

※ YC-DM1000 双模蓝牙透传模块

技术规格书

Yichip Microelectronics ©2014

Revision History

Version	Date	Author	Description	
V1.0	2015-8-5	VoLanDa	草创	
V2.0	2015-8-5	VoLanDa	添加 AT 命令	
V2.1	2015-8-5	VoLanDa	添加 PIN	
V3.0	2015-10-25	F.K	添加硬件尺寸、电气特性、射频特性、BLE 透传协议	
V3.1	2015-10-26	VoLanDa	REVC 版 AT 与 Pin 定义	
V3.2	2015-10-27	F.K	修改 Pin 定义	
V3.3	2015-10-29	VoLanDa	添加串口流控使能与更新 UUID AT 命令	
V3.4	2015-10-31	F.K	增加参考电路	
V3.5	2015-11-17	F.K	更新功耗(with dc-dc)	
V3.6	2015-11-23	F.K	更新模块 pinout	
V3.7	2015-12-17	F.K	更新 Pinout,更新硬件尺寸	
V3.8	2015-12-23	VoLanDa	更正对波特率的错误描述	
V3.9	2016-05-08	F.K.	Add Enter Hibernate CMD	
			更新 Pinout;	
V4.0	2016-06-10	F.K.	更新 Pin 脚定义;	
V 4.0	2010-00-10	г.к.	增加应用框图;	
			更新第 10 章 HCI 指令,增加每条指令的详细描述。	
V4.1	2016-06-21	F.K.	更新唤醒信号使用方式。	
			增加 HCI_EVENT_UART_EXCEPTION	
V4.2	2016-06-25	VoLanDa	增加 BLE ATTRIBUTE LIST	
			删除 HCI_CMD_SET_SDP	
V4.3	2016-06-29	F.K.	修改模块应用框图	

PCB Version:

2015-130

2015-134

2016-110

目录

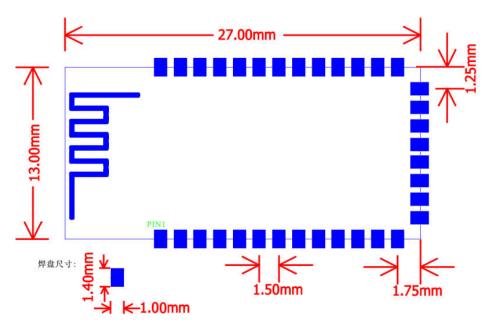
1.	产品概述	
2.	应用领域	4
3.	硬件尺寸图	5
4.	Pin 脚定义	
5.	电气特性	7
6.	功耗	7
7.	射频特性	8
8.	应用框图	9
9.	UART 默认设置	9
10.	HCI 协议	10
	10.1 包格式	10
	10.2 CMD 命令	11
	10.3 EVENT 事件	19
11.	BLE Attribute List	23

1.产品概述

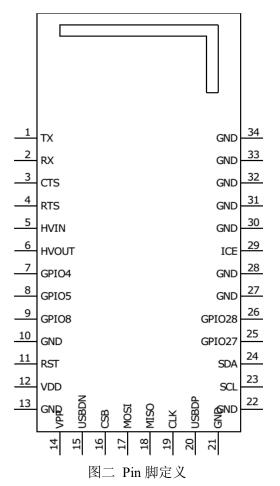
YC-DM1000是支持蓝牙4.1标准协议的模组,同时支持BT3.0模式(BR/EDR)以及BLE模式,该模块基于蓝牙芯片供应商YICHIP公司的单芯片,遵循BT4.1蓝牙规范。

- 支持标准BT3.0 + EDR;
- 支持标准BLE协议;
- 支持SPP协议;
- 支持UART, I2C接口;
- 支持低功耗模式;
- 支持蓝牙 Class2模式;
- 支持11路GPI0复用:
- 工业级设计;
- 数据加密;
- 内置PCB天线;
- 输入电压: 不采用内部HVLDO输入1.8V ~ 3.6V; 采用内部HVLDO输入3.1V ~ 5.5V

