

DMOS Application Note AN-D15

Understanding MOSFET Data

The following outline explains how to read and use Supertex MOSFET data sheets. The approach is simple and care has been taken to avoid getting lost in a maze of technical jargon.

The VN0104/VN0106/VN0109 data sheet was chosen as an example because this is one of the most popular devices and has the largest choice of packages. The product nomenclature shown applies only to Supertex proprietary products.

Advanced DMOS Technology

These enhancement-mode (normally-off) DMOS FET transistors utilize a vertical DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high input impedance and negative temperature coefficient inherent in MOS devices. Characteristic of all

This section outlines main features of the product

N-Channel Enhancement-Mode Vertical DMOS FETs

switching speed are desired.

and thermally-induced secondary breakdown.

MOS structures, these devices are free from thermal runaway

Supertex vertical DMOS FETs are ideally suited to a wide range

of switching and amplifying applications where high breakdown

voltage, high input impedance, low input capacitance, and fast

Ordering Information


BV _{DSS} /	R _{DS(ON)} (max)	I _{D(ON)} (min)	Order Number / Package							
BV _{DGS}			TO-39	TO-92	TO-52	TO-220	Quad P-DIP	Quad C-DIP	DICE	
40V	3Ω	2.0A	VN0104N2	VN0104N3	VN0104N9	VN0104N5	VN0104N6	VN0104N7	VN0104ND	
60V	3Ω	2.0A	VN0106N2	VN0106N3	VN0106N9	VN0106N5	VN0106N6	VN0106N7	VN0106ND	
90V	3Ω	2.0A	VN0109N2	VN0109N3	VN0109N9	VN0109N5	_	_	VN0109ND	

Drain to source breakdown voltage & drain to gate breakdown voltage

Maximum resistance from drain to source when device is fully turned on

Minimum drain current when device is fully turned on

Package Options

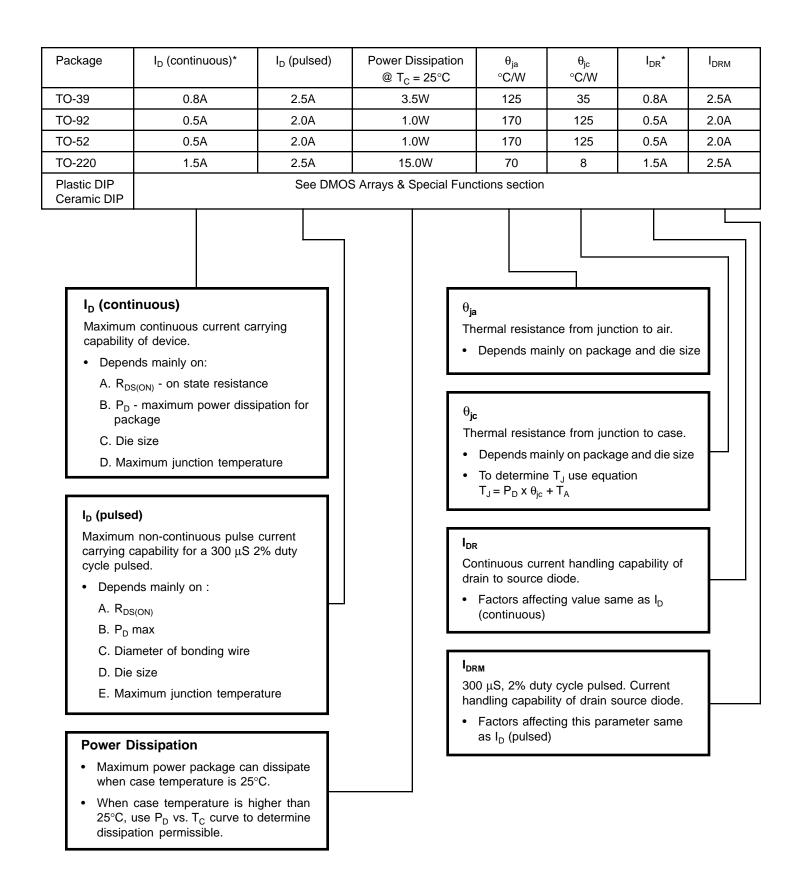
Extreme conditions a device can be subjected to electrically and thermally. Stress in excess of these ratings will usually cause permanent damage.

Ratings given in product summary.

