

¢/ &%

TMS9914A GPIB
Controller
User’s Guide

%
TEXaAs
3 INSTRUMENTS

IMPORTANT NOTICE

Texas Instruments (T!) reserves the right to make changes in the
devices or the device specifications identified in this publication
without notice. T! advises its customers to obtain the latest version
of device specifications to verify, before placing orders, that the
information being relied upon by the customer is current.

Tl warrants performance of its semiconductor products, including
SNJ and SMJ devices, to current specifications in accordance with
Tl's standard warranty. Testing and other quality control techniques
are utilized to the extent Tl deems such testing necessary to support
this warranty. Unless mandated by government requirements,
specific testing of all parameters of each device is not necessarily
performed.

In the absence of written agreement to the contrary, Tl assumes no
liability for Tl applications assistance, customer’'s product design,
or infringement of patents or copyrights of third parties by or arising
from use of semiconductor devices described herein. Nor does Tl
warrant or represent that any license, either express or implied, is
granted under any patent right, copyright, or other intellectual
property right of Tl covering or relating to any combination, machine,
or process in which such semiconductor devices might be or are
used.

Copyright © 1985, Texas Instruments Incorporated

A

Contents

Section Page
1 Introduction 1-1
2 Pinout and Signal Descriptions 2-1
3 IEEE-488 Overview 3-1
3.1 The Standard 3-2
32 TheBus, e 3-2
3.3 Instrument and Interface 3-2
34 Commands and Data 3-2
3.5 Device Configuration Commands and Data 3-3
3.6 Remote and Local Messages, 3-3
4 A Typical IEEE-488 System 4-1
4.1 Clearing the Devices and Their Interfaces v i v i 4-2
4.2 Configuring the Devices 4-3
43 Taking Data 4-5
5 TMS9914A Overview 5-1
5.1 Hardware Interface P 5-2
5.2 Registers, 5-3
6 Listener Mode 6-1
6.1 Listener Description 6-2
6.2 State Diagrams L 6-2
6.3 |EEE-488 Listener State Diagram 6-3
6.4 TMS9914A State Diagram v i . 6-5
6.5 Listener Implementation 6-7
7 Talker Mode 7-1
7.1 Talker Description L 7-2
7.2 |EEE-488 Talker State Diagram 7-2
7.3 TMS9914A Talker State Diagram v v v e 7-4
7.4 Talker Implementation L 7-5
8 Controller Mode 8-1
8.1 Controller Description 8-2
8.2 |EEE-488 Controller State Diagram 8-3
8.3 TMS9914A State Diagram 8-7
8.4 Controller Implementation 8-8
9 Command Implementation 9-1
9.1 Negative Logic 9-2
9.2 Control Lines ", 9-2
9.2.1 IFC 9-2
8.2.2 REN . 9-2
9.2.3 ATN 9-2
9.2.4 EOL 9-2
9.25 SRQ . . 9-3
9.2.6 RFD, DAV, and DAC 9-3
9.3 Command Bytes 9-3

jii

10

10.1
10.2
10.3

11

1.1
11.2
11.3

12

13
13.1
13.2

14

14.1
14.2
14.3
14.4

Service Request/Serial Poll

Requesting Service

Serial Polling

Parallel Poll

Parallel Poll Configuration
Parallel Polling

Extended Addressing

Direct Memory Access

DMA Software
DMA Timing e e e e

TMS9914A Hardware Interface

Write Timing
Interrupts L

Glossary

...................

..................

...................

#h

o %

Hlustrations

% Figure Page
1-1. The TMS9914A User’s Guide Bridges the Gap, 1-2
2-T. TMSO9T4A PinoUt .t e e e 2-1
3-1. |EEE-488 Concepts: Instrument and Interface, Commands and Data, Remote and Local

Messages e 3-3
4-1. Clearing the Interfaces it e e 4-2
4-2. Clearing the Devices ..ottt e e 4-2
4-3. Addressing the Voltmeter ... i 4-3
4-4. |Initializing the Voltmetert 4-3
4-5. Unlistening the Voltmeter it 4-4
4-6. Initializing the Printer 4-4
4-7. Addressing the Voltmeter Againottt 4-5
4-8. Triggering the Voltmeter it 4-5
4-9. Unlistening the Voltmeter i 4-6
4-10. Addressing the Printer 4-6
4-11. Addressing the Voltmeter as a Talker ... vttt e 4-6
4-12. Printing the Voltage Data ittt 4-7
5-1. Block Diagram of an |IEEE-488 System Using a TMS9914A 5-3
6-1. Simplified Listener State Diagramttt 6-2
6-2. |EEE-488 Listener State Diagramttt 6-3
6-3. TMS9914A Listener State Diagram it ite et 6-5
7-1. Simplified Talker State Diagramttt 7-2
7-2. |EEE-488 Talker State Diagramttt 7-3
7-3. TMS9914A Talker State Diagramttt 7-4
8-1. Simplified Controller State Diagram, Part 1t 8-2
8-2. Simplified Controller State Diagram, Part 2ttt 8-3
8-3. |EEE-488 Controller State Diagram e e 8-4
8-4. TMSS8914A Controller State Diagramt v it e 8-7
10-1. TMS9914A Service Request State Diagram ..ot 10-2
11-1. IEEE-488 Parallel Poll State Diagramottt e, 11-2
14-1. TMS9914A Write Cycle TIMINGttt e e, 14-2

Tables

Table Page
2-1. TMS8914A Pin DesCriptions ..ot v ittt e e 2-2
6-1. IEEE-488 Listener MNemoONiCsSttt e e 6-3
6-2. TMS9914A Listener MNEMONICS .ot vttt e e e, 6-6
7-1. |EEE-488 Talker MNemonicsottt 7-3
7-2. TMS8914A Talker MNemMONICS ..o\ v ottt 7-4
8-1. IEEE-488 Controller MNemMONICS ... oottt e e e e e 8-5
8-2. TMS9914A Controller MNEMONICS ..\ v ot et e, 8-8
9-1. Command Bytes i 9-4
10-1. TMS9914A Service Request MREMORNICSot i e e 10-3
11-1. IEEE-488 Parallel Poll Mnemonics ... 11-3
13-1. Listener TIMING .ot o it e e e 13-2
13-2. TMS9914A Talker TIMIiNG .. oot v it et e e e, 13-3

1.

Introduction

This user's guide bridges the gap between the background of the typical micro-
processor design engineer/programmer and the other |[EEE-488 and TMS9914A
documentation. [t is intended to be used as a tutorial rather than as a reference work.

This guide helps the reader who knows digital design and microprocessors to
understand the complex technical manuals for the |IEEE-488 bus. The basics of
microprocessor design and logic design are not covered here as there are many good
texts on the subject. This book introduces the |IEEE-488 specification and the
TMS9914A GPIB Data Manual (p/n MP0O33A/SPPS009), but it does not replace
them. It is presumed that you are familiar with these two documents.

Since the |EEE-488 Bus is complex, it will be reviewed twice, starting with an
overview of the bus and the TMS9914A, describing a simple instrumentation system.
Next, a series of examples will be presented, each example describes a specific
[EEE-488 bus mode.

Read the entire user’s guide before referencing it. Section 3 through Section 5
present a basic understanding of the IEEE-488 bus. Section 3 makes the important
distinctions between instrument and interface, commands and data, and remote and
local. Section 4 describes a typical bus application to give a concrete frame of
reference for the sections that follow. The TMS9914A is introduced in Section 5.
It is important to understand its place in an [EEE-488 system, its registers and logic,
and its interface requirements. These sections provide a base for the detailed
descriptions found further in the text.

After a firm foundation has been provided in the first five sections of the book, Section
6 through Section 13 describe the main functions implemented on the |IEEE-488
bus. First, a particular bus function is described and simple illustrations given,
followed by the |IEEE-488 state diagram for the function. Next, the implementation
of the particular function on the TMS9914A is described. These sections progress
from simple functions, such as listener, to complicated functions, such as transfer
of control.

Section 14 describes the few details of TMS9914A hardware interfacing that are not
easily accomplished by an experienced designer.

1-1

Introduction

1-2

Figure 1-1.

USER'S GUIDE

IEEE-488 OVERVIEW
TMS9914A OVERVIEW
EXAMPLES

The TMS9914A User’s Guide Bridges the Gap

2. Pinout and Signal Descriptions

AcCRa[t Yo vee
ACCGR[J2 39[]TR
CE[j8 3s_|Diot
WE[]4 s7[]pioz2
paIN[]s se[oios
Reo[Tle 35[]Dio4
Re1[]7 34[]DIos
re2[j8 33[]oios

NT[CJe s2[]oio7
o7[Jo s1[Joios
peC]11 30[]CoNT
ps[J12 20]sra
D413 28[JAT™
o314 27Jeoi
p2[J1is 28]]pav
piJe 25 NRFD
poJ7 24 Jnpac
¢Cle 23[dFc
REGET 19 22| JReN
vgg[20 2107

Figure 2-1. TMS9914A Pinout

2-1

Pinout and Signal Descriptions

Table 2-1. TMS9914A Pin Descriptions

SIGNAL | PIN 1/0 DESCRIPTION
(TYPE)t

DIO8 31 1/0(p/p) | DIO8 through DIO1 are the data input/output lines on the GPIB

DIO7 32 | 1/O(p/p) | side. These pins connect to the IEEE-488 bus via non-inverting

DIO6 33 1/0(p/p) | transceivers. DIO8 is MSB.

DIO5 34 | 1/0(p/p)

DI04 35 1/0(p/p)

DIO3 36 1/0(p/p)

D102 37 1/0(p/p)

DIO1 38 | 1/0(p/p)

DAV 26 | 1/O(p/p) | DATA VALID: handshake line controlled by source to show
acceptors when valid data is present to the bus.

NDAC 24 | 1/0(p/p) | NOT DATA ACCEPTED: handshake line. Acceptor sets this false
(high) when it has latched the data from the 1/0 lines.

NRFD 25 | 1/0(p/p) | NOT READY FOR DATA: handshake line. Sent by acceptor to

_ indicate readiness for the next byte.

ATN 28 | 1/O(p/p) | ATTENTION: sent by controller in charge. When true (low),
interface commands are being sent over the DIO lines. When false
(high), these lines carry data.

REN 22 | 1/0(o/d) | REMOTE ENABLE: sent by system controller to select control
either from the front panel or from the IEEE bus.

IFC 23 | 1/O(o/d) | INTERFACE CLEAR: sent by the system controller to set the
interface system into a known quiescent state. The system
controller becomes the controller in charge.

SRQ 29 | 1/0(p/p) | SERVICE REQUEST: set true (low) by a device to indicate a need

v for service.

EOI 27 | 1/O(p/p) | END OR IDENTIFY: if ATN is false (high), this indicates the end
of a message block. If ATN is true (low), the controller is requesting
a parallel poll.

CONT 30 O(p/p) Indicates (low) 9914A is controller in charge. It is used to control
direction of SRQ and ATN in pass control systems. Logically, it is
(CIDS + CADS).

TE 21 O(p/p) TALK ENABLE: controls the direction of the transfer of the line
receivers. Logically, it is (CACS + TACS + EIO - ATN - (CIDS +
CADS) - SWRST)

DO 17 | 1/0(p/p) | Data transfer lines on the MPU side of the device. DO is MSB.

D1 16 | 1/0(p/p)

D2 15 | 1/O(p/p)

D3 14 | 1/0(p/p)

D4 13 1/0(p/p)

D5 12 | 1/0(p/p)

D6 11 1/0(p/p)

D7 10 | 1/0(p/p)

2-2

R

Pinout and Signal Descriptions

‘% Table 2-1. TMS9914A Pin Descriptions (Concluded)
7 SIGNAL | PIN 1/0 DESCRIPTION
(TYPE)T
RSO 6 ! REGISTER SELECT LINES: determine which register is addressed
RS1 7 [by the MPU during a read or write operation.
RS2 38 [
CE 3 | CHIP ENABLE: CE low allows access of read and write registers.
If CE is high, DO-D7 are in high impedance unless ACCGR is low.
WE 4 l WRITE ENABLE: when active (low), indicates to the TMS9914A
that data is being written to one of its registers.
DBIN 5 | DATA BUS IN: an active (high) state indicates to the TMS9914A
that a read is about to be carried out by the MPU.
NT 9 O(o/d) INTERRUPT: sent to the MPU to cause a branch to a service
(no pullup) | request.
ACCRQ 1 O(p/p) ACCESS REQUEST: this pin becomes active (low) to request a
direct memory access.
ACCGR 2 | ACCESS GRANTED: when received from the direct memory
access control logic, this enables the byte onto the data bus.
ACCGR must be high when not participating in DMA transfer.
RESETH 19 | INTIALIZES the TMS9914A at poweron.
TR 39 O(p/p) TRIGGER: activated when the GET command is received over the
interface or the fget command is given by the MPU.
© 18 I CLOCK input: 500 kHz to 5 MHz. Need not be synchronous to
,% system clock.
3;; Vss 20 Ground reference voltage.
Vce 40 Supply voltage (+5V nominal).

t (p/p) = push/pull output
(o/d) = open drain output with internal pullup.
¥ The hardware RESET pin has the following effect on the TMS9914A:
- Serial and Parallel Poll registers cleared
- All clear/set auxiliary commands cleared except ‘swrst’
- 'swrst’ auxiliary command set. This holds the TMS9914A in known states.

