

Expanders, Multiplexers and Switches; Hubs, Translator Buffers and Repeaters

Contents and Overview

Overview
I/O Expanders
Multiplexers and Switches4
Hubs, Translator Buffers and Repeaters4
Special Functions5
LED Driver
One-Wire Interface 6
I ² C Translators
Keypad Controller7
Resources
Frequently Asked Questions 8
Packages 10
Product Casts
Technical Support 11

Texas Instruments (TI) has supported the highly efficient I²C bus interface for many years. This overview provides an updated look at I²C applications and how TI's I/O expanders, multiplexers, buffers and repeaters can help system designers achieve effective subsystem communications using proven I²C devices.

History

During the 1980s, Philips (Koninklijke Philips Electronics N.V.) developed the two-wire inter-integrated circuit (I²C) bus to provide an easy way to connect multiple peripheral circuits to a central processing unit (CPU/MCU) in TV applications.

As circuits became more complex with many peripheral connections, a method was needed to simplify designs and reduce costs. By limiting the number of printed circuit board (PCB) traces and lowering generalpurpose input and output (GPIO) usage on the microprocessor, the I²C bus met this requirement.

Operation

The I²C bus is used in a wide range of applications because it is simple and quick to use. It consists of a twowire communication bus that supports bidirectional data transfer between a master and several slaves. The master or processor controls the bus - in particular, the serial clock (SCL) line. Data is transferred between the master and slave through a serial data (SDA) line. This data can be transferred in four speeds or modes: standard (0 to 100 Kbps), fast (0 to 400 Kbps), fast-mode plus (0 to 1 Mbps) and high-speed (0 to 3.4 Mbps). The most common speeds are the standard and fast modes. See block diagram below for a generic system.

There can be more than one master on a system; the software protocol uses arbitration and synchronization to manage data collisions and loss. Since successive specification enhancements are backwardcompatible, mixed-speed communication is possible with the bus speed controlled by the processor or I²C master.

Typical I²C Features

- Requires one master (processor) and one or more slave devices
- Each device on the bus has a unique address
- Bus capacitive load: 400 pF max
- Rise time: 1000 ns (standard mode) and 300 ns (fast mode)

I²C Applications

The I²C bus is useful for many of today's microcontroller- and microprocessor-based systems or other systems linking many I/O devices. These systems may include applications in the following fields:

- Automotive
 PC/server
- Consumer
 Radio/TV
- Industrial
 Telephony
- Mobile
 Notebooks
- Battery-powered portable applications
- Telecom/networking

Many of the I^2C bus products are designed to operate in the SMBus environment. The SMBus is similar to the I^2C bus but has lower current and operates at a lower speed.

Block diagram of generic system using I²C devices.

Connect with your peers and customers to ask questions, share knowledge, explore ideas, and solve problems. Join the discussion today!

e2e.ti.com

I/O Expanders

The l^2C I/O expanders (as shown in the block diagram) allow system layout to be greatly simplified. The two-wire bus reduces PCB complexity through trace reduction and routing simplification.

Advantages

- Easy board routing
- Board-space savings
- Processor-pin savings
- Low cost
- Industry standard

Applications

 Complements processors with limited I/Os

Low-Voltage I/O Expanders Selection Guide

- Feature enhancements
- Keypad control

Processor Logic

System with I²C I/O expanders

System without I²C I/O expanders

I/O expanders can simplify board layout.

	Мах				Additional features					I/O type		
Device	frequency (kHz)	l ² C address	V _{CC} range (V)	No. of I/Os	Low power	Interrupt	Reset	Configuration registers	5-V-tolerant I/O	Push- pull	Open- drain	
TCA6408A	400	0100 00x	1.65 to 5.5	8-bit	~	~	~	~	v	v		
TCA6416A	400	0100 00x	1.65 to 5.5	16-bit	~	~		~	v	v		
TCA6424A	400	0100 01x	1.65 to 5.5	24-bit	~	~	~	~	~	v		
TCA7408	1000	0100 00x	1.65 to 5.5	8-bit	~	~	~	~	v	v		
TCA9535	400	0100 xxx	1.65 to 5.5	16-bit	~	~		~	v	v		
TCA9539	400	1110 1xx	1.65 to 5.5	16-bit	~	~	~	~	v	v		
TCA9554/A	400	0100 xxx/0111 xxx	1.65 to 5.5	8-bit	~	~		~	v	v		
TCA9555	400	0100 xxx	1.65 to 5.5	16-bit	~	~		~	~	~		

5-V tolerant on the GPIO sides.

