i
h

© Copyright 1993, Industrial Drives, A Kollmorgen Division. All rights reserved.
Printed in the United States of America.

NOTICE:

Not for use or disclosure outside of Industrial Drives except under written agreement.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system, or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise without the written permission from the
publisher. While every precaution has been taken in the preparation of the book, the publisher assumes no

responsibility for errors or omissions. Neither is any liability assumed for damages resulting from the use of the
information contained herein.

This document is proprietary information of Industrial Drives, A Kollmorgen Division, furnished for customer use
ONLY. No other uses are authorized without written permission of Industrial Drives.

Information in this document is subject to change without notice and does not represent a commitment on the part
of Industrial Drives or the Kollmorgen Corporation. Therefore, information contained in this manual may be

updated from time-to-time due to product improvements, etc., and may not conform in every respect to former
issues.

IBM-PC is a trademark of International Business Machines Corporation.
OPTO-22 is a trademark of the OPTO-22 Company.

U.L. is a trademark of Underwriters Laboratories.

N.E.C. is a trademark of the National Electric Code.

GOLDLINE, BDS4, BDSS, PSR4/5, Motion Link, PC-Scope, and Macro Moves are trademarks of the Kollmorgen
Corporation.

Dangerous voitages, currents, temperatures, and snergy leveis exist In this
product and in the associated servo motor(s). Extreme caution shouid be
sxercised in the application of this equipment. Only qualified Individuais
shouid attempt to install, set-up, and operate this equipment. Ensure that the

WARNING motor, drive, and the end-user assembly are all properly grounded per NEC
requiraments.

INDUSTRIAL DRIVES
Radford, VA 24141

Motion Technologies Group * Phone: 703/639/2495
Fax: 703/731/0847

R L i

e 8
N
e

g

S

% E
s

BDS5

FOREWORD

Foreworp

The commitment to quality at Industrial Drives is
our first priority. In all aspects of our business:
research, development, product design and customer
service, we strive to guarantee total quality. This
pledge is founded on a solid history of innovative
technological achievements dating back to 1948.
One of the finest tributes to that achievement can
now be seen at the Smithsonian which has on display
the first stellar inertial navigation system developed
by Dr. Charles Stark Draper. This system contains
the first models of torque motors built by the

- founding organization of Industrial Drives. During

the period of 1948 to 1960, our "firsts” in the
industry numbered more than a dozen; they ranged
from the simple but invaluable (such as the direct-
drive DC torque motor and movie theater projection
motors) to the exotic: submarine periscope drive
motors for the U.S. Navy, electric drives, Curtis
Wright electric brake coils, and numerous other
innovations.

For more than a decade, Industrial Drives (known in
the early days as part of Inland Motor Division of
Kollmorgen) has continued to enhance its
sophisticated engineering solutions to pioneer new
product development.

The results of these and other efforts has encouraged
some of the most significant innovations in the servo
industry. We developed the application of servo
motors and drives in the Machine Tool market. We
were the first with water-cooled servos, the integral
brake, the flux forcing concept and the brushless
motor. We developed the electronically commutated
electric car motor. Industrial Drives pioneered rare

earth magnet development for the servo motor
industry.

Between 1974 and 1980, Industrial Drives continued
to lead the industry in servo application innovations.
Our commitment to engineering excellence never
waivered. In fact, that commitment grew stronger
with the development of brushless submarine and
submersible motors (visiting the Titanic graveyard),
muiti-axis electronic drives and antenna pedestal
drives (delivering unprecedented accuracy and
revolutionizing the entire industrial automation
process),

The decade of the 1980's brought continued
advancements in technology and penetration of new
markets requiring precise motion control. Already
in the fifth generation of brushless products,
Industrial Drives continues to lead the way with
digital servo positioning capability and our newest
motor offering, the GOLDLINE Series,
incorporating the very latest high-energy, rare earth
magnets (neodymium iron boron). Once again, we
are setting the standards that others only hope to
duplicate. Recently acknowledged by the Frost and
Sullivan Foundation, a leading market specialist in
the motion control industry, Industrial Drives and its
parent, Kollmorgen Corporation, continue to rank
first in servo technology.

Other achievements? Yes, too many in fact to
mention. Each achievement stands as a testimony to
the committed quality and exceilence in design
technology. This constancy of purpose is unyielding
in an era of rapidly changing technology.