2-3

Pinout and Signal Descriptions

P

Gy

3. IEEE-488 Overview

The IEEE-488 bus was developed to provide a standard interface for communication
between instruments from diverse sources. This section discusses general informa-
tion about using the interface between instruments.

3-1

|EEE-488 Overview

3.1 The Standard

Before the |IEEE-488 standard was introduced, each manufacturer, and sometimes
each division of each manufacturer, had a separate standard for instrument commu-
nication. The designers of the |EEE-488 bus defined a standard that handles most
communication between instruments. Conformity to this standard, although not
easy, is very important.

3.2 The Bus

3.3

The |EEE-488 bus has twenty-four lines: eight for data, eight for control, and eight
for ground and shielding. Data is sent a byte at a time on the eight data lines. The
eight control lines are described in Section 8.

Instrument and Interface

Almost any instrument can be used with the |IEEE-488 specification, because the
specification says nothing about the function of the instrument itself, or about the
form of the instrument’s data. Instead the |IEEE-488 defines a separate component,
the interface, that can be added to the instrument. The signals passing into the
interface from the |[EEE-488 bus and from the instrument are defined in the standard.
The instrument does not have complete control over the interface. Often the bus tells
the interface what to do. The TMS9914A has been designed to make this interface
easier to design and build. See Figure 3-1 for a conceptual illustration of the
relationships between the instrument and the interface, and the interface and the bus.

3.4 Commands and Data

3-2

Commands and data are the types of information flowing through the interface. The
commands are rigidly defined in the |EEE-488 specification. They are used to control
the state of the interface, and to a small extent, the instrument.

Most of the information on the IEEE-488 bus is device-dependent data. For instance,
if a voltmeter is sending voltage data to a printer, the data is device-dependent. The
specification says nothing about the format of that data except that it must be tran-
smitted eight bits at a time. The data can be sent in ASCIl (preferred), EBCDIC,
Baudot, BCD, or whatever code the printer can understand. The data rate can be
from 1 byte to 1 megabyte per second.

P SN

IEEE-488 Overview

3.5 Device Configuration Commands and Data

The IEEE-488 bus can be used to configure instruments. A few commands, such
as Device Clear and Device Trigger, perform general configuration functions. The
designer of each instrument defines the effect of these commands on that instrument.
Most configurations are done with device-dependent data, however, rather than
commands. For instance, no commands are defined to set the range on a voltmeter.
The device-dependent data stream specified by the device’s manufacturer must be
sent. Even though this could be viewed as sending “commands” to the voltmeter,
the IEEE-488 specification sees it as data. This allows the |EEE-488 bus to be flexible
and adapt to new instruments easily. See Figure 3-1.

3.6 Remote and Local Messages

The IEEE-488 specification distinguishes between remote messages, which are those
between the interface and the IEEE-488 bus, and local messages, which are those
between the interface and the instrumant (see Figure 3-1). The remote messages
can be commands or data. Their form is rigidly defined. The local messages, on the
other hand, can be logic levels on a line between the instrument and the interface.
Or in the case of the TMS9914A, the local messages can be bits in a register. The
instrument’s designer defines the effect of a local message from the interface on the
instrument. This allows flexibility in the design of the instrument.

e
1
}
l
l
|
LOCAL < REMOTE MESSAGES > DATA AND
MESSAGES IEEE-488 BUS COMMANDS
|
l
|
l
| _covemevEmEes

Figure 3-1. IEEE-488 Concepts: Instrument and Interface, Commands and
Data, Remote and Local Messages

3-3

IEEE-488 Overview

3-4

3

4. A Typical IEEE-488 System

An example will illustrate how the [EEE-488 bus works. A system with a computer,
a voltmeter, and a printer will show all the basic features of the specification. The
system can be used to take voltage readings at computer-controlled intervals and to
print the results to evaluate or monitor the system.

4-1

A Typical IEEE-488 System

4.1 Clearing the Devices and Their Interfaces

4-2

When the system starts up, the computer is the controller. It sends commands out
over the bus. First, it will put an Interface Clear (IFC) command on the bus, which
tells the printer and voltmeter interfaces to stop receiving data (listening) and tran-
smitting data (talking). This does not affect the instruments themselves, just their

interfaces, as shown in Figure 4-1.

Note:

The IFC command must be reset after a minimum of 100 ps (IEEE minimum time),
otherwise the interface will be held in a reset state until IFC is released.

IFC COMMAND
|IEEE-488 BUS
CONTROLLER
COMPUTER PRINTER

Figure 4-1. Clearing the Interfaces

The controller might then send out a Device Clear (DCL) command, shown in Figure
4-2. This command will cause each instrument to return to a default state defined
by the instrument manufacturer. These two commands illustrate that a distinction
is made by the |EEE-488 standard between the device (the instrument) and its

interface.

DCL COMMAND

4

|IEEE-488 BUS

CONTROLLER

COMPUTER

Figure 4-2. Clearing the Devices

2
3

A Typical IEEE-488 System

4.2 Configuring the Devices

After the controller has cleared the devices and their interfaces, it will configure each
device for the specific application. Each device has a unique address, usually set
by switches or by software in the device. First, to configure the voltmeter, the
controller makes the voltmeter a listener by sending out a listen command with the

voltmeter's address. This is called a My Listen Address (MLA) command. See Figure
4-3.

MLA COMMAND
IEEE-488 BUS
CONTROLLER IDLE
COMPUTER PRINTER VOLTMETER

Figure 4-3. Addressing the Voltmeter

Next, the computer changes from a controller to a talker so it can send data rather
than commands. Now the configuration data can be sent to the voltmeter, telling
it, for example, what range to set itself to, as shown in Figure 4-4. The exact form
of this data is defined by the manufacturer of the specific voltmeter, not the |EEE-488
specification. The data are device-dependent.

CONFIGURATION DATA

i d

EEE-488 BUS
TALKER IDLE | LISTENER
COMPUTER PRINTER VOLTMETER

Figure 4-4. Initializing the Voltmeter

After configuring the voltmeter, the computer turns back into a controller from a
talker, and send an Unlisten (UNL) command to the voltmeter. See Figure 4-5.

4-3

A Typical IEEE-488 System

UNLISTEN COMMAND

»

|[EEE-488 BUS
CONTROLLER IDLE
COMPUTER PRINTER VOLTMETER

Figuré 4.5, Unlistening the Voltmeter

The printer is initialized with the same sequence of steps previously defined for the
voltmeter, as shown in Figure 4-6.

1) Send out the My Listen Address (MLA) command.
2) Change controller to talker. -
3) Send configuration data to printer.

4) Change talker to controller.

B5) Send an Unlisten command to printer.

CONFIGURATION DATA

IEEE-488 BUS

TALKER IDLE

COMPUTER VOLTMETER

Figure 4-6. Initiélizing the Printer

i

&

w

A Typical IEEE-488 System

4.3 Taking Data

Now that the system is initialized, readings may be taken. To insure precise timing
between instruments, send a trigger command to the voltmeter. This is called a Group
Execute Trigger (GET) by the |IEEE-488 specification. The GET command works only
on those devices that have their interfaces set up to listen, so first send an MLA (My
Listen Address) command to the voltmeter. See Figure 4-7.

MLA COMMAND
|[EEE-488 BUS
CONTROLLER IDLE
COMPUTER PRINTER VOLTMETER

Figure 4-7. Addressing the Voltmeter Again

Now, to obtain a reading, program the computer to put a GET command on the bus,
as shown in Figure 4-8. The voltmeter is designed by the manufacturer to take a

reading upon receiving a GET command.

GET COMMAND
IEEE-488 BUS
CONTROLLER IDLE
COMPUTER PRINTER

Figure 4-8. Triggering the Voltmeter

The computer puts an UNL (Unlisten) command on the bus, telling the voltmeter to
stop listening. See Figure 4-9.

4-5

A Typical IEEE-488 System

UNLISTEN COMMAND

|[EEE-488 BUS
CONTROLLER IDLR
COMPUTER PRINTER VOLTMETER

Figure 4-9. Unlistening the Voltmeter

Next, tell the printer to listen with an MLA command, as shown in Figure 4-10.

MLA COMMAND »
IEEE-488 BUS
C
CONTROLLER IDLE
COMPUTER PRINTER VOLTMETER

Figure 4-10. Addressing the Printer

Finally, the computer tells the voltmeter to talk by putting a My Talk Address (MTA)
command on the bus. The MTA is similar to the My Listen Address (MLA). See

Figure 4-11.
MTA COMMAND
|[EEE-488 BUS
CONTROLLER LISTENER
COMPUTER PRINTER VOLTMETER

Figure 4-11. Addressing the Voltmeter as a Talker

The computer then goes into an idle state. This enables the voltmeter to talk and
send data to the printer, which will print out the information. See Figure 4-12.

VN

A,

A Typical IEEE-488 System

VOLTAGE DATA

<€

|IEEE-488 BUS

TALKER

VOLTMETER

Figure 4-12. Printing the Voltage Data

Now an |FC (Interface Clear) can be sent and another reading taken by repeating
each step, beginning with Addressing the Volimeter (Section 4.2).

4-7

A Typical IEEE-488 System

o smgr

4-8

5. TMS9914A Overview

The hardware interface and registers of the TMS9914A will now be discussed in
more detail.

5-1

TMS9914A Overview

5.1 Hardware Interface

The TMS9914A has a fairly conventional microprocessor interface. See Figure 5-1.
The lines are:

) Eight Data lines, DO to D7. DO is the most significant bit.

® Three Register Select lines, RSO to RS2. RS2 is MSB (Most Significant Bit).
® Chip Enable, CE

® Write Enable, WE

® Data Bus In or Read Enable, DBIN
© Clock, O
® Interrupt Out, INT
| _—
]i ® Reset, RESET
}X
i ® Access Control for DMA, ACCRQ and ACCGR
i
i _
Note:

The TMS9914A interfaces to the CPU via an eight-bit bi-directional data bus
which is labeled DO-D7 in the pin description in the data manual. In Tl termi-
nology, DO is the MSB (Most Significant Bit) and D7 is the LSB (Least Signif-
icant Bit). Other manufacturers refer to these lines with the opposite terminology,
thus referencing DO as LSB and D7 as MSB. It is a common oversight to connect
these data lines contrary to Tl convention, resulting in the corruption of data.

Note:

A" will symbolize logical “and” in this manual, while “v* will symbolize logical
”n n
or.

5-2

TMS9914A Overview

INSTRUMENT INTERFACE

|
[
|
!
!
I
I
I
|
|
|
|

MICROCOMPUTER BUS >

DATA

ADDRESS

ADDRESS STATUS

AUX COMMAND

INTERRUPT 0 E-488

EE
INTERRUPT 1 INTERFACE

BUS STATUS

CMD PASS THROUGH

SERIAL POLL

PARALLEL POLL

Figure 5-1. Block Diagram of an IEEE-488 System Using a TMS9914A

The TMS9914A can be easily interfaced to the IEEE-488 bus using the 75160A,
75161A, or 75162A Bus Transceiver/Driver chips. More detailed information
concerning the use of the interface devices can be found in the TMS9914A Data
Manual (p/n MP0O33A/SPOU002).

5.2 Registers

The registers of the TMS9914 are briefly described in the following list. For a more
detailed discussion, see the TMS9914A Data Manual.

