Accessories For Photomultiplier Tubes

HAMAMATSU

PURSUING THE POTENTIAL OF "LIGHT"

Over the past 40 years since its founding, Hamamatsu Photonics has been pursuing the most advanced areas of light research, as a company at the leading edge of photonics technology. This work has led to the development of a wide variety of innovative products used in diverse fields, such as industrial measurement and production, medical diagnosis as well as scientific research into unexplored areas.

Research is now expanding the potential of photonics technology beyond the range of visible light, towards the ultraviolet, infrared and X-ray regions, as well as ultrafast events and extremely low light levels.

It is said that, human beings at present, understand less than 0.1 percent of the world of light. Light exists all around us yet is still a mystery containing endless amounts of useful information and potential discoveries. Hamamatsu Photonics is continually expanding its research into "light" to reveal this unknown yet fascinating world in order to enrich all our lives as well as contribute to the progress of science and industry in biology, medicine, space, physics, and energy.

Table of Contents

PHOTOMULTIPLIER TUBE SOCKET ASSEMBLIES	1
D-Type Socket Assemblies	
Selection Guide	7
Characteristics	8
Dimensional Outlines and Diagrams	10
DA-Type Socket Assemblies	16
DP/DAP-Type Socket Assemblies	18
Gated D-Type Socket Assemblies	20
PREAMPLIFIER UNITS	22
HIGH VOLTAGE POWER SUPPLIES	
Voltage Dependence of Photomultiplier Tube Gain	24
High Voltage Power Supply Units	25
Bench-top-Type High Voltage Power Supplies	28
THERMOELECTRIC COOLERS	
Cooling Effect on Dark Current	31
Thermoelectric Coolers	32
MAGNETIC SHIELD CASES	
Influence of Magnetic Fields and Magnetic Shielding	37
E989 Series	38
RELATED PRODUCTS	
Housing	39
Power and Signal Cables and Connector Adapters	40
Photon Counters and Related Products	41
INDEX BY TYPE NO.	43

PHOTOMULTIPLIER TUBE SOCKET ASSMEBLIES

Photomultiplier Tube Socket Assemblies

Hamamatsu provides a wide variety of socket assemblies specifically designed for simple and reliable operation of photomultiplier tubes (often abbreviated as PMTs). These socket assemblies consist primarily of a high quality socket and voltage divider circuit integrated into a compact case. Variant types are available with internal current-to-voltage conversion amplifiers, gate circuits and high voltage power supply circuits.

Types of Socket Assemblies

The circuit elements used in Hamamatsu socket assemblies are represented by the three letters below. The socket assembly types are grouped according to the combination of these letters.

- D : Voltage Divider
- A : Amplifier
- P : High Voltage Power Supply

D-Type Socket Assemblies (E717, E990 Series, etc.)

The D-type socket assemblies contain a voltage divider circuit along with a socket in a compact metallic or plastic case. Plastic case types are potted with silicone compound to ensure high environmental resistance. D-type socket assemblies also include gate circuits to turn the on and off, as for example in the C1392 series.

Refer to page 7 for the selection guide to D-type socket assemblies.

Figure 1: D-Type Socket Assembly

DA-Type Socket Assemblies (C7246, C7247 Series)

In addition to the circuit elements of the D-type socket assemblies, the DA-type socket assemblies include an amplifier that converts the low-level, high-impedance current output of a photomultiplier tube into a low-impedance voltage output. Possible problems from noise induction are eliminated since the high-impedance output of the photomultiplier tube is connected to the amplifier at the minimum distance.

Figure 2: DA-Type Socket Assembly

TACCC0002ED

DP-Type Socket Assemblies (C6270)

DP-type socket assemblies comprise a built-in high-voltage power supply circuit added to a D-type socket assembly. The C6270 uses an active voltage divider circuit and a high voltage power supply.

DAP-Type Socket Assemblies (C6271)

This type of socket assembly has a current-to-voltage conversion amplifier and a high voltage power supply, efficiently added to the circuit components of the D-type socket assembly.

Basics of Voltage Dividers

The following information describes voltage divider circuits which are basic to all types of socket assemblies. Refer to this section for information on proper use of the socket assemblies.

Voltage Divider Circuits

To operate a photomultiplier tube, a high voltage of 500 volts to 2000 volts is usually supplied between the photocathode (K) and the anode (P), with a proper voltage gradient set up along the photoelectron focusing electrode (F) or grid (G), secondary electron multiplier electrodes or dynodes (Dy) and, depending on photomultiplier tube type, an accelerating electrode (Acc). Figure 5 shows a schematic representation of photomultiplier tube operation using independent multiple power supplies, but this is not a practical method. Instead, a voltage divider circuit is commonly used to divide, by means of resistors, a high voltage supplied from a single power supply.

Figure 5: Schematic Representation of Photomultiplier **Tube Operation**

TACCC0001EB

Figure 6 shows a typical voltage divider circuit using resistors, with the anode side grounded. The capacitor C_D connected in parallel to the resistor R_5 in the circuit is called a decoupling capacitor and improves the output linearity when the photomultiplier tube is used in pulse operation, and not necessarily used in providing DC output. In some applications, transistors or Zener diodes may be used in place of these resistors.

Figure 6: Anode Grounded Voltage Divider Circuit

Anode Grounding and Photocathode Grounding

In order to eliminate the potential difference between the photomultiplier tube anode and external circuits such as an ammeter, and to facilitate grounding, the generally used technique for voltage divider circuits is to ground the anode and supply a high negative voltage (-HV) to the photocathode, as shown in Figure 6. This scheme provides the signal output in both DC and pulse operations, and is therefore used in a wide range of applications.

In photon counting and scintillation counting applications, however, the photomultiplier tube is often operated with the photocathode grounded and a high positive voltage (+HV) supplied to the anode mainly for purposes of noise reduction. This photocathode grounding scheme is shown in Figure 7, along with the coupling capacitor Cc for isolating the high voltage from the output circuit. Accordingly, this setup cannot provide a DC signal output and is only used in pulse output applications. The resistor RP is used to give a proper potential to the anode. The resistor RL is placed as a load resistor, but the actual load resistance will be the combination of RP and RL.

Figure 7: Photocathode Grounded Voltage Divider Circuit

Standard Voltage Divider Circuits

Basically, the voltage divider circuits of socket assemblies listed in this catalog are designed for standard voltage distribution ratios which are suited for constant light measurement. Socket assemblies for side-on photomultiplier tubes in particular mostly use a voltage divider circuit with equal interstage voltages allowing high gain.

Figure 8: Equally Divided Voltage Divider Circuit

Tapered Voltage Divider Circuits

In most pulsed light measurement applications, it is often necessary to enhance the voltage gradient at the first and/or last few stages of the voltage divider circuit, by using larger resistances as shown in Figure 9. This is called a tapered voltage divider circuit and is effective in improving various characteristics. However it should be noted that the overall gain decreases as the voltage gradient becomes greater. In addition, care is required regarding the interstage voltage tolerance of the photomultiplier tube as higher voltage is supplied. The tapered voltage circuit types and their suitable applications are listed below.

Tapered circuit at the first few stages (resistance: large → small) Photon counting (improvement in pulse height distribution) Low-light-level detection (S/N ratio enhancement) High-speed pulsed light detection (improvement in timing properties)

> Other applications requiring better magnetic characteristics and uniformity

Tapered circuit at the last few stages (resistance: small → large) High pulsed light detection (improvement in output linearity)

> High-speed pulsed light detection (improvement in timing properties)

Other applications requiring high output across the load resistor

Figure 9: Tapered Voltage Divider Circuit

Voltage Divider Circuit and Photomultiplier Tube Output Linearity In both DC and pulse operations, when the light incident on the photocathode increases to a certain level, the relationship between the incident light level and the output current begins to deviate from the ideal linearity. As can be seen from Figure 10, region A maintains good linearity, and region B is the socalled overlinearity range in which the output increase is larger than the ideal level. In region C, the output goes into saturation and becomes smaller than the ideal level. When accurate measurement with good linearity is essential, the maximum output current must be within region A. In contrast, the lower limit of the output current is determined by the dark current and noise of the photomultiplier tube as well as the leakage current and noise of the external circuit.

Figure 10: Output Linearity of Photomultiplier Tube

LIGHT FLUX (A.U.)

Output Linearity in DC Mode

Figure 11 is a simplified representation showing photomultiplier tube operation in the DC output mode, with three stages of dynodes and four dividing resistors R1 through R4 having the same resistance value.

Figure 11: Basic Operation of Photomultiplier Tube and Voltage Divider Circuit

TACCC0060E

[When light is not incident on the tube]

In dark state operation where a high voltage is supplied to a photomultiplier tube without incident light, the current components flowing through the voltage divider circuit will be similar to those shown in Figure 12 (if we ignore the photomultiplier tube dark current). The relation of current and voltage through each component is given below

Interelectrode current of photomultiplier tube I1=I2=I3=I4 (= 0 ampere)

Electrode current of photomultiplier tube

lk=lby1=lby2=lby3=lp (= 0 ampere)

Voltage divider circuit current

 $I_{R1}=I_{R2}=I_{R3}=I_{R4}=I_{D}=(HV/\sum_{n=1}^{3}Rn)$

Voltage divider circuit voltage V1=V2=V3=V4=ID • Rn (= HV/4)

Figure 12: Operation without Light Input

TACCC0061EA

[When light is incident on the tube]

When light is allowed to strike the photomultiplier tube under the conditions in Figure 12, the resulting currents can be considered to flow through the photomultiplier tube and the voltage divider circuit as schematically illustrated in Figure 13. Here, all symbols used to represent the current and voltage are expressed with a prime ('), to distinguish them from those in dark state operation.

The voltage divider circuit current ID' is the sum of the voltage divider circuit current ID in dark state operation and the current flowing through the photomultiplier tube Δ ID (equal to average interelectrode current). The current flowing through each dividing resistor Rn becomes as follows:

$$I_{Rn'} = I_{D'} - I_{n'}$$

Where In' is the interelectrode current which has the following relation:

Thus, the interstage voltage V_n' (=I_{Rn}' • R_n) becomes smaller at the latter stages, as follows: $V_1' > V_2' > V_3' > V_4'$

TACCC0062EA

Figure 14 shows changes in the interstage voltages as the incident light level varies. The interstage voltage V4' with light input drops significantly compared to V4 in dark state operation. This voltage loss is redistributed to the other stages, resulting in an increase in V1', V2' and V3' which are higher than those in dark state operation. The interstage voltage V4' is only required to collect the secondary electrons emitted from the last dynode to the anode, so it has little effect on the anode current even if dropped to 20 or 30 volts. In contrast, the increases in V1', V2' and V3' directly raise the secondary emission ratios (δ_1 , δ_2 and δ_3) at the dynodes Dy1, Dy2 and Dy3, and thus boost the overall current amplification μ (= $\delta_1 \cdot \delta_2 \cdot \delta_3$). This is the cause of overlinearity in region B in Figure 10. As the incident light level further increases so that V4' approaches 0 volts, output saturation occurs in region C.

3

Figure 14: Changes in Interstage Voltages at Different

Linearity Improvement in DC Output Mode

To improve the linearity in DC output mode, it is important to minimize the changes in the interstage voltage when photocurrent flows through the photomultiplier tube. There are several specific methods for improving the linearity, as discussed below.

(1) Increasing the voltage divider current

Figure 15 shows the relationship between the output linearity of a 28 mm (1-1/8") diameter side-on photomultiplier tube and the ratio of anode current to voltage divider current. This is a sample plot, so actual data may differ from tube to tube even for the same type of photomultiplier tube, depending on the supply voltage and individual dynode gains. To ensure high photometric accuracy, it is recommended that the voltage divider current be maintained at least twice the value obtained from this figure.

The maximum linear output in DC mode listed for the D-type socket assemblies in this catalog indicates the anode current equal to 1/20 of the voltage divider current. The output linearity at this point can be maintained within ± 3 % to \pm 5%.

Figure 15: Output Linearity vs. Anode Current to Voltage **Divider Current Ratio**

RATIO OF ANODE CURRENT TO VOLTAGE DIVIDER CURRENT (%)

As stated above, good output linearity can be obtained simply by increasing the voltage divider current. However, this is accompanied by heat emanating from the voltage divider. If this heat is conducted to the photomultiplier tube, it may cause problems such as an increase in the dark current, and variation in the output.

② Using the active voltage divider circuit

Use of a voltage divider circuit having transistors in place of the dividing resistors in last few stages (for example, Hamamatsu E5815 series using FETs) is effective in improving the output linearity. This type of voltage divider circuit ensures good linearity up to an output current equal to 60 % to 70 % of the voltage divider current, since the interstage voltage is not affected by the interelectrode current inside the photomultiplier tube. A typical active voltage divider circuit is shown in Figure 16.

Figure 16: Active Voltage Divider Circuit

3 Using Zener Diodes

The output linearity can be improved by using Zener diodes in place of the dividing resistors in the last few stages, because the Zener diodes serve to maintain the interstage voltages at a constant level. However, if the supply voltage is greatly varied, the voltage distribution may be unbalanced compared to other interstage voltages, thus limiting the adjustable range of the voltage with this technique. In addition, if the supply voltage is reduced or if the current flowing through the Zener diodes becomes insufficient due to an increase in the anode current, noise may be generated from the Zener diodes. Precautions should be taken when using this type of voltage divider circuit. Figure 17 shows a typical voltage divider circuit using Zener diodes.