2. 应用领域


YC-DM1000支持蓝牙SPP标准协议,可与所有版本安卓手机收发数据,同时其又支持最新蓝牙标准BLE(BT4.0),可与支持BLE的iOS设备配对连接,不需要MFI认证及加密芯片,不需要额外开发包及授权费用,iOS设备不需要越狱,支持后台程序常驻运行。

- ◆ 手机周边设备;
- ◆ 计算机周边设备;
- ◆ 医疗设备无线数据传输;
- ◆ 车载仪器无线数据传输;
- ◆ 无线遥控器;
- ◆ 无线遥控飞机;
- ◆ 无线游戏手柄;



3. 硬件尺寸图

图一 硬件尺寸

易兆微电子(杭州)有限公司

4. Pin 脚定义

PIN	NAME	I/O	FUCTION	
1	TX	О	UART 数据输出	
2	RX	I	UART 数据输入	
3	CTS	I	UART 流控 Clear To Send (默认无流控)	
4	RTS	О	UART 流控: Request To Send(默认无流控)	
5	HVIN	Power In	HVLDO 输入, 3~5.5V, 4.7uF bypass cap	
6	HVOUT	Power Out	HVLDO 输出, 2.85V. Bypass cap need here, 1uF	
7	GPIO4	/	未启用	
8	GPIO5	/	未启用	
9	GPIO8	О	中断输出。 模块从UART发数据前通过此引脚发送中断给MCU。	
10	GND	/	GND	
11	/RST		复位引脚,低电平有效。	
12	VDD	Power In	模块电源输入, 1.8~3.6V。	
13	GND	/	GND	
14	VPP	/	OTP 供电 6.5V。(2016-110 Only)	
15	USBDN	I/O	USB 数据信号。	
16	CSB	I/O	SPI 片选信号。	
17	MOSI	I/O	SPI 数据信号,主输出从输入。	
18	MISO	I/O	SPI 数据信号,主输出从输出。	
19	CLK	I/O	SPI 时钟信号	
20	USBDP	I/O	USB 数据信号。	
21-22	GND	/	GND	
23	SCL	I/O	I2C 时钟信号。	
24	SDA	I/O	I2C 数据信号。	
			唤醒信号。	
			工作状态下:	
			0: UART 无动作时保持低电平(此时模块 UART 掉电不工作);	
25	GPIO27	I	1: MCU 通过 UART 发送数据时保持高电平(提前 5ms 以上);	
			Sleep 状态下:	
			0: 进入 Sleep 状态时保持低电平。(参考 10.2.20)	
			1: 高电平将模块从 Sleep 休眠模式唤醒。	
26	GPIO28	/	未启用。	
27-28	GND	/	GND	
29	ICE	/	ICE 调试口	
30-33	GND	/	GND	
33	RF	RF	天线接口(2016-110 无此 Pin)	
34	GND	/	GND (2016-110 无此 Pin)	

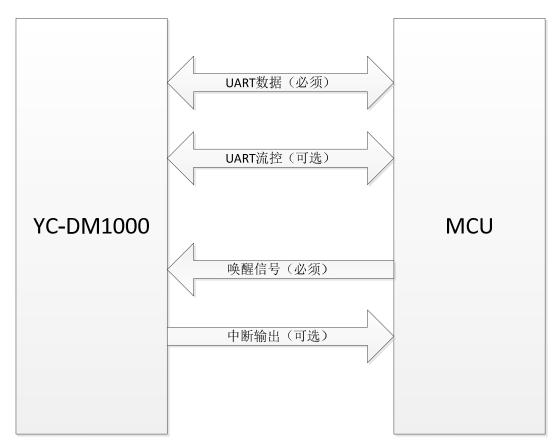
5. 电气特性

Rating	Min	Тур	Max	Unit
VDD	1.8	/	3.6	V
VIO	VDD -0.3	VDD	VDD +0.3	V
HVIN	3.1	4.2	5.5	V
HVOUT	2.75	2.85	2.95	V
Work temperature	-20	/	+85	$^{\circ}$
Storage temperature	-40	/	+140	$^{\circ}$

