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1 introduction

This paper compares the use of photomultipliers in
the measurement of mean signal intensity and of
the signal correlation function using either current-
measuring or photon counting techniques.

Section 2 starts with a discussion of the different
noise source introduced by photomultiplier tubes;
those present in ideal tubes and extraneous noise
sources introduced by sub-optimum tubes. In
extracting information from the photomultiplier out-
put some means of sampling the detector output is
chosen. Different sampling schemes will be dis-
cussed in section 3.

Following this, section 4 contains an analysis of the
effect of the photomultiplier noise and the sampling
technique chosen on the accuracy with which infor-
mation can be extracted from the measurement.
This will be discussed in terms of the relative vari-
ance (RV) of the observed quantity x, i.e.

�(1)

The dependence of RV on the photomultiplier noise
sources and sampling scheme will be analysed in
each case as a means of comparing the advan-
tages and disadvantages of the various situations.

Section 5 gives a summary of the findings of this
analysis in terms of optimum mode of operation for
photomultiplier tubes in measurement of weak sig-
nals. 

Finally, in section 6 the use of a photomultiplier
tube in the photon counting mode of operation for
the measurement of the mean intensity of a low
light flux will be described as an example of the
application of these principles. Factors affecting the
choice of photomultiplier tube will be indicated.

It should be realised at the outset that many of the
conclusions drawn are of paramount importance
only when the extraction of information from very
weak signals is required. If the light intensity is suf-

ficiently strong, an increase in the integration time
required to obtain sufficient accuracy may well be
an unimportant drawback. In the example given in
section 6, as an illustration, the signal is only distin-
guished from the background after about 35 min-
utes of integration; an increase of a factor of two in
the integration time could well be a major disadvan-
tage here. This paper is, therefore, concerned pri-
marily with achieving the ultimate sensitivity in opti-
cal measurements; not in discussing the properties
which affect less critical applications.

2 noise sources in photomultiplier
tubes

In this section the various factors which limit the
performance of photomultiplier tubes in the detec-
tion of weak light fluxes and the extraction of infor-
mation from them will be considered. The discus-
sion is divided into three sections. Firstly, the noise
that is introduced by the nature of the photodetec-
tion process itself is considered; secondly, that
introduced by the statistical properties of the multi-
plication process; thirdly, extraneous noise arising
from non-ideal photomultiplier tubes.

photodetection noise

To understand photodetection it is important to
realise that this is a quantum mechanical process.
The intensity falling on the detector photocathode is
not simply given by the classical quantity, i.e the
square of the field, E.

I(t) = E2 (t) �(2) 

But by the square modulus of the position frequen-
cy component of the field (1), i.e.

...(3)

Furthermore, it is not true to say that the detector
output current is proportional to the intensity. The
detector output, which makes up the fundamental
data, is a train of random photodetection events,
rate-modulated by the intensity. In periods of high
intensity the mean photodetection rate is high
whereas in periods of low intensity the rate is low,
giving an apparent �bunching� of photodetections in
accordance with the intensity fluctuations. Suppose
one integrates the number, n, of photodetection
pulses over a sample time, T, then the probability
distribution, p(n,t), will be given by (2)

...(4)
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Where η is the photocathode quantum efficiency
and I is the integral of the intensity, I(t) over the
sample time, i.e.

...(5)

If the intensity remains constant, equation 4
reduces to the Poisson distribution

...(6)

Where

The �noise� is determined by the standard deviation
of n, i.e.             , which is given by

...(7)

for a Poisson distribution. The relative variance of
the photodetection distribution is therefore, given by

...(8)

compared with the value 0 for the intensity. The
photodetection process has, therefore, led to addi-
tional �shot noise� over and above that present in
the intensity fluctuations.

