











TCA9555

SCPS200B - JULY 2009-REVISED JULY 2015

# TCA9555 Low-Voltage 16-Bit I<sup>2</sup>C and SMBus I/O **Expander With Interrupt Output and Configuration Registers**

### **Features**

- Low Standby-Current Consumption of 3 µA Max
- I<sup>2</sup>C to Parallel Port Expander
- Open-Drain Active-Low Interrupt Output
- 5-V Tolerant I/O Ports
- Compatible With Most Microcontrollers
- 400-kHz Fast I<sup>2</sup>C Bus
- Configurable Slave Address with 3 Address Pins
- Polarity Inversion Register
- Latched Outputs With High-Current Drive Capability for Directly Driving LEDs
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
  - 2000-V Human-Body Model (A114-A)
  - 1000-V Charged-Device Model (C101)

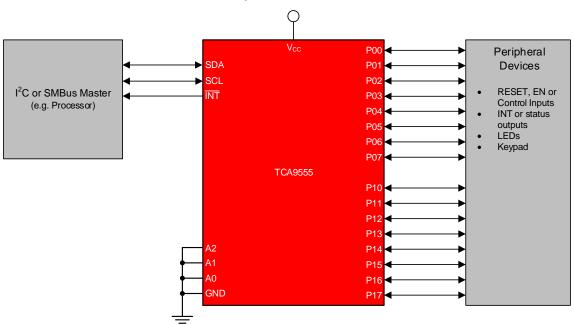
# **Applications**

- Servers
- Routers (Telecom Switching Equipment)
- **Personal Computers**
- Personal Electronics

- **Industrial Automation Equipment**
- Products with GPIO-Limited Processors

# 3 Description

This 16-bit I/O expander for the two-line bidirectional bus ( $I^2C$ ) is designed for 1.65-V to 5.5-V  $V_{CC}$ operation. It provides general-purpose remote I/O expansion for most microcontroller families via the I<sup>2</sup>C


The TCA9555 consists of two 8-bit Configuration (input or output selection), Input Port, Output Port, and Polarity Inversion (active high or active low operation) registers. At power on, the I/Os are configured as inputs. The system master can enable the I/Os as either inputs or outputs by writing to the I/O configuration bits. The data for each input or output is kept in the corresponding Input or Output register. The polarity of the Input Port register can be inverted with the Polarity Inversion register.

## Device Information<sup>(1)</sup>

| PART NUMBER | PACKAGE    | BODY SIZE (NOM)   |
|-------------|------------|-------------------|
| TCAOFFE     | TSSOP (24) | 7.80 mm × 4.40 mm |
| TCA9555     | WQFN (24)  | 4.00 mm × 4.00 mm |

(1) For all available packages, see the orderable addendum at the end of the datasheet.

### Simplified Schematic





# **Table of Contents**

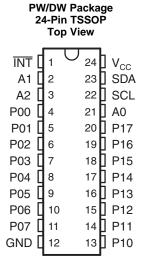
| 1 | Features 1                                         | 9    | .3 Feature Description               | 1  |
|---|----------------------------------------------------|------|--------------------------------------|----|
| 2 | Applications 1                                     | 9    | .4 Device Functional Modes           |    |
| 3 | Description 1                                      | 9    | .5 Programming                       | 10 |
| 4 | Revision History2                                  | 9    | .6 Register Maps                     | 24 |
| 5 | Description (continued)3                           | 10 A | Application and Implementation       | 2  |
| 6 | Pin Configuration and Functions4                   | 1    | 0.1 Application Information          | 2  |
| 7 | Specifications5                                    | 1    | 0.2 Typical Application              | 2  |
| ' |                                                    | 11 F | Power Supply Recommendations         | 28 |
|   | 7.1 Absolute Maximum Ratings                       | 12 L | .ayout                               | 30 |
|   | 7.2 ESD Ratings                                    |      | 2.1 Layout Guidelines                |    |
|   | 7.3 Recommended Operating Conditions               | 1    | 2.2 Layout Example                   |    |
|   | 7.4 Thermal Information                            |      | Device and Documentation Support     |    |
|   | 7.5 Electrical Characteristics 6                   |      | 3.1 Documentation Support            |    |
|   | 7.6 I <sup>2</sup> C Interface Timing Requirements |      | 3.2 Community Resources              |    |
|   | 7.7 Switching Characteristics                      |      | 3.3 Trademarks                       |    |
|   | 7.8 Typical Characteristics                        | •    | 3.4 Electrostatic Discharge Caution  |    |
| 8 | Parameter Measurement Information 11               |      | -                                    |    |
| 9 | Detailed Description 15                            |      | · · · · · · · · · · · · · · · · ·    | 3  |
|   | 9.1 Overview 15                                    |      | Mechanical, Packaging, and Orderable | 2  |
|   | 9.2 Functional Block Diagram 15                    | ır   | nformation                           | 3  |
|   |                                                    |      |                                      |    |

# 4 Revision History

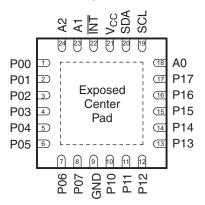
# Changes from Revision A (July 2009) to Revision B

**Page** 




# 5 Description (continued)

The TCA9555 is identical to the TCA9535, except for the inclusion of the internal I/O pull-up resistor, which pulls the I/O to a default high when configured as an input and undriven.


Three hardware pins (A0, A1, and A2) are used to program the  $I^2C$  address, which allows up to eight TCA9555 devices to share the same  $I^2C$  bus or SMBus. The fixed  $I^2C$  address of the TCA9555 is the same as the PCF8575, PCF8575C, and PCF8574, allowing up to eight of these devices in any combination to share the same  $I^2C$  bus or SMBus.



# 6 Pin Configuration and Functions



### RTW Package 24-Pin WQFN With Exposed Thermal Pad Top View



The exposed center pad, if used, must be connected as a secondary ground or left electrically open.

### **Pin Functions**

| PIN             |               |               |        |                                                                                     |
|-----------------|---------------|---------------|--------|-------------------------------------------------------------------------------------|
|                 | NO            | <b>)</b> .    | TYPE   | DESCRIPTION                                                                         |
| NAME            | TSSOP<br>(PW) | WQFN<br>(RTW) |        | DECOMI HON                                                                          |
| A0              | 21            | 18            | Input  | Address input 0. Connect directly to V <sub>CC</sub> or ground.                     |
| A1              | 2             | 23            | Input  | Address input 1. Connect directly to V <sub>CC</sub> or ground.                     |
| A2              | 3             | 24            | Input  | Address input 2. Connect directly to V <sub>CC</sub> or ground.                     |
| GND             | 12            | 9             | GND    | Ground                                                                              |
| ĪNT             | 1             | 22            | Output | Interrupt output. Connect to V <sub>CC</sub> through a pullup resistor.             |
| P00             | 4             | 1             | I/O    | P-port I/O. Push-pull design structure. At power on, P00 is configured as an input. |
| P01             | 5             | 2             | I/O    | P-port I/O. Push-pull design structure. At power on, P01 is configured as an input. |
| P02             | 6             | 3             | I/O    | P-port I/O. Push-pull design structure. At power on, P02 is configured as an input. |
| P03             | 7             | 4             | I/O    | P-port I/O. Push-pull design structure. At power on, P03 is configured as an input. |
| P04             | 8             | 5             | I/O    | P-port I/O. Push-pull design structure. At power on, P04 is configured as an input. |
| P05             | 9             | 6             | I/O    | P-port I/O. Push-pull design structure. At power on, P05 is configured as an input. |
| P06             | 10            | 7             | I/O    | P-port I/O. Push-pull design structure. At power on, P06 is configured as an input. |
| P07             | 11            | 8             | I/O    | P-port I/O. Push-pull design structure. At power on, P07 is configured as an input. |
| P10             | 13            | 10            | I/O    | P-port I/O. Push-pull design structure. At power on, P10 is configured as an input. |
| P11             | 14            | 11            | I/O    | P-port I/O. Push-pull design structure. At power on, P11 is configured as an input. |
| P12             | 15            | 12            | I/O    | P-port I/O. Push-pull design structure. At power on, P12 is configured as an input. |
| P13             | 16            | 13            | I/O    | P-port I/O. Push-pull design structure. At power on, P13 is configured as an input. |
| P14             | 17            | 14            | I/O    | P-port I/O. Push-pull design structure. At power on, P14 is configured as an input. |
| P15             | 18            | 15            | I/O    | P-port I/O. Push-pull design structure. At power on, P15 is configured as an input. |
| P16             | 19            | 16            | I/O    | P-port I/O. Push-pull design structure. At power on, P16 is configured as an input. |
| P17             | 20            | 17            | I/O    | P-port I/O. Push-pull design structure. At power on, P17 is configured as an input. |
| SCL             | 22            | 19            | Input  | Serial clock bus. Connect to V <sub>CC</sub> through a pullup resistor.             |
| SDA             | 23            | 20            | Input  | Serial data bus. Connect to V <sub>CC</sub> through a pullup resistor.              |
| V <sub>CC</sub> | 24            | 21            | Supply | Supply voltage                                                                      |



# 7 Specifications

# 7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)<sup>(1)</sup>

|                  |                                            |                             | MIN  | MAX  | UNIT |
|------------------|--------------------------------------------|-----------------------------|------|------|------|
| V <sub>CC</sub>  | Supply voltage                             |                             | -0.5 | 6    | V    |
| VI               | Input voltage (2)                          |                             | -0.5 | 6    | V    |
| Vo               | Output voltage (2)                         |                             | -0.5 | 6    | V    |
| I <sub>IK</sub>  | Input clamp current                        | V <sub>I</sub> < 0          |      | -20  | mA   |
| I <sub>OK</sub>  | Output clamp current                       | V <sub>O</sub> < 0          |      | -20  | mA   |
| I <sub>IOK</sub> | Input/output clamp current                 | $V_O < 0$ or $V_O > V_{CC}$ |      | ±20  | mA   |
| I <sub>OL</sub>  | Continuous output low current              | $V_O = 0$ to $V_{CC}$       |      | 50   | mA   |
| I <sub>OH</sub>  | Continuous output high current             | $V_O = 0$ to $V_{CC}$       |      | -50  | mA   |
|                  | Continuous current through GND             |                             |      | -250 | ^    |
| Icc              | Continuous current through V <sub>CC</sub> |                             |      | 160  | mA   |
| T <sub>stg</sub> | Storage temperature range                  |                             | -65  | 150  | °C   |

<sup>(1)</sup> Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

# 7.2 ESD Ratings

|                    |                         |                                                                                | VALUE | UNIT |
|--------------------|-------------------------|--------------------------------------------------------------------------------|-------|------|
|                    |                         | Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)                         | ±2000 |      |
| V <sub>(ESD)</sub> | Electrostatic discharge | Charged-device model (CDM), per JEDEC specification JESD22-C101 <sup>(2)</sup> | ±1000 | V    |

<sup>(1)</sup> JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

<sup>(2)</sup> The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

<sup>(2)</sup> JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.