B Y

tee ey

Wi

TABLE OF CONTENTS

BDS5

TABLE OF CONTENTS

CHAPTER 1. SYSTEM DESCRIPTION

1.1 Introduction 1-1
1.2 Product Description 1-1
1.3 Features 1-1
1.4 Part Number Description 1.3
1.4.1 BDS5 Model Number 1-4
1.4.2 Compensation Moduie Model Number........1-5
1.4.3 PSR4/5 Model Number 1-6
1.4.4 ER-External Resistor Kit Model Number ...1-7
1.45 Molex Assembly Tools 1-7
1.5 Specifications and Ratings 1-8
1.6 Theory of Operation 112
1.7 Simplified Schematic Diagram

and System Diagram 1-13

CHAPTER 2. GETTING STARTED

2.1 Introduction 2-1
2.2 Computer Requirements 2-1
2.3 Software Installation 21
2.3.1 Backing Up the Disk(s) 2-1
2.3.2 Software Installation 2-2
2.3.2.1 Install on a Hard Disk 2-2
2.3.2.2 Install on 2 FIoppy DisK vevvveeeenremersrnnnnnn, 22
2.3.3 Establishing Communications.................... 2-2
2.4 Motion Link Overview 2-3
2.4.1 Menus and Windows 24
2.4.1.1 Program 24
2.4.1.2 Variables 2-4
2.4.1.3 Capture 2-5
2.4.1.4 Scope 2-5
2.4.1.5 Options . 2-5
2.4.1.6 Help 2-6
2.4.1.7 Utilities 2-6
2.4.2 Editor 27
2.4.2.1 File 2-7
2.4.2.2 Edit 2.7
2.42.3 GOTO 2-8
2.4.2.4 Insert/Delete 2-8
2.42.5 Cursor 2-8
2.4.2.6 Help 2-8
2.4.3 Types Of Data Files..... 2-9
2.4.4 Using Convertibles 2.9
2.5 Motion Link Setup Program 2-9
2.6 Processor Modes 2-9
2.6.1 Prompts 2-9

2.6.2 Descriptions of Modes 2-10

2.6.2.1 Interactive Mode......

2.7.2.2 Run Mode

2.6.2.3 Monitor Mode.

2.6.2.4 Single-Step Mode

2.6.2.5 Trace Mode

2.6.2.6 Other Modes

2-10
2-12
2-12
2-12
2-12
2-13

CHAPTER 3. PROGRAMMING LANGUAGE

3.1 Introduction 3-1
3.2 Instructions 3-1
3.2.1 Comments 3-1
3.3 Variables 3-1
3.3.1 Variable Units 32
3.3.2 Three Types of Variables.........veeooonn, 3-2
3.3.3 Variable Limits 3-2
3.3.4 Switches 32
3.3.5 Printing Variables 3-2
3.3.6 Changing a Variable 3-3
3.3.7 Programming Conditions 3-3
3.3.8 Power-up and Control Variables................ 3.3
3.3.9 Initial Settings of Control
and User Variables 34
3.3.10 User Variables 3-7
3.3.10.1 Indirect User Variables............uun......n. 3-7
3.3.11 User Switches 3-8
3.3.12 Special Constants 3-8
3.4 Math 3-8
3.4.1 Hexadecimal 3-8
3.4.2 Algebraic Functions 3.9
3.4.3 Logical Functions: AND, OR.......oun.... 3-9
3.5 General Purpose Input/ Outputuueueneeee. 3-10
3.5.1 Whole Word 1/0 3-10
3.6 Fault Logic 3-11
3.6.1 Firmware Faults, Area 1........oooovooenoo 3-13
" 3.6.2 Fault Logic, Area 2 3.13
3.6.3 Fault Latch, Area 3 2313
3.6.4 Ready Latch, Area 4 3-13
3.6.5 ACTIVE, Area 5 3-13
3.6.6 Relay and STATUS Control, Area 6........ 3-13
3.6.7 Motor Brake 3.14
3.6.8 Output Relay 3-14
3.7 Drive Control 3-14
3.7.1 Direction Control, DIR 3-14
3.7.2 Position 3-14
3.7.2.1 Position Command and Feedback,
PCMD & PFB ..3-14
3.7.2.2 Position Error, PE & PEMAX oo, 3-14

BDSS

TABLE OF CONTENTS

3.7.2.3 R/D Position, PRD

3.7.2.4 Sampling PFB, PCMD and PEXT.........

3.7.3 Velocity

3.7.3.1 VCMD, VFB, VE, & VAVG
3.7.3.2 Velocity Limits, VMAX & VOSPD

3.7.4 Current

3.7.4.1 Motor Current, ICMD & IMON.......
3.7.4.2 Current Limits, IMAX & ILIM........
3.7.5 Enabling the Position Loop with PL.