REGISTER

Data

Address

Address Status

Auxiliary Command

Interrupt Mask and Status

FUNCTION

The microprocessor puts data bytes sent by the
talker and command bytes sent by the controller
here. The microprocessor also takes data bytes
received by a listener from this register.

The microprocessor puts the address of the device
in this location.

This register tells the microprocessor whether it
has been addressed as a talker or a listener.

The microprocessor sends commands to this
register to tell the TMS9914A to change its state.

These registers show what events have occurred
in the TMS9914A and control the generation of
interrupts to the microprocessor. They also control

5-3

TMS9914A Overview

-5-4

Bus Status

Command Pass Through

Serial and Parallel Poll

data flow on the |IEEE-488 bus, dependent upon
which bits are masked and which are unmasked.

This register gives the current state of the
IEEE-488 control lines.

This gives the current state of the |EEE-488 bus
data lines. The microprocessor reads certain
commands directly from the IEEE-488 bus using
this register.

The controller can poll the devices on the bus
either serially or in parallel. The microprocessor
puts the devices’ responses to these polls in these
registers, and the TMS8914A puts the responses
on the |EEE-488 bus at the proper time.

o

o

6. Listener Mode

Understanding the IEEE-488 state diagrams is difficult, but it is essential to an
understanding of the whole system. Since the listener state diagram is the simplest
in the IEEE-488 specification, it will be discussed first. A listener is a device, such
as the printer in our example system, that can accept data from a talker. The listener
state diagram shows how to get our printer ready to accept data. Figure 6-1 is a
simplified version of the |EEE-488 state diagram.

6-1

Listener Mode

6.1 Listener Description

The circle on the left of Figure 6-1 represents the idle state. The printer is idle after
power up and after receiving an |FC (Interface Clear) command. In this state, the
printer remains inactive and any attempt to send data to it has no effect. The |FC
command must be reset after at least 100 us, or the interface will be held in an inactive

state.
ADDRESS LISTENER
ADDRESSED
UNLISTEN

POWER UP OR
INTERFACE CLEAR
(IFC) COMMAND

CONTROLLER
CONTROLLER
TAKES BUS RELEASES

Figure 6-1. Simplified Listener State Diagram

The listener leaves the idle state by being addressed to listen, which puts it into the
addressed state.

As soon as the controller releases the bus, the listener will go to the active state
(listening) and will be ready to accept data.

When the controller takes control of the bus, the listener returns to the addressed
state. The controller then tells the listener to stop listening, sending it back to the
idle state.

6.2 State Diagrams

Listener is an “interface function.” There are many other interface functions, each
with their own state diagrams. Talker and controller are examples previously
discussed, but they are not implemented in the printer in this example. The printer
has an interface function called Acceptor Handshake (AH), which controls the
acceptance of each byte of data coming into the printer. The printer is always
someplace in the AH state diagram. At the same time, it is someplace in the listener
(L) state diagram.

The computer in our sample system has controller, listener, talker, Acceptor Hand-
shake, Source Handshake, Parallel Poll, and many other interface functions imple-
mented. Itis always at a defined point in the state diagram for each interface function.
There are also cross-links between state diagrams.

6-2

Listener Mode

6.3 IEEE-488 Listener State Diagram

Figure 6-2 is the |EEE-488 state diagram for the listener or L function. The circles
and arrows are the same as in the simplified diagram. Table 6-1 shows LIDS means
Listener ldle State, which is the left circle in Figure 6-2. All the other mnemonics
are also in the table.

(IFCAlon) v
(FCAitn~ CACD) v
(IFC» MLA~ (ACDD)

pon

(UNLA BCDD) v
IFC [(MTA~ GTDD)] v
(WITHIN t,) (lun A CACD)

ATN
(WITHIN t,)

AN
. (WITHIN t,)

Figure 6-2. |EEE-488 Listener State Diagram

Table 6-1. IEEE-488 Listener Mnemonics

MESSAGES INTERFACE STATES

pon = Power on LIDS = Listener idle state

Itn = Listen LADS = Listener addressed state

lun = Local unlisten LACS = Listener active state

lon = Listen only ACDS = Accept data state (AH function)

IFC = Interface clear CACS = Controller active state (C function)

ATN = Attention

UNL = Unlisten

MLA = My listen address

MTA = My talk address
The “pon” to the left of the LIDS circle means power on. It is printed in lowercase,
which indicates a local message. Remote messages are shown in uppercase. Local
messages are between the instrument and the interface. The instrument tells the
interface that power has been turned on. The “pon” has its own arrow, so regardless
of location in the state diagram, “pon” leads to LIDS.
Just below "pon” is IFC (Interface clear). IFC is in uppercase, indicating it is a remote
message, which is a message that comes in on the bus. All the messages are defined
in Table 6-1.
Look at the top of the state diagram, where the simplified diagram says “address
listener.” The “v" means logical or. The |EEE-488 specification says “v” is evaluated
last in the expression. If any of the three expressions separated by “v” goes true, the

3 listener function will go from LIDS to LADS. The top expression is:

6-3

Seee— e o e

Listener Mode

6-4

IFC a lon

n . n

The bar over IFC means “IFC not,” and the “A” means "and.” So when IFC is false
and “lon” is true, the listener function will go to the addressed state (LADS). The
“lon” local message is used for systems without controllers. To use the voltmeter
and printer without the computer, flip the "listen only” switch on the printer and the
"talk only” switch on the voltmeter. This will probably cause the voltmeter to send
voltage data, the printer to print, and paper to feed.

The next expression is:

TFC 4 Itn A (CATY)

TFC was discussed earlier, “Itn” is a local message, and CACS is a linkage from the
controller state diagram. The oval indicates a linkage. This expression is used when
the controller wants to be a listener when it releases control. For example, if the
computer wants to listen to the voltage data itself, it would use the “ltn” local
message to go to LADS. Then when it releases the bus, the computer will go to
LACS. The "Itn” local message is valid only when the controller is in CACS state,
because the controller is in control of the bus only in CACS.

The last expression for this arrow is: C

TFC » MLA A (ACDYS)

In this expression, MLA (My Listen Address) is needed. Although both IFC and
MLA are commands, |IFC is specified because commands go down the bus in two
different ways. A few commands, like IFC, have a dedicated line, while most
commands go along the same eight lines used for data. If an IFC and a MLA occur
at the same time, the MLA is ignored. ACDS (Accept Data State) links the Acceptor
Handshake state diagram to the listener state diagram. ACDS means that the data
or command on the eight data lines has been accepted. For this example, the
command is MLA. In other words, the controller sends a MLA command to the
printer, the printer accepts the command, and goes into LADS state. This is how
most devices get into listener addressed mode in most systems (such as the example
system).

Go down the arrow from LADS to LACS. Table 6-1 shows ATN means attention.
ATN is a command that has a line dedicated to it, like IFC. The ATN line tells whether
the controller is using the data bus. Any byte that travels down the 8-bit bus when
the ATN line is true is an interface command byte. If ATN is not true, that byte is a
data byte. The MLA command used to get to LADS was sent with ATN true. The
listener will stay in LADS until the controller is finished sending commands. When
the controller is finished, it will release the ATN line and go to an idle state in its state
diagram; then the listener can start listening. Going to LACS (Listener Active State),
a maximum delay, t2, is specified. The TMS9914A is fast enough to handle this delay.

Going back to LADS uses the opposite procedure. The controller takes the bus back
by asserting the ATN line. If the controller only wants to send some commands and
have the device go back to listening, it can release the bus again. The path between
LACS and LADS will always be open if the controller will allow it.

When the controller wants a device to stop listening, it uses one of three possible
methods:

Listener Mode

For the UNL (Unlisten) command, the ATN line must be true, but this is implicit
in the UNL. The ACDS means the command was accepted, and it was indicated
with the handshake lines.

UNL » (ACDS)

This term is in brackets because it is optional. The MTA (My Talk Address)
means that if the device is addressed to talk, it ceases to listen.

[MTA » (ACDS)]

This again is the special case of the controller wanting to listen. Now the
controller wants to stop listening. Because it is not allowed to listen to its own
commands, sending an UNL to itself will not have an effect. It must take control
(by asserting ATN), which puts it in the CACS state in the controller state
diagram. When it gets a “lun” local message, its listener function will go to
LIDS.

lun » (CACS)

6.4 TMS9914A State Diagram

Figure 6-3 shows the TMS9914A implementation of the listener function. On the
left of the diagram is an expression with an arrow going to LIDS. If any line of the
expression becomes true, the listener function will go to LIDS.

e . (MLA A aptmk A ACDSD) v
dal AIFCIN A sic A | (TPAS) ~ aptmk Adacr A cs ~A@AXSD) v

swrst (lonacs A@)
v
dal
\"4
IFCIN
|onA§\; (UNL~ CACDSD) v (TADS))

ATN ATN

Figure 6-3. TMS9914A Listener State Diagram

According to Figure 6-2, "swrst” means software reset. Software reset is a local
message. It can be sent to the TMS9914A from the microcomputer using the
"Auxiliary Command” register. A hex 80 will set the “swrst” state, and a hex O will
clear it. A hardware reset of the TMS9914A will also set the "swrst” state. An “swrst”
puts most of the state diagrams in an idle state.

6-5

i §¢

Listener Mode

Table 6-2. TMS9914A Listener Mnemonics

MESSAGES INTERFACE STATES
aptmk= Address pass through LACS = Listener active state
interrupt mask bit LADS = Listener addressed state
cs = Clear/set bit of the LIDS = Listener idle state
auxiliary command ACDS1 = Accept data state 1 (AH function)
_ register AXSS = Auxiliary command strobe state
dacr = Release DAC Holdoff (ACR function)
dal = Disable listener LPAS = Listener primary addressed state
lon = Listen only) (LE function)
sic = Set interface clear TADS = Talker addressed state
swrst = Software reset (T function)
ATN = Attention
IFCIN = Internal IFC (a debounced
signal, suppressed by sic)
MLA = My listen address
UNL = Unlisten

A “dal” (disable listener) is also a local message, but it is not sent via the auxiliary
register. Bit D1 of the address register in the TMS9914A is the "dal” bit. If it is set,
listener mode is disabled (i.e., set permanently into the idle state).

An “sic” (set interface clear) is an auxiliary command used to send out an Interface
Clear when the TMS9914A is the system controller. When the TMS9914A is sending
an Interface Clear, the TMS9914A does not listen to the Interface Clear itself. Thus,
its listener function will not get to LIDS without the “sic” term in place.

"IFCIN” means an |FC has been received and debounced. ATMS9914A IFCIN works
the same as an |[EEE-488 |IFC.

lon A cs A (AXSYD)

An "lon” (listen only) is a local message sent through the auxiliary command register.
Some auxiliary commands have a clear/set bit associated with them, and "lon” is
one of these. The cs (cs not) indicates the clear/set bit should be cleared (i.e., not
listen only); the “cs” bit is the most significant bit. The "lon” is equal to a nine. This
means a hex nine is “lon A cs,” and a hex 89 is “lon A cs.” The AXSS is a state on
the auxiliary command state diagram, which means “lon” is a pulsed command.
AXSS goes true for five TMS9914A clock cycles, enough to put the TMS9914A into
LIDS, and then goes false. The AXSS also means the device must wait five clock
cycles before issuing another auxiliary command.

In the expression to get to LADS, this is not in the parentheses.

dal a TFCIN 4 sic

As discussed, “dal” is disable listener, IFCIN is the same as IFC, and “sic” is set
interface clear. These all must be false before the listener can be addressed.

MLA A aptmk » (ACDSD

Listener Mode

MLA is My Listen Address, as it is on the |IEEE-488 diagram. ACDS1 is the
TMS9914A’s version of Accept Data State, which is the state in the Acceptor
Handshake state diagram where a byte, in this case the MLA command, is accepted.
"aptmk” is the address pass-through interrupt mask. This is set to enable secondary
addressing, a feature explained in Section 12. Since secondary addressing is not
being used, "aptmk” is reset, so only MLA and ACDS1 need to change states.

(LPAS) A aptmk » dacr a cs » (AXSS)

This is how the secondary addressing gets into LADS. See Section 12.

lon a cs A (AXSS)

This equation is the same as the “lon” local message in the |IEEE-488 state diagram,
but includes the "cs” bit and the AXSS delay. The next equation was in the |[EEE-488
state diagram, but it is not in the diagram for the TMS9914A.