### 7.3 Recommended Operating Conditions

|                                          |                                |                         | MIN                   | MAX                 | UNIT |
|------------------------------------------|--------------------------------|-------------------------|-----------------------|---------------------|------|
| $V_{CC}$                                 | Supply voltage                 |                         | 1.65                  | 5.5                 | V    |
| V <sub>IH</sub> High-level input voltage | SCL, SDA                       | 0.7 × V <sub>CC</sub>   | 5.5                   | V                   |      |
|                                          | High-level input voltage       | A2-A0, P07-P00, P17-P10 | 0.7 × V <sub>CC</sub> | 5.5                 | V    |
| .,                                       | Laveland inner college         | SCL, SDA                | -0.5                  | $0.3 \times V_{CC}$ | V    |
| V <sub>IL</sub>                          | Low-level input voltage        | A2-A0, P07-P00, P17-P10 | -0.5                  | $0.3 \times V_{CC}$ | V    |
| I <sub>OH</sub>                          | High-level output current      | P07-P00, P17-P10        |                       | -10                 | mA   |
| I <sub>OL</sub>                          | Low-level output current       | P07-P00, P17-P10        |                       | 25                  | mA   |
| T <sub>A</sub>                           | Operating free-air temperature |                         | -40                   | 85                  | °C   |

### 7.4 Thermal Information

|                       |                                              | TCA95      | TCA9555    |      |  |
|-----------------------|----------------------------------------------|------------|------------|------|--|
|                       | THERMAL METRIC <sup>(1)</sup>                | PW (TSSOP) | RTW (WQFN) | UNIT |  |
|                       |                                              | 24 PINS    | 24 PINS    |      |  |
| $R_{\theta JA}$       | Junction-to-ambient thermal resistance       | 108.8      | 43.6       | °C/W |  |
| $R_{\theta JC(top)}$  | Junction-to-case (top) thermal resistance    | 54.0       | 46.2       | °C/W |  |
| $R_{\theta JB}$       | Junction-to-board thermal resistance         | 62.8       | 22.1       | °C/W |  |
| ΨЈТ                   | Junction-to-top characterization parameter   | 11.1       | 1.5        | °C/W |  |
| ΨЈВ                   | Junction-to-board characterization parameter | 62.3       | 22.2       | °C/W |  |
| R <sub>0JC(bot)</sub> | Junction-to-case (bottom) thermal resistance | N/A        | 10.7       | °C/W |  |

<sup>(1)</sup> For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

## 7.5 Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

|                 | PARAMETER                                     |                           | TEST CONDITIONS                         | V <sub>CC</sub> | MIN  | TYP <sup>(1)</sup> | MAX  | UNIT     |
|-----------------|-----------------------------------------------|---------------------------|-----------------------------------------|-----------------|------|--------------------|------|----------|
| V <sub>IK</sub> | Input diode clamp voltage                     |                           | I <sub>I</sub> = -18 mA                 | 1.65 V to 5.5 V | -1.2 |                    |      | V        |
| $V_{POR}$       | Power-on reset voltage                        |                           | $V_I = V_{CC}$ or GND, $I_O = 0$        | 1.65 V to 5.5 V |      | 1.5                | 1.65 | <b>V</b> |
|                 |                                               |                           |                                         | 1.65 V          | 1.2  |                    |      |          |
|                 |                                               |                           | l – 9 mΛ                                | 2.3 V           | 1.8  |                    |      |          |
|                 |                                               |                           | $I_{OH} = -8 \text{ mA}$                | 3 V             | 2.6  |                    |      |          |
| \/              | D northigh lovel output voltage               | 2)                        |                                         | 4.75 V          | 4.1  |                    |      | V        |
| V <sub>OH</sub> | P-port high-level output voltage <sup>(</sup> | ,                         |                                         | 1.65 V          | 1.8  |                    |      | V        |
|                 |                                               |                           | 1 10 m A                                | 2.3 V           | 1.7  |                    |      |          |
|                 |                                               | $I_{OH} = -10 \text{ mA}$ | 3 V                                     | 2.5             |      |                    |      |          |
|                 |                                               |                           |                                         | 4.75 V          | 4    |                    |      |          |
|                 |                                               | SDA                       | V <sub>OL</sub> = 0.4 V                 | 1.65 V to 5.5 V | 3    |                    |      | mA       |
|                 | Low lovel output ourrent                      | P port <sup>(3)</sup>     | V <sub>OL</sub> = 0.5 V                 | 1.65 V to 5.5 V | 8    | 20                 |      | mA       |
| l <sub>OL</sub> | Low-level output current                      | P port <sup>(s)</sup>     | V <sub>OL</sub> = 0.7 V                 | 1.65 V to 5.5 V | 10   | 24                 |      | mΑ       |
|                 |                                               | ĪNT                       | V <sub>OL</sub> = 0.4 V                 | 1.65 V to 5.5 V | 3    |                    |      | mA       |
|                 |                                               | SCL, SDA<br>Input leakage | $V_I = V_{CC}$ or GND                   | 1.65 V to 5.5 V |      |                    | ±1   | μΑ       |
| l <sub>l</sub>  | Input leakage current                         | A2–A0 Input<br>leakage    | V <sub>I</sub> = V <sub>CC</sub> or GND | 1.65 V to 5.5 V |      |                    | ±1   | μΑ       |
| I <sub>IH</sub> | Input high leakage current                    | P port                    | $V_I = V_{CC}$                          | 1.65 V to 5.5 V |      |                    | 1    | μΑ       |
| I <sub>IL</sub> | Input low leakage current                     | P port                    | V <sub>I</sub> = GND                    | 1.65 V to 5.5 V |      |                    | -100 | μΑ       |

The total current sourced by all I/Os must be limited to 160 mA (80 mA for P07-P00 and 80 mA for P17-P10).

All typical values are at nominal supply voltage (1.8-V, 2.5-V, 3.3-V, or 5-V  $V_{CC}$ ) and  $T_A$  = 25°C. Each I/O must be externally limited to a maximum of 25 mA, and each octal (P07–P00 and P17–P10) must be limited to a maximum current of 100 mA, for a device total of 200 mA.



# **Electrical Characteristics (continued)**

over recommended operating free-air temperature range (unless otherwise noted)

|                 | PARA                                                       | METER                             |                                                                                      | TEST CONDITIONS                                                          | V <sub>cc</sub>  | MIN TYP(1) | MAX | UNIT |
|-----------------|------------------------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|------------------|------------|-----|------|
|                 |                                                            |                                   |                                                                                      | 5.5 V                                                                    | 100              | 200        |     |      |
|                 |                                                            | Operating                         |                                                                                      | $V_I = V_{CC}$ or GND, $I_O = 0$ ,<br>I/O = inputs, $f_{SCL} = 400$ kHz, | 3.6 V            | 30         | 75  |      |
|                 |                                                            | mode                              |                                                                                      | No load                                                                  | 2.7 V            | 20         | 50  | μA   |
|                 |                                                            |                                   |                                                                                      |                                                                          | 1.95 V           | 10         | 45  |      |
|                 |                                                            |                                   |                                                                                      |                                                                          | 5.5 V            | 1.1        | 1.5 |      |
|                 | I <sub>CC</sub> Quiescent current Low inputs  Standby mode | $V_I = GND$ , $I_O = 0$ , $I/O =$ | 3.6 V                                                                                | 0.7                                                                      | 1.3              | A          |     |      |
| ICC             |                                                            | Standby                           | outs inputs,<br>f <sub>SCL</sub> = 0 kHz, No load                                    | 2.7 V                                                                    | 0.5              | 1          | mA  |      |
|                 |                                                            |                                   |                                                                                      | 1.95 V                                                                   | 0.3              | 0.9        |     |      |
|                 |                                                            |                                   |                                                                                      |                                                                          | 5.5 V            | 2.5        | 3   |      |
|                 |                                                            |                                   | High inputs $V_1 = V_{CC}$ , $I_0 = 0$ , $I/O = inputs$ , $f_{SCI} = 0$ kHz, No load | 3.6 V                                                                    | 2                | 2.6        |     |      |
|                 |                                                            |                                   |                                                                                      | 2.7 V                                                                    | 1.5              | 2.5        | μA  |      |
|                 |                                                            |                                   |                                                                                      | ,                                                                        | 1.95 V           | 1.2        | 2.3 |      |
| $\Delta I_{CC}$ | Δl <sub>CC</sub> Additional current in standby mode        |                                   | One input at $V_{CC} - 0.6 \text{ V}$ , Other inputs at $V_{CC}$ or GND              | 1.65 V to 5.5 V                                                          |                  | 1.5        | mA  |      |
| C <sub>I</sub>  | Input capacitance                                          |                                   | SCL                                                                                  | $V_I = V_{CC}$ or GND                                                    | 1.65 V to 5.5 V  | 3          | 7   | pF   |
| 0               | lanut/outaut ri-                                           | nasitanas                         | SDA                                                                                  | V V or CND                                                               | 4.05.1/4. 5.5.1/ | 3          | 7   | ~F   |
| C <sub>io</sub> | Input/output pin ca                                        | pacitance                         | P port                                                                               | $V_{IO} = V_{CC}$ or GND                                                 | 1.65 V to 5.5 V  | 3.7        | 9.5 | pF   |

