

CAEN will repair or replace any product within the guarantee period if the Guarantor declares that the product is defective due to workmanship or materials and has not been caused by mishandling, negligence on behalf of the User, accident or any abnormal conditions or operations.

CAEN declines all responsibility for damages or injuries caused by an improper use of the Modules due to negligence on behalf of the User. It is strongly recommended to read thoroughly the CAEN User's Manual before any kind of operation.

CAEN reserves the right to change partially or entirely the contents of this Manual at any time and without giving any notice.

Disposal of the Product

The product must never be dumped in the Municipal Waste. Please check your local regulations for disposal of electronics products.

TABLE OF CONTENTS

1.	GE	NERAL DESCRIPTION	8
	1.1.	Overview	8
	1.2.	BLOCK DIAGRAM	و
2.	IŁ	CHNICAL SPECIFICATIONS	1(
	2.1.	PACKAGING	10
	2.2.	POWER REQUIREMENTS	10
	2.3.	FRONT PANEL	11
	2.4.	EXTERNAL CONNECTORS	12
	2.4.		
	2.4.		
	2.4.		
	2.4.	0	
	2.4.	.5. Optical LINK connector	13
	2.5.	OTHER FRONT PANEL COMPONENTS	13
	2.5.	.1. Displays	13
	2.6.	INTERNAL COMPONENTS	13
	2.7.	TECHNICAL SPECIFICATIONS TABLE	15
3.	FU	NCTIONAL DESCRIPTION	16
	2.1	Analog Input	1.
	3.1. <i>3.1</i> .		
	3.1. 3.1.	•	
	3.2.		
	3.2.		
	3.2.		
	3.2.	00	
	3.2. 3.2.	- · · F	
	3.2. 3.2.	· · ·	
	3.2.		
	3.2.		
	3.2.		
	3.3.	ACQUISITION MODES	21
	3.3.		
	3.3.	1	
	3.3.	1	
	7		
	3.3.		
	5.5.		
	3	3.3.4.1. Header	23
	3	3.3.4.2. Samples	23
	3	3.3.4.3. Event format examples	24

3.4. ZERO SUPPRESSION	25
3.5. Trigger management	25
3.5.1. External trigger	
3.5.2. Software trigger	26
3.5.3. Local channel auto-trigger	26
3.5.3.1. Trigger coincidence level	27
3.5.4. Trigger distribution	
3.6. FRONT PANEL I/Os	28
3.7. Analog Monitor	29
3.8. TEST PATTERN GENERATOR	29
3.9. RESET, CLEAR AND DEFAULT CONFIGURATION	29
3.9.1. Global Reset	29
3.9.2. Memory Reset	29
3.9.3. Timer Reset	29
3.10. VMEBus interface	30
3.10.1. Addressing capabilities	
3.10.1.1. Base address	30
3.10.1.2. CR/CSR address	30
3.10.1.3. Address relocation	31
3.11. Data transfer capabilities	31
3.12. Events readout	31
3.12.1. Sequential readout	
3.12.1.1. SINGLE D32	
3.12.1.2. BLOCK TRANSFER D32/D64, 2eVME	
3.12.1.3. CHAINED BLOCK TRANSFER D32/D64	
3.13. OPTICAL LINK	
3.13.1. CAENVME_Init	
3.13.2. CAENVME_End	
3.13.4. CAENVME_WriteCycle	
3.13.5. CAENVME_WriteCycle	
3.13.6. CAENVME_MultiWrite	
3.13.7. CAENVME_BLTReadCycle	
3.13.8. CAENVME_FIFOBLTReadCycle	
3.13.9. CAENVME_MBLTReadCycle	
3.13.10. CAENVME_FIFOMBLTReadCycle	
3.13.11. CAENVME_IRQCheck	
3.13.12. CAENVME_IRQEnable	
3.13.13. CAENVME_IRQDisable	
3.13.14. CAENVME_IRQWait	39
. VME INTERFACE	40
4.1. REGISTERS ADDRESS MAP	40
4.2 CONFIGURATION ROM (0xF000-0xF084: R)	41

4.3.	CHANNEL N ZS_THRES (0x1n24; r/w)	42
4.4.	CHANNEL N ZS_NSAMP (0x1n28; r/w)	42
4.5.	CHANNEL N THRESHOLD (0x1n80; r/w)	42
4.6.	CHANNEL N OVER/UNDER THRESHOLD (0x1n84; r/w)	42
4.7.	CHANNEL N STATUS (0x1n88; R)	43
4.8.	CHANNEL N AMC FPGA FIRMWARE (0x1n8C; r)	43
4.9.	CHANNEL N BUFFER OCCUPANCY (0x1n94; R)	43
4.10.	Channel n DAC (0x1n98; r/w)	43
4.11.	CHANNEL N ADC CONFIGURATION (0x1n9C; r/w)	43
4.12.	CHANNEL CONFIGURATION (0x8000; r/w)	44
4.13.	CHANNEL CONFIGURATION BIT SET (0x8004; w)	44
4.14.	CHANNEL CONFIGURATION BIT CLEAR (0x8008; W)	44
4.15.	Buffer Organization (0x800C; R/w)	44
4.16.	Buffer Free (0x8010; r/w)	45
4.17.	Custom Size (0x8020; r/w)	45
4.18.	ACQUISITION CONTROL (0x8100; R/W)	45
4.19.	Acquisition Status (0x8104; r)	46
4.20.	Software Trigger (0x8108; w)	46
4.21.	TRIGGER SOURCE ENABLE MASK (0x810C; r/w)	47
4.22.	FRONT PANEL TRIGGER OUT ENABLE MASK (0x8110; r/w)	47
4.23.	Post Trigger Setting (0x8114; r/w)	48
4.24.	FRONT PANEL I/O DATA (0x8118; r/w)	48
4.25.	FRONT PANEL I/O CONTROL (0x811C; r/w)	48
4.26.	CHANNEL ENABLE MASK (0x8120; r/w)	49
4.27.	ROC FPGA FIRMWARE REVISION (0x8124; R)	49
4.28.	EVENT STORED (0x812C; R)	49
4.29.	SET MONITOR DAC (0x8138; R/W)	50
4.30.	Board Info (0x8140; r)	50
4.31.	MONITOR MODE (0x8144; R/W)	50
4.32.	EVENT SIZE (0x814C; R)	50
4.33.	VME CONTROL (0xEF00; R/W)	50
4.34.	VME STATUS (0xEF04; R)	51
4.35.	BOARD ID (0xEF08; R/W)	51
4.36.	MCST BASE ADDRESS AND CONTROL (0xEF0C; R/W)	51
4.37.	RELOCATION ADDRESS (0xEF10; R/w)	51
1 20	INTERDUDE STATUS ID (OVEE 14. p/w)	51

4.39. Interrupt Event Number (0xEF18; r/w)	52				
4.40. BLT Event Number (0xEF1C; r/w)	52				
4.41. SCRATCH (0xEF20; R/W)	52				
4.42. SOFTWARE RESET (0xEF24; w)	52				
4.43. SOFTWARE CLEAR (0xEF28; w)	52				
4.44. FLASH ENABLE (0xEF2C; R/W)	52				
4.45. FLASH DATA (0xEF30; R/w)	52				
4.46. Configuration Reload (0xEF34; w)	53				
5. INSTALLATION	54				
5.1. Power ON sequence	54				
5.2. Power ON status					
5.3. FIRMWARE UPGRADE					
5.3.1. V1720 Upgrade files description	55				
LIST OF FIGURES					
Fig. 1.1: Mod. V1720 Block Diagram	9				
Fig. 2.1: Mod. V1720 front panel	11				
Fig. 2.2: AMP CLK IN/OUT CONNECTOR	12				
Fig. 2.3: Rotary and dip switches location	12				
Fig. 3.1: Single ended input diagram	16				
Fig. 3.2: Differential input diagram	16				
FIG. 3.3: CLOCK DISTRIBUTION DIAGRAM	17				
Fig. 3.4: CAENPLLConfig Main menu	19				
Fig. 3.5: Data storage	21				
Fig. 3.6: Trigger Overlap	22				
Fig. 3.7: Event Organization (Standard Mode), Normal Form	IAT24				
FIG. 3.8:EVENT ORGANIZATION (PACK2.5 MODE), NORMAL FORMAT	25				
Fig. 3.9: BLOCK DIAGRAM OF TRIGGER MANAGEMENT	26				
Fig. 3.10: Local trigger generation	27				
Fig. 3.11: Local trigger relationship with Coincidence level2					
Fig. 3.12: A24 addressing	30				
Fig. 3.13: A32 addressing	30				
Fig. 3.14: CR/CSR addressing	31				
Fig. 3.15: Software relocation of base address	31				

Fig. 3.17: Example of random readout		
EIST OF TABLES		
Table 1.1: Mod. V1720 versions	8	
Table 2.1: Model V1720 power requirements	10	
Table 2.2 : Front panel LEDs	13	
TABLE 2.3 : MOD. V1720 TECHNICAL SPECIFICATIONS	15	
Table 3.1: Buffer Organization	22	
Table 3.2 : Front Panel I/Os default setting	28	
TABLE 4.1: ADDRESS MAP FOR THE MODEL V1720	40	
TABLE 4.2: ROM ADDRESS MAP FOR THE MODEL V1720	41	

1. General description

1.1. Overview

The Mod. V1720 is a 1-unit wide VME 6U module housing a 8 Channel 12 bit 250MS/s Flash ADC Waveform Digitizer with threshold Auto-Trigger capabilities.

The boards are available with different input range, memory and connector configuration, as summarised by the following table:

Model SRAM Memory Input type Sampling frequency Form factor V1720 250MS/s 6U-VME64 Single ended 1.25 Msamples / ch V1720B 250MS/s Single ended 10 Msamples / ch 6U-VME64 V1720C Differential 1.25 Msamples / ch 6U-VME64 250MS/s V1720D Differential 250MS/s 10 Msamples / ch 6U-VME64 VX1720 1.25 Msamples / ch 6U-VME64X Single ended 250MS/s VX1720B Single ended 250MS/s 10 Msamples / ch 6U-VME64X VX1720C Differential 250MS/s 1.25 Msamples / ch 6U-VME64X VX1720D Differential 250MS/s 6U-VME64X 10 Msamples / ch

Table 1.1: Mod. V1720 versions

Reported Memory values can be achieved by enabling the Pack2.5 option, which allows to write "two and a half" samples in a 32 bit longword (see § 3.3.4).

The DC offset of the signal can be adjusted channel per channel by means of a programmable 16bit DAC.

The board features a front panel clock/reference In/Out and a PLL for clock synthesis from internal/external references. This allows multi board phase synchronizations to an external clock source or to a V1720 clock master board.

The data stream is continuously written in a circular memory buffer; when the trigger occurs the FPGA writes further N samples for the post trigger and freezes the buffer that then can be read either via VME or via Optical Link; the acquisition can continue without dead-time in a new buffer. Each channel has a SRAM memory, divided in buffers of programmable size.

The trigger signal can be provided via the front panel input as well as via the VMEbus, but it can also be generated internally, as soon as a programmable voltage threshold is reached. The individual Auto-Trigger of one channel can be propagated to the other channels and onto the front panel Trigger Output.

The VME interface is VME64X compliant and the data readout can be performed in Single Data Transfer (D32), 32/64 bit Block Transfer (BLT/MBLT), 2eVME, 2eSST and 32/64 bit Chained Block Transfer (CBLT).

The board houses a daisy chainable Optical Link able to transfer data at 80 MB/s, thus it is possible to connect up to eight V1720 (64 ADC channels) to a single Optical Link Controller (Mod. A2818, see Accessories/Controller).

The V1720 can be controlled and readout through the Optical Link in parallel to the VME interface.