V_{GS}

- Most Supertex FETs are rated for ±20V
- ± voltage handling capability allows quick turn off by reversing bias.
- External protection should be used when there is a possibility of exceeding this rating. Stress exceeding ±20V will result in gate insulation degradation and eventual failure.

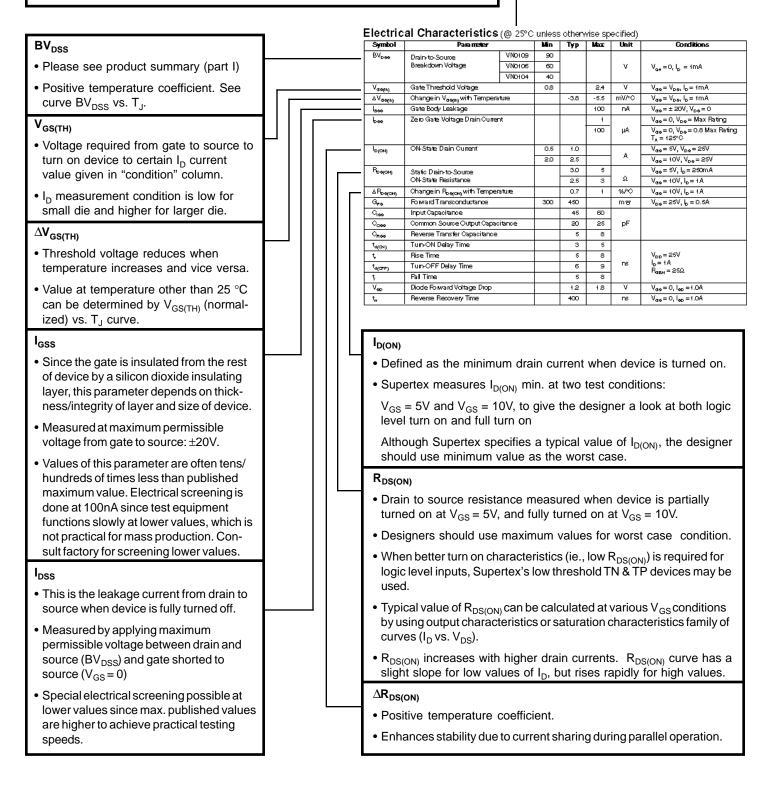
Absolute Maximum Ratings


- Drain-to Source Voltage	BV _{DSS}
- Drain-to-Gate	BV _{DGS}
- Gate-to-Source Voltage	±20V
 Operating and Storage Temperature 	-55°C to +150°C
- Soldering Temperature	300°C

Maximum allowable temperature at leads while soldering, 1.6mm away from case for 10 seconds.

- All Supertex devices can be stored and operated satisfactorily within these junction temperature (T_J) limits.
- Appropriate derating factors from curves and change in parameters due to reduced/ elevated temperatures have to be considered when temperature is not 25°C.
- Operation at T_J below maximum limit can enhance operating life.

Thermal Characteristics


Device characteristics affecting limits of heat produced and removed from device. Die size, $R_{\text{DS}(\text{ON})}$ and packaging type are the main factors determining these thermal limitations.

Electrical Characteristics

The following DC parameters are 100% tested with 300 μ S, 2% duty cycle pulsed at 25°C, BV_{DSS}, V_{GS(TH)}, I_{DSS}, I_{D(ON)} & R_{DS(ON)}.

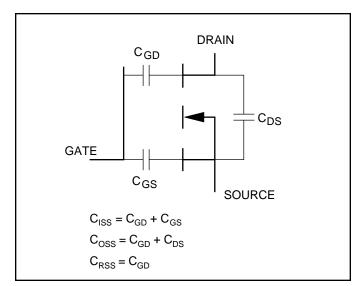
- $\Delta V_{GS(TH)}$ and $\Delta R_{DS(ON)}$ are guaranteed by design ie., when device is functional for other DC parameters, these two parameters will not deviate from published values.
- Since a representative sample is adequate to assure consistency of specs, A.C. parameters are sample tested on a lot/batch basis.
- High temperature testing on sample basis when requested with hi-rel processing.
- Refer to section 3 "power MOS structures" for test circuits used for measurement.

Switching Characteristics

- Extremely fast switching compared to bipolar transistors, due to absence of minority carrier storage time during turn off.
- Switching times depend almost totally on interelectrode capacitance, R_S (source impedance) and R_L (load impedance) as shown on test circuit.