IFC a Itn A (CACTY)

The “lon” local message puts the interface into LADS at any time. A second local
message (ltn) is not needed to put the interface into LADS at a specific time; to do
so would be a waste of silicon. To implement this expression on the TMSS814A,

go into (CACS), and issue an “ion.”

Getting down to LACS (the active state where data was listened to) is the same as
in the |EEE-488 diagram. ATN is used to go down, and ATN to go back up.

Going back from LADS to LIDS is easy. TADS means Talker Addressed State. Thus,
if a device is addressed as a talker, it stops listening. This is the way the TMS9914A
implements the MTA » (ACDS) expression from the |EEE-488 diagram. UNL

is the same as the UNL A (ACDS) from the IEEE-488 diagram. An
expression in the IEEE-488 diagram is not in the TMS9914A diagram.

lun » (CACS)

The "lun” command is the same as the multi-purpose_ TMS9914A “lon” message.
This use of “lon” is shown on the left by LIDS (lon 4 cs & AXSS). Go into CACS,
send the “lon” auxiliary command with the “cs” bit cleared, and wait five TMS9914A
clock cycles. This gets one to LIDS.

6-7

Listener Mode

6.5 Listener Implementation o

Assuming starting with power on, the simplest implementation of the Listener
function requires only four steps.

1) © Set up the Advdlv'ess.RegisteAr.
a. Put the address into the five low bits of the TMS9914A’s Address Register.

b. Reset bit D1 (the “dal” bit) in the Address Register. The TMS9914A inter-
faces to the CPU via an eight-bit bi-directional data bus which is labeled DO-D7
in the pin description in the data manual. In Tl terminology, DO is the MSB
and D7 is the LSB. Other manufacturers refer to these lines with the opposite
terminology, thus referencing DO as LSB and D7 as MSB. It is a common
oversight to connect these data_lines contrary to Tl convention thus resulting
in the corruption of data.

2) Clear both Interrupt Mask registers. Interrupts are not used for this example.
Neither software nor hardware reset affects the Interrupt Mask Registers; they
come up in a random state.

3) Clear the "swrst” auxiliary command. “"Swrst” is set by hardware reset and must
be cleared before the TMS9914A can start talking to the |EEE-488 bus. It is
cleared by writing a 0 to the auxiliary command register.

4) Wait for the Bl (Byte In) bit in Interrupt Régister O to go high. Bl indicates the
TMS9914A has been addressed, has gone into LACS (Listener Active State),
and has received a byte. One can read the byte from the Data register, wait for
the Bl bit to be set, read a byte, and so on. Either reading from Interrupt Register
0 or reading from the Data Register clears bit Bl.

The TMS9914A handles detecting the address and switching between states. It also
latches the bytes in. :

I
)

@

7. Talker Mode

The listener function and the talker function are similar but have some differences.
The same approach will be used to describe the talker function as to describe the
listener function.

7-1

Talker Mode

7.1 Talker Description

Figure 7-1 shows the simplified version of the talker state diagram. The talker state
diagram has Idle, Addressed, and Active states, as in the listener diagram. There is
also a fourth state, Serial Poll. Serial Poll is special because it has nothing to do
with a talker sending data to a listener. It is discussed in Section 10.

INTERFACE IN SERIAL POLL MODE,
CONTROLLBESSRELEASES

POWER UP OR ADDRESS TALKER

INTERFACE
CLEAR

ADDRESSED

UNTALK CONTROLLER TAKES BUS

CONTROLLER
RELEASES
BUS

CONTROLLER
TAKES BUS

Figure 7-1. Simplified Talker State Diagram

7.2 |EEE-488 Talker State Diagram

Figure 7-2 and Table 7-1 show the |[EEE-488 state diagram for the talker function.
The “pon” and the IFC going into TIDS (Talker Idle State) are the same as the
functions going to LIDS (Listener Idle State) for the listener function. When going
from TIDS to TADS (Talker Addressed State), the “ton” (talk only) works the same
as the listener's “lon” (listen only), and is intended for use in systems without
controllers. The MTA (My Talk Address) works like the listener's MLA (My Listen
i Address). The controller puts an MTA on the bus. The Talker accepts it and goes
into TADS.

7-2

Talker Mode

3 (FC aton) v
? ATN A (SPND

(TFC A (MTA~ACDD))

pon

(OTAV[MLA])~ ACDD ATN

WITHIN t
(Wﬂlﬁ%‘l t,) TN e -—‘—(b
4 A 5
(WITHIN t,) ATN A~ EPMSD

Figure 7-2. IEEE-488 Talker State Diagram

Table 7-1. |EEE-488 Talker Mnemonics

MESSAGES INTERFACE STATES
pon = Power on TIDS = Talker idle state
ton = Talk only TADS = Talker addressed state
I[FC = Interface clear TACS = Talker active state
ATN = Attention SPAS = Serial poll active state
MTA = My talk address SPIS = Serial poll idle state
SPE = Serial poll enable SPMS = Serial poll mode state
SPD = Serial poll disable ACDS = Accept data state (AH function)
OTA = Other talk address
MLA = My listen address

The transitions from TADS to TACS (Talker Active State) and back are exactly the
same as the listener transitions, except the Serial Poll Mode, which will not be set
except to do a Serial Poll.

The only difference in talker is the transition from TADS to TIDS:

(OTA v [MLA]) » (ACDD)

This expression only looks different. It can be rewritten:

OTA » (ACDS) v [MLA » (ACDS)]

The OTA (Other Talk Address) tells the talker to go to an idle state because only one
talker can be active at a time. When the talker sees another talker addressed, it is
] quiet. The MLA (My Listen Address) is an optional expression. [t implies that if the
5 talker is addressed to listen, it stops talking. As mentioned previously, ACDS is a

7-3

Talker Mode

state in another diagram that implies the data or command on the eight data lines
has been accepted.

7.3 TMS9914A Talker State Diagram

Figure 7-3 and Table 7-2 cover the TMS9914A implementation of the talker function.
They are similar to the listener diagram and table. Serial Poll has an extra state, and
‘many terms have “1” replaced by “t,” as in the |[EEE-488 diagram.

Table 7-2. TMS9914A Talker Mnemonics

MESSAGES INTERFACE STATES

aptmk = Address pass through TACS = Talker active state

interrupt mask bit TADS = Talker addressed state
cs = Clear/set bit of the TIDS = Talker idle state

auxiliary command | SPAS = Serial poll active state

register ACDS1= Accept data state 1 (AH function)
dacr = Release DAC Holdoff AXSS = Auxiliary command strobe state
dat = Disable talker (ACR function)
sic = Set interface clear TPAS = Talker primary addressed state
swrst = Software reset (TE function)
ton = Talk only LADS = Listener addressed state
ATN = Attention (L function)
IFCIN = Internal IFC (a debounced

signal, suppressed by sic)
MTA = My talk address .
OTA = Other talk address

(MTA ~aptmk ~» @CDSD) v
dat ATFCIN AsicA{ (TPAD) ~ aptmk Adacr A cs AGXED) v

swrst (tonrcsAEXSD)

v

ATN ~GPMD

dat
v
sic
v
IFCIN
v (TPAS ~aptmk»
tonA T~ AXED dacrAcsA(AXSD) v
(OTAAGCDED) v _
(CADD) ATN ~» GPM®

Figure 7-3. TMS9914A Talker State Diagram

On the arrow leading into TIDS from the left, only two terms are different from those
for listener. A "dat” (disable talker) has replaced a “dal.” The "dat,” like the "dal,”
is a bit in the Address Register. A “ton” (talk only) has replaced “lon” (listen only).

7-4

(i

Talker Mode

The “ton,” like the “lon,” is an auxiliary command used for systems without
controllers. A "ton” is also used when a controller wants to become a talker.

A "dat” and a "ton” also replace a “dal” and an “lon” in the expressions above the
arrow from TIDS to TADS. MTA (My Talk Address) is used to address a talker, the
same as MLA (My Listen Address) is used to address a listener.

The talker goes from being just addressed (TADS) to being active (TACS) at the same
time as the listener, when the controller releases the ATN line. Only in TACS can
the talker actually talk to a listener. When the talker is in TACS, and one or more
listeners are in LACS, data can flow, which is the purpose of the IEEE-488 bus.

(TPAS) » aptmk A dacr » ©s 4 (AXSD)

The extra term, on the arrow between TADS and TIDS, is for secondary addressing.
This is discussed in Section 12.

OTA acts like an “Untalk,” as explained in the description of the |EEE-488 state
diagram. TADS is analogous to the LADS at the same spot on the listener diagram.
It implies that if the TMS9914A is addressed to listen, it will stop talking.

7.4 Talker Implementation

The actual implementation of the talker function is similar to the listener function.
Here is the sequence, starting from power on.

1) Set up the Address Register
a. Put the address into the five low bits of the TMS9914's Address Register.

b. Reset bit D2 (the “dat” bit) in the Address Register. Note that the TMS9914A
interfaces to the CPU via an eight-bit bi-directional data bus which is labeled
DO-D7 in the pin description in the data manual. In Tl terminology, DO is the
MSB and D7 is the LSB. Other manufacturers refer to these lines with the
opposite terminology, thus referencing DO as LSB and D7 as MSB. It is a
common oversight to connect these data lines contrary to Tl convention, thus
resulting in the corruption of data.

2) Clear both Interrupt Mask registers. Interrupts are not used for this example.
Neither software nor hardware reset affects the Interrupt Mask Registers; they
come up in a random state.

3) Clear the "swrst” auxiliary command. The swrst is set by hardware reset and
must be cleared before the TMS9914A can start talking to the IEEE-488 bus.
It is cleared by writing a 0 to the Auxiliary Command Register.

4) Wait far the BO (Byte Out) bit in Interrupt Register 0 to go high. BO indicates
the TMS9914A has been addressed, has gone into TACS (Talker Active State),
and is waiting for a byte. Write the byte to the Data register, wait for the BO
bit to be\set, write a byte, etc. The BO bit is cleared by reading from Interrupt
Register O and writing to the Data Register.

v

The TMS991 4/5\ handles detecting the address and switching between states. It also
sends the bytes out.

7-5

m

7-6

Talker Mode

8. Controller Mode

The controller state diagram is more complicated than the talker or listener diagrams.
The controller has ldle, Addressed and Active states, like talker and listener. There
is also a transfer control state, and many standby states. Parallel Poll has some states
here, which are discussed in Section 11.

8-1

if\

R T

o

|
i
I

ECRE

Controller Mode

8.1 Controller Description

8-2

The translation of the controller state diagram requires Figure 8-1 and Figure 8-2.
Figure 8-1 shows the addressing and unaddressing of the controller, which will be

considered first.

CONTROL TAKEN BY
OTHER CONTROLLER

TRANSFER

POWER UP
CONTROL

OR IFC

TELL OTHER
CONTROLLER
TO TAKE CONTROL

TOLD TO
TAKE CONTROL

NO OTHER
CONTROLLER ACTIVE

Figure 8-1. Simplified Controller State Diagram, Part 1

The controller reaches the idle state from power on or IFC, goes to the addressed
state when it is told to, and goes to the active state when no controller is on the bus.
This is the same as the talker and listener states, but the controller cannot retrace its
steps back through addressed to idle as the previous two can. The controller normally
returns to idle only if it transfers control to another controller. In systems with only
one controller, the controller never returns to idle after power on.

To transfer control, the active controller tells the new controller to take control. This
moves the active controller to transfer control state. When the next controller receives
the message, it goes to addressed state, and acknowledges receipt of the message.
The old controller receives the acknowledgment and goes to the idle state, releasing
the bus. When the bus is released, the:new controller goes to the active state. The
arrows pointing out of the diagram around the active state are shown in Figure 8-2.

Controller Mode

ACTIVE

TAKE CONTROL GENTLY

RELEASE BUS .,
STANDBY [z
_ ACCESS
GIVE UP ON GENTLY

TAKE

CONTROL

BRUTALLY DELAY

DELAY

Figure 8-2. Simplified Controller State Diagram, Part 2

The active state in the lower right of Figure 8-1 is the same as the active state in the
upper left of Figure 8-2. In a typical application, the controller spends most of its
time in the active and standby states. In the active state, the controller is sending
commands. After it has set everything up, it goes to standby and lets the talker and
listener interact.

The controller can take control again in two different ways. [t can wait for the
time-slot after the listener has accepted a byte, before the listener is ready for the
next byte, and easily take control. This method does not always work. Often the
talker has sent all its data, the listener is ready for more, and the controller will never
get control. The controller can also take control immediately, but this is risky because
a data byte may look like a command.