# 7.6 I<sup>2</sup>C Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 14)

|                       |                                          |                                          |     | RD MODE<br>BUS | FAST MODE I <sup>2</sup> C | BUS | UNIT |
|-----------------------|------------------------------------------|------------------------------------------|-----|----------------|----------------------------|-----|------|
|                       |                                          |                                          | MIN | MAX            | MIN                        | MAX |      |
| f <sub>scl</sub>      | I <sup>2</sup> C clock frequency         |                                          | 0   | 100            | 0                          | 400 | kHz  |
| t <sub>sch</sub>      | I <sup>2</sup> C clock high time         |                                          | 4   |                | 0.6                        |     | μs   |
| t <sub>scl</sub>      | I <sup>2</sup> C clock low time          |                                          | 4.7 |                | 1.3                        |     | μs   |
| t <sub>sp</sub>       | I <sup>2</sup> C spike time              |                                          |     | 50             |                            | 50  | ns   |
| t <sub>sds</sub>      | I <sup>2</sup> C serial-data setup time  |                                          | 250 |                | 100                        |     | ns   |
| t <sub>sdh</sub>      | I <sup>2</sup> C serial-data hold time   |                                          | 0   |                | 0                          |     | ns   |
| t <sub>icr</sub>      | I <sup>2</sup> C input rise time         |                                          |     | 1000           | 20 + 0.1C <sub>b</sub>     | 300 | ns   |
| t <sub>icf</sub>      | I <sup>2</sup> C input fall time         |                                          |     | 300            | 20 + 0.1C <sub>b</sub>     | 300 | ns   |
| t <sub>ocf</sub>      | I <sup>2</sup> C output fall time (10-pF | to 400-pF bus)                           |     | 300            | 20 + 0.1C <sub>b</sub>     | 300 | ns   |
| t <sub>buf</sub>      | I <sup>2</sup> C bus free time between   | Stop and Start                           | 4.7 |                | 1.3                        |     | μs   |
| t <sub>sts</sub>      | I <sup>2</sup> C Start or repeated Start | condition setup                          | 4.7 |                | 0.6                        |     | μs   |
| t <sub>sth</sub>      | I <sup>2</sup> C Start or repeated Start | condition hold                           | 4   |                | 0.6                        |     | μs   |
| t <sub>sps</sub>      | I <sup>2</sup> C Stop condition setup    |                                          | 4   |                | 0.6                        |     | μs   |
| t <sub>vd(Data)</sub> | Valid-data time                          | SCL low to SDA output valid              | 50  |                | 50                         |     | ns   |
| t <sub>vd(ack)</sub>  | Valid-data time of ACK condition         | ACK signal from SCL low to SDA (out) low | 0.1 | 0.9            | 0.1                        | 0.9 | μs   |
| C <sub>b</sub>        | I <sup>2</sup> C bus capacitive load     |                                          |     | 400            |                            | 400 | pF   |



# 7.7 Switching Characteristics

over recommended operating free-air temperature range, C<sub>L</sub> ≤ 100 pF (unless otherwise noted) (see Figure 15 and Figure 16)

|                 | PARAMETER                  | FROM<br>(INPUT) | TO<br>(OUTPUT) | MIN | MAX | UNIT |
|-----------------|----------------------------|-----------------|----------------|-----|-----|------|
| t <sub>iv</sub> | Interrupt valid time       | P port          | ĪNT            |     | 4   | μs   |
| t <sub>ir</sub> | Interrupt reset delay time | SCL             | ĪNT            |     | 4   | μs   |
| t <sub>pv</sub> | Output data valid          | SCL             | P port         |     | 200 | ns   |
| t <sub>ps</sub> | Input data setup time      | P port          | SCL            | 150 |     | ns   |
| t <sub>ph</sub> | Input data hold time       | P port          | SCL            | 1   |     | μs   |

# 7.8 Typical Characteristics

 $T_A = 25$ °C (unless otherwise noted)

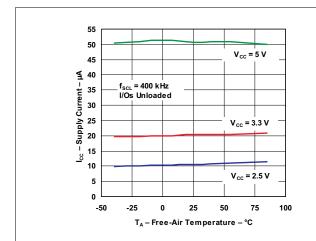
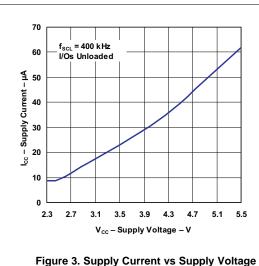




Figure 1. Supply Current vs Temperature



30 SCL = V<sub>cc</sub> 25 Icc - Supply Current - nA 20 V<sub>cc</sub> = 5 V 15 V<sub>cc</sub> = 3.3 V 10 5 V<sub>cc</sub> = 2.5 V 0 -50 -25 25 50 75 100  $T_A$  – Free-Air Temperature – °C

Figure 2. Standby Supply Current vs Temperature

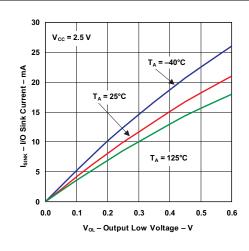



Figure 4. I/O Sink Current vs Output Low Voltage

Submit Documentation Feedback

Copyright © 2009–2015, Texas Instruments Incorporated



# **Typical Characteristics (continued)**

 $T_A = 25$ °C (unless otherwise noted)

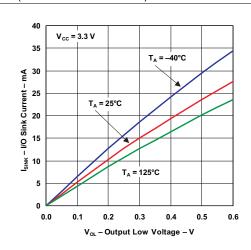



Figure 5. I/O Sink Current vs Output Low Voltage

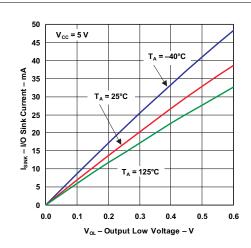



Figure 6. I/O Sink Current vs Output Low Voltage

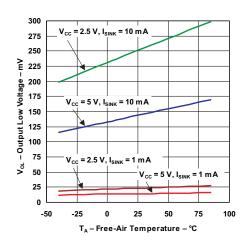



Figure 7. I/O Sink Current vs Temperature

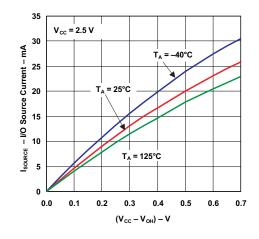



Figure 8. I/O Sink Current vs Output High Voltage

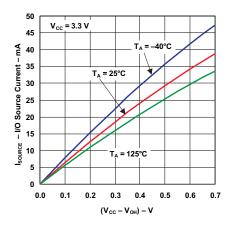



Figure 9. I/O Sink Current vs Output High Voltage

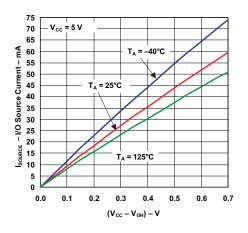
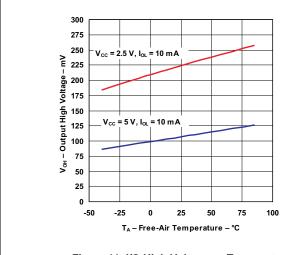



Figure 10. I/O Sink Current vs Output High Voltage


Copyright © 2009–2015, Texas Instruments Incorporated

Submit Documentation Feedback



# **Typical Characteristics (continued)**

 $T_A = 25$ °C (unless otherwise noted)





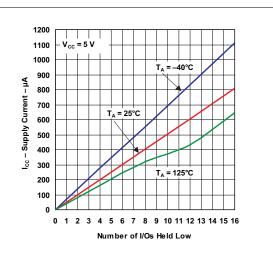



Figure 12. Supply Current vs Number of I/Os Held Low

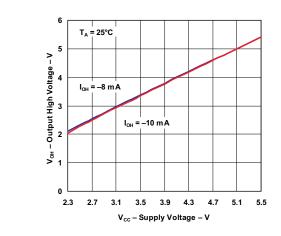
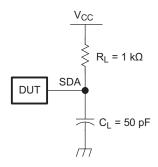
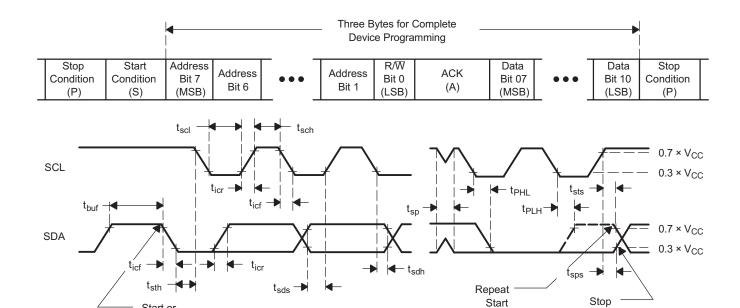




Figure 13. Output High Voltage vs Supply Voltage


Submit Documentation Feedback



## **Parameter Measurement Information**



**SDA LOAD CONFIGURATION** 



### **VOLTAGE WAVEFORMS**

| BYTE | DESCRIPTION              |
|------|--------------------------|
| 1    | I <sup>2</sup> C address |
| 2, 3 | P-port data              |

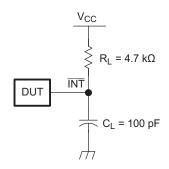
C<sub>L</sub> includes probe and jig capacitance.