multiplication noise

In addition to the photodetection shot noise a fur-
ther noise source is introduced by the multiplication
process occurring in a photomultiplier tube. In order
to count single photodetections one requires to
dominate the noise introduced by electronic compo-
nents (e.g. amplifiers) following the photodetector.
One needs a fast amplifier with a gain of 106 to 108

which itself introduces no noise. The electron multi-
plier tube is the most suitable candidate for this
task so far. However, the gain process is based on
multiplication by secondary emission, itself a statis-
tical process. A primary electron bombards a dyn-
ode with an energy of about 100 eV, determined by
the tube operating conditions, giving rise to several
secondary electrons. The number of secondary
electrons produced at each emission would be
expected to have a Poisson probability distribution
so that the final charge distribution at the anode,
p(q), would be a fold of many such distributions.
The form of such a distribution is shown by the con-
tinuous curve in figure 1 together with measured
data points for a particular photomultiplier tube.
Agreement is reasonable except that there appear
to be more small pulses than the Poisson multipli-
cation theory would predict. These observed fluctu-
ations in the total charge per pulse arriving at the
anode introduce a  further source of noise over and

above photodetection noise. This excess noise is
related to the normalised second moment of the
charge           distribution   If we confine our atten-
tion for the moment to those photomultiplier tubes
which exhibit Poisson multiplication statistics then
this parameter will be given by (3).

...(9)

where q is the observed output charge per pulse, µ
is the secondary gain per stage, and k is that frac-
tion of the original photodetection pulses which fail
to propagate.

In practice most photomultiplier tubes do not exhibit
Poisson multiplication statistics. In figure 2 the
measured charge distribution from a second photo-
multiplier tube is compared with the Poisson multi-
plication prediction (b = 0, dashed curve). Various
explanations have been advanced for the observed
discrepancy, which is typical of most photomultiplier
tubes:
(1) variation of gain across the dynode surface. (3)
(2) loss of charge at the edges of the dynodes. (4)
(3) the existence of a large number of scattered 

primaries among the electrons leaving the 
dynodes. (5)

It seems probable that a combination of all these
effects will occur to a different extent in each type
of tube. If we continue to restrict ourselves to the
first explanation then the observed charge distribu-
tion is characterised by a further excess variance
parameter, b, which lies between 0 and 1 and
describes the extent to which the variance exceeds
that for Poisson multiplication. In figure 2 the pre-
dicted form for b = 0.2 (denoted by a full curve)
shows better agreement than that for b = 0.
However, as in figure 1, there are excess pulses of
low charge tending to favour the second and third
explanations, at least in the low pulse height region.
Whichever explanation applies in a particular situa-
tion, the effect is to introduce a third additional
noise source, corresponding to excess variance
above the ideal Poisson case.

For gain fluctuations across the dynode surface the
excess noise parameter α, would be modified from
the form of equation (9) to become

...(10)

It should be pointed out that the fraction of pulses
lost, k, increases both as the gain per stage, µ, is
reduced and as the excess variance parameter, b,
is increased. These effects are illustrated in table 1
for tubes having three different values of b, namely
b = 0 (Poisson multiplication, figure 1), b = 0.2
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(figure 2) and b = 1.0 (worst case, exponential
p(q)). The values of k are taken from Prescott (2). In
order to minimise the effects of charge fluctuations
it is apparent that one must select a tube with a low
b and operate at high µ, thus minimising k and α.
Alternatively, one should re-standardise the output
pulses using a discriminator to remove the effects
of charge fluctuations. However, inevitably some of
the smaller pulses will be lost below the discrimina-
tor threshold, increasing the uncertainty above that
predicted for the photoelectron distribution from the
cathode. Though standardisation of the output puls-
es reduces the excess noise, it can never improve
the performance to the limiting condition occurring
at the photocathode.

extraneous noise

An ideal photomultiplier tube would only give output
pulses corresponding to annihilation of photons
from the incident field. However, there are various
mechanisms in photomultiplier tubes which give
rise to spurious pulses and hence to additional
noise. Perhaps the most basic of these, present in
all tubes, is thermionic emission of dark count elec-
trons from the photocathode, and indeed often from
later dynodes. Provided that these dark counts are
not correlated with signal counts or with other dark
counts, they only distort the observed data by an
additional flat background term. Under these condi-
tions, corresponding to a constant dark count rate,
the dark counts have a Poisson probability distribu-
tion. The fluctuations in the total dark counts will
now contribute to the total uncertainty in a meas-
urement and will become the dominant contribution 

figure 1 a measured distribution of the charge per output pulse
for a photomultiplier tube exhibiting near Poisson multiplication
statistics. The continuous curve (b = 0) represents the theoreti-
cal form for Poisson multiplication.

figure 2 a measured distribution of the charge per output pulse
for a photomultiplier tube which does not exhibit Poisson multi-
plication statistics. Curves for b = 0 and b = 0.2 are included
for comparison.

figure 3 a measured correlation function for weak coherent illu-
mination of a photomultiplier tube exhibiting ion after pulsing.

when measuring weak signals. In addition to this
inevitable dark count rate there is another source of
extraneous noise associated with feedback mecha-
nisms in the photomultiplier tube producing a sec-
ond output pulse correlated with an original pulse.
An example of this is shown in figure 3. Here a
photomultiplier tube is illuminated by a weak light
source giving a mean count rate of 3.5 x 10-4

counts per 50 ns sample time. The correlation func-
tion of the photomultiplier output is then measured
giving the result of figure 3. For constant intensity
the correlation function should lie along the dashed
line at the infinite delay value G(2) (∞). However, a
distinct peak is observed centred on a delay of 480
ns probably corresponding to He+ positive ion feed-
back. This would seriously restrict the use of such a
tube in correlation measurements and will also
increase the uncertainty, as we shall see, in the
measurement of intensity.



3 sampling techniques

In seeking to extract information from the photomul-
tiplier output we have to select a suitable sampling
technique. Suppose samples are required every T
seconds. If the sampling technique consisted of
measuring the signal over very narrow periods sep-
arated by T, a large number of the randomly distrib-
uted narrow photodetection pules would be lost.
Information retrieval would thus be very poor. One
obviously requires some form of integration on the
input signal. This is equivalent to making a narrow-
band input filter (of bandwidth approximately 1/T ).
Two possible weighting schemes to achieve this
object are illustrated in figure 4. Let us first consid-
er rectangular weighting in which each pulse (here
assumed standardised) is weighted with a rectangle
of duration T . This is equivalent to full integration of
all the pulses occurring during each sample time as
can be seen by comparing the value of the weight-
ed function at the sample time, shown in the sec-
ond line of figure 4, with the total counts recorded
during each sample time, shown in the bottom line.
This method is described as photon counting when
standardised pulses are used. In general I shall
describe the method as full integration. If one uses
and exponential weighting, arising from an RC filter,
then the result is as shown in the third line of figure
4. Sampling the signal at each interval T obviously
produces a different result from that with rectangu-
lar weighting. Used in conjunction with non-stan-
dardised photomultiplier output pulses this method
is typical of current measurement techniques.
There are problems associated with this type of fil-
ter, however, which must be considered. If the

decay time is made too short, i.e. τRC <<T , the
weighted function lies close to zero and the accura-
cy is very poor. On the other extreme, however, if
the decay time is made too long, i.e. τRC>>T , sepa-
rate samples become correlated since one can no
longer follow changes in the intensity taking place
on a time scale of less than τRC. Suppose, for

example, one selects a decay time τRC = T/4, then
the different samples are now only correlated by
2%. That is to say that any signal present at one
sample time has decayed to 2% of its value by the
next. This distortion may be acceptable in some
contexts but need to be considered carefully for
each situation. Ideally, one obtains the most infor-
mation from a filter weighting which lies close to
rectangular in both time (duration T) and frequency
(width B = 1/T) spaces. Full integration is such a fil-
ter. This weights uniformly all data received
between sample points but re-sets the total to zero
at the beginning of each sample period so that
each sample is independent. The operation of such

a filter can be represented by giving the integrated
charge for the jth sample time i.e.

...(11)

Where i(t) denotes the photomultiplier output at
time t. If we wish to use some arbitrary weighting
function, h(t), then the integrated charge at jth sam-
ple time would be given by

...(12)

For an RC filter, for example, the weighting function
would be given by

h(τ) = e �t /τ RC ...(13)

The accuracy with which the intensity can be meas-
ured during an integration time NT, where N is the
number of samples, will b determined by the accu-
racy with which Q can be measured. Q will be given
by

...(14)

with a relative variance, describing the accuracy
with which Q obtained given by

...(15)

If, on the other hand, we are concerned with the
measurement of the correlation function at delay tδ,
defined by

...(16)

The accuracy will be governed by the relative 
variance 

...(17)

4 the effect of the photomultiplier
noise sources and the sampling 
technique on accuracy

Having described the various sources of noise in
photomultiplier tubes it is now necessary to demon-
strate the extent to which each limits the attainable
accuracy in the different situation. A fuller analytical
treatment will be found in reference (6) and (7)
which would be consulted if more detail of the deri-
vations is required than is given here. Throughout
the present discussion I shall confine our attention
to constant intensity situations. The analysis is ren-
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dered somewhat more complicated if fluctuating
intensities are to be considered; the principles
remain the same, however.

photodetection noise

Suppose we wish to measure the intensity during
an integration time NT via the total charge as
shown in equation (14). Assuming standardised
photomultiplier output pulses, the relative variances
for full and capacitive integration have been shown
(6) to be given by rows 1 and 2 of table 2, where r
is the count rate per second. If the capacitive inte-
gration time is chosen so the τRC = NT/4 leaving 2%
correlation between samples then the relative vari-
ance with capacitive integration would be twice that
for full integration. This is demonstrated in 
figure 5 where a plot of the measured inverse rela-
tive variance, Q2/Var Q, against the total counts per
integration time, nT, is shown, (6). Agreement
between theory, solid lines, and the experimental
points confirm the validity of the theory. On measur-
ing the correlation function, defined in equation
(16), the relative variance can be shown (7) to be
given by rows 3 and 5 of table 2. For weak signals
(rT<<1) the performance will be dominated by the
term of order 1/r2T2. If we select the same value of
τ

RC (=NT/4) as before then the relative variance for
capcitive integration will be four times that for full
integration implying that one would require four
times longer integration time to achieve the same
performance. For strong signals (rT>>I), however,
where performance will be dominated by the ter of
order 1/rT, capacitive integration will require only
double the integration time as full integration. The
result for weak signals is demonstrated experimen-
tally if figure 6 in which measured correlation func-
tions are compared for full (a) and capacitive (b)
integration schemes. The count rate per second
was r ≈ 100 with a sample time T = 1 ms; τRC was
selected to be 0.25 ms. The observed relative vari-
ances are 0.0011 (a) and 0.0044 (b) which is in the
predicted ratio for these conditions.

Thus one would conclude that measurements using
capacitive integration would typically require twice
the integration time as full integration I the meas-
urement of intensity or four times the duration in the
measurement of the correlation function. As men-
tioned before, the excess time required could be
reduced by increasing τRC at the expense of intro-
ducting distortion in the way the observed charge
follows changes in the intensity.

multiplication noise

The effect of the fluctuations in charge has been
shown (6) to give a relative variance in the meas-
urement of total charge given by rows 5 and 6 of
table 2 for full and capacitive integration respective-
ly. The relative variances of the correlation coeffi-
cients have been shown (7) to be given by rows 7
and 8 for full and capacitive integration respectively.
The effect of charge fluctuations in the measure-
ment of intensity is to increase the relative vari-
ance, and hence the integration item required to
achieve the same performance, by α (= q2/q2). In
the measurement of the correlation function the
equivalent increases are α, for strong signals and
α2, for weak signals. In tables 3 and 4 I compare
the ratio of the required integration time τ, for each
combination of circumstances to the that required
for photon-counting operation, τo. A mean gain per
stage of µ = 5 has been assumed with the same
values of the excess variance parameter, b, and α
as those in table 1. Though the values of α are
derived from Prescott�s analysis [3] assuming dyn-
ode inhomogeneities any experiementally derived
values could equally well be used. As previously,
the capacitive tie constant is assumed to be 
τ

RC = NT/4. It should be remembered that the
observed anode count rate, r, is not equal to the
photodetection rate at the cathode, ro, but is
reduced by the fraction of pulses that fail to propa-
gate, k, i.e.

r = ro (1-k) �(18)
table 1
table of the dependence of α and k on the values of
b and µ based on Prescott�s analysis.

b µ k α

0.0 4.0 0.020 1.20
5.0 0.007 1.24

0.2 4.0 0.060 1.47
5.0 0.034 1.44

1.0 4.0 0.200 2.00
5.0 0.167 2.00

Further, on standardisation in a discriminator some
small pulses will be lost so that the photon-counting
rate is less than the true rate. The fraction lost will
obviously depend on the probability of obtaining
very small pulses so that it is obviously greater for
the photomultiplier tube shown in figure 2 than that
in figure 1. In practice, a fraction between 5% and
10% of the pulses would be lost at this stage, more
being lost with small µ and large b. The results in
tables 3 and 4 thus overestimate the value of ro in
standardised operation by 5% - 10% and thus over-



estimate the disadvantage of non-standardised
operation correspondingly.

Table 3 contains the results of the measurement of
intensity showing a difference of a factor 4 from
best to worst cases. Generally speaking, the differ-
ence may not be significant except where very
weak signals are involved. For the emasurement of
correlation coefficients, as shown in table 4, the
discrepancy is increased to a factor of 16. The use
of photon-counting processing is thus more advan-
tageous in this type of measurement. Any particular
combination or filter weighting and processing
method must be judged on its own merits in the
light of other facts such as complexity and price, as
well as ultimate performance limits.

table 2
The relative variance of the measured quantity
under various experimental conditions.

Photomultiplier Measured Integration Relative Variance 
Output Quantity (X) Method

Standardised Q Full (Photon 
counting)

Capacitive

Full (Photon
counting)

Capacitive

Non-standardised Q Full

Capacitive
(Current
measurement)

Full

Capacitive
(Current
measurement)

Figure 7 and 8 show results obtained by use of full
integration for the measurement of intensity in
which standardised (photon-counting) and non-
standardised photomultiplier outpus were compared
(6). The tube whose charge distribution was shown
in figure 2 was used with µ = 6.5. In figure 7 typi-
cal integrated charge distribution, p (Q,T), are
shown for standardised and non-standardised puls-
es when n = 6.68. As expected the non-standard-
ised distribution is broader. The observed relative
variances for these distributions, and for other val-
ues of  in addition, are compared with the theoreti-
cal results for photon counting in figure 8. The ratio
of the observed to the calculated values gives a
measure of α for the tube. With standardised oper-
ation, the data is distributed about α = 1.43, corre-
sponding to a value for b of 0.22 in reasonable

agreement with the original charge distribution of
figure 2. For ideal Poisson multiplication a value for
α of 1.19 would be expected (b = 0) as shown,
while in the worst case a value α = 2.0 would be
expected.

figure 4 schematic diagram of the different sampling schemes
discussed.

figure 5 the dependence of the inverse relative variance of the
integrated charge distributions, P(Q, T), for standardised photo-
multiplier output, on the number of counts per sample time.
The effect of the different storage techniques is shown.
Continuous lines represent theory; the points are experimental
data.

extraneous noise

It is important to establish the extent to which extra-
neous pulses due to feedback mechanisms in the
photomultiplier tube affect performance either by
distorting the quantity being measure or by reduc-
ing the accuracy of the measurement. Having
quantified the effects, one can then asses the
importance of selecting tubes which are free of
these defects.

measurement of intensity

Let us initially consider the effect of correlated after
pulsing on the measurement of intensity. Suppose
the probability of a correlated afterpulse is β then no
original pulses will give rise to n1 = βno correlated
afterpulses. If only the original pulses can give rise
to correlated afterpulses then in photon counting
operation we have no (1 � β) pulses with weighting
one unit and β pulses with weighting two units. The
total charge, mean and variance are then given by
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�(19)

and

�(20)

respectively,  leading to a relative variance given by

�(21)

This implies that a 5% correlated afterpulse proba-
bility will increase the mean observed charge by
5% and increase the integration time required to
measure this quantity also by 5% compared with
the ideal case. If we consider full integration of non-
standardised pulses, on the other hand, we require
to know the charge distribution of electrions in the
secondary pulse. Let us assume that the feedback
mechanism gives rise to f electrons from the cath-
ode having a Poisson probability distribution p (f).
The final output distribution p (q1) will then be the
convolution of p (f) with p (q) such that

�(22)

where q is the charge in an uncorrelated pulse. The
mean and variance of the total observed charge
can then be shown to be given by

�(23)

and

�(24)

so that the relative variance is given by

�(25)

Taking typical values f =4, α = 1.25 and β = 0.05 we
see that the apparent charge is overestimated by
20% and the integration time needed to obtain this
quantity to a specified accuracy is increased by
36% compared with the ideal case.

It is apparent, therefore, that the presence of corre-
lated afterpulses is unlikely to prove a major limita-
tion, in the use of photomultiplier tubes exhibiting
this phenomenon, for the measurement of light
intensity.

measurement of the correlation function

For simplicity, I shall limit the present discussion to
photon-counting operation alone. The effect of
charge fluctuations in the photomultiplier output
when current measurement is used will serve to
increase the uncertainty and distortion particularly
when f >1. The observed correlation function for a
source of constant intensity is made up of two
terms:

(i) the random coincidence between observed
pulses which is given by

�(26)

where β is the total correlated afterpulse probability
formed by integrating over all delay times, τ, i.e.

�(27)

(ii) in addition there is the correlated afterpulse
term at delay τ which is proportional to the count
rate, i.e.

�(28)

combining both contributions the total observed,
correlation function is given by

�(29)

Numerically this shows that for β = 0.05 (as before)
and no = 10-3 the random coincidence background
term would be overestimated by 10%. However, if
all the correlated afterpulse probability were con-
centrated at a particular delay τ, then there would
be a peak at this delay 48 times greater than the
background value. Referring back to the photomulti-
plier tube exhibiting afterpulses as shown in figure
3 the operating conditions were that n = 3.5 x 10-4.
The correlated afterpulse probability for that particu-
lar photomultiplier tube was then equivalent to 
β = 2 x 10-4 only. Thus, in the measurement of the
correlation function, it is important to use photomul-
tiplier tubes which are free of afterpulsing to a very
high degree. This stringent requirement on after-
pulsing implies that special construction of the pho-
tomultiplier tube may be required. The example
shown in figure 3 exhibits positive ion feedback
which could possibly have been reduced by modify-
ing the design of the cathode end of the tube.
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table 3
comparison of the effects of the different operating
conditions in the measurement of the correlation
coefficient for weak signals. µ = 5.0.

excess
photomultiplier integration variance αα ττ//τταα

output method (b)

Standardised Full - 1 1

Capacitve - 1 2

Non- Full 0.0 1.24 1.24
standardised 0.2 1.44 1.44

1.0 2.00 2.00

Capacitive 0.0 1.24 2.4
0.2 1.44 2.88
1.0 2.00 4.00

table 4
comparison of the effects of the different operating
conditions in the measurement of the correlation
coefficient for weak signals. µ = 5.0.

excess
photomultiplier integration variance αα ττ//ττo

output method (b)

Standardised Full - + 1

Capacitve - + 4

Non- Full 0.0 1.24 1.54
standardised 0.2 1.44 2.07

1.0 2.00 4.00

Capacitive 0.0 1.24 6.2
0.2 1.44 8.3
1.0 2.00 16.00

table 5
comparison of the normalised factorial moments for
coherent illumination of two different photomultiplier
tubes. 107 samples were taken.

normalised
factorial theory tube A tube B
moment

n2 1.000 + 0.001 0.999 1.379
n3 1.000 + 0.002 0.997 1.923
n4 1.000 + 0.003 0.995 2.687
n5 1.000 + 0.0012 0.990 3.819

figure 6 a comparison of (a) full integration with (b) capacitive
integration in the measurement of the ocrrelation function of a
weak coherent light source. The count rate was 100 per sec-
ond with a sample interval of 1 ms; τRC was .25 ms

figure 7 integrated charge distributors, p(Q,T), showing a com-
parison of standardised and non-standardised operation using
the photomultiplier tube as in figure 2.

5 conclusions regarding the optimum
usage of photomultiplier tubes

In the preceding sections I have shown that full
integration is prefereable to capacitive integration
for various reasons:

(i) the choice of sampling technique can intro-
duce correlation between different samples. With
full integration this problem does not arise. Filters
giving rise to less correlation between samples than
the RC filter described here can, of course, be
designed. It is not possible, however, to improve on
the full integration performance.

(ii) allied with the previous conclusion is the find-
ing that the existence of correlations between sam-
ples forces one to use a filter profile of greater
bandwidth which increases the experimental uncer-
tainty to an extent determined by the basic filter
shape and the acceptable correlation level.

(iii) a third advantage of full integration that has
not previously been mentioned is that the choice of
filter response is automatically linked to the separa-
tion of samples. Other filters require separate
adjustment for each sample interval.



The advantage of standardised operation in remov-
ing noise due to variation in charge from pulse to
pulse was also demonstrated. If full integration and
standardsed pulse operation are combined in pho-
ton�counting operation we obtain the best perform-
ance for a given photomultiplier tubes. Accuacy in
the measurement is greatest and the effect of cor-
related afterpulsing is reduced; particularly if the
afterpulses are large compared with the original
pulses. The effect of correlated afterpulses in gen-
eral is less damaging in the measurement of inten-
sity than in the measurement of the correlation
function. It was shown to be essential to select a
photomultiplier tube with very loy afterpulse proba-
bility in the latter case to avoid significant distortion
of the correlation function at certain particular
delay-times. The existence of such correlated after-
pulses does not significantly distort the mean value
of th eintensity and serves merely to increase the
integration time required for a given accuracy.

6 the measurement of low light flux
by photon-counting

To illustrate some of the points raised so far I shall
finish by discussing th eapplication of these princi-
ples to the measurement of low light flux (8). For
reasons already given one uses the technique of
photon-counting. The first step is to select a suit-
able photomultiplier tube. I shall illustrate this pro-
cedure with a comparison of three different photo-
multiplier tubes having nominally similar specifica-
tions. In order to establish whether the tubes are
free of afterpulsing the photon-counitng probability
distributions, p(n, T), were studied. For a constant
intensity source, as shown in equation (6), the dis-
tribution should be Poisson, characterised by hav-
ing normalised factorial moments given by

n(r)=<n(n-1)-----(n-r+1)>/n-r=1 �(30)

This measurement is an alternative to measure-
ment of the correlation function leading to an
excess variance if afterpulsing occurs. The after-
pulse probability, β, is related to the observed nor-
malised second factorial moment by

�(31)

Initially tubes A and B were illuminated by laser
light, their photon-counting distributions were meas-
ured and their factorial moments calculated as
shown in table 5. It is apparent that tube B is intro-
ducing excess noise due to correlated afterpulses
and can be refjected. Since we are concerned with
the measurement of low light flux we shall be pri-
marily limited by the properties of the detector dark

counts. In table 6 the results of photon-counting
statistics measurements (9) of the room tempera-
ture and cooled dark-counts for tubes A and C are
shown. At room temperature both tubes give
acceptable performance but on cooling tube A gives
evidence of ~20% correlated afterpulse probability.
This tube also can be eliminated leaving tube C as
the suitable photomultiplier for low light level work.
In measuring low light levels one uses the method
of synchronous detection (8) in which one spends
equal intervals of time recording dark-counts alone
and dark-counts plus signal. To remove the effects
of systematic drifts it is best to operate by integrat-
ing over many alternate periods of the two states.
Suppose we record the total dark counts only as n1,
the signal plus dark counts as n2 and the next dark
counts as n3. The signal can be obtained from the
difference estimator.

�(32)

while taking the difference between pairs of dark-
count measurements gives a background estimator,

�(33)

The mean values of these estimators are given by

�(34)

and

�(35)

where rs is the signal count rate per second. Their
variances are given by

�(36)

and

�(37)

where rd is the detector dark-count rate per second.
In figure 9 the evolution of these two estimators
with time is shown as they are progressively
summed. The data points perform a random walk
about their mean values generally lying inside the
standard deviation. (√ Variance) parabolae also
included in the diagram. The mean light flux was
found to be 0.043 counts per second against a
cooled dark-count rate of 0.459 per second. After
35 minutes of integration the two quantitites
become effectively resolvable. Obviously, measure-
ment of such weak signals (~ 6.3 x 10-17 W) requires
the optimum choice of detector and experimental
technique to avoid excessive integration time. This
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type of light level is not untypical of that encoun-
tered in some classical spectroscopy of astronomi-
cal situations.
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table 6 comparison of the normalised factorial moments for the dark counts of two different photomultiplier
tubes. At room temperature 105 samples were taken; when cooled 104 samples were taken for tube A and
103 samples for tube C.

normalised room temperature cooled
factorial
moment theory tube A tube C theory tube A theory tube C

n2 1.000 + 0.009 1.009 1.000 1.00 + 0.03 1.73 1.00 + 0.09 1.01
n3 1.000 + 0.017 1.034 0.999 1.00 + 0.05 6.85 1.00 + 0.17 1.02
n4 1.000 + 0.030 1.088 0.991 1.00 + 0.10 9.94 1.00 + 0.30 0.97
n5 1.000 + 0.12 1.205 0.97 - - - -

figure 8 the dependence of α = q2/q2 on output standardisa-
tion for different numbers of counts per sample time for the
photomultiplier as in figure 2.

figure 9 random walks of the signal and background estima-
tors in the measurement of a low light flux by synchronous
detection.
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