1.2. Block Diagram

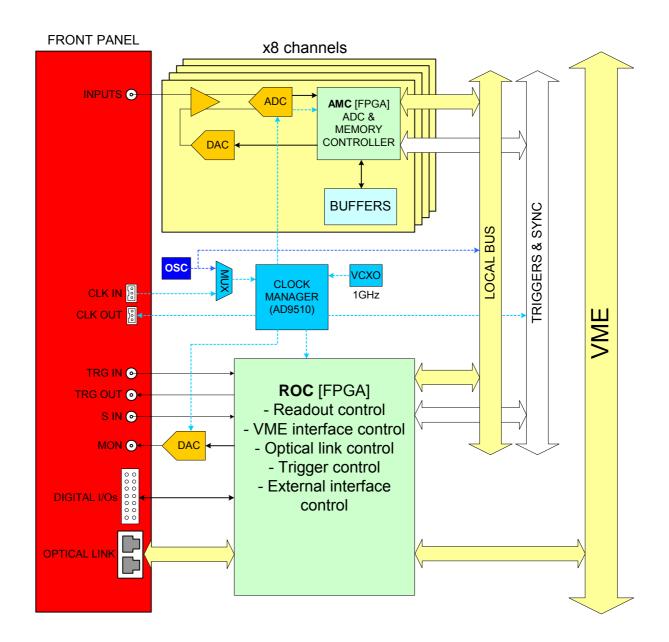


Fig. 1.1: Mod. V1720 Block Diagram

The function of each block will be explained in detail in the subsequent sections.

Page:

2. Technical specifications

2.1. **Packaging**

The module is housed in a 6U-high, 1U-wide VME unit. The board hosts the VME P1, and P2 connectors and fits into both VME/VME64 standard and V430 backplanes. VX1720 versions require VME64X compliant crates.

Power requirements 2.2.

The power requirements of the module are as follows:

Table 2.1: Model V1720 power requirements

+5 V	4.0 A
+12 V	0.2 A
-12 V	0.2 A

2.3. Front Panel

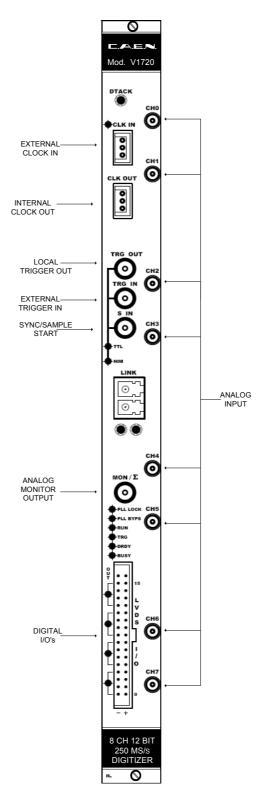


Fig. 2.1: Mod. V1720 front panel

2.4. **External connectors**

2.4.1. ANALOG INPUT connectors

Single ended version (see options in § 1.1):

Function:

Analog input, single ended, input dynamics: 2Vpp Zin=50 Ω

Mechanical specifications:

MCX connector (CS 85MCX-50-0-16 SUHNER)

Differential version (see options in § 1.1):

Function:

Analog input, differential, input dynamics: $2Vpp Zin=50\Omega$

Mechanical specifications:

Tyco MODU II

2.4.2. **CONTROL** connectors

Function:

- TRG OUT: Local trigger output (NIM/TTL, on Rt = 50Ω)
- TRG IN: External trigger input (NIM/TTL, Zin= 50Ω)
- SYNC/SAMPLE/START: Sample front panel input (NIM/TTL, Zin=50Ω)
- MON/Σ: DAC output 1Vpp on Rt= 50Ω

Mechanical specifications: 00-type LEMO connectors

2.4.3. ADC REFERENCE CLOCK connectors

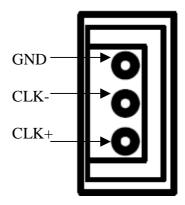


Fig. 2.2: AMP CLK IN/OUT Connector

Function:

CLK IN: External clock/Reference input, AC coupled (diff. LVDS, ECL, PECL, LVPECL, CML), Zdiff= 110Ω .

Mechanical specifications:

AMP 3-102203-4 connector

Function:

CLOCK OUT: Clock output, DC coupled (diff. LVDS), Zdiff= 110Ω.

Mechanical specifications: AMP 3-102203-4 connector

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC Number of pages:

Page: 56

2.4.4. Digital I/O connectors

Function: N.16 programmable differential LVDS I/O signals, Zdiff_in= 110 Ohm. Four Indipendent signal group 0÷3, 4÷7, 8÷11, 12÷15, In / Out direction control; see also § 3.6. *Mechanical specifications:*

3M-7634-5002-34 pin Header Connector

2.4.5. Optical LINK connector

Mechanical specifications:

LC type connector; to be used with Multimode 62.5/125µm cable with LC connectors on both sides

Electrical specifications:

Optical link for data readout and slow control with transfer rate up to 80MB/s; daisy chainable.

2.5. Other front panel components

2.5.1. Displays

The front panel hosts the following LEDs:

Table 2.2: Front panel LEDs

Name:	Colour:	Function:	
DTACK	green	VME read/write access to the board	
CLK_IN green External clock enabled.		External clock enabled.	
NIM green Standard selection for CLK I/O, TRG OUT, TRG IN, S IN.		Standard selection for CLK I/O, TRG OUT, TRG IN, S IN.	
TTL	green	Standard selection for CLK I/O, TRG OUT, TRG IN, S IN.	
LINK green/yellow Network present; Data transfer activity		Network present; Data transfer activity	
PLL _LOCK green The PLL is locked to the reference clock		The PLL is locked to the reference clock	
PLL_BYPS green The reference clock drives of		The reference clock drives directly ADC clocks; the PLL circuit is switched	
		off and the PLL_LOCK LED is turned off.	
RUN	green	RUN bit set (see § 4.19)	
TRG	green	Triggers are accepted	
DRDY	green	Event/data (depending on acquisition mode) are present in the Output Buffer	
BUSY	red	All the buffers are full	
OUT_LVDS	green	Signal group OUT direction enabled.	

2.6. Internal components

SW2..5 "Base Address [31:16]": Type: 4 rotary switches

Function: Set the VME base address of the module.

SW1 "CLOCK SOURCE" Type Dip Switch

Function: Select clock source (External or Internal)

JP2 "FW" Type: Jumper.

Function: it allows to select whether the "Standard" or the "Back up" firmware must be loaded at power on;

(default position: STD).

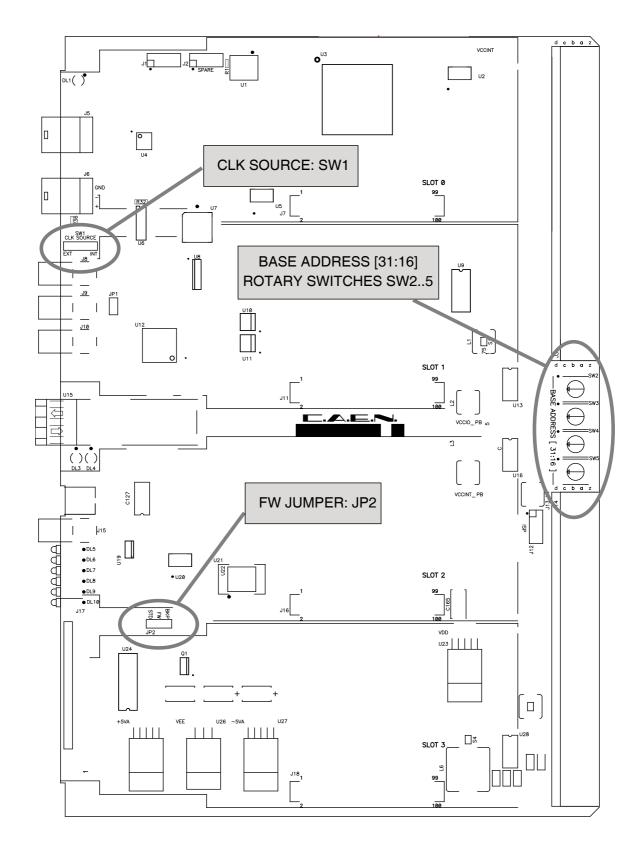


Fig. 2.3: Rotary and dip switches location

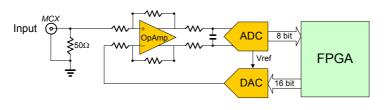
2.7. Technical specifications table

Table 2.3: Mod. V1720 technical specifications

	Table 2.5 : Mod. V1/20 technical specifications		
Package	1-unit wide VME 6U module		
Analog Input	8 channels, single-ended (SE) or differential. Input range: 2 Vpp; Bandwidth: 125 MHz. Programmable DAC for Offset Adjust x ch. (SE only).		
Digital Conversion	Resolution: 12 bit; Sampling rate: 10 to 250 MS/s simultaneously on each channel; multi board synchronization (one board can act as clock master). External Gate Clock capability (NIM/TTL) for burst or single sampling mode.		
ADC Sampling Clock generation	Three operating modes: - PLL mode - internal reference (50 MHz loc. oscillator) PLL mode - external reference on CLK_IN (Jitter<100ppm) PLL Bypass mode: Ext. clock on CLK IN drives directly ADC clocks (Freg.: 10 ÷ 250 MHz).		
CLK_IN	AC coupled differential input clock LVDS, ECL, PECL, LVPECL, CML (single ended NIM/TTL available using CAEN A654 cable).		
CLK_OUT	DC coupled differential LVDS output clock, locked to ADC sampling clock. Freq.: 10 ÷ 250MHz.		
Memory Buffer	1.25 M sample/ch or 10 M sample/ch; Multi Event Buffer with independent read and write access. Programmable event size and pre-post trigger. Divisible into 1 ÷ 1024 buffers.		
Trigger	Common External TRGIN (NIM or TTL) and VME CommandIndividual channel autotrigger (time over/under threshold)TRGOUT (NIM or TTL) for the trigger propagation to other V1720 boards.		
Trigger Time Stamp	32bit – 8ns (34s range). Sync input for Time Stamp alignment		
AMC FPGA	One Altera Cyclone EP1C4 per channel		
Optical Link	Data readout and slow control with transfer rate up to 80 MB/s, to be used instead of VME bus. Daisy chainable: one A2818 PCI card can control and read eight V1720 boards in a chain.		
VME interface	VME64X compliant D32, BLT32, MBLT64, CBLT32/64, 2eVME, 2eSST, Multi Cast CyclesTransfer rate: 60MB/s (MBLT64), 100MB/s (2eVME), 160MB/s (2eSST). Sequential and random access to the data of the Multi Event Buffer. The Chained readout allows to read one event from all the boards in a VME crate with a BLT access.		
Upgrade	V1720 firmware can be upgraded via VME		
Software	General purpose C Libraries and Demo Programs (CAENScope).		
Analog Monitor (to be implemented)	12bit / 125MHz DAC FPGA controlled, five operating modes: - Waveform Generator: 1 Vpp ramp generator Majority: output signal is proportional to the number of ch. under/over threshold (1 step = 1.25mV) Analog Inspection: data stream from one channel ADC drives directly the DAC input producing the channel input signal (1 Vpp) Buffer Occupancy: output signal is proportional to the Multi Event Buffer Occupancy: 1 buffer ~ 1mV Voltage level: output signal is a programmable voltage level.		
LVDS I/O	16 general purpose LVDS I/O controlled by the FPGA Busy, Data Ready, Memory full, Individual Trig-Out and other function can be programmed An Input Pattern from the LVDS I/O can be associated to each trigger as an event marker		

3. Functional description

Title:


3.1. Analog Input

The module is available either with single ended (on MCX connector) or, on request, differential (on Tyco MODU II 3-pin connector) input channels.

3.1.1. Single ended input

Input dynamics is 2V (Zin= 50 Ω). A 16bit DAC allows to add a DC offset to the signal in the ± 1 V range.

The input bandwidth ranges from DC to 250 MHz (with 1st order anti-aliasing low pass filter).

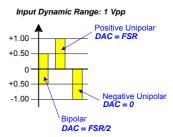


Fig. 3.1: Single ended input diagram

3.1.2. Differential input

Input dynamics is 2Vpp (Zin= 50Ω).

The input bandwidth ranges from DC to 250 MHz (with 1st order anti-aliasing low pass filter).