Figure 17: Voltage Divider Circuit Using Zener Diodes

④ Using Cockcroft-Walton Circuit

When a Cockcroft-Walton circuit as shown in Figure 18 is used to operate a 28 mm (1-1/8") diameter side-on photomultiplier tube with a supply voltage of 1000 volts, good DC linearity can be obtained up to 200 μ A and even higher. Since a high voltage is generated by supplying a low voltage to the oscillator circuit, there is no need for using a high voltage power supply.

This Cockcroft-Walton circuit achieves superior DC output linearity as well as low current consumption.

Figure 18: Cockcroft-Walton Circuit

(5) Using multiple high voltage power supplies

As shown in Figure 19, this technique uses multiple power supplies to directly supply voltages to the last few stages near the anode. This is sometimes called the booster method, and is used for high pulse and high count rate applications in high energy physics experiments.

Figure 19: Voltage Divider Circuit Using Multiple Power Supplies (Booster Method)

Output Linearity in Pulsed Mode

In applications such as scintillation counting where the incident light is in the form of pulses, individual pulses may range from a few to over 100 milliamperes even though the average anode current is small at low count rates. In this pulsed output mode, the peak current in extreme cases may reach a level hundreds of times higher than the voltage divider current. If this happens, it is not possible to supply interelectrode currents from the voltage divider circuit to the last few stages of the photomultiplier tube, thus leading to degradation in the output linearity.

Improving Linearity in Pulsed Output Mode **(1)** Using decoupling capacitors

Using multiple power supplies mentioned above is not popular in view of the cost. The most commonly used technique is to supply the interelectrode current by using decoupling capacitors as shown in Figure 20. There are two methods for connecting these decoupling capacitors: the serial method and the parallel method. As Figures 20 and 21 show, the serial method is more widely used since it requires lower tolerance voltages of the capacitors. The capacitance value C (farads) of the decoupling capacitor between the last dynode and the anode should be at least 100 times the output charge as follows:

$C > 100 \bullet Q/V$

where Q is the charge of one output pulse (coulombs) and V is the voltage (volts) across the last dynode and the anode.

TACCC0065E

TACCC0066EA

Since this method directly supplies the pulse current with electrical charges from the capacitors, if the count rate is increased and the resulting duty factor becomes larger, the electrical charge will be insufficient. Therefore, in order to maintain good linearity, the capacitance value obtained from the above equation must be increased according to the duty factor, so that the voltage divider current is kept at least 50 times larger than the average anode current just as with the DC output mode. The active voltage divider circuit and the booster method using multiple power supplies discussed previously, provide superior

Figure 20: Equally Divided Voltage Divider Circuit and **Decoupling Capacitors**

pulse output linearity even at a higher duty factor.

TACCC0067EA

2 Using tapered voltage divider circuit with decoupling capacitors

Use of the above voltage divider circuit having decoupling capacitors is effective in improving pulse linearity. However, when the pulse current increases further, the electron density also increases, particularly in last stages. This may cause a space charge effect which prevents interelectrode current from flowing adequately and leading to output saturation. A commonly used technique for extracting a higher pulse current is the tapered voltage divider circuit in which the voltage distribution ratios in the latter stages are enhanced as shown in Figure 21. Care should be taken in this case regarding loss of the current amplification and the breakdown voltages between electrodes.

Since use of a tapered voltages divider circuit allows an increase in the voltage between the last dynode and the anode, it is possible to raise the voltage across the load resistor when it is connected to the anode. It should be noted however, that if the output voltage becomes excessively large, the voltage between the last dynode and the anode may drop, causing a degradation in output linearity.

Figure 21: Tapered Voltage Divider Circuit Using **Decoupling Capacitors**

TACCC0068E

D-TYPE SOCKET ASSEMBLY SELECTION GUIDE

D-Type Socket Assemblies

The D-type socket assemblies are grouped as follows: (a) For DC output (-HV supply) Available only upon request (b) For DC or pulsed output (-HV supply) e.g. E717-63 (c) For pulsed output (+HV supply) e.g. E990-08

Figure 22: Connection of D-Type Socket Assemblies to Extrernal Circuits

(a) For DC output (-HV supply)

type socket assemblies to external circuits.

(+HV supply)

e.g. E717-35

(d) For DC or pulsed output (-HV supply), or pulsed output

Connection of D-Type Socket Assemblies to External Circuits

Figure 22 shows typical examples of connecting various D-

(b) For DC or pulsed output (-HV supply)

(C) For pulsed output (+HV supply)

TACCC0071EE

TO VOLTMETER

TACCC0069EA

(d) For DC or pulsed output (-HV supply), or pulsed output (+HV supply)

d-1. For DC or pulsed output (-HV supply)

* GND should be connected externaly.

d-2. For pulsed output/+HV supply For general scintillation counting and photon counting applications, recommended values for C_P and R_P are 0.001 μ F to 0.005 μ F and 10 k Ω to 1 M Ω . Since a high voltage is supplied to these parts, care must be taken when handling this circuit.

* GND and C^B should be connected externally.

+HV

POWER SUPPLY

For Side-on Types

PMT Type No.	PMT Diameter	Applicable Socket Assembly	PMT Type No.	PMT Diameter	Applicable Socket Assembly
1P21			R1306, R2220	51 mm (2")	F1198-05, -20
1P28	-		R1307 R1307-07 R1307-01	76 mm (3")	E1198-05 -20
931A	-		R1387, R1508, R1509	38 mm (1-1/2")	E2183-500, -502
931B. R1516	-		R1450	19 mm (3/4")	E974-22
R105 R105UH	-		R1463	13 mm (1/2")	E849-35 -90 -92
R212 R106	-		R1464 R2027	19 mm (3/4")	E974-13 -14 -17
R636-10 R758-10	-		R1513	127 mm (5")	E1198-22 -23 E6316
R028 R055	28 mm (1-1/8")	E717-35 -63 E5815-01	R1617	19 mm (3/4")	E974-13 -14 -17
P1477-06	20 mm (1-1/0)	2717 35, 65, 25015 01	P1635 P3878	10 mm (3/8")	E1761-04 -21 -35
R1527	-		R1705	10 mm (0/0)	21, 35
R2368	-		R1767	38 mm (1-1/2")	E2183-500, -502
R2658	-		R1828-01 R2050	51 mm (2")	E2070-500
R2603	-		P1878 P2205	10 mm (3/4")	E2373-300
R2095	-		P1803	191111 (3/4)	29/4-10
R2343	-		P1904	10 mm (3/8")	E1761-04, -21, -35
R3700, R4332			R1094		
R3010	13 mm (1/2")	E850-13	R1924A	25 mm (1")	E2924, -05, -500
R3011			R1925A, R1926A	20	F0402 500 500
R3896	-		R2066A	38 mm (1-1/2")	E2183-500, -502
R4220, R7447	28 mm (1-1/8")	E717-35, -63, E5815-01	R2102	Special Envelope	E849-35, -90, -92
R4632			R2154-02, R3256	51 mm (2")	E1198-07
R5108			R2228	28 mm (1-1/8")	E990-07, -08
R6350	-		R2248	Special Envelope	E1761-04, -21, -35
R6351	13 mm (1/2")		R2257	51 mm (2")	E5859-01, -03
R6352			R2496	10 mm (3/8")	E1/61-05
R6353			R2557	13 mm (1/2")	E849-52
R6354		E850-13	R2801	19 mm (3/4")	E974-13, -14, -17
R6355			R3234-01, R3235-01, R3237-01	51 mm (2")	E2979-501
R6356	-		R3310-02	51 mm (2")	E2762-506 (See P.34)
R6357	-		R3478, R2076	19 mm (3/4")	E2253-05, -08
R6358			R3550A	25 mm (1")	E2924, -05, -500
R7154	28 mm (1-1/8")	F717-35, -63, F5815-01	R3886	38 mm (1-1/2")	E2183-500, -502
R7446	20 (1		R3809U-50 Series	MCP-PMT	E3059-500 (See P.34)
			R3998-02	28 mm (1-1/8")	E990-29
			R4124, R4141	13 mm (1/2")	E849-68
For Head-on Typ	es		R5070A	25 mm (1")	E2924, -05, -500
	DMT Diamator	Appliaghla Saakat Appambly	R5505	magnetic field	E6133-03
PINIT Type No.	Pivit Diameter	Applicable Socket Assembly	R5900U	Metal package PMT	E5996
R316-02	28 mm (1-1/8")	E990-07, -08	R5900U-00-C8	Metal package PMT	E6669-01
R329-02, R5113-02, R2256-02	51mm (2")	E5859-01 -03	R5900U-00-L16	Metal package PMT	E6736
R331-05, R331	011111 (2)		R5900U-00-M4	Metal package PMT	E7083
R374, R376, R1104	28 mm (1-1/8")	E990-07, -08	R5900U-01-L16	Metal package PMT	E6736
R464, R585	51 mm (2")	E5859-05	R5912	208 mm (8")	E7694
R550	51 mm (2")	E1198-22, -23, E6316	R5929	28 mm (1-1/8")	E990-07, -08
R580	38 mm (1-1/2")	E2183-500, -502	R6231, R6231-01	51 mm (2")	E1198-26, -27
R632-01	19 mm (3/4")	E974-13, -14, -17	R6233, R6233-01	76 mm (3")	E1198-26, -27
R647, R760, R960	13 mm (1/2")	E849-35, -90, -92	R6234, R6234-01		
R649	51 mm(2")	E5859-05	R6235, R6235-01	Special Envelope	E1108 26 27
R759	13 mm (1/2")	E849-35, -90, -92	R6236, R6236-01		L1190-20, -21
R821	19 mm (3/4")	E974-13, -14, -17	R6237, R6237-01	1	
R877, R877-01	127 mm (5")	E1198-22, -23, E6316	R6249, R6248	28 mm (1-1/8")	E990-07, -08
R943-02	51 mm (2")	E2762-506 (See P.34)	R6427, R7056, R7057	28 mm (1-1/8")	E2624, -05
R980	38 mm (1-1/2")	E2183-500, -502	R6834	28 mm (1-1/8")	E990-07, -08
R1166, R762, R750	19 mm (3/4")	E974-13, -14, -17	R7400U Series		
R1250, R4144	127 mm (5")	E7693	R7401	Metal package PMT	E5770, E5780
	1 \- /		R7402	1	
			R7899	25 mm (1")	E2924-11