6. 功耗

W/O DC-DC	Parameter	Average Current	Unit
Sleep	/	620	nA
Sniff	500ms interval	21.99	uA
	ADV interval: 640ms		
Discoverable	Scan interval: 1280ms	138.66	uA
	Scan window: 11.25ms		

With DC-DC	Parameter	Average Current	Unit
Sleep	/	620	nA
Sniff	Sniff Interval:500ms	17.92	uA
	ADV interval: 640ms		
Discoverable	Scan interval: 1280ms	89.5	uA
	Scan window: 11.25ms		



7. 射频特性

Rating	Value	Unit
Basic Rate 发射功率	8	dBm
Basic Rate 灵敏度	-90	dBm
BLE 发射功率	8	dBm
BLE 灵敏度	-93	dBm

8. 应用框图

图三 模块应用框图

9. UART 默认设置

波特率: 115200

数据位: 8 停止位: 1 校验位: 无 流控: 无

10. HCI 协议

YC-DM1000 的 UART 通信协称为 HCI 协议,格式类似于蓝牙标准 HCI 协议。

- MCU 发送给模块的包称为 CMD (命令), MCU 通过发送 CMD 来完成配置蓝牙、 控制蓝牙连接、发送数据等操作。
- 模块发送给 MCU 的包称为 EVENT (事件),模块通过发送 EVENT 来完成通知蓝 牙状态变化、上报数据等操作。
- 模块接收到每个 CMD 后都会回复一个与之对应的 EVENT 作为回应(通常为 HCI_EVENT_CMD_COMPLETE)。此机制应作为软件流控机制处理。即,MCU 发 送 CMD 后应等待一个与之对应的 EVENT,收到此 EVENT 后再发送新的 CMD。
- 模块上电/复位初始化完成后会发送 HCI_EVENT_I_AM_READY 来通知 MCU 自己已经准备好可以开始工作。MCU 需要收到此 EVENT 后方可发送第一个 CMD。
- HCI包为小端传输,即低字节先传输。
- MCU 通过 UART 发送数据前,必须保证"LPM 控制"脚拉高并保持 5ms 以上。发送完毕后方可拉低。

10.1 包格式

Byte0	Byte1	Byte2	Byte3~ Byte(length+3)
Packet Type	Opcode	Length	Payload
包类型	操作码	内容长度	内容

HCI 包结构如上表所示,

● Packet Type: 包类型, 0x01 表示 CMD, 0x02 表示 Event;

● Opcode: 操作码,指示不同 CMD 和 Event 指令。具体含义参见 10.1~10.2;

Length: 内容长度。Payload: 包内容。

10.2 CMD 命令

CMD 是 MCU 发送给蓝牙模块的指令,用于配置蓝牙模块、控制蓝牙连接和发送数据等。模块接收到每个 CMD 后都会回复一个与之对应的 EVENT 作为回应(通常为 HCI_EVENT_CMD_RESPONSE)。此机制应作为软件流控机制处理。即,MCU 发送 CMD 后应等待一个与之对应的 EVENT,收到此 EVENT 后再发送新的 CMD。

所有 CMD 汇总如下:

CMD 命令名称	Opcode 操作码	描述
HCI_CMD_SET_BT_ADDR	0x00	设置 BT3.0 地址
HCI_CMD_SET_BLE_ADDR	0x01	设置 BLE 地址
HCI_CMD_SET_VISIBILITY	0x02	设置可发现和广播
HCI_CMD_SET_BT_NAME	0x03	设置 BT3.0 名称
HCI_CMD_SET_BLE_NAME	0x04	设置 BLE 名称
HCI_CMD_SEND_SPP_DATA	0x05	发送 BT3.0(SPP)数据
HCI_CMD_SEND_BLE_DATA	0x09	发送 BLE 数据
HCI_CMD_SEND_DATA	0x0A	发送数据(自动选择通道)
HCI_CMD_STATUS_REQUEST	0x0B	请求蓝牙状态
HCI_CMD_SET_PAIRING_MODE	0x0C	设置配对模式
HCI_CMD_SET_PINCODE	0x0D	设置配对码
HCI_CMD_SET_UART_FLOW	0x0E	设置 UART 流控
HCI_CMD_SET_UART_BAUD	0x0F	设置 UART 波特率
HCI_CMD_VERSION_REQUEST	0x10	查询模块固件版本
HCI_CMD_BT_DISCONNECT	0x11	断开 BT3.0 连接
HCI_CMD_BLE_DISCONNECT	0x12	断开 BLE 连接
HCI_CMD_SET_COD	0x15	设置 COD
HCI_CMD_SET_NVRAM	0x26	下发 NV 数据
HCI_CMD_ENTER_SLEEP_MODE	0x27	进入睡眠模式

10.2.1 HCI_CMD_SET_BT_ADDR

HCI_CMD_SET_BT_ADDR 用于设置 BT3.0 设备地址,操作码 0x00。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x00
Length	Byte2	0x06
Payload	Byte3~Byte8	BT3.0 地址(小端格式)

10.2.2 HCI_CMD_SET_BLE_ADDR

HCI_CMD_SET_BLE_ADDR 用于设置 BLE 设备地址,操作码 0x01。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x01
Length	Byte2	0x06
Payload	Byte3~Byte8	BLE 设备地址(小端格式)

10.2.3 HCI_CMD_SET_VISIBILITY

HCI_CMD_SET_VISIBILITY 用于设置蓝牙的可发现和广播状态,操作码 0x02。Payload 中 Bit0 表示 BT3.0 可发现(可以被搜索),Bit1 表示 BT3.0 可连接(可以被连接),没有特殊需求时这两位开关应设为同样值,即取为 00B 或 11B。Bit2 表示 BLE 可发现,BLE 在可发现状态下可以被搜索和连接,同时会发送 ADV 广播包。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x02
Length	Byte2	0x01
		Bit0:BT3.0 可发现;
Payload	Byte3	Bit1:BT3.0 可连接;
		Bit2:BLE 可发现(ADV 广播);

10.2.4 HCI_CMD_SET_BT_NAME

HCI_CMD_SET_BT_NAME 用于设置 BT3.0 的蓝牙设备名称,操作码为 0x03。命令长度根据蓝牙设备名称长度而定,最大长度为 32byte。蓝牙设备名称是以 ASCII 编码的字符串。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x03
Length	Byte2	0x01~0x20
Payload	Byte3 ~Byte (Length+3)	蓝牙设备名称

10.2.5 HCI_CMD_SET_BLE_NAME

HCI_CMD_SET_BLE_NAME 用于设置 BLE 的蓝牙设备名称,操作码为 0x04。命令长度根据蓝牙设备名称长度而定,最大长度为 24byte。蓝牙设备名称是以 ASCII 编码的字符串。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x04
Length	Byte2	0x01~0x18
Payload	Byte3 ~Byte (Length+3)	蓝牙设备名称

10.2.6 HCI_CMD_SEND_SPP_DATA

HCI_CMD_SEND_SPP_DATA 用于发送 BT3.0 数据(SPP 协议),操作码为 0x05。每个SPP 数据包的长度小于等于 127 时可以达到最佳的数据吞吐率。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x05
Length	Byte2	0x01~0xFF(推荐小于 127)
Payload	Byte3 ~Byte (Length+3)	BT3.0 数据(SPP 协议)