New products are listed in **bold red.** Preview products are listed in **bold blue**.

External device

I/O Expanders Selection Guide

	Мах					Ac	I/O type				
Device	frequency (kHz)	l ² C address	V _{CC} range (V)	No. of I/Os	Low power	Interrupt	Reset	Configuration registers	5-V-tolerant I/O	Push- pull	Open- drain
PCA9536	400	1000 001	2.3 to 5.5	4-bit				~	✓	v	
PCA6107	400	0011 xxx	2.3 to 5.5	8-bit	v	v	~	~	 ✓ 	~	 ✓
PCA9534	400	0100 xxx	2.3 to 5.5	8-bit	~	v		~	v	v	
PCA9534A	400	0111 xxx	2.3 to 5.5	8-bit	v	v		~	v	v	
PCA9538	400	1110 Oxx	2.3 to 5.5	8-bit	~	v	~	~	v	v	
PCA9554A	400	0111 xxx	2.3 to 5.5	8-bit		v		~	v	v	
PCA9554	400	0100 xxx	2.3 to 5.5	8-bit		v		~	v	v	
PCA9557	400	0011 xxx	2.3 to 5.5	8-bit	v		~	~	~	~	 ✓
PCA9535	400	0100 xxx	2.3 to 5.5	16-bit	v	v		~	v	v	
PCA9539	400	1110 1xx	2.3 to 5.5	16-bit	v	v	~	~	v	v	
PCA9555	400	0100 xxx	2.3 to 5.5	16-bit		v		~	v	v	
PCF8574	100	0100 xxx	2.5 to 6.0	8-bit		v				~	
PCF8574A	100	0111 xxx	2.5 to 6.0	8-bit		v				v	
PCF8575	400	0100 xxx	2.5 to 5.5	16-bit		V				v	
PCF8575C	400	0100 xxx	4.5 to 5.5	16-bit		~					~

The l^2C multiplexer/switch shown in this diagram allows further expansion of l^2C systems while maintaining the simple two-wire bus. It can also perform voltage translation and segment isolation.

Advantages

- Pin savings on the I²C master, as each switch is activated or isolated through the I²C software
- Supports voltage-level translation between 1.8-, 2.5-, 3.3- and 5-V buses, which is essential in mixedvoltage I²C systems

Applications

- Resolves I²C address conflicts
- I²C bus isolation
- I²C bus expansion

Multiplexers and Switches Selection Guide

Dual bidirectional translating switch controlled via I²C bus.

-	Мах				Additional features				I/O type		
Device	frequency (kHz)	l ² C address	V _{CC} range (V)	Channel width	Interrupt	Reset	Simultaneously active channels	5-V-tolerant I/O	Push- pull	Open- drain	
PCA9543A	400	1110 0xx	2.3 to 5.5	2-channel	~	v	1 to 2	~		 ✓ 	
PCA9544A	400	1110 xxx	2.3 to 5.5	4-channel	~		1	~		v	
PCA9545A	400	1110 0xx	2.3 to 5.5	4-channel	~	v	1 to 4	~		v	
PCA9546A	400	1110 xxx	2.3 to 5.5	4-channel		v	1 to 4	~		v	
PCA9548A	400	1110 xxx	2.3 to 5.5	8-channel		V	1 to 8	~		V	

Hubs, Translator Buffers and Repeaters

I²C hubs, buffers and repeaters permit bus expansion, sectional bus isolation, address conflict resolution and voltage-level translation, as shown in this diagram.

Advantages

- Can isolate a section on the I²C bus through enable (EN) pin
- Supports voltage-level translation between 1.1-, 1.8-, 2.5-, 3.3- and 5-V buses, which is essential in mixedvoltage I²C systems

Applications

- I²C-bus expansion through buffering of I²C signals
- Resolving address conflicts

Two-channel bidirectional repeater.

Hubs, Translator Buffers and Repeaters (cont.)