Start or

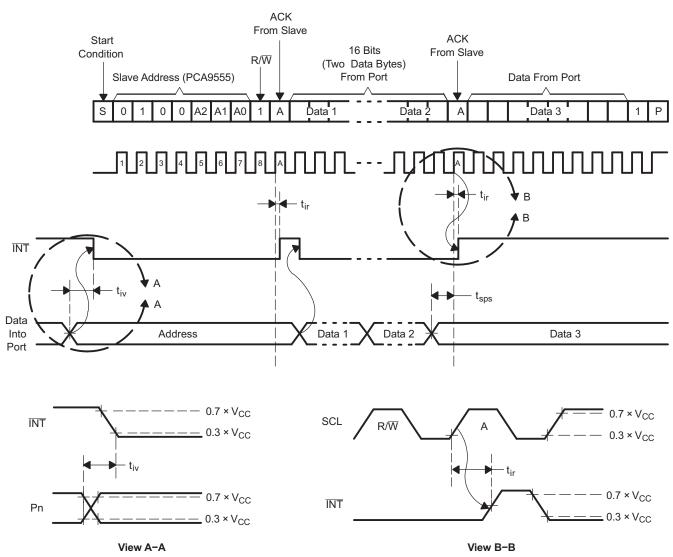
Repeat Start Condition

- All inputs are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_{O}$  = 50  $\Omega$ ,  $t_{r}/t_{f} \leq$  30 ns.
- All parameters and waveforms are not applicable to all devices.

Figure 14. I<sup>2</sup>C Interface Load Circuit and Voltage Waveforms


Product Folder Links: TCA9555

Condition

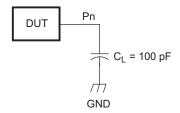

Condition



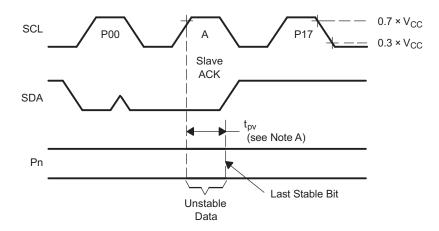
# **Parameter Measurement Information (continued)**



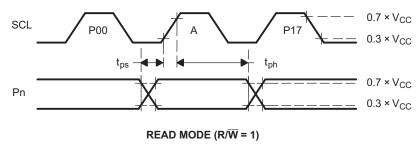
### INTERRUPT LOAD CONFIGURATION




- A. C<sub>L</sub> includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_O = 50 \Omega$ ,  $t_r/t_f \leq$  30 ns.
- C. All parameters and waveforms are not applicable to all devices.


Figure 15. Interrupt Load Circuit and Voltage Waveforms




# **Parameter Measurement Information (continued)**



### P-PORT LOAD CONFIGURATION

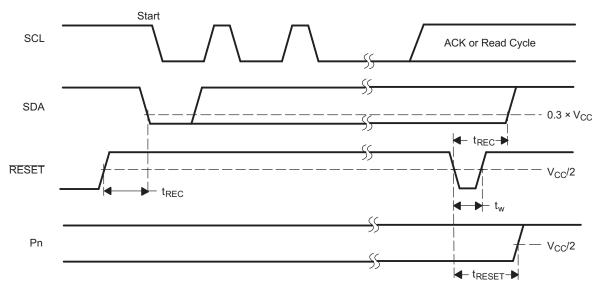


WRITE MODE  $(R/\overline{W} = 0)$ 



- A.  $C_L$  includes probe and jig capacitance.
- B.  $~t_{pv}$  is measured from 0.7 x V $_{CC}$  on SCL to 50% I/O (Pn) output.
- C. All inputs are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_0 = 50 \Omega$ ,  $t_r/t_f \leq$  30 ns.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. All parameters and waveforms are not applicable to all devices.

Figure 16. P-Port Load Circuit and Voltage Waveforms




# **Parameter Measurement Information (continued)**



**SDA LOAD CONFIGURATION** 



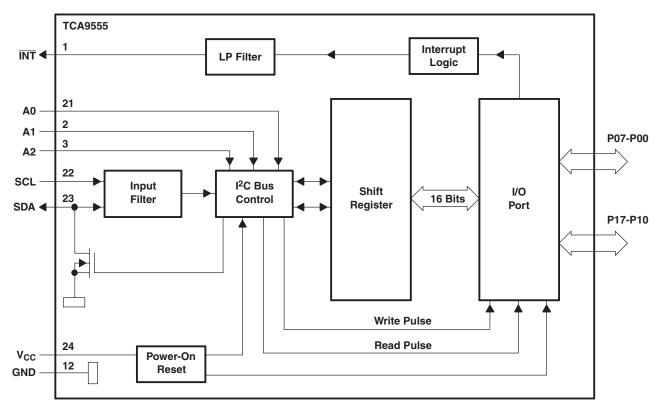


- A. C<sub>L</sub> includes probe and jig capacitance.
- B. All inputs are supplied by generators having the following characteristics: PRR  $\leq$  10 MHz,  $Z_0 = 50 \ \Omega$ ,  $t_r/t_f \leq$  30 ns.
- C. The outputs are measured one at a time, with one transition per measurement.
- D. I/Os are configured as inputs.
- E. All parameters and waveforms are not applicable to all devices.

Figure 17. Reset Load Circuits and Voltage Waveforms

Submit Documentation Feedback




# 9 Detailed Description

### 9.1 Overview

The TCA9555 is a 16-bit I/O expander for the two-line bidirectional bus ( $I^2C$ ) is designed for 1.65-V to 5.5-V  $V_{CC}$  operation. It provides general-purpose remote I/O expansion for most microcontroller families via the  $I^2C$  interface.

One of the features of the TCA9555, is that the  $\overline{\text{INT}}$  output can be connected to the interrupt input of a microcontroller. By sending an interrupt signal on this line, the remote I/O can inform the microcontroller if there is incoming data on its ports without having to communicate via the I<sup>2</sup>C bus. Thus, the TCA9555 can remain a simple slave device.

## 9.2 Functional Block Diagram



- A. Pin numbers shown are for the PW package.
- B. All I/Os are set to inputs at reset.

Figure 18. Logic Diagram (Positive Logic)

## 9.3 Feature Description

## 9.3.1 5-V Tolerant I/O Ports

The TCA9555 features I/O ports which are tolerant of up to 5 V. This allows the TCA9555 to be connected to a large array of devices. To minimize ICC, any inputs should be sure that the input voltage stays within  $V_{IH}$  and  $V_{IL}$  of the device as described in *Electrical Characteristics*.



### **Feature Description (continued)**

### 9.3.2 Hardware Address Pins

The TCA9555 features 3 hardware address pins (A0, A1, and A2) to allow the user to program the device's  $I^2C$  address by pulling each pin to either  $V_{CC}$  or GND to signify the bit value in the address. This allows up to 8 TCA9555 to be on the same bus without address conflicts. See *Functional Block Diagram* to see the 3 pins. The voltage on the pins must not change while the device is powered up in order to prevent possible  $I^2C$  glitches as a result of the device address changing during a transmission. All of the pins must be tied either to  $V_{CC}$  or GND and cannot be left floating.

### 9.3.3 Interrupt (INT) Output

An interrupt is generated by any rising or falling edge of the port inputs in the input mode of the TCA9555. After time, t<sub>iv</sub>, the signal INT is valid. Resetting the interrupt circuit is achieved when data on the port is changed to the original setting (IE the port is originally in a high state, but goes low and INT is asserted, then goes back high before a read on the port is performed. INT will be cleared in this scenario), data is read from the port that generated the interrupt or in a stop condition on the I<sup>2</sup>C bus for the TCA9555. Resetting occurs in the read mode at the acknowledge (ACK) bit or not acknowledge (NACK) bit after the falling edge of the SCL signal. Interrupts that occur during the ACK or NACK clock pulse can be lost (or be very short) due to the resetting of the interrupt during this pulse. Each change of the I/Os after resetting is detected and is transmitted as INT.

Reading from or writing to another device does not affect the interrupt circuit, and a pin configured as an output cannot cause an interrupt. Changing an I/O from an output to an input may cause a false interrupt to occur if the state of the pin does not match the contents of the Input Port register. Because each 8-bit port is read independently, the interrupt caused by port 0 is not cleared by a read of port 1, or vice versa.

 $\overline{\text{INT}}$  has an open-drain structure and requires a pullup resistor to  $V_{CC}$  (Typically 10k  $\Omega$  in value).

### 9.4 Device Functional Modes

### 9.4.1 Power-On Reset (POR)

When power (from 0 V) is applied to  $V_{CC}$ , an internal power-on reset circuit holds the TCA9555 in a reset condition until  $V_{CC}$  has reached  $V_{POR}$ . At that time, the reset condition is released, and the TCA9555 registers and  $I^2C/SMBus$  state machine initialize to their default states. After that,  $V_{CC}$  must be lowered to below  $V_{PORF}$  and back up to the operating voltage for a power-reset cycle.

### 9.4.2 Powered-Up

When power has been applied to  $V_{CC}$  above  $V_{POR}$ , and the POR has taken place, the device is in a functioning mode. In this state, the device will be ready to accept any incoming  $I^2C$  requests and will be monitoring for changes on the input ports.

### 9.5 Programming

#### 9.5.1 I/O Port

When an I/O is configured as an input, FETs Q1 and Q2 are off, creating a high-impedance input. The input voltage may be raised above  $V_{CC}$  to a maximum of 5.5 V.

If the I/O is configured as an output, Q1 or Q2 is enabled, depending on the state of the Output Port register. In this case, there are low-impedance paths between the I/O pin and either  $V_{CC}$  or GND. The external voltage applied to this I/O pin should not exceed the recommended levels for proper operation.