G_{FS}

- Represents gain of the device and can be compared to H_{FE} of a bipolar transistor.
- Value is the ratio of change in $I_{\rm D}$ for a change in $V_{\rm GS}$

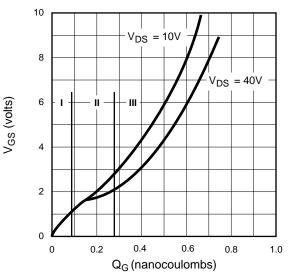

$$G_{FS} = \frac{\Delta I_D}{\Delta V_{GS}}$$

 Rises rapidly with increasing I_D, and then becomes constant in the saturation region. See G_{FS} vs. I_D curve.

$\mathbf{C}_{\text{ISS}},\,\mathbf{C}_{\text{RSS}},\,\mathbf{C}_{\text{OSS}}$

- Please see section 3 in Databook "Power MOSFET Electrical Performance" for interelectrode capacitances and equivalent circuit.
- Supertex interdigitated structures have lowest C_{ISS} in the industry for comparable die sizes and exhibit excellent switching characteristics.
- Values of these capacitances are high at low voltages across them. Please see capacitance vs V_{DS} curves for details.
- · Negligible effect of temperature on capacitances.
- The following equation may be used for calculating effective value of C_{ISS} with "Miller Effect."

 $C_{ISS} = C_{GS} + (1+G_{FS} R_L) C_{GD}$


Electrical Characteristics (@ 25°C unless otherwise specified)

Symbol	Para meter		Min	Тур	Мат	Unit	Conditions
BV _{D 99}	Drain-to-Source	VN0109	90				
	Breakdown Voltage	VN0106	60	1		v	$V_{a*} = 0, I_{b} = imA$
		VN0104	40	1			
Vale(in)	Gate Threshold Voltage		0.8		2.4	V	V _{ae} = V _{pe} , I _p = 1mA
ΔV _{ale(h)}	Change in V _{agn)} with Tempera	iture		-3.8	-5.5	mV/°C	$V_{a\phi} = V_{p\phi}$, $I_p = 1mA$
400	Gate Body Leakage				100	nA	$V_{00} = \pm 20V, V_{00} = 0$
600	Zero Gate Voltage Drain Curre	nt			1		V _{ee} = 0, V _{pe} = Max Rating
					100	μΑ	V _{ae} = 0, V _{pe} = 0.8 Max Rating T _x = 125°C
ID (ON)	ON-State Drain Current		0.5	1.0			$V_{de} = 5V, V_{pe} = 25V$
			2.0	2.5		A	Vae = 10V, Vpe = 25V
Rog(ON)	Static Diain-to-Source			3.0	5		$V_{de} = 5V, I_p = 250mA$
	ON-State Resistance			2.5	3	<u>م</u>	V _{de} = 10V, I _D = 1A
ΔR _{os(ON)}	Change in B _{og(on)} with Temper	atue		0.7	+	%/%	V _{ao} = 10V, I _D = 1A
Gro	Forward Transconductance		300	450		៣២	V _{D0} = 25V, I _D = 0.5A
ിരം	Input Capacitance			45	60		
್ಯ	Common Source Output Capa	itance		20	25	рF	
್ಗೂ	Reverse Transfer Capacitance			5	8	1	
t _{4(ON)}	Tur-ON Delay Time			3	5		
ţ	Rise Time			5	8		$V_{DD} = 25V$
t _{a(cre)}	Tur-OFF Delay Time			6	9	ns	l _o = 1Α R _{aen} = 25Ω
ţ	Fal Time			5	8		
Veo	Diode Forward Voltage Drop			12	1.8	٧	$V_{eq} = 0, I_{ep} = 1.0A$
t,	Reverse Recovery Time			400		ns	$V_{ab} = 0$, $I_{ab} = 1.0A$

During this period, the drive circuit charges C_{ISS} up to $V_{GS(TH)}$. Since no drain current flows prior to turn on, V_{DS} and consequently C_{ISS} remain constant. Region I on the V_{GS} vs. Q_G curve shows linear change in voltage with increasing Q_G .

