms/V

PowerSO-20 Slug-up MECHANICAL DATA

DIM.	mm.			inch			
טוועו.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
Α	3.25		3.5	0.128		0.138	
a1	3	3.15	3.3	0.118	0.124	0.130	
A2			0.1			0.039	
A4	0.8		1	0.031		0.039	
A5	0.15	0.2	0.25	0.006	0.008	0.010	
b	0.4		0.53	0.016		0.021	
С	0.23		0.32	0.09		0.013	
D	15.8		16	0.622		0.630	
D1	9.4		9.8	0.370		0.386	
D2		1			0.039		
Е	13.9		14.5	0.547		0.571	
е	1.12	1.27	1.42	0.044	0.050	0.056	
e3		11.43			0.450		
E1	10.9		11.1	0.429		0.437	
E2			2.9			0.114	
E3	5.8		6.2	0.228		.0244	
G	0		0.1	0.000		0.004	
h			1.1			0.043	
Н	15.5		15.9	0.610		0.626	
L	0.8		1.1	0.031		0.043	
N			10°			10°	
R		0.6			0.024		
S	0°		8°	0°		8°	
V	5°		7°	5°		7°	

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

© The ST logo is a registered trademark of STMicroelectronics

© 2002 STMicroelectronics - Printed in Italy - All Rights Reserved STMicroelectronics GROUP OF COMPANIES

Australia - Brazil - Canada - China - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom - United States. © http://www.st.com