10.2.7 HCI_CMD_SEND_BLE_DATA

HCI_CMD_SEND_BLE_DATA 用于发送 BLE 数据(GATT 协议),操作码为 0x09。模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x09
Length	Byte2	0x01~0xFF
Payload	Byte3~Byte4	Attribute Handle,默认 0x2A 0x00
Payload	Byte5 ~Byte (Length+3)	BLE 数据(GATT 协议)

10.2.8 HCI_CMD_SEND_DATA

HCI_CMD_SEND_DATA 用于数据发送,操作码为 0x0A。模块收到此命令后会自动判断当前的蓝牙连接是 BT3.0 或 BLE,并从当前连接通道将数据发出。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x0A
Length	Byte2	0x01~0xFF
Payload	Byte3 ~Byte (Length+3)	数据

10.2.9 HCI_CMD_STATUS_REQUEST

HCI_CMD_STATUS_REQUEST 用于请求蓝牙状态,操作码为 0x0B。 模块收到此命令后会回复 HCI_EVENT_STATUS_RESPONSE,回复内容请参考 10.3.11。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x0B
Length	Byte2	0x00

10.2.10 HCI_CMD_SET_PAIRING_MODE

HCI_CMD_SET_PAIRING_MODE 用于设置 BT3.0 的配对方式,操作码为 0x0C。模块默认配对模式为 0x01 Just Work(SSP)。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x0C
Length	Byte2	0x01
Payload	Byte3	0x00:pincode
		0x01:just work
		0x02: passkey
		0x03: confirm

10.2.11 HCI_CMD_SET_PINCODE

HCI_CMD_SET_PINCODE 用于设置 BT3.0 的配对 PIN 码,操作码为 0x0D。模块默认配对 PIN 码为 0x30 0x30 0x30 0x30

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x0D
Length	Byte2	0x01~0x10
Payload	Byte3~Byte(Length-3)	Pincode

10.2.12 HCI_CMD_SET_UART_FLOW

HCI_CMD_SET_UART_FLOW 用于设置 UART 流控,操作码为 0x0E。0x00 为关闭 UART 流控,0x01 为开启 UART 流控。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x0E
Length	Byte2	0x01
Payload	Byte3	0x00:关闭 UART 流控
		0x01:开启 UART 流控

10.2.13 HCI_CMD_SET_UART_BAUD

HCI_CMD_ SET_UART_BAUD 用于设置 UART 波特率,操作码为 0x0F。UART 波特率 默认为 115200,最大 1Mbps。设置波特率时将波特率数字用 ASCII 编码字符串输入。例如:设置 921600 波特率,完整的包为 "01 0F 06 39 32 31 36 30 30"。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。此回复将基于新波特率发送。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x0F
Length	Byte2	0x01~0x07
Payload	Byte3	波特率(ASCII 编码字符串)

10.2.14 HCI_CMD_VERSION_REQUEST

HCI_CMD_VERSION_REQUEST 用于查询模块固件版本,操作码为 0x10。

模块收到此命令后会回复 $HCI_EVENT_CMD_COMPLETE$,回复内容长度为 0x02,回 复内容为固件版本号: $1\sim65535$ 。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x10
Length	Byte2	0x00

10.2.15 HCI_CMD_BT_DISCONNECT

HCI_CMD_BT_DISCONNECT 用于断开 BT3.0(SPP 协议)连接,操作码为 0x11。 模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE,回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x11
Length	Byte2	0x00

10.2.16 HCI_CMD_BLE_DISCONNECT

HCI_CMD_BT_DISCONNECT 用于断开 BLE 连接,操作码为 0x12。 模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x12
Length	Byte2	0x00

10.2.17 HCI_CMD_SET_COD

HCI_CMD_SET_COD 用于设置 BT3.0 COD(Class of Device), 操作码为 0x15。模块 COD 默认为 0x040424, 无特殊需求不用设置此值。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x15
Length	Byte2	0x03
Payload	Byte3~Byte5	Class of Device