Delays between taking and attaining full control prevent a data byte from being read
as a command, and these delays give the talker time to get off the bus to eliminate
bus conflicts. The arrows to the left of Figure 8-2 are for parallel poll.

IEEE-488 Controller State Diagram

Figure 8-3 shows the |IEEE-488 state diagram for the controller function. Start at the
idle state. A “pon” (power on) is there. IFC has another term with it.

IFC 1 BACS)

SACS (System Control Active State) implies the interface is the system controller.
A given system has only one system controller. The system controller does not have
to be the active controller, but it is the only interface which can send the IFC and

8-3

Controller Mode

REN (Remote Enable) commands. When the system controller sends the IFC, all
other controllers are set to the idle state, but the system controller goes to the

addressed state. This is shown by a term on the arrow from CIDS to CADS.

pon

IFC A ([FC ~ACD® ~ (TCTAGACD®) A
(WITHIN t,) TCTATADD]) v A ltar D))

(EAD)

tes A (GANR®

gts » EIRD~GDYD

T, ATPP

T,vTADD

Figure 8-3. IEEE-488 Controller State Diagram

Note:

only the main controller diagram. Some of these mnemonics

Figure 8-3 shows
e the ANSI/IEEE Standard

are for subsidiary diagrams. For a complete diagram, se
488-1978.

)

Controller Mode

Tabie 8-1. IEEE-488 Controller Mnemonics

MESSAGES INTERFACE STATES
pon = Power on CIDS = Controller idle state
rsc = Request system control CADS = Controller addressed state
rpp = Request parallel poll CTRS = Controller transfer state
gts = Go to standby CACS = Controller active state
tca = Take control asynchronously | CPWS = Controller parallel poll wait state
tcs = Take control synchronously CPPS = Controller paralle!l poll state
sic = Send interface clear CSBS = Controller standby state
sre = Send remote enable CSHS = Controller standby hold state
I[FC = Interface clear CAWS = Controller active wait state
ATN = Attention CSWS = Controller synchronous wait state
TCT = Take control CSRS = Controller service requested state
CSNS = Controller service not requested
state
SNAS = System control not active state
SACS = System control active state
SRIS = System control remote enable idle
state
SRNS = System control remote enable not
active state
SRAS = System control remote enable
active state
SHS = System control interface clear idle
state
SINS = System control interface clear not
active state
SIAS = System control interface clear
active state
ACDS = Accept data state (AH function)
ANRS = Acceptor not ready state
(AH function)
SDYS = Source delay state (SH function)
STRS = Source transfer state (SH function)
TADS = Talker addressed state (T function)

8-5

Controller Mode

8-6

SIAS (System Control Interface Clear Active State) implies the system controller is
sending Interface Clear, which is normal on power up. The system controller sends
an Interface Clear message, putting itself into CADS. Since ATN is not asserted, the
system controller goes right from CADS to CACS. Another way for a controller to
be addressed and active is:

[TFC » (BTDS) 4 TCT 4 (TADS)]

In other words, if an IFC command is not on the bus, if the interface is addressed
as a talker (TADS), and if the interface receives a TCT (Take Control) command, the
interface will go to CADS. ACDS implies acceptance of the command. This term
is used for transfer of control. The active controller addresses the new controller as
a talker, then sends it a TCT command, causing it to go into CADS. When the active
controller gets off the bus, the new controller goes to CACS.

The arrow from CACS to CTRS shows the other half of the process. The expression
should have been written:

TCT A (BCDY) » [TADD)]

The TCT » ACDS represents the active Controller receiving its own TCT command.
The optional TADS is a hold-over from the early TTL implementations of the standard.
It has no other significance. Now the active controller goes t0 CIDS, using:

GRS

STRS is the state on the Source Handshake state diagram where the data byte is
transferred. In this case, the data byte is really the TCT command, and the active
controller is waiting until the byte is completely transferred. When the TCT is
transferred, the active controller goes to CIDS, releasing the ATN line. This causes
the new controller to go from CADS to CACS and assert the ATN line itself.

Transfer of control does not happen often. A controller will generally be in CACS
issuing commands, or in CSBS (Controller Standby State), letting a talker talk to a
listener. One way to go from CACS to CSBS is:

gts » (STRD) » (SDYD)

A "gts” is a local message that means "go to standby.” STRS and SDYS are states
from the Source Handshake diagram that ensure that the last command is accepted
before the controller goes to standby. The controller will normally sit in CSBS,
waiting for the data transfer between the talker and listener to complete. When it is
ready to go back to CACS, it has two routes 10 choose from. The route to CSHS is:

tes » (ANES)

The “tcs” is a local message meaning “take control synchronously” and ANRS is used
for synchronization. ANRS (Acceptor Not Ready State) is an Acceptor Handshake
state. The Acceptor is in this state after it has accepted a data byte, and before it is
ready for the next byte. This is the one time the controller can take control of the
bus with no chance of data corruption, because no data are on the bus.

Another way to take control of the bus is:

tca

P

/|

N

q_:"*g 1

Controller Mode

If a “tca” (take control asynchronously) local command is issued while in CSBS, the
controller goes to CSWS. If a data byte is being transferred, it may be interpreted
as a command instead. The command “tca” is used when the data transmission has
stopped. The talker has sent its last byte, the listener has accepted it and is ready
for additional data. In this case, a “tcs” will lock up. The listener will wait forever
for the next data byte to be transferred. In our sample system, the voltmeter sends
the voltage to the printer and then stops sending. A "tcs” would not work for taking
control after the transmission was done.

In CSWS, the controller asserts the ATN line. A delay from CSHS to CSWS helps
prevent data corruption. Going from CSWS to CAWS, a delay occurs if the controller
is not the talker. This delay allows the talker to recognize the ATN and get off the
bus. The delay between CAWS and CACS prevents a false indication of Parallel Poll.
The TMS9914A takes care of all these delays.

CPWS and CPPS are Parallel Poll states, which are discussed in Section 11.

8.3 TMS9914A State Diagram

The TMS9914A controller diagram, shown in Figure 8-4, is simpler than the
|EEE-488 controller diagram. The full IEEE-488 controlier function can be imple-
mented on the TMS9914A with the proper software.

swrst
IFCIN

A\
ric AAXED

sic

v
rqc AAXS®)
gts AAXSS A

@ GEBRENE)

tes A(AXED

(ANED

tcar QXSS
csws

Figure 8-4. TMS9914A Controller State Diagram

8-7

Controller Mode

Table 8-2. TMS9914A Controller Mnemonics

MESSAGES INTERFACE STATES
gts = Go to standby CACS = Controller active state
rlc = Release control CADS = Controller addressed state
rpp = Request parallel poll CAWS = Controller active wait state
rgc = Request control CIDS = Controller idle state
sic = Set interface clear CPWS = Controller parallel poll wait state
swrst = Software reset CSBS = Controller standby state
tca = Take control CSHS = Controller standby hold state
asynchronously CSWS = Controller synchronous wait state
tcs = Take control synchronously] CWAS = Controller wait for ANRS state
ATN = Attention : ANRS = Acceptor not ready state
IFCIN=Internal IFC AXSS = Auxiliary command strobe state
SDYS = Source delay state
STRS = Source transfer state

Consider the idle state, CIDS, in the upper left corner of Figure 8-4. |FCIN and
“swrst” should be familiar. A “swrst” is an auxiliary command that occurs at power
up, so it is similiar to the IEEE-488 “pon.” IFCIN is almost the same as IFC. Another
way to get to CIDS is: ~

ric & (AXSS)

An “rlc” (release control) is an auxiliary command used during transfer of control.
The active controller waits until the new controller has acknowledged receipt of the
TCT command, and then issues an “rlc.” The new controller should detect that TCT
has been sent to it and issue an “rqc” (request control). Then it will acknowledge
the TCT command (see Section 8.4). The “rqc” command is on the arrow between
CIDS and CADS.

An “sic” is also on the arrow from CIDS to CADS. The system controller uses “sic”
(set interface clear) to send out an IFC and to take control of the bus. Normally this
is done on power up.

The remainder of the diagram is like the |IEEE-488 diagram. The “gts” auxiliary
command gets the controller to standby, and the “tca” and “tcs” auxiliary commands
work like the "tca” and “tcs” remote messages from the |IEEE-488 diagram. There
are many delays before getting to CACS again. The organization of the states is not
quite the same, but the delays between states are as long as the minimum required.
CPWS is used for Parallel Poll.

8.4 Controller Implementation

8-8

The controller function implementation is more complicated and critical than the
functions discussed so far.

First consider the system controller, starting from power up. When the TMS9814A
is given a hardware reset, it enables “swrst,” and puts the controller function into
CIDS.

A

Controller Mode

Before releasing "swrst,” initialize the TMS9914A. The interrupt registers are not
initialized by reset, so they need to be initialized. Because interrupts are not used
for the example, write zeroes to both [nterrupt Registers. The Address Register must
be initialized, though it has no effect on the controller function. The talker and listener
functions still need to be instructed what to do. See Section 6 and Section 7 on
listener and talker. Also send the “sic” command to the TMS9914A before releasing
"swrst.”

To begin, send an “swrst” command to the TMS9914A with the “cs” bit cleared.
This releases "swrst,” and gets the TMS9914A to CADS. Since no controller is on
the bus, the TMS9914A goes straight to CACS. The BO bit will go high when
entering CACS, but bytes cannot be sent immediately. A 100-us delay is necessary
here, because this is the minimum width allowed for IFC. While delaying, issue an
“sre” (send remote enable) auxiliary command. This will turn on the REN (Remote
Enable) line of the IEEE-488 bus. Some listeners will not use any data sent without
Remote Enable. It is customary just to turn Remote Enable on at power up and leave
it on at all times. '

After the 100-ps delay, send an “sic” command to the TMS9914A with the “cs” bit
cleared. This turns IFC off. BO has been indicated, so the first command byte can
be sent out. Commands go out through the data register, just like data. On each
successive BO, another command can be sent.

To become a listener when control is released, an “"lon” auxiliary command is issued
while still in CACS (for a talker, send “ton”). With talker, also issue a MTA command
with our address. This will not affect the interface, but is necessary to meet the
|[EEE-488 specification, and to ensure that all other talkers are off the bus. After
sending the last command down the bus, (and getting the next BO), issue a "gts”
(go to standby) auxiliary command, causing the TMS9914A to go to CSBS.

When going into talker or listener, the appropriate bit (BO or Bl) will be set to tell
when one can start talking or listening.

Issue the “tca” (take control asynchronously) auxiliary command to take control. If
the talker issues the “tca,” it must wait for a BO after the last byte sent. If the listener
issues the “tca,” it must wait for the last byte to come in. Note that a talker or listener
going into CACS will be the same on leaving CACS, unless a "lon” ora "ton” is issued
with the “cs” bit cleared.

A "tcs” (take control synchronously) is more complicated. Controllers acting as
talkers cannot use “tcs” (and do not need to). Only controllers acting as listeners
can issue a "tcs” because only listeners are synchronized to the handshake. The only
proper use for "tcs” is the interruption of a string of data. If “tcs” is needed, consider
these points:

1) Before going to standby, issue a “fon.” If the listener does not need to read the
data on the bus, issue a "shdw” (shadow handshake) command after the "lon.”
A "shdw” will handshake each data byte immediately, without waiting for it to
be read.

2) To interrupt the data stream, issue a "tcs.” If a BO is not received after a
reasonable amount of time, try a “tca.” A “reasonable amount” is determined
by the speeds of the talker and listener that are communicating. When BO is
true, the state is CACS, and one can begin sending commands.

The procedure for transfer of control is relatively easy. The active controller should
start in CACS, and the new controller in CIDS. The new controller must have the
“unc” bit set in its Mask Register 1. The active controller must address the new
controller as a talker (MTA). After the BO bit goes high, the active controller should
send out a TCT (take control) command.

8-9

Controller Mode

This will cause the “unc” (unrecognized command) .bit in the new controller’s
interrupt register 1 to go high. The "unc” also causes the TMS9914A to hold the
DAC (Data Accepted) signal false, telling the active controller that the byte has not
been read yet. The new controller will read this bit and then read the TCT from its
command pass-through register. It will then verify that its TADS (Talker Addressed
State) bit in the Address Status Register is set, and issue a "rqc” (request control)
" auxiliary command. This will move the new controller.to the CADS state. The new
controller then must issue a "dacr” (release DAC holdoff) auxiliary command, to
signal that it has accepted the TCT command.

When the new controller releases its DAC holdoff, the BO bit in the active controller
will go high. At this point, the active controller issues an “rlc” auxiliary command,
sending itself to CIDS and allowing the new controller to go to CACS.

2%

G5
s ey

o

&

o

9. Command Implementation

Now the physical implementation of commands will be discussed in more detail.
There are two types of commands on the |EEE-488 bus. There are eight control lines
for the bus, each of which can be used for a command or a request. In one case,
two of them are used together as a command; most commands, however, are trans-
mitted on the eight data lines of the bus. These commands are distinguished from
data by the ATN line. The following paragraphs describe the commands.

9-1

Command Implementation

9.1 Negative Logic

The lines on the IEEE bus use negative logic. This implies that a true state is a low
voltage, and a false state is a high voltage. Since driver chips 75160A, 75151A, and
75162A for use with the TMS9914A are non-inverting, the lines coming out of the
TMS9914A are negative logic.

9.2 Control Lines

9.2.1 IFC

9.2.2 REN

9.2.3 ATN

9.2.4 EOI

9-2

The current state of the control lines can be read from the bus Status Register on the
TMS9914A, which is useful primarily for debugging. Use it with care, because the
lines can change while being read.

IFC (Interface Clear) is a line that can be asserted only by the system controller.

Everything else on the bus must go idle when IFC is asserted.
C

REN (Remote Enable) is used to tell the systems receiving data that they can actually
use the data, and that their front panel controls are locked out. It also is asserted
only by the system controller.

The Attention line is asserted by the currently active controller. When asserted, it
means that the byte on the eight data lines is an interface command. If ATN is not
asserted, the byte is device-dependent data.

EO! (End or Identify) can be used by a talker to indicate the end of a multiple byte
data string. The talker issues the "feoi” (Forced End or Identify) auxiliary command
just before the last byte is sent. Sending the last byte sets the EOI line. The listener
will set the end bit in Status Register 0, which will indicate EOl has been received.
When EOI is asserted with the ATN line, it indicates the controller is conducting a
parallel poll.

%‘;‘\\

G

Command Implementation

9.2.5 SRQ

SRQ (Service Request) can be asserted by any device requiring service. It is like an
interrupt line on a microprocessor bus. The controller can respond to a SRQ in
different ways or not at all. Service request is discussed further in the Section 10.

9.2.6 RFD, DAV, and DAC

Negative logic causes some problems with nomenclature. The commands are called
RFD and DAC, but the physical lines are called NRFD and NDAC. A low voltage
on the NRFD line (a true in negative logic) implies "not ready for data.” RFD and
DAC are the only two commands with this problem. Fortunately, the TMS9914A
always handles the handshake without any intervention.

These commands are used for data and command handshaking. NRFD (Not Ready
For Data) and NDAC (Not Data Accepted) are lines controlled by the listeners. They
are driven by open collector devices, so that all listeners must respond before the line
can go high. DAV (Data Valid) is controlled by the talker. A typical data handshake
has these characteristics:

1) NDAC goes false after all the listeners have accepted the last byte.
2) The talker puts the new data byte on the bus.

3) NRFD goes false after all the listeners are ready for the next byte.
4) The talker asserts DAV.

§) The listeners read in the data byte and then allow NDAC to go false. When all
the listeners have done so, NDAC goes false.

6) The talker puts the next byte on the bus.

7) Repeat the sequence.

9.3 Command Bytes

Command bytes use the low seven bits of the data lines. The most significant bit
is ignored by the interfaces receiving the command. All numbers in the following
section are hexadecimal. Table 9-1 lists the command bytes that a controller can
send out.

Devices can have addresses from 0 to 1E. MLA commands go from 20 to 3E. A
20 is used to tell device O to listen, 21 for device 1, and so on. MTA is similar; it
uses 40 to 5E to tell devices O to 1E to talk. OTA (Other Talk Address) refers to the
same codes. Device O is addressed to talk by a 40, so for device O, 40 is an MTA.
For all other device addresses, 40 is an OTA.

SCG (Secondary Command Group) goes from 60 to 7E. These commands follow
an earlier command that gives them meaning. |f they follow an MTA or MLA, they
extend addressing; if they follow a PPC (Parallel Poll Configure), they enable or
disable a parallel poll response. The details of both these topics will be discussed
later.

GTL (Go To Local) enables local control. Local control is control of an instrument
from its front panel. LLO (Local Lockout) makes it possible to prevent local control
so that the bus can completely control the device. See the sections on remote and

9-3

Command Implementation

9-4

local in the TMS9914A Data Manual (p/n MPO33A/SPOU002) and the 1978
IEEE-488 specification for more information.

The SDC (Selected Device Clear)

command is similar to DCL but works only on devices addressed as listeners.

Table 9-1. Command Bytes

HEX

VALUE COMMAND | COMMAND MEANING SECTION

1 GTL Go to local --

4 SDC Selected device clear --

5 PPC Parallel poll configure 11

8 GET- Group execute trigger 4

9 TCT Take control 8

11 LLO Local lockout --

14 DCL Device clear 4

15 PPU Parallel poll unconfigure 11

18 SPE Serial poll enable 10

19 SPD Serial poll disable 10

20 - 3E MLA My listen address 6

3F UNL Unlisten 6

40 - BE MTA My talk address 7

OTA Other talk addréss 7

5F UNT Untalk 7

60 - 7E SCG Secondary command group 9

MSA My secondary address 12

PPD Parallel poll disable (|

PPE Parallel poll enable 11

%

g

10. Service Request/Serial Poll

Service Request and Serial Poll functions interact closely. Normally, when a
controller receives a service request, it does a serial poll to find out who is requesting
service. Special features in the TMS9914A help with this process.

This part of the book dispenses with the previously-used presentation of the state

diagrams in three parts (the simplified diagram, the |EEE diagram, and the TMS9914A
diagram) and shows only the TMS9914A diagrams.

10-1

.

Service Request/Serial Poll

10.1 Requesting Service

10.2 Serial

10-2

SRQ (Service Request) is one of the control lines on the IEEE-488. Any device
requiring service can pull it low. On the TMS9914A, there are two ways to request
service. co

rsvi To use “rsv1,” set bit 1 of the serial poll register. After the TMS93914A
has been serviced, reset bit 1. Remember, bit 0 is the most significant
bit on the TMS9914A.

rsv2 To use "rsv2,” issue the “rsv2” auxiliary command. An “rsv2” will be
automatically cleared after the serial poll, eliminating the need to reset
it.

To receive an SRQ, the controller should monitor the SRQ bit in interrupt register 1.
If this bit is set, the controller should execute a serial poll.

Polling

The functions interacting here are controller, talker, and service request. Refer to the
state diagrams at the appropriate times. Figure 10-1 shows the Service Request
Diagram.

—_ rsvi
swrst AGPAD A v
rsv2

EPAD ATsviATeV2
swrst

GEAD

Figure 10-1. TMS9914A Service Request State Diagram

A

Service Request/Serial Poll

Table 10-1. TMS9914A Service Request Mnemonics

MESSAGES INTERFACE STATES
rsvl = request service 1 APRS1 = affirmative poll response state 1
rsv2 = request service 2 APRS2 = affirmative poll response state 2
swrst = software reset NPRS = negative poll response state
SPAS = serial poll active state

The list below describes what the controller must do to execute a serial poll.

1.

10. Handle request

Take control

Send an SPE

Send its MTA

s

Issue an “lon’

Issue a "gts”

Wait for a Bl

Issue a “tcs”

Read data

Send a SPD

The Controller must be active to poll, so if control has not
been taken, take it first. See Section 8.

An SPE (Serial Poll Enable), will put the device into SPMS
(Serial Poll Mode State).

MTA (My Talk Address) will send the device being polled
into TADS (Talker Addressed State). See the talker state
diagram in Section 7 for details.

The controller must listen to the Serial Poll response, and the
“lon” sets it up to do this.

The “gts” (go to standby) auxiliary command will release
control of the bus, causing ATN to go false. Since SPMS is
true, the talker will go from TADS to SPAS. I[n SPAS, it
will put its serial poll register on the bus whenever another
device wants to read the register.

Wait for the device to send its Serial Poll byte.

The TMS9914A has latched the byte in, so control can be
taken again.

Now that control has been taken, read the data. If the data
was read before issuing “tcs,” the talker would have sent the
byte again, and the TMS9914A would have latched it again.
The data would then wait there and be confusing later. If
this device is requesting service, bit 1 of the byte will be set.
Whatever service it requires may be performed. If bit 1 is not
set, the controller polls each of the next devices until the one
that requested service is found.

SPD (Serial Poll Disable) tells all the talkers to leave SPMS
(Serial Poll Mode State). This way, the next time they are
addressed to talk, they will not send their Serial Poll byte,
but device-dependent data.

The instrument manufacturer defines the nature of the request
and the service required. The other seven bits of the Serial
Poll byte can be used as status bits, indicating the type of
service required. On the TMS9914A, the Serial Poll Register
is automatically put on the bus whenever the device is polled.
Remember that the controller is currently ready to listen and
the device requiring service is ready to talk. [t may be
necessary to change these states before handling the request.

10-3

Service Request/Serial Poll

10.3 Turning Service Request Off

10-4

The actions of the device requesting service are described here.

Figure 10-1 on page 10-2 shows the TMS9914A state diagram for Service Request.
In NPRS (Negative Poll Response State), the SRQ line is not pulled low, nor will
bit 1 be sent true for a serial poll. When either “rsv1” or “rsv2” is set, the state moves
to SRQS, where SRQ line will be pulled low. When polled (SPAS), the device goes
to APRS1, the SRQ line is released, and bit 1 of the Serial Poll register is sent as true.
If "rsv2” is being used, as soon as the controller accepts the status byte, “rsv2” is
cleared, moving the device to APRS2. At the same time, the SPAS bit in Interrupt
Register O will be set to indicate this has happened. Butan “rsv1” is not automatically
cleared, so the TMS9914A stays in APRS1 until "rsv1” is cleared, then goes to
APRS2. .

‘When exiting SPAS, the TMS9914A goes from APRS2 to NPRS, where it started

from. The "rsv2” was developed to solve a potential problem with “rsv1.” If the
controller polls and services one device, but that device does not clear "rsv1”
immediately, it will still be in APRS1, ready to send its status byte with bit 1 high.
If a second device then requests service, the controller will read from the status
register of the first device, and will think it requires service again. Use "rsv2” to avoid
this situation.

n

£~—d

11.

Parallel Poll

Parallel Poll is used when the controller needs a fast report on the status of the
devices on the bus. Up to eight devices can be programmed to set a bit on the
IEEE-488 bus in response to a Parallel Poll. When the controller performs a Parallel
Poll, it reads in the data byte, looks at the bits, and immediately identifies which
devices need attention. The devices can be told which bit to set either locally with
switches, or remotely with commands.

Parallel Poll

11.1 Parallel Poll Configuration

The TMS9914A puts the contents of its Parallel Poll register on the bus when a
Parallel Poll is started by the controller. For a local configuration within the instru-
ment, the microprocessor can read the number of the desired bit from the switches
and set that bit in the Parallel Poll register when the device needs attention.

Remote configuration is more complicated. First, remote configuration will be shown
from the controller’s end. Then it will be shown from the point of view of the devices
being polled. Figure 11-1 shows the |EEE-488 state diagram for Parallel Poll
configuration.

[PPE A FACOAECTD]
[ipe]

pon

[(PPEACFASD) vPPUAACTD)]
[pe] C

ATNvDY
(WITHIN t,)

IDYAATN
(WITHIN t,)

PPC A CADBECDD

PCG A PPC A ACDD

Figure 11-1. |EEE-488 Parallel Poll State Diagram

/27[:

Parallel Poll

Table 11-1. IEEE-488 Parallel Poll Mnemonics

E MESSAGES INTERFACE STATES
pon = Power on PPIS = Parallel poll idle state
ist = Individual status PPSS = Parallel poll standby state

(Table 25) PPAS = Parallel poll active state

lpe = Local poll enabled PUCS = Parallel poll unaddressed con-
ATN = Attention figure state
IDY = ldentify PACS = Parallel poll addressed to con-
PPE = Parallel poll enabled figure state
PPD = Parallel poll disable ACDS = Accept data state (AH function)
PPC = Parallel poll configure LADS = Listener addressed state (L function)
PCG = Primary command group
PPU = Parallel poll unconfigure

Here is a description of the controller actions required for Parallel Poll configuration.