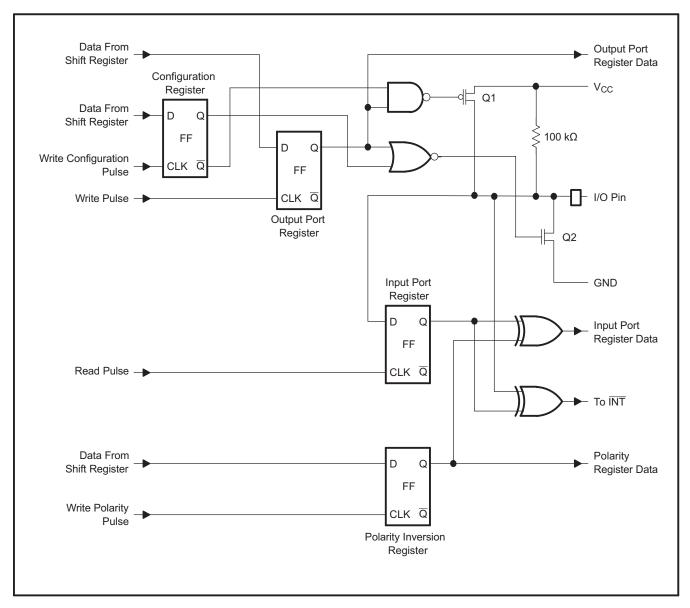



Figure 19. Simplified Schematic of P-Port I/Os

### 9.5.2 I<sup>2</sup>C Interface

The TCA9555 has a standard bidirectional  $I^2C$  interface that is controlled by a master device in order to be configured or read the status of this device. Each slave on the  $I^2C$  bus has a specific device address to differentiate between other slave devices that are on the same  $I^2C$  bus. Many slave devices will require configuration upon startup to set the behavior of the device. This is typically done when the master accesses internal register maps of the slave, which have unique register addresses. A device can have one or multiple registers where data is stored, written, or read. For more information see the *Understanding the I2C Bus* (SLVA704)

The physical  $I^2C$  interface consists of the serial clock (SCL) and serial data (SDA) lines. Both SDA and SCL lines must be connected to  $V_{CC}$  through a pull-up resistor. The size of the pull-up resistor is determined by the amount of capacitance on the  $I^2C$  lines. For further details, refer to  $I^2C$  Pull-up Resistor Calculation (SLVA689). Data transfer may be initiated only when the bus is idle. A bus is considered idle if both SDA and SCL lines are high after a STOP condition.

Product Folder Links: TCA9555

Submit Documentation Feedback



The following is the general procedure for a master to access a slave device:

- 1. If a master wants to send data to a slave:
  - Master-transmitter sends a START condition and addresses the slave-receiver.
  - Master-transmitter sends data to slave-receiver.
  - Master-transmitter terminates the transfer with a STOP condition.
- 2. If a master wants to receive or read data from a slave:
  - Master-receiver sends a START condition and addresses the slave-transmitter.
  - Master-receiver sends the requested register to read to slave-transmitter.
  - Master-receiver receives data from the slave-transmitter.
  - Master-receiver terminates the transfer with a STOP condition.

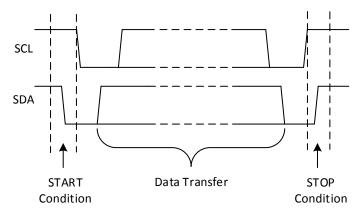



Figure 20. Definition of Start and Stop Conditions

SDA line stable while SCL line is high SCL 1 0 1 0 **ACK SDA** MSB Bit Bit Bit Bit Bit Bit ACK LSB Byte: 1010 1010 (0xAAh)

Figure 21. Bit Transfer

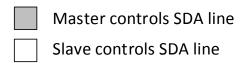


**Table 1. Interface Definition** 

| DVTE                           | BIT     |     |     |     |     |     |     |         |  |  |  |  |
|--------------------------------|---------|-----|-----|-----|-----|-----|-----|---------|--|--|--|--|
| BYTE                           | 7 (MSB) | 6   | 5   | 4   | 3   | 2   | 1   | 0 (LSB) |  |  |  |  |
| I <sup>2</sup> C slave address | L       | Н   | L   | L   | A2  | A1  | A0  | R/W     |  |  |  |  |
| P0x I/O data bus               | P07     | P06 | P05 | P04 | P03 | P02 | P01 | P00     |  |  |  |  |
| P1x I/O data bus               | P17     | P16 | P15 | P14 | P13 | P12 | P11 | P10     |  |  |  |  |

### 9.5.2.1 Bus Transactions

Data is exchanged between the master and the TCA9555 through write and read commands, and this is accomplished by reading from or writing to registers in the slave device.


Registers are locations in the memory of the slave which contain information, whether it be the configuration information or some sampled data to send back to the master. The master must write information to these registers in order to instruct the slave device to perform a task.

### 9.5.2.1.1 Writes

To write on the I<sup>2</sup>C b<u>us</u>, the master will send a START condition on the bus with the address of the slave, as well as the last bit (the R/W bit) set to 0, which signifies a write. After the slave sends the acknowledge bit, the master will then send the register address of the register to which it wishes to write. The slave will acknowledge again, letting the master know it is ready. After this, the master will start sending the register data to the slave until the master has sent all the data necessary (which is sometimes only a single byte), and the master will terminate the transmission with a STOP condition.

See Control Register and Command Byte section to see list of the TCA9555's internal registers and a description of each one.

Figure 22 shows an example of writing a single byte to a slave register.



## Write to one register in a device

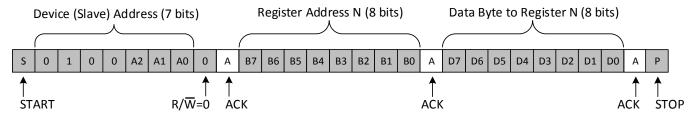



Figure 22. Write to Register



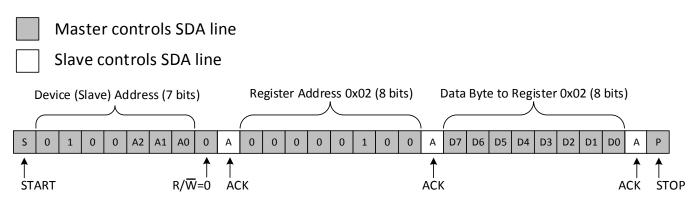



Figure 23. Write to the Polarity Inversion Register

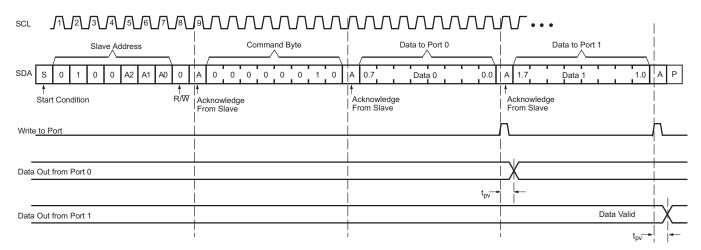



Figure 24. Write to Output Port Registers



### 9.5.2.1.2 Reads

Reading from a slave is very similar to writing, but requires some additional steps. In order to read from a slave, the master must first instruct the slave which register it wishes to read from. This is done by the master starting off the transmission in a similar fashion as the write, by sending the address with the R/W bit equal to 0 (signifying a write), followed by the register address it wishes to read from. Once the slave acknowledges this register address, the master will send a START condition again, followed by the slave address with the R/W bit set to 1 (signifying a read). This time, the slave will acknowledge the read request, and the master will release the SDA bus but will continue supplying the clock to the slave. During this part of the transaction, the master will become the master-receiver, and the slave will become the slave-transmitter.

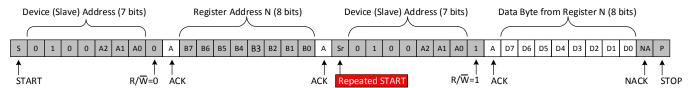
The master will continue to send out the clock pulses, but will release the SDA line so that the slave can transmit data. At the end of every byte of data, the master will send an ACK to the slave, letting the slave know that it is ready for more data. Once the master has received the number of bytes it is expecting, it will send a NACK, signaling to the slave to halt communications and release the bus. The master will follow this up with a STOP condition.

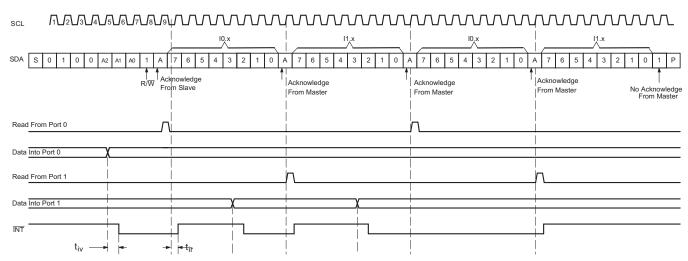
See Control Register and Command Byte section to see list of the TCA9555's internal registers and a description of each one.

Figure 25 shows an example of reading a single byte from a slave register.

Master controls SDA line
Slave controls SDA line

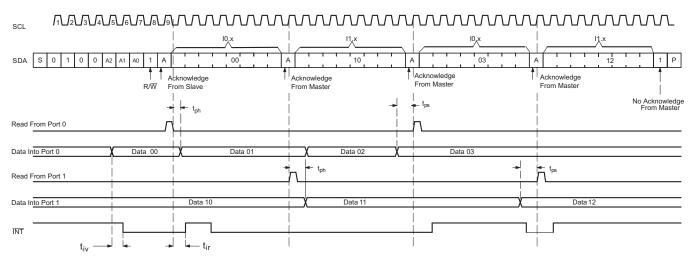
### Read from one register in a device





Figure 25. Read from Register

After a restart, the value of the register defined by the command byte matches the register being accessed when the restart occurred. For example, if the command byte references Input Port 1 before the restart, and the restart occurs when Input Port 0 is being read, the stored command byte changes to reference Input Port 0. The original command byte is forgotten. If a subsequent restart occurs, Input Port 0 is read first. Data is clocked into the register on the rising edge of the ACK clock pulse. After the first byte is read, additional bytes may be read, but the data now reflect the information in the other register in the pair. For example, if Input Port 1 is read, the next byte read is Input Port 0.

Data is clocked into the register on the rising edge of the ACK clock pulse. There is no limitation on the number of data bytes received in one read transmission, but when the final byte is received, the bus master must not acknowledge the data.


# TEXAS INSTRUMENTS

## **Programming (continued)**



- A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (read Input Port register).
- B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from the P port.

Figure 26. Read Input Port Register, Scenario 1



- A. Transfer of data can be stopped at any time by a Stop condition. When this occurs, data present at the latest acknowledge phase is valid (output mode). It is assumed that the command byte previously has been set to 00 (read Input Port register).
- B. This figure eliminates the command byte transfer, a restart, and slave address call between the initial slave address call and actual data transfer from the P port.

