. AtlasScientific

Environmental Robotics

Conductivity I12C Sample Code

Conductivity 1°C

K
GND TX RX

a=-
A=
V=

(@)
9

A A
R E
\— COMMUNICATION =

PWR am

Arduino MEGA

www. arduino.cc

- s ANALOG [N —
Z5V GNDVIN 6 « o < 1© © ~

ND TX RX

ENNREEEEE 9 8

0
1 DIGITAL
s =
= =
[a g

EENNENEERE m TX H
& Arduino

PWR SEL

www.arduino.cc

« POWER ANALOG IN
@5/ Gnd Vin 0 123 45

//**THIS CODE WILL WORK ON ANY ARDUINO**

//This code has intentionally has been written to be overly lengthy and includes unnecessary steps.

//Many parts of this code can be truncated. This code was written to be easy to understand.

//Code efficiency was not considered. Modify this code as you see fit.

/[This code will output data to the Arduino serial monitor. Type commands into the Arduino serial monitor to control the EZO EC Circuit in 1°C mode.

#include <Wire.h> //enable I2C.
#define address 100 //default I12C ID number for EZO EC Circuit.
char computerdata[20]; //we make a 20 byte character array to hold incoming data from a pc/mac/other.
byte received_from_computer=0; //we need to know how many characters have been received.
byte serial_event=0; //a flag to signal when data has been recived from the pc/mac/other.
byte code=0; //used to hold the I°C response code.
char ec_data[48]; //we make a 48 byte character array to hold incoming data from the EC circuit.
byte in_char=0; //used as a 1 byte buffer to store in bound bytes from the EC Circuit.
byte i=0; //counter used for ec_data array.
int time=1400; //used to change the delay needed depending on the command sent to the EZO Class EC Circuit.
char *ec; //char pointer used in string parsing.
char *tds; //char pointer used in string parsing.
char *sal; //char pointer used in string parsing.
char *sg; //char pointer used in string parsing.
float ec_float; //float var used to hold the float value of the conductivity.
float tds_float; //float var used to hold the float value of the TDS.
float sal_float; //float var used to hold the float value of the salinity.
float sg_float; //float var used to hold the float value of the specific gravity.
void setup() //hardware initialization.
{
Serial.begin(9600); //enable serial port.
Wire.begin(); //enable I>C port.
}
void serialEvent(}{ //this interrupt will trigger when the data coming from
received_from_computer=Serial.readBytesUntil(13,computerdata,20); //the serial monitor(pc/mac/other) is received.
computerdata[received_from_computer]=0; //we read the data sent from the serial monitor
serial_event=1; //(pc/mac/other) until we see a <CR>. We also count
} //how many characters have been received.
//stop the buffer from transmitting leftovers or garbage.
void loop(){ //the main loop.
if(serial_event){ //if the serial_event=1.
if(computerdata[0]=="c'||computerdata[0]=='r")time=1400; //if a command has been sent to calibrate or take a reading we
else time=300; //wait 1400ms so that the circuit has time to take the reading.
//if any other command has been sent we wait only 300ms.
Wire.beginTransmission(address); //call the circuit by its ID number.
Wire.write(computerdata); /[transmit the command that was sent through the serial port.
Wire.endTransmission(); //end the I>C data transmission.
delay(time); //wait the correct amount of time for the circuit to complete its instruction.
Wire.requestFrom(address,48,1); //call the circuit and request 48 bytes (this is more then we need).
code=Wire.read(); //the first byte is the response code, we read this separately.
switch (code){ //switch case based on what the response code is.
case 1: //decimal 1.
Serial.printIn("Success"); //means the command was successful.
break; //exits the switch case.
case 2: //decimal 2.
Serial.printin("Failed"); //means the command has failed.
break; //exits the switch case.
case 254: //decimal 254
Serial.printin("Pending"); //means the command has not yet been finished calculating.
break; //exits the switch case.
case 255: //decimal 255.
Serial.printin("No Data"); //means there is no further data to send.
break; //exits the switch case.
}
while(Wire.available()){ //are there bytes to receive.
in_char = Wire.read(); //receive a byte.
ec_data[i]= in_char; //load this byte into our array.
i+=1; //incur the counter for the array element.
if(in_char==0){ //if we see that we have been sent a null command.
Wire.endTransmission(); //reset the counter i to 0.
break; //end the I2C data transmission.
} //exit the while loop.
}
Serial.printin(ec_data); //print the data.
serial_event=0; /Ireset the serial event flag.
//if(computerdata[0]=="'r") string_pars(); //Uncomment this function if you would like to break up the comma separated string
} //into its individual parts.
}
void string_pars(}{ /1 this function will break up the CSV string into its 4 individual parts. EC|TDS|SAL|SG.
//this is done using the C command “strtok”.
ec=strtok(ec_data, ","); //let's pars the string at each comma.
tds=strtok(NULL, ","); //let's pars the string at each comma.
sal=strtok(NULL, ","); //let's pars the string at each comma.
sg=strtok(NULL, ","); //let's pars the string at each comma.
Serial.print("EC:"); //We now print each value we parsed separately.
Serial.printin(ec); //this is the EC value.
Serial.print("TDS:"); //We now print each value we parsed separately.
Serial.printin(tds); //this is the TDS value.
Serial.print("SAL:"); //We now print each value we parsed separately.
Serial.printin(sal); //this is the salinity value.
Serial.print("SG:"); //We now print each value we parsed separately.
Serial.printin(sg); //this is the specific gravity value.

//Uncomment this section if you want to take the values and convert them into floating point number.
/*
ec_float=atof(ec);
tds_float=atof(tds);
sal_float=atof(sal);
sg_float=atof(sg);
*/

Click here to download the *.ino file

Atlas-Scientific.com Copyright © Atlas Scientific LLC ~ All Rights Reserved

https://www.atlas-scientific.com/_files/code/ino_files/EC_I2C.zip

