cientific

Environmental Robotics

« AtlasS

pH I2C Sample Code

GND TX RX

n
4 1

VCC PRB PGND

PHe o M

BNC

A A
X
[

\— COMMUNICATION =

PWR am

Arduino MEGA

www. arduino.cc

= ANALOG IN =

O~ N M L © N~

o™
% 5V GND VIN

ueo
GND TX RX
IINREEEEE

09 8
1 DIGITAL
s =
= =
[aEg

Arduino

PWR SEL

www.arduino.cc

POWER

- ANALOG IN
&5V Gnd Vin

012345

=
L
w
Ll
o

//**THIS CODE WILL WORK ON ANY ARDUINO**

//This code has intentionally has been written to be overly lengthy and includes unnecessary steps.

//Many parts of this code can be truncated. This code was written to be easy to understand.
//Code efficiency was not considered. Modify this code as you see fit.

/[This code will output data to the Arduino serial monitor. Type commands into the Arduino serial monitor to control the EZO pH Circuit in 12C mode.

#include <Wire.h>
#define address 99

char computerdata[20];

byte received_from_computer=0;
byte serial_event=0;

byte code=0;

char ph_data[20];

byte in_char=0;

byte i=0;

int time=1400;

float ph_float;

//enable I2C.
//default 12C ID number for EZO pH Circuit.

//we make a 20 byte character array to hold incoming data from a pc/mac/other.
//we need to know how many characters have been received.

//a flag to signal when data has been recived from the pc/mac/other.

//used to hold the I°C response code.

//we make a 48 byte character array to hold incoming data from the pH circuit.
//used as a 1 byte buffer to store in bound bytes from the pH Circuit.

//counter used for ph_data array.

//used to change the delay needed depending on the command sent to the EZO Class pH Circuit.

//float var used to hold the float value of the pH.

void setup() //hardware initialization.

{
Serial.begin(9600);
Wire.begin();

}

//enable serial port.
//enable I>C port.

void serialEvent(){
received_from_computer=Serial.readBytesUntil(13,computerdata,20);
computerdatalreceived_from_computer]=0; //we read the data sent from the serial monitor
serial_event=1; //(pc/mac/other) until we see a <CR>. We also count
} //how many characters have been received.
//stop the buffer from transmitting leftovers or garbage.

//this interrupt will trigger when the data coming from
//the serial monitor(pc/mac/other) is received.

void loop(}{ //the main loop.

//if the serial_event=1.

//if a command has been sent to calibrate or take a reading we
//wait 1400ms so that the circuit has time to take the reading.
//if any other command has been sent we wait only 300ms.

if(serial_event){
if(computerdata[0]=="c'||computerdata[0]=='r")time=1400;
else time=300;

Wire.beginTransmission(address);
Wire.write(computerdata);
Wire.endTransmission();

delay(time);

Wire.requestFrom(address,20,1);
code=Wire.read();

switch (code){
case 1:

Serial.printIn("Success");
break;

case 2:
Serial.printin("Failed");
break;

case 254:
Serial.printIn("Pending");
break;

case 255:
Serial.printin("No Data");
break;
}

while(Wire.available()){
in_char = Wire.read();
ph_datalil= in_char;
i+=1;
if(in_char==0){
Wire.endTransmission();
break;
}
}

Serial.printin(ph_data);
serial_event=0;

}

//call the circuit by its ID number.
//transmit the command that was sent through the serial port.
//end the IC data transmission.

//wait the correct amount of time for the circuit to complete its instruction.

//call the circuit and request 20 bytes (this is more then we need).
//the first byte is the response code, we read this separately.

//switch case based on what the response code is.
//decimal 1.

//means the command was successful.

//exits the switch case.

//decimal 2.
//means the command has failed.
//exits the switch case.

//decimal 254
//means the command has not yet been finished calculating.
//exits the switch case.

//decimal 255.
//means there is no further data to send.
//exits the switch case.

//are there bytes to receive.

//receive a byte.

//load this byte into our array.

/lincur the counter for the array element.

//if we see that we have been sent a null command.
//reset the counter i to 0.

//end the I2C data transmission.

//exit the while loop.

//print the data.
//reset the serial event flag.

//Uncomment this section if you want to take the pH value and convert it into floating point number.

/*
ph_float=atof(ph_data);
*/

}

Click here to download the *.ino file

Atlas-Scientific.com

Copyright © Atlas Scientific LLC ~ All Rights Reserved

https://www.atlas-scientific.com/_files/code/ino_files/ph_I2C.zip