Hubs, Translator Buffers, and Repeaters Selection Guide

	Max						I ² C bus capacita	nce supported		I/O 1	уре
Device	frequency (kHz)	l ² C address	V _{CC} range (V)	Channel width	Enable pin	EXP pin	Master side (pF)	Each slave side (pF)	5-V-tolerant I/O	Push- pull	Open- drain
PCA9515A	400	None	2.3 to 5.5	2-channel	~		400	400	~		~
PCA9517	400	None	0.9 to 5.5	2-channel	~		400	400	~		~
PCA9518	400	None	3.0 to 3.6	5-channel	~	~	400	400	~		~
P82B715	1,000	None	3.0 to 12.0	2-channel							
P82B96	400	None	2.0 to 15.0	2-channel			400	400	~		~
TCA4311A	400	None	2.7 to 5.5	2-channel	~		400	400	~		~
TCA9509	400	None	0.9 to 5.5	2-channel	~		400	400	~		~

New products are listed in **bold red**. Preview products are listed in **bold blue**.

Special Functions LED Driver

The LED driver frees the processer from having to manage the LEDs. It will manage turning the LEDs on and off (per the required dimming rate). This will free up valuable processor time, thus helping to create a more efficient system.

Advantages

- · Supports brightness control and blink modes at the same time
- 1.8-V compatible for use with nextgeneration processors
- Multiple PWMs for multiple blink modes

Applications

- Fun light (decoration)
- Enhanced feature set ٠
- Driving RGB LEDs •
- Control function (indicator lights) •

I²C Special Functions Selection Guide

Device	Function	Max frequency (kHz)	l ² C address	V _{CC} range (V)	Low voltage	Enable pin	5-V-tolerant I/O	Push- pull I/O type	Open- drain I/O type
TCA6507	LED driver	400	100 0101	1.65 to 3.6	~	~	v		~
TCA8418	Keypad controller	400	0110 100	1.65 to 3.6	~	~	v		~
TCA8418E	Keypad controller	1 MHz	0110 100	1.65 to 3.6	~				~
PCA9306	Voltage translator	400	None	0 to 5.5		~	~		
TCA9406	Voltage translator	1 MHz	None	1.65 to 5.5	~	~	~	~	~
5-V tolerant on t	the GPIO sides						New c	products are list	ted in bold red

rant on the GPIU si

White-LED flashlight driver and high-brightness LED indicator/backlight power supply.

😔 One-Wire Interface

The TCA5405 is a 5-bit output expander controlled using a single wire input. This device is ideal for portable applications as it has a wide VCC range of 1.65V to 3.6 V. The TCA5405 uses a self-timed serial data protocol with a single data input driven by a master device synchronized to an internal clock of that device. During a Setup phase, the bit period is sampled, then the TCA5405 generates its own internal clock synchronized to that of the Master device to sample the input over a five-bit-period Data Transfer phase and writes the bit states on the parallel outputs after the last bit is sampled. The TCA5405 is available in an 8-pin 1.5mm x 1.5mm RUG µQFN package.

Advantages

- Operating power-supply voltage range of 1.65 V to 3.6 V
- Five independent push-pull outputs
- Single input (DIN) controls state of all outputs
- High-current drive outputs maximum capability for directly driving LEDs
- Latch-up performance exceeds 100 mA per JESD 78, class II
- ESD protection exceeds JESD 22
 2000-V Human-Body Model
 - 1000-V Charged-Device Model

Applications

- Cell phones
- PDAs
- Portable media players
- MP3 players
- Portable instrumentation

TCA5405 block diagram.

Bidirectional voltage-level translators enable voltage translation where interconnection between voltage levels is required.

Advantages

- Can interface between processors operating at 1.8 V and I²C slave devices operating at V_{CC} of 2.5 V and higher
- Provides bidirectional voltage translation without a direction pin
- Accommodates standard- and fast-mode I²C devices and multiple masters
- Automotive qualified part available
- 8-kV Human Body Model (HBM) ESD
 Protection

Applications

• I²C bus voltage translation

TCA9406 bidirectional voltage-level translator.

Keypad Controller

The keypad controller frees the processor from having to scan the keypad for presses and releases. It is a keypad scan device with 18 GPIOs that can be configured into 8 inputs and 10 outputs to support up to an 8 x 10 keypad array (80 buttons).