10.2.18 HCI_CMD_SET_NVRAM

HCI_CMD_SET_NVRAM 用于设置 NVRAM 数据,操作码为 0x26。如果您使用的是 EEPROM 或 FLASH 版本模块,无需使用此指令。模块需要在掉电情况下保存数据,在没有 EEPROM 和 FLASH 的情况下模块无法保存这些数据。此时 MCU 应为模块开辟一块非易失存储器(如 FLASH)帮助模块保存数据,这段存储器称为 NVRAM。模块在需要保存数据 时发送 HCI_EVENT_NVRAM_CHANGED 将数据发至 MCU,MCU 则在模块上电后使用 HCI CMD SET NVRAM 命令将数据发送给模块。MCU 不用关心模块存储数据的内容。

模块收到此命令后会回复 HCI_EVENT_CMD_COMPLETE, 回复内容长度为 0x00。 命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x26
Length	Byte2	0x78
Payload	Byte3~Byte123	NV 数据

易兆微电子(杭州)有限公司

10.2.19 HCI_CMD_ENTER_SLEEP_MODE

HCI_CMD_ENTER_SLEEP_MODE 用于使模块进入睡眠模式,操作码为 0x27。进入睡眠模式后模块相当于下电状态。

注意: 务必在发送此命令最后一个字节(Length)之前,将 PIN25(GPIO27)设为低电平。

模块收到此命令后会立刻进入睡眠模式,无任何回复。

命令格式如下:

描述	位置	取值
CMD	Byte0	0x01
Opcode	Byte1	0x27
Length	Byte2	0x00

10.3 EVENT事件

模块发送给 MCU 的包称为 EVENT (事件),模块通过发送 EVENT 来完成通知蓝牙状态变化、上报数据等操作。

所有 EVENT 汇总如下:

EVENT 事件名称	Opcode 操作码	描述
HCI_EVENT_BT_CONNECTED	0x00	BT3.0 连接建立
HCI_EVENT_BLE_CONNECTED	0x02	BLE 连接建立
HCI_EVENT_BT_DISCONNECTED	0x03	BT3.0 连接断开
HCI_EVENT_BLE_DISCONNECTED	0x05	BLE 连接断开
HCI_EVENT_CMD_COMPLETE	0x06	命令已完成
HCI_EVENT_SPP_DATA_RECEIVED	0x07	接收到 BT3.0 数据(SPP)
HCI_EVENT_BLE_DATA_RECEIVED	0x08	接收到 BLE 数据
HCI_EVENT_I_AM_READY	0x09	模块准备好
HCI_EVENT_STAUS_RESPONSE	0x0A	状态回复
HCI_EVENT_NVRAM_CHANGED	0x0D	上传 NVRAM 数据
HCI_EVENT_UART_EXCEPTION	0x0F	HCI 包格式错误

10.3.1 HCI_EVENT_BT_CONNECTED

HCI_EVENT_BT_CONNECTED 表示 BT3.0 连接建立。操作码为 0x00. 事件格式如下:

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x00
Length	Byte2	0x00

10.3.2 HCI_EVENT_BLE_CONNECTED

HCI_EVENT_BLE_CONNECTED 表示 BLE 连接已经建立。操作码为 0x02。 事件格式如下:

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x02
Length	Byte2	0x00

10.3.3 HCI_EVENT_BT_DISCONNECTED

HCI_EVENT_BT_DISCONNECTED 表示 BT3.0 连接已经断开。操作码为 0x03。事件格式如下:

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x03
Length	Byte2	0x00

10.3.4 HCI_EVENT_BLE_DISCONNECTED

HCI_EVENT_BLE_DISCONNECTED 表示 BLE 连接已经断开。操作码为 0x05。事件格式如下:

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x05
Length	Byte2	0x00

10.3.5 HCI_EVENT_CMD_COMPLETE

模块完成每一条命令后都会回复事件 HCI_EVENT_CMD_COMPLETE, 操作码为 0x06。 此事件的 Byte3 是命令操作码,用来指示完成了什么命令; Byte4 是命令完成状态,用来指 示命令是否成功完成; 从 Byte5 开始是长度可变的回复内容, 回复内容格式参见对应的命令 描述。