Figure 27. Read Input Port Register, Scenario 2



### 9.5.3 Device Address

Figure 28 shows the address byte of the TCA9555.

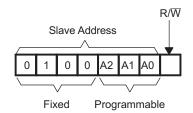



Figure 28. TCA9555 Address

**Table 2. Address Reference** 

|    | INPUTS |    | I <sup>2</sup> C BUS SLAVE ADDRESS |
|----|--------|----|------------------------------------|
| A2 | A1     | A0 | I'C BUS SLAVE ADDRESS              |
| L  | L      | L  | 32 (decimal), 0x20 (hexadecimal)   |
| L  | L      | Н  | 33 (decimal), 0x21 (hexadecimal)   |
| L  | Н      | L  | 34 (decimal), 0x22 (hexadecimal)   |
| L  | Н      | Н  | 35 (decimal), 0x23 (hexadecimal)   |
| Н  | L      | L  | 36 (decimal), 0x24 (hexadecimal)   |
| Н  | L      | Н  | 37 (decimal), 0x25 (hexadecimal)   |
| Н  | Н      | L  | 38 (decimal), 0x26 (hexadecimal)   |
| Н  | Н      | Н  | 39 (decimal), 0x27 (hexadecimal)   |

The last bit of the slave address defines the operation (read or write) to be performed. A high (1) selects a read operation, while a low (0) selects a write operation.

### 9.5.4 Control Register and Command Byte

Following the successful acknowledgment of the address byte, the bus master sends a command byte that is stored in the control register in the TCA9555. Three bits of this data byte state the operation (read or write) and the internal register (input, output, polarity inversion, or configuration) that will be affected. This register can be written or read through the I<sup>2</sup>C bus. The command byte is sent only during a write transmission.

Once a command byte has been sent, the register that was addressed continues to be accessed by reads until a new command byte has been sent.



Figure 29. Control Register Bits

**Table 3. Command Byte** 

| CONT | ROL REGISTER | R BITS | COMMAND    | REGISTER                  | PROTOCOL        | POWER-UP  |
|------|--------------|--------|------------|---------------------------|-----------------|-----------|
| B2   | B1           | В0     | BYTE (HEX) | REGISTER                  | PROTOCOL        | DEFAULT   |
| 0    | 0            | 0      | 0x00       | Input Port 0              | Read byte       | XXXX XXXX |
| 0    | 0            | 1      | 0x01       | Input Port 1              | Read byte       | XXXX XXXX |
| 0    | 1            | 0      | 0x02       | Output Port 0             | Read/write byte | 1111 1111 |
| 0    | 1            | 1      | 0x03       | Output Port 1             | Read/write byte | 1111 1111 |
| 1    | 0            | 0      | 0x04       | Polarity Inversion Port 0 | Read/write byte | 0000 0000 |
| 1    | 0            | 1      | 0x05       | Polarity Inversion Port 1 | Read/write byte | 0000 0000 |
| 1    | 1            | 0      | 0x06       | Configuration Port 0      | Read/write byte | 1111 1111 |



### **Table 3. Command Byte (continued)**

| CONT | ROL REGISTE | R BITS | COMMAND    | REGISTER             | PROTOCOL        | POWER-UP<br>DEFAULT |  |
|------|-------------|--------|------------|----------------------|-----------------|---------------------|--|
| B2   | B1          | В0     | BYTE (HEX) | REGISTER             | PROTOCOL        |                     |  |
| 1    | 1           | 1      | 0x07       | Configuration Port 1 | Read/write byte | 1111 1111           |  |

### 9.6 Register Maps

### 9.6.1 Register Descriptions

The Input Port registers (registers 0 and 1) reflect the incoming logic levels of the pins, regardless of whether the pin is defined as an input or an output by the Configuration register. It only acts on read operation. Writes to these registers have no effect. The default value, X, is determined by the externally applied logic level.

Before a read operation, a write transmission is sent with the command byte to indicate to the I<sup>2</sup>C device that the Input Port register will be accessed next.

Table 4. Registers 0 and 1 (Input Port Registers)

| Bit     | 10.7 | 10.6 | 10.5 | 10.4 | 10.3 | 10.2 | 10.1 | 10.0 |
|---------|------|------|------|------|------|------|------|------|
| Default | Х    | X    | X    | X    | X    | X    | Х    | Χ    |
| Bit     | l1.7 | I1.6 | I1.5 | I1.4 | I1.3 | l1.2 | l1.1 | I1.0 |
| Default | Х    | Х    | Х    | Х    | Х    | Х    | Х    | Х    |

The Output Port registers (registers 2 and 3) show the outgoing logic levels of the pins defined as outputs by the Configuration register. Bit values in this register have no effect on pins defined as inputs. In turn, reads from this register reflect the value that is in the flip-flop controlling the output selection, not the actual pin value.

Table 5. Registers 2 and 3 (Output Port Registers)

| Bit     | 00.7 | O0.6 | O0.5 | 00.4 | O0.3 | O0.2 | 00.1 | 00.0 |
|---------|------|------|------|------|------|------|------|------|
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Bit     | 01.7 | 01.6 | 01.5 | 01.4 | 01.3 | 01.2 | 01.1 | 01.0 |
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |

The Polarity Inversion registers (registers 4 and 5) allow polarity inversion of pins defined as inputs by the Configuration register. If a bit in this register is set (written with 1), the corresponding port pin's polarity is inverted. If a bit in this register is cleared (written with a 0), the corresponding port pin's original polarity is retained.

Table 6. Registers 4 and 5 (Polarity Inversion Registers)

| Bit     | N0.7 | N0.6 | N0.5 | N0.4 | N0.3 | N0.2 | N0.1 | N0.0 |
|---------|------|------|------|------|------|------|------|------|
| Default | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| Bit     | N1.7 | N1.6 | N1.5 | N1.4 | N1.3 | N1.2 | N1.1 | N1.0 |
| Default | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |

The Configuration registers (registers 6 and 7) configure the directions of the I/O pins. If a bit in this register is set to 1, the corresponding port pin is enabled as an input with a high-impedance output driver. If a bit in this register is cleared to 0, the corresponding port pin is enabled as an output.

Table 7. Registers 6 and 7 (Configuration Registers)

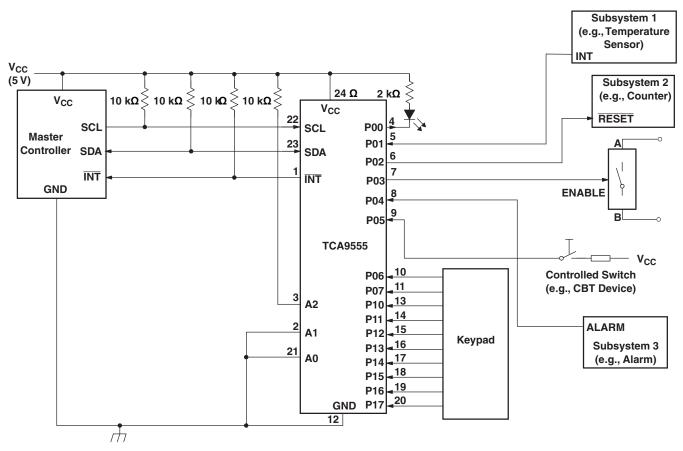
| Bit     | C0.7 | C0.6 | C0.5 | C0.4 | C0.3 | C0.2 | C0.1 | C0.0 |
|---------|------|------|------|------|------|------|------|------|
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |
| Bit     | C1.7 | C1.6 | C1.5 | C1.4 | C1.3 | C1.2 | C1.1 | C1.0 |
| Default | 1    | 1    | 1    | 1    | 1    | 1    | 1    | 1    |



# 10 Application and Implementation

### NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.


### 10.1 Application Information

Applications of the TCA9555 will have this device connected as a slave to an I<sup>2</sup>C master (processor), and the I<sup>2</sup>C bus may contain any number of other slave devices. The TCA9555 will typically be in a remote location from the master, placed close to the GPIOs to which the master needs to monitor or control.

IO Expanders such as the TCA9555 are typically used for controlling LEDs (for feedback or status lights), controlling enable or reset signals of other devices, and even reading the outputs of other devices or buttons.

# 10.2 Typical Application

Figure 30 shows an application in which the TCA9555 can be used to control multiple subsystems, and even read inputs from buttons.



- A. Device address is configured as 0100100 for this example.
- B. P00, P02, and P03 are configured as outputs.
- C. P01, P04–P07, and P10–P17 are configured as inputs.
- D. Pin numbers shown are for the PW package.

Figure 30. Typical Application

Submit Documentation Feedback
Product Folder Links: TCA9555



### **Typical Application (continued)**

### 10.2.1 Design Requirements

The designer must take into consideration the system, to be sure not to violate any of the parameters. Table 8 shows some key parameters which must not be violated.

**Table 8. Design Parameters** 

| DESIGN PARAMETER                                          | EXAMPLE VALUE |
|-----------------------------------------------------------|---------------|
| I <sup>2</sup> C and Subsystem Voltage (V <sub>CC</sub> ) | 5 V           |
| Output current rating, P-port sinking (I <sub>OL</sub> )  | 25 mA         |
| I <sup>2</sup> C bus clock (SCL) speed                    | 400 kHz       |

### 10.2.2 Detailed Design Procedure

### 10.2.2.1 Minimizing I<sub>CC</sub> When I/O Is Used to Control LED

When an I/O is used to control an LED, normally it is connected to  $V_{CC}$  through a resistor as shown in Figure 30. Because the LED acts as a diode, when the LED is off, the I/O  $V_{IN}$  is about 1.2 V less than  $V_{CC}$ . The  $\Delta I_{CC}$  parameter in Electrical Characteristics shows how  $I_{CC}$  increases as  $V_{IN}$  becomes lower than  $V_{CC}$ . For battery-powered applications, it is essential that the voltage of I/O pins is greater than or equal to  $V_{CC}$  when the LED is off to minimize current consumption.

Figure 31 shows a high-value resistor in parallel with the LED. Figure 32 shows  $V_{CC}$  less than the LED supply voltage by at least 1.2 V. Both of these methods maintain the I/O  $V_{IN}$  at or above  $V_{CC}$  and prevent additional supply current consumption when the LED is off.