Advantages

- Ideal for usage with processors that have limited GPIOs
- Provides power and bandwidth savings
- Includes an oscillator that debounces at 50 us and a 10 byte FIFO to store 10-key presses and releases
- Interrupt output can be configured to alert key presses and releases either as they occur, or at maximum rate

Applications

- Smart phones
- PDAs
- GPSs
- MP3 players

7

Frequently Asked Questions

- Q. Why doesn't the slave device respond to the master after an I²C call is made from the master?
- If the device is not responding properly, there may be an I²C protocol violation.
 - To begin, a proper I²C start condition must be issued.
 - After stop condition, the master must reissue the start condition.
 - After every start condition, the master must send the full slave address.
 - During communication, if the master issues a restart condition, the full slave address must be sent.
 - If the device does not respond with an ACK, it did not recognize the address.
 - Partial data cannot be written to the I/O.
 - To write to the I/O, complete 8-bit data must be sent to the slave.
 - If fewer than 8 bits are sent, the slave will not respond with an ACK and will not update the I/O port.
- Q. When using I²C I/O expanders, what is the functionality difference between power-on reset and /RESET? (See figure on this page.)
- A. Power-on reset:
 - When power (from 0 V) is applied to the V_{CC} , the internal poweron reset holds the device in a reset condition until V_{CC} reaches Vpor (~1.4 V).
 - Once V_{CC} reaches Vpor, the internal registers and I²C/SMBus state machine are initialized to their default states.
 - After this, the device can be returned to its default reset state if V_{CC} is lowered to 0 V.

/RESET:

• Simply asserting a low on the /RESET input returns the device to its default state.

- Creates the same effect as a power-on reset without power cycling the device.
- The /RESET input is 5.5-V tolerant (regardless of voltage level on V_{CCP}).
- Partial data cannot be written to the I/O.
 - To write to the I/O, complete 8-bit data must be sent to the slave.
 - If fewer than 8 bits are sent, the slave will not respond with an ACK and will not update the I/O port.

Q. How should an unused /RESET pin be terminated?

A. /RESET is an input to the master. It requires a pull-up resistor to V_{CC} if no active connection is used.

Q. What is the functionality of the interrupt (/INT) control?

- The /INT is an open-drain output in the I²C slave. It is used to inform the I²C master if any of the inputs in the slave device have changed state.
 - If any of the I/Os configured as inputs change state before the I/O is read (i.e., if a mismatch between the I/O and the contents of the internal input register occurs), /INT will become low.
 - /INT is not affected by I/Os configured as outputs.
 - /INT can be tied to any voltage (or V_{CC} pin) up to 5.5 V through a pull-up resistor.

Q. How should an unused /INT pin be terminated?

- A. /INT is an open-drain output that requires a pull-up resistor for proper operation. If /INT is not used, it can be left open or connected directly to GND.
- Q. What is the power-on default for the interrupt (/INT) pin?
- A. High.
- Q. How can an /INT be cleared (returned back to high state)?
- A. Read (clock) the data on the I/O port that generated the /INT.
 - Change the data on the I/O to the original setting.
 - A stop event will clear the /INT.
- Q. How can a low /INT be avoided at power up in I²C I/O expanders?
- A. At power up, the P ports are configured as inputs by default.
 - When power up ends and the device has a valid V_{CC} value, the input port (P port) is compared to the internal input register (no clock needed), and /INT goes active (low) unless there is a match.
 - The internal input registers are designed to power up with all ones or high.
 - The /INT should start high at power up if the P port is initially high (all ones) to match the internal input register.

Typical I²C I/O expander applications.

Frequently Asked Questions

- Q. What is the power-on default for the P port (I/O port) in an I²C I/O expander?
- A. For the PCF8574/A, PCF8575 and devices with internal pull-up resistors like the PCA9536, PCA9554, PCA9554A and PCA9555, the input default is high.

For the PCF8575C and devices without internal pull-up resistors, the input is 3-state.

Q. What is a fun light and what is its purpose?

- Fun lights are any set of lights used for less critical tasks such as:
 Decoration.
 - Enhancing the feature set of an application.
 - Control functions (such as indicator lights).

Fun lights are mostly found on battery-powered portable applications:

- Notebooks
- Handsets
- Consumer portables
- Portable media players

Some example fun-light

applications are:

- Predictive key entry for text messages.
- Making a smartphone flash to remind the user of an appointment.
- Providing battery-charging status.
- Enhancing audio experience through supporting a "base."

Q. How should an unused I/O pin in an I²C I/O expander be terminated?

A. For devices with internal resistors between V_{CC} and the I/O, such as PCA9555, PCA9536 and PCA9554/A, the I/O can be connected directly to V_{CC} or GND.

For devices without internal resistors, a resistor can be used to terminate unused I/Os to V_{CC} or GND.

Solution No. 2: Using TCA devices

- Q. What are the benefits of using TCAseries devices? (See figure above.)
- Low-voltage operation. TCAseries devices provide a one-chip interface with processors operating at 1.8 V to:
 - Save board costs.
 - Save board space.
 - Provide better inventory management.
 - Wide-voltage operation:
 - Can interface with legacy and next-generation processors.
 - Low power consumption.

