

BP Microsystems, Inc.
The Engineer’s

Programmer
User’s Guide

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

i

COPYRIGHT AND LEGAL

DISCLAIMER
5-Oct-99

BP Microsystems, Inc. The Engineer’s Programmer User’s Guide. BP DOS
software version 3.xx (this number is subject to change as new software
updates are available every 6 weeks).

©1999 by:

BP Microsystems, Inc.
1000 N. Post Oak Blvd.
Suite 225
Houston, TX 77055-7237
PHONE: 800-225-2102, 713-688-4600 (outside US)
FAX: 713-461-7413
BBS: 713-461-4958
www.bpmicro.com

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transcribed, in any form or by any means, electronic,
mechanical, photocopying, recording, or otherwise, without prior written
permission of BP Microsystems, Inc.

The Engineer's Programmer, BP-1200, EP-1140, EP-1132, PLD-1100, PLD-
1128, and CP-1128 are trademarks of BP Microsystems, Inc.

IBM and PS/2 are registered trademarks of International Business Machines.

MSDOS is a trademark of the Microsoft Corporation.

The information in this manual is subject to change without notice and,
except in the warranty, does not represent a commitment on the part of BP
Microsystems, Inc. BP Microsystems, Inc. believes the information in this
manual to be correct at the time of publication; however, BP Microsystems,
Inc. cannot be held liable for any mistakes in this manual and reserves the
right to make changes to the product and product resources in order to make
improvements.

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
ii

Any mention of third-party products is for reference only, and does not
constitute a recommendation or endorsement of these products.

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION ..1-1

EPROM AND PLD PROGRAMMERS ...1-2
EPROM BACKGROUND..1-3
HEX FILES ...1-4
ASSEMBLERS AND COMPILERS..1-4
PLD BACKGROUND ..1-4
LOGIC COMPILERS...1-5
ABOUT THIS MANUAL...1-5

CHAPTER 2 GETTING STARTED...2-1

THE BASICS ..2-1
INSTALLATION...2-1

Hardware Installation... 2-1
Positioning the Components.. 2-2
Connect the Components.. 2-3
Software Installation ... 2-3

RUNNING SELF TEST ...2-5
SETTING UP THE SYSTEM..2-5

Navigating the System... 2-6
Full System Self-Tests ... 2-6
Need Help?.. 2-6

CONFIGURING THE SYSTEM...2-6
Reading the System Status.. 2-7
Configure Options... 2-8
Saving Your Configuration.. 2-9
Multiple Configurations.. 2-9

CHAPTER 3 PROGRAMMING FROM START TO FINIS H.. 3-11

SELECTING A DEVICE..3-11
Select Option...3-11
Saving the Selection...3-12

LOADING THE BUFFER..3-12
Understanding the File Formats...3-13
Loading the Files ...3-13

PROGRAMMING A DEVICE..3-14
Set Number of Devices to Program ..3-14
Chip Placement..3-15
Verify that the Part is Correctly Programmed ...3-16
Reading the Results of Your Production Run..3-17
Saving and Printing the Report Results ...3-17

EXPLORING YOUR OPTIONS...3-18
Device Specific Options..3-18
Checksums...3-18

CHAPTER 4 USING THE DATA EDITORS ..4-1

Table of Contents

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
iv

MEMORY DATA EDITOR...4-1
Select address radix (F2).. 4-2
Set cursor address (goto) (F3)... 4-2
Reconfigure (F4).. 4-2
Search for pattern (F5)... 4-2
Fill range (F6).. 4-2
Copy (F7) .. 4-3
Invert a range (ones complement) (F8)... 4-3
Calculate/Change checksum (F9)... 4-3
Exit the editor (F10, Esc, Enter) ... 4-4
Fuse Data Editor.. 4-4

TEST VECTOR EDITOR ..4-5

CHAPTER 5 FILE FORMATS..5-1

FILE LOAD FORMAT EQUIVALENTS..5-1
Hex Files.. 5-3

CHAPTER 6 BP SOFTWARE COMMAND REFERENCE...6-1

KEYBOARD USAGE ..6-1
AFS..6-4

AFS/Serialize.. 6-4
AFS/Upgrade.. 6-4

BUFFER COMMANDS...6-5
Buffer/Clear.. 6-5
Buffer/Edit... 6-5
Buffer/Load ... 6-6
Buffer/Options..6-10
Buffer/Save..6-14
Buffer/Vectors...6-15

CONFIGURE COMMANDS..6-17
DEVICE COMMANDS..6-21

Device/Blank...6-21
Device/Compare...6-22
Device/Configure...6-24
Device/E-Field..6-26
Device/Encrypt...6-26
Device/Handler..6-28
Device/Mark ...6-32
Device/Options...6-33
Device/Program...6-41
Device/Read..6-42
Device/Secure...6-43
Device/Sum...6-44
Device/Test..6-44
Device/UES...6-45
Device/U-Field...6-47
Device/Verify ..6-47

INFO COMMANDS...6-49
Info/BBS...6-49
Info/Chip..6-49
Info/Log ...6-52
Info/NewChips..6-53
Info/Revisions...6-54

Table of Contents

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

v

JOBMASTER COMMANDS...6-55
JobMaster/Configure..6-55
JobMaster/Delete...6-57
JobMaster/Load ...6-57
JobMaster/New...6-57
JobMaster/Operator Mode...6-58
JobMaster/Password ...6-59
JobMaster/Reindex..6-60
JobMaster/Update...6-61

MACRO COMMANDS...6-62
Macro/Debug..6-62
Macro/Finish ..6-62
Macro/Play...6-63
Macro/Prompt..6-64
Macro/Record...6-64

PAUSE ..6-66
QUIT...6-66
SELECT ..6-66

CHAPTER 7 HINTS, TIPS AND OTHER USEFUL INFORMATION...7-1

ERASING EPROMS..7-1
Method... 7-1
Procedure.. 7-1

EMULATION MODES..7-2
16V8 and 20V8 Architecture.. 7-2
20XV10 Architecture... 7-3
Emulation Considerations.. 7-3

SYSTEM CONFIGURATION FOR BP.EXE...7-4
Minimum Configuration For BP.EXE.. 7-4
Configuring Memory Managers To Run With The Dos Extender... 7-4
SM84UP Operational Instructions... 7-6

GENERAL INFORMATION..7-7
Upgrading your software ... 7-7

CHAPTER 8 USING MACRO FILES ...8-1

WHAT IS A MACRO FILE?..8-1
COMMON USES OF MACRO FILES...8-1
MACRO FILE CAPABILITIES...8-2
INVOKING MACRO FILES...8-2

Batch mode, make files ... 8-2
Start from command mode ... 8-2
Hot-Keys.. 8-2
From another macro file... 8-3

GENERATING MACRO FILES..8-3
Quit or Finish ... 8-3
Nesting... 8-3
Prompts.. 8-4
Other capabilities .. 8-4

MACRO FILE FORMAT..8-4
Example macro file.. 8-4
Macro file header... 8-6
Command record ... 8-6
Data record... 8-6

Table of Contents

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
vi

Comments.. 8-6
Dialog boxes... 8-7
Command line parameters: %1, %2,... .. 8-7
Optional data records: '!' ... 8-7
User input: '?' ... 8-8
Leaving a field untouched: '^' .. 8-8
Editor commands... 8-8

CHAPTER 9 USING JOBMASTER...9-1

OVERVIEW..9-1
FEATURES...9-1
INSTALLATION...9-4
CREATING A NEW JOB..9-4
COPYING AN EXISTING JOB..9-6
ADDING A DEVICE TO AN EXISTING JOB..9-6
UPDATING A JOB..9-7
LOCKING THE PROGRAMMER IN OPERATOR MODE..9-7

Password Protection ... 9-7
RUNNING A JOB (PROGRAM MODE)..9-8
DELETING A JOB..9-8
RETURNING TO NORMAL MODE..9-9

CHAPTER 10 SERIALIZATION .. 10-1

OPERATION...10-1
Algorithm Protocols..10-4
Command-line Parameters ..10-4

OPTIONAL CODES:...10-6
EXAMPLE PROGRAM...10-8

CHAPTER 11 TEST VECTORS .. 11-1

DEFINITION...11-1
CHARACTERS..11-1
ENHANCEMENTS..11-2

CHAPTER 12 ERASING EPROMS .. 12-1

METHOD..12-1
PROCEDURE..12-1

CHAPTER 13 EMULATION MODES ... 13-1

16V8 AND 20V8 ARCHITECTURE ...13-1
Programming..13-1

20XV10 ARCHITECTURE..13-1
EMULATION CONSIDERATIONS..13-1

CHAPTER 14 TROUBLESHOOTING AND MAINTENANCE .. 14-1

CUSTOMER SERVICE ...14-1
When You Need Help...14-1
How to Reach Us ...14-1
Software Updates...14-1
Calling the Technical Support Line..14-3
Software Updates...14-3
Downloading from the BBS..14-4

Table of Contents

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

vii

TESTING THE HARDWARE ..14-4
ERRORS WHILE PROGRAMMING..14-5
CLEANING A DIRTY DIP SOCKET..14-6
PLD VECTOR TEST ERRORS..14-6
POWER-ON SELF-TEST (POST) ...14-6
COMMON PROBLEMS & SOLUTIONS ..14-6

Upgrading the BP Software...14-7
Disable Screensaver on Digital Switchbox...14-7

ERRORS AND WARNINGS..14-8
Error Messages ..14-9
WARNING MESSAGES ..14-19

TEST VECTORS..14-21
Enhancements...14-22
Troubleshooting Test Vectors..14-22

GLOSSARY..XXVI

DEFINITIONS..XXVI
ACRONYMS... XLVIII

INDEX ...LIX

APPENDIX A LIMITED WARRANTY.. I

APPENDIX B ADVANCED FEATURE SOFTWARE... I

UPGRADING YOUR SOFTWARE .. I
AUTOHANDLER.. I
SERIALIZATION...II
VERIFY CHECKSUM..II
REMOTE..III
FOR MORE INFORMATION ..VI

APPENDIX C BP-1200 UPGRADE PROCEDURES .. I

SELF-TEST .. I
BIOS Replacement..i

UPGRADING...II
Installing Pin Driver Cards...ii
Closing the Base Unit..ii

COMPLETING THE UPGRADE...II

APPENDIX D QUICK START GUIDE... I

APPENDIX E CHECKLIST... I

PACKAGE CHECKLIST ... I

Table of Contents

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
viii

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

ix

TABLE OF FIGURES

FIGURE 1 – INITIAL SIGN-ON SCREEN..2-4
FIGURE 2 – CONFIGURE OPTIONS..2-7
FIGURE 3 – DEVICE SELECTOR WINDOW..3-12
FIGURE 4 – BUFFER/LOAD SCREEN..3-14
FIGURE 5 – DEVICE/HANDLER WINDOW..3-15
FIGURE 6 – PROGRAMMING STATUS/VERIFICATION SCREEN..3-17
FIGURE 7 – M EMORY DATA EDITOR..4-1
FIGURE 8 – CHANGE CHECKSUM WINDOW...4-3
FIGURE 9 – FUSE DATA WINDOW...4-4
FIGURE 10 – TEST VECTOR EDITOR...4-5
FIGURE 11 - BUFFER/LOAD SCREEN ..6-7
FIGURE 12 - BUFFER/OPTIONS/SHOW FILE NAME SCREEN...6-10
FIGURE 13 - BUFFER OPTIONS SCREEN ..6-11
FIGURE 14 - BUFFER/SAVE SCREEN ...6-14
FIGURE 15 - BUFFER/VECTORS SCREEN ...6-16
FIGURE 16 - CONFIGURE SCREEN...6-17
FIGURE 17 - DEVICE/CONFIGURE SCREEN..6-24
FIGURE 18 - DEVICE/ENCRYPT SCREEN ...6-29
FIGURE 19 - DEVICE/MARK SCREEN..6-32
FIGURE 20 - DEVICE/OPTIONS SCREEN ..6-34
FIGURE 21 - DEVICE/OPTIONS SCREEN FOR A PLD ..6-38
FIGURE 22 - DEVICE/UES SCREEN..6-46
FIGURE 23 - INFO/BBS SCREEN...6-49
FIGURE 24 - INFO/CHIP SCREEN...6-51
FIGURE 25 - INFO/CHIP , PLD SCREEN...6-52
FIGURE 26 - JOBM ASTER TOOLBAR SCREEN ..6-56
FIGURE 27 - JOBM ASTER/OPERATOR M ODE MENU SCREEN...6-58
FIGURE 28 - JOBM ASTER/PASSWORD SCREEN ...6-59
FIGURE 29 - JOBM ASTER/REINDEX SCREEN ..6-60
FIGURE 30 - SELECT SCREEN ...6-67
FIGURE 31 - JOBM ASTER/NEW SCREEN...9-5

Table of Figures

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
x

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

xi

TABLE OF TABLES

TABLE 1 – MEMORY DATA EDITOR KEYBOARD USAGE ..4-2
TABLE 2 – FUSE DATA EDITOR KEYBOARD USAGE...4-5
TABLE 3 – TEST VECTOR EDITOR KEYBOARD USAGE ...4-6
TABLE 4 – FILE FORMATS ...5-2
TABLES 5 & 6 – COMMON KEYBOARD USAGE..6-1
TABLES 7, 8, 9, & 10 – COMMON KEYBOARD USAGE...6-3
TABLE 11 – SUPPORTED FILE TYPES...10-6
TABLE 12 – VALID TEST VECTOR CHARACTERS ...14-21

Table of Tables

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xii

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

1-1

CHAPTER 1
INTRODUCTION

Congratulations for selecting a BP Microsystems programmer - designed to perform
the most demanding programming tasks. BP Microsystems programmers are used for
design engineering, production programming, device testing, and field service. Your
programmer's flexible hardware will continue to program the newest programmable
devices by obtaining updates from BP Microsystems. BP Microsystems stands behind
the programmers it manufactures to ensure your continued satisfaction.

BP Microsystems is committed to providing the worldwide market for device
programmers with high performance innovative programmers and great customer
support at the lowest price possible. Our programming platforms span the spectrum
from low-cost single-family programmers to fully universal programmers that support
virtually every device available today.

Every programmer built by BP Microsystems is built to the highest standards. Each
programmer offers a wide range of device support, flexible pin drivers, protection
from damage caused by operator errors and defective devices, stable hardware that
does not require periodic maintenance or recalibration, and software that can be easily
updated in the field to support the newest programmable devices. All of our
programmers attach easily to the PC for ease of use.

The menu-driven software provides an efficient, user-friendly interface, and includes a
full screen editor to view and modify your data, macro record/play facility for batch-
file execution, and virtual memory management to deal with very large files. The
programmers that support memory devices will accept all popular file formats, use
intelligent identifiers to auto-select proper programming algorithms, provide
selectable range programming on many chips, and have a special set programming
mode for automatic collation of data. The programmers that support PLDs accept
JEDEC files with editing ability for both fuse data and test vectors. The PLD
programmers also support Altera's compressed Programmer Object File (POF) format
used with their MAX family of devices.

The programmer easily connects to the parallel printer port of any IBM PC or
compatible from 8086 to 80486. The interface software operates in as little as 640K
RAM standard on most computers but takes advantage of expanded memory, if
present.

Chapter One

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
1-2

The BP-1200 leads the competition in devices supported, programming yield,
performance, ease of use, and cost of ownership. The ability to program almost every
programmable device, including the fastest and largest programmable logic devices
(PLDs), memories, and microcontrollers available, gives you the freedom to choose
the optimum device for new designs. The BP-1200 can be field upgraded to meet
your future requirements through expandable hardware that can support all package
types (DIP, PLCC, SOIC, TSOP, QFP, and PGA) with up to 240 pins.

If you only use memory devices, the EP-1140 is a high-performance low cost 40-pin
programmer supporting most EPROMs available today. The EP-1140 also supports a
variety of microcontrollers. The EP-1132 programmer offers identical performance
and near-identical device support; its 32-pin programming socket precludes 40-pin
devices.

The PLD-1128 programs almost any 20, 24, or 28 pin PLD currently available. The
CP-1128 offers even greater flexibility by also supporting many E/EPROMs and
bipolar PROMs through 28 pins. The PLD-1100 is the predecessor to the PLD-1128
and supports 20 and 24 pin PLDs. Even though the PLD-1100 is no longer produced
by BP Microsystems, it is still supported and new devices are still being added to its
support list at no cost to the customer.

¥ The information in this manual is subject to change without notice and, except for
the warranty, does not represent a commitment on the part of BP Microsystems,
Inc. BP Microsystems, Inc. believes the information in this manual to be correct at
the time of publication; however, BP Microsystems, Inc. cannot be held liable for
any mistakes in this manual and reserves the right to make changes to the product
in order to make improvements.

EPROM AND PLD PROGRAMMERS

BP Microsystems parallel interfaced programmers are software configured and
controlled by a personal computer (PC). The software running on the PC provides the
user interface, data buffer, algorithm data base, and control functions. Specific chip
programming algorithms and instructions are stored on the PC's disk and downloaded
to the programmer when you program a chip. Thus, the algorithm is actually executed
by the programmer's internal microprocessor. This guarantees accurate voltages and
proper wave forms independent of the PC's speed. The speed of your PC will only
affect the rate at which the algorithm and data is downloaded to the programmer and
will not affect programming yield. The programmer is upgradable through new
software versions available to the end-user. The most recent software is generally the
only requirement for the latest chip support (provided that your hardware has the
proper number of pin drivers and the correct socket module). Using a PC for control
creates several positive attributes: the programmer costs less, it is more convenient to
update, it is easier to use, and is physically smaller than competitive programmers on
the market.

BP Microsystems programmers are capable of programming and reading virtually
every programmable device made. They program chips from data supplied by your

Introduction

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

1-3

computer or another chip; they also let you read chips and store the data on your
computer disk.

EPROM BACKGROUND

This section provides an elementary education on memory chips. The EPROM
(Erasable Programmable Read Only Memory) is a nonvolatile memory that is erasable
by exposing the silicon memory to ultraviolet light. The EPROM memory is located
directly underneath a quartz window located atop the chip. An EPROM is known as
non-volatile memory, meaning that it does not require power to retain its data and
retains data programmed into it until it is erased. The EEPROM (Electrically Erasable
Programmable Read Only Memory) is a non-volatile memory that can be erased and
programmed electrically. Most EEPROMs can be erased and programmed a byte at a
time. Flash EEPROMs are less expensive than standard EEPROMs, but you must
erase the whole chip or a specific sector prior to programming. ROMs (Read Only
Memories) are not user programmable; they are factory-programmed using a mask
pattern when the chip is manufactured. PROMs are one-time Programmable Read
Only Memories and usually employ a bipolar fuse-link technology. Production
EPROMs are packaged in inexpensive plastic packages with no quartz window, so
they cannot be erased. They are technically PROMs, but are usually called one-time
programmable (OTP) EPROMs. Non-volatile Random Access Memories (NVRAMs)
are typically static RAM chips (SRAMs) with internal battery back-up. The battery
allows the chip to retain data for five to ten years and permits programming prior to
board insertion. The term EPROM is often used as a general classification of the
above mentioned non-volatile programmable memory technologies. Microcontrollers
are microprocessor chips containing RAM, I/O, and some form of non-volatile
memory. The non-volatile memory may be programmed to contain a user-defined
program making the microcontroller perform a specific task.

A memory chip can be described by its organization: how many bits are read at one
time (a word) and how many words are in the chip.

Example: A 27256 EPROM contains 32,768 eight-bit words, or 32K-bytes.
A 27210 contains 65,536 sixteen-bit words. Most EPROMs come
in two widths: byte -wide (8-bits) and word-wide (16-bit words).
Multiplying the data width by the number of words gives the size
of the array, in bits. The 27256 contains 262,144 bits (256K-bits);
the 27210 contains 1,048,576 bits (1-megabit).

Sets of EPROMs are easy to program thanks to the Set programming mode under the
Device/Options command. It will prompt you to insert each chip of the set while
programming or reading, automatically splitting data files for wide data paths or
multiple banks of chips. When using 16-bit wide chips, the byte-order is configurable
to conform to Motorola or Intel conventions (standard, or byte-reversed).

The data stored in a chip may represent various kinds of information: a program, a
character generator, a table of waveforms, a logic pattern, etc. Data patterns can be
represented in your computer in many ways. The most straightforward method is a

Chapter One

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
1-4

binary file. It contains an exact copy of the data to be placed in the chip (a 27256 file
would contain 32K-bytes). The difficulty with binary files is that they may contain
characters that cannot be printed (only 95 ASCII characters print, while the file may
have 256 different characters). The solution to this problem lies in hex files.

HEX FILES

Hex files represent the data in your chip with ordinary lines of text. Each data byte is
converted into two "hex" characters (0-9, A-F), each representing four bits. Address,
checksum, and other information may also be included in the file. BP Microsystems
EPROM programmers support all popular hex file formats: straight hex, hex-space
format, ASCII hex, Intel MCS-80, Intel MCS-86, Intel MCS-386, Motorola S(1-9),
Tektronix Tekhex and extended Tekhex. These different formats offer the flexibility to
communicate with almost any system generating data for EPROMs. Any file format
can be used with the data from any chip. It doesn't matter which format you choose to
store the data.

The control software includes a full screen editor capable of displaying any
combination of binary, ASCII, hex, or octal representation of your data. You can use it
to view or edit data, set file checksums, copy data, fill ranges, etc. The software
supports binary file s and all the hex file types mentioned above.

ASSEMBLERS AND COMPILERS

Many users will be writing a program, compiling, assembling, and programming the
resulting object code into an EPROM. It is necessary to get your data into a format
compatible with the programmer since the interface software does not, and cannot,
support the hundreds of intermediate file formats used by assemblers and compilers.
You need to compile, assemble, link, and load your program. The output of the loader
should be in hex or binary. Linkers and loaders producing other formats usually come
with a utility program that will convert the output to Intel hex or some other common
format.

PLD BACKGROUND

Programmable logic devices (PLDs) are logic chips that have their internal logic
configuration determined by the user, not the manufacturer. The design engineer
customizes the parts for specific applications. Using PLDs can reduce parts count,
increase reliability, increase performance, reduce design time, and reduce
manufacturing costsall at the same time!

The term PLD can be applied to all varieties of programmable logic chips including
erasable programmable logic devices (EPLDs), PALs, PLAs, GALs, PEELs, FPLs,
sequencers, PROMs, and a slew of other parts. The various acronyms are trademarks
for families of related parts.

Introduction

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

1-5

PLDs are programmed by placing them in a special mode where they are accessed like
memory devices. The programmer then stores a fuse pattern written by an engineer (or
read from another chip) into the logic array of the PLD. When the PLD is returned to a
normal operating mode, it performs the customized logic function programmed into it.

Programmable arrays used in PLDs are based on the same technology used for today's
memory chips. The fastest parts employ bipolar logic and fusible metal links which
melt during programming. CMOS technology allows PLDs to be built using EPROM
and EEPROM techniques, where electrically charged cells are used to represent fuse
states. Naturally, these parts can be erased (by UV-light or by the programmer) and
reprogrammed with a new pattern.

LOGIC COMPILERS

Software is available to help the engineer develop designs using PLDs. Tools called
logic compilers perform the tedious task of translating a design file written in a high-
level language into a fuse pattern stored in a standard JEDEC (Joint Electronic Device
Engineering Council) file. The input to the compile r, usually a high-level language or
graphical schematic diagram, varies widely depending on which product you are
using, but fortunately the output file format is standardized. JEDEC files are produced
by almost all PLD development software and are accepted by all popular PLD
programmers. Some compilers use the POF format, which is also supported.

There are many commercial software packages available to help you design with
PLDs. There are tools available from semiconductor manufacturers very
inexpensively that support only a single brand of devices, as well as universal
development software available from third parties. PALASM is a program available
from Advanced Micro Devices for a nominal charge and supports virtually the full
line of AMD and MMI devices. It is probably the most flexible of the inexpensive
software packages. Other single -family inexpensive packages are available from
National Semiconductor, Signetics, and Texas Instruments.

MINC, Inc. offers a universal development product system with comprehensive
features and device support. It offers a variety input formats and advanced features
such as automatic device selection and partitioning. Other universal products include
ABEL from Data I/O, and CUPL from Logical Devices.

ABOUT THIS MANUAL

This manual has been built in such a way as to support any one of the following
products using the DOS-based BP Control Software.

• BP-1400
• BP-1200
• EP-1140
• EP-1132
• PLD-1100

Chapter One

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
1-6

• PLD-1128
• CP-1128

If this is your first experience with a BP Microsystems programmer, you should
definitely take advantage of Chapter 2, Getting Started and Chapter 3, Running a Job
from Start to Finish. These chapters will take you step by step through the setup,
installation and programming processes. Along the way, you’ll get acquainted with
the full range of the programmer’s capabilities.

If you are already familiar with our programmers, you may want to use the Appendix
B, Quick Start Guide located at the back of the manual, which covers the key points of
getting the programmer up and running. We still encourage you to explore the manual
for useful tips on getting the most from your BP Microsystems’ programmer.

• Chapter 1 introduces you to and familiarizes you with the Engineer’s programmer,
covering the basic definition of a programmer, along with some other useful
industry information.

• Chapter 2 is a getting started process that takes you step-by-step through plugging
in, turning on and setting up the programmer for programming.

• Chapter 3 is an in-depth look at programming from start to finish.
• Chapter 4 covers descriptions and usage of the data editors.
• Chapter 5 describes the different file formats that are used in programming

devices.
• Chapter 6 is organized by software function and command, listing details and

usage about each.
• Chapter 7 covers hints, tips and other useful information.
• Chapter 8 addresses using macros.
• Chapter 9 explains the additional software, JobMaster, and instructs usage.
• Chapter 10 covers the basics of serialization of programmed parts.
• Chapter 11 defines test vectors and gives examples.
• Chapter 12 lists the procedure for erasing EPROMs
• Chapter 13 covers emulation modes.
• Chapter 14 covers error messages that are not self-explanatory and helps you

identify problems and mistakes.

This manual also includes a glossary of common terms and acronyms as well as an
extensive index at the end of the manual.

Certain character formats have been used to allow us to assist you, the reader, with
messages and instructions. Below is a list of the codes that pertain to this manual.

• Warnings are set off by a lightning bolt (~) icon and indented, bolded text.

• Notes are set off by a notepad (¥) icon and indented, italicized text.

• Examples are set off by the bolded word “Example” and indented, italicized text.

Action words within the manual are set off as listed below:

Introduction

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

1-7

• <Bold> – actual keystrokes on the keyboard, i.e. press <Esc>

• Bold – important text found within a paragraph or statement and options found
within the software, i.e. YES.

• Bold Italics – actual phrases found within the software, i.e. Device Selector:.
• Italics – software fields and drop-down menus, i.e. Operator Mode or

JobMaster/Configure.

¥ Exceptions: If a keystroke is listed in a note or example, the text will be bolded but
not italicized. If the item is found in a warning, it will not be bolded.
If a software field or drop-down menu is found in a note or example, the title will
be regular text (without format). If the title is found in a warning, it will be
italicized but not bolded.

¥ Any page number referenced within an on-line manual is a hotspot and therefore
can be clicked on to be taken directly to that page.

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

2-1

CHAPTER 2
GETTING STARTED

THE BASICS

If you are completely new to device programmers, there are a few basics you should
know before continuing through the manual.

• A device programmer is a tool used to configure a programmable integrated circuit
for use in the design or manufacture of electronic equipment. The blank
programmable devices are available from many manufacturers for many different
applications.

• The device programmer is analogous to a floppy disk drive. A floppy drive allows
a user to copy programs or data stored on a PC onto a blank floppy disk. The
programmer copies programs or data from the PC to a blank integrated circuit
instead of a disk.

• The user may design a pattern manually by using an editor, or may use a compiler.
Compilers, available from third parties, will generate software to be programmed
into memory devices or microcontrollers, or logic functions to be programmed into
Programmable Logic Devices (PLDs).

• The BP software supplies the programmer with all the information it needs to
program the user’s pattern into a specific device. The software is updated eight
times a year to cover new parts and to update existing algorithms. Learn more
about the individual programmers found in this series and unique capabilities for
each in Chapter 1 – Introduction.

INSTALLATION

HARDWARE INSTALLATION

After the equipment has been unpacked and inventory of the boxes has been confirmed
(refer to Appendix C, Operator Checklist), you are ready to connect the programmer to
the PC. Your new programmer will be connected to a parallel printer port on your PC.
It is preferable to dedicate a port to the programmer. You may plug and unplug the
cables or use a manual mechanical printer switch instead.

Chapter Two

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
2-2

• Use the 25-conductor cable provided with your programmer.

~ Do not use a ribbon cable or an RS-232 cable that has fewer than 25
conductors. You can extend the cable up to 12 feet, but be certain to use only
a 25-conductor shielded cable (available from BP Microsystems, Inc). A high
percentage of the hardware-related cable failures reported to our technical
support are actually ribbon cable failures. Ribbon cables work well installed
inside a chassis, but often make poor connections when subjected to the
flexing that occurs when used improperly.

~ Set the line voltage selector on the PC to the appropriate position to avoid
damage!

• Plug the programmer AC power cord into a power socket.

¥ The programmer power supply operates from 90 to 250 VAC for simplified
worldwide use. Connect one end of the DB-25 cable provided to the programmer’s
connector and tighten the screws. Connect the other end of the cable to your
computer’s parallel printer port.

~ Do not attempt to use any print buffers, electronic switches, or software copy
protection keys on the same port as the programmer. Verify that you have
connected to the correct parallel port on your computer. Connecting to a
serial port or a third party card may damage the programmer. This type of
damage is not covered by the warranty.

• Turn on the computer and the programmer. Both the Power LED and Active LED
on each programmer site will light up. While the Active LED is on, the programmer
is performing a Self-Test. After several minutes, the Active LED will turn off and
only the Power LED will remain on. If any of the Fail LEDs have turned on, the
programmer has detected an error during its Self-Test. If this occurs, make a
notation of which unit is displaying the Fail LED and call BP Microsystems
technical support line.

POSITIONING THE COMPONENTS

Proper placement of the system components is an important factor in the ease and
efficiency with which you can program devices.

You should position the programming modules and PC keyboard so that all can be
reached easily from one working position. You should keep the programmer level if
you intend to program fine-pitch devices.

We also recommend setting up on a conductive mat that can be grounded. The operator
should use an ESD wristband plugged into the programmer to prevent static discharge
that can cause damage to the devices you are programming.

Getting Started

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

2-3

Be sure to allow extra space for staging blank and programmed devices, labeling and
paperwork. We suggest designating an area to your left for blanks, an area to your right
for programmed devices, and a location to the left rear for rejects. After time, you will
develop a habit of moving in the same pattern, thereby increasing your efficiency.

CONNECT THE COMPONENTS

Once you have things in place and the software installed, you are ready to connect the
components of the system.

1. If you have more than one programmer and only one PC, daisy chain the
programmers to each other using the cables provided.

2. Plug the power cords from each programmer and the PC into a grounded power
socket.

3. Now you can connect the programmer to the PC using the 25-conductor data cable
provided with your system. Do NOT use a ribbon cable or other substitute as this
may cause system problems later.

4. Connect the data cable to one of the parallel printer ports on the PC. Connecting to a
serial port or a third-party card may damage the programmer.

¥ It’s most efficient to use one port for the programmer and a different one for your
printer. If we supplied the PC as part of your system, you should attach the data
cable to LPT-1.

5. Connect your ESD wristband to the grounding outlet on the front of the
programmer. If you are working on a grounded mat, connect the mat to the
programmer and the ESD band to the mat.

SOFTWARE INSTALLATION

If you have purchased a PC with your programmer system, the software will already be
installed in the C:\BP directory.

If you are installing the BP software on a PC not provided by BP Microsystems or
another computer, use the following instructions:

1. At the DOS prompt, type in the drive and directory where you would like the BP
software to be installed. Confirm that this destination is now the visible prompt.

2. Insert the disk labeled Disk 1 into Drive A and type a:install at the prompt line.
Follow the instructions for installing the disk contents and inserting the two
remaining diskettes. This will extract the BP.EXE software and JobMaster.DLL
onto your selected directory.

3. Verify that the programmer is powered on and all Pass LEDs are on.

Chapter Two

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
2-4

4. Type <BP> at the command prompt and press <Enter>. The software should
display a screen similar to this:

Figure 1 – Initial Sign-on Screen

The software version number will appear at the top of the screen and a message will
appear briefly at the bottom saying “Establishing communications, please wait.” If the
programmer is found on one of the LPT ports, no error message will appear and you are
ready to begin programming.

If an error message prompts a problem, you should make sure you are connected
properly, the power to the programmer is turned on, then try again.

If the software does not detect a programmer, or if no programmer is attached, it will
automatically go into a demonstration mode and allow you to use all the features that do
not require a programmer to be present.

¥ When powering on the system, always turn on the programmer before launching the
software.

Programmer Self-Test

Each programmer will automatically perform a Power On Self Test (POST) every time
you turn it on.

Both the Power LED and Active LED on each programmer site will light up. The
Active LED will stay on until the POST is comple ted. The Power LED will remain on.
If any of the Fail LEDs have turned on, the programmer has detected an error during its
Self-Test. If this occurs, make a notation of which unit is displaying the Fail LED,
which lights are steady and any that are flashing, then call BP Microsystems technical

Getting Started

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

2-5

support line (contact numbers for Technical Support are listed in Chapter 14,
Troubleshooting and Maintenance).

We recommend running a full system Self-Test on your programmer weekly, but first
you’ll need to have the BP software up and running.

RUNNING SELF TEST

Even though the programmer does an initial Self-Test upon start-up, you are strongly
advised to run a full system Self-Test on your programmer before performing any
operations. The BP Microsystems diagnostics will ensure that the power supplies are
functioning properly, and will test the integrity of all pin drivers shipped with your
particular configuration. The diagnostic Self-Test is activated by pressing <Alt-D>.
Insure that there are no devices in the programmer sites prior to beginning the Self-Test.
Any device left in a programmer site may be damaged during testing.

Once the Self-Test has been entered, two choices under the Device main menu selection
will be visible. Highlight Test and press <Enter>. You will be given a choice between
running all the units through Self-Test or selecting a particular unit to test. Choose All
and press <Enter>. The Self-Test will cycle through all of the units on the programmer.

When a unit finishes, the green Pass LED will be on. If any Fail LEDs are illuminated
after the completion of the Self-Test, note which unit(s) have failed and call BP
Microsystems technical support.

SETTING UP THE SYSTEM

Check the startup screen to verify that the model number of your programmer and port
(LPT-1) appear on the “Config:” status line. If the word “DEMO” appears, check your
connections to the programmer and make sure power is on. Restart the software if
necessary.

In Chapter 2, Getting Started, you learned about the components that make up the
programmer and how to set up the system.

In this chapter you learn, as a first-time user of a BP Microsystems’ programmer, step-
by-step, the basics of efficient operation. Our approach is a little different from other
systems with which you may be familiar, so please take the time to go through each
chapter.

If you are already familiar with a given section, feel free to skip to the next. But even if
you have already used BP programmers, this manual will give you some special tips for
using the system more effectively.

BP Microsystems has designed each programmer to be as simple to operate as possible,
and we think you’ll find it a pleasure to see how quickly you can learn to use the many
features offered.

Chapter Two

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
2-6

¥ Don’t forget, you can always get context-sensitive Help by pressing the <F1>
function key.

NAVIGATING THE SYSTEM

The initial software screen is known as the Command Mode screen. From here, it’s easy
to navigate your way around the system, using the menu commands. You’ll see the
menu commands on the line near the top of the display, beginning with Buffer on the
left.

The BP system offers a wide variety of commands and options, which are covered in
detail in Chapter 6, Command Reference. The commands commonly used most often
will be introduced in this chapter.

When you’re in Command Mode, you can access any of the main menus by typing the
first letter of the menu name. You may also press the <Left> and <Right> direction
keys to change the selection, then press <Enter> to execute the selected command.

Most of the main menu items have a sub-menu of further options. To move through
these options, use the <Up> and <Down> arrow keys to highlight the desired selection,
then press <Enter>.

You can return to the Command Mode screen by pressing <Esc>. In the instance that
you are in a sub-menu, you will have to press <Esc> twice.

Many different “hot keys” are available in Command Mode. These key combinations
are short cuts for more time-consuming menu selection techniques. Learning to use
them can speed your operation of the system. All the hot keys are listed in detail in
Chapter 6, Command Reference. You can see them on-screen at any time by pressing
<F3>. The most commonly used hot-keys will be introduced within this chapter.

FULL SYSTEM SELF-TESTS

Now that the system is up and running, press <Alt-D> to perform a full system Self-
Test. This will test every component in the system more extensively than the automatic
POST. We recommend that you perform this test once a week, to make sure everything
is operating properly.

NEED HELP?

The most important “hot key” when you’re getting started is <F1>. You can press the
<F1> key for extensive help at any time.

CONFIGURING THE SYSTEM

You will learn how to customize the system to serve your particular needs, using options
under the Configure menu. The system “wakes up” with default options, which should

Getting Started

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

2-7

serve your needs initially, but the default settings can be changed to customize the
programming process to better suit your needs.

READING THE SYSTEM STATUS

The four status lines at the bottom of the Command Screen display important
information to help you double -check what you’ve told the system to do. These lines
will show you:

• What data is in the buffer (there should be none now, because you have not yet
loaded a file).

• The device selected and its size information (again, there will be none listed until
you select a device in Chapter 3).

• The programmer attached to your PC (this should indicate a programmer as well as
the type and number of programmer sites) and the Device/Options selections you
have made.

• General status. This may tell you to press a key to continue, or to define what the
function keys do.

From the Command Mode screen, use the cursor keys to select Configure, and press
<Enter> , or simply type <C>.

Figure 2 – Configure Options

Chapter Two

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
2-8

CONFIGURE OPTIONS

Your BP software starts up with certain default options set. Even though these default
options are set, you can change them to customize the system for your particular needs.
These changes can also be made permanent, as discussed further within the manual.

Programmer

The software will automatically recognize what type of programmer you have attached
to your PC. Make sure that it matches your programmer. You can change this if you
wish to see the different device support options for another programmer.

Parallel Port

This field shows the parallel port to which the programmer should be attached. If the
programmer is attached to a different port, the software will find it automatically. If no
programmer is attached, the software will put itself into a demonstration mode.

Display

This field allows you to switch from color to black-and-white display. You may find
this useful if you’re using a color laptop.

User Mode

This field tells the software how much on-screen help you need. The default option is
NOVICE. This setting provides you with numerous warning messages to guide you in
learning your way around the system. It also gives you the chance to abort potentially
hazardous operations, like programming a chip. By changing the setting to EXPERT,
you can turn off these messages when you no longer need them. This will make
programming go a little faster.

Startup Messages

You can set this field to DISABLED to turn off the startup messages, again speeding up
your programming routine.

Screen Saver

This field will enable a screen saver that will blank your screen after a specified amount
of time.

Screen Saver Delay

Specifies the time of inactivity (in minutes) to wait before blanking the screen.

Getting Started

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

2-9

Screen Restore on Autohandler

This option will keep the screen from being blanked as long as there is ongoing
communication with an autohandler.

Decimal or Hex

This field determines the format you use to enter numbers into the system. If you’re
used to decimal (0-9), select that option. If you use hexadecimal, (0-9, A-F), select Hex.
The advantage of Hex is that it allows you to use fewer characters to represent bigger
numbers, e.g., “FF” instead of “255”. This is a global command, which means that
changing it here will change it throughout the program.

SAVING YOUR CONFIGURATION

Whenever you want to change the Configuration of your system, you can make the BP
software “wake up” to your settings every time. To do this, use the Save Configuration
field.

The three options in this field are YES, NO and AUTOMATIC.

Yes

YES saves your choices when you press <Enter>. The next time you start the program
these settings will be recalled. Your settings are saved in a .CFG file in the same
directory as the BP.EXE file. If you want to revert to the original default settings, just
delete the .CFG file.

No

Selecting NO lets you make changes to the system for the current programming session.
When you start the program again, it will revert to the previous, or default, settings.

Automatic

The AUTOMATIC option saves any changes you make automatically whenever you
quit the program. When you start the program again, all your settings will be restored,
including your chip selection, saving you time in getting back to work.

MULTIPLE CONFIGURATIONS

You can keep several frequently used configurations on disk by saving them to different
directories. You can override this feature by placing a line in your AUTOEXEC.BAT
file similar to this:

 set bpcfg = c:\bp

Chapter Two

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
2-10

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

3-11

CHAPTER 3
PROGRAMMING

FROM START TO FINISH

This chapter will take you through the entire process of starting and completing a
programming cycle. The following sections are designed to take you through the step by
step process of choosing the correct devices, loading and storing in the data buffer, and
monitoring the entire job.

SELECTING A DEVICE

Before you can begin programming, you must tell the software which device you will be
programming. The BP software supports thousands of devices, but it’s up to you to
designate which one and what type.

~ It is essential to choose the correct entry for the device you want to program.
Programming algorithms vary widely between different semiconductor
manufacturers and even between parts from one manufacturer with different
speed ratings! Selecting the wrong algorithm can destroy your chip! The part
number on your chip may have package code and temperature rating letters
following the part number shown in the menu. When you select a chip, it is a
good idea to specify both the manufacturer and the part number of the device
you want to program. You must be careful to select the part number from the
menu list that exactly or most closely matches your device part number,
including the suffix that represents programming voltage and speed.

~ Almost all programmable memory devices manufactured today support an
electronic code that can be read to identify the correct programming
algorithm. Most likely, your chip supports this feature and the code will be
read before programming to ensure that the correct algorithm is being used.
However, if you are in possession of a part that does not utilize this electronic
code, selecting the correct chip from the menu is imperative.

SELECT OPTION

From the Command Mode screen, type <Alt-S> or use the directional arrow keys on the
keyboard to choose the Select menu.

Chapter Three

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
3-12

Figure 3 – Device Selector window

The Device Selector dialog box contains a very long list of devices. You can use the
arrow keys to scroll through the list or you can utilize the search engine function.

To use the search engine, use the directional arrow keys on your keyboard to place the
cursor next to the phrase “Device Selector:”. Begin typing in the device information. As
you type in the manufacturer’s name and device number, the device list narrows to include
only those names containing the characters you type, in the order you type them. Press
<Enter> to select the device you want to program. The software should know the proper
algorithm for programming it.

¥ You can speed the search somewhat by using the Package Type and Family Shown
fields to narrow the selection to DIP packages, for example, or PLD’s. But if you
know the manufacturer name and device number, the quickest way is to leave Package
Type set to Any and Family Shown set to All and just type in the full device name.

SAVING THE SELECTION

If you have set Configure/Save to AUTOMATIC or YES, the software will “wake up”
with the same chip selected the next time you start it. If you have not set the
Configure/Save option and would like to, refer to the previous chapter for assistance in
doing so.

LOADING THE BUFFER

Now that you’ve selected a device, the programmer knows the proper algorithm (i.e., the
correct voltages, pin numbers and other mechanical data). The next step is to load a file
into the programmer’s buffer.

Programming from Start to Finish

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

3-13

UNDERSTANDING THE FILE FORMATS

A programming file may come “off the shelf” for common applications, or it may be
custom-created for your company’s particular application.

Choose Buffer/Load from the main menu. To limit the list to a specific set of files, you
can change the “Directory:” specification from *.* to *.hex, for instance (press <End>,
<Backspace>, then type H E X). You can also change the disk drive and directory by
editing the “Directory:” field. To choose one of the files listed, select the file by moving
the cursor up or down with the directional arrow keys and press <Enter> to copy your
choice to the “File to load:” field and the software will automatically identify the file type
and move its cursor accordingly.

¥ Pressing <Enter> on “..\” or any other name ending in “\” is an alternative way to
change the current directory and allows easy traversal through your directory tree.

One of the big advantages of the BP software is its ability to recognize the type of file you
have loaded, instead of requiring you to specify it. In the rare instance where the file type
is incorrectly identified, you can change it in the File Type field.

For most work, you only need to know the correct name for the file you are programming
into your device. If you are interested in editing or modifying files, turn to Chapter 4,
Using Data Editors and Chapter 5, File Formats for further instructions.

Device/Options

In some cases, you will need to specify some additional Load Parameters to control how
and where the file is loaded into the buffer. You can access these options by pressing
<F8> from within the Buffer/Load dialog box. When you use these options, you can find
instructions in Chapter 6, Command Reference under Buffer/Load, Device/Options and
Device/Configure.

LOADING THE FILES

From the command mode, press <Alt-L> to bring up the Buffer/Load screen. In the
Directory field, type the name of the directory in which the file you need is located.

Chapter Three

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
3-14

Figure 4 – Buffer/Load screen

If you are going to use the same file repeatedly, you can speed your operation by copying
that file from the floppy disk into a directory on your hard drive. You can also set the
Buffer/Options menu option to AUTOMATIC to find and load this same file every time
you launch the BP software.

Use the cursor keys to select the file and press <Enter>. The file name will appear to the
right of File to load: and the file Type: will be automatically determined. Press <Enter>
again and the file will be loaded into the programmer’s buffer.

You can confirm that this has been done by looking at the status lines at the bottom of the
screen. The Buffer: field should have changed from Empty to the name of the file you
selected.

PROGRAMMING A DEVICE

Now that you have a file loaded into the buffer, you are ready to begin programming a
device.

SET NUMBER OF DEVICES TO PROGRAM

Before you get started, you must tell the software how many devices you want to program.
Beginning at the Command Mode screen, select the Device/Handler menu and press
<Enter>.

Programming from Start to Finish

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

3-15

Figure 5 – Device/Handler window

In the Device/Handler dialog box, enter the number of devices you want to successfully
program in the Number of operations: field.

~ We highly recommend using a vacuum pencil to pick up and insert a chip, in
order to minimize the chance of damage from static discharge.

~ Parts must not be inserted or removed when the ACTIVE LED is on.

¥ The programmer has protection circuitry, so it is not necessary to remove the device
to be programmed before the power is turned on or off.

It is very important to insert the device correctly so that its pin 1 matches up with pin 1 in
the programmer site. Pin 1 is often identified by a notch or a mark on the device, and by a
mark on the programmer site. Inserting the chip improperly may damage it, so make sure
you have it properly aligned.

CHIP PLACEMENT

DIP

The chip should be “top-justified”, which means pin 1 of the chip (the pin nearest an
identifying dot or notch) goes in the top left corner of the socket.

SOIC and TSOP

Same as the DIP placement; pin 1 should be top justified.

Chapter Three

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
3-16

PGA

Place the PGA device as indicated by the particular adapter or socket module.

QFP

Align pin one with the mark on the programmer site.

PLCC and LCC

Place pin one on the side facing the operator.

Once the device is in the programmer site, lock it in place to achieve continuity.

Now press the Start button next to that programmer site. The yellow ACTIVE LED will
come on and programming will begin. When programming of that part is completed, the
yellow ACTIVE LED will go off and one of the other two status lights will come on.

VERIFY THAT THE PART IS CORRECTLY PROGRAMMED

There are two ways to make sure the part is correctly programmed. You can watch the
lights beside the programmer site. If the green PASS LED comes on, the part has been
properly programmed. If the red FAIL LED starts flashing, something has gone wrong.
You can get the same information by watching the PC screen, which will report the
PASS/FAIL status of each part.

The worst mistake a device programmer can make is to allow a failed device to be counted
as passed. The programmer has a special feature to help make sure this doesn’t happen to
you.

If the device has passed, the status LEDs will turn off and the Start button will turn on
again when you remove the part from the programmer site. If the part has failed, the red
FAIL LED will remain steadily illuminated even when the part is removed.

If you have to leave the programmer during a session, you can always determine the
PASS/FAIL status of a part by looking at the LEDs. If a part is in the programmer site
and the PASS LED is on, the part has been successfully programmed. If the part has
already been removed and the FAIL LED is still on, that part has failed. If the part has
been removed and only the Start button LED is on, that part was good and the
programmer site is ready to program a new part.

As a result, the worst thing that could happen is that a good device will be programmed
twice.

Programming from Start to Finish

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

3-17

Figure 6 – Programming Status/Verification screen

You are now ready to program the remaining parts. Insert another device in the next
programmer site, achieve continuity, and the system will automatically begin to program
that part. Without waiting for it to finish, you can insert the next part into the next
programmer site. By the time the last programmer site is filled, the first part should be
completed, and you can remove it and insert a blank part in its place. Continue until all
devices are done.

Once all parts have been successfully programmed, the PC will beep to indicate your
production run is completed.

READING THE RESULTS OF YOUR PRODUCTION RUN

When the specified number of parts have been programmed, the software will send a
report to the PC screen. This will tell you the device, the name of the file you
programmed into it, how many operations the system performed, how many parts passed
and how many failed. This is useful in helping you make sure you have programmed the
correct number of parts successfully.

The report will also show you the beginning and ending time of your programming
session, the number of units per hour, and the percentage of successful operations.

SAVING AND PRINTING THE REPORT RESULTS

The report from each run can be saved to the hard disk, and can be printed out.
Instructions for doing this can be found in Chapter 6, Command Reference under the
Info/Log command.

Chapter Three

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
3-18

EXPLORING YOUR OPTIONS

In this section, you can explore some of the programmer’s options for increasing your
programming speed and productivity. You will also look at the system’s flexibility in
handling some unique programming challenges.

DEVICE SPECIFIC OPTIONS

Unlike other programmers, BP Microsystems’ programmers do not append configuration
parameters to data files. This allows the operator a greater degree of flexibility in
programming devices. These options are chosen through the Device/Configure menu.

Device/Configure

The Device/Configure menu offers some very device-specific options, which allow you to
customize your programming to meet specific requirements. Depending on which device
you select, you will be presented with different options.

Some microcontrollers allow setting of such things as the memory mapping, watchdog
timers, security, and clock source. Other devices have special operating modes that can be
configured with this command.

Since Device/Configure options will vary from chip to chip, you should refer to the data
book for your particular device for more information on the configuration parameters.
You can always press <F1> for more help on each item in the dialog box.

Device/Encrypt

Some microcontrollers support a special level of security that encrypts your program and
data. This allows you to protect your design secrets, yet still be able to verify the contents
of devices after programming. More detailed instructions on encryption are found in
Chapter 6, Command Reference under Device/Encrypt.

CHECKSUMS

Checksums are a useful way of verifying that the information you have programmed into a
device is correct. There are two situations in which the checksums may appear to indicate
an error when in fact you have programmed a device correctly.

The BP software calculates checksums based solely on the data portion of a file. Other
programmers may calculate checksums differently, so you may see a different result than
expected.

If you have edited a file and neglected to update the checksum, this too can indicate a
programming error when in fact programming is successful.

For more details on checksums, see the Buffer/Load command in Chapter 6, Command
Reference, or look up Checksums in the index.

Programming from Start to Finish

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

3-19

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

4-1

CHAPTER 4
USING THE DATA EDITORS

The data editors give you access to memory data, fuse data, and test vectors throughout
the Buffer/Edit and Buffer/Vectors commands. The Buffer/Edit command will bring up
the Memory Data Editor, if an EPROM or microcontroller is selected or if a non-
JEDEC file has been loaded. It will bring up the Fuse Data Editor if a PLD is selected
or a JEDEC file has been loaded. The Buffer/Vectors command appears only when a
PLD is selected and will bring up the Test Vector Editor.

MEMORY DATA EDITOR

The memory data editor allows you to look at data obtained from a binary or hex file, or
from a memory chip. You have the option to edit the data and then store that data in a
file. The edited data may also be used to program a chip.

Figure 7 – Memory Data Editor

Chapter Four

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
4-2

Using the keyboard commands listed below, you can access the data and alter the format
it is presented in. The data is generally displayed in ASCII or hex formats, but you may
change the data for binary and octal formats as needed.

KEYBOARD USAGE

←, ↑ →←, ↑ →, ↓ ↓
PgUp, PgDn

Move cursor

Ctrl -PgUp Go to top of buffer

Ctrl -PgDn Go to end of buffer

F1 Help on key usage

F2 Select address radix (decimal/hex)

F3 Set Cursor Address (goto)

F4 Reconfigure (hex, ASCII, octal, binary)

F5 Search for pattern

F6 Fill range with constant

F7 Copy a range of data

F8 Invert a range (ones complement)

F9 Calculate/Change checksum (8-bit)

F10, Esc, Enter Exit the editor

Table 1 – Memory Data Editor Keyboard Usage

SELECT ADDRESS RADIX (F2)

This key toggles between hex and decimal addresses on the left side of the screen.

SET CURSOR ADDRESS (GOTO) (F3)

Type the address to view or edit, choose HEX or DECIMAL before typing the address.

RECONFIGURE (F4)

Reconfigures the editor display. Type one letter for each radix you want displayed on-
screen. Any combination of displays is acceptable. The four radixes available, ASCII,
binary, hex, and octal, are represented by the letters a, b, h, and o (e.g., for binary only
type , and <Enter>. For hex, ASCII, and octal, type <hao>, and <Enter>.)

SEARCH FOR PATTERN (F5)

Searches the data buffer for a specific pattern. The pattern can be entered in ASCII or
hex. To enter an ASCII string, type an apostrophe (‘), then the string with no extra
spaces. To enter a hex pattern, just type the hex pattern you want to find. Then, specify
the address where the search starts and whether to search toward higher (FORWARD)
addresses or toward 0 (BACKWARD).

FILL RANGE (F6)

Specify the byte-range to fill (inclusive) and the data to be placed in those bytes.

Using the Data Editors

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

4-3

COPY (F7)

Specify the data source byte-range and the destination address for the first byte. The
destination address may overlap the source address. This operation is similar to an
insert or deletion operation.

Example: Copying from 0-FF to address 1 will “insert” a new location at 0,
shifting the existing data down one address.

INVERT A RANGE (ONES COMPLEMENT) (F8)

Perform a ones complement on a range of addresses. A ones complement uses the
formula: newbyte = 255 - oldbyte. Complementing a byte twice restores its original
value.

CALCULATE/CHANGE CHECKSUM (F9)

Add all, every other or every fourth byte over the specified range of addresses and then
set a particular address to generate the desired checksum. If you have the “Checksum
method:” under the Buffer/Options command set to 16-BIT you will also be allowed to
specify the byte order, as seen in the example below. After setting the parameters below
and hitting <Enter>, the current bit sum of the 8 (or 16) bit wide values is displayed in a
dialog box. The box lets you change a byte (or a word for 16-BIT sums) to modify the
sum.

Figure 8 – Change checksum window

Changing any byte in the range changes the checksum; the last two (or four) digits of the
sum can be set by changing a byte (or a word). To change the sum, decide which

Chapter Four

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
4-4

address to change and specify a new sum. Users will often set an EPROM sum to zero
so their microprocessor can determine if the EPROM data is valid. The “Selective sum:”
option is provided so you may set the sum for the even bytes and then set the sum for the
odd bytes. This is useful when multiple chips are used in the target circuit and each chip
must have its own checksum. To do this you must execute the command once with a
particular start address and then execute it again with one plus the same start address.

EXIT THE EDITOR (F10, ESC, ENTER)

All changes to the data while in the editor are permanent regardless of how you exit the
editor. You may think <Esc> will not save the changes, but it does. The best way to get
back the original data is to load the buffer again by reading a chip or loading a file.

FUSE DATA EDITOR

When the Buffer/Edit command is used on a PLD, the display shows JEDEC fuse data
where a 0 indicates an intact fuse (a connection in the PLD array) and a 1 indicates a
blown fuse (no connection). The number to the left of each row shows the starting
address for that row, with fuse locations numbered sequentially from left to right. Fuse
numbers start at 0, so fuses in a device with 2048 fuses are numbered 0 to 2047. The
total fuse number in the buffer is END address + 1.

F

Figure 9 – Fuse Data window

Keyboard Usage:
←, ↑ →←, ↑ →, ↓ ↓

PgUp, PgDn Move cursor

Ctrl ←, ←, Ctrl →→ Move one digit left or right

Ctrl -PgUp Go to top of buffer

Using the Data Editors

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

4-5

Ctrl -PgDn Go to end of buffer

F1 Help on key usage

F2 Select address radix (decimal/hex)

F3 Set Cursor Address (goto)

F7 Copy a range of data

F10, Esc, F10 Exit the editor

Table 2 – Fuse Data Editor Keyboard Usage

The function keys for this editor operate as described above for the Memory Data
Editor.

TEST VECTOR EDITOR

Each row of the display shows one test vector, with one character for each pin on the
chip; pin 1 at the left, the last pin at the right. Test vectors are numbered starting with 1,
so END indicates the total number of vectors stored in the buffer. The CURSOR
location shows both the vector number (followed by a colon) and the pin number where
the cursor is located. Below is an example of 24 pin vectors with the cursor on pin 1 of
vector 1:

Figure 10 – Test Vector Editor

Keyboard Usage:

←, ↑ →←, ↑ →, ↓ ↓
PgUp, PgDn

Move cursor

Ctrl PgUp Go to top of buffer

Ctrl PgDn Go to end of buffer

F1 Help on key usage

Chapter Four

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
4-6

F2 Select address radix (decimal/hex)

F3 Set cursor address (goto)

F7 Copy a range of data

Esc, F10, Enter Exit the editor

Table 3 – Test Vector Editor Keyboard Usage

The function keys for this editor operate as described above for the Memory Data
Editor.

Using the Data Editors

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

4-7

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

5-1

CHAPTER 5
FILE FORMATS

FILE LOAD FORMAT EQUIVALENTS

The BP.EXE software loads many different file formats and automatically recognizes
these formats. Nine formats appear in the Buffer/Load dialog box, but many of these are
general purpose translators that can read multiple formats. File types are automatically
determined when the software scans the file, so you don’t have to become an expert on
file formats.

BP Microsystems supports new formats when requested by customers. Many of the
formats in the following table are obsolete and have never been requested. If you need
support for a format that is not in this table, please contact our Technical Support staff
so we can satisfy your needs.

This list includes the Data I/O format numbers along with the corresponding BP format
to choose.

Chapter Five

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
5-2

File Format Data I/O
Number

BP Format Designation and
Status

ASCII-BNPF 01, 05 obsolete 1
ASCII-BHLF 02, 06 obsolete 1
ASCII-B1OF 03, 07 obsolete 1

Texas Instruments SDSMAC 320 04 SDSMAC(320)
5-level BNPF 08, 09 obsolete 2
Formatted Binary 10 FormatBin 2

DEC Binary 11 obsolete 2

Spectrum 12, 13 not supported3
POF 14 POF
Absolute Binary 16 BINARY
ASCII-Octal Space 30, 35 obsolete4
ASCII-Octal Percent 31, 36 obsolete 4
ASCII-Octal Apostrophe 32 obsolete 4
ASCII-Octal SMS 37 obsolete 4
ASCII-Hex Space 50, 55 ASCIIHEX
ASCII-Hex Percent 51, 56 ASCIIHEX
ASCII-Hex Apostrophe 52 ASCIIHEX
ASCII-Hex SMS 57 ASCIIHEX
ASCII-Hex Comma 53, 58 ASCIIHEX
RCA Cosmac 70 obsolete
Fairchild Fairbug 80 FAIRBUG
MOS Technology 81 obsolete
Motorola Exorciser 82 MOTOROLA
Intel Intellec 8/MDS 83 INTEL
Signetics Absolute 85 obsolete
Tektronix Hexadecimal Format 86 TEKHEX
Motorola EXORmacs 87 MOTOROLA

Intel MCS-86 Hexadecimal Object
File Format

88 INTEL

Hewlett-Packard 64000 Absolute 89 not supported
Texas Instruments SDSMAC 90 SDSMAC
JEDEC format (Full) 91 JEDEC
JEDEC format (Kernel) 92 not supported
Tektronix Hexadecimal Extended 94 TEKHEX
Motorola 32 bit (S3) 95 MOTOROLA
Hewlett-Packard UNIX format 96 not supported
Intel OMF 386 97 OMF
Intel OMF 286 98 OMF
Intel Hex-32 99 INTEL

Table 4 – File Formats

1 This file format was designed for easy human input before binary editors were available.
2 This format was designed for use with paper-tape readers and is now obsolete.
3 This is a very verbose ASCII binary format that has not yet been requested by customers.
4 This is an unpopular format that has not yet been requested by customers.

File Formats

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

5-3

HEX FILES

Hex files and binary files are used to store data that can be programmed into a chip. The
hex files are ASCII files containing hex characters (0-9, A-F) and other information.
Information on editing hex files can be found in Chapter 4, Using the Data Editors.

Straight-hex Files

The straight-hex file format is the simplest. It consists of two hex characters for each
data byte in the file. The hex characters are separated into lines with a Carriage Return,
Line Feed sequence. The file contains neither address information nor any checksums.

Hex-space Files

The hex-space format is identical to straight-hex format except spaces may be placed
between hex pairs representing bytes.

Intel Hex Files

BP programmers support both MCS80 and MCS86 style Intel hex files. The MCS80
file format uses 16-bit addresses and is therefore limited to 64k bytes (216 bytes). The
newer MCS86 format (extended Intel format) adds an address offset record that extends
the file addresses up to 20 bits, 1 Megabyte.

MCS80

Each MCS80 data record is formatted as follows:

 :nnaaaa00dd..ddss

Number of data bytes------

 Address----

 Data Bytes-------------

0-Sum of bytes--------------------------

The end record is:

 :00000001FF

MCS86

MCS86 files use an address offset record. The record specifies an offset to add to
subsequent data records:

Chapter Five

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
5-4

 :02000002aaaass

 offset + 16------

 0-Sum of Bytes------

Motorola Hex Files

Motorola hex files support 16-, 24- and 32-bit addresses. The size limitation of this file
format is 4 gigabytes. The BP-4100 supports the full range of record numbers, S0-S9.

S1

S1 data records (64KB limit) are:

 S1nnaaaadd..ddss

Number of data bytes +3----

 Address------

 Data Bytes-----------

Checksum (FF-sum of bytes)-------------

The end record is:

 S9

S2

S2 data records (16MB limit) are:

 S2nnaaaaaadd..ddss

Number of data bytes+4

 Address---

 Data Bytes----------

Checksum (FF-sum of bytes)----------

The end record is:

 S8

File Formats

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

5-5

S3

S3 data records (4GB limit) are:

 S3nnaaaaaaaadd..ddss

Number of data bytes+3

 Address---

 Data Bytes------------

Checksum (FF-sum of bytes)------------

The end record is:

 S7

Tekhex Files

Tektronix has their own hex format, Tekhex. It supports only 16-bit address records.

 /aaaannssdd..ddss

 Address---

 Number of data bytes-------

Sum of aaaann nibbles---------

 Data nibb--------------

 Sum of data nibbles-----------------

The end record is:

 /00000000

Addresses

The Intel, Motorola and Tekhex files contain an address in each line of data. This
address tells the BP-4100 which bytes to program with the data on the line. Straight hex
files and binary files do not contain addresses. BP Microsystems programmers count
each byte to generate an address, i.e., the first byte is 0, the next is 1 and so forth. Thus
if you move or append lines to a straight hex file, the resultant EPROM will be different.
If you move the lines around in an MCS80 Intel, Motorola or Tekhex file the data will
not be changed.

Chapter Five

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
5-6

Checksums

Intel, Motorola and Tektronix hex files include a checksum in every line. This code is
calculated from the data on the line. When the programmer receives a line, it
recalculates the checksum and compares it to the one from the file. If there is an error in
the file (such as missing characters) the sum will not be correct and you will get the
message:

 Warning--Checksum Error:

 line causing error is printed here

In this case, the programmer assumes the address and data information is correct
anyway and program normally. If you edit the data fields in a hex file without updating
the checksum, you will get this message.

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-1

CHAPTER 6
BP SOFTWARE

COMMAND REFERENCE

This chapter describes the commands provided by the BP DOS interface software.
Commands are located in menus at the top of the screen. To execute a command, type
the first letter of the menu entry or use the cursor keys on the keyboard to select the
desired command and press <Enter>. In this chapter, command names are written as
Name or Menu/Name where Menu is the menu name, if used, and Name is the entry that
invokes the command.

Some commands may not appear on your particular programmer model. For example, if
your programmer only supports PLDs, the commands used strictly for memory devices
will not be present in your interface software and the converse is true if your
programmer only supports memory devices. Furthermore, sometimes identical
commands invoke different routines when programming memory devices versus PLDs.
For an example, see the Device/Secure command. Some menu screens and commands
appear only for specific chips. The Device/Configure, Device/UES , and Device/Encrypt
commands are examples of commands that only appear on applicable devices.

KEYBOARD USAGE

The following keys may be used at any time:

F1 Help
Esc Interrupt a command or return to the previous

menu

The program starts at the command level. These keys operate any time you are at the
command level.

→→ , ←← , Space Move cursor, highlight selection
↓↓, Enter Execute the command that is selected
A-Z Select and execute command
↑↑, Esc Move up one line in the command menu
F2 Chip Information
F3 Hot-Key Help

Tables 5 & 6 – Common Keyboard Usage

Chapter Five

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-2

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-3

“Hot-Keys” also operate at the command level:

Alt-C Configure
Alt-D Diagnostic h/w test
Alt-E Buffer/Edit
Alt-H Help Menu (F3)
Alt-I Chip Information (F2)
Alt-L Buffer/Load
Alt-O Device/Options
Alt-P Device Program
Alt-Q Quit
Alt-R Device/Read
Alt-S Select
Alt-T Device/Test
Alt-V Buffer/Vectors
Alt-X Quit
Alt-0…9
Alt-F1…F9

Play macro file #.pgm (e.g., Alt-1 plays macro
file 1.pgm)

Dialog boxes gather information before executing commands. The dialog box keys are:

Esc Cancel dialog box and return to command level
Enter Exit dialog box and execute command
Tab Move to next field in dialog box
Shift-Tab Move to previous field in dialog box
Home Move to first selection on a line
End Move to last selection

When editing text:

Backspace Delete character to left
→→ , ←← Move cursor
Home Move to left end of line
End Move to right end of line
Ctrl-U Clear line
Ins Turn ON/OFF insert mode

When selecting a file (under Buffer/Load or Buffer/Save) or chip (under Select) from a
list, editing the selector string (directory or part number) changes the list. Highlight the
item you want and press <Enter>. To make selections:

↓↓, ↑↑, PgUp, PgDn Move selector highlight
Enter Make selection

Tables 7, 8, 9, & 10 – Common Keyboard Usage

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-4

AFS

Advanced Feature Software is additional software that can be purchased to run with the
BP Software used for the programmer. This software includes Serialization, JobMaster,
Advanced Support, and Handler software (needed anytime an autohandler is used).

AFS/SERIALIZE

Description

Serialize devices programmed.

Application

Use this command to select a serialization pattern. Choose from NONE, Simple and
Complex.

Operation

Select AFS/Serialize and choose an option.

See Also

Chapter 10, Serialization, page 10-1

AFS/UPGRADE

Description

Enter an Upgrade code for additional software purchased for use with the BP Software.

Application

Once you have contacted BP Microsystems, Inc. and purchased additional software, i.e.
JobMaster, an upgrade code will be generated and sent to you. This code is used to gain
access into the additional software provided with your software version.

Operation

Select AFS/Upgrade from the BP Software main menu. At the window prompt, type in
the Upgrade code provided by BP Microsystems, Inc. and select Accept. Once accepted,
the BP Software will begin upgrading the programmer sites. When the upgrade is
complete, you will be prompted you to re-boot your system to initialize the AFS you
have purchased.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-5

BUFFER COMMANDS

BUFFER/CLEAR

Description

Clears all memory, fuse, and test vector data buffers.

¥ This command is only available when the “User Mode” is set to EXPERIENCED
under the Configure command.

Application

Use this command to empty the data buffers before using one of the edit commands to
create new data (Buffer/Edit, or Buffer/Vectors).

Operation

Press <Enter> to clear the buffers. Press <Esc> to cancel the command.

¥ The buffers are automatically cleared during a Buffer/Load command if the “Clear
buffer before loading” option is set to YES under the <F8> additional options in
the Buffer/Load dialog box.

See Also

Device/Read, Buffer/Load, Device/Options

BUFFER/EDIT

Description

Edit the buffer contents.

Application

Use the data editor to examine or modify patterns read from a file or a chip. This data
may then be programmed into a chip (Device/Program) or stored in a file (Buffer/Save).

Operation for memory devices

The editor screen will appear in hex and ASCII formats when a memory device has been
read or a corresponding file has been loaded. It can be reconfigured to show octal and
binary formats. A flashing cursor appears on the active side under the character that can
be edited, and is highlighted on both sides of the display. To change the character, press
any valid character for the active data format (0-9, A-F for hex, any printing characters

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-6

for ASCII, 0 or 1 for binary, and 0-7 for octal). Use the cursor motion keys to scroll
through the buffer.

¥ Remember that <F1> will give you help. The other function keys (F2-F10) allow
you to reconfigure the editor, edit data, or exit the editor.

Operation for PLDs

When a PLD has been read or a JEDEC file has been loaded, the editor comes up in a
binary format representing the fuses in the device. Use the cursor keys to scroll through
the buffer. Type 1 or 0 to change a fuse. Press <Enter> or <Esc> when finished.

¥ Editor data corresponds to ‘L’ fields data in the JEDEC file.

¥ The term “fuse” is accurately used when referring to fuse-link programmable parts.
During programming, these parts actually melt a metal link that carries a signal
when the chip is in operation. EPROM and EEPROM based PLDs, however, don’t
use fuses. They store a programmed bit by placing electrical charges on a MOS
transistor gate. “Fuse”, in this case, is a historical carry-over from the older
technology.

See Also

Chapter 4, Using the Data Editors, page 4-1

BUFFER/LOAD

Description

Load a data file from disk into the buffer.

Application

Load the buffer before programming. Once loaded, the file data may be edited and
saved to disk.

Operation for Memory Devices using Hex/Binary Files

A hex or binary file describes the data to be programmed into a memory chip. Hex file
standards define consistent ways to represent data, contain checksums to verify file
integrity, load addresses that specify where to place data in a memory chip or system
and can be printed. They are often generated by compilers and assemblers to program
EPROMs. Any of the file formats can represent data to be programmed into any chip.
The Buffer/Load command will translate the file into a binary representation stored in
the buffer.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-7

A selector box will appear showing you the contents of the directory specified in the
Directory field at the top of the dialog box. You can edit this line to see files in a
specific directory, such as C:\files*.hex.

Selecting File Name and Type

Select the desired drive, directory and file extension at the Directory prompt. Use *.* to
show all files.

Use the arrow keys to move the cursor down until it is over the desired file name, and
then press <Enter> to select it. The specified file name will appear to the right of the
File to load field and the file type is automatically determined in the Type field.

¥ The software almost always determines the correct file type, but it looks at only the
first 1K of the file, so JEDEC files with large comment blocks at the beginning and
other similar situations may fool the software. If the software chooses the wrong
type of file and you wish to choose another particular file type, you can override the
“Type” by using the <Tab> key to get to that field and then selecting the desired
type with the arrow keys.

Figure 11 - Buffer/Load screen

If you wish to turn off Automatic file identification, then simply go to the Buffer/Options
command and disable that option.

Alternatively, if File to load is blank, you can type the exact path and file name on the
Directory line. After typing the file name, press <Enter>.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-8

If you press <Enter> once again, the default parameters load the entire file starting at
buffer address 0; however, you may wish to control how the data is loaded into the
buffer. If so, then use the <F8> for additional options (listed below).

If you do a Buffer/Load again and want the same file, then just press <Enter> twice.

F8 – Additional Options

“Load parameters” control where the file is loaded in the buffer and how much of the
file will be loaded.

Press <F8> to see the additional load parameters.

Normally, you will want to clear the buffer, but to combine multiple files you may
specify loading a new file without clearing the buffer. Use the arrow keys to change the
Clear buffer before loading field.

A common requirement is loading a file generated by an assembler or compiler with a
starting address that is other than zero.

Example: If your code executes at address F0000 hex, you will specify that
address as the Lowest address to load parameter. For hex files, the
software automatically places the first address offset encountered in
the file as the Lowest address to load.

For most purposes, this is what you want, but some compilers generate the code in
random order, which will make this feature less desirable. To turn off “Automatic
lowest address to load:”, go to the Buffer/Options command and disable this feature.

The Highest address to load field may be used to discard any data from your file with a
higher address, rather than loading it into the buffer.

Another common requirement is to load multiple files into the buffer. In this case,
specify the Load address in buffer parameter where the first byte is to be loaded into the
buffer. Specifying both lowest and highest addresses to load will exclude data from the
file outside that range. Remember, with the first file you load you will want the Clear
buffer before loading option set to YES, but on the subsequent files you will want to set
it to NO.

Press the <Enter>key to continue the load process.

The file will load into the buffer. If any errors are detected, messages appear describing
the problem. Since hex files may have a checksum on each line, a checksum error can
result if the checksum doesn’t match the sum of the bytes on the line. This is usually the
result of editing the file without updating the sum. If this happens, you will receive a
warning message. The file will still load – the message is there alerting you to a
potential problem.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-9

A message will appear on-screen showing the number of bytes loaded from the file, how
many bytes the file contains, and how many lines the file contains (hex files only).
Also, the buffer status line at the bottom of the screen will display the number of bytes
in the buffer, the checksum and the file name.

Operation for PLDs using JEDEC files

JEDEC files are the standard method of describing PLD use patterns and test vectors.
The file format standard was set up by the Joint Electron Device Engineering Council
(JEDEC). JEDEC files may contain fuse data, test vectors, part numbers, checksums,
and a secure enable option. The file’s checksum lets the software verify that a given file
is intact and has not been unintentionally modified. JEDEC files normally use the
extension (last three letters) “.JED”, but frequently “.JDC” or “.J01” is also found.

The data in any JEDEC file can be used to program and test any PLD, but useful results
are obtained only when the data is used to program a chip with the correct organization
or architecture. Generally, all devices with the same generic name (e.g., 16L8) may be
programmed from the same JEDEC file to produce functionally identical parts. Three
exceptions are the 16V8, 20V8, and 20R8 devices. The Signetics 16V8 and 20V8 differ
from the GAL16V8 and GAL20V8. There are two varieties of 20R8s – one has ten
outputs and the other has eight.

1. A selector box appears showing the contents of the specified Directory. You can
change the directory specification to see files in a different directory. Normally, the
directory specification should end in “.JED”, such as “C:\FILES*.JED”.

2. Select the file name.

3. Select the desired drive, directory and file extension on the Directory line.

4. Move the cursor until it is over the desired file, then press <Enter>. The desired file
name is placed in the “File to load:” field and the JEDEC file type should have
automatically been selected. If it was not selected and you are sure the file you
specified is a JEDEC file then use the arrow keys to force it to load as a JEDEC file.

5. Press <Enter> again to load the file.

6. Alternatively, if the File to load line is blank, you can type the exact path and file
name on the Directory line. After typing the file name, press <Enter> twice.

7. If you want to load the same file again, just press <Enter> twice after executing the
Buffer/Load command.

The software clears the buffer, shows any starting comments in the file, and loads the
file into the fuse and vector buffers. The automatic secure option will be set as specified
by the file (see Device/Options). If a part number is specified in the file, it will
automatically appear as the device the next time you use the Device/Select command.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-10

The buffer status line at the bottom of the screen shows how many fuses and vectors
were loaded, the fuse checksum, and the file name.

Loading files from floppy disks

When using a hard disk, displaying the current directory on-screen takes a small amount
of time. However, the display time may become rather slow when using a floppy disk.
To speed up the display, use the Buffer/Options command and set the Show file names
option to DISABLE. The Buffer/Load dialog will then appear similar to the following:

Figure 12 - Buffer/Options/Show File Name screen

When the file name display is turned off, you have to type the exact file name and press
<Enter> to load the file.

See Also

Buffer/Options, Buffer/Save

BUFFER/OPTIONS

Description

Set the options that control the editing, loading, and saving of the buffers.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-11

Application

Select generic buffer options such as: (1) checksum method; (2) default value; and (3)
whether or not to clear before each Device/Read command. Also, set several options
pertaining to the Buffer/Load and Buffer/Save commands, which include: (1) changing
the default directory; (2) changing the default filename; (3) disabling the listing of files
in a selector box; (4) disabling automatic file type identification; (5) disabling the
automatic setting of the lowest address to load; and (6) enabling the loading of the
filename when the software starts up.

Operation

A dialog box will appear showing the current settings for the buffer options.

Figure 13 - Buffer Options screen

Use the <Tab> key to select the field you want to change.

Press the <F1> key on any field to get context-sensitive help.

Change selections using the <Left> and <Right> direction keys.

Press <Enter> when finished.

Checksum method

This dictates how the checksum is computed. Adding 8 bits at a time is the default, but
you can specify 16 bits at a time instead. This affects the checksum displayed at the

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-12

bottom of the screen and also affects the checksum command, <F9>, when editing hex
or binary files. See Chapter 4, Using the Data Editors, page 4-1.

Example: A 27256 EPROM contains 32,768 eight-bit bytes, or 32K-bytes. A
27210 contains 65,536 sixteen-bit words. Most EPROMs come in
two widths: byte-wide (8-bits) and word-wide (16-bit). Multiplying
the data width by the number of words gives the size of the array, in
bits. The 27256 contains 262,144 bits (256K-bits); the 27210
contains 1,048,576 bits (1-megabit).

Default buffer value

This is the value that the buffer uses when it is cleared. The buffer is cleared when a
new file is loaded, if the Clear buffer before loading option is set to YES in the
Buffer/Load dialog box; or when a chip is read, if the Clear buffer before reading option
is set to YES in the Device/Options or the Buffer/Options dialog box. When the
software is first installed, the default value is set to zero (0), which makes calculating the
checksum very fast because the starting checksum is assumed 0 and added from that
point when data is changed in the buffer. This allows calculation of the checksum
without having to know the range of data in the buffer.

If you set this default value to anything other than 0, then you will no longer see the
checksum displayed at the bottom right of the screen. To calculate the checksum you
will need to use the checksum <F9> command under the Buffer/Edit command and
specify the desired range.

Clear buffer before reading

The Clear buffer before reading field is defaulted to YES, since you will typically wish
to see only the contents of the chip in the programmer site. However, if you wish to
read portions of different chips and combine them into one file, then you will want to set
this to NO and possibly use the range of fields in the Device/Options command.

Directory

This is the currently selected directory last used by the Buffer/Load and Buffer/Save
commands.

File name

This is the file name used by the Buffer/Load and Buffer/Save commands and will be
saved when the configuration is saved according to the Configure command.

Show file names

This dictates whether or not a list of files and directories is shown in a selector box when
you use the Buffer/Load and Buffer/Save commands. The purpose of this option is to

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-13

speed up file retrieval on PCs with slow disk access when you already know the exact
file name you wish to use.

Automatic file identification

The software is shipped with this option ENABLED to help the user select the proper
file type when loading a file with the Buffer/Load command. This does require disk
access and may slow processes down minutely, but still assists in recognizing most file
types and therefore allows you to continue forward once a file is selected without having
to figure out what type of file has been chosen and inputting that information. It may
also be annoying if it selects a file type other than what you really want.

Example: You may have a file that should really be loaded as a BINARY file,
but it has some characters at the beginning of the file that make it
look like one of the other file types (this is very unlikely, but it could
happen). In that case, you will probably prefer to DISABLE this
option to avoid having to change the file type every time you
execute the Buffer/Load command.

Automatic lowest address to load

This feature tries to guess what the Lowest address to load is for the Buffer/Load
command when using a hex file. When ENABLED it simply reads the first address
offset specified by the hex file and assumes that it is the desired offset.

¥ This is usually a good assumption for files produced by the programmer or most
assemblers and compilers; however, some files do not begin with the first byte to be
placed into the buffer; they may actually place the data in a non-sequential order in
the hex file or intend to leave the beginning of the buffer empty. If so, this feature
should be turned off, because it will probably insert the wrong lowest address to
load and consequently not load all the data into the buffer or place the data at the
wrong address.

Automatic buffer load at startup

When ENABLED, this option will load the file specified by the Directory and File
name above, when the software is first started. This is a simple alternative to creating a
macro with the Macro/Record command, which does the same thing.

See Also

Buffer/Edit, Buffer/Load, Buffer/Save, Device/Options, Macro/Record

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-14

BUFFER/SAVE

Description

Save data buffer contents to disk.

Application

Use this command to make a new hex, binary or JEDEC file, or to save a file after
editing.

Operation

A selector box appears showing files in the specified directory (similar to the
Buffer/Load command). To overwrite one of these files, select it with the cursor keys
and press <Enter> twice. To create a new file:

• Specify the desired directory after the Directory prompt.

• Press <Tab> to move to the File to create field. Type the name of the file you wish
to create.

Figure 14 - Buffer/Save screen

• Press <Tab> and the arrow keys to specify a particular file type. For the non-
JEDEC and non-POF files you can press <F8> to set the Lowest address to save
and the Highest address to save . Of course, the default is to save the entire file to
disk.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-15

• Press <Enter> to save the file.

• If a JEDEC file is created, it will contain the current contents of the fuse and vector
buffers and the name of the selected chip, if any. The current X-value and any
automatic secure options are also indicated in the file. A comment is inserted at the
beginning of the file indicating the present time, date and where the data is coming
from.

¥ Attempting to overwrite an old hex, binary or JEDEC file will cause the old file to
be renamed filename.BAK.

See Also

Buffer/Options, Buffer/Load, Device/Options

BUFFER/VECTORS

Description

Edit or view the test vectors for PLDs.

¥ This command only appears when a PLD is selected.

Hot-Key Alt-V

Application

Examine or modify test vectors to debug new designs. This is the vector portion of the
JEDEC or POF file contents.

Operation for PLDs

Use the cursor keys to scroll through the buffer. Test vectors may be changed by typing
over the original data in the buffer. Valid characters for the test vectors are 0, 1, B, D,
C, F, H, K, L, N, P, U, X, Z, and ?. Press <Esc> when finished.

• The data in the editor came from the line in the JEDEC file that starts with the
letter V.

• To create test vectors from scratch, specify the chip first so the vector editor
knows the correct number of chip pins.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-16

Figure 15 - Buffer/Vectors screen

See Also

Chapter 4, Using the Data Editors; Test Vectors, Buffer/Load

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-17

CONFIGURE COMMANDS

Description

Select the configuration options that control operation of the programmer.

Hot-Key Alt-C

Application

Select other operating modes, such as:

• which programmer you wish to communicate with
• whether you have a color or monochrome display
• which parallel port you want the software to look at first when it starts up
• when to save the configuration options that have been set under this Configure

command and under the Buffer/Options, Device/Options, and Device/Handler
commands

• experienced or novice mode of operation; and (6) whether the startup messages
appear

Operation

A dialog box will appear showing the current settings for the startup configuration
options.

Figure 16 - Configure screen

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-18

• Use the <Tab> key to select the field you want to change.

• Press the <F1> key on any field to get context sensitive help.

• Press <Enter> when finished.

¥ To make a permanent change, you must select YES or AUTOMATIC in the
Save/Configuration field.

Programmer

When the software is started, the correct programmer type and parallel port are
identified in the Programmer and Parallel Port fields; however, you may change the
programmer type if you wish to see the different device support for the other
programmers. It will simply put you into a demonstration mode and pop up a warning
any time you execute a command that requires the presence of a programmer.

If a programmer has not been detected, the software will automatically start up in
DEMO mode, allowing the user all functionality possible without a device programmer.
A programmer can be added after startup in DEMO mode through the Configure option.
All actions/functions found in the software can be utilized within DEMO except
programming a device.

Parallel Port

This specifies which port to attempt communication with a BP Microsystems
programmer when the software starts up. If a programmer is not found on the specified
port, then the software scans other available ports and tries to find a programmer
somewhere. If no programmer is found, then it puts itself into a demonstration mode
that allows access to all the software features that do not require the presence of a
programmer.

Display

When using a color video adapter (CGA, EGA, or VGA), you can choose a black and
white display, if desired. If you have a monochrome monitor it is not necessary to
change this field.

¥ If you are using a laptop, it may be easier to read the screen if you choose a black
and white display.

Clear Screen after Commands

ENABLE will clear the screen after each command, DISABLE allows multiple
commands to be executed with a history of their result being printed to the screen.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-19

Screen Saver

If enabled, the screen saver will blank out the screen during times of inactivity. The
screen saver will be blanked after the specified amount of time has passed with no
keystrokes (see Screen Saver Delay).

Screen Saver Delay (Minutes)

Sets the number of minutes that the screen saver delays before blanking the screen. The
valid range is from 2 to 15 minutes.

Screen Restore on Autohandler

If the programmer is attached to an Autohandler and the screen saver is enabled, this
option will keep the screen from being blanked so long as there is ongoing
communication with the Autohandler.

Save Configuration

YES writes the present configuration back to disk when you press Enter. The next time
you start the program, the same configuration will be recalled. It creates a .CFG file in
the same directory as the .EXE that started the program. Therefore, if you delete this
file, the software will revert to its original default configuration.

NO allows you to make changes for this programming session only and will not save the
present configuration back to disk.

AUTOMATIC saves the configuration to disk every time you exit the program. The
program automatically sets all options and reselects the chip when the software is
restarted.

The configuration file will be written to the current directory, allowing you to save
multiple configurations in different directories. You can override this feature and
always use a single configuration file by setting an environment variable to specify in
which directory to store that “BP.CFG” file. Place a line in your autohex.bat file similar
to this one to use a single configuration:

 set bpcfg = c:\bp

User mode

Selecting EXPERIENCED instead of NOVICE mode gives you the Buffer/Clear
command. If programming one device, the program will display the ICC measurement
after Read/Verify on EPROMs and EEPROMs and after vector testing on PLDs.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-20

Startup messages

The informative messages that appear when the software is started up may be
DISABLED with this option.

Decimal or Hex

This selection determines whether numeric fields are entered and displayed in decimal
(using 0-9) or hex (using 0-9, A-F). This affects the display of the information
appearing on the status line at the bottom of the screen.

¥ This is a global command, in that changing this setting within any of the dialog
boxes will alter the information displayed in all of the subsequent dialog boxes.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-21

DEVICE COMMANDS

DEVICE/BLANK

Description

Looks for previously programmed locations.

¥ This command only appears on UV-erasable, One Time Programmable (OTP)
and fuse link devices.

Application

Prior to programming, the command reads a device and determines whether the part is
blank. This is a manual command and is often performed automatically under
Device/Options.

Operation

An EPROM device is verified, making sure all bytes are erased (all 1’s or FF on most
EPROMs). Any erased part should pass this test. Blank checks are performed at a
reduced Vcc level (4.7V), making the EPROM more sensitive to unerased bits.

PLDs are checked by verifying that all of the fuses are intact. Any new PLD should
pass this test. Alternatively, you can set the “Blank check before programming” option
to ILLEGAL BIT in Device/Options to check only the fuse locations that should not
be programmed, allowing you to program on top of partially programmed devices.

EPROM-based parts should be checked before programming. Erasing an EPROM is
not as simple as it seems. In order to clear data in an EPROM (in preparation for
programming), the chip is exposed to short-wave ultraviolet light, which is typically
provided by an EPROM eraser. The UV light penetrates a quartz window on the top
of the package, erasing the data. A certain dosage is required to fully erase the part, so
brighter light sources erase the part more quickly. Most erasers require between 3 and
30 minutes to erase an EPROM.

Erasing EPROMs

EPROMs are usually erased using a mercury vapor bulb emitting 2537 Angstroms.
The bulbs most commonly used are like fluorescent tubes, but without the phosphor;
they are often called germicidal bulbs. The ultraviolet light can be harmful to eyes, so
erasers are equipped with shields to prevent light leakage.

Erasing an EPROM properly is not as simple as it appears. It is possible to have a
partially erased chip that appears to be blank but is not blank when read at a different
voltage or temperature. Use this procedure to determine a safe erasing time:

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-22

• Start with a programmed chip.
• Erase the part in one minute increments and use the Device/Blank

command to test it each minute.
• Once the programmer says the chip is blank, double the erase time to give

yourself an adequate safety margin.

Some types of parts take longer to erase than others. You may need to experiment
with the various parts you use. An EPROM based part with a security bit feature (a
PLD or microcontroller) is designed so that the security address will typically be the
last bit to erase.

¥ The adhesive used on labels often blocks UV light. If the chip erases slowly, try
cleaning the window with alcohol or a stronger solvent.

Sunlight and fluorescent light can erase chips; however, it usually takes months or
years. You should cover the window with an opaque label to make the data
permanent.

Some EPROM based parts are available in inexpensive plastic packages. These parts
can't be erased because they have no window. These chips are referred to as one time
programmable (OTP) EPROMs.

¥ EEPROM-based parts do not need this command. EEPROM erasure occurs
automatically before programming.

~ When secured, some devices appear blank, and will not program. Most
secured devices, however, will appear to be programmed.

DEVICE/COMPARE

Description

Compare the chip’s data to the buffer’s data and show any differences on-screen.

Application

This is useful if a verify operation fails and you want to see why.

Operation for memory devices

The default setting reads the chip at its nominal operating voltage (+5.0V). If you are
in the EXPERIENCED mode (set under the Configure command), a dialog box will
appear and allow you to alter the test voltage from +4.0 to +6.5V in 0.1V steps. Once
the test voltage has been chosen, if applicable, the data in the memory device is
examined and compared to the information in the data buffer. Any differences will
show a message similar to the following example:

 Data error at 0000: Buffer = 02; Chip = 00

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-23

The command does not return an error if there are differences; it just shows the
differences. If SET mode is selected under Device/Options, you are prompted to
insert each chip in the set and press a key to continue.

Operation for PLDs

The part is read at a nominal voltage as specified by the manufacturer’s algorithm.

If discrepancies occur, a window will appear revealing that information. Fuses that do
not read correctly are highlighted and the cursor is automatically placed on the first
error. The values on the screen are the values actually read from the device; therefore,
the highlighted bits are the opposite of what was loaded in the buffer. <Alt-N> is used
to find the next error. <Alt-P> finds the previous error.

¥ The current cursor position is displayed at the bottom of the window.

See Also

Device/Options, Device/Verify

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-24

DEVICE/CONFIGURE

Description

Configure the special features of a device to operate in a particular mode when placed
in the target circuit.

¥ This command appears only on some devices and is specif ic to the device selected.

Application

Some microcontrollers allow setting of such things as the memory mapping, watchdog
timers, security, and clock source.

Operation for special devices

Some devices have special operating modes that can be configured with this
command; for example, the PIC microcontrollers configure command looks as
follows:

Figure 17 - Device/Configure screen

• Use the <Tab> key to select the field you want to change.
• Press the <F1> key on any field to get context-sensitive help.
• Press <Enter> when finished.

The options in this command will vary from chip to chip; you should refer to the data
book for your particular device for more information on the configuration parameters
and press <F1> for more help on each item in the dialog box. The parameters shown
on the screen represent those options that will be programmed into the chip.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-25

See Also

Device/Options, Device/Encrypt

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-26

DEVICE/E-FIELD

Description

Enter information to be programmed into the E-Field in devices that support this
feature.

Application

This command allows for a user definable fuse pattern that allows for programming
the power setting and slew rates for each of the macrocell blocks in the device. This
section affects the electrical operation of the device. If an E-Field is programmed, the
section of the chip controlled by the E-Field is powered-down when not in use, to
reduce total power consumption for the device. The power setting can be set to either
“full power” or “low power”.

Operation

This command is only available for electrically erasable PLDs, which contain several
fuses in the JEDEC map that constitute the device’s E-Field. When this command is
selected, a dialog box will open allowing you to enter the desired ASCII or hex
information (see Chapter 4, Using the Data Editors, for information on how to edit
this array). The size of the array depends on the number of fuses allocated as the E-
Field for the device.

¥ Editing this array simply changes the appropriate fuses in the current buffer.
Thus, you must perform a Device/Program in order to update data in the chip.

Even though you could edit the fuses directly with the Buffer/Edit command, it is
preferable to use this command because each chip differs in where the E-Field is
located in the fuse map and how many fuses may be involved.

See Also

Device/Program, Device/Read

DEVICE/ENCRYPT

Description

Encrypt the program and data in a microcontroller.

¥ This command appears only on microcontrollers that support data encryption.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-27

Application

Some microcontrollers (particularly 87C51 families) allow a special level of security
that encrypts your program and data by XORing it with an encryption array supplied
by you. This allows you to protect your design secrets, yet still be able to verify the
contents of devices after they are placed in service. The typical encryption method
causes the chip to return all ones, thus making it impossible to guarantee that the
contents of the onboard EPROM have not been altered accidentally.

Operation for microcontrollers

This command appears only on some devices and is specific to the device selected.

• Use the <Tab> key to select the field you want to change.

• Press the <F1> key on any field to get context-sensitive help.

• Change selections using the <Left> and <Right> direction keys.

• Press <Enter> when finished.

Edit the encryption array

When you change the field from NO to YES, the Encrypt editor will pop up at the
bottom of the screen and allow you to insert the desired array values (See Chapter 4,
Using the Data Editors, for information on how to edit this array). The size of the
array may be 32, 64, or 128 bytes, depending on the size of the device, and may even
be larger on newer devices.

¥ The array is stored at the bottom of the buffer and will be saved with the file when
you do a Buffer/Save; thus, it will be loaded on a subsequent Buffer/Load. This is
very important because you will not be able to read the device properly without
this array.

Program Encryption array

If you change this field to YES, the current contents of the encryption array will be
programmed into the device if and when you accept the changes made. You may
choose not to program the encryption array by leaving this as NO, or by using <Esc>
to terminate the dialog box.

Decrypt during Read & Compare

After programming the encryption array, subsequent compare operations will fail
unless you change this field to YES. If an encrypted device is read without setting the
Decrypt during Read & Compare field to YES, the buffer will contain the encrypted
data rather than the actual data in the chip.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-28

¥ This will not affect the Verify command; the Verify command does not decrypt
data and will fail if the data is encrypted.

Program specific lock bits

This last field lets you selectively program the lock bits. For comparison, the
Device/Secure command will always program all bits for maximum security. Refer to
your device data book for more details on what the lock bits do.

See Also

Chapter 4, Using the Data Editors, page 4-1

Device/Configure; Device/Secure

DEVICE/HANDLER

Description

Operates the Handler, if an autohandler is present, programmer in a production
programming mode, with or without an Autohandler (automated device Handler).

Application

Prior to using the programmer in a high-volume production setting, select which
device Handler will be used.

¥ Manual mode is a convenient way to keep track of the number of successful and
failed programming attempts without actually using an Autohandler.

Operation

A dialog box will appear showing the current settings for the Handler options.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-29

Figure 18 - Device/Encrypt screen

• Use the <Tab> key to select the field you want to change.

• Press the <F1> key on any field to get context-sensitive help.

• Change selections using the <Left> and <Right> direction keys.

• Press <Enter> when finished.

Number of operations

Specify the number of operations for this run. This number is typically the number of
chips you wish to program. However, if you are using the SET programming mode
(see Device/Options) with more than one chip per set, then the number of operations
must equal the number of chips divided by the number of chips programmed for each
set.

~ This combination is not usually recommended.

Mode

MANUAL is the default setting and is intended to simplify programming numerous
chips with the same data. It will keep the same statistics that are kept when in the
AUTOHANDLER mode and will display the progress at the bottom of the screen.
This mode prompts you when to insert the next chip. After the next chip is inserted,
simply hit any key to perform the operation again and again.

The AUTOHANDLER mode should be selected when you wish to have the software
orchestrate the operation of the Handler and the programmer. In this mode, all you
have to do is feed the chips to the Handler.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-30

Select new Handler

Type in a Handler name or use the arrow keys to select the Handler you are using.

¥ Autohandler software support is not a standard feature of the BP-4100/4500 and
must be purchased from BP Microsystems. Call us for information on BP
Microsystems’ Advanced Feature Software (AFS) support, which may be field
installed (contact information is listed in Chapter 12, Troubleshooting and
Maintenance, page 14-1).

Maximum failures

Specify the number of acceptable failures for this run. If you are in the
AUTOHANDLER mode, the software will abort this job when this number is
exceeded and prompt you on it.

Statistics

The default is to send the statistics to the SCREEN. However, you may send them to
the PRINTER instead. To be able to print to a printer you will need at least two
parallel ports in your computer and possibly three, if you are using a parallel interface
to the Handler.

Port address

This is the address of the parallel, serial or custom port that is used to communicate
with the Handler. It is not necessary to set this address if you are using the MANUAL
mode (see “Mode:” above). The Autohandler normally connects to a second parallel
port (it cannot use the same port as the programmer). The port address will be set
automatically if you have only two ports. Machines with three LPT (parallel) ports
may require manual input to change this port number.

Category codes

The category codes are used to specify the output bin or tube for particular error
conditions or successful operations. Most autohandlers are set up where category
code 1 is used to indicate a good chip and category code 2 is used for all bad chips.
Handlers with more than two output bins usually allocate a single bin for bad devices
and the remaining bins for good devices. Therefore, the default values should work on
most Handlers. If you wish to characterize the device failures further, you may
specify different category codes for specific failures provided the Handler is
configured correctly to accept the additional codes.

The most common use of extra category codes is to sort out continuity test failures so
the parts can be examined for bent pins, reverse insertion, etc.

You should refer to the Handler documentation to determine and set the interpretation
of these category codes.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-31

Example: Exatron Handlers may have a hardwired binning configuration
in place when using the parallel interface. In. fact, on an 8-bin
Handler, Exatron Handlers will probably map bin 2 codes to the
output directly under the DUT (device under test) and bin 1 codes
to all other outputs. If you use the serial interface to the Exatron
Handlers, the category codes are single ASCII characters that
will be sent to the Autohandler. On MCT Handlers, you can
configure the category codes received to sort the device to any
output by setting the matrix of DIP switches.

¥ We recommend placing your output bin for defective devices directly below the
DUT site. This is done to guarantee that a bad device is never passed over the top
of a good tube, in case it is accidentally dropped due to a power failure, jam, or
some other unforeseen condition.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-32

DEVICE/MARK

Figure 19 - Device/Mark screen

Description

Enter text information for lasing or labeling.

Application

Use the Device/Mark option to enter information for lasing or labeling devices.

Operation

In the Device/Mark screen, choose a package type: plastic, ceramic, or custom. When
choosing plastic or ceramic, you will need to specify Text, X-axis, Y-axis, Angle and
Size. When choosing custom, you also need to specify Speed.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-33

DEVICE/OPTIONS

Description

Allows you to specify different programming, reading, and testing options to reflect
your target system requirements.

¥ This should be done prior to performing a Device/Program command.

Hot-Key Alt-O

Application

Use these options to:

• program multiple chips from a single file
• split data for wide data paths (16 bits or larger) and multiple EPROMs in sequence
• select the byte order when using 16-bit wide chips
• specify range and buffer offset parameters
• control command execution such as enabling/disabling continuity tests, electronic

identifiers, blank checks, verify passes, test vectors and securing
• set the interpretation of test vector X-values.

Operation for memory devices

You may or may not see all the options below, depending on the programming
characteristics of the chip you have selected. Below is an example of the options for a
16-bit wide EPROM:

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-34

Figure 20 - Device/Options screen

• Use the <Tab> key to select the field you want to change.

• Press the <F1> key on any field to get context-sensitive help.

• Change selections using the <Left> and <Right> direction keys.

• Press <Enter> when finished.

Autostart on Continuity

When enabled, this option will prompt the programmer to verify continuity on all pins
of a device prior to beginning a device operation.

Starting word of range

This option allows you to define the starting physical address within the memory
device that you are programming. This is handy for programming or reading only part
of a chip, or for placing data in specific addresses. The minimum parameter for the
starting word of range is “0”. This parameter is used in conjunction with the Ending
word of range defined below.

Ending word of range

The Ending word of range setting is used with Starting word of range, explained
above. The maximum end address parameter will change based upon the part you are
programming - the larger the device the higher the address. A 256-Kilobit EPROM
would have 32,767 as its highest writable address. An 8-bit wide 1-megabit chip

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-35

would have 131,071 as the highest address. You may not set this option to a number
less than the value specified in the Starting word of range.

The above range options also allow the use of 16-bit wide addresses; however, you
cannot specify a byte address to program. The highest address for a 16-bit wide part
will be one-half that of a similar 8-bit.

Example: A 1-megabit 16-bit wide device would have 65,534 as its highest
address.

¥ Some EEPROMs and Flash memory devices require erasing the entire address
space or large sectors, and will not support range programming. Thus, these
options will not appear on all devices.

¥ Some parts have extra configuration bytes that reside at the end of the normal
address space. If this is the case, then you can not specify a range within these
bytes, i.e. – the starting address must be below or equal to the first address of the
configuration bytes and the ending address must be below the first configuration
address or equal to the last address.

Buffer offset

This option allows you to program or read a chip from or into any address within the
data buffer. Using the Starting word of range, Ending word of range and Buffer
offset, you have the capability to program/read data into/from any address on the chip,
and from/into any address in the buffer. When Buffer offset is negative, the first byte
in the buffer corresponds to a point in the middle of the chip specified by the offset.
When Buffer offset is positive, the first byte in the buffer is not used; the first byte in
the memory corresponds to the specified byte in the buffer. If a negative value is
specified for Buffer offset, a positive value must be specified for Starting word of
range. The default is zero.

Example: You want to program the second half of a 27256 (8000 hex bytes
in size) using 4000 bytes loaded into the buffer. Set both the
Starting word of range: and Buffer offset: to -4000 before
programming so the data at address 0 in the buffer will be
programmed into the device address 4000, so only the second half
of the EPROM will be programmed.

You want to program a 27256 using data that is loaded into the
buffer at address F0000. Set the Buffer offset: to F0000. This will
tell the programmer to read buffer address F0000 to program
EPROM byte 0 and so forth. An alternative (and faster) way to
accomplish the same task is to specify the buffer offset when the
file is loaded; see Buffer/Load command.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-36

Clear Buffer before Reading

YES permits you to clear the data buffer prior to reading information from a chip.
NO does not clear the buffer data. A read will then only alter the addresses specified
by the Starting word of range, the Ending word of range and the Buffer offset. This is
very useful if you wish to inspect a small amount of data in a chip, or you wish to
combine data from multiple chips into the buffer.

Byte order

For 16-bit wide memory device systems using a byte-reversed format, such as 16-bit
wide EPROMs used in conjunction with Intel processors, use the first setting, MSB=1,
LSB=0. In this mode, the MSB (Most Significant Byte), outputs 15-8 on the chip,
contains bytes with odd addresses (1, 3, 5...). The LSB (Least Significant Byte),
outputs 7-0, contains even addresses (0, 2, 4...). Systems using a non-byte-reversed
format, such as Motorola microprocessors, use the second setting, MSB=0, LSB=1,
where the MSB is even addresses (0, 2, 4...) and the LSB is odd addresses (1, 3, 5...).

Data path width (number of EPROMs)

The data path width is the number of EPROMs read simultaneously in the target
system.

Example: If you are programming pairs of 8-bit chips for a 16-bit
microprocessor, set it to 2. Likewise, if you are programming four
16-bit wide EPROMs for a 64-bit wide system, set it to 4. These
groups of EPROMs are referred to as a single bank.

Number of banks

If the data path is set to 1, then the number of banks is simply the number of EPROMs
you want to program (i.e., the address space divided by the number of EPROMs).
When you program a file that is larger than one bank of EPROMs, you set the number
of banks here.

Example: If your file is 512K bits and you are using 128K bit EPROMs,
then you will need 4 banks of EPROMs to hold all the data. When
you program pairs of EPROMs (data path width = 2), th e number
of banks is the number of pairs required, not the total number of
chips.

Programming mode

When you program multiple EPROMs in a set (i.e., width or number of banks is
greater than one), SET mode will prompt you to insert the EPROMs one at a time, in
order. If you want a specific EPROM out of the entire program set (such as in a
production run or when replacing a single blown-out chip), use the SINGLE mode.
Another dialog box appears after you press <Enter>. The second box lets you enter

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-37

which EPROM to program or read. The desired EPROM position is described as the
data position within a bank and the bank number. Both numbers start counting at 0.
For a 16-bit system with 8-bit chips, 0 selects even addresses and 1 selects odd
addresses.

Erase before Programming

When enabled, this option will cause the programmer to perform an erase cycle to be
performed on a device. If all devices are known to be blank, this option can be
disabled to allow for faster throughput.

Blank check before programming

This option will force the programmer to perform a blank check before programming,
ensuring that you have not placed a partially erased or fully programmed part in the
programmer site. The blank check is performed at a lower Vcc voltage, to ensure
complete erasure.

Verify after programming

A verify operation is performed during programming on almost every memory device,
so this verification step is optional. The preferred setting is TWICE, verifying
EPROM contents with Vcc at two different voltage extremes, such as 4.7V and 5.3V.
Passing the test is a good indicator that the part is fully programmed, properly erased
before programming, reliable over a wide range of operating temperatures, and will
retain data during its operational life. Performing verification ONCE (at 5.0V) is
quicker, but less exhaustive. Disabling the verification is faster and a good choice for
prototyping.

Continuity test

Leaving this ENABLED verifies the chip is inserted correctly in the programmer site.
If not correctly inserted, an error message is displayed. DISABLE prevents this test
from occurring.

¥ The continuity test will tell you exactly which pin drivers on the programmer are
not connected to the chip’s internal die. If almost all pins are disconnected, then
one or more ground pins are probably blown out. One or a small number of pins
without continuity could be caused by something as simple as the pin on the chip
or the programmer being dirty. If cleaning the pins does not help, then the
bonding wire or the output pad of the die is probably damaged.

~ There are some rare cases where the continuity check cannot be performed
because the chip manufacturer specifies not to or because doing so would
adversely affect the device. In these cases, it is possible that a continuity
problem will go undetected.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-38

Check electronic identifiers

Electronic identifiers are codes that can be read from a chip to identify its
manufacturer and programming algorithm. Almost all of the EPROMs produced
today have this feature. Selecting ENABLE will reach the chip code when you
program it and verify the chip against the expected code. If the code does not match,
you will get an error message and be given the choice to abort the operation, retry it
with a different chip, ignore the error, or select a different chip. Choosing
AUTOMATIC will select the correct device and skip the error message
automatically. If it fails to find the device code of your chip, you will see an error
message like the one mentioned above. Selecting DISABLE is useful if the software
expects an identifier code for your chip, but your chip does not have one. This
happens when a manufacturer has been making the chip without the ID code, then
adds the ID code in a later manufacturing process. Placing an older chip in the
programmer site will cause an error since it doesn’t have the code. Choosing
DISABLE will prevent an error message in this case.

Operation for PLDs

Below is an example of the Device/Options available when you have selected a PLD:

Figure 21 - Device/Options screen for a PLD

• Use the <Tab> key to select the field you want to change.

• Press the <F1> key on any field to get context-sensitive help.

• Change selections using the <Left> and <Right> direction keys.

• Press <Enter> when finished.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-39

Display

When a vector test is performed with the Device/Test command, you can choose to
display:

• only error messages (ERRORS-ONLY is the default);

• all vectors and error messages (ALL); or

• vectors and error messages, displayed one at a time (SINGLE-STEP).

X-value

When a set of test vectors is generated, pins marked “X” indicate a “don’t care”
condition. This condition is treated differently by different people, equipment and
software. BP Microsystems’ programmers provide several options to maintain the
highest compatibility:

¥ If “X” is applied to both input and output pins in your JEDEC file, then you must
use the PULL-UP setting. The pin will then use a 5k pull-up resistor. The “X”
value is also set from the JEDEC file if defined there. If you don’t use the PULL-
UP setting, the programmer attempts to force the chip’s pin to either a high or
low state.

~ Forcing a low output to a high state can permanently damage the chip!
This may cause an excessive current error to occur.

You can choose to have “X” inputs tied low or high with the 0 and 1 settings.
Selecting RANDOM or PSEUDORANDOM sets chip pins either high or low at
random. A random number generator originates a sequence of bits based on a seed
value. Choosing RANDOM generates a seed value at random. Choosing
PSEUDORANDOM will not generate new seeds, so the test sequence will be the
same every time. You can change the sequence by changing the seed.

¥ The “Seed:” field will only appear when you have selected the
PSEUDORANDOM choice.

Vector test after verify

You can choose to perform a vector test automatically after verifying, when test
vectors are available. Choosing TWICE will use both low and high Vcc voltages and
ONCE will only use a nominal voltage.

Vector test after secure

You can choose to perform a vector test automatically after securing, when test
vectors are available. This is useful to ensure that the secure operation did not affect

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-40

the functionality of the device. Choosing TWICE will use both low and high Vcc
voltages and ONCE will only use a nominal voltage.

Blank check before programming

This option will force the programmer to perform a blank check before programming,
ensuring that you have not placed a partially erased or fully programmed part in the
programmer site.

The ILLEGAL BIT option is useful when you only want to make sure that all
unprogrammed locations in the fuse pattern are not programmed on the chip. It will
ignore locations that you intend to program, allowing you to program a fuse pattern on
top of a partially programmed chip.

Secure after programming

Certain chips, such as PLDs, microcontrollers, and write-protectable NVRAMs, have
a secure feature. The part will continue to operate normally, except that the EPROM
or fuse data cannot be read out (except for NVRAMs). Selecting ENABLE will
automatically secure the part, after programming and verifying. See Device/Secure for
more information.

Continuity test

Leaving this ENABLED verifies the chip is inserted correctly in the programmer site.
If not correctly inserted, an error message is displayed. DISABLE prevents this test
from occurring.

¥ The continuity test will tell you exactly which pins on the chip are not connected to
the internal die. If you get almost all pins disconnected, then one or more ground
pins are probably blown out. One or a small number of pins without continuity
could be caused by something as simple as the pin on the chip or the socket
module being dirty. If cleaning the pin does not help, then the bonding wire or the
output pad of the die is probably damaged.

~ There are some rare cases where the continuity check cannot be performed
because the chip manufacturer specifies not to, or because doing so would
adversely affect the device. In these cases, it is possible that a continuity
problem will go undetected.

See Also

Device/Blank, Device/Program, Device/Read, Device/Verify, Device/Secure,
Device/Test

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-41

DEVICE/PROGRAM

Description

Program a device from data in the buffer.

Hot-key Alt-P

Application

To permanently store your data or design in a chip.

Operation for memory devices

If the part is electrically erasable (EEPROM based) and the Device/Option ERASE is
enabled, it is automatically erased before programming. If not, the part must be blank
before programming.

The device will be blank-checked if that option is enabled with the Device/Options
command. The optional two-voltage verify step will guarantee with high confidence
that the part is programmed and operating correctly.

¥ If you have selected a SET programming option with Device/Options, you will be
successively prompted to insert each chip to be programmed. If you have selected
only a single chip, no prompt will appear.

Operation for PLDs

The device is erased if possible or checked to see if it is blank (when enabled in
Device/Options). The device is programmed and verified. Some parts will be verified
at two Vcc voltages and others only at one voltage, as specified by the semiconductor
manufacturer. Parts producing errors while programming or verifying should be
considered defective. Bipolar parts that fail to program can often be returned to the
manufacturer for replacement if they have not been secured. See Chapter 10,
Troubleshooting and Maintenance, for more information.

A vector test is automatically performed if this option is enabled under the
Device/Options command and test vectors are loaded into the buffer. The vector test
is very important on fuse-link programmable parts.

Finally, the part may be automatically secured if this option is set under the
Device/Options command. This step will not execute if the device fails to verify or
vector test properly. You may also vector test the device after securing it by setting
this option under the Device/Options command.

See Also

Chapter 10, Troubleshooting and Maintenance, page 14-1.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-42

Buffer/Load, Device/Options, Device/Read, Device/Handler

DEVICE/READ

Description

Place chip contents into a data buffer.

Hot-key Alt-R

Application

Used to interrogate the contents of a chip for identification, copying or modification.

Operation

The appropriate buffer is cleared, the device is read, and its data is stored in the buffer.
The checksum will be displayed on the buffer status line. The buffer may be edited,
saved to disk, or used to duplicate the chip.

¥ If you are reading EPROMs and you have set one or more SET programming
options with the Device/Options command, you will be successively prompted to
insert each chip to be read. If you select a single chip only, no prompt appears. If
you are in the SINGLE mode and there are multiple chips in a set, the buffer will
not be cleared before reading the chip.

¥ PLD test vectors are not stored in a PLD, so they cannot be read. The test vector
buffer will be empty after reading the chip.

¥ Devices that have been secured cannot be read properly. Secured devices may
appear all blank, fully programmed, or scrambled. The exception is write-
protected NVRAMs and EEPROMs. See the Device/Secure command for more
information.

After reading the chip contents you may view or edit it with the Buffer/Edit command,
save it to disk with the Buffer/Save command, or program it into another chip with the
Device/Program command.

When using multiple operations in the Device/Handler command, this command will
not repeat since reading the subsequent parts will overwrite the data read by previous
parts.

See Also

Buffer/Edit, Buffer/Save, Device/Options, Device/Program, Device/Handler

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-43

DEVICE/SECURE

Description

Secure a PLD or a microcontroller so it cannot be read, or write-protect an EEPROM
or NVRAM so it cannot be written in the target circuit.

¥ This command only appears when you have a PLD, micro, or write-protectable
device selected that actually has the ability to be secured.

Application

To prevent unauthorized duplication of a proprietary design or to prevent accidental
writing to an in-circuit programmable device.

Operation for PLDs and microcontrollers

This command appears only when the selected device can be secured. Some
microcontrollers and PLDs can be secured by programming a special location. When
the device has been secured, it cannot be read correctly, verified, or duplicated.

Most bipolar PLDs can be secured by blowing a security fuse link or some other non-
reversible means. Once a PLD is secured, it cannot be read properly, but will function
normally (i.e., still pass test vectors).

EPROM and EEPROM based PLDs generally can be secured by programming a
certain location. The security bit will be cleared when the part is erased by the
Device/Program command.

¥ Typically, on a UV erasable PLD or microcontroller, the security bit address is
designed to erase last. Thus, a secured part may take longer to erase.

Operation for memory devices

Some NVRAMs and EEPROMs have a write-protect feature that prevents
unintentional writing to the part. Thus, executing the Device/Secure command on
these devices does not actually disable the ability to read the contents of the chip
(which would make the chip useless in a circuit). It sets the chip up such that the
device requires a sequence of software commands (that are extremely unlikely to
occur accidentally) to disable this protected mode.

¥ For devices that may have already had this write-protection performed by our
programmer or your circuit, the Device/Program command automatically
unprotects the device prior to writing the buffer contents to it.

See Also

Device/Program, Device/Read, Device/Verify

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-44

DEVICE/SUM

Description

The Device/Sum command reads data from a chip and calculates the checksum
without altering the data in the buffer.

¥ This command is available only on memory devices.

Application

This command allows a programmed chip checksum to be verified against a file
checksum. The Device/Sum command may be used to compare checksums without
erasing or destroying the data in the chip. The checksum will be printed on the screen;
no error message will result if the checksum is not correct (that is for you to decide).

¥ The Device/Sum command displays a four digit hex sum which should be the same
as the four least significant digits of the buffer’s displayed sum (except as noted
above). The reason the sum is displayed as four digits is because the programmer
can calculate the sum using 16 bit arithmetic much faster than using 32 bit
operations.

Operation for memory devices

Place a chip containing programmed data into the programmer site. Use the
Device/Sum command to calculate and display the checksum of the device (it will
match the buffer checksum used to program the part, as displayed on the status area of
the display, only if the buffer default value was 0 and the entire buffer was
programmed into the part. Any bytes in the buffer at addresses higher than the
memory device size will not be reflected in the device sum).

See Also

Device/Read, Buffer/Load, Device/Verify

DEVICE/TEST

Description

Performs a vector test on a PLD.

Hot-Key Alt-T

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-45

Application

Verify that a programmed chip is functioning correctly by applying test vectors. Some
PLDs may not be guaranteed to operate as intended after programming and
verification. Properly designed test vectors can verify that the part is fully functional.

Operation for PLDs

The device is tested in its normal operating mode. The programmer applies high and
low logic voltages to the part’s inputs and its outputs are verified against expected
values.

The command output depends on the Device/Options “Display” settings:

• ERRORS-ONLY: No output will be generated unless errors are encountered.
• ALL: Each vector will be displayed as it is used to test the chip.
• SINGLE-STEP: Each vector is displayed before testing. The part is tested and

the test resultant vector is displayed on the following line. Press any key to see
the next test vector.

Errors are indicated by showing the vector causing the error, the test resultant vector,
and a message on each pin failing to verify.

Test resultant vectors use the same format as ordinary test vectors. The character for
each output pin (specified by H, L or Z) is replaced by the result at that pin. If the
result is an error, a message will be printed below. Pins labeled X will be displayed as
0, 1, or Z, depending on the “X” option selected under the Device/Options command.

See Also

Device/Options, Device/Program, Device/Verify

Test Vectors in Chapter 10 – Troubleshooting and Maintenance, page 14-1.

DEVICE/UES

Description

Edit the User Electronic Signature in some PLDs.

Application

Some electrically erasable PLDs have several fuses in the JEDEC map, which are
designated as the User Electronic Signature or UES. These locations do no affect the
operation of the device and may be set to any value useful to you for identification
purposes, such as the printed circuit board position or the date and revision of the
logic.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-46

Operation for PLDs

This command appears only on some devices and is specific to the device selected.

Example: The Lattice GAL22V10 D looks as follows:

Figure 22 - Device/UES screen

The UES editor will pop up at the bottom of the screen and allow you to insert the
desired ASCII or hex values (see Chapter 4, Using the Data Editors, page 4-1, for
information on how to edit this array). The size of the array depends on the number of
fuses allocated as the UES for the device.

Editing this array simply changes the appropriate fuses in the current buffer. Thus,
you must perform a Device/Program in order to get this data into the chip.

To inspect the UES of an unknown chip, you must first read the chip with the
Device/Read command and then use the Device/UES command to view its contents.

Even though you could edit the fuses directly with the Buffer/Edit command, it is
preferable to use this command because each chip differs in where the UES is located
in the fuse map and how many fuses may be part of the signature.

~ Different chip manufacturers have opposing opinions about whether these
UES fuses should be looked at during verify and compare operations. Since
we perform the verify operation according to the manufacturer’s
specifications, some devices will test every fuse in the part, leading to verify
errors if the part is functionally identical but the UES does not match
exactly. Other parts will not verify the UES so only functional differences
will cause a verify or compare error.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-47

See Also

Device/Program, Device/Read

DEVICE/U-FIELD

Description

Enter information to be programmed into the U-Field in devices that support this
feature.

Application

Some electrically erasable PLDs have several fuses, in the JEDEC map, which
constitute the device’s U-Field. This is a user definable fuse pattern that allows for
programming an identification tag into the part. The data can be a serial number, date
and time, or any other useful identifying mark. This does not affect the functionality
of the device.

Operation

This command appears only on some devices and is specific to the device selected.
When this command is selected, a dialog box will open allowing you to enter the
desired ASCII or hex information (see Chapter 4, Using the Data Editors, page 4-1,
for information on how to edit this array). The size of the array depends on the
number of fuses allocated as the U-Field for the device.

Editing this array simply changes the appropriate fuses in the current buffer. Thus,
you must perform a Device/Program in order to get this data into the chip.

Even though you could edit the fuses directly with the Buffer/Edit command, it is
preferable to use this command because each chip differs in where the U-Field is
located in the fuse map and how many fuses may be involved.

See Also

Device/Program, Device/Read

DEVICE/VERIFY

Description

Verify a chip’s data is the same as the data in buffer.

Application

Identify data contents of an unlabeled (or unknown) programmed chip, or see if a part
is programmed correctly.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-48

Operation

The device contents are read and compared to the buffer contents. If a difference is
detected, a single error message will result, indicating that there is a difference. This
command is faster than the Device/Compare command because it does not keep track
of failed locations, it simply halts when the first discrepancy is found.

¥ If you are using EPROMs, the Device/Options command can force an automatic
verification after programming. If you have selected to verify TWICE with the
Device/Options command, the device will be verified at high and low Vcc limits
per device manufacturer specifications. This test confirms that the part will work
correctly over a range of power supply voltages and temperatures, and will retain
data for its operational life. If you have specified ONCE, the part will be verified
once (at a nominal operating voltage) after programming. If NONE was
specified, then the part is only verified on a per word basis during programming.

¥ PLDs verify according to the chip manufacturer’s proprietary specifications,
which may not be altered by the user in any way.

See Also

Device/Options, Device/Program, Device/Compare

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-49

INFO COMMANDS

INFO/BBS

Description

Display the latest information on the BBS lines available from BP Microsystems.

Application

Displays instructions that tell you how to log onto our electronic Bulletin Board
System to obtain software updates.

Figure 23 - Info/BBS screen

Press <Enter> and read the screen contents. You should get something similar to
the screen above. There may be more than one screen of information, so press any
key until finished.

See Also

Info/NewChips, Info/Revisions

INFO/CHIP

Description

Display some characteristic information on the currently selected chip.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-50

Hot-keys F2 or Alt-I

Application

To provide you with an on-line database of summary programming information on
specific chips. This is a useful way to learn which package types are available for a
chip and which programmers support a chip.

¥ Special notes regarding the programming or operation of the chip are also
found under this command. This command may also be invoked by one of the
above hot-keys while on the highlighted chip in the Select command. After the
information appears for the highlighted chip, you may then use the <Up> and
<Down> direction keys to move through the list of chips and continue to get the
information for each chip in the list.

Operation for memory devices

Below is an example of an Intel 27C010A, which happens to have a short
programming pulse width of only 10µs. If you multiply the pulse width by the
number of words in the device, you will calculate the theoretical programming time,
excluding the time required to change addresses and strobe the control pins. The
actual programming time will be somewhat slower because the programmer must
have some time to complete necessary overhead operations and also because the
programmer may be waiting for data and instructions from your PC.

BP Microsystems uses programming algorithms, voltages, waveforms, and times as
specified by the semiconductor manufacturer.

~ Users can NOT change these parameters.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-51

Figure 24 - Info/Chip screen

Most memory devices will be displayed similar to above. However, some will also
show a programming overpulse which gets applied on some programming
algorithms. All the information shown can be found in the manufacturer’s data
book for the particular device.

The Notes field is where special information about the device goes, such as the
necessary programming adapters or the extra configuration bytes in the device.

Operation for PLDs

With respect to the programming characteristics, the information displayed for
PLDs is not as informative as for memory devices. The PLD algorithms are
proprietary to the chip manufacturers and are not published in general data books.
Thus, we cannot disclose any details regarding the programming information, such
as voltages, slew rates, or pulse-widths. However, we do display other
characteristics that are evident in the data books, such as:

• number of pins and fuses
• whether or not the device is securable, has a register preload feature, and is

electrically erasable
• which speed suffixes and package types the device is available in

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-52

Figure 25 - Info/Chip, PLD screen

The above illustrates an example of a chip for which a special note appears when
you use the Info/Chip feature.

See Also

Select

INFO/LOG

Description

Send information displayed in main window to a log file.

Application

You may create a log of all the activity during a particular programming session.
This log file may be viewed at any time, printed, or saved to another file name. This
feature is useful when you are debugging vector errors on a PLD or comparing
errors on a memory device. It is also a convenient way to monitor the operation of a
person using the programmer in a production environment.

Operation

• Use the <Tab> key to select the field you want to change.

• Press the <F1> key on any field to get context-sensitive help.

• Change selections using the Left and Right direction keys.

• Press <Enter> when finished.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-53

Display log file

NO allows you to choose one of the other options. VIEW will disable all other
options and display the contents of the current log file in the main window, allowing
you to press any key to see the next full screen. PRINT disables the “Clear log
file:” and “Write to log file:” fields and enables the “Send log file output to:” field
(see below). It will let you print to the default printer or to a file name specified by
you.

Send log file output to

This option appears only when PRINT is selected in the above “Display log file:”
field. It allows you to print to the default printer port or specify your own printer
port or file name. Simply hit Enter if you want to send it to the LPT port shown, or
<Esc> to cancel.

Clear log file

This option allows you to clear the current contents of the log file. It is important to
do this periodically; otherwise, the size of the file will get so large that it will use up
a substantial amount of disk space.

Write to log file

ON simply opens the current log file and appends all subsequent writes to the main
window to the opened log file. The file will grow until this option is set back to
OFF. The file is not cleared until you do it with the above “Clear log file:” option.
Thus, you can record some (ON), stop (OFF), record some more (ON), stop (OFF),
...etc ., until you have all the information you are interested in saving. At this point
you will probably want to print the log file and then clear it for future use.

¥ This log file is written in the current directory and is named BP.LOG.

See Also

Device/Handler

INFO/NEWCHIPS

Description

See which new chips have been added recently.

Application

This command is used for information only. It lets you know what chips were
added on particular revisions of the software.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-54

Operation

Just type in the range of the software revisions you wish to inspect and the results
will be displayed in the main window. The chip manufacturer, part number, and
which programmer models support that part will be displayed.

¥ When you log into BP Microsystems’ BBS (see Info/BBS), you may inspect a
merged version of this list and the revisions generated by the Info/Revisions
command. Choose the Bulletin command from the main BBS menu. This will
help you decide whether or not you want to download the latest software.

See Also

Info/Revisions, Info/BBS

INFO/REVISIONS

Description

See what changes or enhancements were made for a particular revision of software.

Application

This command is used for information only. It lets you know whether or not a
particular bug or new feature has been addressed in the time that has elapsed since
your previous software update.

Operation

Just type in the range of software revisions you wish to inspect and the results will
be displayed in the main window. The date and software revision number is
displayed with a list of all the changes that were incorporated in that particular
version of the software.

¥ When you access the BP Microsystems BBS (see Info/BBS), you may inspect a
merged version of this list and the new chips generated by the Info/NewChips
command. Choose the Bulletin command from the main BBS menu. This will
help you decide whether or not you really need to download the latest software.

See Also

Info/NewChips, Info/BBS

BP Software Command Reference

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

6-55

JOBMASTER COMMANDS

Once JobMaster is installed, the initials JM will appear on the status line near the
bottom of the screen, following the programmer designation. The main menu, at the
top of the screen, will include JobMaste r. Selecting JobMaster will allow you access
to the following options.

JOBMASTER/CONFIGURE

Description

Configure jobs that will be run under the Operator mode in JobMaster.

Application

Use JobMaster/Configure to set up different options to use within specific jobs created
for programming.

Under Configure the first item is the Job Database Directory. This directory can be
set to allow multiple systems to access the same database on a network.

Use Categories lets you decide whether or not to define a Categories field when you
start a new job. We recommend making this decision once the first time you use
JobMaster.

Default Mode lets you lock the programmer in Operator Mode on startup, and
password-protect access to the rest of JobMaster’s features. See Locking the
Programmer in Operator Mode below.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-56

Figure 26 - JobMaster toolbar screen

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-57

JOBMASTER/DELETE

Description

JobMaster/Delete removes a job or record from the JobMaster database. It will be
mandatory for you to enter the Category and Item Number, then prompts for
confirmation.

Application

Use the Delete command in JobMaster to remove jobs or records that are no longer
needed, or jobs created in error. Once a job has been removed, it will no longer be
accessible.

JOBMASTER/LOAD

Description

Load performs all the functions available in Operator Mode, except actually
programming a device. This operation is used to check, copy or modify an existing
JobMaster database.

¥ JobMaster keeps track of the date, time and author of each job’s creation, and of
every subsequent revision. This information is displayed whenever you select the
JobMaster/Load option.

Application

Loading a job will prompt the BP Software to search a particular address saved while
creating a job in order to load the buffer with the correct file. It will also enable the
Operator to choose from any one of a list of parts specified for the job.

See Also

Adding a Device to an Existing Job and Updating a Job in Chapter 8, Using
JobMaster, page 9-1.

JOBMASTER/NEW

Description

Selecting New lets you create a new job in the JobMaster database.

Application

After loading the Buffer, select New from the JobMaster menu and specify Category,
Item Number, and Devices for a job.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-58

See Also

Buffer/Load and Chapter 8, Using JobMaster, page 9-1.

JOBMASTER/OPERATOR MODE

Description

This is the mode you must select to program devices using JobMaster (see Chapter 8,
JobMaster, page 9-1).

¥ You can configure the programmer to start up in Operator Mode automatically.

Figure 27 - JobMaster/Operator Mode menu screen

Application

When Startup in Operator mode is selected, this is the first screen the Operator will
see. It covers the basic areas that the Operator will need to have access to in order to
perform jobs.

The Configure option allows the Operator to configure a drive and directory and
enable or disable Categories.

The Operator can change Handler types with the Handler option (if available).

Program begins the programming process after a job has been chosen.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-59

The Verify option verifies an already-programmed device. (See Device/Verify in
Chapter 6, BP Software Command Reference, page 6-47).

The Operator can test a particular job using the Test option.

The Stop option exits JobMaster and returns the Operator to the BP-4100/4500 main
menu. If a password has been specified when the job was set up, the Operator MUST
enter that password to proceed.

The Quit option exits the BP software altogether and returns the programmer’s
computer to DOS.

See Also

Chapter 8, Using JobMaster, page 9-1

JOBMASTER/PASSWORD

Description

Allows you to change a JobMaster password.

¥ This function is only allowed to Administrators with the original password or
when setting up a JobMaster password for the first time.

Figure 28 - JobMaster/Password screen

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-60

Application

Select JobMaster/Password from the menu. The BP Software will first prompt you
for the current password (if presently used), then prompt you to enter a new password
into the space provided. Once you have entered a new password and verified the new
password, the software will store and announce that the new password has been
recorded.

~ The maximum limit of characters that can be used for a JobMaster
password is 15 and IS case-sensitive.

JOBMASTER/REINDEX

Description

This option re-indexes the JobMaster database.

Application

Choose JobMaster/Reindex from the menu. Once <Enter> is pressed, the BP
Software will automatically begin reindexing the jobs that have been created.

Reindex can be useful if you delete a number of JobMaster records or think the index
has gotten corrupted. It will physically remove all the deleted records from the
database and create a clean index.

Figure 29 - JobMaster/Reindex screen

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-61

JOBMASTER/UPDATE

Description

Update saves any changes you have made to a database under the Load command.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-62

MACRO COMMANDS

MACRO/DEBUG

Description

Play a sequence of commands stored in a macro file and pause after each line
read from the file.

Application

This command is intended for advanced users of macro commands. It is
useful when you have generated your macro files by some other means than
the Macro/Record command.

Example: You used an editor or wrote your own program to
generate the macro files, and now you are encountering
problems with the Macro/Play.

Operation

A selector box appears showing all the macro files (.PGM) in the directory
specified.

• Choose the desired directory by editing the “Directory:” string (e.g.,
C:\MACROS*.PGM).

• Highlight the desired file name using the cursor up and down keys.
• Press <Enter> twice to execute the file.

The command sequence stored in the macro file is played back with a pause
after each line read from the file and after a dialog box has been filled.

See Also

Macro/Play, Macro/Record

MACRO/FINISH

Description

End the macro record process after completing the sequence of commands
needed for that macro.

¥ This command appears only while you are recording a macro file.

Application

This command ends a macro file.

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-63

Operation

Executing the command will terminate the macro file. The la st command
executed prior to this command will be the last command in the macro file.
When the macro file is executed, the programmer will be left in command
mode once the macro file ends.

See Also

Macro/Record

MACRO/PLAY

Description

Play a sequence of commands stored in a macro file.

Hot-keys Alt-0...9 or Alt-F1...F9

Application

This command saves time when doing a series of operations for a specific
chip. You may record a macro file for each chip you commonly program.

Operation

A selector box appears showing all the macro files (.PGM) in the directory
specified.

• Choose the desired directory by editing the “Directory:” string (e.g.,
C:\MACROS*.PGM)

• Highlight the desired file name using the cursor up and down keys.

• Press <Enter> twice to execute the file.

The command sequence stored in the macro file is played back. Macro files
are easily written to perform common operations, such as configuring the
programmer, selecting a chip, loading a file, and programming the chip.

¥ If you used one of the digits from 0-9 or a function key (F1-F9) as your
macro file name, you may now use the <Alt> key and that same key to
automatically play the macro file. This saves you time by not requiring
that you execute the Macro/Play command every time you wish to play
your macro.

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-64

¥ If you have problems with playback, the macro file may not have been
recorded with the Macro/Record command. You may want to use the
Macro/Debug command to determine where the error lies.

See Also

Macro/Debug; Macro/Record

MACRO/PROMPT

Description

Displays a message to a macro file user.

¥ This command appears only while you are recording a macro file.

Application

It is used to impart information to a macro file user. You may want to create
macros that tell the user what to do next, such as insert a particular chip or
place a specific disk in the appropriate drive.

Operation

Enter up to four lines of text in the dialog box. When the macro file runs, the
text will appear for the reader to observe. The user must press a key to
continue the macro file execution.

MACRO/RECORD

Description

Store a sequence of commands in a macro file.

Application

Store commonly used command sequences in macro files to speed up
operation and reduce operator errors. Macro files can be played back from
the Macro/Play command, from the DOS command line, from a batch file,
from a make file, or from another macro file.

Operation

A dialog box appears showing all the macro files (.PGM) in the directory
specified:

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-65

Select the desired drive, directory, and file name to create. If you use one of
the keys 0...9 or F1...F9 as the file name, you may execute the macro by
using the <Alt> key and the corresponding key. Otherwise, you must use the
Macro/Play command to execute a previously recorded macro.

• You may include a comment for your own reference in the file generated
by moving the cursor to the “Purpose:” field and entering a comment.
The comment appears in the second line of the file, when viewed with a
text editor.

• Pressing <Enter> executes the command, and the software records every
command you execute thereafter.

• When finished, terminate recording by using the Macro/Finish command
or Quit. If you want the macro file to leave the user at the DOS prompt
after the file plays, use the Quit command. Macro/Finish lets the user
perform other functions, such as chip programming.

¥ You can include user-prompts by executing the Macro/Prompt command
while recording.

See Also

Macro/Play; Macro/Finish; Macro/Prompt

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-66

PAUSE

Description

Execute a DOS shell.

Application

Execute DOS commands, then return to the program in its present
configuration (where you left off).

Operation

The DOS command interpreter is started as a subshell in which normal DOS
commands can be entered. When you want to return to the programmer, type
the EXIT command at the DOS prompt.

¥ If no DOS shell is created, you may not have enough available memory
to generate a DOS shell. You will have to use the Quit command instead,
and then return back to the programmer by executing the .EXE file
again. You may be able to free more base memory by adding EMS
memory or by changing your CONFIG.SYS and AUTOEXEC.BAT files.

QUIT

Description

Exit the program and return to DOS.

Hot-key Alt-X

Operation

You are returned immediately to DOS. Any buffer changes will be lost;
however, if you have “Save Configuration:” set to AUTOMATIC in the
Configure command, then all the options you have set during this session
will be saved and restored the next time you start the software.

SELECT

Description

Specify the chip’s manufacturer and part number to select the proper
programming algorithm.

Hot-key Alt-S

BP Software Command Reference

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

6-67

Application

Selecting a device will configure the programmer for the correct
programming algorithm. The algorithm is specified by the semiconductor
manufacturer and includes voltage, timing, and pinout requirements. You
must use this command before programming or performing any other device
operations.

Operation

A dialog box appears containing a list of devices. Initially, the device list
contains every part the programmer currently supports. As you type letters
and numbers, the device list narrows to include only those names containing
the characters you type, in the order you type them.

Example: You can see all 27C010 parts by typing 27C010. You
can see all Intel 27C010 parts by typing INTEL
27C010. You can see all SEEQ parts by typing SEEQ.
Pressing <Enter> will select the part that is highlighted.
The algorithm status line at the bottom of the screen will
be updated to show the part number, number of pins,
and organization (number of bytes, words, or fuses if it
is a PLD).

Figure 30 - Select screen

~ It is essential to choose the correct selection for the device you
want to program. Programming algorithms vary widely between

Chapter Six

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
6-68

different semiconductor manufacturers and even between parts
from one manufacturer with different speed ratings! Selecting the
wrong algorithm can blow out your chip. The part number on
your chip may have package code and temperature rating letters
following the part number shown in the menu. These letters
typically do not affect the algorithm you choose; however, there
are some exceptions. Type the manufacturer’s name and the
entire part number as it appears on your chip. If no algorithm
appears in the box, you may need to erase the last few letters or
digits in the part number. If several algorithm selections appear,
choose the one that is closest to your part’s number.

Package type

You may want to use the <Tab> key to move to this field and select a
specific package type to see what devices are supported in that particular
package.

¥ This is not required before programming a chip with a different package
type; it is provided only for your information. It is easiest just to leave it
in the “Any” position, unless you are exclusively using one package type.
The programmer will automatically interrogate the socket module you
have attached to determine the proper programming pinout.

Family shown

This field allows you to narrow the device range the programmer searches
for. This option lets you see PLDs, EPROMs, PROMs (bipolar), or Micros,
exclusively.

¥ Some device entries require special programming considerations.
Pressing the <F2>, “Chip Info,” key provides more detailed information
about the entry, such as the name and manufacturer of any adapter that
may be required to program the device. It will provide the same
information displayed by the Info/Chip command. Once the information
is displayed for the highlighted chip, you may then use the <Up> and
<Down> direction keys to move through the list of chips and continue to
get the information for each chip in the list.

See Also

Device/Program, Info/Chip

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

7-1

CHAPTER 7
HINTS, TIPS AND
OTHER USEFUL

INFORMATION

ERASING EPROMS

METHOD

In order to clear data in an EPROM (in preparation for programming), the
chip is exposed to short-wave ultraviolet light, which is typically provided by
an EPROM eraser. The UV light penetrates a quartz window on the top of
the package, erasing the data. A certain dosage is required to fully erase the
part, so brighter light sources erase the part more quickly. Most erasers
require between 3 and 30 minutes to erase an EPROM.

EPROMs are usually erased using a mercury vapor bulb emitting 2537
Angstroms. The bulbs most commonly used are like fluorescent tubes, but
without the phosphor; they are often called germicidal bulbs. The ultraviolet
light can be harmful to eyes, so erasers are equipped with shields to prevent
light leakage.

PROCEDURE

Erasing an EPROM properly is not as simple as it appears. It is possible to
have a partially erased chip that appears to be blank, but is not blank when
read at a different voltage or temperature. Use this procedure to determine a
safe erasing time:

• Start with a programmed chip.

• Erase the part in one-minute increments and use the Device/Blank
command to test it each minute.

Chapter Seven

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
7-2

• Once the programmer says that a chip is blank, double the erase time to
give yourself an adequate safety margin.

¥ Some types of parts take longer to erase than others. You may need to
experiment with the various parts you use. An EPROM-based part with a
security bit feature (a PLD or microcontroller) is designed so that the
security address will typically be the last bit to erase.

¥ The adhesive used on labels often blocks UV light. If the chip erases
slowly, try cleaning the window with alcohol or a stronger solvent.

¥ Sunlight and fluorescent light can erase chips; however, this usually
takes months or years. You should cover the window with an opaque
label to make the data permanent.

¥ Some EPROM-based parts are available in inexpensive plastic packages.
These parts can’t be erased because they have no window. These chips
are referred to as one time programmable (OTP) EPROMs.

EMULATION MODES

16V8 AND 20V8 ARCHITECTURE

GAL stands for Generic Array Logic. It was invented by Lattice
Semiconductor as a method of replacing many standard PAL architectures
with a single general-purpose architecture. The GAL16V8 (20-pin DIP) and
20V8 (24-pin DIP) are EEPROM-based second generation PAL devices.

Each of the eight output pins uses an output logic macrocell (OLM) that can
be configured to be combinatorial or registered, active high or active low,
and can have an output enable (OE) term. This architecture is a superset of
the standard PAL devices. Furthermore, the GAL’s fuse map is also a
superset of the standard PAL.

Programming

The programming algorithm can automatically reconfigure these two GAL
devices to emulate 42 different 20- and 24-pin standard PALs. These
emulation modes accept standard PAL JEDEC files.

For example, you can program, verify and test the GAL16V8 using the
“GAL16V8 as 16L8” algorithm and a JEDEC file for a PAL16L8. The
programmed part can be used in place of a PAL16L8.

Hints, Tips and Other Useful Information

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

7-3

20XV10 ARCHITECTURE

Lattice has introduced another GAL device called a GAL20XV10, which can
emulate the standard PAL20L10, PAL20X8 and PAL20X4 architectures in
the same manner as described above for 16V8s.

EMULATION CONSIDERATIONS

All GAL devices are programmed using generic algorithms; the programmer
reads the part you put in the programmer site to determine the correct
programming voltage, timing, etc. Thus, you don’t need to worry about
speed and power suffixes on the device you are programming.

GALs are normally guaranteed to reprogram up to 100 times, which is great
for prototype design efforts. GAL devices are available from Lattice
Semiconductor, National Semiconductor, SGS-Thomson and VLSI
Technology.

AMD’s PALCE16V8 and PALCE20V8 are 100% JEDEC compatible with
the original GALs; they support all the same emulation modes.

AMD also has a 24-pin PALCE16V8HD that is not plug-in compatible with
the standard 16V8, but will accept all the same JEDEC files for its emulation
modes.

Changing the Socket Module with the power on

The socket module (SM) is the small metal chassis that holds the
programming socket. It can be changed without turning off the
programmer’s power. Simply check to be sure no command is running and
the Active LED is off before removing the old SM.

Testing PLCC PLDs

Some PLCC devices have a different number of pins than the equivalent DIP
devices. A common example of this is the 22V10. This device is a 24-pin
DIP part or a 28-pin PLCC device. The PLCC part has 4 pins that are not
connected. When you generate test vectors for the device, your design
software will generate either 24- or 28-pin vectors depending on whether you
specified DIP or PLCC.

The programmer will automatically translate the vectors in your JEDEC file
to the pinout of the part you have in the programmer site without requiring
any user intervention. You simply load the file and test the chip, saving you
time and potentially costly mistakes.

This also makes it easy to prototype circuits in Through-Hole Technology
(THT) and to switch to Surface Mount Technology (SMT) for production.

Chapter Seven

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
7-4

Using Adapters to program PLCC devices

BP programmers can support most devices directly using the appropriate
socket module . You may want to use a socket adapter, however, because it
will allow you to program complex PLDs with a programmer that has fewer
pin drivers than the size of the part.

The adapter has a DIP plug that can be plugged into the standard DIP socket
of your programmer. For example, you can program an AMD MACH230
84-pin PLCC device by using the FH28E adapter on a programmer with only
48-pin drivers. The continuity test and autostart features will be disabled.

The device can be programmed and verified, but it cannot be tested. You
must select the device in the device list that shows “with adapter” following
the part number. This tells the software to use the DIP pinout for the adapter.

SYSTEM CONFIGURATION FOR BP.EXE

MINIMUM CONFIGURATION FOR BP.EXE

A 286 or better CPU.

At least 4MB of memory.

¥ We do NOT require a memory manager to be present.

If a memory manager is present, it must conform to either the VCPI or DPMI
specifications. Most modern memory managers (including Windows)
conform to both specifications.

CONFIGURING MEMORY MANAGERS TO RUN WITH THE DOS

EXTENDER

HIMEM.SYS and EMM386.EXE (DOS 4.X Only)

EMM386.EXE must be removed from the CONFIG.SYS file or the system
must be upgraded to a newer version of DOS.

Alternately, HIMEM.SYS and EMM386.EXE can be replaced with either
QEMM or 386MAX. 386MAX is recommended above QEMM.

¥ We require either the VCPI or DPMI interface in order to shift the
processor into protect mode. Almost all memory managers shipped today
meet the VCPI standard. Unfortunately, the memory manager shipped
with DOS 4.X does not meet either of these industry standards.
Upgrading to a newer version of DOS will solve the problem.

Hints, Tips and Other Useful Information

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

7-5

HIMEM.SYS and EMM386.EXE (DOS 5.X Only)

Make certain that the NOEMS option does not exist on the EMM386 line. If
it does, change the line:

 DEVICE=C:\DOS\EMM386.EXE NOEMS [...]

to

 DEVICE=C:\DOS\EMM386.EXE FRAME=NONE [...]

¥ We require either the VCPI or DPMI interface to shift the processor into
protect mode. EMM386 for DOS 5.X only supports the VCPI interface.
The NOEMS option disables the VCPI interface along with the EMS
interface. EMM386 for DOS 6.X does not suffer f rom this limitation and
can use the NOEMS option without any problems.

HIMEM.SYS and EMM386.EXE (DOS 6.X Only)

There are no known additional requirements for this configuration.

HIMEM.SYS and EMM386.EXE (MS Windows 3.1)

This is essentially the same memory manager that shipped with DOS 5.X. It
should therefore be configured the same way.

Make certain that the NOEMS option does not exist on the EMM386 line. If
it does, change the line:

 DEVICE=C:\DOS\EMM386.EXE NOEMS [...]

to

 DEVICE=C:\DOS\EMM386.EXE FRAME=NONE [...]

¥ We require either the VCPI or DPMI interface to shift the processor into
protect mode. The version of EMM386 that ships with Windows 3.1 only
supports the VCPI interface. The NOEMS option disables the VCPI
interface along with the EMS interface. EMM386 for DOS 6.X does not
suffer from this limitation and can use the NOEMS option without any
problems.

QEMM (Version 6.X)

Verify that the NOEMS option does not exist on the QEMM line in the
CONFIG.SYS file. If it does, change the line:

 DEVICE=C:\QEMM.SYS NOEMS [...]

Chapter Seven

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
7-6

to

 DEVICE=C:\QEMM.SYS FRAME=NONE [...]

¥ We require either the VCPI or DPMI interface to shift the processor into
protect mode. QEMM only supports the VCPI interface. The NOEMS
option disables the VCPI interface along with the EMS interface.

386MAX (Version 7.X)

386MAX supports both the VCPI interface as well as the DPMI interface.
There are no known problems running with this memory manager.

SM84UP OPERATIONAL INSTRUCTIONS

The SM84UP is a universal PLCC socket capable of programming seven
different pin count devices (20, 28, 32, 44, 52, 68, 84). Seven templates are
included with each package pin count printed on the edge.

The socket module is plugged onto the programmer with the lid hinge toward
the rear of the unit. The template edge with the number should be aligned
with the front of the programmer. The front-right side of the socket module
is the INDEX side. Most if not all PLCC chips have a beveled index side.
This side should be aligned to the front of the socket module. Also, most
will have a mark that identifies pin one. This mark is usually a small dimple
or dot. When the device is inserted correctly, the dimple will be toward the
front of the programmer.

32 pin PLCC devices are rectangular and thinner than the square packages.
Since these rectangular chips are thinner, the plate in the lid of the socket that
applies the pressure on the device must be turned over to take up the slack.
Four screws with 0.059 allen heads must be removed in order to turn the
plate over.

You may choose to fabricate a shim and put it on top of the device to allow
for the difference in thickness of the 32 pin PLCC package type.

The SM84UP socket module can be used on a programmer with 48 pins
through 240. However, a programmer with 48 pin drivers will only be able
to program up to 48 pin PLCC devices. Remember, when using the
SM84UP, the programmer must have at least as many drivers as the number
of pins on the device being programmed. When removing the socket module
from the programmer, grasp the module chassis on the left and right side. Do
not remove the module by grasping the Aries socket.

Hints, Tips and Other Useful Information

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

7-7

GENERAL INFORMATION

The programmer will operate from 90V AC TO 260V AC, At 50 or 60 Hz. It
does not need to be switched for 120/240 operation.

The programmer incorporates a special correction circuit that disables all pin
drivers during power up and power down. This protects any device that may
be in the programmer site when the unit is turned off, so you don’t have to
worry about leaving parts in the programmer site.

UPGRADING YOUR SOFTWARE

It is possible to upgrade the standard software on your programmer to the
AFS software, which adds additional testing and production features, such as
the autohandler interface.

To upgrade the software, first obtain an authorization code from BP
Microsystems. You must now start the software and select BPMICRO as the
device to program.

Use the Device/Upgrade command to enter the authorization code. The
program will modify its own BP.EXE file to enable the option. Verify that
AFS has been enabled by looking at the bottom of the screen, which will
indicate AFS on the status line.

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

8-1

CHAPTER 8
USING MACRO FILES

WHAT IS A MACRO FILE?

A macro file stores a sequence of commands and settings. When you play
back a macro file, the sequence of commands is executed. Typically, a macro
file is used to select a specific chip, load a specific file, and program the chip.
Macro files can be started from the menu, the DOS command line, a batch
file, a make file, or a user application program. It is possible to read back a
return code from the programmer that tells if the operation was successful.
Macro files can be generated with an editor or automatically by using the
Macro/Record command. Macro files are human- readable ASCII files and
their name should end with ".PGM".

COMMON USES OF MACRO FILES

Production users often employ an engineer to produce a first article device
while recording a macro. The saved macro file provides an automated way
for a technician to reproduce the part with a minimum of time and training.

Third-party software developers can build a seamless interface to the BP
Microsystems programmer to program a device when required. The software
can generate a macro that will load the correct file, select the correct device,
and prompt the user to place the part in the socket, all automatically.

Hardware and firmware development engineers can write a macro file to
speed up the edit-compile-program-test cycle. A macro file can perform a
programming sequence and return an error code to the make file or batch file
that initiated the compile and program operations.

Commonly used setups can be stored in macro file s and replayed with a
single keystroke, saving time and errors when switching between different
configurations to program different designs.

Using Macro Files

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
8-2

MACRO FILE CAPABILITIES

A macro file lets you execute any command on the programmer and
automatically supply responses to all dialog box queries. The responses can
supply a specific value, let the user supply a value, take a parameter from the
command line, or leave the present value unaffected. Macro files can be
nested (one file calls another and resumes execution when the second file
finishes). A macro file can prompt the user with a message that you supply.
Finally, you can have the programmer software automatically generate the
macro file; you can modify one that was generated; or you can write one
from scratch (using an ASCII editor or writing it directly from your
application program).

INVOKING MACRO FILES

There are four ways to invoke a macro file: 1) from the DOS command line,
2) from the Macro/Play or Macro/Debug command, 3) from a hot-key, or 4)
from another macro file.

BATCH MODE, MAKE FILES

A macro file can be started from the command line, so it can be included in
batch files, make files, and user programs. To run a macro file from the
command line, just specify the macro file name on the command line. It is
not necessary to specify the .PGM extension. See below for example (where
"bp" is the name of your programmer's executable file and "example.pgm" is
the name of the macro file):

bp example

If your macro file uses command line parameters, you can specify them here
as follows:

bp example parm1 parm2 parm3

START FROM COMMAND MODE

You may start a macro file using the Macro/Play command. In this case,
choose the file you want to execute by moving the highlight over the file
name and pressing Enter twice. The Macro/Debug command can be used for
debugging purposes.

HOT-KEYS

Instead of using the Macro/Play command every time you wish to execute a
macro from the command mode, you can use the Alt key in combination
with a single digit or a function key. However, the macro must be named as

Chapter Eight

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

8-3

that digit or function key followed by the standard .PGM extension. You can
use the 0-9 or the F1-F9 keys.

FROM ANOTHER MACRO FILE

While recording a macro you may use the Macro/Play command to call
another macro. This will simply record the act of executing another macro
and will not record the steps carried out by the nested macro. When played
back, the macro interpreter will simply execute the Macro/Play command
just as any other command and play the nested macro until it is finished and
then return to the original macro and continue. You may nest as many
macros as you like, with the only limitation being the number of FILES (set
in your CONFIG.SYS) you may have open at one time.

GENERATING MACRO FILES

The easiest way to generate a macro file is to execute the Macro/Record
command which will allow you to record commands and dialog box
responses in a macro file. When the file is replayed, it will execute those
commands without any superfluous user input. The file can be edited with an
ASCII editor to make slight changes such as incorporating command line
parameters or allowing user input.

During playback, the macro file provides responses for command selections
and dialog boxes. Input is taken from the user any time there is an error or a
new chip is required. Hence the user is required to respond to prompts such
as "Abort, Retry, or Ignore" and "Insert Chip."

QUIT OR FINISH

The Macro/Record command is terminated by selecting either the Quit or the
Macro/Finish command. Selecting Quit causes the programmer to return to
DOS upon completion; useful when using batch file or make file commands
to control the programmer. The Macro/Finish command (appears only while
recording) is useful when you want to retain manual control of the
programmer (in order to program chips) after executing a sequence of
commands (e.g., Select, Device/Options, or Buffer/Load).

NESTING

Macro files may be nested. While using the Macro/Record command, you
may play a macro using the Macro/Play command. The selected macro will
play to completion, then allow you to continue recording the new macro file.
If the macro you have selected to play back ends with the Quit command, the
Quit will be ignored so you can continue.

Using Macro Files

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
8-4

PROMPTS

The Macro/Prompt command can also run while recording a macro. It allows
you to enter up to four lines of text that will be used to prompt the macro file
user. When the macro file is played, the text will appear on the screen and the
user will have to press a key to continue.

OTHER CAPABILITIES

Creating a macro file that accesses extended capabilities such as command-
line parameters, and user responses requires the use of an ASCII editor to
modify files created with Macro/Record. Study the example file and the file
format specifications below to understand these features.

MACRO FILE FORMAT

Macro files use a simple ASCII format. There are four record types defined:
1) the header, 2) the command record, 3) the data record, and 4) the
comment. You can edit the file with a standard text editor or a word
processor in non-document mode.

EXAMPLE MACRO FILE

An example file will illustrate the file format and the use of command line
parameters. This example will select the INTEL 27256, load a file named
TST32KB.BIN, set device options that require user response, program the
chip, and return to DOS. The file is named EXAMPLE.PGM:

;Macro file V2.20 for BP-1200 generated 02/09/93 17:41:11.

;

/Select

 Device selector: %1

 Package type: Any

 Family shown: All

 : ACCEPT

/Device/Options

 Starting word of range: !0x100

 Ending word of range: !0x200

Chapter Eight

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

8-5

 Buffer offset: ?0x0

 Clear buffer before reading: YES

 Data path width (number of EPROMs): 0x1

 Number of banks: 0x1

 Programming mode: SET

 Blank check before programming: ENABLE

 Verify after programming: TWICE

 Continuity test: ENABLE

 Check electronic identifiers: ^ENABLE

 : HEX

 : ACCEPT

/Buffer/Load

 Directory: C:\JED\TST*.*

 File to load: %2

 Type: BINARY

 Clear buffer before loading: YES

 Lowest address to load: 0x0

 Highest address to load: 0x3fffff

 Load address in buffer: 0x0

 : HEX

 : ACCEPT

/Device/Program

/Quit

 : ACCEPT

;End of file

Using Macro Files

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
8-6

To run the macro file from the DOS command line, you just type:

bp example "intel 27256" "tst32kb.bin"

If there are no errors, the user doesn't have to press any keys. If an error
occurs, the user must press a key to continue. The program will return an
error code to DOS that can be examined by a batch file or a user's application
program. If no error occurs, the program will return 0. See Chapter 9,
Trouble Shooting, for list of error codes and their meaning.

MACRO FILE HEADER

The macro file must start with the following text:

Macro file V...

This unique string lets the programmer identify the file as a valid macro file.

COMMAND RECORD

The command record is a line with a slash (/) in column one, followed by the
command name. Commands selected from submenus have the main menu
entry first, a slash, and the command name last. Example:

/Buffer/Load

Any command may be invoked by using a command record. Editor
commands (fill, copy, checksum, etc.) are represented by command records
even when the user invokes the commands with function keys (see Editor
commands) below.

DATA RECORD

The data record is a line starting with a space or tab character, also
containing a colon (:) character. Following the initial white space is the
prompt field. It extends up to the colon. To the right of the colon is the
response field. The response field may contain an ASCII string, a button (the
highlighted text of a multiple -choice line), or a number. Strings may be
empty. Buttons must match the exact text shown in the dialog box. Numbers
may be either hex or decimal: hex numbers have the 0x prefix; decimal
numbers do not.

COMMENTS

Comments may be placed on any line in the file. Comments begin with a
semicolon (;) and continue to the end of the line. Also, blank lines may
appear at any point in the file.

Chapter Eight

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

8-7

DIALOG BOXES

Each dialog box entry is represented by a data record. The da ta records must
appear in the macro file following the command record that invoked the
dialog box. The data records must appear in the same order as the entries in
the dialog box. The prompt field must be identical to the prompt appearing in
the dialog box. If there is a response in the dialog box without a prompt (e.g.,
ACCEPT/CANCEL), then the colon appears before the response without a
prompt (e.g., :ACCEPT). For these reasons, it is easiest to generate a macro
file using the Macro/Record facility to be ensure that the prompts match
exactly.

COMMAND LINE PARAMETERS: %1, %2,...

A command line parameter may be substituted at any point in the macro file.
It is only possible to use command line responses when the macro was
started on the command line:

bp macrofile foo bar c:\hex\test.hex

Use a percent sign (%) and a digit (0-9) to specify a parameter. Here is an
example of a data record:

Directory: %3

Will be translated into:

Directory: c:\hex\test.hex

This is useful when you want to specify a chip name or a file name from the
command line as shown in the EXAMPLE.PGM file above.

OPTIONAL DATA RECORDS: '!'

The '!' is useful for data records that may or may not be present when the
dialog box is displayed by the macro. It allows a field and its response to be
used if the field is present for the particular chip and will not generate a
warning for a chip that does not possess this field. In EXAMPLE.PGM
above, this was used on the "Starting word of range:" and the "Ending word
of range:" fields because they are present for most EPROMs; however, some
Flash devices require complete erasure and do not offer this feature. Suppose
the exclamation (!) characters were not embedded into EXAMPLE.PGM and
the following was executed at the DOS prompt:

bp example "Intel 28F010" "tst32kb.bin"

Using Macro Files

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
8-8

The user would receive a warning each time a range field was encountered in
the macro file, because those fields are not present when the "Intel 28F010"
is selected. The '!' allows the above example to run without interruption.

USER INPUT: '?'

To make the macro stop and request a response from the user, place a '?' in
front of the first character of the response portion of the field. This will leave
the response in the macro file as the default value, possibly allowing the user
to simply confirm by hitting Enter. The '?' may replace the response
completely and will require to user to type in a new result.

In the EXAMPLE.PGM above, a '?' was used on the "Buffer offset:" field to
allow the user to specify the buffer offset depending on which chip he/she is
programming.

LEAVING A FIELD UNTOUCHED: '^'

Specifying a caret (^) character as a response will leave the field unmodified.
Deleting the field from the macro file will achieve the same result; however,
it may not be as obvious to someone who updates and maintains the macros.
This allows the user to set certain options that he/she can be assured want get
changed by running a macro.

We placed a '^' on the "Check electronic identifiers:" field because it would
be annoying if the user deliberately disabled this feature for a chip with a bad
ID; and every time he/she ran this macro, it set it back to enabled, checked
the ID, and halted the macro. Here we are assuming the user has better
judgment over this option than a macro recorded under perfect conditions.

EDITOR COMMANDS

The buffer editor may be invoked from the macro file. Once in the editor,
command names represent the keystrokes that execute editor commands
(checksum, fill, copy, etc.). Also, data on the screen can be modified with an
additional command: modify. The following commands are available in the
editor:

/set_address

/reconfigure

/search

/fill

/copy

Chapter Eight

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

8-9

/invert

/checksum

/return

/modify

The return command is used to leave the editor (equivalent to pressing
Enter, Esc, or F10). The modify command is used to modify data in the
buffer (equivalent to typing over data fields). The modify command requires
a single data record as follows:

byte: addr bits position data

Where the four fields are hex numbers (do not precede with 0x) and have the
following meanings:

addr the byte address to modify
bits the number of bits that will be modified

position the bit position to modify (location within the byte where
bit 0 of data will be placed)

data bit pattern to place into the byte.

Example: buffer byte 3BC (hex) contains 7f and the following commands are
executed.

/modify

byte: 3bc 4 3 2

Has the following effect:

3BC: 7f 01111111 (before)

3BC: 17 00010111 (after)

You can use the Macro/Record facility to generate these editor commands
and then modify the resulting macro file to suit your needs.

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

9-1

CHAPTER 9
USING JOBMASTER

OVERVIEW

JobMaster is a powerful tool for automating production. It allows an
Administrator to set up a job to precise specifications, test the results and
then protect the routine so that it cannot be inadvertently modified. Once a
master device is programmed and approved, JobMaster is ready to begin full-
scale programming immediately, without further set up.

JobMaster relates to two different types of people within the production
facility:

• Administrator(s) – designated to set up jobs within the software, as well
as regulate changes made to any existing jobs. Under
Operator Mode, these functions can only be done by an
Administrator possessing the password.

• Operator(s) – runs the jobs to program devices.

FEATURES

JobMaster has been designed for maximum simplicity and consistency. It
takes the “guesswork” out of many of the steps needed to program devices,
such as choosing a device, selecting buffer contents, setting special
configuration needs, etc. Once a job has been set up, the Operator’s only
tasks are to specify the number of devices to program, and press <Enter>.
Configuration, loading the buffer and device selection are taken care of
automatically.

JobMaster sufficiently takes the place of using macros. Originally, macros
were the standard for creating a recorded file of commands and settings to
run a programming function. The JobMaster software, supplied with an
automated system, incorporates the usability of the macro function with
enhanced features and supplies a way to monitor and secure all jobs created
and stored within the software.

Chapter Nine

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
9-2

Since JobMaster can be password protected, it also ensures that Operators
can only run predefined jobs, which further cuts down on the possibility of
Operator errors. When Operator Mode is selected for startup, a window will
appear showing only those functions allowed without a password.

JobMaster also supplies a user-definable Note field for additional information
that the Operator may need to know before performing a job. When a job is
chosen, a window will appear displaying any information contained in this
fie ld.

JobMaster also helps to maintain a record of jobs done by providing a
Category and an Item/Part Number field for each job created. So,
essentially, a job can be created and stored, easily found and tracked by its
Category and Item/Part Number information.

Using JobMaster

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

9-3

Example: Company X, your customer, wants to program 500,000
devices with a file they have sent you, named Prog1.
You, the Administrator, select the device to be
programmed and load the buffer from the floppy drive,
then list the new job under the Category, Company X,
and Item/Part Number, Prog1. After the job has been
completely set up, tested and secured, you assign an
Operator to perform the task. Now, the Operator need
only to load the job found under the appropriate
Category and Item/Part Number and begin
programming devices.

Say Company X calls back and orders a different job
done. For tracking purposes, all you, the Administrator,
have to do is place this order under the same Category as
the first with a different Item/Part Number. Now when
the Load option is chosen from the JobMaster submenu,
two Item/Part Numbers will appear in the Company X
Category list.

With the above listed example, it is easy to see how JobMaster assists in
tracking jobs and storing client information.

JobMaster also tracks the original author of each job and all changes to jobs.
This information pops up in a window after the Note appears when a job is
loaded. This information is helpful in checking the status of jobs that have
been edited or updated as well as keeping track of when revisions are made
to jobs and by whom.

JobMaster supports multiple substitution of devices for each job, allowing for
one original Device field (the device for this field is chosen prior to the
creation of a new job) and five alternates for a total of six Device fields
within any one particular job.

Since the buffer is loaded prior to creating a new job, JobMaster tracks the
path to locate this file, enabling files for buffer loads to be stored on network
drives, local PCs or floppy disk. Once a job is loaded, JobMaster will go in
search of the file with the provided path way saved previously and will
prompt you should the path name be invalid or incorrect. JobMaster’s
databases can also be shared company-wide, allowing for the ease of file
sharing.

JobMaster allows you to create a job on a programmer, then run it on an
autohandler if needed. The only restriction is that laser-marking information
can only be added to the job if the laser marker is attached to the
programmer. However, the job can be created on another programmer and
the laser information added (in a relatively short amount of time) once the
job has been transferred to a programmer utilizing an autohandler.

Chapter Nine

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
9-4

INSTALLATION

JobMaster is supplied within the BP Software; however, you must have an
access code to obtain usability. To receive an access code, you must
purchase the JobMaster software from our sales department (contact
information listed in Chapter 10, Troubleshooting and Maintenance, page
14-1). Once you have purchased the software, an access code will be
generated and either e-mailed or faxed to you.

After obtaining access to the software, you need to:

• Configure Jobmaster - this is done through the JobMaster/Configure
option, listed on page 6-55.

• Set the LIBPATH environment variable to include the directory where
BP.EXE and BPJOB.DLL reside.

• Set the BPCFG environment variable to your local hard drive.

~ Do not share the BP.CFG files among multiple PCs.

• Reboot your PC and run BP.EXE

• Select the Upgrade option from the AFS menu and enter the upgrade
code that was shipped with your diskettes or provided by the BP
Microsystems Sales Department.

• Go to the JobMaster/Configure menu and set your JobMaster Database
Directory. This will be the directory where all of your users can access
the database. Choose whether or not you want to enable categories and
tab to Accept.

• Press <Enter> and your options will be set.

CREATING A NEW JOB

The procedure for adding a new job to the JobMaster database is very
straightforward. This section assumes you understand the basics of
programming a device using the BP software. The steps for programming a
device are detailed in Chapter 6, BP Software Command Reference, using
different sections pertaining to input/output devices. Individual commands
and functions are listed in Chapter 7 – Reference Commands. Before
creating a new job within JobMaster, make sure you have taken the
following steps:

• Select the device that you want to program.

Using JobMaster

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

9-5

• Load the buffer with the information to be programmed into the
device.

• Set any special configuration options.

Once you have chosen at least one device and have loaded the buffer
contents and set any special configuration, you are ready to create a new job.
Go to the JobMaster menu and select the New option.

Figure 31 - JobMaster/New screen

You can define the Category and Item/Part Number fields in any way you
choose.

¥ We suggest the following options for filling in these fields:

• Referencing a manufacturer in the Category field, if you will be
creating specific manufacturer databases, such as Category:
AMD to be saved in the AMD database

• Referencing your customer in the Category field and the job
number or location on the circuit board in the Item Number
field.

When the Operator chooses Load from the JobMaster option bar, a window
listing all categories will appear for the Operator to choose from. Once a
category is chosen, a window will appear listing all item numbers associated
with that category. So, by creating Category and Item Numbers that will be
familiar to the Operators, you help to ensure the correct job is chosen. The

Chapter Nine

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
9-6

Category and Item Number will also be displayed whenever the Operator
selects a job, thus providing another means to double -check that the correct
selection has been made.

The device you have programmed is automatically entered into the first
Device line. You can add up to five additional devices, provided they have
identical programming requirements. See Adding a Device to an Existing
Job below.

The Note option is another user-definable field that will be displayed
whenever an Operator chooses this job. You may use this field to inform the
operator of any information that might be useful to the job, or you may leave
it blank. If the field contains information, that information will pop up on
the screen for the Operator when a job has been selected.

If the Verify Checksum of Data option is Enabled, the system will stop and
not permit the job to run if the data has changed since the job was created.

~ We strongly recommend that this option be set to Enabled, unless
you have a data file that is going to be changed frequently.

Once you have set the options, select Accept and press <Enter>. A screen
will prompt you to verify that you want to add the new job to the database.
If the information is correct, press <Enter> again to save it in a database. If
changes need to be made, selecting Cancel will take you back to the New
Job screen.

COPYING AN EXISTING JOB

To copy the Category, Item Number or Device from a currently existing job,
press <Enter> when the cursor is on an empty field. This will bring up a
selection box that you can use to select currently existing entries.
Highlighting a selection and pressing <Enter> will input the information
into the new job.

ADDING A DEVICE TO AN EXISTING JOB

JobMaster permits the programmer to list as many as six devices under a
single job description. This can be a real convenience in a production
environment, allowing the use of devices from multiple manufacturers.

~ It is essential that all the devices listed for a single job be
absolutely compatible. They must accept exactly the same
configurations and programming algorithms.

Example: You cannot mix a PLD with a Flash EPROM.

Using JobMaster

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

9-7

To add a device, select JobMaster/Load to load the job. Then, using
JobMaster/Update, bring up the change screen and add the device to the next
available device line by tabbing to an empty device line and pressing
<Enter>. This will bring up the device selector dialog screen. Once all of
your changes are complete, select Accept and press <Enter> . The updated
job will be saved over the existing job in the database.

UPDATING A JOB

Go to JobMaster/Load to select and load a job. Use the BP software to
change the Device/Configuration, Buffer/Options or other parameters, then
select JobMaster/Update to accept the changes as part of the current job.

¥ JobMaster keeps track of the date, time and author of each job’s
creation, and of every subsequent revision. This information is displayed
whenever you select the JobMaster/Load option.

LOCKING THE PROGRAMMER IN OPERATOR MODE

One of the major highlights of JobMaster is the ability to secure the
programmer and limit the Operator’s access to certa in functions through the
use of Operator Mode. To lock the programmer in Operator Mode, select
JobMaster/Options and set the default mode to Operator Mode. Tab to
Accept and press <Enter>.

¥ When you select the Operator Mode default option, you will be prompted
to enter a password. If you enter a password, it will be necessary to use
it to get out of Operator Mode (see Running a Job below). If this
protection is not desired, do not enter a password, tab to Accept and
press <Enter>.

PASSWORD PROTECTION

In a typical production environment, it can be useful to limit password access
to those people who are authorized or qualified to make changes to the job
specifications.

The Operator Mode selection is stored both in the programmer itself and in
the BP software. As a result, even if a different PC is attached, that
programmer will still be locked in Operator mode. Similarly, the software
on any PC that is attached to a programmer locked in Operator Mode will
become locked also. In either case, the password will be necessary to unlock
that programmer and exit the Operator Mode.

This feature is very useful in preventing inadvertent or unauthorized
alteration of the programming algorithm and database.

Chapter Nine

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
9-8

~ Please make sure to write your password down and put it in a safe
place. If your password is forgotten, a field-service technician will
need to come out to reset the password entry for you.

RUNNING A JOB (PROGRAM MODE)

JobMaster is designed to make programming as efficient and foolproof as
possible.

Follow the instructions in the preceding chapters for getting started and
position the correct input and output media on the programmer.

Assuming the Operator Mode default has been selected, the programmer will
“wake up” in Operator Mode. If not, refer to the Locking the Programmer in
Operator Mode section above. Operator mode offers only four options:
Program, Verify, Stop and Quit. To begin programming, tab to the Program
option and press <Enter> .

1. Tab to Program and press <Enter> .

2. JobMaster will ask for a Category, Item Number and Device to program.
Enter these at the prompts. You can always press <Enter> on an empty
field to see a list of available options from the database. If more than
one device has been specified for the job, you will be prompted with a
list from which to choose. Simply tab to the appropriate selection and
press <Enter> .

3. Once you have selected the device, JobMaster will display any Notes that
were added when the job was created.

4. The software will then ask for the Number of Devices. Type this number
and press <Enter>.

¥ This refers to the number of devices that should be successfully
programmed, not the number of attempts, to allow for any rejects that
may normally occur.

5. A summary screen will be displayed, listing Category, Item Number,
File, Checksum, Operation and the Note. If everything is correct, select
Accept and press <Enter>. The system should begin programming
devices.

DELETING A JOB

To delete a job from the JobMaster database, you must have access to the
Administrator password.

1. Go to JobMaster/Delete.

Using JobMaster

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

9-9

2. Select the Category and Item Number of the job you wish to delete.

3. A screen will appear asking you to verify the delete option.

4. Press <Accept> to continue with the delete process; choose <Cancel> to
cancel the delete process.

RETURNING TO NORMAL MODE

To return to the BP Software to normal mode upon startup, simply enter the
Administrator password, and then go to JobMaster Configure. Tab down to
the Default Mode field and select <Normal>. When the BP Software is
started up again, it will be in normal access mode.

For a complete list of JobMaster commands and descriptions, refer to
Chapter 6, BP Software Command Reference, page 6-1.

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-1

CHAPTER 10
SERIALIZATION

This chapter describes the basic procedures for using the optional
Serialization feature available for the BP Microsystems’ programmers. This
feature supports simple serialization: a linear sequence of numbers
incremented by one. It also supports complex serialization for users who
wish to generate a unique sequence of numbers, including non-linear
sequences, by writing their own algorithm.

To use the Serialization feature, you must have BP software V3.27 or newer
and purchase the Serialization option.

~ Although this feature works with 98% of all EPROMs and
Microcontrollers, it DOES NOT work with PLDs.

For information on obtaining this option and updating the software and
hardware, contact BP Microsystems’ sales department, contact information
provided in Chapter 10, Troubleshooting and Maintenance, page 14-1.

OPERATION

1. From the BP main menu, select AFS and press <Enter>.

2. From the submenu, select Serialize and press <Enter>.

3. On the screen you will be given three serialization options: NONE,
Simple , and Complex. Use directional arrow keys on your keyboard to
select the option you prefer and press <Enter> to accept.

4. Depending on the option you selected, you will be prompted to provide
certain essential information.

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-2

NONE

Choosing this option disables serialization completely and requires no
additional information.

Simple

This option instructs the BP software to generate a linear sequence of
numbers and requires that you input the following information:

• Serial number size:
Select from NONE, 1_byte , 2_bytes or 4_bytes and tab to the next
selection.

• Serial number data file:
Enter the path and name for the data file that will contain the current
serial number. The BP software automatically updates this file as each
new number is generated. This permits the user to interrupt a job and
continue it later with the next number in the series. Now tab to the next
selection.

~ The Serial number data file field should identify the “.dat” file used
by the BP software to keep track of numbers for simple
serialization. DO NOT enter the name of the “.exe” file used to
create numbers in the complex serialization mode! This will cause
that file to be over-written and destroyed.

• Buffer address for serial number:
Enter the address at which you wish to place the serial number. The
default address is 0 (zero). Now tab to the next selection.

• Buffer bytes to skip :
Select from two options, NONE and EVERY_OTHER. This is useful, for
example, when programming paired 8-bit EPROMs that will represent
one 16-bit address. The EVERY_OTHER option allows all of the serial
number to be written into one of the two chips in the 16-bit set. Tab to
the next selection.

• Byte order:
Select from the options REVERSE and FORWARD. Reverse means
the least significant byte (LSB) comes first. Forward means the most
significant byte (MSB) comes first. Tab to the next selection.

• DECIMAL HEX:
This option specifies whether the Buffer address for serial number:
entered above is to be interpreted as decimal or hex. Select the correct
option and tab to the next selection.

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-3

• ACCEPT CANCEL
If you are satisfied with your choices, select ACCEPT and press
<Enter>. If you have specified a serial number file that already exists,
skip to “Working with an existing file” below.

If a new serial number file is being created, this will bring up a screen,
which shows Serial number file created, starting at Serial Number 1.

By pressing any key, you will bring up another screen that says Starting
Serial Number: 1, which is the default starting number for a new file.

1 is the default starting number. Press <Enter> to accept this, or change
the starting number and then press <Enter>. Now you can press <Esc>
which will take you back to the main menu, and begin programming.

Working with an existing serial file

If you have specified a serial number file that already exists, neither of the
previous screens will appear, and the starting serial number will be whatever
was stored in that file. Tab to the next selection.

• DECIMAL HEX
Select the format in which the serial number is to be represented then tab
to the next selection.

• ACCEPT CANCEL
If you are satisfied with the information you have input, select ACCEPT.

Now you can press <Esc> to return to the main menu and begin
programming.

Complex

If you choose the Complex option, you must first have created a program to
generate the unique sequence of numbers desired. This can be a linear
sequence such as “increment by five” or a completely non-linear sequence.
Details of the protocols involved will be covered in a following section.
Assuming this program already exists, here is the procedure for using
Complex Serialization:

The screen will prompt you for the following information:

• First Serial Number:
You must specify the beginning number in the sequence of serial
numbers. This information is passed to your Serialization program.

• Last Serial Number:
This field is optiona l. Any number you enter will represent the maximum
value desired. If a value is entered in this field, then it is passed as a

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-4

command-line parameter to the user’s serial-number generating program.
It is the burden of that program to output the appropriate error condition
to the file it generates. Leaving this field blank will disable this feature.

• Serialization program:
This field must contain the full path and name of the user’s Serialization
program.

• ACCEPT CANCEL
If you are satisfied with your choices, select ACCEPT and press
<Enter>.

Now you can press <Esc> to return to the main menu and begin
programming.

ALGORITHM PROTOCOLS

To use the Complex Serialization option, you must first create a program that
will generate the unique sequence of serial numbers. The path and name of
this program must be specified in the set-up procedure as outlined above.
The BP software supplies this program with the Command-line Parameters
outlined below, and the program supplies the BP software with data in the
form Txx, where “xx” is the appropriate code number, followed by the data
in ASCII representation.

¥ See example serialization program at the end of this chapter.

COMMAND-LINE PARAMETERS

The BP Software supplies the user’s program with three command-line
parameters.

• -N <Serial Number>
This is the current serial number, in ASCII representation.

• -E <Serial Number>
This is the ending serial number, in ASCII representation. This
parameter will only be passed to the user’s program if the Last serial
number: field has been filled in. If so, the user’s program must specify
an Error Message to be generated (see below under “Optional Codes -
T06”).

• -F
This command-line parameter tells the program that this is the first time
it’s being called. It is only passed to the user’s program when it is being
called for the first time in a given session. Subsequent calls to the user’s
program will not pass this parameter.

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-5

File Codes

The Serialization program must create a file to pass information to the BP
software. This file must be named SERIAL.DAT.

The Serialization program should not specify any path information. This will
cause the file to be created in the active directory, where the BP software will
look for it. The active directory is not necessarily the same directory as the
BP software.

The SERIAL.DAT file elements each begin with a code. These are in the
form of “Txx:” where “xx” represents the appropriate code, followed (with
no space) by the data in ASCII representation. These elements inform the
BP software to perform specific tasks.

Four of these elements are essential, the rest are optional.

Essential Codes

• T01 Current Serial Number

• T02 Next Serial Number

• T03 Translation format number, specifies the file format (See the
following chart for supported formats and their codes.)

SUPPORTED FILE TYPES
For Serialization on BP-4100/4500

File Types: T03-Codes

Absolute Binary 16

ASCII Hex Apostrophe 52
ASCII Hex Comma 53, 58

ASCII Hex Percent 51, 56
ASCII Hex SMS 57

ASCII Hex Space 50, 55
Fairchild Fairbug 80

Formatted Binary 10

Intel Hex-32 99
Intel Intellec 8/MDS 83

Intel MCS-86 Hex Object 88
Intel OMF 286 98

Intel OMF 386 97
JEDEC (full) 91

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-6

JEDEC (Kernel) 92

Motorola 32 bit (S3 record) 95
Motorola Exorcisor 82

Motorola Exormax 87
POF 14

Tektronix Hexadecimal 86
Tektronix Hexadecimal Extended 94

Texas Instruments SDSMAC 90
Texas Instruments SDSMAC (320) 04

Table 11 – Supported File Types

• T04 Specifies the beginning of the actual data which will be outputted to
the buffer. The data must be in the format specified by the T03 code.
The data will continue from this point until the end of the file. If the data
is in a non-addressed format, it will be put at address zero. The user may
specify a different beginning address.

Example: Here is an example of a file that the user’s program will
output as SERIAL.DAT, which the BP software will use
to manage the serialization process.

Current Serial Number: T01:D60043C8
Next Serial Number: T02:D60043C9
Translation Format: T03:99

Data to Output to Buffer: T04:
 :020000020000FC
 :020000040000FA
 :0600200000A0D60043C859

OPTIONAL CODES:

• T05 Message, Fatal error, Abort.
On receiving this code, the BP software will display a message and abort
the serialization process. Programming will not continue. The content
of the message, in ASCII representation, and the conditions under which
this code will be issued must be specified by the user’s serialization
program.

• T06 Current Serial Number greater than limit, Message, Abort.
On receiving this code, the BP software will display a message and abort
the serialization process. Programming will not continue. The content of
the message must be specified in ASCII representation by the user’s
serialization program. This code should only be issued if the -E
command line parameter has been given a value in the serialization set-
up and that value is exceeded.

• T11 Warning Message string.
On receiving this code, the BP software will display a message and will

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-7

continue the serialization process. The message will be specified by the
user after the T11 code, in ASCII representation. The conditions under
which this message should be displayed are to be determined by the user.

~ The serialization program specifies an address range to which the
serial number will be written. This must be the same range each
time the program is run for a given set. If the program attempts to
write to a different address range, an error message will be
generated and serialization will be aborted.

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-8

EXAMPLE PROGRAM

The following is a sample serialization number program to be called by the
BP software.

/**

Example serialization program.
This is a sample serial number generating program
to be called by the BP software for serializing
devices.

#include <stdlib.h>
#include <stdio.h>

// Function prototypes
int ParseCommandLine (File *fp, int argc, char

**argv, long *plSerialNum,
long *plAddress, long
*plIncr);

void WriteDataInFormat (FILE *fp, long lAddress,
unsigned char *szData, int
nDataLen);

//Macro definitions
#define SERIALFILE “serial.dat”
#define DEFAULT_ADDRESS (0)
#define DEFAULT_INCR (1)

int main (int argc, char **argv)
{
 int rtn;
 long lAddress, lIncr, lSerialNum,

lNextSerialNum;
 FILE *fpSerial=NULL;

 //Create the serial.dat file
 fpSerial – fopen (SERIALFILE, “w”);
 if (fpSerial == NULL)
 {
 printf (“Unable to create %s file.\n”,

SERIALFILE);
 return 1;
 }

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-9

 //Parse the command line arguments
rtn = ParseCommandLine (fpSerial, argc,

&lSerialNum,
&lAddress, &lIncr);

//if there was no error with the command line

arguments
//calculate next serial number and generate
serial number file if (rtn == 0)

{
 lNextSerialNum = lSerialNum + lIncr;

 GenSerialFile (fpSerial, lAddress,

lSerialNum,
lNextSerialNum);

}
//Close the serialization file
fclose (fpSerial);
return 0;

}

/*
 ParseCommandLine () - - Parse the command line

arguments to get the
serial number
information

*/
int ParseCommandLine (FILE *fp, int argc, char

**argv, long *plSerialNum,
long *plAddress, long
*plIncr)

{

 int I, nLength, nSerNumberFound=0;

 //Initialize values
 *plSerialNum = 0;
 *plAddress = DEFAULT_ADDRESS;
 *plIncr = DEFAULT_INCR;

 //Loop through command line arguments and
 //process relevant command line options
 for (i=1, i,argc; i++)
 {

 nLength = strlen(argv[i]);
 if ((*(argv[i]) = = ‘-‘) && (nLength >

2

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-10

)
)

 {
 switch (*(argv[i] +1))
 {
 case ‘N’:
 nSerNumberFound = 1;
 sscanf(argv[i] + 2, “%ld”,

p
l
S
e
r
i
a
l
N
u
m
)
;

 break;

 case ‘I’:
 sscanf(argv[i] + 2, “%ld”,

p
l
I
n
c
r
)
;

 break;

 case ‘A’:
 sscanf(argv[i] + 2, “%ld”,

p
l
A
d
d
r
e
s
s
)
;

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-11

 break;

 default:
 break;

 }
 }
 }

 //Return an error if there was no –N<serial

number> in the command line
 if (! (nSerNumberFound))
 {
 fprintf (fp, “Tos:Serial number not
passed to serialization program\n”);
 return 1;

 }
 return 0;
}

/*
 GenSerialFile() - - Generate the serial
number file
*/
void GenSerialFile (FILE *fp, long lAddress, long

lSerialNum
, long
lNextSeria
lNum)

{

 fprint(fp, “T01:%ld\n”, lSerialNum);
 fprint(fp, “T02:%ld\n”, lNextSerialNum);
 fprint(fp, “T03:99\n”);
 fprint(fp, “T04:\n”);

 //Write the formatted data portion
 WriteDataInFormat (fp, lAddress, (char*)

(&lSerialN
um),
sizeof
(long));

}

//Variables for the writing formatted data static
unsigned csum; checksum;
 //line

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-12

static char hex[16]=”0123456789ABCDEF”;

//Record size
#define REC_SIZE 32

//Functions for writing the formatted data

/*

 hexputcsum() - - Convert the number to hex and

add the number to the
checksum

*/
static void hexputcsum(FILE *fp, int c)
{
 c=c&255
 csum+=c;
 fputc(hex[c>>4], fp);
 fputc(hex[c&15], fp);

}

/*

 putcr() - - Put a carriage return at the end
of the line
*/
static void near putcr(FILE *fp)
{
 fputc(‘\r’,fp);
 fputc(‘\n’,fp);
}

/*
 EmitLine() - - Write a line of data to the
file
*/
static void EmitLine(FILE *fp, int size, unsigned

addr, int type unsigned char *
data)

{
 int i;

 csum=0
 fputc(‘:’,fp);
 hexputcsum(fp, size);
 hexputcsum(fp, addr>>8);

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-13

 hexputcsum(fp, addr);
 hexputcsum(fp, type);
 for (i=o;i<size;i++)
 hexputcsum(fp, data[i]);
 hexputcsum(fp, 0-csum);
 putcr(fp);
}

/*
 WriteDataInFormat() – - Write the formatted

data into the file
*/
void WriteDataInFormat (FILE *fp, long lAddress,

unsigned char *szData, int
nDataLen)

{
 int c;
 int i;
 int nIndex;
 long lExtAddr=0; //what the receiver

perceives the extended
address to be

 nIndex = 0

 //step through the data creating 32 byte

records while (nDataLen) {

 unsigned char line_buf[REC_SIZE];

 //make sure the receiver knows the

correct address
 if ((lAddress-lExtAddr) & ~65535) {

 //We must now send an extended

address record if (lAddress >=
(1L<<20)) {

 // 32-bit address record
 line_buf[0]=lAddress/65536L/256L;
 line_buf[1]lAddress/65536L;
 EmitLine(fp, 2, 0, 4, line_buf);
 } else {
 //20-bit address record
 line_buf[0]=lAndress/16L/256L;
 line_buf[0] &= 0xf0;
 line_buf[1]=0;
 EmitLine(fp, 2, 0, 2, line_buf);
 }

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
10-14

 1ExtAddr = lAddress & ~65535;
 }
 //Fill the line_buf[] with data & write it out
 i = nDataLen<REC_SIZE ? nDataLen : REC_SIZE;
 memcpy(line_buf, &szData[nIndex], i);
 EmitLine(fp, i, (unsigned)(lAddress&65535), 0,
line_buf);
 }
 EmitLine(fp, 0, 0, 1, NULL); //end record
}
The range, if the range addresses change, error

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

10-15

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

11-1

CHAPTER 11
TEST VECTORS

DEFINITION

A test vector is an array of characters, one character for each pin on the chip,
that specify test conditions and expected test results for the chip. If test
vectors are stored in a JEDEC or POF file, they will be loaded into the vector
buffer when the file is loaded. Test vectors may be examined and modified
with the Buffer/Vectors command.

Test vectors let the designer verify that the PLD behaves correctly without
having to prototype a circuit. A properly designed set of vectors will also
ensure that the programmed part is functioning correctly. Most PLD
development software will help you generate valid test vectors automatically.

During the vector test, the programmer applies high and low signals to the
input pins of a functioning PLD and observes the output pins. The output
results are compared to the expected results from the test vectors. Any
differences will show up in error messages.

CHARACTERS

The following are valid characters for test vectors:

0 Apply Vil to an input pin
1 Apply Vih to an input pin
C Clock an input pin (Vil,Vih,Vil)
K Clock an inverted input pin (Vih,Vil,Vih)
X Don't care: see Device/Options command
F Float the pin (high-impedance)
N This pin is not tested (used for power supplies)
H Expected result on output pin is Vih
L Expected result on output pin is Vil
? Read an output pin and replace this ? character with H, L,

or Z
Randomly generate a 1 or 0 to replace the # in this vector

Chapter Eleven

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
11-2

ENHANCEMENTS

The ? and # characters are not supported by standard JEDEC files. These two
characters let you generate test vectors for any chip by placing a # in the
column for each input pin, and a ? on each output pin. When the test is
performed the first time (on a known good chip), input conditions (0,1) are
generated at random and the # character is replaced by the generated
condition. Outputs specified by ? are read from the device under test and the
character is replaced by either H, L, or Z. The next time a test is performed
with the same vectors, the pin will be tested and expected to produce the
same result as the first chip. This test is not guaranteed to find every fault, so
be sure to use lots of vectors.

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

12-1

CHAPTER 12
ERASING EPROMS

METHOD

In order to clear data in an EPROM (in preparation for programming), the
chip is exposed to short-wave ultraviolet light, which is typically provided by
an EPROM eraser. The UV light penetrates a quartz window on the top of
the package, erasing the data. A certain dosage is required to fully erase the
part, so brighter light sources erase the part more quickly. Most erasers
require between 3 and 30 minutes to erase an EPROM.

EPROMs are usually erased using a mercury vapor bulb emitting 2537
Angstroms. The bulbs most commonly used are like fluorescent tubes, but
without the phosphor; they are often called germicidal bulbs. The ultraviolet
light can be harmful to eyes, so erasers are equipped with shields to prevent
light leakage.

PROCEDURE

Erasing an EPROM properly is not as simple as it appears. It is possible to
have a partially erased chip that appears to be blank but is not blank when
read at a different voltage or temperature. Use this procedure to determine a
safe erasing time:

» Start with a programmed chip.
» Erase the part in one minute increments and use the

Device/Blank command to test it each minute.
» Once the programmer says the chip is blank, double

the erase time to give yourself an adequate safety
margin.

Some types of parts take longer to erase than others. You may need to
experiment with the various parts you use. An EPROM based part with a
security bit feature (a PLD or microcontroller) is designed so that the security
address will typically be the last bit to erase.

F The adhesive used on labels often blocks UV light. If the chip erases
slowly, try cleaning the window with alcohol or a stronger solvent .

Chapter Twelve

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
12-2

Sunlight and fluorescent light can erase chips; however, it usually takes
months or years. You should cover the window with an opaque label to make
the data permanent.

Some EPROM based parts are available in inexpensive plastic packages.
These parts can't be erased because they have no window. These chips are
referred to as one time programmable (OTP) EPROMs.

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

12-3

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

13-1

CHAPTER 13
EMULATION MODES

16V8 AND 20V8 ARCHITECTURE

GAL stands for Generic Array Logic and was invented by Lattice
Semiconductor as a method of replacing many standard PAL arhcitectures
with a single general purpose architecture. The GAL16V8 (20-pin DIP) and
20V8 (24-pin DIP) are EEPROM based second generation PAL devices.
Each of the eight output pins uses an output logic macrocell (OLM) that can
be configured to be combinatorial or registered, active high or active low,
and can have an output enable (OE) term. This architecture is a superset of
the standard PAL devices. Furthermore, the GALs fuse map is also a superset
of the standard PAL.

PROGRAMMING

The programming algorithm can automatically reconfigure these two GAL
devices to emulate 42 different 20- and 24-pin standard PALs. These
emulation modes accept standard PAL JEDEC files. For example, you can
program, verify, and test the GAL16V8 using the "GAL16V8 as 16L8"
algorithm and a JEDEC file for a PAL16L8. The programmed part can be
used in place of a PAL16L8.

20XV10 ARCHITECTURE

Lattice has introduced another GAL device called a GAL20XV10 which can
emulate the standard PAL20L10, PAL20X10, PAL20X8, and PAL20X4
architectures in the same manner as described above for 16V8s.

EMULATION CONSIDERATIONS

All GAL devices are programmed using generic algorithms; that is, the
programmer reads the part you put in the socket to determine the correct
programming voltage, timing, etc. That way, you don't need to worry about
speed and power suffixes on the device you are programming.

Chapter Thirteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
13-2

GALs are normally guaranteed to reprogram up to 100 times which is great
for prototype design efforts. GAL devices are available from Lattice
Semiconductor , National Semiconductor, SGS-Thomson, and VLSI
Technology. AMD's PALCE16V8 and PALCE20V8 are 100% JEDEC
compatible with the original GALs; thus, they support all the same emulation
modes.

AMD also has a 24-pin PALCE16V8HD that is not plug-in compatible to the
standard 16V8, but will accept all the same JEDEC files for its emulation
modes.

Serialization

BP Microsystems, Inc. The Engineer’s Programmer
DOS Manual Rev. 3.002

13-3

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

CHAPTER 14
TROUBLESHOOTING

AND MAINTENANCE

This chapter provides information on troubleshooting and maintenance for
the BP-2000 Series Programmers including FAQ’s, Common problems and
solutions, and error/warning messages. Contact information and instructions
for downloading from the BBS are also found herein.

CUSTOMER SERVICE

WHEN YOU NEED HELP

The information in this chapter may help you solve or identify a problem
with your programmer. If you have a problem that you cannot solve, please
call us. We are dedicated to making BP Microsystems programmers as
trouble-free as possible.

HOW TO REACH US

Technical Support— 800-225-2102
 713-688-4600 (Outside the U.S.)
 713-688-0920 (Fax)
 tech@bpmicro.com (email)
 4100support@bpmicro.com (email)
Bulletin Board— 713-688-9283
Sales Support— 713-688-4600
 info@bpmicro.com (email)
Web Page— www.bpmicro.com (Internet)

SOFTWARE UPDATES

The control software for your programmer is updated on a frequent basis
(typically each six weeks) to add features and provide you with support for
new chips.

Chapter Ten

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-2

Software updates may be obtained from BP Microsystems as a subscription,
or by downloading from our electronic bulletin board system (BBS). Please
contact a sales person to purchase a software subscription.

Your programmer is designed to be highly flexible and programmable,
allowing it to program a wide variety of chips. Consequently, when a
problem does arise, it can usually be fixed with just a software update.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

CALLING THE TECHNICAL SUPPORT LINE

You can obtain technical support from BP Microsystems by calling 1-800-
225-2102 (or 713-688-4600 outside the U.S.). You can also reach us by fax
at 713-688-0920 or send email to tech@bpmicro.com. We request that you
have the following information ready when you contact us:

• The model number of the BP Microsystems programmer (bottom of
screen)

• Your software version number (from the top of the screen)

• The exact error message and error number you received

• The exact algorithm that was selected (bottom of screen)

• The exact part number on the chip you were trying to program

• The command you executed

• The results of running the <Alt-D> Self-Test command on your
programmer

It is also useful to have a print-screen of the error, or to print out a log of the
error (see Info/Log command). You may be asked to upload your file and/or
send in your devices so we can analyze the error at the factory.

¥ If you need to return your programmer to BP Microsystems for any
reason, you must call and get a Return Material Authorization (RMA)
number before shipping; mark the RMA number clearly on the shipping
container. Be sure to include a description of the problem experienced, a
return address, contact person and a phone number.

SOFTWARE UPDATES

The control software for your programmer is updated on a frequent basis
(typically each six weeks) to add features and provide you with support for
new chips.

Software updates may be obtained from BP Microsystems as a subscription,
by downloading from our electronic bulletin board system (BBS) or via our
web site (www.bpmicro.com). Please contact a sales person to purchase a
software subscription.

Your programmer is designed to be highly flexible and programmable,
allowing it to program a wide variety of chips. Consequently, when a
problem does arise, it can usually be fixed with just a software update.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-4

Our policy is to resolve user issues as quickly as possible, often within a day
or two, and to release update software immediately on the BBS and website.
Therefore, if you have encountered a software issue, there is a good chance
that it has already been fixed and placed on the BBS and website.

¥ We recommend that you obtain the latest software revision before calling
our support line with a software problem. Many of our technical support
calls result in the user obtaining the latest version of the software.

DOWNLOADING FROM THE BBS

You can access our electronic BBS to obtain a software update by calling
713-688-9283 (in the U.S.) The system requires 8 data bits, 1 stop bit, and no
parity. Once you have logged onto the system, it will give you instructions on
how to download the latest software. See the Info/BBS command for more
details on the BBS operation.

If your modem supports speeds faster than 9,600 baud, you may need to call
a different telephone number to utilize the fastest speed. Once you have
logged on, you can read a list of telephone numbers on the BBS that will
allow the fastest transfer rates.

You will need a communications program to use your modem. The
communications program allows your computer to access our BBS and save
a file to your disk. You will need to select the same download protocol on
both your communication device and our BBS. Recommended protocols are
Zmodem and Ymodem because they provide the fastest transfer and easiest
operation. The file you download will be a self-extracting compressed file.
Once you have downloaded the file, execute it to extract its contents. You
may then delete the file you have downloaded – it will not be needed again.

TESTING THE HARDWARE

The programmer can test its own hardware quite extensively. The Self-Test
routine can detect problems in the pin-drivers, power supply, microprocessor,
data cable, printer port, and several other circuits. The hardware test cannot
detect problems resulting from a dirty socket (see below). To execute the
test:

• Remove any chips from the programmer sites

• Press <Alt-D> hot-key

• Choose to test a single unit or all units

• Watch the screen for any error messages

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

¥ If you receive an error during the test, please call Technical Support for
assistance

ERRORS WHILE PROGRAMMING

If you experience problems while trying to program a chip, try to narrow
down the problem. If you receive a Cannot program or Cannot erase error
while programming:

• Make sure you have selected the proper programming algorithm

• If you are using a PLD or microcontroller, the device may have been
previously secured

• The device may not be fully erased (this should be verified by the Blank
check before programming: option, if you have not turned it off)

• The device may have a newer die than the one supported by the
programming algorithm

You may want to run the Device/Compare command to see where the
command failed. Look at the first error indicated by the Compare command.
This is the location that caused the Device/Program command to abort and
return an error message. Three possibilities exist: 1) the byte or bit didn’t
program at all, 2) there are extra programmed bits, or 3) a combination of
unprogrammed bits and extra programmed bits. On memory devices,
compare the two hex data values to see what went wrong. On most
EPROMs, the erased state is FFh and the fully programmed state is 00h.

If the expected value has more 0 bits than the value read from the chip, the
chip may not have been fully erased before programming. If the byte read
from the chip is completely unprogrammed (FFh), you are probably either
using the wrong algorithm or have a defective chip. If you find that the same
bit fails every byte, you should suspect a dirty socket or a bent IC pin.

You can expect a small number of fuse-link programmable PLDs to fail
during programming. This is because they cannot be fully tested at the
factory without blowing out the fuses! Most semiconductor manufacturers
claim you should get a 98% programming yield. Your yield shouldn’t drop
below the value specified by the semiconductor manufacturer.

Most semiconductor manufacturers fully test EPROM and EEPROM-based
PLDs. You should achieve a very high yield on these parts. These parts do,
however, have a limited number of erase cycles. Most parts can be erased
and programmed up to 100 times without failure.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-6

CLEANING A DIRTY DIP SOCKET

If the DIP socket becomes dirty, it will fail to make contact with all the chip
pins. The simple fix is to place your chip in the socket, push the lever down,
and slide the chip left and right a few times. Cleaning sockets with a blast of
high-pressure air on a regular basis is also recommended.

If this does not resolve the problem, run the hardware test described above.
If your hardware has passed the Self-Test, there may be an error in the
programming algorithm you are using or the semiconductor manufacturer
may have updated the programming algorithm for your device. In either
event, your problem will probably be corrected with a software update.

PLD VECTOR TEST ERRORS

If you get consistent error messages during vector tests, refer to the
Device/Options command. You may need to use a different X-value. If you
get an “Excessive current detected” error, your test vectors may be applying
conflicting signals to the chip’s output pins; you should correct the vectors.
See “Error 38: Functional test failed” and the section on Test Vectors in this
chapter for other possible causes of vector failure.

POWER-ON SELF-TEST (POST)

When power is applied to the programmer, it performs a power-on Self-Test
(POST). This test checks RAM, ROM, CPU, analog circuits, and basic
system integrity.

~ Do not attempt any programming operations until the POST is
complete.

If the POST fails, the red ERROR LED will be on. Failure codes are:

3 short flashes Cannot Self-Calibrate

2 short flashes ROM checksum error

1 short, 1 long flash RAM error

COMMON PROBLEMS & SOLUTIONS

The following sections describe the most common problems with operation
of the BP-2000 Series Programmers, along with troubleshooting tips and
solutions.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

UPGRADING THE BP SOFTWARE

When upgrading the software with an upgrade code, three things can happen.

1. The software will produce a message reading upgrading and complete
the upgrade. At which time the customer needs to turn off the unit and
exit software and reboot for code to become effective.

2. The software can give an "Invalid Code" error, which means the code
was entered wrong or the serial for the code is different. The codes are
serial number dependent. The Self-Test can be run on the site to
determine the serial number. Contact Technical Support for further
assistance, page 14-1.

3. The software can give an "EEPROM Contents Invalid - No end record"
error. This can happen if the software is interrupted during the upgrade
process. If this should happen, contact Technical Support, page 14-1.

DISABLE SCREENSAVER ON DIGITAL SWITCHBOX

Use this procedure to disable the screensaver on the digital softserv
switchbox.

Make sure that the keyboard is active for the screen you are in. It doesn’t
matter which computer screen. If the keyboard happens to be locked up,
disconnect and reconnect it. The press this key sequence:

<Left CTRL>, then <v>, then <0> (zero), and <Enter>. Keystrokes must
occur within 2 seconds of each other.

This procedure will have to be done each time the BP-4100/4500 is powered
up unless you save this new setting with the Keep command:

<Left CTRL>, then <k>.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-8

ERRORS AND WARNINGS

If you experience problems while trying to program a chip, try to narrow
down the problem. If you receive a “Cannot Program” or “Cannot Erase”
error while programming:

• Make sure you have selected the proper programming algorithm

• If you are using a PLD or microcontroller, the device may have been
previously secured

• The device may not be fully erased (this should be verified by the Blank
check before programming: option, if you have not turned it off).

• The device may have a newer die than the one supported by the
programming algorithm.

You may want to run the Device/Compare command to see where the
command failed. Look at the first error indicated by the Compare command.
This is the location that caused the Device/Program command to abort and
return an error message. Three possibilities exist:

 1) the byte or bit didn’t program at all,
 2) there are extra programmed bits, or
 3) a combination of unprogrammed bits and extra programmed bits.

On memory devices, compare the two hex data values to see what went
wrong. On most EPROMs, the erased state is FF and the fully programmed
state is 00.

If the expected value has more 0 bits than the value read from the chip, the
chip may not have been fully erased before programming. If the byte read
from the chip is completely unprogrammed (FF), you are probably either
using the wrong algorithm or have a defective chip. If you find that the same
bit fails every byte, you should suspect a dirty socket or a bent IC pin.

You can expect a small number of fuse-link programmable PLDs to fail
during programming. This is because they cannot be fully tested at the
factory without blowing out the fuses! Most semiconductor manufacturers
claim you should get a 98% programming yield. Your yield shouldn’t drop
below the value specified by the semiconductor manufacturer.

Most semiconductor manufacturers fully test EPROM and EEPROM-based
PLDs. You should achieve a very high yield on these parts. These parts do,
however, have a limited number of erase cycles. Most parts can be erased
and programmed up to 100 times without failure.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

ERROR MESSAGES

Error 3: Cannot reset hardware

The software cannot establish communications with the programmer. Here
are some suggestions:

• Be sure the programmer has proper power and that the power LED is on.

• Make sure the cable from the programmer to the computer is properly
connected to a parallel printer port. If you are using a ribbon cable, this
is probably the problem (ribbon cable connectors are designed for use
inside a chassis where the cable is not flexed). You should use a
shielded 25 conductor cable (not an RS-232 cable).

• The programmer may be damaged. Try another computer and/or parallel
port and see if it works. If not, see Calling the technical support Hotline
in this chapter.

Error 4: Excessive current detected.

• The protection circuit has shut off the power.

• The command was aborted to protect the programmer and hopefully not
damage the chip. The part was taking too much current from the
programmer. Possible causes are:

• The part may be inserted backwards and the continuity test has been
turned off or did not successfully detect the device.

• The wrong algorithm could be selected and improper voltages were
applied to the chip in the programmer site.

• If you are running a vector test, your test vectors may be applying
conflicting signals to the chip’s output pins. You should correct the
vectors.

• You may want to remove the chip and run the hardware test, <Alt-D>, to
make sure all the pin drivers are functioning correctly. If the hardware
passes the test, be sure you have the correct algorithm (device entry)
selected for your part. If the error still occurs and you are sure the device
is inserted correctly, then you should suspect a faulty chip.

Error 5: Hardware time-out.

This error message is generated when the software was waiting on a response
from the programmer while executing a command and the programmer did
not respond within the expected amount of time. This error may result from

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-10

several causes. You may be experiencing communication errors (see “Error
3: Cannot reset hardware” above). There may be a bug in the software for
this particular algorithm (see Error 10: Error in programming algorithm”
below. See also Power-on Self-Test above).

Error 6: Wrong model number.

See “Error 3: Cannot reset hardware” above for possible causes.

Error 8: LPTx: is not a functioning port.

The parallel port LPTx (where x=1, 2, or 3) that is selected with the
Configure command does not exist in your computer, is not functional, or has
a bad cable connected to it.

Error 9: Programmer execution error.
The programmer failed an internal consistency check. See “Error 3: Cannot
reset hardware” and “Error 5: Hardware time-out” above for possible
causes.

Error 10: Error in programming algorithm. Please call
technical support.

The software has detected an internal error. You should contact BP
Microsystems to report the error. You may need to obtain a software update.
See Calling the technical support Hotline in this chapter.

Error 11: There is no data in the buffer. You must load a file
or read a chip.

A command tried to read data from the buffer to program or verify a chip,
but nothing has been loaded into the buffer yet or the buffer was recently
cleared.

Error 14: There is no chip in the programmer site.

Be certain that your chip is inserted correctly. If the chip was inserted
correctly, remove it and run the hardware Self-Test to be sure your
programmer is functioning correctly, <Alt-D>. A defective chip may cause
this error. When using an Autohandler, the contactor may not have closed or
the connection between the programmer and the contactor may be
disconnected.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

Error 15: The chip is not inserted in the programmer site
correctly.

The continuity test determined that the chip in the programmer site does not
have continuity on all the proper pins. You should examine these pins
carefully. Possible causes are:

• A bent pin.

• The chip is not in the proper position in the programmer site.

• The algorithm selected has a ‘*’, indicating it requires an adapter, but
you did not use the adapter, or vice-versa.

• The socket is dirty and not making a connection. See Cleaning a Dirty
Socket in this chapter.

• The device may be a very low power device that is not properly detected
by our continuity methodology. If so, please let us know.

Error 16: The chip is inserted backwards.

The chip has passed the continuity tests, but appears to have the GND and
Vcc pins improperly placed in the socket. If the DIP, SOIC, or TSOP device
is not actually inserted backwards and the LCC, PLCC, or QFP is not
accidentally rotated, then the device is probably defective. Try a known
good device.

Error 17: Out of base memory. You should have at least
200K free.

Your computer’s configuration does not have enough RAM available to run
the software. You should have 640K RAM installed with at least 200K
available for program execution. Memory resident programs, such as
network drivers, may reduce the RAM available to the programmer, so you
may need to remove these programs from your CONFIG.SYS and
AUTOEXEC.BAT files. If you are using DOS 5.00, you can specify that
DOS be loaded into high memory, saving base memory for BP software. See
your DOS manual for details. The mem or chkdsk command will show you
how much conventional memory is available.

Error 18: Temporary file error.

Our software’s virtual memory manager is trying to store data that is
currently not needed in RAM to the disk. The program was unable to create
a temporary file or the disk is full. You should make sure you have plenty of
disk space (the larger the data files, the larger the requirement for temporary
disk space) and set the DOS environment variable TMP to point to the

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-12

directory you wish to use for swap space. The program does take advantage
of EMS memory if you have an expanded memory manager installed. This
is much faster than using the disk for temporary swap space. If you want to
specify that your hard disk (C:) can be used for temporary file storage, then
execute the following command in your AUTOEXEC.BAT file:

 SET TMP=C:\

Error 21: Cannot program.

Not able to program the device in the programmer site. See Errors While
Programming in this chapter.

Error 22: Cannot erase.

Not able to erase the device in the programmer site. See Errors While
Programming in this chapter.

Error 23: Invalid electronic signature in chip (device ID).

The chip may be damaged or the chip manufacturer may have changed the
programming algorithm without notifying us. See “Error 25: Invalid
electronic signature in chip (manufacturer ID)” below.

Error 24: Invalid electronic signature in chip (algorithm ID).

The chip may be damaged or the chip manufacturer may have changed the
programming algorithm without notifying us. See “Error 25: Invalid
electronic signature in chip (manufacturer ID)” below.

Error 25: Invalid electronic signature in chip (manufacturer
ID).

Many of the new EEPROM based PLDs (such as all the GALs) have
electronic identifiers that specify the manufacturer, the device code, and the
proper programming parameters. The most common cause of this error is
when you have selected the wrong manufacturer for the particular part you
are using (e.g., you may have a National Semiconductor part in the
programmer site and a Lattice part selected). It is also possible that your chip
has a newer ID than your software revision supports. See Software updates
in this chapter.

Error 26: Device is not blank.

The Device/Blank command was executed or the “Blank check before
programming:” option was enabled in the Device/Options dialog box and the
device in the programmer site is determined to have programmed data.
Possible causes are:

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

• The part needs to be erased longer.

• The device was previously programmed and cannot be erased (OTP
EPROMs and fuse-link PLDs).

• The wrong algorithm was used.

Error 27: Device is not secured.

An attempt to secure a device was made, but it failed. See Errors While
Programming in this chapter.

Error 28: Data in chip does not match buffer.

A verify operation was performed to see if the chip and the buffer have the
same data, but there is a difference in the two patterns. The verify may have
been performed via the Device/Verify command or the Device/Program
command when the “Verify after programming” was enabled under the
Device/Options dialog box. The verify will not show where the difference
occurred but the Device/Compare command will show you all the
discrepancies. Here are some reasons why a device may fail to verify:

• The part was secured.

• The part was programmed with a different pattern.

• The part has not yet been programmed.

• The device was incorrectly programmed by a different system.

• The wrong algorithm is selected.

• The chip was not properly erased before programming (this would be
caught by the blank check if it was enabled).

• The device is not inserted correctly and you have the continuity test
turned off or you ignored its error messages.

• The device is defective.

Error 31: Database file is invalid. The .EXE file is corrupted.

The .EXE file you are executing has been corrupted. You should get a new
copy from BP Microsystems. See Calling the technical support Hotline in
this chapter.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-14

Error 32: Sorry, algorithm not found. Please call technical
support.

The .EXE file you are executing has been corrupted. You should get a new
copy from BP Microsystems. See Calling the technical support Hotline in
this chapter.

Error 33: You must reselect the chip you want to program.

The device was selected before establishing communications with the
programmers, perhaps prior to turning on the programmer or before
switching to a different programmer. Simply reselect the chip and you will
be in business again.

Error 36: You must properly install the correct socket
module.

The software interrogates the socket module before each operation to
determine the correct mapping for the algorithm selected. You will get this
error if:

• There is no socket module installed.

• The socket module installed does not support the device you have
selected (e.g., you have selected a 20 pin device and you have a 28 pin
PLCC socket module attached).

• The socket module installed is not supported by the version of the
software you are using. Use the latest version.

• The pinout has not yet been defined for this package type. It may be an
oversight on our part. If so, please call technical support and inform us
of this problem.

Error 37: Illegal bit detected.

If the Device/Options dialog box has the “Blank check before programming:”
set to ILLEGAL—BIT, then you will get this message if the blank check
fails. This message indicates that a bit was programmed which should not
have been programmed. You may not program the pattern in the buffer on
top of the pattern that is in the chip. See “Error 28: Data in chip does not
match buffer” for possible causes.

Error 38: Functional test failed.

The Device/Test command was executed or test after verif y was enabled in
the Device/Options command and the device did not perform the way the test

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

vectors expected. For more details, see Test Vector Troubleshooting at the
end of this chapter.

See PLD Vector Test Errors at the beginning of this chapter for other
common explanations for vector failures.

Error 39: Device already secured.

The device cannot be legitimately programmed, read, etc., because it has
been secured. If it is a PLD it may still be functionally tested with the
Device/Test command.

Error 40: No test vectors present.

The file you loaded did not contain any test vectors. Therefore, the
Device/Test command will not be executed. You should set the
Device/Option “Vector test after verify” to NONE.

Error 41: Error reading file.

The Buffer/Load command was executed inside a macro file and the buffer
could not be loaded. This error message is not displayed on the screen, but is
returned to DOS when the software is being run via a batch file.

Error 42: Error in writing file.

The Buffer/Save command was executed inside a macro file and the buffer
could not be saved. This error message is not displayed on the screen, but is
returned to DOS when the software is being run via a batch file.

Error 43: Error in macro file.

A macro file was being played back and an error was detected in the syntax
of the file. Possible causes are:

• The macro file is corrupted.

• The macro file was recorded with an earlier version (<V2.00) of the
software.

• The macro file was generated by a user’s application or text editor and
does not conform to the proper macro file format.

Error 44: Internal error. Please call technical support.

The software detected an internal inconsistency. This may be caused by the
computer not performing correctly.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-16

Error 45: Hardware requires calibration. Please call
technical support.

The Self-Test, <Alt-D>, has detected that the hardware is improperly
calibrated. The unit must be returned for repair. See Calling the technical
support Hotline in this chapter.

Error 46: AFS software required to execute this function.

This is a function that is available to users that have purchased the Advanced
Feature Software only. In order to use the chosen function you must buy the
AFS upgrade. See Calling the technical support Hotline in this chapter.

Error 47: Self-Test failed. This unit may need service.
Please call technical support.

The Self-Test, <Alt-D>, has detected a hardware problem. The unit may
need to be returned for repair. Note the exact error message and see Calling
the technical support Hotline in this chapter.

Error 48: Cannot Unprotect.

An attempt was made to unprotect a sector and failed. See Errors while
programming in this chapter.

Error 49: Cannot Protect.

An attempt was made to protect a sector and failed. See Errors while
programming in this chapter.

Error 50: Device sum does not match sum specified in
AFS/Options.

The sum calculated on the device does not match the sum entered in the
AFS/Options Checksum Verify command. Check this option to see if a
mistake was made when entering the sum value. Also check the buffer
checksum to see if it matches the value entered for Checksum Verify or if any
data in the buffer has changed.

Error 51: Maximum failures reached.

The maximum failures entered in the Device/Handler menu has been reached
and therefore programming of the current job has been stopped.

Error 52: DynCall Stack Underflow.

The internal dynamic linker underflowed its reference table. If this error
reoccurs, then call BP Microsystems Technical Support Line.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

Error 53: DynCall Stack Overflow.

The internal dynamic linker overflowed its reference table. If this error
reoccurs, then call BP Microsystems Technical Support Line.

Error 57: You must purchase support for this device to use
it.

The device that you selected is not supported in the default device set for this
programmer. Call BP Microsystems Sales line to purchase an upgrade code
for your programmer.

Error 60: The demo period for this programmer has expired.

This programmer is a demo from BP Microsystems and the demo period has
expired. Call BP Microsystems Sales Department for an upgrade code to
extend the Demo period.

Error 61: Concurrent programmer did not initialize properly.

The programmer did not initialize correctly. Cycle the power on the
programmer and try your operation again. If you continue to get this error
message, send the programmer in for repairs.

Error 65: Concurrent Unit has the wrong socket module.

The specified programming site does not have the same socket module as the
master site. The site must contain the same socket module as the master
programmer in order to program parts on that site. The site has been
temporarily disabled. Starting a new device operation with the correct socket
module on the site will re-enable the site.

Error 66: Concurrent unit has the wrong technology
adapter.

The specified programming site has the wrong technology adapter (TA).
Cycle the power on the programmer. If the error persists, call BP
Microsystems Technical Support.

Error 67: Concurrent unit has the wrong BIOS.

The specified programming site has the wrong BIOS. Cycle the power on the
programmer. If the error persists, call BP Microsystems Technical Support.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-18

Error 68: Concurrent unit has the wrong number of pin
drivers.

The specified programming site has the wrong number of pin drivers. Cycle
the power on the programmer. If the error persists, call BP Microsystems
Technical Support.

Error 69: Concurrent unit is not available.

The specified programming site is not responding to commands. Verify that
the programmer number is correct. Cycle the power on the programmer and
try again. If the error persists, call BP Microsystems Technical Support.

Error 70: The buffer data cannot be used to program this
device.

You loaded a file type that is not a valid option for the currently selected
device. Re-select the device and load the buffer again. If the error persists,
call BP Microsystems Technical Support.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

WARNING MESSAGES

Warning: Device code is not correct

The programmer automatically checks the electronic identifier of your
memory chip; however, this feature may be disabled in the Device/Options
command. If your chip does not read out the identifier expected by the
software, two possible actions may be taken by the programmer. If you have
“Check electronic identifiers:” set to AUTO-SELECT and your chip reads
out a known identifier, the software will automatically select the new
algorithm for your chip. If you have it set to ENABLE, you will receive an
“Abort, Retry, Ignore or Select?” query. The Select option will try to select
the appropriate algorithm. Use it if you feel the wrong algorithm may have
been selected in the first place. You can replace the chip and use Retry or
you can abort the command. Finally, you can ignore the identifier and
proceed.

Occasionally a semiconductor manufacturer will change the die on a chip to
add the identifier. If this happens, the software may expect the identifier to
be present in your chip. If you are using an old chip made before the
identifier was added, you will get an error message. It is safe in this case to
ignore the warning message. You can use the Device/Options command to
disable the identifier altogether if you want to.

Warning: Device is not blank

You will get this warning when using the Device/Program command with
the “Blank check before programming” operation enabled in the
Device/Options dialog box. You are given the option to “Abort, Retry, or
Ignore”, which allows you to try another chip before proceeding or to go
ahead and program data on top of the data that may already be in the chip.

Warning: Device has been secured

You will get this message only on devices that have the ability to read the
security bit prior to performing any other operation. Thus, you may get this
when trying to read some PLDs and some microcontrollers. You are given
the option to “Abort, Retry, or Ignore”, which allows you to try another chip
before proceeding or to go ahead and read the erroneous data from the chip.

Warning: X fuses in buffer and Y fuses in chip

You will get this message when you try to program a PLD that has a different
number of fuses than the number of fuses loaded in the buffer. This is a
precautionary measure designed to help you keep from accidentally
programming the wrong JEDEC file into a chip.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-20

This message may not always be the best advice. For example, if you have a
GAL22V10 (5892 fuses) selected and a PAL22V10 (5828 fuses) JEDEC file
loaded. It is okay to program this JEDEC file into the GAL22V10 because
they are 100% architecturally compatible; however, the GAL22V10 has 64
additional fuses allocated as the UES (see Device/UES command for more
details). If you ignore this message on the first operation, you will not
receive any more warnings on the subsequent programming operations.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

TEST VECTORS

If you get consistent error messages during vector tests, refer to the
Device/Options command. You may need to use a different X-value. If you
get an “Excessive current detected” error, your test vectors may be applying
conflicting signals to the chip’s output pins; you should correct the vectors.
See “Error 38: Functional test failed” for other possible causes of vector
failure.

Test vectors allow a user to power up and operate the device under test
(DUT) to simulate operation in the user's circuit. Power is applied, high and
low voltages are applied to the DUT's inputs, and its outputs are observed.
Each test vector describes what inputs to apply to the device (1, 0, F, C, K,
U, D), which outputs to examine (H, L, Z), and which pins to ignore (X, N).

A test vector is an array of characters, one character for each pin on the chip,
that specify test conditions and expected test results for the chip. If test
vectors are stored in a JEDEC or POF file, they will be loaded into the
vector buffer when the file is loaded. Test vectors may be examined and
modified with the Buffer/Vectors command.

Test vectors let the designer verify that the PLD behaves correctly without
having to prototype a circuit. A properly designed set of vectors will also
ensure that the programmed part is functioning correctly. Most PLD
development software will help you generate valid test vectors automatically.

During the vector test, the programmer applies high and low signals to the
input pins of a functioning PLD and observes the output pins. The output
results are compared to the expected results from the test vectors. Any
differences will show up in error messages.

The following are valid characters for test vectors:

0 Apply Vil to an input pin N This pin is not tested (used for power supplies)

1 Apply Vih to an input pin H Expected result on output pin is Vih

C Clock an input pin (Vil, Vih, Vil) L Expected result on output pin is Vil

K Clock an inverted input pin (Vih,
Vil, Vih)

? Read an output pin and replace this ? character
with H, L or Z

X Don’t care; see Device/Options
command

Randomly generate a 1 or 0 to replace the # in
this vector

F Float the pin (high-impedance)

Table 12 – Valid Test Vector Characters

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-22

ENHANCEMENTS

The ? and # characters are not supported by standard JEDEC files. These
two characters let you generate test vectors for any chip by placing a # in the
column for each input pin and a ? on each output pin.

When the test is performed the first time (on a known good chip) input
conditions (0,1) are generated at random and the # character is replaced by
either H, L or Z.

The next time a test is performed with the same vectors, the pin will be tested
and expected to produce the same result as the first chip. This test is not
guaranteed to find every fault, so be sure to use lots of vectors.

TROUBLESHOOTING TEST VECTORS

When a part does not pass test vectors, it may be due to one or more of the
following causes:

1. Defective Device - The most obvious reason is that the device itself
is defective. This is the main purpose of vector testing. Devices
may pass verify but have logic errors that can only be detected in
operation. This is the primary reason to run test vectors on each part
verified.

2. Incorrect Vectors - The vectors do not describe what the part should
be doing. Any discrepancies appear as error messages. Either the
designer did not simulate the vectors to verify that the vectors were
written correctly, or the simulator didn’t accurately model how the
part will truly perform (a very common problem).

The simulators that are built into most development systems are unit-
delay two-state simulators that don’t know the difference between an
X (unknown value) and a 0. They also assume that all gates have 1
unit of delay, and that all registers have 0 setup and hold time. These
oversimplifications can easily lead to a discrepancy between the
vectors and the DUT’s behavior.

3. Incorrectly Programmed Device - The DUT is incorrectly
programmed. Either the wrong file or the programming algorithm
doesn’t configure the part correctly, even though it may verify.

If the part has a second source, try programming the alternate part
and running vectors. A difference here may point to a programming
problem or a difference between the parts, such as a power-up reset
state, asynchronous error, or even a design defect in the silicon.

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

If another programmer is available, program a part on each
programmer and verify each part on the other programmer. Any
verify errors indicate a difference in programming algorithms, and a
mistake made by one or more of the programmers.

4. Undriven Inputs - The vectors assume that undriven inputs (X, F, Z,
N) will be high or low. Most simulators assume that all pins marked
X will be low. The usual case is that these pins are tied to a pull-up
resistor (applying a high state to the input, not low). Changing the X
value in the Options box will change the vector test results, possibly
fixing the problem.

¥ Changing the X state to 0 causes the programmer to drive all pins
marked X to 0, which may cause high currents to flow if the part is
driving an H on that pin, so be cautious about changing this
switch. It is better to tell the simulator that X is high in the design
software. It is even better to make no assumptions about the X
state.

5. Ground Bounce - Ground bounce can induce failures. The part may
not work correctly in the programmer, even though it may work
correctly in circuit. Ground bounce occurs when a clock input
changes (C or K) and that causes several outputs to change state (H
to L, L to H, Z to L, or Z to H). This transition causes large currents
to flow throughout the Vcc and GND pins very rapidly, producing a
voltage on the die’s ground terminal that can produce double
clocking.

Worst-case parts are high-speed (5-15 ns) CMOS parts with many
outputs. Usually, ground bounce induces an extra clock pulse, and
can be positively identified when the circuit advances to an extra
state, such as a counter that rolls over from all HHHHHHHH to
LLLLLLLH instead of LLLLLLLL.

6. Preload error - The parts were written with a preload vector, or
<P> and the preload works differently on the programmer than the
compiler expected. Some parts don’t support preload, so you will get
an error message. Sometimes, the device’s spec is ambiguous,
allowing a different interpretation by the simulator’s and
programmer’s engineers.

7. Power-up Reset error - The part doesn’t perform an internal power-
up reset, or it is reset to a different state than expected. Failures will
typically occur on the first vector that has an H, L or Z. In general,
it is not good practice to assume a power-up state either in vectors or
in circuit.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
14-24

All asynchronous circuits with feedback must be initialized before
the output will be in a known state. If the circuit uses registers, the
user should consult the datasheet on the exact part to verify power-up
state because similar parts from different manufacturers may
sometimes reset differently (e.g., AMD 22V10 v. TI 22V10).

If the problem persists, it may be because the part is sensitive to slew
rate of the Vcc pin. BP programmers raise the Vcc in less than 1µs
by default; however, we can change it per algorithm if necessary.
Other programmers may use slower default rates.

8. Multiple Clock Pins - Problems may occur with synchronous circuits
with multiple clock pins. The vector that fails, or a preceding one,
will have two C or K pins. The designer probably assumed that both
clocks will change simultaneously. The programmer can apply two
clocks with only a few ns skew, so it will probably not cause
problems.

Some other programmers apply clocks starting with the highest
numbered pin, working its way down. Unless you’re using an
autohandler, it is best to write test vectors with only one clock pin
changing at a time to eliminate this problem.

It is best to avoid simultaneous clocking when possible. Some
devices may fail to clock registers simultaneously even when the
pins are tied together, due to different interna l propagation delays
from the pins to the register’s clock inputs.

9. Simultaneous Input Changes - Asynchronous circuits with multiple
inputs changing simultaneously may cause problems. You will see a
vector that differs from the previous vector by having more than one
pin change from 1 to 0, 0 to 1, 0 to U, or 1 to D.

The JEDEC standard says that no assumptions should be made about
the order of pins being applied to the DUT. The programmer can
apply all inputs with very little skew to minimize problems of this
sort.

¥ Any circuit that requires two inputs to change simultaneously is an
arbiter, producing a different result when one changes before the
other. Therefore, it is better to write two test vectors so the
sequence will be known and the output can always be predicted.
This allows the programmer to test the DUT, rather than the other
way around. Other programmers may apply inputs in a different
order, producing different results.

10. Adapter or Connector Problems - Adapters or connections placed
between the programmer and the DUT will add inductance,

Troubleshooting and Maintenance

BP Microsystems, Inc. The Engineer’s Programmer 14
 DOS Manual Rev. 3.002

capacitance and resistance. This causes a degradation of signal
quality, causing problems especially on fast parts.

A cable between the programmer and an autohandler or other
contactor is always suspect. If this is the case, the problem will go
away if a part is placed directly in the programmer site.

Typically, conditions may improve if ground and Vcc traces are
made as wide and short as possible , and a 100 nF bypass capacitor is
placed at the DUT between Vcc and GND. Also, connect all Vcc
pins together and all GND pins together at the DUT.

11. DUT incorrectly connected - Problems can occur due to a bent or
dirty pin, using the wrong adapter, an adapter with the wrong pinout,
or a part inserted incorrectly in its programmer site. Be wary of
specially programmed adapters for autoHandlers, and poorly labeled
adapters for QFPs.

12. Race Conditions and Other Timing Faults - Asynchronous circuits
may have race conditions or other timing faults. These faults are
difficult to detect because they are subtle and require the engineer to
carefully check minimum and maximum propagation delays, setup
and hold times.

The circuit will have feedback so it can latch a state. One common
symptom is a design that formerly passed vectors but now fails on
newer (faster) devices. High-speed devices are more likely to exhibit
these problems.

The best weapon against this sort of fault is INT’s PLDLAB90
software. The DUT may be sensitive to slew rates and output
loading in this case, causing different results on other programmers.

13. Pattern Sensitive Parts - Some PLDs are pattern sensitive, and this
can result in very subtle flaws. They may work correctly in 99% of
all designs but fail on a particular fuse pattern. This may escape
detection for years but suddenly appear, causing mysterious
problems.

The part may have sensitivity to the way it is being operated. For
example, some PLDs have an over-sensitive power-up reset circuit
that resets registers when too many outputs change state
simultaneously.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxvi

GLOSSARY

This glossary has been included for convenience and to assist in grasping an
overall understanding for the terminology and jargon used within the
software and hardware engineering fields. To be as inclusive as possible,
many of the terms found herein are not located in the manual, but are
provided in order to supply definitions to common engineering acronyms and
words.

DEFINITIONS

A

Abel Advanced Boolean Expression Language. An early hardware
description language developed for PLD-based designs.

Accelerator A specialized piece of hardware that speeds up a software-based task.
Usually used for speeding up simulation.

Algorithm A recipe for performing an operation such as computing an average
value.

Analog A continuously varying signal. For example, if an analog signal’s range
is from 0 to 5 volts, the signal can assume any voltage within that range
such as 1.2, 2.4 or 4.7 volts. Microprocessors and microcontrollers
usually cannot process analog signals directly and require conversion by
an A/D converter before they can process the signal.

Analog Simulation Modeling or simulation of an electronic circuit using representations of
the actual circuit voltages, currents, and component values instead of
simplified digital state representations.

Analog-to-Digital
Converter

A/D, ADC. An electronic circuit that converts a continuously varying
signal (temperature, pressure, voltage, etc.) into digital zeroes and ones
that can be processed by a microprocessor or microcontroller.

Analyzer, Logic An instrument that allows you to observe the behavior of digital signals
in an embedded system.

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxvii
 DOS Manual Rev. 3.002

ASIC Application-Specific Integrated Circuit. A custom integrated circuit
designed specifically for one end product or a closely related family of
end products.

ASIC Emulation Also Logic Emulation. The use of programmable circuits usually based
on FPGAs, to emulate the design of an ASIC or an IC before it is built.
ASIC emulation allows designers to check the operation of a design
before committing the time and money required to fabricate the IC.
Emulation serves the same purpose as simulation design verification but
is much faster because it is based on hardware rather than software.

Autohandler A machine that removes ICs from their shipping tubes, connects them to
the programmer to be programmed or tested, and places them back in
tubes. It may also have a marker that will label the devices. The most
common autohandlers are manufactured by Exatron, MCT, and Quality
Automation.

B

BGA Ball Grid Array. A surface mount device with solder balls and a high
pin count, similar to PGA.

BiCMOS Bipolar, Complementary-Symmetry Metal Oxide Semiconductor. An
integrated circuit fabrication technology that combines the two major IC
technologies, bipolar and CMOS, on one IC.

Bidirectional A signal or port that can act as either an input to or an output from an
electronic circuit.

Binary The base-2 number system almost universally used by modern
computers, microprocessors, and microcontrollers.

Bipolar The original semiconductor manufacturing process technology. Usually
characterized by high-speed, high-power operation.

Bipolar PROM A fuse-link programmable PROM.

Bit Contraction of Binary digiT. One digit in the base-2 numbering system
used by virtually all modern computers, microprocessors, and
microcontrollers. A bit can have a value of either zero or one.

Blank Check A test performed by a device programmer to ascertain whether a device
has been programmed (partial or total) or is in a virgin state.

Block Diagram A graphical representation of a system using a very high level of
abstraction.

Board, Circuit Also PC Board. A thin card, usually made from fiberglass or plastic,
which is covered with copper lines and is used to hold the various

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxviii

which is covered with copper lines and is used to hold the various
integrated circuits in an embedded system.

Bond-Out Chip A special version of a microprocessor or microcontroller which brings
critical internal signals from inside the chip out on special package pins
so that developers can more easily observe what’s happening inside the
processor. Usually used to build In-Circuit Emulators (ICEs).

Boolean Algebra A mathematical system developed in the 1800s to express the
philosophical logic of Aristotle, which was coincidentally ideal for the
description of digital circuits 100 years later.

Breadboard A hand-made system prototype built as a proof of concept. In the early
days of electronics (even before transistors were invented), engineers
actually mounted circuit components to blocks of wood; hence the term
“breadboard”.

Buffer 1. An isolation circuit used to insulate sensitive analog or digital
circuits from higher-power or higher-current levels in other portions
of an electronic design. Often seen, for example, as an I/O buffer
that separates the sensitive circuits inside of an IC from the signals
on the circuit board to which the IC is attached.

2. Data storage unit directly stored on CPU.

Bus A group of two or more signals that carry closely associated signals in
an electronic design.

Byte A binary word consisting of eight bits. When used to store a numeric
value, a byte can represent a number from 0 to 255.

C

CAD Computer Aided Design. The overarching generic term for all software
tools that enable or aid in the creation of engineered systems.
Sometimes, CAD refers only to the electronic versions of mechanical
drafting tools. Sometimes, it refers to all such tools including EDA
tools.

CAE Computer Aided Engineering. The original term for electronic design
automation (EDA). Now, often refers to the software tools used to
develop the manufacturing tooling for the production of electronic
systems such as for the panelization of circuit boards.

CFI Complex-Instruction-Set Computer. A design approach for
microprocessors and microcontrollers that employs relatively complex
instructions that execute over multiple clock cycles. A program written
using CISC instructions requires fewer such instructions to perform a

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxix
 DOS Manual Rev. 3.002

task as compared to a program written using RISC (Reduced-
Instruction-Set Computer) instructions.

Checksum A number that results by adding up every element of a pattern.
Typically either a four or eight digit hex number, it is a quick way to
identify a pattern, since it is very unlikely that two patterns will have the
same checksum.

Clock A master timing signal that sets the operating pace for all other
components in the embedded system.

Clock Skew Variation from the ideal clock timing across an entire electronic design
(usually in an IC) caused by parasitic elements. Seymour Cray was an
early combatant of clock skew and had to design serpentine traces on the
Cray I supercomputer’s circuit boards to compensate for clock skew.

Clock Tree A tree-like configuration of circuitry designed to minimize the effects of
clock skew.

CMOS Complementary Symmetry Metal Oxide Semiconductor. An IC process
technology developed in the 1960s that typically runs at lower power
than bipolar circuitry. Early on, CMOS was much slower than bipolar
but has steadily gained in speed over the decades to rival today’s bipolar
speeds. Most ICs are now made using CMOS technology.

Co-design See Hardware/Software Co-design.

Compare Reading a programmable device and displaying any discrepancies from
the desired pattern. Each error is displayed on the screen. This
comparison is slower to perform than a verify on the programmer.

Compiler A computer program which translates programs written in a high-level
language (HLL) into assembly-language instructions or machine code.

Complex PLD These devices are the big brothers of PALs. Their architecture grew out
of the familiar sum-of-products design that is common to PALs, but they
may have as many as 84 pins, or more, buried logic that is not connected
to the outputs, and more complex interconnection schemes.

Concurrency The ability of an electronic circuit to do several (or at least two) different
things at the same time. Contrast with computer programs, which
usually execute only one instruction at a time unless the program is
running on a processor with multiple concurrent execution units.

Concurrent Design The ability to develop many parts of a complex electronic design in
tandem using EDA tools such as simulation to stand in for portions of
the system yet to be designed fully.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxx

Concurrent
Programmer

A multiple-socket programmer that starts programming each device as
soon as it is inserted in a socket, without all sockets having to be filled.

Controller An electronic system that directs the operation of some larger system.

Core A predesigned block of logic employed as a building block for ASIC
design.

Co-Simulation Simulation of hardware and software together, simultaneously.

Coverage
A measure of the ‘goodness’ of a test or test suite. Usually refers to fault
coverage and is expressed as a percentage of the circuit covered by the
test. Usually, it is too expensive to achieve 100% coverage and test
engineers shoot for coverage in the high 90’s. Scan-test technology can
improve coverage results, at the expense of additional silicon on the chip
and some additional design time.

CPLD Complex Programmable Logic Device. A programmable IC that is more
complex than the original Programmable Logic Devices such as AMD’s
(originally MMI’s) PALs but somewhat less complex than Field
Programmable Logic Arrays.

CPU Central Processing Unit. The core circuitry of a computer including the
ALU (arithmetic logic unit), address-control circuitry, and bus-control
circuitry. Usually implemented with a microprocessor or
microcontroller in an embedded system.

Crosstalk A condition where signal activity on one wire in an electronic circuit
couples to another wire and causes noise through electrostatic
(capacitive) or electromagnetic (inductive) coupling.

CUPL A hardware description language originally developed for PLDs.

Cyberoptic Computer generated; connection for light-pulse information to be
transmitted

D

Debugging The art of finding and eliminating errors in system designs.

Design Capture Design Entry. The process of entering an electronic system design into a
computer using EDA tools.

Design Error A flaw designed into an electronic circuit, which is then faithfully
reproduced in every manufactured system (as opposed to a
manufacturing error that is a flaw created by the manufacturing process
itself). Emulation, simulation, and design-rule-checking tools all help to
minimize or eliminate design errors.

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxxi
 DOS Manual Rev. 3.002

Design Rule Check Verification of an IC or PC board layout for conformance to the physical
or electrical limitations of the implementation technology in use.

Device Microchip or Integrated Circuit chip.

DFT Design for Test. A design methodology that includes special attention to
the design of a circuit and the addition of special circuitry that eases the
testing of that design.

Dialog Box
The method used by the device programmer’s user-interface software to
allow the user to select options and specify information. The user can
specify any options and fill any blanks in the box then press ENTER to
force the software to process the information.

Die The silicon chip that is located within an IC package. It is a small
rectangular flat piece of silicon that has been fabricated with many
transistors to perform a specific function. It is glued into a plastic or
ceramic package and connected to the external metal interconnect pins
of the IC with very small bonding wires. It can be seen through the
window of erasable EPROMs.

Digital An approach to circuit design based on the binary number system.
Signals in digital circuitry can only assume well-defined levels;
intermediate levels are invalid. For example, in a digital system with a
signal range of 0 to 5 volts, the digital signal may have the logical value
of 0 if the signal voltage is within the range of 0 to 0.5 volts and a
logical value of 1 if the signal voltage is within the range of 2 to 5 volts.
Signal voltages of between 0.5 and 2 volts are invalid and are not
allowed.

Digital Simulation A computer simulation of an electronic circuit that uses simple Boolean
or logic states to represent the instantaneous state of the circuit. Because
the representation is simplified from the actual voltage and currents
present in the circuit, digital simulation is much faster than analog
simulation.

Digital-to-Analog
Converter

D/A, DAC. A circuit that translates a signal from a numeric, digital
representation used by microprocessors and microcontrollers into an
analog signal.

DIP Dual Inline Package. An IC package with two rows of through-hole
pins, usually on 0.1 pitch, 0.3 or 0.6 inches apart.

Documentation All of the paper and electronic documents supplied with a component or
system that are absolutely critical to fully utilizing the product. For
embedded systems designers and developers, there is never enough
documentation.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxxii

DRC See Design Rule Check.

DSP Digital Signal Processor or Digital Signal Processing. A specialized
microprocessor or electronic system designed to be very fast at
processing continuous signals such as sound and video.

E

EDA Electronic Design Automation. A large collection of software tools that
enhance and aid in the development of complex electronic systems.

EDIF
Electronic Design Interchange Format. A standard representation format
for describing electronic circuits used to allow the interchange of circuit
design information between EDA tools.

EEPROM Electrically Erasable Programmable Read Only Memory. An integrated
circuit that stores programs and data in many embedded systems.
EEPROM stores retains information even when the power is off. Early
EEPROM was expensive on a cost-per-bit basis and was infrequently
used. Newer “Flash” EEPROM is much less expensive and its cost-per-
bit approaches that of DRAM making Flash EEPROM a very attractive
memory device for embedded-systems design.

EMI Electromagnetic Interference. Noise generated by electronic systems,
which can interfere with other electronic systems by traveling through
the air, over communication wires, and through power wiring.

Emulator ICE or In-Circuit Emulator. A complex, expensive, and often balky
electronic system that simulates the presence of an embedded system’s
microprocessor or microcontroller. Used often and extensively in the
development and debugging of embedded-system programs.

EPROM Erasable Programmable Read Only Memory/UVEPROM. An integrated
circuit that stores programs and data in many embedded systems.
EPROM can only be programmed once. To erase an EPROM’s
contents, it must be exposed to intense ultraviolet light for an extended
length of time.

ESDA Electronic System Design Automation. High-level EDA tools used to
design and describe entire electronic systems.

Event A point in time where a change occurs in the state of an electronic
circuit.

Event-Driven
Simulator

A simulator that only calculates circuit conditions when events
(changes) such as the start of a new clock cycle occur in the state of the
system. In contrast, timing simulation computes the state of a system
using elapsed time (usually in nanoseconds or picoseconds).

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxxiii
 DOS Manual Rev. 3.002

using elapsed time (usually in nanoseconds or picoseconds).

F

Fast Prototype A working product model built quickly to try out product concepts. May
lack the fit, finish, and complete capabilities of the planned final product
while still giving users an idea of how the product will work. Often
assembled specifically for a conference or other dog-and-pony show.

Fault An actual problem in an electronic circuit that disables or degrades the
performance of the circuit. Also, for EDA purposes, a point in the
circuit where a potential flaw could damage the circuit’s operation.

Fault Coverage
The percentage of potential faults identified and tested by a test program
or suite of test programs. If the tests can uncover all potential faults, the
fault coverage for those tests is 100%.

Fault Simulation Simulation of the operation of an electronic circuit with the introduction
of simulated manufacturing faults to determine the amount of fault
coverage provided by a set of test vectors. These test vectors are then
used to test the actual manufactured circuit so they must be able to
identify a large percentage of the possible manufacturing faults.

Finite Element
Modeling

A relatively complicated numerical method (computer algorithm) that
can model complex electrical phenomena such as electromagnetic
wavefront propagation.

Floorplanning The task of determining where each major block of circuitry will go
within an IC design.

FPGA Field Programmable Gate Array. A very complex PLD. An integrated
circuit containing a large number of logic cells or gates that can be
programmably configured after the IC has been manufactured. Some
FPGAs use fuses for this programming and others store the
configuration in an on-chip EEPROM or RAM memory. Fuse-
programmed parts cannot be reprogrammed so they can only be
configured once. EEPROM-based FPGAs can be erased and
reprogrammed so they can be configured many times. RAM-based
FPGAs can be reconfigured quickly, even while the circuit is in
operation. The FPGA usually has an architecture that comprises a large
number of simple logic blocks, a number of input/output pads, and a
method to make random connections between the elements.

Framework A unifying graphical user interface, database format, and inter-tool
communication scheme that allows a user a to combine EDA tools from
various vendors to create a desired tool suite for the design of electronic
systems.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxxiv

Functional Test A test that is performed following the programming of a PLD. The test
operates the device in its normal operating mode by simulating the
inputs and outputs that the part will experience in normal operation. To
perform the test, the engineer must supply a set of test vectors that
describe normal operation of the device so the device programmer can
apply the specified stimulus and verify that the device is operating as
designed. It is important to perform a functional test on PLDs because,
in many cases, the PLD cannot be fully tested at the factory before
programming so a defective PLD may program correctly but fail the
functional test. A properly designed functional test will verify that the
part meets the design specification, ensuring that the device, the
compiler, the programmer, and the engineer have all performed their
respective tasks correctly.

Fuse
A metal connection within a PLD or memory that may be melted during
programming to break the circuit. These links typically carry input
signals to logic gates. Burning all the fuses except those that are
required in the desired circuit forms the desired circuit configuration.
Since the fuses cannot be tested nondestructively, fuse-like
programmable devices cannot be 100% tested at the factory and
consequently expected programming yields are usually 98-99%.

G

GaAs Gallium Arsenside. A high-speed IC process technology that does not
use silicon. Instead, GaAs uses the semiconductor element Gallium
doped with the impurity Arsenic. GaAs process technology currently
products the fasted ICs possible but advanced CMOS processing has
greatly reduced the speed gap in the past few years. GaAs is most often
used today for very high frequently radio circuits such as the transmitter
circuits in cellular phones.

GAL Generic Array Logic. EEPROM based second generation PAL devices.

Gang Programmer A multiple-socket programmer that requires each device to be placed in
a socket before any can be programmed. See Concurrent Programmer.

Gate Array A type of ASIC in which the transistors, gates and other active circuit
elements are fixed on a wafer called a “master slice”. The customization
for a particular application is done using the metal interconnection layers
on the chip. Thus, the IC vendor can fabricate and stockpile master
slices well in advance of a customer order and then finish the fabrication
by adding the metal layer or layers when the order is received. Because
of this style of fabrication, gate arrays are the easiest ASICs to design
and offer the fastest turnaround time between order and shipment of the
finished parts. In the extreme, Chip Express offers laser-programmed
gate arrays with 24-hour turnaround time or less.

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxxv
 DOS Manual Rev. 3.002

Gbyte Gigabyte. 1,073,741,824 bytes.

GDS II A photoplotting file format usually employed for integrated circuit mask
plotting files. Originally developed by GE Calma, an early EDA vendor.

Gerber Photoplot Gerber file. A de-facto file format standard originally developed for
Gerber Scientific for its line of photoplotters. Usually used for
representing printed-circuit board designs.

Ground Bounce Noise signals coupled into the grounding network of an electronic
system that cause a variety of operating problems in the circuit. A
phenomenon that limits the testability of high-speed PLDs on some
device programmers. The term refers to the voltage on the ground
terminal of the PLD’s die rising and falling when many outputs switch
simultaneously. This voltage can induce extraneous clock signals that
will make a device fail a functional test or reduce programming yield.

H

Hard Macro A relatively complex block of logic or “core” such as a multiplier or an
entire microprocessor that has been completely pre-designed for use on a
particular ASIC or FPGA technology. Generally, a hard macro cannot
be edited except by the company that created it. In exchange for this
relative lack of flexibility, hard macros usually provide better
performance using a smaller amount of silicon when compared to a “soft
macro” or “synthesizable core”.

Hardware/Software
Co-design

The simultaneous development of product hardware and software. This
design approach is more difficult than a serial design, which first
develops the hardware and then the software that will run on the
hardware but the benefit is a reduced time to market. To develop
software before hardware is ready, software developers often create a
behavioral model of the hardware that can run the software and thus
prove its function.

HDL Hardware Description Language. A synthetic computer-based language
used for the formal description of electronic circuits. An HDL can
describe a circuit’s operation, its design, and a set of tests to verify
circuit operation through simulation. The two most popular digital
HDLs are VHDL and Verilog. An analog HDL called AHDL is under
development by many vendors. HDLs make it easier to develop very
large designs through formal software engineering methods that define
ways to divide a large team through formal software engineering
methods that define ways to divide a large team project into smaller
pieces that can be implemented by individual team members.

Hex file A human-readable ASCII file that represents any binary data. Each byte
in the binary pattern is represented by two hex characters (0-9, A-F) so
that any of the 256 possible bytes, which include both control and

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxxvi

that any of the 256 possible bytes, which include both control and
unprintable characters, may be printed. The hex file may also contain
address or checksum information. The pattern represented by the hex
file may be represented by a binary file or any of the hex file formats –
any file format may contain any pattern. The names of the hex file
formats (Intel, Motorola, Tektronix, etc.) indicate who standardized its
format and does not indicate anything about the pattern or the device the
pattern is intended for.

Hierarchy A method for describing and modeling an electronic system using
different abstraction levels. At the bottom level of the hierarchy is the
actual physical layout of the design (a concrete level, not at all abstract).
At the top of the hierarchy is a functional description of the system or a
block diagram (a very high level of abstraction). Intermediate levels
include the register-transfer level (RTL), the gate level, and the transistor
level.

HLL
High-Level Language. A relatively complex computer programming
language that allows the programmer to work at a mathematically
abstract level instead of the low, physical level of the microprocessor or
microcontroller. For example, instead of dealing directly with registers
and memory locations, the HLL programmer works with variables and
arrays. Java, C, Pascal, Fortran, and BASIC are all examples of high-
level languages.

I

I/O Input/Output. The wide range of circuits and sensors used to bring
information into an embedded-system processor and to transport
processed information back out of the processor. Serial and parallel
ports, keyboard and keypad controllers, floppy and hard disk drives, and
displays are all examples of I/O devices.

IBIS I/O Buffer Information Specification. A standard simulation format
used to model the behavior of an integrated circuit’s input/output (I/O)
pins. Used in designing and simula ting the operation of circuit buses.

IC Integrated Circuit. A silicon chip containing hundreds, thousands, or
millions of circuit elements such as transistors, resistors, capacitors, and
inductors. RAM, ROM, microprocessors, and microcontrollers are all
examples of integrated circuits.

J

JEDEC Joint Electron Device Engineering Council (pronounced JED'eck). A
group organized by the IEEE (Institute of Electrical and Electronics
Engineers) that has defined a standard file format for PLDs.

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxxvii
 DOS Manual Rev. 3.002

JEDEC file A file conforming to a standard format that specifies the configuration
and testing procedure for a PLD. The file is in a human-readable ASCII
format and consists of fields that start with a letter and end with an
asterisk. Fields specify the pattern to program into the part, whether to
secure the device, a set of test vectors to perform a functional test, and
checksums to verify the integrity of the file.

K

Kbyte Kilobyte. 1024 bytes.

L

LCC Leadless Chip Carrier. A square ceramic package that has no leads;
instead it has metal areas that are surface-mount soldered to the target
circuit. This package is usually used only for military and aerospace
applications. Available up to 84 pins.

Linear See Analog.

Logic Digital circuitry, whether in an IC, an ASIC, a microprocessor, or a
microcontroller.

Logic Emulation See ASIC Emulation.

Logic Synthesis See Synthesis.

M

Make file A file commonly used by software engineers in conjunction with a make
utility program to automate the building of software projects. If the
software project required a device to be programmed following a
compile and link operation, the make file can start the device
programmer and specify a macro file to perform the programming
operation.

Master Site The initial location where the first transaction of a job is performed.
This is the first site a part will be programmed in before the job is
broadcasted to all other sites. Traditionally, the Master Site is Site 1, but
it can be any site available. Reasons for changing the Master Site
location include a bad site, convenience of location, etc.

Mbyte Megabyte. 1,048,576 bytes.

MCM Multi-Chip Module. A hybrid manufacturing technique that places
several IC chips into a single package. MCMs are a way of “creating”
an integrated circuit using otherwise incompatible IC fabrication

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xxxviii

an integrated circuit using otherwise incompatible IC fabrication
technologies (such as CMOS and GaAs). MCMs are alos a way of
extending the reach of existing ASIC technologies, which may lack the
ability to implement an entire system design on one chip.

Memory device A device that contains an array of storage locations. The device has a
set of inputs, called addresses, which specify which location in the array
is being accessed. A set of input/output pins produce the stored number
(pattern) when the device is read, and accept a new value when the
device is written or programmed. Additionally, there are one or more
input pins that select the operating move (read, write, standby, etc.).
Memory devices may be classified by whether they are volatile or non-
volatile, and whether they may be erased. The memory’s organization
refers to its word width and the number of words in the device.

Microcontroller mC. A real “computer on a chip”, incorporating a microprocessor,
memory, and I/O circuits on one integrated circuit. A device that
contains a central processing unit (CPU), memory, and I/O ports on a
single IC. Microcontrollers that contain any form of non-volatile
memory may be programmed on a device programmer. When
connected to a power supply and external crystal, many of these devices
form a complete microcomputer. In many embedded systems, the
microcontroller may well be the only integrated circuit in the design.

Microprocessor mP. The original “processor on a chip” introduced by Intel in 1971. An
integrated circuit that contains all of the processing components of a
computer CPU including the ALU, program sequencer, and bus
interface. Newer microprocessors also incorporate cache memory for
increased processing speed. Comes in 4-, 8-, 16-, 32-, and 64-bit
varieties. Usually requires other ICs to make up an embedded system.

Microprocessor
Emulator

A piece of equipment substituted in a circuit for the circuit’s
microprocessor. The emulator gives more control over the circuit’s
operation and eases debugging and troubleshooting efforts.

MIPS Millions of Instructions Per Second. A performance figure of merit
(numeric score or rank) for microprocessors and microcontrollers.

Mixed-Mode Operation in both the digital and analog domains (usually refers to
simulation as in “mixed-mode simulation”).

Mixed-Signal An electronic circuit that has both analog and digital sections. Because
many “real-world” systems have analog interfaces (for example, most
temperature, pressure, sound and video sensors are analog), most
electronic systems must accommodate analog signals. However, signal
processing is now most efficiently performed by digital circuits.
Therefore, almost all modern electronic systems are mixed-signal
systems although individual ICs in such systems need not be mixed-
signal chips. Instead, a design can achieve mixed-signal operation by

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xxxix
 DOS Manual Rev. 3.002

signal chips. Instead, a design can achieve mixed-signal operation by
combining separate analog and digital ICs.

Mixed-Signal
Simulation

A simulation that combines the abilities of an analog simulation and a
digital simulation. Used to verify the operation of mixed-mode circuitry.

Moore’s Law An empirical law developed and later revised by Intel’s Gordon Moore,
which predicts that the IC industry is capable of doubling the number of
transistors on a silicon chip every 18 months (originally every year)
resulting in declining IC prices and increasing performance. Most
design cycles in the electronics in declining IC prices and embedded-
system development firmly rely on Moore’s law.

Multitasking A programming style that splits the overall job to be performed by the
embedded system into a number of smaller tasks, which then execute on
the system’s processor in a time-shared fashion.

N

Nanosecond One billionth of a second.

Net 1- For ASICs, an individual signal path including all of its branches
and extensions.

2- An abbreviation for the Internet.

Net Extraction The identification and cataloging of all signal paths in a circuit. The
combination of all nets and circuit elements (transistors, resistors,
capacitors, ICs, etc.) of an electronic design completely describes an
electronic circuit.

Net List Netlist. A computer file (sometimes a printed listing) containing a list of
the signals in an electronic design and all of the circuit elements
(transistors, resistors, capacitors, ICs, etc.) connected to that signal in the
design.

Network Simulation Simulation of a communications network to determine if it has the
desired communications capacity, noise insensitivity, and fault tolerance.

Node A single point in an electronic circuit.

Non-volatile The characteristic of a memory that does not lose its contents when its
power is removed. Non-volatile memory is useful in microcomputer
circuits because it can provide instructions for a CPU as soon as the
power is applied, before secondary devices, such as disk, can be
accessed. Non-volatile memory includes ROM, EPROM and EEPROM.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xl

O

Object-Oriented
Programming

A programming styles that combines data blocks and the associated
software processing algorithms into “encapsulated” modules with
narrowly defined entry and exit points. This programming style was
developed as a way of dealing with extremely large and complex
software programming projects by breaking the project down into
smaller chunks more easily handled by an individual programmer. The
narrowly defined entry and exit points of each module prevent one
programmer’s module from disrupting another’s.

Oscillator A device that produces an alternating output current.

OTP One-time programmable. The characteristic of a memory device that
can be programmed once but cannot be erased. When an EPROM is
described as OTP, this means that its die is erasable when exposed to
ultraviolet light, but because of its package, which is not transparent, it
cannot be exposed to light and thus it cannot be erased.

P

Package The plastic or ceramic that protects an IC die and connects it to the target
circuit.

PAL Programmable Array Logic. The first truly successful family of
programmable logic, originally introduced by Monolithic Memories in
the early 1980s.

PALASM PAL Assembler. The HDL originally developed by John Birkner of
Monolithic Memories for the creation of PAL-based designs.

Parallel Printer Port A standard port on virtually every PC designed for connection to a
printer. This port has eight data lines and several control lines. Parallel
ports may be either unidirectional or bi-directional. If your computer
has a unidirectional port, the programmer will use the status lines to read
data back from the programmer. The port allows high-speed
communication (many times faster than a serial port). There may be up
to three parallel ports in most PCs designated LPT1, LPT2, and LPT3.

Patch A small piece of code used to repair an error in an existing embedded
system program.

PCB
Printed circuit board, PC board, also PWB or Printed Wiring Board. A
laminated board made from alternating layers of copper and plastic
(usually impregnated with glass fibers for strength). The PC board
serves as the physical carrier for other electronic components in an
electronic design and also provides the electrical connection between
these electronic components.

Definitions

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

these electronic components.

PGA Pin Grid Array. A square, through-hold IC package that has pins located
on a square grid with 0.1000-inch pitch. It may have up to several
hundred pins. Used primarily for military and prototype designs.

Picosecond One trillionth of a second.

Place and Route A layout task that positions major functional blocks or electronic
components within an IC or on a PC board (Place) and the subsequent
routing of appropriate electrical connections to those components
(Route).

Platform Term for a computer, operating system, or framework.

PLCC Plastic Leaded Chip Carrier. A low-cost square plastic package that has
J-shaped leads on four sides. This can be surface-mounted or placed in a
socket for through-hole use. PLCCs have interconnection leads on
either two (usually only for memory chips) or all four sides (for logic
and ASIC chips). Available in 20 to 84 pins.

PLD Programmable Logic Device. The generic term for all programmable -
logic ICs including PLAs (programmable logic arrays), PALs, CPLDs
(complex PLDs), and FPGAs (field programmable gate arrays).

PLD Compiler A software package that allows an engineer to specify the functionality
of a PLD through a high-level language or schematic diagram. The
software will convert the design into a JEDEC or other file for the PLD
programmer. PLD compilers are available from numerous IC
manufacturers and from third parties. The packages from IC
manufacturers support only one brand of device and may be free,
inexpensive or expensive. The most popular compiler is PALASM
(priced under $200, available from AMD sales offices and
representatives) which supports most of AMD’s line of PMDs with an
easy-to-learn high-level language. The compiler that probably offers the
highest level of functionality and flexibility is PLDesigner made by
MINC. It supports most PLDs and offers a sophisticated input language
with full support for state machines and other complex constructs,
partitioning designs into several PLDs, and graphical input. Their tools
run on PCs and workstations. PLD compilers have simulators that can
be used to test the functionality of your design and validate test vectors
that you design before programming a device.

Pneumatic Of or pertaining to air, gases or wind.

Point Tool Term for an EDA tool that performs only one function.

Power Simulation A simulation that determines the power consumption of an electronic
circuit operating under a variety of normal and abnormal conditions.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xlii

circuit operating under a variety of normal and abnormal conditions.

PQFP Plastic Quad Flat Pack. See QFP.

Price Point Term for price. Adapted from the consumer markets where there really
is a difference in sales between products prices at $9.99 and $10.

PROM Programmable Read Only Memory. An integrated circuit that stores
programs and data in many embedded systems. PROM stores/retains
information even when the power is off but it can only be programmed
or initialized once.

Q

QFP Quad Flat Pack. A square IC package that has surface-mount leads
coming from four sides. It is used for high-density applications, usually
over 100 pins. Lead pitch may be 0.025 inches or smaller.

R

RAM Random Access Memory. A volatile memory device. An integrated
circuit that stores programs and data in many embedded systems. RAM
does not retain information when the power is off and must therefore be
reinitialized every time the embedded system is switched on. There are
man varieties of RAM including the two most popular types: Dynamic
RAM (DRAM) and Static RAM (SRAM).

RC Extraction The mathematical computation of an electronic circuit’s fundamental
circuit elements: resistors (abbreviated R), and capacitors (abbreviated
C). RC extraction allows a simulator to determine the expected behavior
of the electronic circuit through the mathematical modeling of simple
circuit elements.

Register A location inside of a microprocessor, microcontroller, or I/O controller
chip that stores control or status information.

RISC Reduced-Instruction-Set Computer. A design approach for
microprocessors and microcontrollers, originally developed at IBM,
which employs relatively simple instructions that usually execute in one
clock cycle. This approach results in a faster, simpler processor design
that uses fewer transistors. However, a program written using RISC
instructions requires more instructions to perform a task as compared to
a program written using CISC (Complex-Instruction-Set Computer)
instructions.

ROM
Read Only Memory. An integrated circuit that stores programs and data
in many embedded systems. A non-volatile memory device that cannot
be programmed by the user. It is programmed at the factory through the
use of a mask pattern in the final fabrication steps of the die. PROM

Definitions

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

use of a mask pattern in the final fabrication steps of the die. PROM
stores/retains information even when the power is off but it can only be
programmed or initialized once and only at the semiconductor factory.

ROM Emulator An embedded-system development tool that substitutes RAM for
program ROM and aids in the debugging of the program.

RTL Register Transfer level or Register Transfer Logic. A register-level
description of a digital electronic circuit (see Hierarchy). Registers store
intermediate information between clock cycles in a digital circuit, so an
RTL description describes what intermediate information is stored,
where it is stored within the design, and how that information moves
through the design as it operates.

S

Scan A specialized test approach that places special shift-register circuits
inside of an electronic design just for test purposes. The shift register
allows automatic test equipment to introduce test patterns deep into the
circuitry and to read out status information that results from the circuit’s
response to those test patterns.

Schematic A graphical representation of an electronic circuit. Until the 1980s,
schematics were really the only representation system used to describe
circuits. However, with the advent of HDLs and an explosion in circuit
complexity, schematics are becoming less important as a representation
tool.

Schematic Entry The process of drawing a schematic using EDA tools. When done with
paper and pencil, schematic entry is called schematic drafting or
schematic drawing.

SCSI Small Computer System Interface. Pronounced “scuzzy”. An 8-bit
parallel computer peripheral interface standard used to connect to a wide
variety of peripherals devices including hard disk and CD-ROM drives,
tape-backup units, and optical scanners.

Sequencer A device for automatic or regulation of a sequence.

Serial Memory An EPROM or EEPROM that is accessed by shifting in addresses and
shifting out data one bit at a time. Interfaces are available using one,
two or three wires for clock, data in, and data out.

Simulation
Modeling of an electronic circuit (or any other physical system) using
computer-based algorithms and programming. Simulations can model
designs at many levels of abstraction (system, gate, transistor, etc.).
Simulation allows engineers to test designs without actually building
them and thus can help speed the development of complex electronic

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xliv

systems. However, the simulations are only as good as the mathematical
models used to describe the systems; inaccurate models lead to
inaccurate simulations. Therefore, accurate component models are
essential for accurate simulations.

Simulation Model A software representation of a system component that describes how that
component operates under various electrical and physical (temperature,
pressure, light, etc.) stimulus.

Socket module An interchangeable metal chassis that contains a programming socket.

Soft Macro A predefined block of logic (such as a multiplier or microprocessor),
which can be used as a building block for creating ASIC designs. In
contrast to “Hard Macros”, soft macros can be decomposed into
component-level parts and edited for a particular application.

SOIC Small Outline Integrated Circuit. A surface-mount IC package that has
two rows of leads on opposite sides. Commonly found in 8 to 32 pin
sizes. Leads are usually 0.050 pitch.

SPICE Simulation Program with Integrated Circuit Emphasis. The original
analog simulation program developed at the University of California
Berkeley in the early 1970s.

SRAM Static Random Access Memory. An integrated circuit that stores
programs and data in many embedded systems. SRAM does not retain
information when the power is off and must therefore be reinitialized
every time the embedded system is switched on. SRAM is more
expensive than DRAM on a cost-per-bit basis but is usually easier to
connect to a microprocessor or microcontroller.

Standard Cell A form of ASIC design that employs predefined logic cells and circuit
components to create an ASIC. All mask layers of a standard-cell ASIC
are custom for that ASIC, in contrast to a “Gate Array” in which only
the metal-layer masks are custom. Standard-cell ASICs usually run
faster and use less silicon (and are therefore usually cheaper on a per-
part basis) than Gate Arrays. However, because the standard-cell ASIC
uses predefined circuit components, its usually easier to design (and
therefore requires less time to design) than a full-custom ASIC where
every resistor, capacitor, and transistor is custom built.

State Diagram A graphical representation of a state machine’s operation. State-diagram
editors are EDA tools specifically designed to aid in the development of
state machine designs.

State Editor A design-entry EDA tool used to create state diagrams.

State Machine A digital circuit built from registers and gates that controls the operation
of other circuitry. For example, microprocessors contain many state

Definitions

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

of other circuitry. For example, microprocessors contain many state
machines that sequence the flow of information over the processor’s bus
and through its data-manipulation circuits.

Static Timing Analyzer An EDA tool that exhaustively checks every signal path in a circuit to
identify timing-related design problems.

Symbol A graphic, schematic library element that represents an electronic
component such as a resistor, a capacitor, a transistor, or an IC.

Symbol Editor An EDA tool for maintaining and creating schematic symbols.

Synchronous A digital circuit where all of the operations occur in lock step to a master
clock signal.

Synthesis Logic Synthesis. A computer process that transforms a circuit
description from one level of abstraction to a lower level, usually
towards some physical implementation. Synthesis is to hardware design
what compilation is to software development. In fact, logic synthesis
was originally called hardware compilation.

T

Test Synthesis The automatic creation of test patterns and a test program for the
verification of manufactured ICs.

Test Vector A stimulus pattern applied to a circuit to verify the circuit’s operation. A
set of characters that describe the inputs and outputs of a device during a
functional test. There is one character in the vector for each pin on the
device. Numbers represent inputs to be applied to the device (1 for Vih,
0 for Vil). Letters represent the outputs that must be tested (H for Voh,
L for Vol, Z for high-impedance). During the test, the part will be
powered up and each input will be applied to the device for the first
vector. Then, each output will be applied to the device for the first
vector. This process will continue for each vector and any errors will be
reported.

Timing Diagram A graphical representation of the signa ls in an electronic circuit that
shows how the signals change over time in relationship to each other.

Timing Simulation Simulation of an electronic circuit’s operation over time using calculated
circuit parameters such as resistance, capacitance, inductance, and
timing delays.

Top-Down Design
A design methodology that starts the design of an electronic system at
the very highest level of abstraction and then methodically broadens the
design through lower abstract layers until finally reaching the concrete,
physical design layer which accurately represents the implementation

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xlvi

technology for the system.

TQFP Thin Quad Flat Pack. Similar to QFP but with a lower profile and
physically smaller in length and width.

Transmission Line A conductor or wire that is suited to carrying high-frequency signals.

TSOP Thin Small Outline Package. A surface-mount package with fine-pitch
leads (usually 0.025 inch pitch) on two sides. This package is very low
profile and commonly available in a reverse (mirror image) pinout used
to simplify circuit board layout. Usually 32 to 44 pins.

U

Unit Delay Simulation A simplified form of timing simulation where every digital gate is
assumed to introduce one unit of delay to a signal. In reality, different
gates have different speeds, but unit delay simulation trades off accuracy
for simulation speed.

UV Erasable The characteristic of an EPROM that allows it to be erased with
exposure to short-wave ultra-violet light. This high-energy light can
discharge the floating-gate transistor cells that store bits in an EPROM.
The most common source of such light is a mercury vapor tube much
like an ordinary fluorescent tube, but without the phosphor that turns the
UV light emitted by the mercury into visible light. The light from
ordinary fluorescent lamps or sunlight generally takes years to erase an
EPROM. All UV erasable parts have a quartz windowed ceramic
package that allows exposure with UV light.

V

Verification The task of establishing the correctness of a design using EDA tools to
automatically check the timing, connections, and rules used to design the
circuit.

Verify Reading a programmable device and comparing its contents to the
desired pattern for that device. This is a go/no-go test – it does not
report what the discrepancies are. See also: compare.

Verilog A hardware description language developed by Gateway Design
Automation (now part of Cadence) in the 1980s which became very
popular with ASIC and IC designers.

VHDL
VHSIC Hardware Description Language. A hardware description
language developed in the 1980s by IBM, Texas Instruments, and
Intermetrics under US government contract for the Department of
Defense’s VHSIC (Very High Speed Integrated Circuit) program.
VHDL enjoys a growing popularity with ASIC designers as VHDL
development tools mature.

Definitions

BP Microsystems, Inc. The Engineer’s Programmer xlvii
 DOS Manual Rev. 3.002

development tools mature.

Volatile The characteristic of a memory device (specifically RAM) that will lose
its contents when the power is removed. These parts are not
programmable with a device programmer because they cannot be
removed from the programming socket without losing their contents.

W

Word A unit of memory usually consisting of two bytes (16 bits).

Word width The number of output pins that a memory device has. The most
common sizes for EPROMs is byte wide (8 bits) and “word” wide, or 16
bits. It can also refer to the aggregate width of several memory devices
used in a set.

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
xlviii

ACRONYMS

A

AAAI American Association for Artificial Intelligence
AAL ATM Adaptation Layer
ABET Accreditation Board for Engineering and Technology
ACE Advanced Computing Environment
ACL Advanced CMOS Logic
ACM Association for Computing Machinery
A/D and D/A Analog-to-Digital and vice versa
ADI Autodesk Driver Interface (from AutoCad)
ADPCM Adaptive Differential Pulse-Code Modulation
AEA American Electronics Association
AEW system Airborne Early Warning System
AGC Automatic Gain Control
AI Artificial Intelligence
AIA Aerospace Industries Association
AIAA American Institute of Aeronautics and Astronautics
ALU Arithmetic-Logic Unit
AMPS Advanced Mobile Phone Service
ANSI American National Standard Institute
API Applications Programming Interfaces
AQL Accepted Quality Level
Arpa Advanced Research Projects Agency
ASCII American Standard Code for Information Interchange
ASEE American Society for Engineering Education
ASIC Application-Specific IC
ASP Average Selling Price (a sales term)
ASSP Application-Specific Standard Product
ATA AT Bus Attachment (a PC interface)
ATE Automatic Test Equipment
ATM Asynchronous Transfer Mode
ATPG Automatic Test Pattern Generation
ATTC The FCC’s Advanced TV Test Center
AWACS Airborne Warning and Control System

B

BCD Binary-Coded Decimal
BiCMOS Bipolar CMOS
BiFET Bidirectional Field-Effect Transistor
BIOS Basic Input/Output System
B-NTSC Baseband National Television Standards Committee

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

C

CAD/CAM/CAE Computer-Aided-Design, -Manufacture, -Engineering
CAGR Compound Annual Growth Rate
CAS Column-Address Strobe
CASE Computer-Aided Software Engineering
CAU Control Arithmetic Unit
CBI Computer-Based Instrument
C3 Command, Control and Communications Systems
CCD Charge-Coupled Device
CCIR Comite Consultatif International des Radio Communications
CCITT Consultative Committee for International Telephone and Telegraph, former

standards body of IEEE and now succeeded by the ITU-TSS, or
International Telecommunications Union, Technical Standards Section

CD-I Compact Disk-Interactive
CDPD Cellular Digital Packet Data
CD-ROM Compact Disk, Read-Only Memory
CEMOS Complementary Enhanced MOS
CEPT Conference of European Posts and Telecommunications
CERN Conseil Europeen pour le Recherche Nucleaire aka the European Particle

Physics Laboratory
CFC Chlorofluorocarbon
CFI CAD Framework Initiative
CFM Cubic Feet per Minute
CGA Color Graphics Adapter
Chill CCITT High-Level Language
CHMOS Complementary High-Performance Metal-Oxide Semiconductor
CIF The CCITT’s Common Intermediate Format (for video; 352-pixel x 288-

line resolution)
CIM Computer-Integrated Manufacturing
CIO Counter/Timer Input/Output
CISC Complex Instruction Set Computer
CMOS Complementary Metal-Oxide Semiconductor
CMRR Common Mode Rejection Ratio
COS The Corporation for Open Systems, an organization of computer and

communications equipment suppliers and users
COSE Common Open System Environment
CPLD Complex PLD
CP/M Control Programs/Microcomputer
CPU Central-Processing Unit
Crada Cooperative Research and Development Agreement
CRC Cyclic Redundancy Checking
CRT Cathode-Ray Tube
CSA Canadian Standard Association
CSIC Customer-Specific IC
CSMA/CD Carrier-Sense Multiple-Access with Collision-Detection (baseband

schemes)
CTE Coefficient of Thermal Expansion

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
l

CVD Chemical Vapor Deposition
cw Continuous wave

D

DAC Design Automation Conference
DAT Digital Audio Tape
DCC Digital Compact Cassette
DCE Data Circuit Terminating Equipment; also Distributed Computing

Environment
DCFL Direct-Coupled FET Logic
DCT Discrete Cosine Transform
DDS Digital Data Standard
DECT Digital European Cordless Telephone (standard)
DESC Defense Electronics Supply Center
DIP Dual-In-Line Package
DSB Display-Station Buffer
Divad Initial cap; Division Air Defense
DMA Direct Memory Access Controller
DMM Digital Multimeter
DMSK Differential Minimum Shift Keying
DOS Disk Operating System, Operating System Standard created by Microsoft

Corp.
DPMI DOS Protected Mode Interface
dpst Double-Pole, Single Throw; for switches or relays
DQPSK Digital Quadrature Phase-Shift Keying
DRAM Dynamic Random Access Memory
DRC Design Rule Checking
DSO Digital Storage Oscilloscope
DSP Digital Signal Processing
DSU Dataport Service Unit
DTE Data Terminal Equipment
DTL Diode Transistor Logic
DTMF Dual-Tone Multifrequency
DUT Device Under Test
DVI Digital Video Interactive Technology

E

EAROM Electrically Alterable ROM
ECC Error-Correction Code
ECL Emitter-Coupled Logic
ECO Engineering Change Order
ECP/EPP Enhanced Capabilities Port/Enhanced Parallel Port
ECU European Currency Unit
EDA Electronic Design Automation
EDAC Electronic Design Interchange Format
EDIF Electronic Design Interchange Format

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

EFTA European Free Trade Area
EGA Enhanced Graphics Adapter
EIA Electronic Industries Association
EIAJ Electronic Industries Association - Japan
EIC Equivalent IC
EISA Extended Industry Standard Architecture
EMC Electromagnetic Compatibility
EMI Electromagnetic Interference
EPLD Erasable Programmable Logic Device
EPOS Electronic Point of Sale
EPROM Erasable PROM
EEPROM Electrically Erasable PROM
ERC Electrical Rule Checking
ESA European Space Agency
ESD Electrostatic Discharge
ESDI Enhanced Small Device Interface
Esprit European Strategic Program for Research and Development in Information

Technology
ESR Equivalent Series Resistance

F

FAE Field-Application Engineers
FCC Federal Communications Commission
FDDI Fiber Distributed Data Interface
FDM Frequency-Division Multiplexing
FET Field-Effect Transistor
FFT Fast Fourier Transform
FIFO First In, First Out
FIN Flexible Interface Network
FOIRL Fiber-Optic Inter-Repeater Link
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
FSR Full-Scale Reading

G

GaAs Gallium Arsenide
G&A General and Administrative (expenses)
GATT General Agreement on Tariffs and Trade
GDI Graphical Driver Interface
GPIB General-Purpose Interface Bus
GPS Global-Positioning Satellite
GRIN Graded Index (lens)
GSM Global System for Mobile Communications (standard)
GTL Gunning Transceiver Logic
GUI Graphical User Interface

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
lii

H

HAL Hardwired Array Logic Device, from MMI (trademark)
HBTs Heterostructure Bipolar Transistors
HDL Hardware Description Language
HEMTs High Electron Mobility Transistors
HiPPI High Performance Parallel Interface

I

IC Integrated Circuit
I-C bus Inter-IC bus
ICCAD International Conference on Computer-Aided Design
ICE Integrated Circuit Engineering
IDE Integrated Device Electronics (interface)
IEE Institution of Electrical Engineers
IEEE The Institute of Electrical and Electronics Engineers
IECQ International Electrotechnical Commission of Quality Control System
IFPI International Federation of Phonogram and Videogram Producers
IGBT Insulated-Gate Bipolar Transistor
IGT Insulated-Gate Transistor
IofNewt Integration of Numerical and Experimental Wind Tunnels
IPC Institute for Interconnecting and Packaging Electronic Circuits
IPI Intelligent Peripheral Interface
IR LED Infrared Light Emitting Diode
ISA Industry Standard Architecture
ISDN Integrated Services Digital Network
ISHM International Society for Hybrid Microelectronics
ISO/IEC International Standards Organization/International Electrotechnical

Commission
ISSCC International Solid-State Circuits Conference
ISV Independent Software Vendor
ITC International Test Conference
ITO Indium Tin Oxide
ITU-T International Telecommunications Union, Technical Standards Section. In

95% of the cases since 12/93, it has replaced CCITT (see above) as
standards-setting body of IEEE. This is true for modern standards, cabling
standards, ISDN and ATM standards, etc.

J

JAN Joint Army-Navy Military Standard
JEDEC Joint Electronic Device Engineering Council
JEIDA Japan Electronics Industry Development Association
JEMI Joint Equipment Manufacturers Initiative
Jessi Joint European Submicron Silicon Initiative
JETRO Japan External Trade Relations Organization
JIT Just-In-Time; A Manufacturing Philosophy

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

JPEG Joint Photographic Experts Group
JTAG Joint Test Action Group

L

LAN Local-Area Network
LCA Logic Cell Array, from Xilinx (trademark)
LCC Leadless Chip Carrier
LCD Liquid-Crystal Display
LED Light-Emitting Diode
LPE Liquid Phase Epitaxy
LSI Large-Scale Integration
LSB Least Significant Bit
LSSD Level-Sensitive Scan Design

M

MAC Medium Access Control
MAN Metropolitan-Area Network
MAP Manufacturing Automation Protocol
MAU Mathematics Acceleration Unit OR Media Attachment Unit, Depending on

Context
MBE Molecular Beam Epitaxy
MCB Molded Circuit Boards
MCC (yes, we know there’s a letter missing in this acronym, but it’s correct)

Microelectronics and Computer Technology Corp.
MCM Multichip Module
MESFETs Metal-Semiconductor Field-Effect Transistors
MFM Multifrequency Modulation
MIDI Musical Instrument Digital Interface
Mips Million Instructions Per Second
MIS Metal-Insulator Semiconductor
MISFETs Metal-Insulator Semiconductor Field-Effect Transistors
MITI Ministry of International Trade and Industry
MLC Multilayer Ceramic Capacitor
MMIC Monolithic Microwave Integrated Circuit (generic designation)
MMU Memory Management Unit
MOCVD Metal-Organic Chemical Vapor Deposition
Mops Millions of Operations Per Second
MOSFET Metal-Oxide Semiconductor Field-Effect Transistor
MOSIGT Metal-Oxide Semiconductor Insulated Gate Transistor
MPEG Moving Picture Experts Group
Mpps Megapixels Per Second
MPT Ministry of Posts and Telecommunications
MRP Manufacturing Resource Planning
MSI Medium-Scale Integration
MTBF Mean Time Between Failure
Mtops Millions of Theoretical Operations per Second

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
liv

MVS IBM’s Proprietary Operating System
MWh Megawatt-hour

N

NAPLPS North American Presentation Level Protocol Syntax, the ANSI-videotex
graphics standard

NIC Network Interface Controller
NII National Information Infrastructure – the information superhighway
NISO National Information Standards Organization
NIST National Institute of Standard and Technology
NRE Non-recurring Engineering (as in ‘charges’)
NSPE National Society of Professional Engineers
NTSC National Television Standards Committee

O

OCR Optical Character Recognition
OECD Organization for Economic Cooperation and Development
OEM Original Equipment Manufacturer
OFDM Orthogonal Frequency Division Modulation
OLTP On-line Transaction Processing
OOPS Object-Oriented Programming Software
OOPSLA Object-Oriented Programming Systems, Languages and Applications

conference
OROM Optical ROM
OS Operating System
OSF Open Software Foundation
OSI Open Systems Interconnection
OS/2 Operating System from Microsoft, IBM
OSTP Office of Science and Technology Policy
OTP One Time Programmable

P

PACE Professional Activities Council Committees for Engineers
PAL Programmable Array Logic
PA-RISC Precision Architecture – Reduced Instruction Set Computer
PBX Public or Private Branch Exchange
PCI Peripheral Component Interconnect (local bus)
PCMCIA Personal Computer Memory Card International Association (PCMCIA

cards provide a standardized format and interconnection method for the
addition of various peripherals, increased memory storage or other
functions)

PCN Personal Communications Network
PDA Personal Digital Assistant
PIA Peripheral Interface Adapter
PIN Positive-Intrinsic Negative (diode)

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

PIV Peak Inverse Voltage
PLA Programmable Logic Array
PLCC Plastic Leadless Chip Carrier
PLD Programmable Logic Device
PRML Partial-Response, Most-Likelihood (encoding technique)
PRO Precision RISC Organization (HP consortium)
Promis Project Management Integrated System, from Strategic Software Planning

Corp. (trademark)
PSK Phase Shift Keying
PSMA Power Sources Manufacturers’ Association
PSRR Power Supply Rejection Ratio
PTT Post, Telegraph and Telephone Administrations (a generic term for public

telegraph and telephones; much like RBOC is for the seven baby bells)
PVM Poly-Vector Modulation
PWM Pulse-Width Modulation

Q

QAM Quadrature Amplitude Modulation
QFP Quad Flat Pack
QIC Quarter Inch Cartridge

R

RAID Redundant Arrays of Independent Disks
RAMDAC Random Access Memory Digital to Analog Converter
RAM/ROM Random Access and Read Only Memories
RARP Reverse Address Resolution Protocol
RAS Row Address Strobe
RBOC Regional Bell Operating Companies
RC time constant Resistance-Capacitance
R-DAT Rotary Digital Audio Tape
R&D Research and Development
RF Radio Frequency
RFI Radio Frequency Interference
RFP Request for Proposal
RGB Red Green Blue
RISC Reduced Instruction Set Computer
RTP Rapid Thermal Processing

S

SAR Segmentation and Re-assembly
SAW Surface Acoustic Wave
SCI Scalable Coherent Interface
SCR Silicon Controlled Rectifier
SCSI Small Computer Systems Interface
SDLC Synchronous Data Link Control

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
lvi

Secam Systeme Electronique Couleur Avec Memoire. French TV transmission
standard.

SEMI Semiconductor Equipment and Materials International
SIA Semiconductor Industry Association
SID Society for Information Display
SIMD Single Instruction, Multiple Data
SLIC Subscriber Line Interface Circuit
SLIP Serial Line Interface Circuit
SMA Surface Mount Assembly; also Subminiature Type A (connector)
SMD Surface Mount(ed) Device
SMDS Switched Multimegabit Data Services
SMI System Management Interrupt
SMPTE Society of Motion Picture and Television Engineers
SMT Surface Mount Technology
SNA Systems Network Architecture (IBM protocol)
SNMP Simple Network Management Protocol
SOI Silicon On Insulator
SOJ Small-Outline, J-leaded package
SOP Small-Outline Package
SOS Silicon-On-Sapphire
SPA Software Publishers Association
SPACE The Satellite Television Industry Association (Society for Private and

Commercial Earth Stations)
SPEC Systems Performance Evaluation Cooperative
Spice Simulation program with integrated-circuit emphasis
SPIE Society of Photometric and Instrumentation Engineers
SQUID Superconductive Quantum Interference Device (from IBM)
SQL Structured Quary Language
SRAM Static RAM
SRQ Service Request; an IEEE 488 command
SSI Small Scale Integration
SSR Solid State Relay
SSOP Shrink Small-Outline Package
SVID AT&T’s System V Interface Definition, a definitive guide for programmers

writing applications for System V.

T

TCE Thermal Coefficient of Expansion (spell out on first mention)
TCP/IP Transmission Control Protocol and Internetwork Protocol
TDMA Time Division Multiple Access
TFT Thin-Film Transistor
TFTP Trivial File Transfer Protocol
T/H Track and Hold
TOP Technical Office Protocol
TOPFET Temperature and Overload Protected Field-Effect Transistor
TOW missiles Tube-launched, Optically tracked, Wire-guided missiles
tpi Tracks per inch

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

TQFP Thin Quad Flat Pack
TRON The Real-time Operating System Nuclues project
TSOP Thin Small-Outline Package
TTL Transistor-Transistor Logic
TVRO Television Receive Only; a type of satellite dish

U

UART Universal Asynchronous Receiver/Transistor
UHF Ultra-High Frequency
UIM Universal Interconnect Matrix
UL Spell out on first mention – Underwriters Laboratories
Unix Computer Operating System
UPC Universal Peripheral Controller; alsions (controller)
UPS Uninterruptible Power Supply
USARTs Universal Synchronous/Asynchronous Receiver/Transmitters
USC Universal Serial Communicattage-controlled oscillator
UV Ultraviolet

V

VAR Value Added Retailer or Reseller
VAN Value Added Network
VBR Variable Bit-Rate
VCO Volo Universal Price Code (no periods after the letters)
VDE Verband Deutsher Elektrono-Techniker. West Germany’s Components

Safety Agency
VESA Video Electronics Standards Association
VFC Voltage to Frequency Converter
VFET Vertical Field-Effect Transistor
VHDL VHSIC Hardware Description Language
VHSIC Very High Speed Integrated Circuit (US Government Program)
VITA VME International Trade Association
Vital VHDL Initiative Toward ASIC Libraries
VL-bus VESA Local Bus (standard), developed by the Video Electronics Standards

Association
VLDS Very Large Data Storage
VLSA Very Large-Scale Arithmetic
VLSI Very Large-Scale Integration
VMEbus One word, note caps and lower case
VMS DEC’s proprietary operating system
VTR Videotape Recorder; use VCR

W

WAN Wide Area Network

Chapter Fourteen

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
lviii

X

XGA Extended Graphics Array

Z

ZIF Zero Insertion Force

ZIP Zigzag In-Line Package

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

INDEX

A

adapter, 7-4, 14-18
Adapter, 14-25
AFS, 7-7, 9-4, 14-16, 14-17
algorithm, 2-2, 2-1, 9-7, 13-1, 14-

5, 14-8, 14-9, 14-10, 14-11, 14-
12, 14-13, 14-14, 14-19, 14-23,
14-24

Algorithm, 6-23, 6-38, 6-66, 6-67,
6-68, 10-1

Architecture, 7-2, 7-3
assembler, 2-4
autoHandler, 14-25
Autohandler, 14-25

B

batch. See file
BBS, 14-3, 14-4
binary. See file
bipolar, 2-2, 2-5
blank, 12-1
Blank check before programming,

14-5
BP.EXE, 2-3
BP-1200, 2-2
buffer, 3-12
Buffer

Status Line, 6-9
Buffer/Edit, 4-1, 4-4
Buffer/Load, 3-13
Buffer/Options, 4-3
Buffer/Vectors, 4-1, 14-21
byte order, 4-3

C

cable, 14-9
caret, 8-8
Category, 9-2, 9-3, 9-5, 9-6, 9-8,

9-9
checksum, 4-3, 5-6
Checksum, 3-18, 5-4, 5-5, 5-6, 9-

6, 9-8, 14-17
Cleaning a Dirty DIP Socket, 14-6
color, 2-8
command

Device/Blank, 12-1
Macro/Finish, 8-3
Macro/Prompt, 8-4
Macro/Record, 8-3
Quit, 8-3

command line, 8-2
parameter, 8-7

command record, 8-6
comments, 8-6
compiler, 2-4, 2-5, 2-1, 14-24
Concurrent programmer, 14-17
Concurrent unit, 14-18
Concurrent Unit, 14-18
CONFIG.SYS, 7-4
configuration, 2-9
Configuration, 2-9

AUTOMATIC, 2-9
Configure

device, 3-18
continuity test, 7-4, 14-9, 14-11,

14-14
CP-1128, 2-2

D

data editors, 4-1

Index

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
lx

data record, 5-3, 5-4, 5-5, 8-6
demostration mode. See DEMO

mode
Device

information, 2-7, 3-18
insert, 3-15, 14-11, 14-25
new, 2-1, 14-3, 14-25
New, 5-1
select, 2-7, 7-4, 14-18

Device/Blank , 7-1
Device/Compare, 14-5, 14-13
Device/Configure, 3-18
Device/Handler, 3-14, 3-15
Device/Options, 14-6
Device/Program, 14-5
Device/Upgrade, 7-7
dialog box, 8-7
DIP, 3-12, 7-3, 7-4, 14-6
directory, 3-13
Directory, 3-13
display, 2-8
DPMI, 7-4

E

Edit
fuse data, 4-1, 4-4
memory data, 4-1

EEPROM, 2-3, 2-5
electronic identifier, 14-12, 14-19
electronic signature, 14-12
emulation modes

16V8, 13-1
20V8, 13-1
20XV10, 13-1

encrypt, 3-18
EP-1132, 2-2
EP-1140, 2-2
EPROM, 2-5, 7-1
EPROM eraser, 7-1
erase, 12-1
error messages, 14-6

F

fax, 14-3
Fax, 14-1

Features, 9-1
file

batch, 2-1, 8-2
binary, 2-4
hex, 2-4
JEDEC, 11-1, 13-1
macro, 8-1, 8-3, 8-4
make, 8-2
POF, 2-1, 11-1

File
AUTOEXEC.BAT, 2-9
load, 3-12
POF, 14-21

Functional test, 14-6, 14-15, 14-
21

fuse, 14-19
Fuse Data, 4-4

G

GAL, 7-2. See emulation modes
Ground bounce, 14-23

H

hardware test, 14-4
hex. See file
hot keys, 2-6
Hot Keys

Universal, 6-1
hot-keys, 8-2

I

Illegal bit, 14-15
insert a chip, 3-15
Item Number, 9-5, 9-6, 9-8, 9-9

J

Job, 9-4, 9-6, 9-7, 9-8
JobMaster Database Directory,

6-55
JobMaster, 2-3

Acronyms

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

K

Keyboard Shortcuts. See Hot
Keys

L

LED, 14-9
Active, 2-2, 2-4
ACTIVE, 3-15, 3-16
ERROR, 14-6
Fail, 2-2
Fail, 2-5
FAIL, 3-16
Pass, 2-5
Power, 2-2
Power, 2-4

LEDPASS, 3-16

M

Memory, 14-11
memory data editor, 4-1
memory manager, 7-4
microcontroller, 2-3
modify, 8-9

N

number of devices, 3-15
Number of operations, 3-15
NVRAM, 2-3

O

one time programmable, 7-2
OTP, 7-2

P

package type, 14-14
Package Type, 3-12
package types, 2-2
PAL, 7-2, 13-1
parallel port, 2-2, 2-8, 14-9, 14-10
parallel printer port, 2-3, 14-9
parameter

command line, 8-7
macro file, 8-7

PGA, 3-16
phone numbers, 14-4
pin driver, 7-4, 14-18
PLCC, 7-3
PLD, 2-4, 4-4, 7-3, 14-6, 14-19
PLD-1100, 2-2
PLD-1128, 2-2
POF. See file
port, 2-2, 2-3, 2-8, 14-10
POST, 14-6
power, 2-2
power down, 7-7
Power On Self Test, 2-4
power-on Self-Test, 14-6
printer port, 2-2
program, 3-14
programming, 13-1
protection circuit, 3-15, 14-9

Q

QFP, 14-25
Quick Keys. See Hot Keys

R

radix, 4-2
RAM, 14-6, 14-11
revision, 14-4
RMA, 14-3
ROM, 14-6

S

Save Configuration, 2-9
screen saver, 2-8
secure, 14-5, 14-8, 14-13, 14-15,

14-19
Selective sum, 4-4
signature, 14-12
SM84UP, 7-6
SMT, 7-4
socket, 3-15
Socket

Cleaning, 14-6

Index

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
lxii

socket module, 7-3, 7-4, 14-14,
14-18

software
development, 2-5, 11-1

Software
development, 14-21
update, 14-3

startup messages, 2-8
status, 2-7
Support, 14-1, 14-7, 14-17, 14-18

T

technical support, 14-3
Technical Support, 14-1

Advanced Support, 6-4
technology adapter, 14-18
templates, 7-6
test

vector, 11-1
Test

continuity, 14-11
Continuity, 6-30, 6-37, 6-40
hardware, 14-4, 14-6
self, 2-5
Test Vectors, 6-9, 6-15, 6-33,

6-39, 6-41, 6-42, 6-43, 6-44,
6-45

vector, 14-15, 14-21

test vectors, 6-39, 14-9, 14-15, 14-
21, 14-22, 14-24, 14-25

TEST VECTORS, 14-21
THT, 7-4

U

Updates, 14-1, 14-3
upgrade, 7-7, 14-16, 14-17
Upgrading, 14-7
user input, 8-8

V

VCPI, 7-4
vectors, 4-1, 4-5, 7-3, 14-6, 14-15,

14-21
Vectors. See Test Vectors
version, 2-4, 14-4

W

warning messages, 2-8
WARNING MESSAGES, 14-19
warranty, 2-2

X

X-value, 14-6

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

APPENDIX A
LIMITED WARRANTY

BP Microsystems, Inc. warrants this product against defects in material or
workmanship for a period of one year, as follows:

For a period of one year from date of purchase, BP Microsystems, Inc. will
repair or replace any defective product at no charge. Whether the warranted
product should be repaired or replaced is wholly within the discretion of BP
Microsystems, Inc.

This warranty does not cover any damage due to accident, misuse, abuse or
negligence.

You should retain your dated bill of sale as evidence of the date of purchase.

REPAIR OR REPLACEMENT AS PROVIDED UNDER THIS
WARRANTY IS THE EXCLUSIVE REMEDY OF THE PURCHASER. IN
NO EVENT SHALL BP MICROSYSTEMS, INC. BE LIABLE FOR ANY
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, NOR FOR
ANY DAMAGES RESULTING FROM USE, MISUSE OR
MODIFICATION OF THIS PRODUCT. EXCEPT TO THE EXTENT
PROHIBITED BY APPLICABLE LAW, ANY IMPLIED WARRANTY OR
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE IS
SPECIFICALLY DISCLAIMED. UNDER NO CIRCUMSTANCES
SHALL BP MICROSYSTEMS, INC. TOTAL LIABILITY EXCEED THE
PURCHASE PRICE OF THE PRODUCT.

This warranty gives you specific legal rights, and you may also have other
rights that vary from state to state.

Appendix A

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
ii

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

i

APPENDIX B
ADVANCED FEATURE

SOFTWARE

This appendix covers information regarding the Advanced Feature Software
(AFS).

AFS adds additional testing and production features, such as the autohandler
interface to your BP software. AFS is only available for the BP-1200
Universal Device Programmer.

UPGRADING YOUR SOFTWARE

It is possible to upgrade the standard software on your BP-1200 to the AFS
software.

To upgrade your existing software, first obtain an authorization code from
BP Microsystems, Inc. You will need to have the version number of your
software and your programmer serial number available when you request the
upgrade code. You must now start the software and use the AFS/Upgrade
command to enter your authorization code. The program will modify its own
bp.exe file to enable the option. Verify that AFS has been enabled by
looking at the bottom of the screen, which will indicate AFS on the Status
Line.

¥ If you ordered AFS when you ordered your programmer, or if you
upgrade to a new version of the software, the AFS features will be
enabled at the factory; you will not need an authorization code.

AUTOHANDLER

The Autohandler mode interfaces between the operation of the handler and
the programmer. The Autohandler selection is located in the Device/Handler
command. We currently support several autohandler models by Exatron
(both serial and parallel interfaces) and by MCT. Although the Handler
menu always appears in the software, only the manual mode may be used
without the purchase of AFS. Please refer to the description of the

Appendix B

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
ii

Device/Handler command in the Command Reference chapter for more
information on the configuration and use of this feature.

More information on using the BP-1200 with an Autohandler is being
assembled. If you need more information, please contact BP Microsystems,
Inc. and someone will assist you.

SERIALIZATION

The Serialize feature allows you to serialize devices using a starting number
read from a specified file. A file will be created for you if the one you
specify does not exist. The number will be incremented by 1 for each device
operation and loaded into a specified buffer address prior to each operation.

The following options can be set using the AFS/Serialize command:

Serial number size: Specifies the length of the serial number a
1, 2, or 4 bytes.

Serial number data file: Specifies the name of the file containing
the starting serial number. A file will be
created with the specified name if one
does not already exist. The file will be
updated when the serial number is
incremented.

Buffer address for serial number: Specifies the buffer address of the
first byte of the serial number.

Buffer bytes to skip: Allows programming the serial number
into only the even (low) or odd (high) byte
addresses.

Byte order: Specifies REVERSE or FORWARD byte
order. REVERSE is used by Intel
processors and will place the LSB in the
first byte of the serial number word.
FORWARD is used by Motorola
processors and will place the MSB in the
first byte of the serial number word.

VERIFY CHECKSUM

The Verify Checksum feature automatically performs a checksum operation
after programming or verifying a device and compares this sum to the
reference checksum entered by the user. The checksum feature provides an
independent means to confirm that the correct pattern has been programmed
into the device. The feature is enabled by using the AFS/Options command.

Advanced Feature Software (AFS)

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

There are two modes for Verify Checksum: manual and automatic modes.
When manual mode is selected, the user will be prompted to enter the
reference checksum. In this mode, this feature will detect file load errors,
communication errors, hard disk errors, RAM errors, operator errors and
configuration errors – all the while guaranteeing the highest level of data
integrity. If the user inadvertently loads the wrong file, for instance, the sum
computed by the checksum operation will not match the sum that the user
entered, thus producing an error message. When the automatic mode is
selected, the reference checksum is set automatically when a file is loaded;
this mode is useful to detect RAM errors and some configuration errors.

REMOTE

The Remote feature allows the BP software to receive its commands and data
over the serial port rather than from the keyboard. The commands are a
subset of the commands available from other programmer manufacturers.
Currently, Exatron sells software and autohandlers which use this feature of
the software.

The only options for the Remote command are used to configure the serial
port which is used to communicate with the remote host. The following
options can be set using the AFS/Options command:

Remote port: Specifies the serial port to which your remote host is
connected. The computer on the other end of this
connection will provide commands to be executed
here. Valid options are COM1, COM2, COM3, or
COM4. The serial port selected must be controlled
by a 16550 UART.

Remote baud rate: Specifies the baud rate to be used. The software will
support any valid baud rate, but the use of 1200,
9600, or 19200 is suggested.

Remote data bits: Specifies the number of data bits to be used. Valid
numbers are seven (7) and eight (8).

Remote parity: Specifies the parity to be used. Valid parity settings
are NONE, ODD or EVEN.

Remote stop bits: Specifies the number of stop bits to be used. Valid
numbers are one (1) and two (2).

The remote host must be configured with the same baud rate, number of data
bits, parity setting, and number of stop bits as the serial port. Also note that
the remote software uses the RTS/CTS and/or XON/XOFF flow control
methods.

Appendix B

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
iv

The AFS/Remote command is used to enter Remote mode. Once the Remote
mode is entered, the software waits to receive a command over the serial
port. When it receives a command, it will perform the action required. To
exit the Remote mode, the remote host may send the Z command, or the ESC
key may be pressed.

The commands used to communicate in Remote mode are one or three
character strings. Each command is terminated with a carriage return. A
command may be preceded by parameters. Each command generates a
response back to the host, consisting of a return value, a response code, and a
carriage return. The response code is ‘?’ for commands which were not
understood, ‘F’ for commands which failed, and ‘>’ for commands which
succeeded. The format of these commands is defined by the Data IO CRC
commands.

The following table is a summary of the commands that are available:

Advanced Feature Software

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

CMD Description

A Enter translation format
: Select device begin address
; Select memory block size
< Select memory begin address
W Set I/O offset
03] Set device ID verify option
22] Set data word width
23] Select number of verify passes
24] Select security fuse programming option
26] Specify logic verify options
27] Set/clear enable/disable security fuse
2A] Enable programming options
2B] Disable programming options
2D] Vector test options
R Return status of device
33] Select device manufacturer
34] Select device part number
40] Upload parts list
B Blank check
L Load RAM from device
P Program device
T Illegal-bit test
V Verify device
F Error status inquiry
X Error code inquiry
01] Display system configuration
46] Clear yield tally
H No operation
Z Exit remote control
D Set odd parity
E Set even parity
J Set 1 stop bit
K Set 2 stop bits
N Set no parity
04] Set remote port baud rate
06] Select data bits
 ̂ Clear/fill RAM with data

= Select I/O timeout
I Input from port
M Enter record size
O Outport to port
S View sumcheck
U Set nulls
02] Set upload wait time

Appendix B

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
vi

2C] Select memory fill option
2F] Return 8-character sumcheck

FOR MORE INFORMATION

For more help and/or information while running the software, highlight a
command and press <F1>.

Advanced Feature Software

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

BP Microsystems, Inc. Concurrent Programming System®
 DOS Manual Rev. 3.003

i

APPENDIX C
BP-1200 UPGRADE

PROCEDURES

SELF-TEST

Before beginning the Upgrade Procedures, you will need to run the self-
diagnostic test on the programmer to determine whether or not you will need
to replace the firmware (BIOS chip). Start the test by pressing <ALT-D>.
The firmware version will be printed on the screen during the beginning of
the test. If the current firmware version is less than V1.11, you will need to
replace the BIOS chips. If it is V1.11 or greater, a replacement is not needed.

¥ If the firmware needs to be replaced, contact BP Technical Support at 1-
800-225-2102 to order new chips.

BIOS REPLACEMENT

Opening the Base Unit

1. Open the Base Unit by removing four (4) screws – two (2) are located in
the front and two (2) are located in the back.

2. Remove the top chassis and set it vertically next to the bottom, taking
care not to disconnect any wires running between the two.

Replacing the Firmware

1. Remove the two (2) BIOS chips in socket locations U8 and U9 (see
Figure B).

2. Insert the new chips, making sure to put U8 in socket location U8 and U9
in socket location U9.

Appendix C

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
ii

UPGRADING

Once the firmware has been updated (or confirmed), you may proceed with
upgrading procedures.

INSTALLING PIN DRIVER CARDS

Notice how the pin driver cards are facing and insert your new pin driver
card(s) into the next available slot(s) facing the same direction.

~ Before closing the Base Unit, check to ensure that all cable
connections are secure.

CLOSING THE BASE UNIT

1. Close up the Base Unit by placing the top chassis on the bottom and
taking care to route the cables around the pin driver cards and not over
the top of the cards.

2. Secure the top and bottom chassis by replacing the four (4) screws taken
out earlier

COMPLETING THE UPGRADE

~ When securing the Technology Adapter, use only a ½ turn on the
screw. More than ½ a turn may fracture the PCB.

1. Install the Technology Adapter. Place the Technology Adapter on top of
base unit and secure the screw with a ½ turn.

¥ The two (2) connectors are keyed so there is no possibility of installing it
backwards.

2. Replace the Socket Module. Again, the two (2) connectors on the Socket
Module are keyed so it cannot be installed incorrectly.

3. Connect the power and parallel cables. Turn on the programmer and run
the Self-Diagnostic test by pressing <Alt-D> again.

~ If the self-test fails or you encounter any other problems, please
call our Technical Support staff at 1-800-225-2102.

BP-1200 Upgrade Procedures

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

BP-1200 Modular Design

Base Unit

Technology Adapter
Socket Module

Figure A

Appendix C

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
iv

Figure B

BP-1200 Upgrade Procedures

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

APPENDIX D
QUICK START GUIDE

If you are an experienced user of BP Microsystems Programmers, this is a
quick guide to getting your programmer up and running.

1. Connect all system components (see Chapter 2 – Getting Started, page 2-
1).

2. Power up the programmer(s). Allow self test to complete.

3. Power up PC and monitor.

4. Put on ESD wrist-strap and plug into grounded receptacle.

5. Start BP software by typing <BP> at the DOS command prompt and
pressing <Enter>.

6. Select Device to be programmed, <Alt-S> (see Chapter 6 – BP Software
Command Reference, page 6-1).

7. Insert device in master programmer site.

8. Read master device, <Alt-R>, and remove or load file <Alt-L>.

9. Set Number of Devices (Device/Handler menu).

10. Program first device, <Alt-P>.

11. Continue to insert blank devices until done.

NEED HELP?

Remember, you can get context-sensitive help at any time by pressing the
<F1> function key.

For more detailed operating instructions, see Chapter 2 - Getting Started and
Chapter 3 – Programming from Start to Finish.

Appendix D

 The Engineer’s Programmer BP Microsystems, Inc.
 DOS Manual Rev. 3.002
ii

For information on specific commands, see Chapter 6 – BP Software
Command Reference.

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

BP Microsystems, Inc. The Engineer’s Programmer
 DOS Manual Rev. 3.002

APPENDIX E
CHECKLIST

PACKAGE CHECKLIST

The programming system is delivered in at least two boxes. If the PC option
is also purchased, two additional boxes containing the PC and its monitor are
included. Please check each box carefully to insure the correct equipment
has been received and is undamaged.

Package Summary

BP Programmer x2, x4, x6, or x8 with the SM48D socket modules
Certificate of Conformance
Registration Card
Additional socket modules (if applicable)
Power Cable
Communication Cable
Software Diskettes (BP.EXE)
System Manual

486 Class PC
Power Cable
PC Registration Card

PC Monitor

