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1 introduction

This paper explains how the basic physical
processes occurring in photomultipliers determine
their performance and refers to what might be
called a theoretician’s photomultiplier in that no
account is taken of the practical engineering prob-
lems encountered in making any device. The theory
thus refers to ideal performance whilst a real photo-
multiplier will necessarily behave in a more compli-
cated and possibly less satisfactory manner.

If we consider a photomultiplier as part of a system
we can describe it as a transducer which converts
an optical signal into an electrical one and then
amplifies it. The only parameters required will then
be the photocathode conversion efficiency and the
current gain of the multiplier system. Unfortunately
this approach rarely provides the user with a suffi-
cient understanding, because the two basic
processes involved, photo-emission and secondary
emission, are essentially quantum ones. It is con-
venient to consider each of these briefly before
relating the quantum ideas of photons and elec-
trons to those of light flux and current.

2 photo-emission
Einstein’s law states that the kinetic energy of E of
the electron emitted when a photon of frequency is
ν is incident on a surface with work function is
given by:

E = hν − Ψ (h is Planck’s constant)

Writing this in units of eV and measuring the wave-
length of the photon in nm gives:

E = 1240 - Ψ
λ

This equation indicates the greatest possible wave-
length at which emission might occur but says noth-
ing about the efficiency η for producing electrons at
shorter wavelengths. In fact η only rises very slowly
and, for most cathode materials, has the general
form:

At shorter wavelengths the response is usually lim-
ited by the transparency of the tube envelope rather
than by the cathode sensitivity.
There is no detailed theory which can be used to
predict this curve but its general features can be
understood in terms of the need for the photon to
be absorbed very close to the surface and for the
electron to have both the right component of veloci-
ty and sufficient excess energy to escape. The
thickness of semi-transparent cathodes is clearly
critical and in practice is about 20 nm. It is hardly
surprising that the maximum quantum efficiency is
less than 0.5 and the best current values, ~0.3, are
not expected to improve very much.

If the light is traveling at an angle its path length in
the cathode is increased and therefore η can be
rather larger than for normal incidence. There is
also a polarization effect as light with its electric
field component directed out of the plane of the sur-
face is more effective in ejecting electrons. These
effects are not well documented but are probably of
the order of 10%.

The electrons are emitted in all directions and have
a distribution of energy with a cut-off at (hυ − Ψ).
Note that this average energy will be greater for
incident light of shorter wavelength. The emission
from available cathode materials always occurs
very rapidly, <10-11s.

The photons arriving at the cathode behave inde-
pendently of each other and all have the same
probability of releasing an electron. (This is not true
for very intense beams from pulsed lasers but as
the cathode would be destroyed by the beam this
case need not be considered). The response is
therefore linear, provided that the current which
flows does not alter the potential distribution. It is



also follows that, if N/η photons are incident, it is
only the mean number of electrons produced with is
equal to N. The problem is similar to the basic one
in probability theory which applies to tossing dice or
drawing cards from a pack - the statistics of the
number of photo-electrons must be given by the
binomial distribution. This will apply exactly, except
possibly in the ultra violet region of the spectrum
where it is energetically possible for an individual
photon to produce more than one electron.

3 secondary emission

The variation of the mean number of secondary
electronsδ with the energy of the incident electron
has the same general shape for all surfaces,
although numerical values differ widely:

The rising part of the curve reflects the increase in
the energy available but as the primary electron
buries itself more deeply in the dynode, the second-
ary electrons are less likely to escape and thus the
curve turns over. The same argument suggests that
oblique incidence would lead to a higher maximum
and this is indeed so. In most practical tubes the
steeper part of the curve is used where δ is
increasing at a rate between V0.6 and V0.8.

The secondary electrons emerge in all directions
and have a wide distribution of energies:

About 1% of the incident electrons may be elasti-
cally scattered at the dynode and appear as very
high energy secondaries while a rather larger pro-
portion lose some of their energy by inelastic scat-
tering. The true secondries have a most probably
energy in the region of 2eV. Unfortunately the exact
form of this curve is not well established for the
dynode materials used in most commercial photo-
multipliers. It is again true that the emission can be
considered instantaneous.

If each primary electron arrives with the same ener-
gy, it contributes, on average, the same number of

secondary electrons. Each electron acts independ-
ently, so it follows that the secondary current is
exactly proportional to the primary current.

Although the average number of secondary elec-
trons can readily be measured, the statistical distri-
bution is a much more intractable problem because
it can only be determined indirectly. Theoretical dis-
cussion is not very helpful; if each secondary elec-
tron required a particular energy to be emitted
thenδ might be the same for every event but if the
depth of penetration of the primary electron
depended critically on whether it made a large
angle scatter near the surface then the distribution
ofδ might be very broad. It is customary to
assume that the distribution is a Poisson one but it
must be stressed that this assumption has no theo-
retical basis.