0.083

(2,10)

16-pin

µCSP (ZSZ)

Area = 4.0 mm^2

0.167

(4,25)

0.083

(2, 10)

♣

0.260

(6, 60)

╈

QFN (RUG) Lead pitch = 0.020(0,5)Height = 0.015 (0,37) Area = 2.4025 mm²

★.

1.55

(1,45)

16-pin QFN (RGT)

Lead pitch = 0.020 (0,50) Height = 0.039 (1,00) Area = 0.015 (9,9)

20-ball VFBGA (ZXY) Ball pitch = 0.020 (0,50) Height = 0.016 (0,41) Area = 0.012 (8,1)

24-pin QFN (RTW) Lead pitch = 0.020 (0,50) Height = 0.032 (0,80)Area = 0.027 (17,2)

Dimensions are in inches (millimeters)

Introducing TI's Linear Product Casts site. Our product casts are 10 to 20 minutes long and cover a wide range of topics from product roadmaps to application-specific information. The product casts now available are:

- TCA low-voltage I²C solutions
- Voltage-level translation
- I²C and SMBus solutions
- Analog switch solutions
- TPS920x microcontroller power
- · Supply and multiple low-side drivers
- ESD/EMI protection overview

New topics will be added, so check this site often for in-depth coverage of the latest product solutions.

www.ti.com/productcasts

Technical Support

TI Worldwide Technical Support

Internet **TI Semiconductor Product Information Center Home Page** support.ti.com

TI E2E[™] Community Home Page e2e.ti.com

Product Information Centers

Americas	Phone	+1(972) 644-5580
Brazil	Phone	0800-891-2616
Mexico	Phone	0800-670-7544
Fax Internet	+1(972 support)927-6377 .ti.com/sc/pic/americas.htm

Europe, Middle East, and Africa D

none	
European Free Call	00800-ASK-TEXAS
	(00800 275 83927)
International	+49 (0) 8161 80 212
Russian Support	+7 (4) 95 98 10 701

Note: The European Free Call (Toll Free) number is not active in all countries. If you have technical difficulty calling the free call number, please use the international number above.

Fax	+49 (0) 8161 80 2045
Internet	support.ti.com/sc/pic/euro.htm
Direct Email	asktexas@ti.com

Japan			
Phone	Domestic	;	0120-92-3326
Fax	Internatio	nal	+81-3-3344-5317
	Domestic	;	0120-81-0036
Internet			
Internat	ional	supp	ort.ti.com/sc/pic/japan.htr
Domest	ic	www	v.tij.co.jp/pic

Asia

Phone		
Internationa	al	+91-80-41381665
Domestic		Toll-Free Number
Note: T	oll-free nui	mbers do not support
mobile	and IP pho	nes.
Australi	a	1-800-999-084
China		800-820-8682
Hong Ko	ong	800-96-5941
India		1-800-425-7888
Indones	ia	001-803-8861-1006
Korea		080-551-2804
Malaysi	а	1-800-80-3973
New Ze	aland	0800-446-934
Philippii	nes	1-800-765-7404
Singapo	ore	800-886-1028
Taiwan		0800-006800
Thailand	b	001-800-886-0010
-ax		+8621-23073686
Email	tiasia@t	i.com or ti-china@ti.com
nternet	support.	ti.com/sc/pic/asia.htm
		D122010

Important Notice: The products and services of Texas Instruments Incorporated and its subsidiaries described herein are sold subject to TI's standard terms and conditions of sale Customers are advised to obtain the most current and complete information about TI products and services before placing orders. TI assumes no liability for applications assistance, customer's applications or product designs, software performance, or infringement of patents. The publication of information regarding any other company's products or services does not constitute TI's approval, warranty or endorsement thereof.

The platform bar, E2E, NanoFree and NanoStar are trademarks of Texas Instruments. All other trademarks are the property of their respective owners

© 2011 Texas Instruments Incorporated Printed in U.S.A. by (Printer, City, State)

Share, explore and solve challenges with fellow engineers and Tlers

Join the TI E2E[™] Community

e2e.ti.com

14950 F.A.A. Blvd. Fort Worth, TX 76155

Address service requested

TI E2E™

Community

solving problems

engineer.to.engineer,

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com	Wireless	www.ti.com/wireless-apps
RF/IF and ZigBee® Solutions	www.ti.com/lprf		

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated