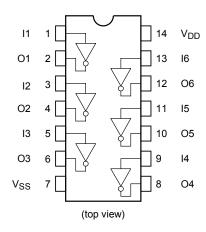
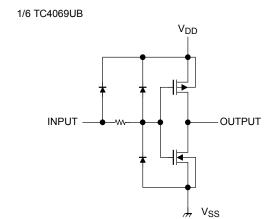
TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic


TC4069UBP,TC4069UBF,TC4069UBFN,TC4069UBFT

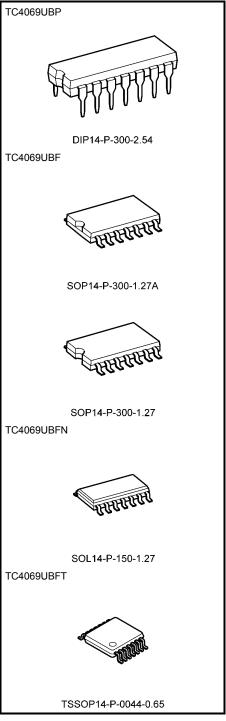
TC4069UB Hex Inverter


TC4069UB contains six circuits of inverters. Since the internal circuit is composed of a single stage inverter, this is suitable for the applications of CR oscillator circuits, crystal oscillator circuits and linear amplifiers in addition to its application as inverters.

Because of one stage gate configuration, the propagation time has been reduced.

Pin Assignment

Circuit Diagram



Weight
DIP14-P-300-2.54: 0.96 g (typ.)
SOP14-P-300-1.27A: 0.18 g (typ.)
SOP14-P-300-1.27: 0.18 g (typ.)
SOL14-P-150-1.27: 0.12 g (typ.)
TSSOP14-P-0044-0.65: 0.06 g (typ.)

1

Note: xxxFN (JEDEC SOP) is not available in Japan.

TC4069UBP

Maximum Ratings

Characteristics	Symbol	Rating	Unit
DC supply voltage	V_{DD}	V _{SS} - 0.5 to V _{SS} + 20	V
Input voltage	V _{IN}	V _{SS} - 0.5 to V _{DD} + 0.5	V
Output voltage	V _{OUT}	V _{SS} - 0.5 to V _{DD} + 0.5	V
DC input current	I _{IN}	±10	mA
Power dissipation	P _D	300 (DIP)/180 (SOIC)	mW
Operating temperature range	T _{opr}	−40 to 85	°C
Storage temperature range	T _{stg}	−65 to 150	°C

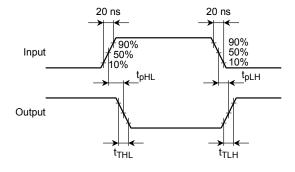
Recommended Operating Conditions (V_{SS} = 0 V)

Characteristics	Symbol	Test Condition	Min	Тур.	Max	Unit
DC supply voltage	V_{DD}	_	3	_	18	V
Input voltage	V _{IN}	ı	0	_	V_{DD}	V

Static Electrical Characteristics ($V_{SS} = 0 V$)