PMT Type No.	PMT Diameter	Applicable Socket Assembly	PMT Type No.	PMT Diameter	Applicable Socket Assembly
1P21			R1306, R2220	51 mm (2")	E1198-0520
1P28			R1307, R1307-07, R1307-01	76 mm (3")	E1198-0520
931A			R1387, R1508, R1509	38 mm (1-1/2")	E2183-500, -502
931B, R1516	-		R1450	19 mm (3/4")	E974-22
R105, R105UH			R1463	13 mm (1/2")	E849-35, -90, -92
R212, R106	-		R1464_R2027	19 mm (3/4")	E974-13, -14, -17
R636-10, R758-10	-		R1513	127 mm (5")	E1198-22, -23, E6316
R928 R955	28 mm (1-1/8")	E717-35 -63 E5815-01	R1617	19 mm (3/4")	E974-13 -14 -17
R1477-06	20 1111 (1 1/0)	R16	R1635 R3878	10 mm (3/8")	E1761-04 -21 -35
R1527	-		R1705		
R2368	-		R1767	- 38 mm (1-1/2")	E2183-500, -502
R2658	-		R1828-01 R2059	51 mm (2")	E2979-500
R2693	-		R1878 R2295	19 mm (3/4")	E974-18
R2949	-		R1893		2014 10
R3788 R4332	-		R1894	10 mm (3/8")	E1761-04, -21, -35
R3810			R1924A		
R3811	13 mm (1/2")	E850-13	R1925A R1926A	25 mm (1")	E2924, -05, -500
R3896			R2066A	38 mm (1-1/2")	E2183-500 -502
R4220 R7447	-		R2102	Special Envelope	E849-35 -90 -92
P/632	28 mm (1-1/8")	E717-35, -63, E5815-01	R2154-02 R3256	51 mm (2")	E1108-07
P5108	-		R2228	28 mm (1-1/8")	E990-07 -08
R6350			R22/8	Special Envelope	E1761-04 -21 -35
P6351	-		R2240	51 mm (2")	E5859-01 -03
P6352	-		R2237	10 mm (2/8")	E1761.05
R0352			R2490	10 mm (3/6)	E1701-03
R0353	13 mm (1/2")	E850-13	P2801	10 mm (2/4")	E074 12 14 17
R0334	13 11111 (1/2)	E030-13	R2001 P2024 01 P2025 01 P2027 01	51 mm (3/4)	E974-13, -14, -17
R0305	-		R3234-01, R3233-01, R3237-01	51 mm (2")	E2979-501
P6357	-		P3478 P2076	10 mm (2/4")	E2252.05 08
P6359	-		P2550A	25 mm (1")	E2024 05 500
R0330			R3330A	23 mm (1 1/2")	E2924, -03, -500
P7446	28 mm (1-1/8")	E717-35, -63, E5815-01	R3000		E2059 500 (Soo P 34)
K7440			P3008 02	28 mm (1 1/8")	E000 20
			R3330-02	13 mm (1/2")	E849-68
For Head-on Typ	00		P5070A	25 mm (1/2)	E2024 05 500
	5		R5070A	25 mm (1") for high	E6122 02
PMT Type No.	PMT Diameter	Applicable Socket Assembly	R5505	Motol package DMT	E5006
P316.02	28 mm (1.1/8")	E000.07.08	R59000	Motol package PMT	E6660.01
R310-02 R320-02 R5113-02 R2256-02	2011111 (1-1/0)	L990-07, -08	R59000-00-C8	Motol package PMT	E6726
P321 05 P321	51mm (2")	E5859-01, -03	R59000-00-E10	Motol package PMT	E7092
P374 P376 P1104	29 mm (1.1/9")	E000.07.08	R59000-00-M4	Motol package PMT	E7003
P464 P595	51 mm (2")	E5950-07, -08	R59000-01-E10		E7604
R404, R303	51 mm (2")	E1109 22 22 E6216	R5912	200 mm (1.1/9")	E7094
R550	29 mm (1.1/2")	E1190-22, -23, E0310	R0323	51 mm (2")	E1108.26 .27
R300	$\frac{3011111(1-1/2)}{10}$	E2103-300, -302	R0231, R0231-01	76 mm (2")	E1196-20, -27
R032-01	13 mm (3/4)	E974-13, -14, -17	R0233, R0233-01	70 mm (3)	E1196-20, -27
R047, R700, R900	13 mm(1/2)	E049-33, -90, -92	R0234, R0234-01	-	
R049	$\frac{51}{12}$ mm $\frac{1}{2}$		R0235, R0235-01	Special Envelope	E1198-26, -27
R759	13 mm (1/2)	E049-33, -90, -92	R6236, R6236-01	-	
R021	19 mm (3/4)	E974-13, -14, -17	R0237, R0237-01	20 mm (1 1/0")	F000.07 08
R0//, R0//-UT	127 mm(5)	E1190-22, -23, E0310	R0249, R0248	$20 \text{ mm} (1 - 1/8^{\circ})$	
D000	$29 \text{ mm} (4.1/0^{11})$	E2102-500 (See P.34)	R0421, R1050, R1057	$20 \text{ mm} (1 - 1/8^{\circ})$	
N30U	$30 \text{ mm} (1-1/2^2)$	E2103-300, -302	R0034	∠o mm (1-1/8°)	E990-07, -00
R1100, R/02, R/50	19 mm (3/4")	E9/4-13, -14, -1/	R/4000 Series	Matel and an DET	
R1200, R4144	127 mm (5°)	E1093	R/401		E3//U, E5/80
			K/4UZ	05 mm (41)	50004.44

For Head-on Types

D-TYPE SOCKET ASSEMBLIES FOR SIDE-ON PMTs

			Ground-	Ма	ximum Ratii	ngs D	B Leakage	Total	Maximum		
Type No.	Applicable PMT Diameter	Out- line and Dia- gram	ed Electrode/ Supply Voltage Polarity	Insulation Voltage between Case and Pins	Supply Voltage	Voltage Divider Current	Current in Signal Max.	Voltage Divider Resistance	Linear Output in DC Mode	Signal Output	NOTE
				(V dc)	(V dc)	(mA)	(A)	(MΩ)	(μΑ)		
E850-13	13 mm (1/2")	(1)	Anode/-	1500	1250	0.38	1 × 10 ⁻¹⁰	3.3	(at 1250 V)	DC/Pulse	
E717-63		2	Anode/-	1500	1500	0.45	1 × 10 ⁻¹⁰	3.3	(at 1500 V)	DC/Pulse	
E717-35	28 mm (1-1/8")	3	Cathode /+•-	1500	1500	0.45	1 × 10 ⁻¹⁰	3.3	22 (at 1500 V)	DC/Pulse	Pin output
E5815-01		4	Anode/-	1500	1500	0.45	1 × 10 ⁻¹⁰	3.3 🕞	100 (at 1500 V)	DC/Pulse	Low power consumption, high dc linearity
For Hea	d-on Typ	es									
E1761-04		6	Anode/-	1500	1500	0.41	1 × 10 ⁻¹⁰	3.63	20 (at 1500 V)	DC/Pulse	
E1761-05	10 mm (2/0")	6	Anode/-	1500	1500	0.37	1×10^{-10}	4.02	19 (at 1500 V)	DC/Pulse	For R2496
E1761-21	10 11111 (5/6)	6	Anode/-	1500	1500	0.41	1×10^{-10}	3.63	20 (at 1500 V)	DC/Pulse	E1761-04 with connector
E1761-35		5	Cathode/+	1500	1500	0.41	_	3.63	-	Pulse	For scintillation counting
E849-35		7	Anode/-	1500	1250	0.34	1 × 10 ⁻¹⁰	3.63	17 (at 1250 V)	DC/Pulse	
E849-92		8	Cathode/+	1500	1250	0.34	_	3.63	-	Pulse	For scintillation counting
E849-90	13 mm (1/2")	7	Anode/-	1500	1250	0.34	1 × 10 ⁻¹⁰	3.63	17 (at 1250 V)	DC/Pulse	E849-35 with connector
E849-52		7	Anode/-	1500	1250	0.31	1 × 10 ⁻¹⁰	3.98	15 (at 1250 V)	DC/Pulse	For R2257, with connector
E849-68		7	Anode/-	1500	1250	0.27	1 × 10 ⁻¹⁰	4.48	13 (at 1250 V)	DC/Pulse	For R4124
E974-13		9	Anode/-	1800	1800	0.47	1 × 10 ⁻¹⁰	3.81	23 (at 1800 V)	DC/Pulse	
E974-14		9	Cathode/+	1800	1800	0.47	_	3.81	_	Pulse	For scintillation counting
E974-17		9	Anode/-	1800	1800	0.47	1 × 10 ⁻¹⁰	3.81	23 (at 1800 V)	DC/Pulse	E974-13 with connector
E974-18	19 mm (3/4")	9	Anode/-	1500	1500	0.37	1 × 10 ⁻¹⁰	3.98	18 (at 1500 V)	DC/Pulse	For R1878, with connector
E974-22		10	Anode/-	1800	1800	0.43	1 × 10 ⁻¹⁰	4.16	21 (at 1800 V)	DC/Pulse	For R1450, with connector
E2253-05		1	Anode/-	1800	1800	0.35	1 × 10 ⁻¹⁰	5.13	17 (at 1800 V)	DC/Pulse	For R3478, with connector
E2253-08		(12)	Cathode/+	1800	1800	0.35	_	5.13	_	Pulse	For R3478, For scintillation counting
E2924		13	Anode/-	1500	1500	0.35	1 × 10 ⁻¹⁰	4.29	16 (at 1500 V)	DC/Pulse	
E2924-500		13	Anode/-	1500	1500	0.35	1 × 10 ⁻¹⁰	4.29	16 (at 1500 V)	DC/Pulse	E2924 with connector
E2924-05	25 mm (1")	14	Cathode/+	1500	1500	0.35	_	4.3	_	Pulse	For scintillation counting
E2924-11		13	Anode/-	1800	1800	0.41	1 × 10 ⁻¹⁰	4.47	20 (at 1800 V)	DC/Pulse	For R7899
E990-07		13	Anode/-	1500	1500	0.38	1 × 10 ⁻¹⁰	3.96	18 (at 1500 V)	DC/Pulse	
E990-08		(15)	Cathode/+	1500	1500	0.38	_	3.96	_	Pulse	For scintillation counting
E990-29	28 mm (1-1/8")	13	Anode/-	1500	1500	0.34	1 × 10 ⁻¹⁰	4.48	16 (at 1500 V)	DC/Pulse	For R3998-02
E2624		13	Anode/-	2500	2500	0.52	1 × 10 ⁻¹⁰	4.8	25 (at 2500 V)	DC/Pulse	For R6427
E2624-05		13	Cathode/+	2500	2500	0.52	_	4.8	_	Pulse	For R6427, For scintillation counting

			Ground-	Ма	ximum Ratir	ngs 🖸	B Leakage	Total	M aximum		
Type No.	Applicable PMT Diameter	Out- line and Dia- gram	ed Electrode/ Supply Voltage Polarity	Insulation Voltage between Case and Pins	Supply Voltage	Voltage Divider Current	Current in Signal Max.	Voltage Divider Resistance	Linear Output in DC Mode	Signal Output	NOTE
				(V dc)	(V dc)	(mA)	(A)	(MΩ)	(μΑ)		
For Head-on Types											
E2183-500	38 mm	16	Anode/-	2000	1750	0.44	1 × 10 ⁻¹⁰	3.97	21 (at 1750 V)	DC/Pulse	With connector
E2183-502	(1-1/2")	16	Cathode/+	2000	1750	0.45	-	3.96	-	Pulse	With connector, for scintillation counting
E5859-01		\bigcirc	Anode/-	2700	2700	0.74	1 × 10 ⁻¹⁰	3.63	37 (at 2700 V)	DC/Pulse	With connector
E5859-03		\bigcirc	Cathode/+	2700	2700	0.74	-	3.63	-	Pulse	With connector, for scintillation counting
E5859-05		\bigcirc	Anode/-	1500	1500	0.38	1 × 10 ⁻¹⁰	3.98	18 (at 1500 V)	DC/Pulse	With connector
E1198-07	51 mm (2")	18	Anode/-	1750	1750	0.44	1 × 10 ⁻¹⁰	3.98	15 (at 1250 V)	DC/Pulse	For R2154-02
E2979-500		19	Anode/-	3000	3000	0.7	1 × 10 ⁻¹⁰	4.31	34 (at 3000 V)	DC/Pulse	For R1828-01, with connector, with magnetic shield
E2979-501		19	Anode/-	2500	2500	0.67	1 × 0 ⁻¹⁰	3.75	32 (at 2500 V)	DC/Pulse	For R3234-01, with connector, with magnetic shield
E1198-22		18	Anode/-	2200	2000	0.51	1 × 10 ⁻¹⁰	3.97	25 (at 2000 V)	DC/Pulse	
E1198-23		18	Cathode/+	2200	2000	0.51	_	3.97	_	Pulse	For scintillation counting
E6316	51 mm (2")	20	Cathode/+	2200	2000	0.51	_	3.97	_	Pulse	E1198-23 with connector, for scintillation counting
E1198-05	76 mm (3")	18	Anode/-	1500	1500	0.46	1 × 10 ⁻¹⁰	3.3	22 (at 1500V)	DC/Pulse	
E1198-20		18	Cathode/+	1500	1500	0.46	-	3.3	-	Pulse	For scintillation counting
E1198-26		18	Anode/-	1500	1500	0.38	1 × 10 ⁻¹⁰	4.01	18 (at 1500 V)	DC/Pulse	
E1198-27		18	Cathode/+	1500	1500	0.38	_	4.01	_	Pulse	For scintillation counting
E7693	127 mm (5")	22	Anode/-	3000	3000	1.02	1 × 10 ⁻¹⁰	2.94	51 (at 3000 V)	DC/Pulse	For R1250, with connector
E7694	208 mm (8")	22	Anode/-	1800	1800	0.39	1 × 10 ⁻¹⁰	4.711	18 (at 1800 V)	DC/Pulse	For R5912, with connector
E6133-03	25 mm (1") for high magnetic field	21)	Anode/-	2300	2300	0.41	1 × 10 ⁻¹⁰	5.61	19 (at 2300 V)	DC/Pulse	For R5505, with connector
E5780	Metal package PMT	23	Anode/-	1000	1000	0.36	1 × 10 ⁻¹⁰	2.8	17 (at 1000 V)	DC/Pulse	
E5770	R7400U Series	24	Anode. Cathode /+	1000	1000	0.36	1 × 10 ⁻¹⁰	2.8	17 (at 1000 V)	DC/Pulse	On-board type
E5996		25	Anode/-	900	900	0.34	1 × 10 ⁻¹⁰	2.64	22 (at 900 V)	DC/Pulse	For R5900U
E7083	Metal package PMT	25	Anode/-	900	900	0.33	1 × 10 ⁻¹⁰	2.75	15 G (at 900 V)	DC/Pulse	For R5900U-00-M4
E6736	R5900U Series	25	Anode/-	900	900	0.38	1 × 10 ⁻¹⁰	2.42	18 G (at 900 V)	DC/Pulse	For R5900U-00-L16
E6669-01		25	Anode/-	900	900	0.31	1 × 10 ⁻¹⁰	2.97	15 G (at 900 V)	DC/Pulse	For R5900U-00-C8

NOTE **G** Total current of all anodes. Measured with a supply voltage of 900 V

NOTE Measured with the maximum supply voltage
Measured with a supply voltage of 1000 V
The current at which the output linearity is kept within ±5 %
Operating temperature range -10 °C to +50 °C (Expect for E5780, E5770 and E5996 : -5 °C to +45 °C)
Refer to circuit diagram
Equivalent resistance

D-TYPE SOCKET ASSEMBLIES DIMENSIONAL OUTLINES AND DIAGRAMS (Unit : mm)

10

TACCA0213EA

TACCA0078E

D-TYPE SOCKET ASSEMBLIES DIMENSIONAL OUTLINES AND DIAGRAMS (Unit : mm)

D-TYPE SOCKET ASSEMBLIES DIMENSIONA OUTLINES AND DIAGRAMS (Unit : mm)

E5996, E7083, E6736, E6669-01

DA-TYPE SOCKET ASSEMBLIES C7246 SERIES, C7247 SERIES

The C7246 and C7247 series are DA type socket assemblies designed for 28 mm (1-1/8 inch) diameter side-on and head-on photomultiplier tubes. A voltage-divider circuit and an amplifier are incorporated in the same package.

The C7247 series uses an amplifier with a wide bandwidth of 0 Hz to 5 MHz, while the C7246 uses an amplifier with a practical bandwidth of 0 Hz to 20 kHz to improve the effective S/N ratio. The photomultiplier tube low-level, high-impedance current can be converted into a low-impedance voltage output by a factor of 0.3 V/ μ A.

Both the C7246 and C7247 series use an active voltage-divider circuit that ensures excellent DC linearity at low power consumption. The C7246 series also has a gain adjustment function that does not affect amplifier frequency bandwidth.

SPECIFICATIONS

Parameter	C7246	C7246-01	C7247	C7247-01	Unit
Applicable	φ28 mm Head-on	φ28 mm Side-on	¢28 mm Head-on	φ28 mm Side-on	-
PMTs	R374, R2228, R5929, R6095, etc	R928, R3788, R3896, R4220, etc	R374, R2228, R5929, R6095, etc	R928, R3788, R3896, R4220, etc	_

MAXIMUM RATINGS

Parameter	C7246 C7246-01		C7247	C7247 C7247-01	
Input Voltage for Amplifier	±1	8	±	V dc	
Supply Voltage for Divider	-15	00	-15	V dc	
Operating Temperature	0 to	+40	0 to	°C	
Storage Temperature	-15 to) +60	-15 to	°C	

GENERAL

Parameter	C7246	C7246-01	C7247	C7247-01	Unit	
Input Voltage for Amplifier	±12 to	o ±15	±12 t	o ±15	V dc	
Input Current for Amplifier	0.	53	1	2	mA Typ	
(at ±15 V)	0	55	· · · · · · · · · · · · · · · · · · ·	ing typ.		
Recommended	-400 to -1000 *	-300 to -1000 *	-400 to -900		V de	
Supply Voltage for Divider		-500 10 -1000	400 10 500	-300 10 -000	Vuc	
Dividor Curront	174	211	219	166		
	(at HV = -1000 V)	(at HV = -1000 V)	(at HV = -900 V)	(at HV = -600 V)	μΑ τγρ.	
Current to Voltage Conversion Factor	rrent to Voltage Conversion Factor 0.3			0.3		
Maximum Output Voltage (with no load resistor)	1	0	10			
Output Voltage (with 50 Ω load resistor)	0.	9	:	V		
Maximum Input Signal Current DC	3	3	3	μA		
(with no load resister) Pulse	3	3	3	μA		
Frequency Bandwidth (-3 dB)	0 Hz to	20 kHz	0 Hz to	5 MHz	-	
Output Impedance	5	0	5	50		
Offset Voltage	±C).3	±	3	mV Max.	
Output Noise Voltage	0.0	09		9	mV rms. Typ.	
Adjustable Gain Range	10	30	-	-	dB Min.	
Total Power Consumption	190	227	558	460	m\// T\/p	
(at ±15 V)	(at HV = -1000 V)	(at HV = -1000 V)	(at HV = -900 V)	(at HV = -600 V)	шүү тур.	
Weight	55	50	55	50	д Тур.	

* Keep more than 600 V at -HV input when input signal gives more than 10 μ A.

Circuit Diagrams

Frequency Response of Built-in Amplifier C7246,-01 GAIN FREQUENCY (kHz) **Dimensional Outlines (Unit : mm)** C7246,C7247 [BOTTOM VIEW] C7246 $\phi 31.7 \pm 0.3$ 1) POT (VR) φ25.6 C7247 $\mathbf{33.0}\pm\mathbf{0.5}$ HOUSING (METAL) 0

*Only C7246 /\\///

Options (Sold separately)

-HV

±15 V

SIGNAL OUTPUT

NOTEA C7246-01 and C7247-01 are for 28 mm side-on PMT so that the last dynode number is "DY9"

[BOTTOM VIEW]

C7246-01

(@|**`}|**@

C7247-01

1) POT (VR),

C7246-01, C7247-01

 ϕ 29.0 ± 0.3 33.0 ± 0.5 ϕ 31.7 ± 0.3 HOUSING (METAL) 10 *Only C7246-01

RED BLACK SHIELDED CABLE (COVERING TWISTED F GRAY NOTES: 1) Turning this pot clockwise increases the PMT gain. (25 turns max.) 2) At the end of HV cable, it's possible to attach SHV connector fitting RG-174/U.

SHIELD CABLE 2

COAX CABLE RG-174/U

TACCA0198EA

NOTE A7709 is also applicable for E717-63 and E5815-01

DP / DAP-TYPE SOCKET ASSEMBLIES

HIGH VOLTAGE POWER SUPPLY SOCKE TASSEMBLY C6270 (DP Type) HIGH VOLTAGE POWER SUPPLY SOCKET ASSEMBLY WITH TRANSIMPEDANCE AMPLIFIER C6271 (DAP Type)

C6270 is a high voltage power supply socket assembly for 28 mm (1-1/8 inch) diameter side-on photomultiplier tubes (PMTs), incorporating a regulated high voltage power supply and an active voltage divider. It enables simple yet stable photomultiplier tube operations with extended DC output linearity by only supplying +15 Vdc and connectiong to a potentiometer or a 0 V to +5 V for high voltage adjustments.

C6271 further incorporates a transimpedance amplifier which converts the photomultiplier tubes high impedance current signal to low impedance voltage signal.

FEATURES (C6270)

- Superior DC Output Linearity
- Fast High Voltage Programming Response
- Low Power Consumption
- Wide High Voltage Output Range
- Low Ripple/Noise

COMMON SPECIFICATIONS

Parameter	C6270	C6271	Unit
Applicable PMTs	φ 28 mm (1-1/8 i	nch) side-on types	-

• GENERAL

Parameter	C6270	C6270 C6271			
Input Voltage	+1	+15±1			
Input Current	45	55	mA Typ.		
	at -1000 V	100	43	4	
	at -500 V	50	43	μ A Typ.	
Output Voltage Range	0 to -	1250	V dc		
Line Regulation Against ± 1 V Input Change		±0	% Тур.		
Ripple/Noise (p-p) in High Voltage Output		0.0	% Тур.		
High Voltage Control		0 V to +5 V or e	_		
High Voltage Programming Response O		8	0	ms Typ.	
Temperature Coefficient of High Voltage Output		±0	.01	%/ °C Typ.	
Operating Temperature		0 to	+50	°C	
Storage Temperature	-20 to	°C			
Weight		50	50 53		

NOTE Within ± 2 % linearity

B At maximum output voltage

• For 0 % to 99 % HV change

C6271 SPECIFICATIONS

TRANSIMPEDANCE AMPLIFIER SECTION

Parameter	Value	Unit
Current to Voltage Conversion Factor	0.3	V/ μ A
Maximum Linear Signal Output Voltage	+13 (Anode Current=43 μA)	V Typ.
Bandwidth	0 Hz to 10 kHz	-
Signal Output Offset Voltage	-0.3 to +0.3	mV Typ.
Induced Ripple (p-p) on Signal Output	1	mV Typ.

FEATURES (C6271)

- With Transimpedance Amplifier
- Superior DC Output Linearity
- Fast High Voltage Programming Response
- Low Power Consumption
- Wide High Voltage Output Range
- Low Ripple / Noise

Schematic Diagrams

DC Linearity Characteristics

High Voltage Controlling Characteristic

TACCC0096EE

Practical PMT DC Output Limits

TACCA0156EA

Gated D-Type Socket Assemblies C1392 Series

In applications such as fluorescence measurement, Raman spectroscopy and measurement of optical transmission path faults, the actual signal light to be measured is extremely weak in comparison with the primary excitation light. In these applications, since the sensitivity of the detection system is adjusted to a high range to measure extremely low signal light, if even part of the primary light is allowed to enter the detection system, excessive light input results. This saturates the output of the photomultiplier tube and the subsequent signal processing circuit, causing adverse effects.

A high-speed shutter can be used to cut off only the excessive light, but this is not very practical. The actual technique used is "gating" by which the photomultiplier tube is electrically switched so that its output is obtained only during the desired period. There are two modes in the gating operation: one is the "normally OFF" mode which keeps the photomultiplier tube off most of the time and turns it on when a gate signal is input; the other is the "normally ON" mode which keep the photomultiplier tube on most of the time and turns it off when a gate signal is input. The Hamamatsu C1392 series gated socket assemblies are available in both modes.

PMT Output Pulse Width vs. Input Gate Pulse Width

NOTE:For a convenient setting, it is recommended to set an input gate pulse roughly according to above data and make a further detail adjustment with looking an oscilloscope.

Dimensional Outline (Unit: mm)

Specifications

	Type No.	-50	-51	-52	-53	-54	-55	-56	-57	Unit
Applicable PMT		∮ 52mm Head-on R2257 ()	∮ 52mm Head-on R2257 ()	∮ 52mm Head-on R943-02	∮ 52mm Head-on R943-02	∮ 38mm Head-on R1387	∮ 38mm Head-on R1387	∮ 28mm Side-on R928	∮ 28mm Side-on R928	_
Normally C	N/OFF State	OFF	ON	OFF	ON	OFF	ON	OFF	ON	
Switching Ratio 3 (Min.)		1 : 10 ³ HV1=-1500 V HV2=+ 250 V	1 : 10 ³ HV1=-1500 V HV2=- 250 V	1 : 10 ³ HV1=-1500 V HV2=+ 188 V	1 : 10 ³ HV1=-1500 V HV2=- 250 V	1 : 10 ⁴ HV1=-1000 V HV2=+ 167 V	1 : 10 ⁴ HV1=-1000 V HV2=- 250 V	1 : 10 ³ HV1=-1000 V HV2=+ 200 V	1 : 10 ³ HV1=-1000 V HV2=+ 250 V	_
Maximum	Supply Voltage (HV1)	-2400	-2400	-2200	-2200	-1250	-1250	-1250	-1250	V
Maximum	Supply Voltage (HV2)	+270	-270	+270	-270	+270	-270	+270	+270	V
Recommended Supply Voltage (HV2)		+250	-250	<u> HV1 </u> 8	-250	<u> HV1 </u> 6	-250	<u> HV1 </u> 5	+250	V
Maximum	Voltage Divider Current	1.9	1.7	1.6	2.0	1.0	1.0	0.4	0.4	mA
Peak Curre	ent of HV2 O	7.5	7.5	7.5	7.5	7.5	7.5	7.5	7.5	mA
	Input Gate Pulse Polarity	+	-	+	-	+	-	+	+	—
Input Gate	Maximum Gate Pulse Voltage	+6	-6	+6	-6	+6	-6	+6	+6	V Max.
Pulse Conditions	Recommended Gate Pulse Voltage	+5	-5	+5	-5	+5	-5	+5	+5	V
	Rise/Fall Times	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	μ s Max
	Input Impedance	85	85	85	85	85	85	85	85	Ω
Output Gat	te Pulse Width	1 to 10	μs							
Operating ⁻	Temperature	0 to +40	°C							
Dimensions	Diameter	52	52	52	52	52	52	52	52	mm
Dimensions	Length L D	100	100	100	100	102	102	96	96	mm
Weight		175	175	175	175	175	175	175	175	g

Timing Properties (Refer to the Gate Timing Chart on Page 20)

	Type No.	-50	-51	-52	-53	-54	-55	-56	-57	Unit
	Input Gate Pulse Voltage	+5	-5	+5	-5	+5	-5	+5	+5	V
Measurement	Tw Input Gate Pulse Width	2.4	2.9	2.5	2.8	2.8	3.1	2.8	2.7	μs
Condition 🕒	High Supply Voltage (HV1)	-1500	-1500	-1500	-1500	-1000	-1000	-1000	-1000	V
	Medium Supply Voltage (HV2)	+250	-250	+188	-250	+167	-250	+200	+250	V
Tg Output C	Sate Pulse Width	10	10	10	10	10	10	10	10	μ s Typ.
Td1		130	95	90	55	100	55	110	60	ns Typ.
Tr		50	50	20	20	20	20	20	55	ns Typ.
Td2		8.4	7.2	8	7.2	7.3	7	8	7.4	μ s Typ.
Tf		240	530	90	420	60	280	80	380	ns Typ.
Switching N	oise (p-p) 🕒	20	20	16	11	35	50	30	32	mV Typ.

NOTE Since the HA coating (coating of conductive material on the glass bulb) tends to increase the induced noise when the photomultiplier tube is switched, it is not suited for gating operation. Please use photomultiplier tubes without an HA coating. In photon counting applications, switching noise may create problems, so please consult our sales offices for details.

B Switching ratio is the output ratio when the photomultiplier tube is gated on and off at a constant incident light level. For example, if the output during OFF state is 3 mV and that during ON state is 3 V, with a load resis-

tance of 2 k Ω , the switching ratio is 3 mV : 3 V=1 : 1000

- The listed switching ratios can be achieved when the duty factor is less than 1/1000.
- O Under HV2 (maximum voltage) input. See the dimensional outline
- **(b)** With load resistance of 50 Ω .
- (All time characteristics are measured under this condition.)
- Measured with a 100 MHz BW oscilloscope.

Gate Timing Chart INPUT GATE PULSE

TACCC0077EB

TACCC0098EA

Preamplifier Unit C7319, C6438, C5594

Hamamatsu provides three types of preamplifier units for photomultiplier tubes. Features of each type are as follows.

Select the one that best matches your application.

• C7319

- Switchable frequency bandwidth (2 ranges) and current-to-voltage conversion factor (3 ranges)
- Ideal for applications requiring low noise and high gain

• C6438

• Wide bandwidth from 0 Hz up to 50 MHz

• C5594

- 1.5 GHz cutoff frequency for reliable amplification of high-speed output pulse from PMT
- Ideal for single photon fluorescence lifetime measurement using MCP-PMT and time characteristics measurements using various PMTs
- Choice of SMA or BNC input and output connector

Left : C7319, Center : C6438, Right : C5594

VR OFFSETT FREQUENCY BANDWIDTH / SWITCH OF

65.0 ± 0.5

TACCA0174EA

C5594

9.5

TACCA0051EB

 \bigotimes

Y

Parameter	C7319			C6438	C5594	Unit								
Supply Voltage		±5 to ±15		±5 to ±15		±5 to ±15		±5 to ±15		±5 to ±15		±5	+12 to +16	V dc
Supply Current	±8			±20	95	mA Typ.								
Frequency Bandwidth (-3dB)	0 Hz to 20 kHz or 0 Hz to 200 kHz (selectable) [⊗]		Hz or ectable) [⊛]	0 Hz to 50 MHz	50 kHz to 1.5 GHz	-								
Current to Voltage Conversion Factor	0.1 V/μA , 1 V/μA or 10 V/μA (selectable)		, r table)	0.5 V/mA $^{\odot}$	3.15 V/mA	-								
Equivalent Noise Input (rms)	Conversion Frequency Factor 0.1 V/μΑ 1 V/μΑ 10 V/μΑ	0 Hz to 20 kHz 1.5 nA Typ. 0.2 nA Typ. 0.02 nA Typ.	0 Hz to 200 kHz [®] 3.0 nA Typ. 0.6 nA Typ. 0.2 nA Typ.	1 μΑ Max.	1 μA Max.	_								
Gain		_ ®		$20\pm3~^{\odot}$ (Approx. 10 times)	36 (Approx. 63 times)	dB								
Input Impedance		_ ®		50	50	Ω								
Output Impedance 50		50	50	Ω										
Weight		170		160	80	g								

NOTE (A) 107 V/A conversion ratio, to be limited to 0 Hz to 100 kHz frequency bandwidth.

B C7319 is current to voltage conversion amplifier unit.

 \bigcirc at 50 Ω Load resistor

FREQUENCY (MHz)

Voltage Dependence of Photomultiplier Tube Gain

The photoelectrons emitted from the photocathode of a photomultiplier tube are channeled by the electron lens to impinge on the first dynode where several times the number of secondary electrons are then emitted. This multiplicative increase of secondary electrons is repeated at the latter dynodes and as a result, the number of electrons reaching the anode is approximately 10^5 to 10^7 times the original number of photoelectrons emitted from the photocathode.

The relationship of the secondary electron emission δ for each dynode to the supplied voltage is expressed as follows:

$\delta = A \cdot E^{\alpha}$

where A is a constant, E is the interstage voltage, and α is another constant determined by the dynode material and geometric structure. The value of α is usually in the range 0.7 to 0.8. When a voltage V is supplied between the anode and the photocathode of a photomultiplier tube having n dynode stages, the overall gain μ is given by

 $\mu = (A \bullet E^{\alpha})^{n} = \{A \bullet [V/n+1]^{\alpha}\}^{n} = \{A^{n}/(n+1)^{\alpha n}\} V^{\alpha n}$

Here, if $\{A^n/(n+1)^{\alpha n}\}$ is substituted for K, μ becomes

 $\mu = K \cdot V^{\alpha n}$

Typical photomultiplier tubes have 9 to 12 dynode stages and as shown in Figure 23, the gain is proportional to the 6th to 10th power of the voltage supplied between the photocathode and the anode. This essentially means that the output of a photomultiplier tube is extremely sensitive to variations in the supplied voltage. Thus the power supply stability such as drift,

Selection Guide to High Voltage Power Supplies

Туре	Type No.		Max. Output Voltage (V dc)	Output Current (mA)	Input Voltage	Dimensions (W×H×D) (mm) *	Weight	
		_	4050	0.6	+ 15 V dc			
	C 4000	-01	-1250	0.5	+ 12 V dc		24 -	
	C4900	-50	14050	0.6	+ 15 V dc	46×24×12	31 g	
		-51	+1250	0.5	+ 12 V dc			
		-			+ 15 V dc			
		-01	-1500		+ 12 V dc			
	C4710	-02			+24 V dc			
		-50	+1500	1	+15 V dc	65×27.5×45	105 g	
Unit Type		-51			+ 12 V dc			
		-52			+ 24 V dc			
		-01	-800	2	+ 15 V dc		140 g	
	C1309	-02	-1100	0.7	+ 15 V dc	77×21×54		
	01000	-04	-1100	0.7	+ 15 V dc		120 g	
		-06	-1500	1	+15 V dc			
	C3830		-1500	1	Line Voltages	2557547220	2.8 kg	
Bench-ton Type	C4720		+1500	•	Line voltages	200/04/200	2.0 KY	
	C3350		±3000	10	Line Voltages	220×120×350	8 kg	
	C3360		-5000	1	Line Voltages	210×99×273	3.5 kg	

*Excluding projecting parts

24

ripple, temperature regulation, input regulation and load regulation must be at least 10 times as stable as the output stability required of the photomultiplier tube.

Hamamatsu regulated high voltage power supplies are products developed based on our years of experience as a photomultiplier tube manufacturer and our leading edge technology. All models are designed to conform to stability requirements demanded of photomultiplier tube operations. Various models are provided, ranging from on-board unit types to general-purpose bench-top types, allowing you to choose the desired power supply that suits your application.

Figure 23: Gain vs. Supply Voltage

Compact High Voltage Power Supply Units C4900 Series

The C4900 series is an on-board type high voltage power supply unit, with a design that aims at providing both "compactness and high performance".

The newly developed circuit achieves high performance and low power consumption. The C4900 series in addition provides enhanced protective functions yet is offered at lower costs. The C4900 and -01 are designed for negative output, while the C4900-50 and -51 have positive output.

FEATURES

- Very compact and lightweight
- Low power consumption
- Variable output voltage range from 0 V
- High stability
- Quick response
- Ample protective functions

Specifications

Parameter		C4900	C4900-01	C4900-50	C4900-51	Unit			
Input Voltage Range	9	+ 15±1	+ 12±0.5	+ 15±1	+ 12±0.5	V dc			
	with no load	14	15	14	15	mA Typ			
	with full load	90	95	90	95	nii (Typ.			
Variable Output Ran	ige	0 to -	1250	0 to 1	-1250	V dc			
Specification Guaranteed Ou	itput Voltage Range	-200 to	-1250	+200 to	+ 1250	V dc			
Output Current		0.6	0.5	0.6	0.5	mA Max.			
Line Regulation against \pm 1 V/0.	5 V Input Change B		±0.01						
Load Regulation against 0 % to 100 % Load Change 🔕		±0.01							
Ripple/Noise (p-p) B		0.007							
Output Voltage Control		By external controlling voltage (0 V to +5 V) or external potentiometer (50 k Ω ±2.5 k Ω)							
Controlling Voltage Input Impedance		80							
Output Voltage Setting (Absolute Value)		(Controlling Voltage $\times 250$) $\pm 0.5\%$							
Output Voltage Rise Time (0 %→99 %) B		50							
Temperature Coefficient B		±0.01							
Operating Temperature B		0 to +50							
Storage Temperature		-20 to +70							
Weight		31							
Protective Functions	S	Units protected against continuous overloading	reversed power input, r /short circuit in output	eversed/excessive contr	olling voltage input,	_			

NOTE At maximum output voltage.

Compact High Voltage Power Supply Units C4710 Series

The C4710 series comprises on-board type high voltage power supply units, designed specifically for photomultiplier tube operations. The C4710 series is designed for ease of use and high performance, and can be selected from among 6 models to meet your various needs.

FEATURES

- Compact and lightweight
- High stability
- High output voltage up to 1500 V
- Ample protective functions
- Fully enclosed metal-shielded package

Parame	eter	C4710	C4710-01	C4710-02	C4710-50	C4710-51	C4710-52	Unit
Input Voltage		+ 15±1	+12±1	+24±1	+15±1	+12±1	+24±1	V dc
	with no load	95	120	65	95	120	65	
input Current 🐼	with full load	260	340	145	260	340	145	ma ryp.
Specification Guaranteed C	Dutput Voltage Range		-240 to -1500)		+240 to +1500)	V dc
Output Current					1			mA Max.
Line Regulation against ± 1	V Input Change B	±0.01	±0.015	±0.015	±0.02	±0.02	±0.015	% Тур.
Load Regulation against 0 % to	100 % Load Change 🛆	±0.01	±0.015	±0.01	±0.01	±0.01	±0.01	% Тур.
Ripple/Noise (p-p)	B			0.0	005			% Тур.
Output Voltage Co	ntrol	By external controlling voltage (+0.8 V to +5 V) or external potentiometer (10k Ω)				_		
Controlling Voltage	ontrolling Voltage Input Impedance 40 56					kΩ Typ.		
Output Voltage Setting	(Absolute Value)		(Controlling Volta	ge ×300) ±0.5%			V Тур.
Output Voltage Rise Time (0 %→99 %) 100			00					
Temperature Coeff	icient B	±0.01						
Operating Tempera	ature 🕒	0 to +40						
Storage Temperatu	orage Temperature -20 to +60				°C			
Weight	leight 105				g			
Protective Functions Units protected against reversed power input, reversed/ excessive controlling voltage input, continuous overloading/short circuit in output.				oltage input,				

B At maximum output voltage and current.

Dimensional Outlines (Unit: mm)

Output Voltage Controlling Characteristic

Compact High Voltage Power Supply Units C1309 Series

FEATURES

- Compact and lightweight Allows direct mounting on a PC board.
- High stability Ensures excellent input regulation, load regulation and drift.
- Fully enclosed metal-shielded package Provides effective noise shielding

Specifications

Parameter	C1309-01	
Input Voltage 🔕	+12 to +16	
Input Current	300	
Output Voltage	-400 to -800	
Specification Guaranteed Output Voltage Range	-500 to -800	
Output Current	2	
Line Regulation BO	±0.1	
Load Regulation against 0 to 100% Load Change D	±0.1	
Ripple/Noise (p-p) B	300	
Drift (After Warm-up) 🕒	±0.2	
Programming Resistance	1	
Programming Voltage	+4.8 to +7	
Output Voltage Rise Time (10 %→90 %) ₿	30	
Temperature Coefficient BE	±0.05	
Warm-up Time	15	
Operating Temperature B	+ 5 to + 40	
Storage Temperature	- 5 to +60	
Weight	140	
NOTE With single supply voltage.		

B Maximum output voltage and current.

• $\pm 2 \text{ V}$ input change for C1309-01.

 ± 1 V input change for C1309-02, -04 and -06.

Maximum output voltage.
Operating temperature: +5 °C to +40 °C

Dimensional Outlines (Unit: mm)

(SIDE VIEW)

C1309-02 C1309-04 C1309-06 Unit +14 to +16 +14 to +16 +14 to +16 V dc 170 170 250 mA Max. -200 to -1100 -400 to -1500 V dc -200 to -1100 -400 to -1100 -400 to -1100 -500 to -1500 V dc 0.7 0.7 1 mA Max. ± 0.06 ±0.06 ±0.05 % Typ. ±0.15 ±0.15 ±0.2 % Тур. 100 100 150 mV Typ. ±0.1 ±0.02 ±0.1 %/h Typ. 10 10 10 kΩ 0 to +1.4 0 to +1.4 0 to +1.4 V dc 200 200 200 ms Typ. ±0.03 ±0.005 ±0.02 %/ °C Typ. 15 15 15 min Typ. +5 to +40 +5 to +40 +5 to +40 °C -5 to +60 -5 to +60 -5 to +60 °C 120 120 120 g

1 INPUT VOLTAGE 2 INPUT VOLTAGE 3 GND (4) HV AD.I **⑤ HV OUTPUT** 6 GND

(BOTTOM VIEW)

TACCA0123EA

Compact Bench-Top Regulated DC Power Supplies C3830, C4720

The C3830 and C4720 are multipurpose power supplies designed to provide a high voltage output for photomultiplier tube operation and low voltage outputs (\pm 5 V, \pm 15 V) for peripheral devices such as Hamamatsu preamplifiers and photon counting units. The C3830 provides a negative high voltage of -200 V dc to -1500 V dc, and the C4720 a positive high voltage of +200 V dc to +1500 V dc. In either model, the high voltage output is accurately displayed in four digits on the digital panel meter.

Specifications

Deremeter	Hight Voltage Power Supply Section		+5 V Dower Supply Section	±15.)/ Dower Supply Section		
Parameter	C3830	C4720				
Specification Guaranteed Output Voltage	-200 V dc to -1500 V dc (variable)	+200 V dc to+1500 V dc (variable)	\pm 4.75 V dc to \pm 5.25 V dc (fixed)	\pm 14.25 V dc to \pm 15.75 V dc (fixed)		
Maximum Output Current	1n	nA	500mA	200 mA		
Line Regulation Against \pm 10 % Line Voltage Change 🔕	±0.005	% Тур.	±0.005 % Typ.	±0.015 % Typ.		
Load Regulation Against 0 % to 100 % Load Change B	±0.01	% Тур.	±0.5 % Typ.	±0.5 % Typ.		
Ripple/Noise (p-p) 🔕	0.005	% Тур.	0.16% Typ.	0.06 % Typ.		
Drift (after 30 min Warm-up) 🔕	±0.03 %	%/h Typ.	±0.05 %/h Typ.	±0.05 %/h Typ.		
Temperature Coefficient	±0.03 %/∘C Typ.		±0.03 %/∘C Typ.	±0.03 %/∘C Typ.		
High Voltage Output Monitor	4-digit display					
High Voltage Output Monitoring Accuracy B	±0.5 % Typ.		—	—		
Output Receptacle	One SHV receptacle		Two 4-pin receptacles (HIROSE SR30-10R-4S)	One 4-pin receptacle (MIYAMA MC-032)		
Input Voltage	C3830: 100 /120 /230 V ac ±(10%), C4720: 100 /115 /220 V ac(±10%)					
Power Consumption	Approx. 50 V·A					
Operating Temperature/Humidity	0 °C to +40 °C / 90 % RH Max.					
Specification Guaranteed Temperature/Humidity	+5 ℃ to +35 ℃ / 85 % RH Max.					
Storage Temperature/Humidity 💿	−20 °C to +50 °C / 95 % RH Max.					
Weight			Approx. 2.8 kg			

NOTE At maximum output voltage and current.

 At maximum output voltage. O Without moisture condensation.

Accessories

1) High voltage output cable (1.5m long) terminated with SHV-P plugs E1168-17	1
2 Spare fuses	2
③ ±5 V matching plugs (HIROSE SR30-10PE-4P)	1
④ ±15 V maching plugs (MIYAMA MC-032)	1

Dimensional Outlines (Unit: mm)

Bench-Top High Voltage Power Supply C3350 (±3 kV Output)

The C3350 is a highly regulated, bench-top power supply that provides high output voltage up to ± 3 kV/10 mA. The LED panel meter on the front panel allows easy and precise voltage monitoring. The C3350 is ideally suited for operating photomultiplier tubes or proportional counter tubes.

Specifications

Parameter	Value • Description
Output Voltage	0 V dc to \pm 3000 V dc
Specification Guaranteed Output Voltage	± 250 V dc to ± 3000 V dc
Maximum Output Current	10 mA
Line Regulation Against \pm 10 % Line Voltage Change 🔕	± (0.005 %+10 mV) Max.
Load Regulation Against 0 % to 100 % Load Change B	± (0.01 % + 50 mV) Max.
Ripple/Noise (p-p) 🔕	0.0007 % Max.
Drift (after 1 h Warm-up) 🔕	± (0.02 % + 10 mV) /8 h Max.
Temperature Coefficient	±0.01 %/∘C Max.
Output Voltage Monitor	4-digit digital meter
Output Voltage Monitoring Accuracy B	± (0.1 %±3 ∨) Max.
Protection Circuit	For short circuit and excess output current
Input Voltage	100 /115 /220 /230 V ac (±10%), 50Hz/60Hz
Power Consumption	Approx. 100 V·A
Specification Guaranteed Temperature/Humidity	+5 ℃ to +35 ℃ / 85% RH Max.
Storage Temperature/Humidity O	−20 °C to +50 °C / 95 % RH Max.
Output Receptacles	Two SHV receptacles
Weight	8 kg
 NOTE At maximum output voltage and current. At maximum output voltage. Without moisture condensation. 	

Accessories

High voltage output cable (1.5 m long) terminated with SHV-P plugs E1168-19 1

Dimensional Outlines (Unit: mm)

TACCA0126EA

Bench-Top High Voltage Power Supply C3360 (-5 kV output)

The C3360 is a highly regulated, bench-top power supply that provides high output voltage up to -5 kV/1 mA. The C3360 is especially developed for operation of MCP-PMTs, electron multipliers and MCPs. The LED panel meter on the front panel allows easy and precise voltage monitoring.

Specifications

Parameter	Value • Description
Output Voltage	0 to -5000 V dc
Maximum Output Current	1 mA
Line Regulation Against \pm 10 % Line Voltage Change 🔕	± (0.001 % + 0.05 ∨) Max.
Load Regulation Against 0 % to 100 % Load Change B	± (0.001 % + 0.05 ∨) Max.
Ripple/Noise (p-p) 🔕	0.0004 % Max.
Drift (after 1 h Warm-up) 🔕	±0.05 %/8 h Max.
Temperature Coefficient	±0.01 %/∘C Max.
Output Voltage Monitor	4-digit digital meter
Output Voltage Monitoring Accuracy B	± (0.2 %+2 ∨) Max.
Protection Circuit	For short circuit and excess output current
Input Voltage	85 V ac to 132 V ac/170 V ac to 264 V ac, 47 Hz to 66 Hz
Power Consumption	Approx. 21V-A
Operating Temperature/Humidity	0 °C to +40 °C / 90 % RH Max.
Specification Guaranteed Temperature/Humidity	+5 ℃ to +35 ℃ / 85 % RH Max.
Storage Temperature/Humidity O	-20 °C to +50 °C / 90 % RH Max.
Output Receptacles	Two SHV receptacles
Weight	3.5 kg
NOTE At maximum output voltage and current.	

At maximum output voltage

Without moisture condensation

Accessories

AC line cable (2.4 m long)	1
High voltage output cable (1.5 m long) terminated with SHV-P plugs E1168-19	1
Spare fuses	2

Dimensional Outlines (Unit: mm)

Photomultiplier Tube Dark Current and Cooling Effect

Causes of Dark Current

A small amount of current flows in a photomultiplier tube operated at a high voltage even when no light enters it. This output current is called the dark current. Since the dark current degrades the S/N ratio, it is the factor that determines the lower limit of detection when the output current is extremely low such as in low-level-light measurement. Major causes of the dark current can be classified into the seven described below. The extent to which each of these causes affects the dark current depends on the type of photomultiplier tube and varies from tube to tube or according to operating conditions.

Specific Causes

- ① Thermionic emission of electrons from the photocathode and dynode surfaces
- 2 Leakage current between electrodes and lead pins (Mainly due to impurities on the electrode supporting materials, glass stem, plastic base surfaces and on the socket surface)
- ③ Ion current flowing as a result of ionization of residual gases inside the bulb
- ④ Photoelectron emission caused by internal electrons and ions colliding with the electrode support materials and glass
- 5 Photoelectron emission by the glass scintillation as a result of gamma rays emitted from radioactive elements (chiefly ⁴⁰K) inside the bulb
- 6 Photoelectron emission caused by Cherenkov radiation due to cosmic rays passing through the glass
- ⑦ Field emission of electrons from the photocathode and dynode surfaces

Figure 24 shows the relationship between the voltage supplied across the photomultiplier tube cathode and anode, and the anode dark current. This characteristic curve can be divided into three regions. In the low-voltage region (a), the major cause of dark current is the leakage current (2) and in the high-voltage region ©, ③, ④ and ⑦ become the governing factors that determine the dark current. In contrast, in region (b) which approximates actual operating conditions, thermal electron emission is predominant. From this behavior, it can be seen that cooling the photocathode and dynodes would be very effective in reducing the dark current when the photomultiplier tube is operated at the normal voltage range.

Figure 24: Dark Current vs. Supply Voltage

TACCA0127EA

Thermal Electron Emission and Cooling Effect

Figure 25 shows a comparison of the temperature characteristics of dark current for various photocathode materials used in photomultiplier tubes of the same configuration and dynode structure. From this figure, it is clear that photocathodes with higher sensitivity at longer wavelengths (multialkali and Ag-O-Cs) exhibit larger dark currents as the temperature increases. In other words, the cooling effect on the dark current and S/N ratio is more remarkable in such photocathodes. In this figure, the cooling effect is limited in the region below -20 °C to -30 °C, due to the fact that contribution of factors other than thermionic emission becomes relatively large in this region. In photon counting applications, since the leakage current can be ignored, greater cooling effect can be achieved.

Thermal electrons are emitted not only from the photocathode but also from the dynodes. However, thermal electrons emitted from the latter dynodes multiply less, and therefore the real problems are electrons from the photocathode and the first or second dynode. Cooling these portions can considerably reduce the dark current.

Figure 25: Dark Current vs. Temperature for Various **Photocathodes**

Selection Guide

Type No.	Applicable PMTs
C4877 Series	φ38 mm (1-1/2") and φ51 mm (2") Head-on
C4878 Series	MCP-PMT (R3809U-50 series)
C659-50 Series	φ38 mm (1-1/2") and φ28 mm (1-1/8") Head-on
C659-70 Series	φ28 mm (1-1/8") Side-on

High Performance Thermoelectric Coolers C4877, C4878 Series

The C4877 series and C4878 series are thermoelectric coolers constructed with enhanced electrostatic and magnetic shielding. This minimizes the influence of external noise on the photomultiplier tube and thus significantly improves photometric accuracy. These coolers offer user-friendly functions such as easy temperature control and pilot lamp blanking. The C4877 series is designed for use with 51 mm (2") or 38 mm (1-1/2") diameter head-on photomultiplier tubes, and the C4878 series for MCP-PMTs.

FEATURES

- Thermoelectric cooling using Peltier elements
- About -30 °C cooling temperature (with +20 °C cooling water)
- Evacuated, double-pane window with heater for frost prevention
- Built-in electrostatic and magnetic shielding (C4877 Series)
- Water shut-off protection to guard the Peltier elements
- Stable operation due to a regulated power supply

Specifications [Cooled PMT Housing]

Parameter		Value • Description		
Cooling		Thermoelectric effect		
Heat Exchange Medium		Water (1 L/min to 3 L/min)		
Cooling Temperature (with cooling water at	+20 °C)	Approx. −30 °C		
Temperature Controllable Range (with cooling water at +20 °C)		-30 °C to 0 °C (continuously adjustable)		
Cooling Time		Approx. 120 min		
Optical Window Material		Evacuated double-pane fused silica window with heater		
Applicable BMTs (Optional)	C4877 Series	ϕ 38 mm (1-1/2") and ϕ 51 mm (2") Head-on		
	C4878 Series	MCP-PMT (R3809U -50 Series)		
Applicable Socket Assembly	C4877 Series	E2762 Series		
or PMT Holder (Optional)	C4878 Series	E3059-500		
Weight		5.8 kg		

[Power Supply]

Parameter		Value • Description
	C4877, C4878	100 V ac ±10 % (50/60 Hz)
Input Voltage	C4877-01, C4878-01	120 V ac ±10 % (50/60 Hz)
	C4877-02, C4878-02	230 V ac ±10 % (50/60 Hz)
Power Consumption		270 V·A
Output Voltage		28 V dc
Output Current		4.3 A
Protection Circuit		Functions against cooling water suspension and over current/short circuit
Weight		8.5 kg

[Components and Accessories]

 Cooled PMT Housing (Including a magnetic shield and input window)
 Power Supply ● Spare fuse ● Water Hose Clamps ● Connection Cable (1.5 m) ● AC Line Cable (2 m)

Light Shield Cap

*Socket assemblies and PMT holders are available optionally. (Ref. to P.34) NOTE Water hose is not attached, so please prepare it at the user side.

Left : C4877 Power Supply Right : C4877 Cooled PMT Housing

Cooling Characteristics

* (E C4877-02 and C4878-02 conform to the EMC directive (89/336/EEC) and the LVD (73/223/EEC) of the European Union.

Socket Assemblies for C4877 Series (Optional)

E2762 Series (D Type)

E2762-502 ... For \$\$\phi\$38 mm (1-1/2") PMTs E2762-504 ... For R3236 E2762-506 ... For R943-02, R3310-02 E2762-509 ... For R464, R585, R649 E2762-510 ... For R329, R331, R2257

R1: 1 MΩ R2, R3: 665 kΩ R4, R5: 200 kΩ R6: 430 kΩ

R1: 10 kΩ R2: 300 kΩ R3, R4: 510 kΩ R5: 820 kΩ

R6: 160 kΩ R7 to R17: 330 kΩ R18: 1 MΩ

HIGH VOLTAGE CONTACT RING

E2762-504

R7: 160 kΩ R8 to R17: 330 kΩ R18, R19: 51 Ω

E2762-509

C1: 4700 pF C2 to C4: 0.01 µF

C1: 4700 pF C2 to C4: 0.01 µF

SIGNAL OU BNC-R

TACCC0091EB

TACCC0080EC

Circuit Diagrams

PMT Holder for C4878 Series (Optional)

E3059-500 (For R3809U-50 Series) **Dimensional Outline (Unit: mm)**

TACCC0081EE

TACCC0082ED

Dimensional Outline (Unit: mm)

Thermoelectric Coolers C659 Series

FEATURES

- Thermoelectric cooling using Peltier elements
- Evacuated, double-pane window with heater for frost prevention
- Water shut-off protection to guard Peltier elements
- Built-in magnetic shield

The C659 series is a thermoelectric cooler designed to reduce photomultiplier tube dark current and to enhance the photomultiplier tube lower detection limit. When used with a photomultiplier tube having an Ag-O-Cs photocathode in DC mode, the dark current can be reduced to 1/200 of its normal level at room temperature. In cooling a photomultiplier tube one sometimes encounters problems such as dewing on the incident window and leakage current on the socket or base of the tube. But these problems are eliminated by use of an evacuated, double pane window and custom socket assembly. The C659-50 series is designed for 38 mm (1-1/2") and 28 mm (1-1/8") diameter head-on photomultiplier tubes. The C659-70 series is specifically intended for use with 28 mm (1-1/8") diameter side-on photomultiplier tubes.

Specifications [Cooled PMT Housing]

Parameter		Value • Description	
Cooling		Thermoelectric effe	
Heat Excha	ange Medium	Water (1 L/min to 3 L/	
Cooling 🔕	C659-50 Series	Approx20 °C	
Temperature	C659-70 Series	Approx15 °C	
Cooling Tin	ne	Approx. – 13 °C Approx. 60 min	
Optical Window Material		Evacuated double-pane fused with heater	
Applicable	C659-50 Series	\$\$ mm (1-1/2") and \$\$ mm (1	
PMTs	C659-70 Series	¢28 mm (1-1/8") Side	
Applicable	C659-50 Series	E1135-500, -501, -502 (O	
Assemblies C659-70 Series		E1135-503 (Optiona	
	C659-50 Series	4.8 kg	
Weight	C659-70 Series	2 kg	

NOTE S Cooling water: +20 °C, Cooling temperature differs depending on photomultiplier tube type.

[Power Supply]

	Parameter	Value • Descript
	C659-51, -71	115 V ac ±10 % (50
input voltage	C659-52, -72	220 V ac ±10 % (50
Power	C659-50 Series	160 V·A
Consumption	C659-70 Series	110 V·A
Output	C659-50 Series	6 V dc
Voltage	C659-70 Series	3.4 V dc
Output	C659-50 Series	12 A
Current	C659-70 Series	12 A
Protection Circ	uit	Functions against cooling w
Waight	C659-50 Series	10.7 kg
Weight	C659-70 Series	8.5 kg

[Components and Accessories]

- Cooled PMT Housing (including a magnetic shield and input window)
- Connection Cable (2 m) Protective Circuit Cable (2 m)

34

* When placing an order, please specify the photomultiplier tube type you want to use with the C659. We can provide the ideal socket assembly for your needs as an option. To operate the C659 series, water hoses with an inner diameter of 15mm are required.

Socket Assemblies E1135 Series (Optional) for Use with C659

Basically, the E1135 series socket assemblies have the same components as the D-type socket assemblies. (See pages 8 through 13.) However, the assembly body is made of insulating material with a long length to sufficiently isolate the photomultiplier tube side from the connector side. This is to prevent the external atmospheric heat from conducting to the photomultiplier tube through the connector panel of the socket assembly. The assembly body length differs depending on the type of E1135, so that the photomultiplier tube to be used is installed with its photocathode set at the same position.

Note that the cooling temperature may slightly vary because the thermal capacity of each socket assembly and the photomultiplier tube used are not identical

Circuit Diagrams

E1135 Selection Guide

Socket Assembly	Applicable Photomulti- plier Tube Type	Photomultiplier Tube Examples	Cooler
E1135-500	φ 38 mm (1-1/2") Head-on	R980, R1387, etc.	
-501	ф 38 mm (1-1/2") Head-on	R580, etc.	C659-50 Series
-502	φ 28 mm (1-1/8") Head-on	R6249, R316, R374, etc.	
-503	<i>∲</i> 28 mm (1-1/8") Side-on	1P21, R212, R928, etc.	C659-70 Series

E1135-503

TACCC0089F

Influence of Magnetic Fields

The photomultiplier tube is a kind of vacuum tube in which photoelectrons emitted from the photocathode repeatedly impinge on the dynodes and are thus multiplied before reaching the anode. The degree of multiplication varies significantly depending on the position of the dynode on which electrons impinge. Therefore, external magnetic fields may deflect these electrons from their normal paths, causing a loss in the electron multiplication factor. This means that the photomultiplier tube output is extremely susceptible to the effects of magnetic fields. For example, since even the earth's magnetism exerts a considerable effect, merely rotating the position of a photomultiplier tube will result in a noticeable change.

Due to these characteristics the photomultiplier tube must be magnetically shielded if it must operate near any magnetic material or in the vicinity of a magnetic flux leaking from devices such as transformers.

Magnetic Characteristics

The degree of change in output with respect to magnetic fields varies greatly depending on the type of photomultiplier tube. Figure 26 shows the magnetic characteristics of typical photomultiplier tubes. In general, photomultiplier tubes having a large distance between photocathode and anode (in particular, those having a large distance from the photocathode to the first dynode) or a relatively small dynode opening compared to the photocathode area, exhibit large variations. Therefore, head-on photomultiplier tubes which are usually separated by a long distance from the photocathode to the first dynode are more vulnerable to this effect than side-on photomultiplier tubes. And of these, types having a large photocathode area tend to show particularly large variations.

Electrons mainly receive the effects of a magnetic field in the region between the photocathode and the first dynode. This is because the distance between the subsequent dynodes are relatively short and also because the dynodes themselves are usually made of nickel or other magnetic materials which provides a shielding effect for electrons traveling through the dynodes.

Figure 27: Direction of Magnetic Fields (For data shown in Figure 26)

Influence of Magnetic Fields and Magnetic Shielding

Figure 26: Example of Magnetic Shield Effect

Saturation Characteristics

Using a magnetic shield case (Hamamatsu E989 with 0.8 mm thickness), to plot the relationship (B-H curve) between the external magnetic field (H) and the magnetic flux density (B) inside the magnetic material indicates a saturation characteristic like that shown in Figure 28. Since the permeability μ is given by the B/H ratio, the relationship of H to *u*, as shown in Figure 29, varies depending on the external magnetic field intensity, with subsequent changes in the shielding effect. Accordingly, in extremely high magnetic fields, it is recommended that a soft-iron magnetic shield case having a thickness of 3 mm to 10 mm be used since this material exhibits a high saturation flux density

Frequency Characteristics

The above described shield case characteristics are for DC magnetic fields. In contrast, the magnetic flux leakage from a transformer creates an AC magnetic field effect which must also be taken into account. The permeability of a magnetic material decreases with increasing frequency. This is particularly noticeable in thick materials, even at low frequencies.

Hamamatsu E989 series shield cases are designed to provide sufficiently effective permeability even at normal line frequencies (50 Hz/60 Hz), as shown in Figure 30.

If magnetic fields of high frequencies such as 1 to 10 kHz are applied, a thin shielding material (0.05 mm to 0.1 mm) having good frequency characteristic should be used in combination with the normal shielding.

Edge Effect

Since the actual shield case has a finite length, there is a degradation of the shielding effect at both ends which must be taken into account. For this reason, as shown in Figure 31, it is necessary to install the photomultiplier tube at an inner position somewhat from the end of the shield case. For head-on photomultiplier tubes, this depth should be approximately equal to the shield case radius. However, when the magnetic field direction in parallel to the tube axis, the edge effect becomes extremely prominent, so that the photomultiplier tube should be installed at a position equivalent to at least the shield case diameter depth.

Magnetic Shield Cases E989 Series

Photomultiplier tubes are extremely sensitive to magnetic fields and exhibit output variations even from sources such as terrestrial magnetism.

Hamamatsu E989 series magnetic shield cases are designed specifically to protect photomultiplier tubes from the influence of such magnetic fields. The E989 series uses permalloy, a material that has an extremely high permeability (approximately 10⁵). The magnetic field intensity within the shield case can be attenuated from 1/ 1000 to 1/10000 of that outside the shield case (this ratio is called the shielding factor). The E989 series ensures a stable output for photomultiplier tubes operating in proximity to magnetic fields.

FEATURES

- Made of high-permeability permalloy (Ni: 78 %, Fe and others: 22 %)
- Optimum thickness of 8 mm (or 5 mm) provides highly effective shielding
- Various sizes available with inner diameters from 12 mm to 138 mm
- Lusterless black paint finish

Figure 28: B-H Curve

Figure 29: Permeability and

Figure 30: Frequency Characteristic

Figure 31: Edge Effect

|--|

Specifications

	-	P -
		Ph

Photomu	Itiplier Tube Diameter	Type No.	Internal Dia. D (ϕ mm)	Thickness t (mm)	Length L (mm)	Weight (g)
	φ 13 mm (1/2")	E989-10	14.5	0.5	47.0 ± 0.5	10
Side-on	φ 28 mm (1-1/8") *	E989	33.6 ± 0.8	0.8	80±1	66
	φ 10 mm (3/8")	E989-28	12.0 ± 0.5	0.5	48.0 ± 0.5	9
	φ 13 mm (1/2")	E989-09	16.0 ± 0.5	0.8	75.0 ± 0.5	28
φ 19 mm φ 25 mm Head-on φ 28 mm φ 38 mm φ 51 mm	φ 19 mm (3/4")	E989-02	23.0 ± 0.5	0.8	95±1	50
	φ 25 mm (1")	E989-39	29.0 ± 0.5	0.8	48.0 ± 0.5	32
	φ 28 mm (1-1/8")	E989-03	32.0 ± 0.5	0.8	120±1	90
	φ 38 mm (1-1/2")	E989-04	44 ± ¹ ₀	0.8	100±1	102
	φ 51 mm (2")	E989-05	60 ± ¹ ₀	0.8	130±1	180
	φ 76 mm (3")	E989-15	$80 \pm \frac{1.5}{0}$	0.8	120±1	200
	φ 127 mm (5")	E989-26	138.0 ± 1.5	0.8	170±1	600

* Photomultiplier tubes with HA coating extending to the base portion cannot be used. Please consult our sales offices for details.

E989-10

(i)

5

Dimensional Outlines (Unit: mm) E989 E989-02 to -05, -09*, -39*

Housing E1341-01

a magnetic shield case (E989-62 sold separately).

rectly attached to the E1341-01.

E989-26

E989-28

TACCA0119E0

TACCA0120E0

TACCA0121EC

TACCA0122E0

TACCA0228EB

RELATED PRODUCTS

Power and Signal Cables E1168 Series, Connector Adapters A4184 Series

Hamamatsu offers the E1168 series cables for connection of photomultiplier tube assemblies and their accessories. A variety of cables are available, for handling high voltage, low voltage and signals. In addition, Hamamatsu also provides the A4184 series connector adapters designed for SHV/MHV connector conversion.

Selection Guide

● For High Voltage							
Type No.	Cable Type	Cable Diameter	Maximum Voltage	Connector Types	Dimen- sional Outline		
E1168				MHV-P-MHV-P	1		
E1168-10	RG-59B/U (Red)	¢6.2 mm	2.3 kV dc	MHV-P—SHV-P	2		
E1168-17				SHV-P—SHV-P	3		
E1168-18	Custom	40.45	5 kV dc	MHV-P-MHV-P	1		
E1168-19	High Voltage	φ 6.15 e ±0.3 mm		SHV-P—SHV-P	3		
E1168-20	Cable (Red)			MHV-P-SHV-P	2		

Connector Adapters

-	-			
Type No.	Cable Type	Impedance	Connector Types	Dimensional Outline
E1168-01	2 D 2) (N-P-N-P	4
E1168-02	3D-2V	50 \	N-P-BNC-P	(5)
E1168-03	3C-2V	75Ω	BNC-P-BNC-P	6
E1168-05	3D-2V	50 Ω	BNC-P-BNC-P	6

Connector Types

MHV Plug-SHV Jack

SHV Plug-MHV Jack

1500 +50

Dimensional

Outline

9

(10)

TACCA0146EA

TACCA0147EA

TACCA0148EA

	-			
Type No.	Cable Type	Connector Types	Dimensional Outline	Type No.
E1168-13	MVVS 3×0.3	MC-032-MC-032	\bigcirc	A4184-02
E1168-14	MVVS 2×0.3	SR30-10PQ-4P SR30-10PQ-4P	8	A4184-03

Dimensional Outline (Unit: mm)

(1) E1168. -18

For Low Voltage

⑦ E1168-13

(2) E1168-10. -20

TACCA0143EA

TACCA0144EA

TACCA0145EA

Integrated Photon Counting Heads H6180 Series, H7360 Series, H6240 Series

These photon counting heads consist of a photomultiplier tube, voltage divider, high-speed amplifier, discriminator and high-voltage power supply, all included in a compact metallic case. Since the photomultiplier tube supply voltage and discrimination voltage are preset at the optimal levels, there is no need for adjustments such as measurement of plateau characteristics before use. The H6180, H7360, and H6240 series require a +5 V supply. Photon counting can be performed by simply connecting the output to an external pulse counter. The H6180 and H7360 series contain a head-on photomultiplier tube, while the H6240 series uses a side-on photomultiplier tube.

Photon Counting Units C3866, C6465

The C3866 photon counting unit converts photomultiplier tube photoelectron pulses into a 5 V digital signal by using a built-in amplifier/discriminator. Photon counting with high S/N ratio can be easily performed by connecting an external pulse counter to the output of the C3866 and supplying a low voltage. The high-speed electronic circuit used in the C3866 ensures high-precision photometry with high linearity up to 107 cps. Due to the built-in prescaler (division by 10), the C3866 does not require a high-speed pulse counter. The C6465 offers high output linearity up to 10⁶ s⁻¹ (cps) and an output pulse width of 30 ns, allowing use with a general-purpose pulse counter.

Photon Counting board M7824

The photon counting board M7824 is designed for direct plug-in to the ISA bus slot in a PC (Windows95/98).

Photoelectron pulses converted into logic (TTL) signals are counted by the counter and sent to a PC. A gate function is also included to make photon counting easier over a wide dynamic range.

The counter applies a double count method that allows time-resolved photon counting of high-speed optical phenomena with no dead time between gates. Simultaneous 2-channel measurements are also possible by using two M7824 boards.

▲Left: H6240

Right: H6180-01 with optional mounting france

Left : C3866, Right : C6465

INDEX BY TYPE NO.

WARNINGS

- High voltage power supplies and other products contained in this catalog generate or exhibit hazardous voltages and may present an electric shock hazard.
- The products contained in this catalog should be installed, operated, or serviced only by qualified personnel that have been instructed in handling high voltages.
- The products contained in this catalog should be installed, operated, or serviced in accordance with what are instructed in their instruction manuals and other relevant Hamamatsu publications.
- Designs of equipment utilizing the products contained in this catalog should incorporate appropriate interlocks to protect the operator and service personnel from electric shocks.

Warranty

All the products listed in this catalog are warranted to the original purchaser for a period of 12 months following the date of shipment. The warranty is limited to repair or replacement of any defective material due to defects in workmanship or materials used in manufacture.

- A: Any claim for damage of shipment must be made directly to the delivering carrier within five days.
- B: Customers must inspect and test all delivered products within 30 days after shipment. Failure to accomplish said incoming inspection shall limit all claims to 75% of value.
- C: No credit will be issued for broken products unless, in the opinion of Hamamatsu, the damage is traceable to a manufacturing defect.

- D: No credit will be issued for any product which, in the judgement of Hamamatsu, has been damaged, abused, modified or whose serial number or type number has been obliterated or defaced.
- E: No product will be accepted for return unless permission has been obtained from Hamamatsu in writing, the shipment has been returned prepaid and insured, accompanied with a full written explanation of the reason for each return.
- F: When products are used at a condition which exceeds the specified maximum ratings or which could hardly be anticipated, Hamamatsu will not be the guarantor of the products.

Subject to local technical requirements and regulations, availability of products included in this promotional material may vary. Please consult with our sales office.

Type No.	Product	Page	Type No.	Product	Page
C659 Series	. Thermoelectric Coolers	35	A4184 Series	Connector Adapters	40
E717-63	. D-Type Socket Assembly	10	C4710 Series	High Voltage Power Supply Units	26
E717-35	. D-Type Socket Assembly	10	C4720	High Voltage Power Supply	28
E849-35	. D-Type Socket Assembly	11	C4877	High Thermoelectric Cooler	32
E849-52	. D-Type Socket Assembly	11	C4878	High Thermoelectric Cooler	32
E849-68	. D-Type Socket Assembly	11	C4900 Series	High Voltage Power Supply Units	25
E849-90	. D-Type Socket Assembly	11	C5594	Preamplifier Unit	22
E849-92	. D-Type Socket Assembly	11	E5770	D-Type Socket Assembly	14
E850-13	. D-Type Socket Assembly	10	E5780	D-Type Socket Assembly	14
E974-13	. D-Type Socket Assembly	11	E5815-01	D-Type Socket Assembly	10
E974-14	. D-Type Socket Assembly	11	E5859-01	D-Type Socket Assembly	13
E974-17	. D-Type Socket Assembly	11	E5859-03	D-Type Socket Assembly	13
E974-18	. D-Type Socket Assembly	11	E5859-05	D-Type Socket Assembly	13
E974-22	. D-Type Socket Assembly	11	E5996	D-Type Socket Assembly	15
E989 Series	. Magnetic Shield Cases	38	E6133-03	D-Type Socket Assembly	14
E990-07	. D-Type Socket Assembly	12	H6180 Series	Integrated Photon Counting Heads	41
E990-08	. D-Type Socket Assembly	12	H6240 Series	Integrated Photon Counting Heads	41
E990-29	. D-Type Socket Assembly	12	C6270	DP-Type Socket Assembly	18
E1135 Series	. Socket Assemblies for C659	36	C6271	DAP-Type Socket Assembly	
E1168 Series	. Connection Cables	40	E6316	D-Type Socket Assembly	14
E1198-05	. D-Type Socket Assembly	13	C6438	Preamplifier Unit	22
E1198-07	. D-Type Socket Assembly	13	C6465	Photon Counting Unit	41
E1198-20	. D-Type Socket Assembly	13	E6669-01	D-Type Socket Assembly	15
E1198-22	. D-Type Socket Assembly	13	E6736	D-Type Socket Assembly	15
E1198-23	. D-Type Socket Assembly	13	E7083	D-Type Socket Assembly	15
E1198-26	. D-Type Socket Assembly	13	C7246 Series	DA-Type Socket Assembly	
E1198-27	. D-Type Socket Assembly	13	C7247 Series	DA-Type Socket Assembly	
C1309 Series	. High Voltage Power Supply Unit	27	C7319	Preamplifier Unit	
E1341-01	Housing	39	H7360 Series	Integrated Photon Counting Heads	41
C1392 Series	Gated D-Type Socket Assemblies		F7693	D-Type Socket Assembly	14
F1761-04	D-Type Socket Assembly	10	E7694	D-Type Socket Assembly	14
E1761-05	D-Type Socket Assembly	10	M7824	Photon Counting Board	
E1761-21	D-Type Socket Assembly	10	WI 024		
E1761-35	D-Type Socket Assembly	10			
E2183-500	D-Type Socket Assembly				
E2183-502	D-Type Socket Assembly				
E2253-05	D-Type Socket Assembly	10			
E2253-05	D Type Socket Assembly	12 12			
E2203-00	D Type Socket Assembly	12 10			
E2024	D Type Socket Assembly	12			
E2024-03	D Type Socket Assembly for C4977	12			
E2762 Selles	D Type Socket Assembly for C4677				
E2924	D Type Socket Assembly	12			
E2924-05	D Type Socket Assembly	12			
E2924-500	D Type Socket Assembly				
E2979-500	D-Type Socket Assembly				
E2979-501					
E3059-500	. Holder for MCP-PMT				
00000	. High Voltage Power Supply				
00000	. High Voltage Power Supply				
03830	High Voltage Power Supply				
03866	. Photon Counting Unit	41			

MEMO

HAMAMATSU

HAMAMATSU PHOTONICS K.K., Electron Tube Center

314-5, Shimokanzo, Toyooka-village, İwata-gun, Shizuoka-ken, 438-0193, Japan Telephone: (81)539-62-5248, Fax: (81)539-62-2205 http://www.hamamatsu.com/

Main Products

Electron Tubes

Photomultiplier Tubes Light Sources Microfocus X-ray Source Image Intensifiers X-Ray Image Intensifiers Microchannel Plates Fiber Optic Plates

Opto-semiconductors

Si Photodiodes Si PIN Photodiodes Si APDs GaAsP Photodiodes Photo ICs Image Sensors Position Sensitive Detectors Phototransistors Infrared Detectors CdS Photoconductive Cells Photocouplers Solid State Emitters

Imaging and Processing Systems

Video Cameras for Measurement Image Processing Systems Streak Cameras Optical Measurement Systems Imaging and Analysis Systems

DEC. 2000 REVISED

Information in this catalog is believed to be reliable. However, no responsibility is assumed for possible inaccuracies or omission. Specifications are subject to change without notice. No patent rights are granted to any of the circuits described herein. ©2000 Hamamatsu Photonics K.K.

Sales Offices

ASIA: **HAMAMATSU PHOTONICS K.K.** 325-6, Sunayama-cho, Hamamatsu City, 430-8587, Japan Telephone: (81)53-452-2141, Fax: (81)53-456-7889

U.S.A.: HAMAMATSU CORPORATION

Main Office 360 Foothill Road, P.O. BOX 6910, Bridgewater, N.J. 08807-0910, U.S.A. Telephone: (1)908-231-0960, Fax: (1)908-231-1218 E-mail: usa@hamamatsu.com

Western U.S.A. Office Suite 110, 2875 Moorpark Avenue San Jose, CA 95128, U.S.A. Telephone: (1)408-261-2022, Fax: (1)408-261-2522 E-mail: usa@hamamatsu.com

United Kingdom: HAMAMATSU PHOTONICS UK LIMITED

2 Howard Court, 10 Tewin Road, Welwyn Garden City, Hertfordshire AL7 1BW, United Kingdom Telephone: (44)1707-294888, Fax: (44)1707-325777 E-mail: info@hamamatsu.co.uk

France, Portugal, Belgiun, Switzerland, Spain: HAMAMATSU PHOTONICS FRANCE S.A.R.L.

Rue du Saule Trapu, Parc du Moulin de Massy,
91882 Massy Cedex, France
Telephone: 33(1) 69 53 71 00, Fax: 33(1) 69 53 71 10
E-mail: infos@hamamatsu.fr

Swiss Office

Richtersmattweg 6a CH-3054 Schüpfen, Switzerland Telephone: (41)31/879 70 70, Fax: (41)31/879 18 74 E-mail: swiss@hamamatsu.ch

Belgian Office 7, Rue du Bosquet B-1348 Louvain-La-Neuve, Belgium Telephone: (32)10 45 63 34, Fax: (32)10 45 63 67 E-mail: epirson@hamamatsu.com

Spanish Office

Centro de Empresas de Nuevas Tecnologias Parc Tecnologico del Valles 08290 CERDANYOLA (Barcelona), Spain Telephone: (34)93 582 44 30, Fax: (34)93 582 44 31 E-mail: spain@hamamatsu.com

Germany, Denmark, Netherland: HAMAMATSU PHOTONICS DEUTSCHLAND GmbH Arzbergerstr. 10, D-82211 Herrsching am Ammersee, Germany Telephone: (49)8152-375-0, Fax: (49)8152-2658 E-mail: info@hamamatsu.de

Danish Office Erantisvej 5 DK-8381 Tilst, Denmark Telephone: (45)4346-6333, Fax: (45)4346-6350 E-mail: Ikoldbaek@hamamatsu.de

Netherland Office

PO Box 50.075,1305 AB Almere The Netherlands Telephone: (31)36-5382123, Fax: (31)36-5382124 E-mail: hamamatsu_NL@compuserve.com

North Europe: HAMAMATSU PHOTONICS NORDEN AB

Smidesvägen 12 SE-171-41 Solna, Sweden Telephone: (46)8-509-031-00, Fax: (46)8-509-031-01 E-mail: info@hamamatsu.se

Italy:

HAMAMATSU PHOTONICS ITALIA S.R.L. Strada della Moia, 1/E, 20020 Arese, (Milano), Italy Telephone: (39)02-935 81 733, Fax: (39)02-935 81 741 E-mail: info@hamamatsu.it

Hong Kong:

HAKUTO ENTERPRISES LTD. Room 404, Block B, Seaview Estate, Watson Road, North Point, Hong Kong Telephone: (852)25125729, Fax: (852)28073155

Taiwan:

HAKUTO Taiwan Ltd. 3F-6 No.188, Section 5, Nanking East Road Taipei, Taiwan, R.O.C. Telephone: (886)2-2753-0188, Fax: (886)2-2746-5282

KORYO ELECTRONICS CO., LTD.

9F-7, No.79, Hsin Tai Wu Road Sec.1, Hsi-Chih, Taipei, Taiwan, R.O.C. Telephone: (886)2-2698-1143, Fax: (886)2-2698-1147

Republic of Korea: SANGKI TRADING CO., LTD. Suite 431, World Vision Bldg., 24-2 Yoido-Dong, Youngdeund

24-2, Yoido-Dong, Youngdeungpo-ku, Seoul, 150-010, Republic of Korea Telephone: (82)2-780-8515, Fax: (82)2-784-6062

Singapore:

HAKUTO SINGAPORE PTE LTD. Block 2, Kaki Bukit Avenue 1, #04-01 to #04-04 Kaki Bukit Industrial Estate, Singapore 417938 Telephone: (65)7458910,Fax: (65)7418201