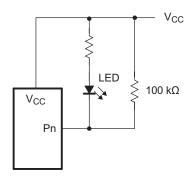



Figure 31. High-Value Resistor in Parallel With LED

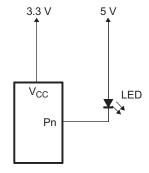



Figure 32. Device Supplied by Lower Voltage

Product Folder Links: TCA9555

Copyright © 2009–2015, Texas Instruments Incorporated



### 10.2.2.2 Pullup Resistor Calculation

The pull-up resistors,  $R_P$ , for the SCL and SDA lines need to be selected appropriately and take into consideration the total capacitance of all slaves on the  $I^2C$  bus. The minimum pull-up resistance is a function of  $V_{CC}$ ,  $V_{OL,(max)}$ , and  $I_{OL}$ :

$$R_{p(min)} = \frac{V_{CC} - V_{OL(max)}}{I_{OL}}$$
(1)

The maximum pull-up resistance is a function of the maximum rise time,  $t_r$  (300 ns for fast-mode operation,  $f_{SCL}$  = 400 kHz) and bus capacitance,  $C_h$ :

$$R_{p(max)} = \frac{t_r}{0.8473 \times C_b} \tag{2}$$

The maximum bus capacitance for an  $I^2C$  bus must not exceed 400 pF for standard-mode or fast-mode operation. The bus capacitance can be approximated by adding the capacitance of the TCA9538,  $C_i$  for SCL or  $C_{io}$  for SDA, the capacitance of wires/connections/traces, and the capacitance of additional slaves on the bus. For further details, refer to  ${}^{\rho}C$  Pull-up Resistor Calculation (SLVA689).

### 10.2.3 Application Curves

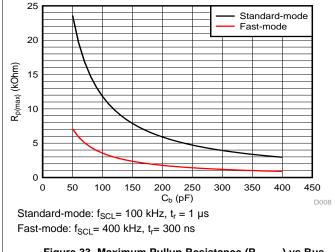



Figure 33. Maximum Pullup Resistance ( $R_{p(max)}$ ) vs Bus Capacitance ( $C_b$ )

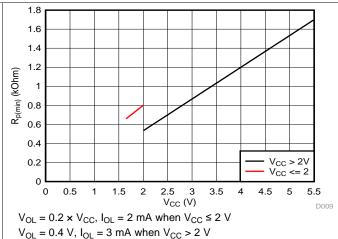



Figure 34. Minimum Pullup Resistance ( $R_{p(min)}$ ) vs Pullup Reference Voltage ( $V_{CC}$ )

# 11 Power Supply Recommendations

In the event of a glitch (data output or input or even power) or data corruption, TCA9555 can be reset to its default conditions by using the power-on reset feature. Power-on reset requires that the device go through a power cycle to be completely reset. This reset also happens when the device is powered on for the first time in an application.

The two types of power-on reset are shown in Figure 35 and Figure 36.

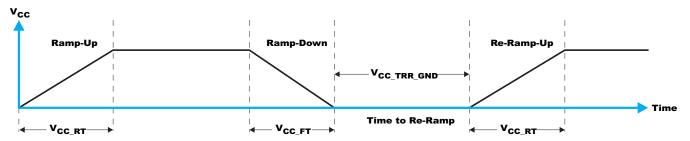



Figure 35. V<sub>CC</sub> is Lowered Below 0.2 V or 0 V and Then Ramped Up to V<sub>CC</sub>

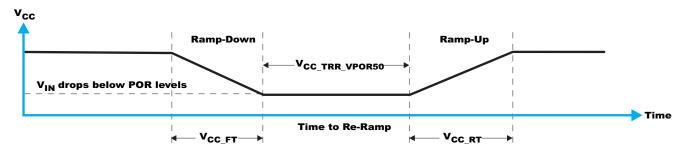



Figure 36. V<sub>CC</sub> is Lowered Below the POR Threshold, Then Ramped Back Up to V<sub>CC</sub>

Table 9 specifies the performance of the power-on reset feature for TCA9555 for both types of power-on reset.

Table 9. RECOMMENDED SUPPLY SEQUENCING AND RAMP RATES(1)

|                           | PARAMETER                                                                                                     |               | MIN | TYP | MAX  | UNIT |
|---------------------------|---------------------------------------------------------------------------------------------------------------|---------------|-----|-----|------|------|
| V <sub>CC_FT</sub>        | Fall rate of V <sub>CC</sub>                                                                                  | See Figure 35 | 0.1 |     | 2000 | ms   |
| V <sub>CC_RT</sub>        | Rise rate of V <sub>CC</sub>                                                                                  | See Figure 35 | 0.1 |     | 2000 | ms   |
| V <sub>CC_TRR_GND</sub>   | Time to re-ramp (when V <sub>CC</sub> drops to GND)                                                           | See Figure 35 | 1   |     |      | μs   |
| V <sub>CC_TRR_POR50</sub> | Time to re-ramp (when $V_{CC}$ drops to $V_{POR\_MIN} - 50 \text{ mV}$ )                                      | See Figure 36 | 1   |     |      | μs   |
| V <sub>CC_GH</sub>        | Level that $V_{CCP}$ can glitch down to, but not cause a functional disruption when $V_{CCX\_GW}$ = 1 $\mu s$ | See Figure 37 |     |     | 1.2  | V    |
| V <sub>CC_GW</sub>        | Glitch width that will not cause a functional disruption when $V_{CCX\_GH} = 0.5 \times V_{CCX}$              | See Figure 37 |     |     | 10   | μs   |
| V <sub>PORF</sub>         | Voltage trip point of POR on falling V <sub>CC</sub>                                                          | •             | 0.7 |     |      | V    |
| V <sub>PORR</sub>         | Voltage trip point of POR on rising V <sub>CC</sub>                                                           |               |     |     | 1.4  | V    |

(1)  $T_A = -40$ °C to 85°C (unless otherwise noted)



Glitches in the power supply can also affect the power-on reset performance of this device. The glitch width  $(V_{CC\_GW})$  and height  $(V_{CC\_GH})$  are dependent on each other. The bypass capacitance, source impedance, and device impedance are factors that affect power-on reset performance. Figure 37 and Table 9 provide more information on how to measure these specifications.



Figure 37. Glitch Width and Glitch Height

 $V_{POR}$  is critical to the power-on reset.  $V_{POR}$  is the voltage level at which the reset condition is released and all the registers and the I<sup>2</sup>C/SMBus state machine are initialized to their default states. The value of  $V_{POR}$  differs based on the  $V_{CC}$  being lowered to or from 0. Figure 38 and Table 9 provide more details on this specification.

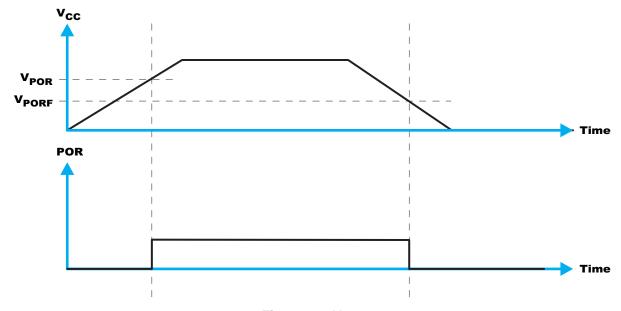



Figure 38. V<sub>POR</sub>

Copyright © 2009–2015, Texas Instruments Incorporated

Product Folder Links: *TCA9555* 



# 12 Layout

### 12.1 Layout Guidelines

For printed circuit board (PCB) layout of the TCA9555, common PCB layout practices should be followed, but additional concerns related to high-speed data transfer such as matched impedances and differential pairs are not a concern for I<sup>2</sup>C signal speeds.

In all PCB layouts, it is a best practice to avoid right angles in signal traces, to fan out signal traces away from each other upon leaving the vicinity of an integrated circuit (IC), and to use thicker trace widths to carry higher amounts of current that commonly pass through power and ground traces. By-pass and de-coupling capacitors are commonly used to control the voltage on the  $V_{CC}$  pin, using a larger capacitor to provide additional power in the event of a short power supply glitch and a smaller capacitor to filter out high-frequency ripple. These capacitors should be placed as close to the TCA9555 as possible. These best practices are shown in *Layout Example*.

For the layout example provided in *Layout Example*, it would be possible to fabricate a PCB with only 2 layers by using the top layer for signal routing and the bottom layer as a split plane for power ( $V_{CC}$ ) and ground (GND). However, a 4 layer board is preferable for boards with higher density signal routing. On a 4 layer PCB, it is common to route signals on the top and bottom layer, dedicate one internal layer to a ground plane, and dedicate the other internal layer to a power plane. In a board layout using planes or split planes for power and ground, vias are placed directly next to the surface mount component pad which needs to attach to  $V_{CC}$ , or GND and the via is connected electrically to the internal layer or the other side of the board. Vias are also used when a signal trace needs to be routed to the opposite side of the board, but this technique is not demonstrated in *Layout Example*.