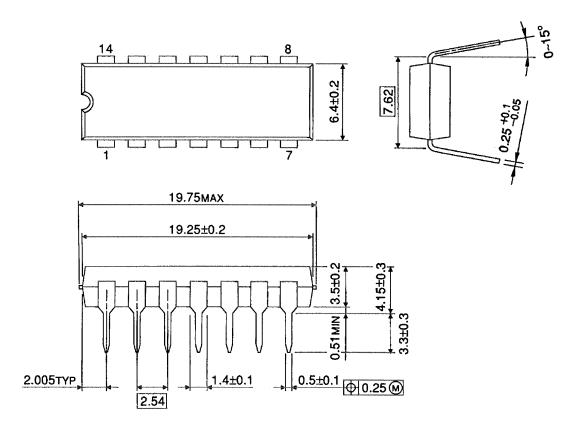
Characteristics Symb			Test Condition VDD (V)		-40°C		25°C			85°C		
		Symbol			Min	Max	Min	Тур.	Max	Min	Max	Unit
		V _{OH}	I _{OUT} < 1 μA	5	4.95	_	4.95	5.00	_	4.95	_	
High-level output voltage	10			9.95	_	9.95	10.00	_	9.95	_	V	
Supar Voltage			$V_{IN} = V_{SS}, V_{DD}$	15	14.95	_	14.95	15.00	_	14.95	_	
			I _{OUT} < 1 μΑ	5	_	0.05	_	0.00	0.05	_	0.05	
Low-leve output ve		V_{OL}	$V_{IN} = V_{SS}, V_{DD}$	10	_	0.05	_	0.00	0.05	_	0.05	V
	3		VIN = VSS, VDD	15	_	0.05	_	0.00	0.05	_	0.05	
			V _{OH} = 4.6 V	5	-0.61	_	-0.51	-1.0	_	-0.42	_	mA
			$V_{OH} = 2.5 \text{ V}$	5	-2.50	_	-2.10	-4.0	_	-1.70	_	
Output h current	nigh	I _{OH}	V _{OH} = 9.5 V	10	-1.50	_	-1.30	-2.2	_	-1.10	_	
			V _{OH} = 13.5 V	15	-4.00	_	-3.40	-9.0	_	-2.80	_	
			$V_{IN} = V_{SS}$									
		l _{OL}	V _{OL} = 0.4 V	5	0.61	_	0.51	1.2	_	0.42	_	mA
Output lo	ow		$V_{OL} = 0.5 V$	10	1.50	_	1.30	3.2	_	1.10	_	
current			V _{OL} = 1.5 V	15	4.00	_	3.40	12.0	_	2.80	_	
			$V_{IN} = V_{DD}$									
		V _{IH}	V _{OUT} = 0.5 V, 4.5 V	5	4.0		4.0	_	_	4.0	_	mA
Input hic	ah		$V_{OUT} = 1.0 \text{ V}, 9.0 \text{ V}$	10	8.0	_	8.0	_	_	8.0	_	
voltage	,		V _{OUT} = 1.5 V, 13.5 V	15	12.0	_	12.0	_	_	12.0	_	
			I _{OUT} < 1 μA									
			V _{OUT} = 0.5 V, 4.5 V	5	_	1.0	_	_	1.0	_	1.0	
Input lov	v	V _{IL}	$V_{OUT} = 1.0 \text{ V}, 9.0 \text{ V}$	10	_	2.0	_	_	2.0	_	2.0	mA
voltage			V _{OUT} = 1.5 V, 13.5 V	15	_	3.0		_	3.0	_	3.0	
			I _{OUT} < 1 μA									
Input	"H" level	Іін	V _{IL} = 18 V	18		0.1	_	10 ⁻⁵	0.1	_	1.0	- μΑ
current	"L" level	I _{IL}	V _{IL} = 0 V	18	_	-0.1	_	-10 ⁻⁵	-0.1	_	-1.0	
		ent I _{DD}	V V.a. V	5	_	0.25	_	0.001	0.25	_	7.5	
Quiesce supply c			$V_{IN} = V_{SS}, V_{DD}$ (Note)	10	_	0.50	_	0.001	0.50	_	15.0	μΑ
,				15	_	1.00	_	0.002	1.00	_	30.0	

Note: All valid input combinations.