4 photomultiplier response

For an idealised photomultiplier we can assume
that η andδ are constant on the surface of each
electrode and also that all the electrons emitted are
collected by the following stage. If the voltage
between each pair of dynodes is the same the out-
put charge for each electron leaving the cathode is
just δn.e for a n stage tube. Writing G=(δ)n the out-
put charge for N photoelectrons is then q = Gne
(problems due to space charge which, particularly if
N is large, may arise in the latter stages of the tube,
are ignored in this treatment, as are effects due to
the finite transit times of the electrons). If the quan-
tum efficiency of the cathode, as a function of
wavelength, η(λ), is known then the response to
any number of incident photons is completely
established.

For use in measuring a light flux the quantum effi-
ciency of the cathode, η(λ), needs to be trans-
formed into the radiant power efficiency, η′(λ).

As photon energy = 1.987x10-25 joules(λ in m)
λ



a flux of 1 photon s-1 = 1.987x10-16 watts (λ in nm)
λ

and 1 electron s-1 =1.602 x 10-19 A,

we get η′(λ) = 0.806 λ η(λ)mAW-1(λ in nm)

Although it is natural for physicists and enquirers to
measure radiant energy in watts, the appropriate
unit for optics is lumen. This is essentially a physio-
logical unit because it provides a measure of the
optical sensation produced; its relationship to the
watt depends on the spectral properties of the radi-
ation considered. Hence the lumen is defined in
terms of the relative sensitivity of the eye V(λ) and
the luminous efficiency of a cathode is only mean-
ingful for a given source (usually black-body radia-
tion at 2856k).

If the source distribution is I(λ) Wm-1

flux in lumens = 608 ∫I (λ) V (λ) δλ

photo-current = ∫I(λ)η′(λ) dλ

hence luminious efficiency = 
1.18 ∫I(λ) λ η(λ) dλ µΑlm−1

∫I (λ) V (λ) dλ

The curves for V(λ) and I(λ) are given below: only
relative values of I(λ) are important bcause it
appears in both integrals. 
Curves for η(λ) or η′(λ) must be taken from data
sheets or obtained by calibrating individual tubes.

It is important to note that the above calculation
cannot be done in reverse. Even the average value
of η cannot be deduced from a knowledge of the
luminous efficiency. Indeed the latter can be a very
poor guide to the maximum quantum efficiency
because the form of I(λ) makes the luminous effi-
ciency extremely sensitive to the magnitude of the
long wavelength tail of η(λ). 

5 fluctuations in response

We must distinguish between fluctuations in 1) the
number of output pulses per second and 2) the size
of output pulses. 

6 fluctuations in number

The quantum nature of light implies that a “steady”
flux of light, of mean ϕ s-1, will exhibit fluctuations
about this mean. If these fluctuations are governed
by Poisson statistics then the number of photo-elec-
trons, N = ηϕ s-1, will also be distributed in the
same way. This case applies in most applications of
photomultipliers but even if ϕ has no fluctuations
the standard deviation of N, determined by the
binomial statistics of photo-emission is 

= 

Since η is always less than 0.3 the error in assum-
ing that the deviation =       is not very large.

The output current is then
I = Ge (N ±        ) if measured for 1 second.

Alternatively this problem can be treated using the
“shot” noise formula:

= 2qI∆f

The charge per pulse q = Ge and I = GeN

This gives the same result as before for a band-
width = 0.5Hz. Measuring or integration time is
related to bandwidth by a Fourier transform so the
equivalence of these two results is to be expected
(the above analysis could of course be used to
derive the “shot” noise formula).

7 fluctuations in amplitude

The mathematical problem is to deduce the distri-
bution of pulse “heights” at the anode for a given
number of photons incident simultaneously (i.e.,
within the resolving time of the recording equip-
ment). Although an analytical solution is possible, it
is more instructive to follow the development of the
electron cascade by calculating the probability of
finding any number of electrons at each stage. The
diagrams show the results for the case of a photo-
multiplier with η = 0.2, δ = 4 (no variation) and 1, 5
and 20 incident photons. This is very much an ide-
alized photomultiplier so the actual values are not

ηφη −1( ).(N η−1

N

N
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Gei =∴ 2 f∆2 N  



of much significance but the following general
points arise from examining the diagrams overleaf.

i) If the number of photons per event is small 
some events are “lost “ both at the cathode 
and, to a decreasing extent, at the first few 
dynodes.

ii) Most of the broadening in the distributions 
take place at the cathode or first dynode and 
the output pulse height  distribution is almost 
indistinguishable from that after the first 
stage. It is a good approximation to assume 
that the relative standard deviation of the out
put distribution is equal to

where δ1 is the gain at the first dynode.

iii) Observations of the output pulse can never be 
expected to reveal the number of incident pho
tons if this number is small.

iv) The output distribution for single incident 
photons (and for thermionic noise) is such that 
the output rate will becritically dependent on the
sensitivity of the discriminator.

v) The maxima of the distributions occur at values
rather less than the formula for mean gain 
suggests.

vi) The fluctuations in amplitude lead to an 
increase in the “shot” noise power by a factor

It must be stressed again that these result are for
an ideal photomultiplier. Results for real tubes ae
often substantially different for small signals; in par-
ticular, the single photon output distribution often
fails to show a maximum but is monotonically
decreasing.
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