### 12.2 Layout Example

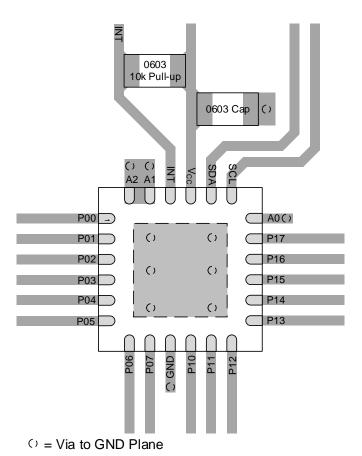



Figure 39. TCA9555 Layout Example



# 13 Device and Documentation Support

### 13.1 Documentation Support

### 13.1.1 Related Documentation

For related documentation see the following:

I<sup>2</sup>C Pull-up Resistor Calculation, SLVA689

### 13.2 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

**Design Support** *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

### 13.3 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

### 13.4 Electrostatic Discharge Caution



These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

### 13.5 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

# 14 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

Product Folder Links: TCA9555

Copyright © 2009-2015, Texas Instruments Incorporated



# PACKAGE OPTION ADDENDUM

20-May-2013

### PACKAGING INFORMATION

| Orderable Device |        | Package Type | Package<br>Drawing | Pins |      |                            | Lead/Ball Finish | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|--------------------|------|------|----------------------------|------------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing            |      | Qty  | (2)                        |                  | (3)                 |              | (4/5)          |         |
| TCA9555PWR       | ACTIVE | TSSOP        | PW                 | 24   | 2000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-1-260C-UNLIM  | -40 to 85    | PW555          | Samples |
| TCA9555RTWR      | ACTIVE | WQFN         | RTW                | 24   | 3000 | Green (RoHS<br>& no Sb/Br) | CU NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | PW555          | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

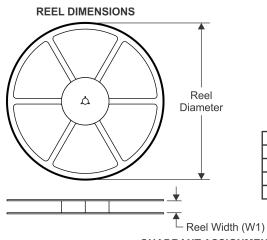
**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

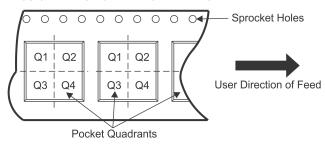
- (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.


**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 8-Apr-2013


# TAPE AND REEL INFORMATION





| Α0 | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |

## QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

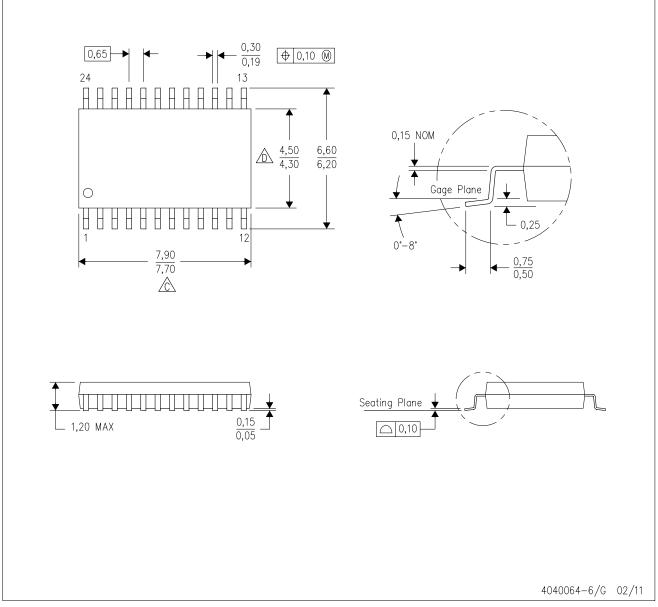


### \*All dimensions are nominal

| Device      | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|-------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TCA9555RTWR | WQFN            | RTW                | 24 | 3000 | 330.0                    | 12.4                     | 4.25       | 4.25       | 1.15       | 8.0        | 12.0      | Q2               |

# **PACKAGE MATERIALS INFORMATION**

www.ti.com 8-Apr-2013



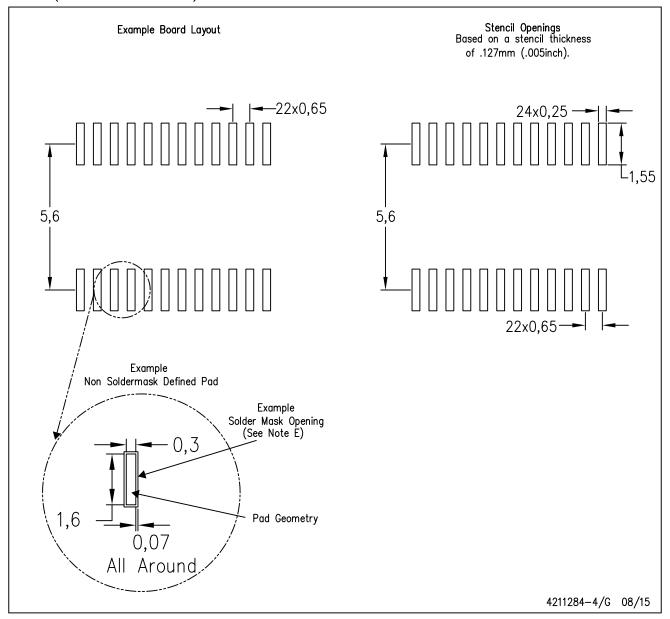

### \*All dimensions are nominal

| ĺ | Device      | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|---|-------------|--------------|-----------------|------|------|-------------|------------|-------------|
|   | TCA9555RTWR | WQFN         | RTW             | 24   | 3000 | 367.0       | 367.0      | 35.0        |

PW (R-PDSO-G24)

# PLASTIC SMALL OUTLINE

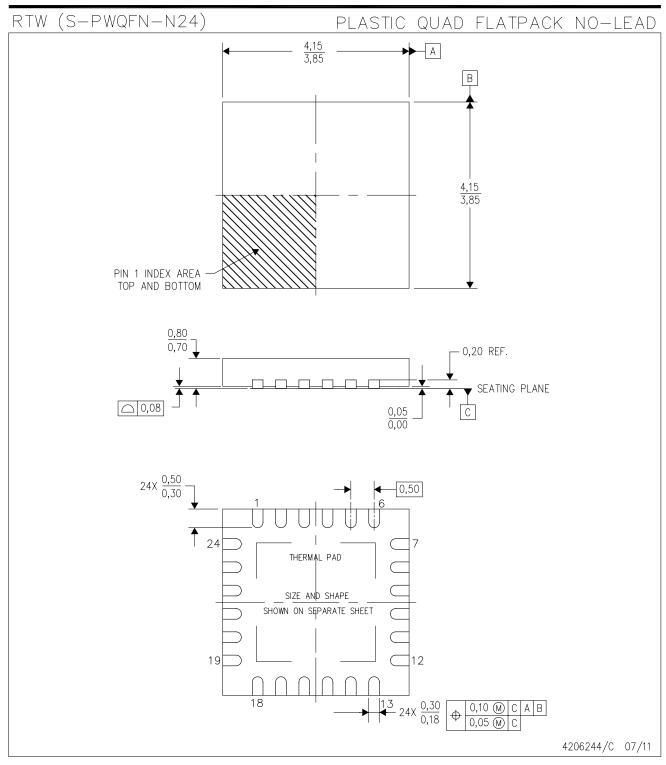



NOTES:

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153



# PW (R-PDSO-G24)


# PLASTIC SMALL OUTLINE



NOTES:

- All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.C. Publication IPC-7351 is recommended for alternate design.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

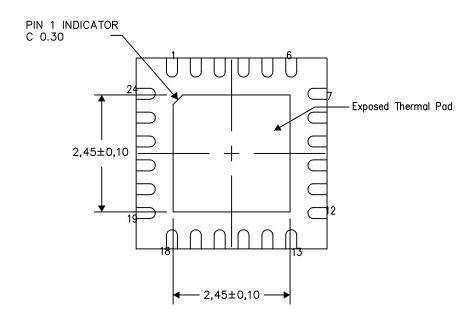




- NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
  - B. This drawing is subject to change without notice.
  - C. Quad Flatpack, No-Leads (QFN) package configuration.
  - D. The package thermal pad must be soldered to the board for thermal and mechanical performance.
  - E. See the additional figure in the Product Data Sheet for details regarding the exposed thermal pad features and dimensions.
  - F. Falls within JEDEC MO-220.



# RTW (S-PWQFN-N24)


# PLASTIC QUAD FLATPACK NO-LEAD

### THERMAL INFORMATION

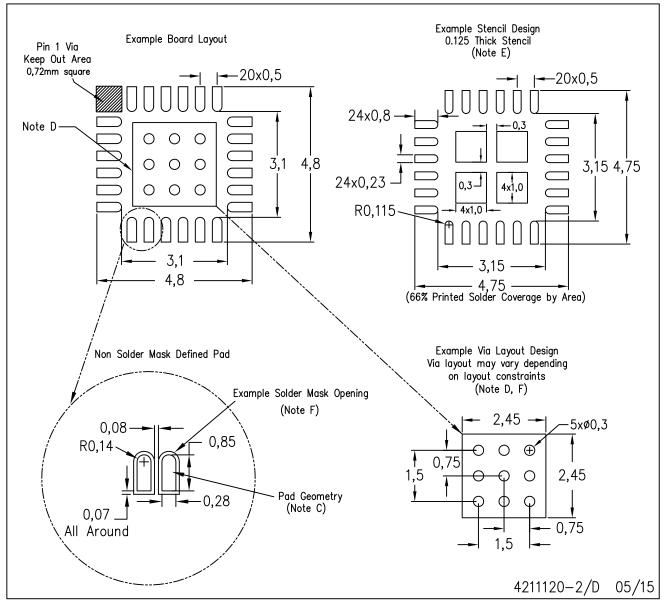
This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No—Lead (QFN) package and its advantages, refer to Application Report, QFN/SON PCB Attachment, Texas Instruments Literature No. SLUA271. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.



Bottom View
Exposed Thermal Pad Dimensions


4206249-3/P 05/15

NOTES: A. All linear dimensions are in millimeters



# RTW (S-PWQFN-N24)

# PLASTIC QUAD FLATPACK NO-LEAD



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat—Pack Packages, Texas Instruments Literature No. SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <a href="http://www.ti.com">www.ti.com</a>.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design
- F. Customers should contact their board fabrication site for recommended solder mask tolerances and via tenting recommendations for vias placed in the thermal pad.



#### IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed.

TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications.

In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms.

No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use.

Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have *not* been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.

### Products Applications

Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive **Amplifiers** amplifier.ti.com Communications and Telecom www.ti.com/communications **Data Converters** dataconverter.ti.com Computers and Peripherals www.ti.com/computers **DLP® Products** www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com **Energy and Lighting** www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic Security www.ti.com/security logic.ti.com

Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense

Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID www.ti-rfid.com

OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com

Wireless Connectivity www.ti.com/wirelessconnectivity