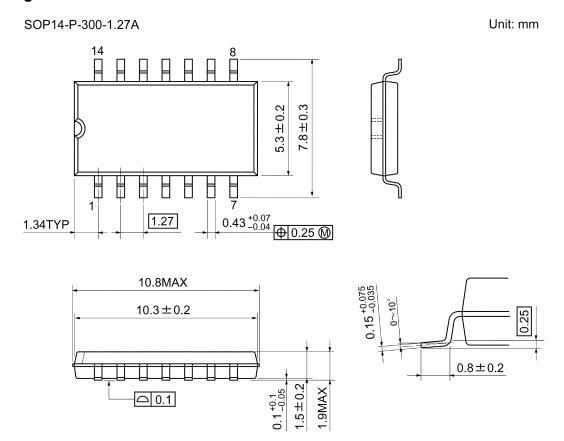


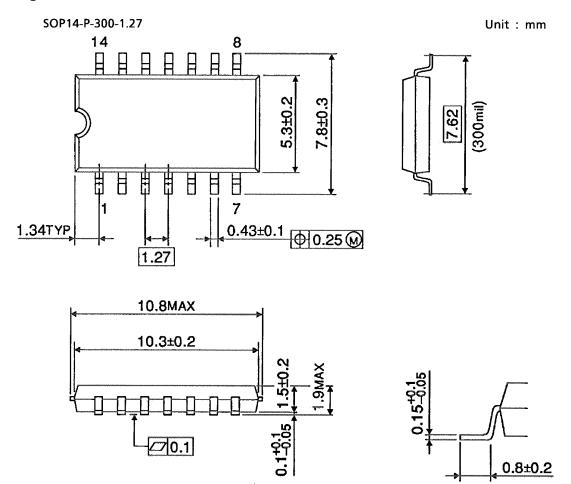
Dynamic Electrical Characteristics (Ta = 25°C, V_{SS} = 0 V, C_L = 50 pF)

Characteristics	Symbol	Test Condition		Min	Тур.	Max	Unit
			V _{DD} (V)				
Output transition time			5	_	70	200	
(low to high)	t _{TLH}	_	10	_	35	100	ns
(low to rlight)			15	_	30	80	
Output transition time			5	_	70	200	
Output transition time	t _{THL}	_	10	_	35	100	ns
(high to low)			15	_	30	80	
Dronggation dolay time			5	_	55	110	
Propagation delay time	t _{pLH}	_	10	_	30	60	ns
(low to high)			15	_	25	50	
Dronggation delay time			5	_	55	110	
Propagation delay time	t _{pHL}	_	10	_	30	60	ns
(high to low)			15	_	25	50	
Input capacitance	C _{IN}	_	•	_	7.5	15	pF

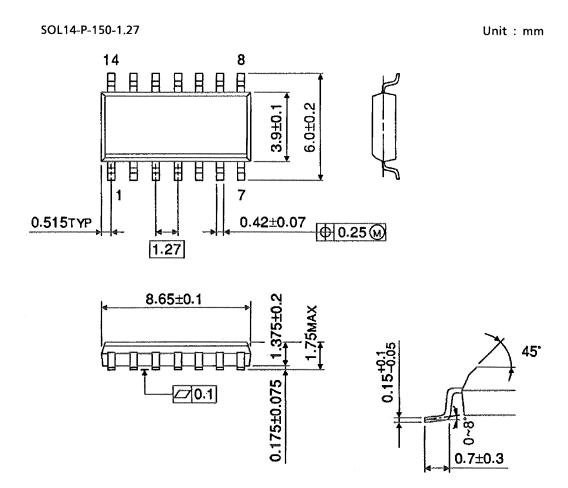

4

Waveform for Measurement of Dynamic Characteristics



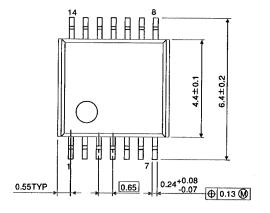

DIP14-P-300-2.54 Unit: mm

Weight: 0.96 g (typ.)

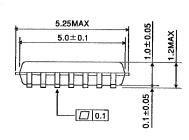

Weight: 0.18 g (typ.)

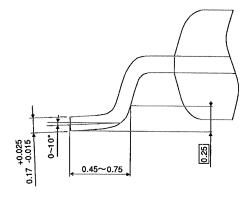
7

Weight: 0.18 g (typ.)


Note: This package is not available in Japan.

Weight: 0.12 g (typ.)


Unit: mm


Package Dimensions

TSSOP14-P-0044-0.65

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

030619EBA

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor
 devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical
 stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of
 safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of
 such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as
 - set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc..
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.