1. Take control This is necessary to send commands. Take control of the
bus with a “tca” or "tcs.” (See Section 8 for a review.)
Note that it is necessary to wait for the BO bit to go true
before sending each command.

2. Send an MLA The Parallel Poll configuration commands are
"addressed” commands, which implies they affect only
those devices addressed as listeners. MLA (My Listen
Address) tells the device being configured to listen.

3. Send a PPC PPC (Parallel Poll Configure) tells the listener the
configuration data will follow.

4. Send a PPE or PPD A PPE (Parallel Poll Enable) tells the device being
configured which bit to set for its parallel poll response.
The three least significant bits of the PPE tell which bit
to set. The fourth bit indicates whether the bit should
be set or reset to signal that the device needs attention.
A PPD tells the device not to respond to a parallel poll.
PPE and PPD are both “secondary commands.” Their
meaning is determined by the.command that precedes
them. When preceded by a PPC, they are PPE and PPD.
Section 12 describes what happens when the secondary
commands are preceded by MTA or MLA.

5. Send a UNL A UNL (Unlisten) tells the device being configured to
stop listening so that reconfiguration will not occur with
the next PPE.

6. Send a new MLA Now a new device can be configured. First it must be
made to listen with MLA, and then it can be sent'a PPC,
PPE, and UNL, as with the first device. Now continue
through the devices.

A PPU (Parallel Poll Unconfigure) command can be issued by the controller, telling
all devices not to respond to parallel poll. It is an unaddressed command, implying
9 that it affects all devices.

Parallel Poll

Now the parallel poll configuration will be discussed from the point of view of the
device being configured. This function does not have a TMS9914A state diagram;
it requires support from device software. Here is a typical sequence of events:

1. Set the UNC bit The UNC bit in Interrupt Mask Register 1 must be set
by the microprocessor 1o enable the holdoff discussed
below.

2. Detect UNC bit set Receipt of the PPC (Parallel Poll Configure) command
will cause the UNC (Unrecognized Command) bit in
the TMS9914A Interrupt Status Register 1 to be set.
The UNC bit will be set only if the TMS9914A is in
LADS, which implies the TMS9914A has been

. addressed to listen. The PPC will also cause a DAC
(Data Accepted) holdoff if the UNC bit in the Interrupt
Register has been unmasked, keeping the PPC
command on the bus.

3. Read in PPC The device being configured should read the command
pass-through register of the TMS9914A, to determine
that the command is a PPC.

4. lIssue "pts” The "pts” (pass through secondary) auxiliary command
will cause the next gommand to set the UNC bit if the
next command is a secondary command (a PPE or

PPD).

5. lIssue “dacr” The “dacr” (DAC holdoff release) auxiliary command
releases the bus so the controller can send the next
byte.

6. Wait for UNC

7. Read PPE or PPD After the UNC, it is necessary to read the command

pass-through register again, to determine the second-
ary command.

8. Set up PP register if the secondary command is a PPE or PPD, set the
bits in the Parallel Poll register accordingly. Fora PPD,
all the bits in the PP register should be cleared. A PPE
is more complicated. A bit in the Parallel Poll register
should be set or reset. The bit number is given by the
three least significant bits in the PPE, and the fourth
bit is used to indicate the encoding of the bit. For
explanation, use the example with the voltmeter. The
voltmeter responds affirmatively to parallel poll if it has
taken a voltage reading and not put it out over the bus
yet. |f the voltmeter gets a PPE with the fourth bit set
and the low three bits set to the value of two, it will
set bit two in its Parallel Poll register when it has taken
a voltage reading and reset bit two when the reading
has been sent out on the bus. However, if the fourth
bit was reset in the last PPE, it will reset bit two when
it has voltage data and set it when the data have been

sent.

9. Issue “dacr” Once the Parallel Poll register is set up properly, the
DAC holdoff must be released so that the bus can start
running again.

Parallel Poll

poll, the state of the bit in the Parallel Poll register must
be changed each time the state of the instrument
changes. When the TMS9914A is paralle! polled, it
automatically puts the contents of the Parallel Poll
register on the bus.

é 10. Update PP register Now that the device has been configured for parallel

11.2 Parallel Polling

Now that a device has been configured correctly, a parallel poll can be performed.
The steps are:

1) The controller must take control of the bus and issue an “rpp” (request parallel
poll) auxiliary command. Wait for the BO (Byte Out) bit to be set to be assured
the bus is available.

2) lIssue the "rpp” with the CS bit set and read the command pass-through register
to get the parallel poll response from the other devices on the bus.

3) To exit parallel poll mode, issue an rpp with the CS bit cleared.

11.3 Changing Parallel Poll Response During Parallel Poll

The parallel poll response of the TMS9914A is double-buffered. This means that if

‘@ a parallel poll is in process and a different value is written to the Parallel Poll register,
the value will not be put on the bus until the next parallel poll. Some controllers
initiate a parallel poll and then wait for one of the bits to change. The only way to
meet this requirement with the TMS9914A is to:

1) lIssue the “swrst” auxiliary command.
2) Re-initialize the TMS9914A to its previous state.
3) Write the new value to the Parallel Poll register.

4) Send the "swrst” auxiliary command again, with the clear/set bit cleared.

Parallel Poll

12. Extended Addressing

Extended addressing is a simple concept that is used when more than five bits of
address are required. The MLA and MTA commands are used as "primary” addresses
but must be followed by the MSA (My Secondary Address) command to identify the
particular function. MSA can be any of the 32 secondary commands.

The TMS9914A does not handle extended addressing automatically. The APT bit
in the Interrupt Mask Register must be set. If the TMS9914A sees an MTA or MLA
with its address, followed by an MSA, it will:

1) Set the APT bit in the Interrupt Status Register
2) Generate an interrupt
3) Hold off the DAC (Data Accepted) handshake

Then the MSA command must be read from the command pass-through register, and
the address judged valid or not. If the address is valid, send the “dacr” auxiliary
command to the TMS9914A with the clear/set bit set. |f the MSA address is not
valid, the command should be issued with the bit cleared. After helping the
TMS9914A, it will be ready to listen or talk, requiring the user only to move bytes
between memory and the TMSS914A,

12-1

Extended Addressing

12-2

m‘iﬂ

[

13. Direct Mlemory Access

The TMS9914A supports DMA (Direct Memory Access) data transfers for talker and
listener, but not for controller. The first part of this section describes a simple
approach to the software for DMA, while the second part gives pointers for calcu-
lating throughput with DMA.

13-1

Direct Memory Access

13.1 DMA Software

The MA (My Address) bit in the TMS9914A interrupt register 1 is intended for use
with DMA. If the MA bit is set in the interrupt mask register, an interrupt will be
generated whenever the TMS9914A is addressed to talk or to listen. A DAC holdoff
will also be generated. To service an MA interrupt, read from the command
pass-through register to see whether the command is MTA or MLA, and initialize the
DMA system appropriately. After setting up, issue a "dacr” (DAC holdoff release)
auxiliary command to let the transfer begin.

After the DMA transfer is done, it is necessary to clear a line on the TMS9914A.
When the TMS9914A is being used with DMA, there are two hardware lines that
come into play. When the TMS9914A needs a new byte, it pulls ACCRQ (Access
Request) low. When the DMA hardware is ready to send a byte to the TMSS914A,
it pulls the ACCGR (Access Grant) line low and sends the byte. When the data bytes
have all been transferred, the DMA hardware stops the transfer by not responding
to ACCRQ with an ACCGR. This leaves the ACCRQ (Access Request) line low,
causing problems at the start of the next transfer. To avoid these problems, read from
the Data In register at the end of a DMA data transfer. This permits the ACCRQ line
to go high again. Normally the byte in the data in register can be discarded. If the
data may be valid, check the Bl (Byte In) bit to see if a valid byte is waiting.

13.2 DMA Timing

13-2

It is important to be able to determine the system throughput for DMA. This section
provides a framework for this, giving the timing for the TMS9914A and the place to
add in the timing for the rest of the system. See Section 4 of the TMS9914A Data
Manual for more details, particularly the timing diagrams.

The timing from DAV (Data Valid) going low on the talker, to the listener returning
with NRFD (Not Ready For Data) high, is shown in Table 13-1.

Table 13-1. Listener Timing

DELAY TIME DESCRIPTION TIME

Propagation delay for the SN75161A bus interface chip used to buffer] 25 ns
the TMS9914A (See Appendix C in the TMS9914A Data Manual
-- p/n MP033A/SPOUOQO02 -- for details.)

The delay from the receipt of DAV low at theTMS9914A to the falling| 690 ns
edge of ACCRQ, which is "tg7” in the data manual. Note that
all timings are worst case, and assume a 200-ns clock cycle
for the TMS9914A.

The delay between ACCRQ going low and ACCGR going high. It is sda
dependent on the system, but must be at least 150 ns to meet (150 ns
TMS9914A requirements. minimum)

The delay from the rising edge of ACCGR to the rising edge of NRFD, | 220 ns
or "Td9” in the TMS9914A Data Manual.

The propogation delay for SN75161A on NRFD. 25 ns

Direct Memory Access

These delays total 960 ns, plus “sda.” This is the time between the appearance of
a valid byte and the TMS9914A’s indication of its readiness for another byte.

The talker timing starts with the rising edge of NDAC (Not Data Accepted), signaling
that the listener has accepted the data. Table 13-2 below describes the timing.

Table 13-2. TMS89914A Talker Timing

DELAY TIME DESCRIPTION TIME
The propagation delay of the SN75161A 25 ns
The delay between NDAC and ACCRQ ("td4” in the TMS9914A Data| 300 ns
Manual)
The delay for the DMA system between ACCRQ and the rising edge sds
of ACCGR. It must be at least 100 ns to meet TMS9914A (100 ns
requirements minimum)

The delay from the rising edge of ACCGR to the falling edge of DAV.| 1110 ns
This delay allows for bus settling time. The timing assumes a
high speed configuration of the bus. Depending on configura-
tion, the number could be as high as 2.7 microseconds ("t 41" in
the TMS9914A Data Manual).

The propogation delay of the SN75161A. 25 ns

The total of these numbers is 1460 ns, plus “sds.” The talker function on the
TMS9914A is slower than the listener. Until now, the timing has been presented in
halves, so the timing can be added for whatever listener or talker is on the other end.

With two TMS9914As together, consider the falling edge of DAV, coming out of the
SN75161A on the talker. The talker is assumed to be the limiting factor, rather than
the listener. The listener still participates in the delays, though, because it must
release NDAC in response to DAV. The TMS9914A needs 1045 ns to do this
("tdg” in the TMS9914A Data Manual) plus 25 ns for the DAV signal to propogate
through the SN75161A, and 25 ns for the NDAC signal to propogate back out. This
is a total of 1095 ns. As discussed previously, the time from NDAC to DAV for the
TMS9914A talker is 1460 ns plus “sds.”

The total time per byte is 2555 ns plus “sds.” |f the DMA hardware is fast, "sds” could
be as low as 200 ns, so that the total time is 2755 ns. This leads to a data rate of
360 kilobytes per second, which is worst case. Typical data rates with this config-
uration could be higher.

13-3

Direct Memory Access _

TMS9914A Hardware Interface

14.1 Write Timing

Figure 14-1 is a corrected timing diagram for write timing. Two inaccuracies occur %
in the TMS9914A Data Manual (MP0O33A/SPOU002). The parameter tsy(CE) is ’
measured from the falling edge of CE to the rising edge of WE. The time shown as

tw(CE) in the TMS9914A Data Manual is actually th(CE)-

— |

e \

|
| |
tgu(DBIN) -qu——d le : th(CE) 1 :“_"_ th(DBIN)
DBIN | l ! | }
—teu(an)— | ——— thiaD)"
RE0-RS2 X‘ X
P t ;___.ﬂ i * '
[su(DA) ———th(DA) —
'b—'—tsu(DA)————DH__ th(oAT—»
DO-D7 g

=

* tgy(DA) th(DA)» and th(ap) are only appliceble to the first signal to become inactive, whether it Is WE or CE.