3

Switching Characteristics (continued)

	al Characteristic	S (@ 25°0					Conditions	
Symbol	Para meter Designate Source VN0109		Min	Тур	Max	Unit	Conditions	
BV _{D99}	Drain-to-Source		90					
	Breakdown Voltage	VN0106	60			V	$V_{qe} = 0, I_p = 1mA$	
		VN0104	40					
Valgabi	Gate Threshold Voltage		0.8		2.4	V	V _{ae} = V _{pe} , I _p = 1mA	
ΔV _{dis(h)}	Change in V _{doph} with Temp	erature		-3.8	-5.5	mV/°C	Vae Vper lp = 1mA	
	Gate Body Leakage				100	nA		
400						TH.	$V_{a\phi} = \pm 20V, V_{b\phi} = 0$	
600	Zeio Gate Voltage Drain Cui	rent			1		V _{ee} = 0, V _{ee} = Max Rating	
				1	100	μΑ	V _{ee} = 0, V _{pe} = 0.8 Max Rating	
L							T _A = 125°C	
10(OH)	ON-State Drain Current		0.5	1.0			V _{ae} = 5V, V _{De} = 25V	
			2.0	2.5		A	V _{ae} = 10V, V _{pe} = 25V	
Bog(ON)	Childe Davis de Course			3.0	5		V _{ge} = 5V, I _p = 250mA	
.09(04)	Static Drain-to-Source					Ω		
	ON-State Resistance			2.5	3		$V_{\rm de} = 10V$, $I_{\rm D} = 1A$	
∆ R _{ole(ON)}	Change in Rogon with Temp	erature		0.7	1	%/~C	$V_{do} = 10V$, $I_D = 1A$	
Gro	Forward Transconductance		300	450		៣ឃ	$V_{p,q} = 25V, I_{p} = 0.5A$	
9.00	Input Capacitance			45	60			
C	Common Source Output Cap	acitance		20	25	pF		
 	Reverse Transfer Capacitani			5	8			
	Tur-ON Delay Time			3	5			
t _{4(CN)}	Rise Time				8		V _{DD} = 25V	
ţ				5		ns	$V_{DD} = 25V$ $I_D = 1A$	
t _{4(CPP)}	Tur-OFF Delay Time			6	9		R _{aen} = 25Ω	
ţ	Fal Time			5	8			
	Diode Folward Voltage Drop			12	1.8	V	$V_{co} = 0, I_{co} = 1.0A$	
<u>~</u>	Reverse Recovery Time			400		ns	V _{ag} =0, I _{sp} =1.0A	
	1		1				50 1 00 1 m	
	onsiderably. Gain ullified, resulting i	stabiliz	es in	Regi	on II	and "		
nı t _{d(OF}	onsiderably. Gain ullified, resulting i F)	stabiliz n a linea	es in ar cha	Regi	on III in V _c	and " _{3S} for i	Miller Effect" is ncrease in Q _G .	
t _{d(OF} • TI	onsiderably. Gain ullified, resulting i F)	stabiliz n a linea vents no	es in ar cha	Regine	on III in V _c to re	and " _{3S} for i	Miller Effect" is ncrease in Q _G .	
• TI th ou	nsiderably. Gain ullified, resulting i F) ne sequence of e rough R _{GEN} . The	stabiliz n a linea vents no rise of a	es in ar cha ow be V _{DS} i	Regiange egins s initi	on III in V _c to re ally s	and " _{SS} for i	Miller Effect" is ncrease in Q _G . . C _{ISS} discharges d by increase of	
■ t _{d(OF} • TI • TI • t _f • V ₁ • V • TI • D on	nsiderably. Gain ullified, resulting i F) ne sequence of e rough R _{GEN} . The utput capacitance os rises as the lo nis is the forward rain and source.	stabiliz n a linea vents no e rise of a resis voltage as a coi s rectifie	es in ar cha	Reginange egins s initi narge of th tator I	on III in V _c to really s s the e pa	and " as for i verse slowed rasitic bridge	Miller Effect" is ncrease in Q _G . . C _{ISS} discharges d by increase of ut capacitance. diode between configurations fly back voltages	
t _{d(OF} • TI • TI • V • V • TI • D • TI • D • I • TI gr	The sequence of errough R _{GEN} . The utput capacitance of errough R _{GEN} are sequence of errough R _{GEN} . The utput capacitance of the rough R _{GEN} is the forward of the reverse as the logen of the reverse recovered by the	stabiliz n a linea vents no e rise of e. ad resis voltage as a col s rectifie y this did ery time uring for	es in ar cha	Reginange egins s initi harge of th tator de. I n a to e time	to really set to really set the set th	and " as for i verse slowed output rasitic bridge ssive i pole o	Miller Effect" is ncrease in Q _G .	