Differential Mode

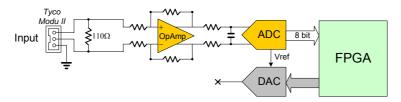


Fig. 3.2: Differential input diagram

3.2. **Clock Distribution**

C.A.E.R **Document type:**

User's Manual (MUT)

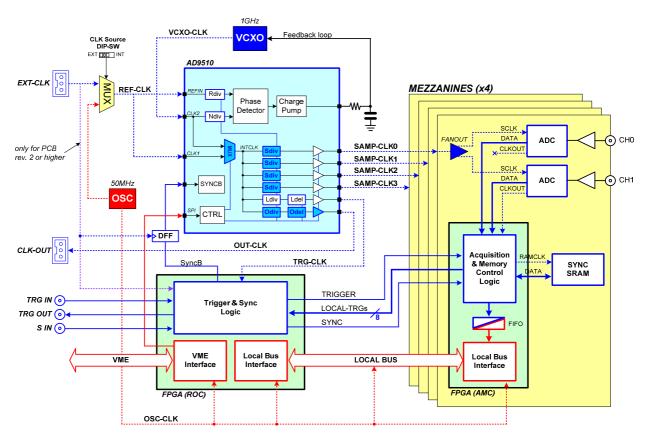


Fig. 3.3: Clock distribution diagram

The module clock distribution takes place on two domains: OSC-CLK and REF-CLK; the former is a fixed 50MHz clock provided by an on board oscillator, the latter provides the ADC sampling clock.

OSC-CLK handles both VME and Local Bus (communication between motherboard and mezzanine boards; see red traces in the figure above).

REF-CLK handles ADC sampling, trigger logic, acquisition logic (samples storage into RAM, buffer freezing on trigger) through a clock chain. Such domain can use either an external (via front panel signal) or an internal (via local oscillator) source (selection is performed via dip switch SW1, see § 2.6); in the latter case OSC-CLK and REF-CLK will be synchronous (the operation mode remains the same anyway).

REF-CLK is processed by AD9510 device, which delivers 6 clock out signals; 4 signals are sent to ADCs, one to the trigger logic and one to drive CLK-OUT output (refer to AD9510 data sheet for more details:

http://www.analog.com/UploadedFiles/Data Sheets/AD9510.pdf); two operating modes are foreseen: Direct Drive Mode and PLL Mode

3.2.1. **Direct Drive Mode**

The aim of this mode is to drive externally the ADCs' Sampling Clock; generally this is necessary when the required sampling frequency is not a VCXO frequency submultiple. The only requirement over the SAMP-CLK is to remain within the ADCs' range.

Filename: Number of pages: Page: V1720_REV4.DOC 00103/05:V1720x.MUTx/04 56 17

3.2.2. PLL Mode

The AD9510 features an internal Phase Detector which allows to couple REF-CLK with VCXO (1 GHz frequency); for this purpose it is necessary that REF-CLK is a submultiple of 1 GHz.

AD9510 default setting foresees the board internal clock (50MHz) as clock source of REF-CLK.

This configuration leads to Ndiv = 100, Rdiv = 5, thus obtaining 10MHz at the Phase Detector input and CLK-INT = 1GHz.

The required 250 MHz Sampling Clock is obtained by processing CLK-INT through Sdiv dividers.

When an external clock source is used, if it has 50MHz frequency, then AD9510 programming is not necessary, otherwise Ndiv and Rdiv have to be modified in order to achieve PLL lock.

A REF-CLK frequency stability better than 100ppm is mandatory.

3.2.3. Trigger Clock

TRG-CLK signal has a frequency equal to ½ of SAMP-CLK; therefore a 2 samples "uncertainty" occurs over the acquisition window.

3.2.4. **Output Clock**

Front panel Clock Output is User programmable. Odiv and Odel parameters allows to obtain a signal with the desired frequency and phase shift (in order to recover cable line delay) and therefore to synchronise daisy chained boards. CLK-OUT default setting is OFF, it is necessary to enable the AD9510 output buffer to enable it.

3.2.5. AD9510 programming

CAEN has developed a software tool which allows to handle easily the clock parameters: CAENPLLConfig is a software tool which allows the PLL management, whenever the module is controlled through a CAEN VME Controller

(see http://www.caen.it/nuclear/function1.php?fun=vmecnt).

The tool is developed through open source classes wxWidgets v.2.6.3

(see http://www.wxwidgets.org/)

and requires the CAENVMETool API's to be installed

(they can be downloaded at http://www.caen.it/nuclear/lista-sw.php?mod=V1718 with the SW package for CAEN VME Bridges & Slave Boards).

CAENPLLConfig is available at: http://www.caen.it/nuclear/lista-sw.php?mod=V1724

And must be simply run on the PC connected to the used CAEN VME Controller

The User has to select the **board type** and **base address** (in the ADC BOARD field), then the used mode (PLL or Direct Feed/BYPASS in the INPUT field); see figure below:

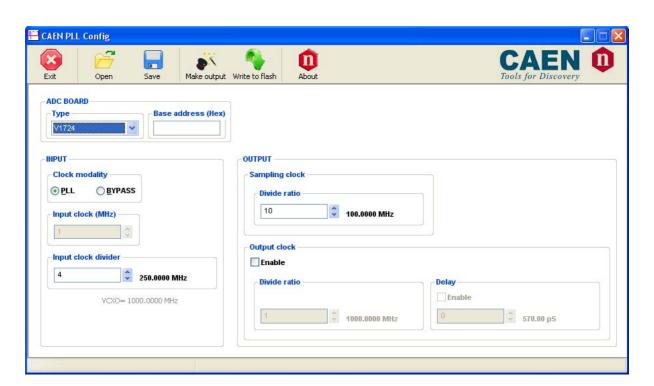


Fig. 3.4: CAENPLLConfig Main menu

3.2.6. PLL programming

In PLL mode the User has to enter the divider for input clock frequency (**input clock divider** field in CAENPLLConfig Main menu); since the VCXO frequency is 1GHz, in order to use, for example, a 50MHz ExtClk, the divider to be entered is 20.

Then it is necessary to set the parameters for sampling clock and CLK_OUT (enable, divide ratio and phase shift/delay in Output Clock field of CAENPLLConfig Main menu); the tool refuses wrong settings for such parameters.

3.2.7. Direct Drive programming

In Direct Drive/BYPASS mode, the User can directly set the input frequency (**Input Clock** field, real values are allowed). Given an input frequency, it is possible to set the parameters in order to provide the required signals.

3.2.8. Configuration file

Once all parameters are set, the tool allows to save the configuration file which includes all the AD9510 device settings (**SAVE** button in the upper toolbar of CAENPLLConfig Main menu). It is also possible to browse and load into the AD9510 device a pre existing configuration file (**OPEN** button in the upper toolbar of CAENPLLConfig Main menu). For this purpose it is not necessary the board power cycle.

Page:

3.2.9. Multiboard synchronisation

More boards can work synchronously, using an external clock source. Synchronisation can be achieved either by daisy chaining the boards or by using a fan out unit as clock distributor.

In both cases the REF-CLK signal is common to all boards. When dividers are used, it is possible that, on different boards, the corresponding clock signals have different phases, although the dividers have the same value.

The alignment of dividers output can be recovered by using the BSYNC signal, on whose edge all dividers are aligned (this operation is automatically performed at each reset on a single board); if more boards are used, it is necessary to synchronise ALL the BSYNC signals, through the S-IN front panel input. For this purpose, the S-IN signal must be synchronised with EXT-CLK.

Boards featuring Rev.2 (and greater) PCB allow to drive BSYNC signal via a D-Edge Triggered Flip Flop with EXT_CLK as clock input; this feature allows all boards to share the same BSYNC phase (see figure in § 3.2).

In order to ensure that also aquisition windows are aligned, it is necessary that also TRG-IN is synchronised with EXT-CLK. Also edges must coincide in order to have alignment between triggers and buffers.

3.3. **Acquisition Modes**

3.3.1. Acquisition run/stop

The acquisition can be started in two ways, according to Acquisition Control register Bits [1:0] setting (see § 4.18):

- setting the RUN/STOP bit (bit[2]) in the Acquisition Control register (bits [1:0] of Acquisition Control must be set to REGISTER-CONTROLLED RUN MODE or S-IN GATE MODE)
- driving S IN signal high (bits [1:0] of Acquisition Control must be set to 01, S-IN CONTROLLED RUN MODE)

Subsequently acquisition is stopped either:

- resetting the RUN/STOP bit (bit[2]) in the Acquisition Control register (bits [1:0] of Acquisition Control must be set to REGISTER-CONTROLLED RUN MODE or S-IN GATE MODE)
- driving S IN signal low (bits [1:0] of Acquisition Control set to 01, S-IN **CONTROLLED RUN MODE)**

3.3.2. Data acquisition

It is possible to use the S_IN signal (see § 2.4.2) as "gate" to enable samples storage. The samples produced by the 250 MHz ADC are stored in memory only if they are validated by the S IN signal, otherwise they are rejected; data storage takes place by groups of 4 samples (two 32 bit long words) per time in normal operation, 5 samples per time by using Pack2.5 mode (see § 3.3.4). All the values sampled as the S-IN signal is active (high) are stored; for this purpose it is necessary to:

Set bits [1:0] of Acquisition Control register to S-IN GATE MODE All the values sampled as the S-IN signal is active (high) are stored.

S44 S48 S32 S52 S28 S0 ADC DATA D0 D1 D7 D8 <u>D9</u> D10 D11 D12 D2 D3 D4 D5 D6 SAMPLING CLOCK S-IN D3 D4 D3 D4 D3 D4 D3 D4 D4 D4 D4 MEMORY D5 D6 D5 D6 D5 D6 D5 D6 D9 **BUFFER** D6 D9

Fig. 3.5: Data storage¹

Filename: V1720_REV4.DOC 00103/05:V1720x.MUTx/04

Number of pages: Page: 56 21

0x09

0x0A

3.3.3. Acquisition Triggering: Samples and Events

When the acquisition is running, a trigger signal allows to:

- store a Trigger Time Tag (TTT): the value of a 32 bit counter which steps on with the sampling clock and represents a time reference
- increment the EVENT COUNTER (see § 4.28)

512

1024

 fill the active buffer with the pre/post-trigger samples, whose number is programmable (Acquisition window width, § 4.23), freezing then the buffer for readout purposes, while acquisition continues on another buffer

REGISTER BUFFER NUMBER SIZE of one BUFFER (samples) (see § 4.15) SRAM 1.25 MB/ch SRAM 10 MB/ch Pack2.5 Std. Std. Pack2.5 0x00 1M 1.25M 8M 10M 0x01 2 512K 640K 4M 5M 2.5M 0x02 4 256K 320K 2M0x03 8 128K 160K 1M 1.25M 64K 512K 0x04 16 80K 640K 0x05 32 32K 40K 256K 320K 0x06 64 16K 20K 128K 160K 0x07 128 8K 10K 64K 80K 0x08 256 4K 5K 32K 40K

Table 3.1: Buffer Organization

2K

1K

An event is therefore composed by the trigger time tag, pre- and post-trigger samples and the event counter.

2.5K

1.25K

16K

8K

20K

10K

Overlap between "acquisition windows" may occur (a new trigger occurs while the board is still storing the samples related to the previous trigger); this overlap can be either rejected or accepted (programmable via VME).

If the board is programmed to accept the overlapped triggers, as the "overlapping" trigger arrives, the current active buffer is filled up, then the samples storage continues on the subsequent one.

In this case events will not have all the same size (see figure below).

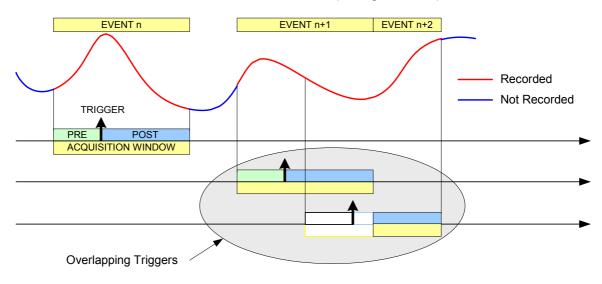


Fig. 3.6: Trigger Overlap

 NPO:
 Filename:
 Number of pages:
 Page:

 00103/05:V1720x.MUTx/04
 V1720_REV4.DOC
 56
 22

A trigger can be refused for the following causes:

- acquisition is not active
- memory is FULL and therefore there are no available buffers
- the required number of samples for building the pre-trigger of the event is not reached yet; this happens typically as the trigger occurs too early either with respect to the RUN_ACQUISITION command (see § 3.3.1) or with respect to a buffer emptying after a MEMORY FULL status
- the trigger overlaps the previous one and the board is not enabled for accepting overlapped triggers

As a trigger is refused, the current buffer is not frozen and the acquisition continues writing on it. The Event Counter can be programmed in order to be either incremented or not. If this function is enabled, the Event Counter value identifies the number of the triggers sent (but the event number sequence is lost); if the function is not enabled, the Event Counter value coincides with the sequence of buffers saved and readout.

3.3.3.1. Custom size events

It is possible to make events with a number of Memory locations, which depends on Buffer Organization register setting (see § 4.15) smaller than the default value. One memory location contains two ADC samples and the maximum number of memory locations N_{LOC} is therefore half the maximum number of samples per block NS = 512K/Nblocks (640K/Nblocks when Pack2.5 mode is used).

Smaller N_{LOC} values can be achieved by writing the number of locations N_{LOC} into the Custom Size register (see § 4.17).

 N_{LOC} = 0 means "default size events", i.e. the number of memory locations is the maximum allowed.

 N_{LOC} = N1, with the constraint 0<N1<½NS (0<N1<2/5NS with Pack2.5), means that one event will be made of 2·N1 samples (2.5·N1 samples with Pack2.5).

3.3.4. Event structure

An event is structured as follows:

- Header (4 32-bit words)
- Data (variable size and format)

The event can be readout either via VME or Optical Link; data format is 32 bit long word, therefore each long word contains 4 samples.

3.3.4.1. Header

It is composed by four words, namely:

- Size of the event (number of 32 bit long words)
- Board ID (GEO); Bit24; data format: 0= normal format; 1= Zero Length Encoding data compression method enabled (To be implemented); 16 bit pattern, latched on the LVDS I/O as one trigger arrives (see § 4.25); Channel Mask (=1: channels participating to event; ex CH5 and CH7 participating→Ch Mask: 0xA0, this information must be used by the software to acknowledge which channel the samples are coming from)
- Event Counter: It is the trigger counter; it can count either accepted triggers only, or all triggers (see § 4.17).
- Trigger Time Tag: It is a 32 bit counter (31 bit count + 1 overflow bit), which is reset either as acquisition starts or via front panel Reset signal (see § 3.8), and is incremented at each sampling clock hit. It is the trigger time reference. Event structure

3.3.4.2. Samples

Stored samples; data from masked channels are not read.

 NPO:
 Filename:
 Number of pages:
 Page:

 00103/05:V1720x.MUTx/04
 V1720_REV4.DOC
 56
 23

The event format is shown in the following figure (case of 8 channels enabled, with Zero Length Encoding disabled):

An event is structured as follows:

Title:

- identifier (Trigger Time Tag, Event Counter)
- samples caught in the acquisition windows

The event can be stored in the board memories (and can be readout via VME) in two ways: data format is 32 bit long word, and each long_word may contain 2 samples (Standard mode) or "two and a half" (Pack2.5 mode), depending on Channel Configuration register setting (see § 4.12).

The event format is therefore one of the following:

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

1 0 1 0	EVENT SIZE	_	
BOARD-ID RES 0	PATTERN CHANNEL MASK	HEADER	
reserved EVENT COUNTER			
TRIGGER	TIME TAG	D	
0 0 0 0 SAMPLE [1] - CH[0]	0 0 0 0 SAMPLE [0] - CH[0]		
0 0 0 0 SAMPLE [3] - CH[0]	0 0 0 0 SAMPLE [2] - CH[0]	DA:	
		ΑŢ	
•	•	DATA CHO	
0 0 0 0 SAMPLE [N-1] - CH[0]	0 0 0 0 SAMPLE [N-2] - CH[0]		
0 0 0 0 SAMPLE [1] - CH[1]	0 0 0 0 SAMPLE [0] - CH[1]		
0 0 0 0 SAMPLE [3] - CH[1]	0 0 0 0 SAMPLE [2] - CH[1]	DA	
		TA	
• •	•	DATA CH1	
0 0 0 0 SAMPLE [N-1] - CH[1]	0 0 0 0 SAMPLE [N-2] - CH[1]		
		•	
• •	•	•	
0 0 0 0 SAMPLE [1] - CH[7]	0 0 0 0 SAMPLE [0] - CH[7]		
0 0 0 0 SAMPLE [3] - CH[7]	0 0 0 0 SAMPLE [2] - CH[7]	DA	
		DATA CH7	
•••			
0 0 0 0 SAMPLE [N-1] - CH[7]	0 0 0 0 SAMPLE [N-2] - CH[7]	7	

Fig. 3.7: Event Organization (standard mode), normal format

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1 0 1 0 **EVENT SIZE** HEADER BOARD-ID RES 0 **PATTERN** CHANNEL MASK **EVENT COUNTER** reserved TRIGGER TIME TAG S [2] - CH[0] L S [1] - CH[0] H S [1] - CH[0] L S [0] - CH[0] H S [0] - CH[0] L DATA CHO 0 0 S [4] - CH[0] H S [4] - CH[0] L S [3] - CH[0] H S [3] - CH[0] L S [2] - CH[0] H 0 0 S[N-1] - CH[0] H S[N-2] - CH[0] H S[N] - CH[0] H S[N] - CH[0] L S[N-1] - CH[0] L 0 0 S [1] - CH[1] L S [2] - CH[1] L S [1] - CH[1] H S [0] - CH[1] H S [0] - CH[1] L DATA CH1 0 0 S [4] - CH[1] L S [3] - CH[1] H S [4] - CH[1] H S [3] - CH[1] L S [2] - CH[1] H 000 0 0 S[N] - CH[1] L S[N-1] - CH[1] H S[N-1] - CH[1] L S[N-2] - CH[1] H S[N] - CH[1] H • 0 0 S [2] - CH[7] L S [1] - CH[7] H S [1] - CH[7] L S [0] - CH[7] H S [0] - CH[7] L DATA CH7 0 0 S [3] - CH[7] H S [4] - CH[7] H S [4] - CH[7] L S [2] - CH[7] H S [3] - CH[7] L 0 0 S[N] - CH[7] L S[N-1] - CH[7] H S[N-1] - CH[7] L S[N-2] - CH[7] H S[N] - CH[7] H

Fig. 3.8:Event Organization (Pack2.5 mode), normal format

3.4. Zero suppression

To be implemented

3.5. Trigger management

All the channels in a board share the same trigger: this means that all the channels store an event at the same time and in the same way (same number of samples and same position with respect to the trigger); several trigger sources are available.

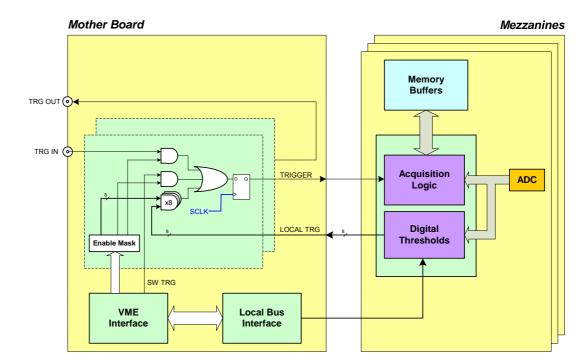


Fig. 3.9: Block diagram of Trigger management

3.5.1. External trigger

External trigger can be NIM/TTL signal on LEMO front panel connector, 50 Ohm impedance. The external trigger is synchronised with the internal clock (see § 3.2.3); if External trigger is not synchronised with the internal clock, a one clock period jitter occurs.

3.5.2. Software trigger

Software trigger are generated via VME bus (write access in the relevant register, see § 4.20).

3.5.3. Local channel auto-trigger

Each channel can generate a local trigger as the digitised signal exceeds the Vth threshold (ramping up or down, depending on VME settings), and remains under or over threshold for Nth "4/5 samples groups" (depending on selected storage mode, see § 3.3.4) at least (Nth is programmable via VME). The Vth digital threshold, the edge type, and the minimum number Nth of [4/5 samples] are programmable via VME register accesses, see § 4.3 and § 4.6; actually local trigger is delayed of Nth [4/5 samples] with respect to the input signal.

N.B.: the local trigger signal does not start directly the event acquisition on the relevant channel; such signal is propagated to the central logic which produces the global trigger, which is distributed to all channels (see § 3.5.4).

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC

Number of pages:

Page:

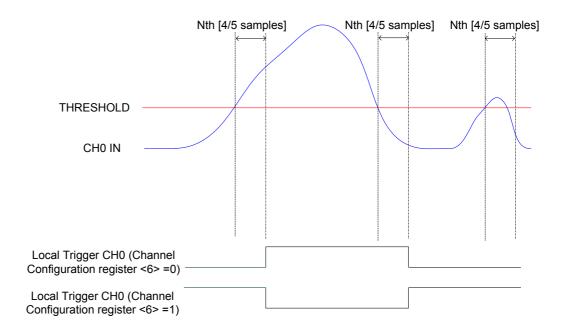


Fig. 3.10: Local trigger generation

3.5.3.1. Trigger coincidence level

It is possible to set the minimum number of channels that must be over threshold, beyond the triggering channel, in order to actually generate the local trigger signal. If, for example, Trigger Source Enable Mask (see § 4.21) bits[7:0]=FF (all channels enabled) and Local trigger coincidence level = 1 (bits [26:24]), whenever an enabled channel exceeds the threshold, the trigger will be generated only if at least another channel is over threshold at that moment. Local trigger coincidence level must be smaller than the number of channels enabled via bit[7:0] mask. The following figure shows examples with Local trigger coincidence level = 1 and = 0.

Title:

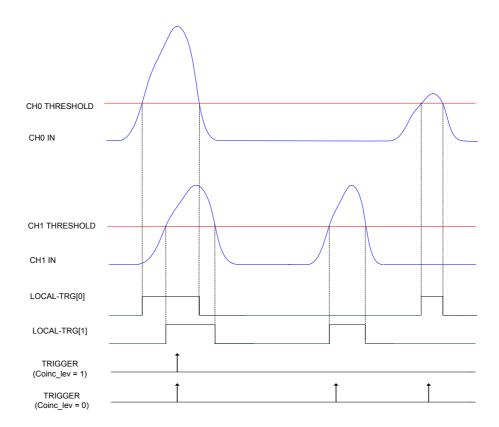


Fig. 3.11: Local trigger relationship with Coincidence level

3.5.4. Trigger distribution

The OR of all the enabled trigger sources, after being synchronised with the internal clock, becomes the global trigger of the board and is fed in parallel to all the channels, which store an event.

A Trigger Out is also generated on the relevant front panel TRG OUT connector (NIM or TTL), and allows to extend the trigger signal to other boards.

For example, in order to start the acquisition on all the channels in the crate, as one of the channels ramps over threshold, the Local Trigger must be enabled as Trigger Out, the Trigger Out must then be fed to a Fan Out unit; the obtained signal has to be fed to the External Trigger Input of all the boards in the crate (including the board which generated the Trigger Out signal).

3.6. Front Panel I/Os

The V1720 is provided with 16 programmable general purpose LVDS I/O signals. Signals can be programmed via VME (see § 4.24 and § 4.25). Default configuration is:

Table 3.2: Front Panel I/Os default setting

Nr.	Direction	Description
0	out	Ch 0 Trigger Request
1	out	Ch 1 Trigger Request
2	out	Ch 2 Trigger Request

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC Number of pages:

Nr.	Direction	Description	
3	out	Ch 3 Trigger Request	
4	out	Ch 4 Trigger Request	
5	out	Ch 5 Trigger Request	
6	out	Ch 6 Trigger Request	
7	out	Ch 7 Trigger Request	
8	out	Memory Full	
9	out	Event Data Ready	
10	out	Channels Trigger	
11	out	RUN Status	
12	in	Trigger Time Tag Reset (active low)	
13	in	Memory Clear (active low)	
14	-	RESERVED	
15	_	RESERVED	

Analog Monitor 3.7.

To be implemented

3.8. Test pattern generator

The FPGA AMC can emulate the ADC and write into memory a ramp (0, 1, 2, 3,...FF, FF, FE.., 0) for test purposes. It can be enabled via Channel Configuration register, see § 4.12.

3.9. Reset, Clear and Default Configuration

3.9.1. Global Reset

Global Reset is performed at Power ON of the module or via a VME RESET (SYS RES), see § 4.42. It allows to clear the data off the Output Buffer, the event counter and performs a FPGAs global reset, which restores the FPGAs to the default configuration. It initialises all counters to their initial state and clears all detected error conditions.

3.9.2. Memory Reset

The Memory Reset clears the data off the Output Buffer.

The Memory Reset can be forwarded via either a write access to Software Clear Register (see § 4.43) or with a pulse sent to the front panel Memory Clear input (see § 3.6).

3.9.3. **Timer Reset**

The Timer Reset allows to initialize the timer which allows to tag an event. The Timer Reset can be forwarded with a pulse sent to Trigger Time Tag Reset input (see § 3.6).

3.10. VMEBus interface

The module is provided with a fully compliant VME64/VME64X interface (see § 1.1), whose main features are:

- **EUROCARD 9U Format**
- J1/P1 and J2/P2 with either 160 pins (5 rows) or 96 (3 rows) connectors
- A24, A32 and CR-CSR address modes
- D32, BLT/MBLT, 2eVME, 2eSST data modes
- MCST write capability
- **CBLT** data transfers
- RORA interrupter
- Configuration ROM

3.10.1. Addressing capabilities

3.10.1.1. Base address

The module works in A24/A32 mode. The Base Address of the module can be fixed through four rotary switches (see § 2.6) and is written into a word of 24 or 32 bit. The Base Address can be selected in the range:

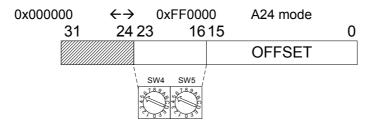


Fig. 3.12: A24 addressing

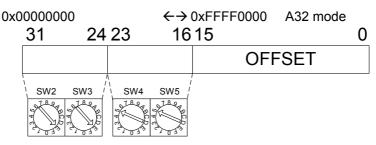


Fig. 3.13: A32 addressing

The Base Address of the module is selected through four rotary switches (see § 2.6). then it is validated only with either a Power ON cycle or a System Reset (see § 3.8).

3.10.1.2. CR/CSR address

GEO address is picked up from relevant backplane lines and written onto bit 23..19 of CR/CSR space, indicating the slot number in the crate; the recognised Address Modifier for this cycle is 2F. This feature is implemented only on versions with 160pin connectors.

31	24 23 19 18 16 15	0
	GEO	OFFSET

Fig. 3.14: CR/CSR addressing

3.10.1.3. **Address relocation**

Relocation Address register (see § 4.37) allows to set via software the board Base Address (valid values ≠ 0). Such register allows to overwrite the rotary switches settings; its setting is enabled via VME Control Register (see § 4.29). The used addresses are:

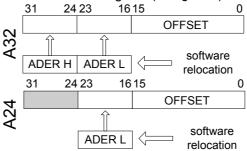


Fig. 3.15: Software relocation of base address

3.11. Data transfer capabilities

The board supports D32 single data readout, Block Transfer BLT32 and MBLT64, 2eVME and 2eSST cycles. Sustained readout rate is up to 60 MB/s with MBLT64, up to 100 MB/s with 2eVME and up to 160 MB/s with 2eSST.

3.12. Events readout

3.12.1. Sequential readout

The events, once written in the SRAMs (Memory Event Buffers), become available for readout via VME. During the memory readout, the board can continue to store more events (independently from the readout) on the free buffers. The acquisition process is therefore "deadtimeless", until the memory becomes full.

Although the memories are SRAMs, VMEBus does not handle directly the addresses, but takes them from a FIFO. Therefore, data are read from the memories sequentially, according to the selected Readout Logic, from a memory space mapped on 4Kbytes (0x0000÷0x0FFC).

The events are readout sequentially and completely, starting from the Header of the first available event, followed by the Trigger Time Tag, the Event Counter and all the samples of the channels (from 0 to 7). Once an event is completed, the relevant memory buffer becomes free and ready to be written again (old data are lost). After the last word in an event, the first word (Header) of the subsequent event is readout. It is not possible to readout an event partially (see also § 3.3.4).

3.12.1.1. **SINGLE D32**

This mode allows to readout a word per time, from the header (actually 4 words) of the first available event, followed by all the words until the end of the event, then the second event is transferred. The exact sequence of the transferred words is shown in § 3.3.4.

NPO: 00103/05:V1720x.MUTx/04 Filename: V1720_REV4.DOC

Number of pages:

Page: 56

Title:

We suggest, after the 1st word is transferred, to check the Event Size information and then do as many D32 cycles as necessary (actually Event Size -1) in order to read completely the event.

3.12.1.2. **BLOCK TRANSFER D32/D64, 2eVME**

BLT32 allows, via a single channel access, to read N events in sequence, N is set via the BLT Event Number register (see § 4.40).

The event size depends on the Buffer Size Register setting (§ 4.15); namely:

```
[Event Size] = [8*(Block Size)] + [16 bytes]
```

Then it is necessary to perform as many cycles as required in order to readout the programmed number of events.

We suggest to enable BERR signal during BLT32 cycles, in order to end the cycle avoiding filler readout. The last BLT32 cycle will not be completed, it will be ended by BERR after the #N event in memory is transferred (see example in the figure below).

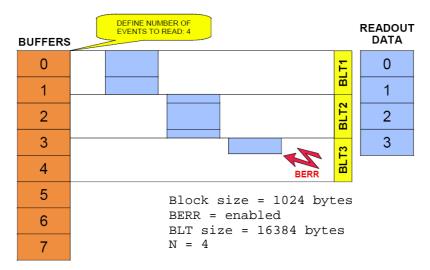


Fig. 3.16: Example of BLT readout

Since some 64 bit CPU's cut off the last 32 bit word of a transferred block, if the number of words composing such block is odd, it is necessary to add a dummy word (which has then to be removed via software) in order to avoid data loss. This can be achieved by setting the ALIGN64 bit in the VME Control register (see § 4.29).

MBLT64 cycle is similar to the BLT32 cycle, except that the address and data lines are multiplexed to form 64 bit address and data buses.

The 2eVME allows to achieve higher transfer rates thanks to the requirement of only two edges of the two control signals (DS and DTACK) to complete a data cycle.

3.12.1.3. **CHAINED BLOCK TRANSFER D32/D64**

The V1720 allows to readout events from more daisy chained boards (Chained Block Transfer mode).

The technique which handles the CBLT is based on the passing of a token between the boards; it is necessary toverify that the used VME crate supports such cycles.

Several contiguous boards, in order to be daisy chained, must be configured as "first", "intermediate" or "last" via MCST Base Address and Control Register (see § 4.36). A common Base Address is then defined via the same register; when a BLT cycle is executed at the address CBLT Base + 0x0000 ÷ 0x0FFC, the "first" board starts to transfer its data, driving DTACK properly; once the transfer is completed, the token is

NPO: Filename: Number of pages: Page: 00103/05:V1720x.MUTx/04 V1720_REV4.DOC 56 32

passed to the second board via the IACKIN-IACKOUT lines of the crate, and so on until the "last" board, which completes the data transfer and asserts BERR (which has to be enabled): the Master then ends the cycle and the slave boards are rearmed for a new acquisition.

If the size of the BLT cycle is smaller than the events size, the board which has the token waits for another BLT cycle to begin (from the point where the previous cycle has ended).

3.12.2. Random readout (to be implemented)

Events can be readout partially (not necessarily starting from the first available) and are not erased from the memories, unless a command is performed. In order to perform the random readout it is necessary to execute an **Event Block Request** via VME.

Indicating the event to be read (page number = 12 bit datum), the offset of the first word to be read inside the event (12 bit datum) and the number of words to be read (size = 10 bit datum). At this point the data space can be read, starting from the header (which reports the required size, not the actual one, of the event), the Trigger Time Tag, the Event Counter and the part of the event required on the channel addressed in the Event Block Request.

After data readout, in order to perform a new random readout, it is necessary a new Event Block Request, otherwise Bus Error is signalled. In order to empty the buffers, it is necessary a write access to the Buffer Free register (see § 0): the datum written is the number of buffers in sequence to be emptied.

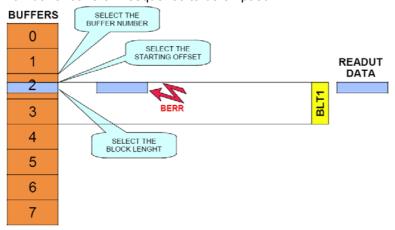


Fig. 3.17: Example of random readout

3.13. Optical Link

The board houses a daisy chainable Optical Link able to transfer data at 80 MB/s, therefore it is possible to connect up to eight V1720 (64 ADC channels) to a single Optical Link Controller: a standard PC equipped with the PCI card CAEN Mod. A2818. The A2818 is a 32-bit 33 MHz PCI card; the communication path uses optical fiber cables as physical transmission line (Mod. AY2705, AY2720, AI2705, AI2720). The Optical Link allows to perform VME read (Single data transfer and Block transfers) and write (Single data transfer) operations.

The parameters for read/write accesses via optical link are the same used by VME cycles (Address Modifier, Base Address, data Width, etc); wrong parameter settings cause Bus Error.

 NPO:
 Filename:
 Number of pages:
 Page:

 00103/05:V1720x.MUTx/04
 V1720_REV4.DOC
 56
 33

VME Control Register bit 3 (see § 4.33) allows to enable the module to broadcast an interrupt request on the Optical Link; an 8 bit mask (see § 3.13.12 and § 3.13.13) allows to enable the corresponding A2818's to propagate the interrupt on the PCI bus as a request from the Optical Link is sensed.

VME and Optical Link accesses take place on independent paths and are handled by board internal controller, with VME having higher priority; anyway it is better to avoid accessing the board via VME and Optical Link simoultaneously.

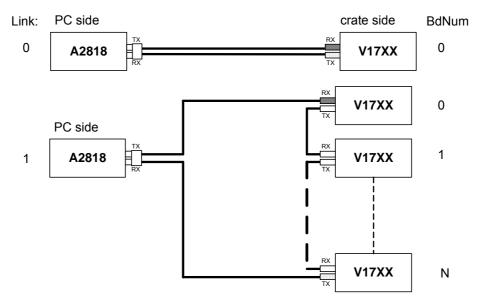


Fig. 3.18: Optical Link daisy chain

The Optical Link can be operated through the CAENVMELib library: a set of ANSI C functions which permits an user program the use and the configuration of the modules. The present description refers to CAENVMELib, available in the following formats:

- Win32 DLL (CAEN provides the CAENVMELib.lib stub for Microsoft Visual C++ 6.0)
- Linux dynamic library

CAENVMELib is logically located between an application like the samples provided and the device driver.

The following sections describe the CAENVMELib library and its implemented functions.

3.13.1. **CAENVME Init**

Parameters:

: The model of the board (V2718). [in] BdType

: The index of the A2818 (see figure above). [in] Link [in] BdNum : The board number in the link (see figure above).

[out] Handle : The handle that identifies the device.

Returns:

An error code about the execution of the function.

Description:

The function generates an opaque handle to identify the module

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC Number of pages: 56

Revision date:

Revision:

29/01/2008

attached to the PC. It must be specified only the module index (BdNum) because the link is PCI.

CAENVME API

CAENVME_Init(CVBoardTypes BdType, short Link, short BdNum, long *Handle);

3.13.2. CAENVME_End

Parameters:

[in] Handle: The handle that identifies the module.

Returns:

An error code about the execution of the function.

Description:

Notifies the library about the end of work and free the allocated resources.

CAENVME API

CAENVME_End(long Handle);

3.13.3. CAENVME_ReadCycle

Parameters:

[in] Handle : The handle that identifies the device.

[in] Address : The VME bus address².

[out] Data : The data read from the VME bus.

[in] AM : The address modifier .

[in] DW : The data width.

Returns:

An error code about the execution of the function.

Description:

The function performs a single VME read cycle.

CAENVME_API

CAENVME_ReadCycle(long Handle, unsigned long Address, void *Data,

CVAddressModifier AM, CVDataWidth DW);

3.13.4. CAENVME_WriteCycle

Parameters:

[in] Handle : The handle that identifies the device.

[in] Address : The VME bus address.

[in] Data : The data written to the VME bus.

[in] AM : The address modifier.

[in] DW : The data width.

Returns:

An error code about the execution of the function.

Description:

The function performs a single VME write cycle.

Revision date: 29/01/2008

Revision:

CAENVME API

CAENVME_WriteCycle(long Handle, unsigned long Address, void *Data,

CVAddressModifier AM, CVDataWidth DW);

3.13.5. CAENVME_MultiRead

Parameters:

[in] Handle : The handle that identifies the device. [in] Address : An array of VME bus addresses.

[out] Data : An array of data read from the VME bus.

[in] AM : An array of address modifiers. [in] DW : An array of data widths.

Returns:

An array of error codes about the execution of the function.

Description:

The function performs a sequence of VME read cycles.

CAENVME API

CAENVME_MultiRead(long Handle, unsigned long Address, void *Data,

CVAddressModifier AM, CVDataWidth DW);

3.13.6. CAENVME MultiWrite

Parameters:

[in] Handle : The handle that identifies the device.
[in] Address : An array of VME bus addresses.

[in] Data : An array of data written to the VME bus.

[in] AM : An array of address modifiers. [in] DW : An array of data widths.

Returns:

An array of error codes about the execution of the function.

Description:

The function performs a sequence of VME write cycles.

CAENVME API

CAENVME_ReadCycle(long Handle, unsigned long Address, void *Data,

CVAddressModifier AM, CVDataWidth DW);

3.13.7. CAENVME_BLTReadCycle

Parameters:

[in] Handle : The handle that identifies the device.

[in] Address : The VME bus address.

[out] Buffer : The data read from the VME bus. [in] Size : The size of the transfer in bytes.

[in] AM : The address modifier.

[in] DW : The data width.

[out] count : The number of bytes transferred.

Returns:

An error code about the execution of the function.

Revision date: 29/01/2008

Revision:

Description:

The function performs a VME block transfer read cycle. It can be used to perform MBLT transfers using 64 bit data width.

CAENVME API

CAENVME_BLTReadCycle(long Handle, unsigned long Address, unsigned char *Buffer, int Size, CVAddressModifier AM, CVDataWidth DW, int *count);

3.13.8. CAENVME_FIFOBLTReadCycle

Parameters:

[in] Handle : The handle that identifies the device.

[in] Address : The VME bus address.

[out] Buffer : The data read from the VME bus. [in] Size : The size of the transfer in bytes.

[in] AM : The address modifier [in] DW : The data width.

[out] count : The number of bytes transferred.

Returns:

An error code about the execution of the function.

Description:

The function performs a VME block transfer read cycle. It can be used to perform MBLT transfers using 64 bit data width. The Address is not incremented on the VMEBus during the cycle.

CAENVME API

CAENVME_FIFOBLTReadCycle(int32_t Handle, uint32_t Address, void *Buffer, int Size, CVAddressModifier AM, CVDataWidth DW, int *count):

3.13.9. CAENVME_MBLTReadCycle

Parameters:

[in] Handle : The handle that identifies the device.

[in] Address : The VME bus address.

[out] Buffer : The data read from the VME bus. [in] Size : The size of the transfer in bytes.

[in] AM : The address modifier.

[out] count : The number of bytes transferred.

Returns:

An error code about the execution of the function.

Description:

The function performs a VME multiplexed block transfer read cycle.

CAENVME API

CAENVME_MBLTReadCycle(long Handle, unsigned long Address, unsigned char *Buffer, int Size, CVAddressModifier AM, int *count);

3.13.10. CAENVME_FIFOMBLTReadCycle

Parameters:

[in] Handle: The handle that identifies the device.

 NPO:
 Filename:
 Number of pages:
 Page:

 00103/05:V1720x.MUTx/04
 V1720_REV4.DOC
 56
 37

Revision date: 29/01/2008

Revision:

[in] Address: The VME bus address.

[out] Buffer : The data read from the VME bus. [in] Size : The size of the transfer in bytes.

[in] AM : The address modifier.

[out] count : The number of bytes transferred.

Returns:

An error code about the execution of the function.

Description:

The function performs a VME multiplexed block transfer read cycle. The Address is not incremented on the VMEBus during the cycle.

CAENVME API

CAENVME FIFOMBLTReadCycle(int32 t Handle, uint32 t Address, void *Buffer, int Size, CVAddressModifier AM, int *count);

3.13.11. CAENVME_IRQCheck

Parameters:

: The handle that identifies the device. [in] Handle : A bit-mask³ indicating the active IRQ lines [out] Mask

Returns:

An error code about the execution of the function.

Description:

The function returns a bit mask indicating the active IRQ lines.

CAENVME API

CAENVME IRQCheck(long Handle, byte *Mask);

3.13.12. **CAENVME IRQEnable**

Parameters:

[in] Handle : The handle that identifies the device. [in] Mask : A bit-mask indicating the IRQ lines.

Returns:

An error code about the execution of the function.

Description:

The function enables the IRQ lines specified by Mask.

CAENVME API

CAENVME_IRQEnable(long dev, unsigned long Mask);

3.13.13. CAENVME IRQDisable

Parameters:

[in] Handle: The handle that identifies the device. [in] Mask : A bit-mask indicating the IRQ lines.

Revision date: 29/01/2008

Revision:

Returns:

An error code about the execution of the function.

Description:

The function disables the IRQ lines specified by Mask.

CAENVME API CAENVME IRQDisable(long dev, unsigned long Mask);

3.13.14. CAENVME_IRQWait

Parameters:

[in] Handle : The handle that identifies the device. : A bit-mask indicating the IRQ lines. [in] Mask

[in] Timeout : Timeout in milliseconds.

Returns:

An error code about the execution of the function.

Description:

The function waits the IRQ lines specified by Mask until one of them raise or timeout expires.

CAENVME_API

CAENVME_IRQWait(long dev, unsigned long Mask, unsigned long Timeout)

The following sections will describe in detail the VME-accessible registers content.

4.1. Registers address map

Title:

Table 4.1: Address Map for the Model V1720

REGISTER NAME	ADDRESS	ASIZE	DSIZE	MODE	H_RES	S_RES	CLR
EVENT READOUT BUFFER	0x0000-0x0FFC	A24/A32/A64	D32	R	Х	Χ	Х
Channel n ZS_THRES	0x1n24	A24/A32	D32	R/W	х	х	
Channel n ZS_NSAMP	0x1n28	A24/A32	D32	R/W	х	х	
Channel n THRESHOLD	0x1n80	A24/A32	D32	R/W	х	х	
Channel n TIME OVER/UNDER THRESHOLD	0x1n84	A24/A32	D32	R/W	х	Х	
Channel n STATUS	0x1n88	A24/A32	D32	R	х	Х	
Channel n AMC FPGA FIRMWARE REVISION	0x1n8C	A24/A32	D32	R			
Channel n BUFFER OCCUPANCY	0x1n94	A24/A32	D32	R	х	Х	Х
Channel n DAC	0x1n98	A24/A32	D32	R/W	х	Х	
Channel n ADC CONFIGURATION	0x1n9C	A24/A32	D32	R/W	х	Х	
CHANNEL CONFIGURATION	0x8000	A24/A32	D32	R/W	х	Х	
CHANNEL CONFIGURATION BIT SET	0x8004	A24/A32	D32	w	х	Х	
CHANNEL CONFIGURATION BIT CLEAR	0x8008	A24/A32	D32	w	х	Х	
BUFFER ORGANIZATION	0x800C	A24/A32	D32	R/W	х	Х	
BUFFER FREE	0x8010	A24/A32	D32	R/W			
CUSTOM SIZE	0x8020	A24/A32	D32	R/W	х	Х	
ACQUISITION CONTROL	0x8100	A24/A32	D32	R/W	х	х	
ACQUISITION STATUS	0x8104	A24/A32	D32	R			
SW TRIGGER	0x8108	A24/A32	D32	W			
TRIGGER SOURCE ENABLE MASK	0x810C	A24/A32	D32	R/W	х	Х	
FRONT PANEL TRIGGER OUT ENABLE MASK	0x8110	A24/A32	D32	R/W	х	Х	
POST TRIGGER SETTING	0x8114	A24/A32	D32	R/W	Х	Х	
FRONT PANEL I/O DATA	0x8118	A24/A32	D32	R/W	Х	Х	
FRONT PANEL I/O CONTROL	0x811C	A24/A32	D32	R/W	х	Х	
CHANNEL ENABLE MASK	0x8120	A24/A32	D32	R/W	Х	Х	
ROC FPGA FIRMWARE REVISION	0x8124	A24/A32	D32	R			

REGISTER NAME	ADDRESS	ASIZE	DSIZE	MODE	H_RES	S_RES	CLR
EVENT STORED	0x812C	A24/A32	D32	R	Х	Х	Х
SET MONITOR DAC	0x8138	A24/A32	D32	R/W	х	Х	
BOARD INFO	0x8140	A24/A32	D32	R			
MONITOR MODE	0x8144	A24/A32	D32	R/W	х	Х	
EVENT SIZE	0x814C	A24/A32	D32	R	х	Х	Х
VME CONTROL	0xEF00	A24/A32	D32	R/W	х		
VME STATUS	0xEF04	A24/A32	D32	R			
BOARD ID	0xEF08	A24/A32	D32	R/W	х	Х	
MULTICAST BASE ADDRESS & CONTROL	0xEF0C	A24/A32	D32	R/W	х		
RELOCATION ADDRESS	0xEF10	A24/A32	D32	R/W	х		
INTERRUPT STATUS ID	0xEF14	A24/A32	D32	R/W	х		
INTERRUPT EVENT NUMBER	0xEF18	A24/A32	D32	R/W	х	Х	
BLT EVENT NUMBER	0xEF1C	A24/A32	D32	R/W	х	Х	
SCRATCH	0xEF20	A24/A32	D32	R/W	х	Х	
SW RESET	0xEF24	A24/A32	D32	W			
SW CLEAR	0xEF28	A24/A32	D32	W			
FLASH ENABLE	0xEF2C	A24/A32	D32	R/W	х		
FLASH DATA	0xEF30	A24/A32	D32	R/W	х		
CONFIGURATION RELOAD	0xEF34	A24/A32	D32	W			
CONFIGURATION ROM	0xF000-0xF3FC	A24/A32	D32	R			

4.2. Configuration ROM (0xF000-0xF084; r)

The following registers contain some module's information, they are D32 accessible (read only):

OUI: manufacturer identifier (IEEE OUI)

Version: purchased versionBoard ID: Board identifier

Revision: hardware revision identifier

Serial MSB: serial number (MSB)Serial LSB: serial number (LSB)

Table 4.2: ROM Address Map for the Model V1720

Description	Address	Content
checksum	0xF000	0xA4
checksum length2	0xF004	0x00

NPO: 00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC

Number of pages: Page: 56 41

Description	Address	Content
checksum_length1	0xF008	0x00
checksum_length0	0xF00C	0x20
constant2	0xF010	0x83
constant1	0xF014	0x84
constant0	0xF018	0x01
c_code	0xF01C	0x43
r_code	0xF020	0x52
oui2	0xF024	0x00
oui1	0xF028	0x40
oui0	0xF02C	0xE6
vers	0xF030	V1720, VX1720: 0x11 V1720B, VX1720B: 0x40 V1720C, VX1720C: 0x12 V1720D, VX1720D: 0x41
board2	0xF034	V1720: 0x00 VX1720: 0x01
board1	0xF038	0x06
board0	0xF03C	0xB8
revis3	0xF040	0x00
revis2	0xF044	0x00
revis1	0xF048	0x00
revis0	0xF04C	0x01
sernum1	0xF080	0x00
sernum0	0xF084	0x16

These data are written into one Flash page; at Power ON the Flash content is loaded into the Configuration RAM, where it is available for readout.

4.3. Channel n ZS_THRES (0x1n24; r/w)

Bit	Function
[31:0]	To be implemented

4.4. Channel n ZS_NSAMP (0x1n28; r/w)

Bit	Function
[31:0]	To be implemented

4.5. Channel n Threshold (0x1n80; r/w)

Ī	Bit	Function
Ī	[11:0]	Threshold Value for Trigger Generation

Each channel can generate a local trigger as the digitised signal exceeds the Vth threshold, and remains under or over threshold for Nth [4 samples; 5 samples in Pack2.5 mode] at least; local trigger is delayed of Nth [4/5 samples] with respect to input signal. This register allows to set Vth (LSB=input range/12bit); see also § 3.5.3.

4.6. Channel n Over/Under Threshold (0x1n84; r/w)

Bit	Function
[11:0]	Number of Data under/over Threshold

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC

Number of pages:

Page:

Each channel can generate a local trigger as the digitised signal exceeds the Vth threshold, and remains under or over threshold for Nth [4/5 samples] at least; local trigger is delayed of Nth [4 samples; 5 samples in Pack2.5 mode] with respect to input signal. This register allows to set Nth; see also § 3.5.3.

4.7. Channel n Status (0x1n88; r)

Bit	Function
[5]	Buffer free error:
[5]	1 = trying to free a number of buffers too large
	Channel n DAC (see § 4.10) Busy
[2]	1 = Busy
	0 = DC offset updated
[1]	Memory empty
[0]	Memory full

Channel n AMC FPGA Firmware (0x1n8C; r)

Bit	Function
[31:16]	Revision date in Y/M/DD format
[15:8]	Firmware Revision (X)
[7:0]	Firmware Revision (Y)

Bits [31:16] contain the Revision date in Y/M/DD format.

Bits [15:0] contain the firmware revision number coded on 16 bit (X.Y format).

Example: revision 1.3 of 12th June 2007 is: 0x760C0103

Channel n Buffer Occupancy (0x1n94; r)

Bit	Function	
[10:0]	Occupied buffers (01024)	

4.10. Channel n DAC (0x1n98; r/w)

Bit	Function
[15:0]	DAC Data

Bits [15:0] allow to define a DC offset to be added the input signal in the ±1V range, see also § 3.1.1. When Channel n Status bit 2 is set to 0, DC offset is updated (see § 4.7).

4.11. Channel n ADC Configuration (0x1n9C; r/w)

I	Bit	Function
Ì	[15:0]	T.B.D.

This register allows to pilot the relevant ADC signals. See the LTC2242-12 - 12-Bit, 250Msps ADC data sheet for details.

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC Number of pages: Page: **Document type:**

User's Manual (MUT)

Revision date:

29/01/2008

4.12. Channel Configuration (0x8000; r/w)

Bit	Function		
[11]	0 = Pack2.5 disabled		
[11]	1 = Pack2.5 enabled		
	0 = Trigger Output on Input Over Threshold		
[6]	1 = Trigger Output on Input Under Threshold		
ران	allows to generate local trigger either on channel over or under		
	threshold (see § 4.3 and § 4.6)		
[4]	0 = Memory Random Access		
[4]	1 = Memory Sequential Access		
[2]	0 = Test Pattern Generation Disabled		
[3]	1 = Test Pattern Generation Enabled		
	0 = Trigger Overlapping Not Enabled		
[1]	1 = Trigger Overlapping Enabled		
	Allows to handle trigger overlap (see § 3.3.3)		
[0] reserved			

This register allows to perform settings which apply to all channels.

It is possible to perform selective set/clear of the Channel Configuration register bits writing to 1 the corresponding set and clear bit at address 0x8004 (set) or 0x8008 (clear) see the following § 4.13 and 4.14. Default value is 0x10.

4.13. Channel Configuration Bit Set (0x8004; w)

Bit	Function
[70]	Bits set to 1 means that the corresponding bits in the Channel
[70]	Configuration register are set to 1.

4.14. Channel Configuration Bit Clear (0x8008; w)

Bit	Function
[70]	Bits set to 1 means that the corresponding bits in the Channel Configuration register are set to 0.

4.15. Buffer Organization (0x800C; r/w)

Bit	Function
[3:0]	BUFFER CODE

The BUFFER CODE allows to divide the available Output Buffer Memory into a certain number of blocks, according to the following table:

Page:

45

Table 4.3: Output Buffer Memory block division

REGISTER	BUFFER NUMBER	Ş	SIZE of one BUF	FER (samples)	
(see § 4.15)		SRAM 1.	25MB/ch	SRAM 1	0MB/ch
		Std.	Pack2.5	Std.	Pack2.5
0x00	1	1M	1.25M	8M	10M
0x01	2	512K	640K	4M	5M
0x02	4	256K	320K	2M	2.5M
0x03	8	128K	160K	1M	1.25M
0x04	16	64K	80K	512K	640K
0x05	32	32K	40K	256K	320K
0x06	64	16K	20K	128K	160K
0x07	128	8K	10K	64K	80K
0x08	256	4K	5K	32K	40K
0x09	512	2K	2.5K	16K	20K
0x0A	1024	1K	1.25K	8K	10K

A write access to this register causes a Software Clear, see § 3.9. This register must not be written while acquisition is running.

4.16. Buffer Free (0x8010; r/w)

	Bit	Function
ſ	[11:0]	N = Frees the first N Output Buffer Memory Blocks, see § 4.15

4.17. Custom Size (0x8020; r/w)

Bit	Function
	0= Custom Size disabled
[31:0]	N_{LOC} (\neq 0) = Number of memory locations per event (1 location = 2 samples or 2 locations = 5 samples when Pack2.5 mode is used see
	[§ 3.3.4)

This register must not be written while acquisition is running.

4.18. Acquisition Control (0x8100; r/w)

Bit	Function	
[4]	reserved	
	0 = COUNT ACCEPTED TRIGGERS	
[3]	1 = COUNT ALL TRIGGERS	
	allows to reject overlapping triggers (see § 3.3.3)	
	0 = Acquisition STOP	
[2]	1 = Acquisition RUN	
	allows to RUN/STOP Acquisition	
	00 = REGISTER-CONTROLLED RUN MODE	
[1:0]	01 = S-IN CONTROLLED RUN MODE	
[1.0]	10 = S-IN GATE MODE	
	11 = MULTI-BOARD SYNC MODE	

Bit [2] allows to Run and Stop data acquisition; when such bit is set to 1 the board enters Run mode and a Memory Reset (see § 3.9.2) is automatically performed. When bit [2] is reset to 0 the stored data are kept available for readout. In Stop Mode all triggers are neglected.

 NPO:
 Filename:
 Number of pages:

 00103/05:V1720x.MUTx/04
 V1720_REV4.DOC
 56

Bits [1:0] descritpion:

00 = REGISTER-CONTROLLED RUN MODE: multiboard synchronisation via S_IN front panel signal

- RUN control: start/stop via set/clear of bit[2]
- GATE always active (Continuous Gate Mode)
- 01 = S-IN CONTROLLED RUN MODE: Multiboard synchronisation via S-IN front panel signal
- S-IN works both as SYNC and RUN_START command
- GATE always active (Continuous Gate Mode)

10 = S-IN GATE MODE

- Multiboard synchronisation is disabled
- S-IN works as Gate signal set/clear of RUN/STOP bit
- 11 = MULTI-BOARD SYNC MODE
- Used only for Multiboard synchronisation

4.19. Acquisition Status (0x8104; r)

Bit	Function		
[8]	Board ready for acquisition (PLL and ADCs are synchronised correctly) 0 = not ready 1 = ready This bit should be checked after software reset to ensure that the board will enter immediatly run mode after RUN mode setting; otherwise a latency between RUN mode setting and Acquisition start might occur.		
[7]	PLL Status Flag (see § 2.5.1): 0 = PLL loss of lock 1 = no PLL loss of lock NOTE: flag can be restored to 1 via read access to Status Register (see § 4.34)		
[6]	PLL Bypass mode (see § 2.5.1): 0 = No bypass mode 1 = Bypass mode		
[5]	Clock source (see § 2.6): 0 = Internal 1 = External		
[4]	EVENT FULL: it is set to 1 as the maximum nr. of events to be read is reached		
[3]	EVENT READY: it is set to 1 as at least one event is available to readout		
[2]	0 = RUN off 1 = RUN on		
[1]	reserved		
[0] reserved			

4.20. Software Trigger (0x8108; w)

Ī	Bit	Function
ĺ	[31:0]	A write access to this location generates a trigger via software

4.21. Trigger Source Enable Mask (0x810C; r/w)

Bit	Function
[31]	0 = Software Trigger Disabled
[0.]	1 = Software Trigger Enabled
[30]	0 = External Trigger Disabled
[oo]	1 = External Trigger Enabled
[29:27]	reserved
[26:24]	Local trigger coincidence level (default = 0)
[23:8]	reserved
[7]	0 = Channel 7 trigger disabled
[/]	1 = Channel 7 trigger enabled
[6]	0 = Channel 6 trigger disabled
[O]	1 = Channel 6 trigger enabled
[5]	0 = Channel 5 trigger disabled
[5]	1 = Channel 5 trigger enabled
[4]	0 = Channel 4 trigger disabled
[4]	1 = Channel 4 trigger enabled
[2]	0 = Channel 3 trigger disabled
[3]	1 = Channel 3 trigger enabled
[2]	0 = Channel 2 trigger disabled
[4]	1 = Channel 2 trigger enabled
[1]	0 = Channel 1 trigger disabled
נין	1 = Channel 1 trigger enabled
[0]	0 = Channel 0 trigger disabled
[0]	1 = Channel 0 trigger enabled

This register bits[0,7] enable the channels to generate a local trigger as the digitised signal exceeds the Vth threshold (see § 3.5.3). Bit0 enables Ch0 to generate the trigger, bit1 enables Ch1 to generate the trigger and so on.

Bits [26:24] allows to set minimum number of channels that must be over threshold, beyond the triggering channel, in order to actually generate the local trigger signal; for example if bit[7:0]=FF (all channels enabled) and Local trigger coincidence level = 1, whenever one channel exceeds the threshold, the trigger will be generated only if at least another channel is over threshold at that moment. Local trigger coincidence level must be smaller than the number of channels enabled via bit[7:0] mask.

EXTERNAL TRIGGER ENABLE (bit30) enables the board to sense TRG-IN signals SW TRIGGER ENABLE (bit 31) enables the board to sense software trigger (see § 4.20).

4.22. Front Panel Trigger Out Enable Mask (0x8110; r/w)

Bit	Function
[31]	0 = Software Trigger Disabled
[31]	1 = Software Trigger Enabled
[30]	0 = External Trigger Disabled
[30]	1 = External Trigger Enabled
[7]	0 = Channel 7 trigger disabled
[7]	1 = Channel 7 trigger enabled
[6]	0 = Channel 6 trigger disabled
[6]	1 = Channel 6 trigger enabled
[5]	0 = Channel 5 trigger disabled
[၁]	1 = Channel 5 trigger enabled
[4]	0 = Channel 4 trigger disabled
[4]	1 = Channel 4 trigger enabled
[3]	0 = Channel 3 trigger disabled
[၁]	1 = Channel 3 trigger enabled
[2]	0 = Channel 2 trigger disabled
[2]	1 = Channel 2 trigger enabled

00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC Number of pages:

Bit	Function
[1]	0 = Channel 1 trigger disabled
ניו	1 = Channel 1 trigger enabled
[0]	0 = Channel 0 trigger disabled
[0]	1 = Channel 0 trigger enabled

This register bits[0,7] enable the channels to generate a TRG_OUT front panel signal as the digitised signal exceeds the Vth threshold (see § 3.5.3).

Bit0 enables Ch0 to generate the TRG_OUT, bit1 enables Ch1 to generate the TRG_OUT and so on.

EXTERNAL TRIGGER ENABLE (bit30) enables the board to generate the TRG_OUT SW TRIGGER ENABLE (bit 31) enables the board to generate TRG_OUT (see § 4.20).

4.23. Post Trigger Setting (0x8114; r/w)

Bit	Function
[31:0]	Post trigger value

The register value sets the number of post trigger samples. The number of post trigger samples is :

Npost = PostTriggerValue*4 + ConstantLatency

where

Npost = number of post trigger samples.

PostTriggerValue = Content of this register.

ConstantLatency = constant number of samples added due to the latency associated to the trigger processing logic in the ROC FPGA.

This value is constant, but the exact value may change between different firmware revisions.

4.24. Front Panel I/O Data (0x8118; r/w)

Bit	Function
[15:0]	Front Panel I/O Data

Allows to Readout the logic level of LVDS I/Os and set the logic level of LVDS Outputs.

4.25. Front Panel I/O Control (0x811C; r/w)

Bit	Function
	0 = I/O Normal operations: TRG-OUT signals outside trigger
[15]	presence (trigger are generated according to Front Panel Trigger Out
[13]	Enable Mask setting, see § 4.22)
	1= I/O Test Mode: TRG-OUT is a logic level set via bit 14
[14]	1= TRG-OUT Test Mode set to 1
[14]	0 = TRG-OUT Test Mode set to 0
	00 = General Purpose I/O
[7:6]	01 = Programmed I/O
[7.0]	10 = Pattern mode: LVDS signals are input and their value is written
	into header PATTERN field (see § 3.3.4)
[5]	0 = LVDS I/O 1512 are inputs
[5]	1 = LVDS I/O 1512 are outputs
[4]	0 = LVDS I/O 118 are inputs
[4]	1 = LVDS I/O 118 are outputs
[2]	0 = LVDS I/O 74 are inputs
[3]	1 = LVDS I/O 74 are outputs

NPO: 00103/05:V1720x.MUTx/04

Filename: V1720_REV4.DOC

Number of pages: Page: 48

Bit	Function
[2]	0 = LVDS I/O 30 are inputs
[2]	1 = LVDS I/O 30 are outputs
	0= panel output signals (TRG-OUT/CLKOUT) enabled
[1]	1= panel output signals (TRG-OUT/CLKOUT) enabled in high
	impedance
[0]	0 = TRG/CLK are NIM I/O Levels
[0]	1 = TRG/CLK are TTL I/O Levels

Bits [5:2] are meaningful for General Purpose I/O use only

4.26. Channel Enable Mask (0x8120; r/w)

Bit	Function
[7]	0 = Channel 7 disabled
[/]	1 = Channel 7 enabled
[6]	0 = Channel 6 disabled
[O]	1 = Channel 6 enabled
[5]	0 = Channel 5 disabled
ادا	1 = Channel 5 enabled
[4]	0 = Channel 4 disabled
[4]	1 = Channel 4 enabled
[3]	0 = Channel 3 disabled
[2]	1 = Channel 3 enabled
[2]	0 = Channel 2 disabled
[4]	1 = Channel 2 enabled
[1]	0 = Channel 1 disabled
	1 = Channel 1 enabled
[0]	0 = Channel 0 disabled
ران	1 = Channel 0 enabled

Enabled channels provide the samples which are stored into the events (and not erased). The mask cannot be changed while acquisition is running.

4.27. ROC FPGA Firmware Revision (0x8124; r)

Bit	Function
[31:16]	Revision date in Y/M/DD format
[15:8]	Firmware Revision (X)
[7:0]	Firmware Revision (Y)

Bits [31:16] contain the Revision date in Y/M/DD format.

Bits [15:0] contain the firmware revision number coded on 16 bit (X.Y format).

4.28. Event Stored (0x812C; r)

Bit	Function
[31:0]	This register contains the number of events currently stored in the
[01.0]	Output Buffer

This register value cannot exceed the maximum number of available buffers according to setting of buffer size register.

4.29. Set Monitor DAC (0x8138; r/w)

	Bit	Function
ſ	[11:0]	This register allows to set the DAC value (12bit)

This register allows to set the DAC value in Voltage level mode (see § 2.7). LSB = 0.244 mV, terminated on 50 Ohm.

4.30. Board Info (0x8140; r)

Document type:

User's Manual (MUT)

Bit	Function
[15:8]	Memory size (Mbyte/channel)
[7:0]	Board Type: 1 = V1720

4.31. Monitor Mode (0x8144; r/w)

Bit	Function
[2:0]	To be implemented

4.32. Event Size (0x814C; r)

Bit	Function
[31:0]	Nr. of 32 bit words in the next event

4.33. VME Control (0xEF00; r/w)

Bit	Function
[7]	0 = Release On Register Access (RORA) Interrupt mode (default)
[/]	1 = Release On AcKnowledge (ROAK) Interrupt mode
[6]	0 = RELOC Disabled (BA is selected via Rotary Switch; see § 2.6)
[O]	1 = RELOC Enabled (BA is selected via RELOC register; see § 4.37)
[5]	0 = ALIGN64 Disabled
[5]	1 = ALIGN64 Enabled (see § 3.12.1.2)
	0 = BERR Not Enabled; the module sends a DTACK signal until the
[4]	CPU inquires the module
[4]	1 = BERR Enabled; the module is enabled either to generate a Bus
	error to finish a block transfer or during the empty buffer read out in D32
[3]	0 = Optical Link interrupt disabled
[5]	1 = Optical Link interrupt enabled
[2:0]	Interrupt level (0= interrupt disabled)

Bit [7]: this setting is valid only for interrupts broadcasted on VMEbus; interrupts broadcasted on optical link feature RORA mode only.

- In RORA mode, interrupt status can be removed by accessing VME Control register (see § 4.33) and disabling the active interrupt level.
- In ROAK mode, interrupt status is automatically removed via an interrupt acknowledge cycle. Interrupt generation is restored by setting an Interrupt level > 0 via VME Control register.

Bit	Function
[2]	0 = BERR FLAG: no Bus Error has occurred 1 = BERR FLAG: a Bus Error has occurred (this bit is re-set after a status register read out)
[1]	0 = The Output Buffer is not FULL; 1 = The Output Buffer is FULL.
[0]	0 = No Data Ready; 1 = Event Ready

4.35. Board ID (0xEF08; r/w)

Bit	Function
[4:0]	GEO

- VME64X versions: this register can be accessed in read mode only and contains the GEO address of the module picked from the backplane connectors; when CBLT is performed, the GEO address will be contained in the EVENT HEADER Board ID field (see § 3.3.4).
- Other versions: this register can be accessed both in read and write mode; it allows to write the correct GEO address (default setting = 0) of the module before CBLT operation. GEO address will be contained in the EVENT HEADER Board ID field)

4.36. MCST Base Address and Control (0xEF0C; r/w)

Bit	Function
[7:0]	These bits contain the most significant bits of the MCST/CBLT address of
[7.0]	the module set via VME, i.e. the address used in MCST/CBLT operations.
	Allows to set up the board for daisy chaining:
	00 = disabled board
[9:8]	01 = last board
	10 = first board
	11 = intermediate

4.37. Relocation Address (0xEF10; r/w)

Bit	Function
	These bits contains the A31A16 bits of the address of the module: it
[150]	can be set via VME for a relocation of the Base Address of the module.

4.38. Interrupt Status ID (0xEF14; r/w)

Bit	Function
[24 0]	This register contains the STATUS/ID that the module places on the
[310]	VME data bus during the Interrupt Acknowledge cycle

4.39. Interrupt Event Number (0xEF18; r/w)

Bit	Function
[90]	INTERRUPT EVENT NUMBER

If interrupts are enabled, the module generates a request whenever it has stored in memory a Number of events > INTERRUPT EVENT NUMBER

4.40. BLT Event Number (0xEF1C; r/w)

Bit	Function
[7:0]	This register contains the number of complete events which has to
[7:0]	be transferred via BLT/CBLT (see § 3.12.1.2).

4.41. Scratch (0xEF20; r/w)

Bit	Function
[31:0]	Scratch (to be used to write/read words for VME test purposes)

4.42. Software Reset (0xEF24; w)

Bit	Function
[31:0]	A write access to this location allows to perform a software reset

4.43. Software Clear (0xEF28; w)

	Bit	Function
İ	[31:0]	A write access to this location clears all the memories

4.44. Flash Enable (0xEF2C; r/w)

Bit	Function
1(1)	0 = Flash write ENABLED
	1 = Flash write DISABLED

This register is handled by the Firmware upgrade tool.

4.45. Flash Data (0xEF30; r/w)

Bit	Function
[7:0]	Data to be serialized towards the SPI On board Flash

This register is handled by the Firmware upgrade tool.

4.46. Configuration Reload (0xEF34; w)

Bit	Function
[31:0]	A write access to this register causes a software reset (see § 3.8), a
	reload of Configuration ROM parameters and a PLL reconfiguration.

5. Installation

Document type:

User's Manual (MUT)

- The Mod. V1720 fits into all 6U VME crates.
- VX1720 versions require VME64X compliant crates
- Turn the crate OFF before board insertion/removal
- Remove all cables connected to the front panel before board insertion/removal

ALL CABLES MUST BE REMOVED FROM THE FRONT PANEL BEFORE EXTRACTING THE BOARD FROM THE CRATE!

5.1. Power ON sequence

To power ON the board follow this procedure:

- 1. insert the V1720 board into the crate
- 2. power up the crate

5.2. Power ON status

At power ON the module is in the following status:

- the Output Buffer is cleared;
- registers are set to their default configuration (see § 4)

5.3. Firmware upgrade

The board can store two firmware versions, called STD and BKP respectively; at Power On, a microcontroller reads the Flash Memory and programs the module with the firmware version selected via the JP2 jumper (see § 2.6), which can be placed either on the STD position (left), or in the BKP position (right). It is possible to upgrade the board firmware via VME, by writing the Flash; for this purpose, download the software package available at:

http://www.caen.it/nuclear/product.php?mod=V1720

The package includes the new firmware release file:

v1720_revX.Y_W.Z..rbf

and the V1720 firmware upgrade tool:

- CAENDigitizerUpgrade.exe (windows executable)
- CAENDigitizerUpgrade tool (source code and VC++ project)

Revision date: 29/01/2008

Revision:

For upgrading the firmware, utilizing CAENDigitizerUpgrade.exe, open a DOS shell, then launch

CAENDigitizerUpgrade FileName BaseAdd [image] [/fast] [/nover]

where:

FileName is the RBF file

BaseAdd is the Base Address (Hex 32 bit) of the V1720

image is '/standard' (default) or '/backup'

'/fast' enables fast programming (MultiRead/Write with CAEN Bridge)'

'/nover' disables programming check

N.B.: it is strongly suggested to upgrade ONLY one of the stored firmware revisions (generally the STD one): if both revision are simultaneously updated, and a failure occurs, it will not be possible to upload the firmware via VME again!

5.3.1. V1720 Upgrade files description

The board hosts one FPGA on the mainboard and one FPGA for each of the eight channels. The channel FPGAs firmware is identical. A unique file is provided that will updated all the FPGA at the same time.

ROC FPGA MAINBOARD FPGA (Readout Controller + VME interface)

There is one FPGA Altera Cyclone EP1C20.

AMC FPGA CHANNEL FPGA (ADC readout/Memory Controller):

There is one FPGA Altera Cyclone EP1C4

All FPGAs can be upgraded via VMEBUS;

CAENDigitizerUpgrade utility program must be used for this purpose.

The programming file has the extension RBF and its name follows this general scheme:

v1720 revX.Y W.Z.RBF

where:

- X.Y is the major/minor revision number of the mainboard FPGA
- W.Z is the major/minor revision number of the channel FPGA

WARNING: you can restore the previous FW revision in case there is a failure when you run the upgrading program. There is a jumper on the mainboard that allows to select the "backup" copy of the firmware. You must upgrade all the FPGAs and keep the revisions aligned; it is not guaranteed that the latest revision of one FPGA is compatible with an older revision.

Upgrade examples:

1) Upgrade to Rev 1.2(main FPGA)/Rev 0.2 (channel FPGA) of the standard page of the V1720:

CAENDigitizerUpgrade v1720 rev1.2 0.2.rbf 32100000 /standard

2) Upgrade to Rev 1.2(main FPGA)/Rev 0.2 (channel FPGA) of the backup page of the V1720:

CAENDigitizerUpgrade v1720_rev1.2_0.2.rbf 32100000 /backup

3) Upgrade to Rev 1.2(main FPGA)/Rev 1.1 (channel FPGA) of the standard page of the V1720:

CAENDigitizerUpgrade v1720 rev1.2 1.1.rbf 32100000 /standard

The board can store two firmware versions, called STD and BKP respectively; at Power On, a microcontroller reads the Flash Memory and programs the module with the firmware version selected via the JP2 jumper (see § 2.6), which can be placed either on the STD position (left), or in the BKP position (right). It is possible to upgrade the board firmware via VME, by writing the Flash; for this purpose, download the software package available at:

http://www.caen.it/nuclear/product.php?mod=V1720

The package includes the new firmware release file:

V1720_rN_revX.Y_W.Z..rbf

and the V1720 firmware upgrade tool:

- CAENDigitizerUpgrade.exe (windows executable)
- CAENDigitizerUpgrade tool (source code and VC++ project)

For upgrading the firmware, utilizing CAENDigitizerUpgrade.exe, open a DOS shell, then launch

CAENDigitizerUpgrade FileName BaseAdd [image] [/fast] [/nover] where:

- FileName is the RBF file
- BaseAdd is the Base Address (Hex 32 bit) of the V1720
- image is '/standard' (default) or '/backup'
- '/fast' enables fast programming (MultiRead/Write with CAEN Bridge)'
- '/nover' disables programming check

N.B.: it is strongly suggested to upgrade ONLY one of the stored firmware revisions (generally the STD one): if both revision are simultaneously updated, and a failure occurs, it will not be possible to upload the firmware via VME again!