事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x06
Length	Byte2	Response Content length + 2
Payload	Byte3	完成命令操作码
		命令完成状态:
Payload	Byte4	0x00 成功
		0x01 失败
Payload	Byte5~Byte (Length +3)	回复内容,因命令不同而有差异。

10.3.6 HCI_EVENT_SPP_DATA_RECEIVED

模块接收到 BT3.0 数据(SPP 协议)后会通过此事件发送给 MCU,操作码 0x07。 事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x07
Length	Byte2	0x01~0xFF
Payload	Byte3~Byte (Length+3)	BT3.0 数据(SPP 协议)

10.3.7 HCI_EVENT_BLE_DATA_RECEIVED

模块接收到 BLE 数据(GATT 协议)后会通过此事件发送给 MCU,操作码 0x08。事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x08
Length	Byte2	0x01~0xFF
Payload	Byte3~Byte4	Attribute Handle
Payload	Byte5~Byte (Length+3)	BLE 数据

10.3.8 HCI_EVENT_I_AM_READY

模块上电/复位初始化完成后会发送 HCI_EVENT_I_AM_READY 来通知 MCU 自己已经准备好可以开始工作。MCU 需要收到此 EVENT 后方可发送第一个 CMD。事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x09
Length	Byte2	0x00

10.3.9 HCI_EVENT_STAUS_RESPONSE

HCI_EVENT_STAUS_RESPONSE 用于回复 HCI_CMD_STAUS_REQUEST。操作码为 0x0A。

事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x0A
Length	Byte2	0x01
Payload	Byte3	模块状态:
		bit0:3.0 可发现;
		bit1:3.0 可连接;
		bit2: 4.0 可发现 (广播 ADV);
		bit4:BT3.0(SPP 协议)己连接;
		bit5:BLE 已连接;

10.3.10 HCI_EVENT_NVRAM_CHANGED

模块需要将 NVRAM 数据保存至 MCU 时会发送 HCI_EVENT_NVRAM_CHANGED 事件 给 MCU。 操作码 0x0D。 关于 NVRAM 的作用和工作原理,请参考HCI_CMD_SET_NVRAM。

事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x0D
Length	Byte2	0x78
Payload	Byte3~Byte123	NVRAM 数据

10.3.11 HCI_EVENT_UART_EXCEPTION

模块收到无法处理的指令时会发送 HCI_EVENT_UART_EXCEPTION。通常由主机发送 HCI 包格式错误引起,发出此 EVENT 后模块会主动 ASSERT,此时需将模块复位或重新上电。

事件格式如下,

描述	位置	取值
EVENT	Byte0	0x02
Opcode	Byte1	0x0F
Length	Byte2	0x00

易兆微电子(杭州)有限公司

11. BLE Attribute List

自定义 Service:

Server	UUID	Handle
UUID_YICHIP_MAJOR_SERVICE	0x49535343-FE7D4-AE58-FA99-FAFD205E455	0x28

自定义发送 Characteristic:

Characteristic	UUID	Property	Handle
UUID_CHARACTERISTIC_UPLOAD	0x49535343-1E4D-4BD9-BA	Notify	0x2A
	61-23C647249616		
UUID_CHARACTERISTIC_BIDIR2	0x49535343-ACA3-481C-91E	Notify&Write	0x31
	C-D85E28A60318		

自定义接受 Characteristic:

Characteristic	UUID	Property	Handle
UUID_CHARACTERISTIC_REV1	0x49535343-8841-43F4-A8D	Write	0x2D
	4-ECBE34729BB3		
UUID_CHARACTERISTIC_REV2	0x49535343-6DAA-4D02-AB	Write Without	0x2F
	F6-19569ACA69FE	Resp	