Figure 14-1. TMS9914A Write Cycle Timing

14.2 Interrupts

The INT line on the TMS9914A goes low to indicate an interrupt. It goes high when
all interrupt conditions have been cleared. A new interrupt condition can occur while
the previous interrupt condition is still being processed. Although the first interrupt
condition is cleared, the INT line will ‘still be low. The interrupt hardware must be
designed to handle this possibility. It should respond to the level of the INT line,
not to a falling edge alone.

14.3 Unintentional Clearing of Status Bits

The interrupt status bits are cleared by reading them. The hardware designer using
the TMS9914A should make sure these registers are not read from inadvertently.
Some processors do a read before each write. With these processors, writing to the
Interrupt Mask registers will also clear the interrupt status bits, since they have the
same address. This causes no problems if the interrupt masks are modified only
during initialization. |f the masks are chanaged during the operation of the device,

TMS9914A Hardware Interface

solution, which is to use two different addresses for the TMS9914A: one for reading,
and one for writing. Otherwise, the programmer will have to read the register and
\g save the state of the bits before each operation that will read that register.

14.4 Power-Up Self Test

A useful power-up self test is not possible on the TMS9914A. Since what is out
on the [EEE-488 bus is not known, the bus cannot be used to perform a test. All
other devices put between the SN7516X devices and the TMS9914A to facilitate a
self-test will slow the process. The TMS9914A is guaranteed to be fast enough to
meet the |IEEE-488 specification when used with SN7516X devices, but not with
anything else.

14-3

TMS9914A Hardware Interface

14-4

A. Glossary

ACCGR: Access Grant; a pin on the TMS9914A.

ACCRQ: Access Request; a pin on the TMS9914A,

ACDS: Accept Data State; state in Acceptor Handshake state diagram.
AH: Acceptor Handshake; listener handshake function.

ANRS: Acceptor Not Ready State; an Acceptor Handshake state. The Acceptor is
in this state after it has accepted a data byte and before it is ready for the next byte.

ATN: Attention line; when asserted, indicates that the byte on the eight data lines
is a command. If ATN is not asserted, the byte is device-dependent data.

Bl: Byte In; bit in Interrupt register 0.
BO: Byte Out; bit in Interrupt register 0.

CACS: Controller Active State; state on controller state diagram in which
commands can be sent.

CADS: Controller Addressed State; state on controller state diagram.
CIDS: Controller Idle State; state on controller state diagram.
CSBS: Controller Standby State; state on controller state diagram.

DAC: Data Accepted; |[EE-488 bus signal used for data and command handshaking;
is controlled by the listeners.

g
-

dacr: DAC holdoff release; auxiliary command.
dal: disable listener; local message which is bit D1 of the address register.
dat: disable talker; local message which is bit D2 of the address register.

DAV: Data Valid; IEEE-488 bus signal used for data and command handshaking;
controlled by the talker or controller.

DCL: Device Clear; |[EEE-488 bus command.
DMA: Direct Memory Access

EQI: End or Identify; IEEE-488 bus signal that can be used by a talker to indicate
the end of a multiple- byte data string.

GET: Group Execute Trigger; |[EEE-488 command.
GTL: Go To Local; IEEE-488 command enables local control.
gts: go to standby; auxiliary command.

IFC: Interface Clear; |[EEE-488 bus line that can be asserted only by the system
controller. Everything else on the bus must go idle when IFC is asserted.

LACS: Listener Active State; active state in the listener state diagram where data
can be listened to.

LADS: Listener Addressed State; state in the listener state diagram.

3 LLO: Local Lockout; command that permits local control to be locked out.

A-1

Appendix A

A-2

LSB: Least Significant Bit; the LSB of the TMS9914A is D7.
LIDS: Listener ldle State; state in the listener state diagram.
Listening: Receiving data

Local control: Control of an instrument from its front panel.

lon: listen only; local message sent through the auxiliary command register. It has
a clear/set bit associated with it.

MA: My Address; bit in Interrupt register 1.

MSA: My Secondary Address; command that can be any of the 32 secondary
commands.

MSB: Most Significant Bit; the MSB of the TMS9914A is DO.
MLA: My Listen Address command.

MTA: My Talk Address command.

NDAC: Not Data Accepted; |[EEE-488 line.

NPRS: Negative Poll Response State; state in theJMSSQ‘I 4A service request state
diagram.

NRED: Not Ready For Data; IEEE-488 line.

OTA: Other Talk Address; tells the talker to go to an idle state because only one
talker can be active at a time.

pon: power on.

PPC: Parallel Poll Configure; command that tells all devices addressed as listeners
to expect a PPE or PPD.

PPD: Parallel Poll Disable; |EEE-488 command that tells the device being config-
ured to disable parallel poll.

PPE: Parallel Poll Enable; IEEE-488 command that tells the device being configured
which bit to set for its parallel poll response.

PPU: Parallel Poll Unconfigure; an unaddressed command that can be issued by
the controller, telling all devices not to respond to parallel poll.

pts: pass through secondary; auxiliary command that causes the next command to
set the UNC bit if the next command is a secondary command (a PPE, PPD, or MSA).

rlc: release control; IEEE-488 bus line auxiliary command.

REN: Remote Enable; command used to tell the systems receiving data that they
can actually use the data and that their front panel controls are locked out.

RFD: Ready for Data; line used for data and command handshaking, controlled

by the listeners.

rpp: request parallel poll; auxiliary command.
rqc: request control; used for transfer of control.

SCAS: System Control Active State; state in the system control state diagram,
indicating the interface is the system controller.

3

Appendix A

SCG: Secondary Command Group; commands from 60 to 7E. These commands
follow an earlier command that gives them meaning.

SDC: Selected Device Clear; command that can clear a device (like DCL) but works
only on devices addressed as Listeners.

shdw: shadow handshake; command that will handshake each data byte imme-
diately, without waiting for it to be read. Used with “tcs.”

SIAS: System Control Interface Clear Active State; implies the system controller is
sending Interface Clear.

sic: set interface clear; auxiliary command used to send out an Interface Clear.
SPAS: Serial Poll Active State; state on talker state diagram.

SPD: Serial Poll Disable; |EEE-488 command that tells all talkers to leave SPMS.
SPE: Serial Poll Enable; IEEE-488 command that will put a device into SPMS.
SPMS: Serial Poll Mode State; state on the talker state diagram.

SRQ: Service Request; |[EEE-488 bus line that can be asserted by any device
requiring service.

SRQS: Service Request State; state on service request state diagram
sre: send remote enable; auxiliary command that turns on the REN line.

STRS: Source Transfer State;state on the Source Handshake state diagram where
the data byte is transferred.

TACS: Talker Active State; data can be sent by a device in this state.
TADS: Talker Addressed State; state in which a device is waiting to talk.

tca: take control asynchronously; an auxiliary command used to take control after
a data transfer is complete.

tcs: take control synchronously; another auxiliary command, used in the inter-
ruption of a string of data.

TCT: Take Control; command used to tell a new controller to take control.
TIDS: Talker Idle State; state in talker state diagram
Talking: Transmitting data

ton: talk only; auxiliary command used to make a device talk when an MTA
command is not possible.

unc: unrecognized command; a bit in interrupt register 1 that tells the micro-
processor that there is a command it needs to read in the Command Pass Through
Register.

UNL: Unlisten; |EEE-488 bus command that tells all devices on the bus to stop
listening.

UNT: Untalk; |EEE-488 bus command that tells all devices on the bus to stop
talking.

A-3

Appendix A

A-4

Index
A

ACDS (Accept data state) 6-3,7-3,8-5,11-2
ACDS1 (Accept data state 1) 6-6, 7-4
ANRS (acceptor not ready state) 8-5, 8-6,
8-8
APRS1 (Affirmative poll response state
1) 10-3
APRS2 (Affirmative poll response state
2) 10-3
aptmk (address pass through interrupt mask
bit) 6-6,7-4
ATN (Attention) 6-3,6-4,6-6,7-3,7-4, 8-5,
8-8,9-2,11-2
AXSS (Auxiliary command strobe state) 6-6,
7-4, 8-8

B

Bl (Byte in bit) 6-8
block diagram of |[EEE-488 system 5-3
BO (Byte out bit) 7-5

C

CACS (Controller active state) 6-3, 8-5, 8-8
CADS (Controller addressed state) 8-5, 8-8
CAWS (Controller active wait state) 8-5, 8-8
CIDS (Controller idle state) 8-5, 8-8
clearing the devices and their interfaces 4-2
command bytes 9-3

GTL (Go to local) 9-3

LLO (Local lockout) 9-3

SCG (Secondary command group) 9-3
command implementation 9-1
control lines 9-2

ATN (Attention) 9-2

EO! (End or identify) 9-2

IFC (interface clear) 9-2

NRFD,DAV, and NDAC 9-3

REN (Remote enable) 9-2

RFD, DAV, and DAC 9-3

SRQ (Service request) 9-3
controller 8-1

description 8-2
implementation 8-8
mode 8-1
state diagrams
|[EEE-488 controller state 8-4
simplified controller state 8-2, 8-3
TMS9914A controller state 8-7
CPPS (Controller parallel poll state) 8-5
CPWS (Controller parallel poll wait
state) 8-5, 8-8
cs (clear/set bit) 6-6, 7-4
CSBS (Controller standby state) 8-5, 8-6,
8-8, 8-9
CSHS (Controller standby hold state) 8-5,
8-8
CSNS (Controller service not requested
state) 8-5
CSRS (Controller service requested state) 8-5
CSWS (Controller synchronous wait
state) = 8-5, 8-8
CTRS (Controller transfer state) 8-5
CWAS (Controller wait for ANRS state) 8-8

D

dacr (release DAC holdoff) 6-6, 7-4, 8-10
dal (disable listener) 6-6

dat (disable talker) 7-4

data format 3-2

DCL (Device clear) 4-2

direct memory access 13-1

E

extended addressing 12-1

G

GET (Group execute trigger) 4-5
gts (go to standby) 8-5, 8-6, 8-8, 8-9

Index-1

Index

H

hardware reset 6-5

IDY (ldentify) 11-2
|[EEE-488 bus 3-2
typical system 4-1
IFC (Interface clear) 4-2,4-7,6-3, 8-5, 9-2
talker mnemonic 7-3
IFCIN (Internal interface clear)
Interface 3-2
hardware 4-7, 14-1
interface function 6-2
Acceptor Handshake (AH)
Parallel Poll (PP) 6-2
Source Handshake (SH)
interrupts 14-2
ist (individual status) 11-2

6-6, 7-4, 8-8

6-2, 8-6
6-2, 8-6

L

LACS (Listener active state) 6-3, 6-6

LADS (Listener addressed state) 6-3, 6-6,
7-4,11-2

LIDS (Listener idle state) 6-3, 6-5, 6-6

listener

description 6-2
implementation 6-8
mode 6-1
state diagrams
|IEEE-488 listener state 6-3
simplified listener state 6-2
TMS9914A listener state 6-5
timing 13-2
local messages 3-3, 6-3
lon (listen only) 6-3, 6-6, 8-9
LPAS (Listener primary addressed state) 6-6
Ipe (local poll enable) 11-2
Itn (listen) 6-3

lun (local unlisten) 6-3, 6-5, 6-7

M

MLA (My Listen Address) 4-3, 4-5, 4-6, 6-3,
6-4, 6-6, 7-3, 9-3
MTA (My talk address)

7-4,9-3

4-6,6-3,6-5,7-3,

Index-2

N

negative logic 9-2, 9-3
NPRS (Negative poll response state) 10-3

o

OTA (Other talk address) 7-3, 7-4, 9-3

P

PACS (Parallel poll addressed to configure
state) 11-2
parallel poll 11-1
configuration 11-2
PCG (Primary command group) 11-2
pin assignments 2-2
pon (power od) 6-3,7-3,8-5,11-2
power-up self test 14-3
PPAS (Parallel poll active state) 11-2
PPC (Parallel poll configure) 11-2
PPE (Parallel poll enabled) 11-2
PPIS (Parallel poll idle state) 11-2
PPSS (Parallel poll active state) 11-2
PPU (Parallel poll,unconfigure) 11-2
PUCS (Parailel poll unaddressed state config-
ure state) 11-2

R

registers
address 5-3
address status 5-3
auxiliary command 5-3
bus status 5-4
command pass through 5-4
data 5-3
interrupt mask and status 5-3
serial and parallel poll 5-4
remote messages 3-3, 6-3
rlc (release control) 8-8

rpp (request parallel poll) 8-5, 8-8

rqc (request system control) 8-5, 8-8, 8-10
rsvl 10-3
rsv2 10-3