3.7.6 Controlling the Velocity Loop
with PROP

3.7.7 Enabling the BDS5

3.7.8 Limiting Motor Current

3.7.8.1 Continuous Current, ICONT............
3.7.8.2 Foldback Current, IFOLD................
3.7.8.3 Monitoring Current Limits

3.8 Motion Commands

3.8.1 Basic Motion Commands

3.8.1.1 AMAX, ACC, & DEC....oecerrvemeuenna.
3.8.1.2 EN, STOP, & LIMITS.......cccoeuueemere
3.8.1.3 Enabling Motion with MOTION......

3.8.1.4 STOP (S) Command
3.8.1.5 STOP and BREAK with
Control X (*X)

3.8.2 Limiting Motion

3.8.2.1 Hardware Travel Limits.........o.........

3.8.2.2 Software Travel Limits, PMAX
& PMIN

3.8.2.3 User Position Trip Points, PTRIP1

& PTRIP2
3.8.3 Profiles

3.8.3.1 S-Curves

3.8.3.2 Move Absolute (MA) Command......
3.8.3.3 Move Incremental (MI) Command
3.8.3.4 Incremental Move Example..............

3.8.3.5 Profile Limits

3.8.4 JOG (J) Command

3.8.5 NORMALIZE (NORM) Command
3.8.6 Zero Position Error (ZPE) Command

3.8.7 MACRO MOVES

3.8.7.1 MCA, MCI, MCD, & MCGO..........
3.8.7.2 Macro Move Example #1.................
3.8.7.3 Macro Move Example #2................
3.8.8 R/D BASED MOVE (MRD) Command...

3.8.9 Capturing Position

3.8.9.1 Enabling Capture, CAP & PCAP

3.8.9.2 Capture Direction, CAPDIR
3.8.9.3 Speeding Up Homing Sequencss......

3.8.10 Clamping

3.8.10.1 Clamping and Homing

3.8.11 JOG TO (IT) & JOG FROM (JF)......

3.8.11.1 Registration

i

3-15
3-15
3-15
3-15
3-16
3-16
3-16
3-16
3-16

3-16
3-16
3-17
3-17
3-17
3-18
3-18
3-18
3-18
3-18
3-19
3-19

3-19
3-19
3-19

3-20
3-20

.3-21

321
3-22

322
3-23
323
3-23

3-24
3-24
3-24
3.25
3-25
3-26
3-26
3-26
3-27
3-27
3-27
3-28
3-29
3-29

3.8.11.2 Registration Exampleceveeernvuecnnenn 3-30
3.8.11.3 Muitiple JF/JT Commands 3-30
38,414 Changing Profiles During Motion 3-31
3.8.12 External Inputs 3-32
3.8.12.1 Analog Input 3-32
3.8.13 Electronic Gearbox 3-32
3.8.13.1 Gear Ratio, GEARI & GEARO 3-32
3.8.13.2 Gearbox Example 1 3-33
3.8.13.3 Gearbox Example 2 3-33
3.8.13.4 Profiles and Gearbox 3-33
3.8.135 Velocity Offset, VOFF 3-35
3.8.13.6 Gearbox, ACC/DEC, and Jogs............. 3-35
3.8.14 Profile Regulation 3-35
3.8.14.1 REG & REGKHZ 3-35
3.8.14.2 Profile Regulation and Counting
Backwards 3-36
3.8.14.3 Regulation Example 3-36
3.8.15 Encoder Feedback 3-37
3.8.16 CONTINUE 3-37
3.9 CONTROL LOOPS 3-38
3.9.1 Position Loop 3-38
3.9.2 Velocity Loop 3-38
3.9.2.1 Proportional Velocity Loop............. 3-38
3.9.2.2 Integrating Velocity Loop.........e.... 3-38

3.9.3 Torque Command 3-39
3.9.4 Power-Up Control Loops 3-39
CHAPTER 4. USER PROGRAMS

4.1 Introduction 4-1
4.2 Programming Techniques 4-1
4.2.1 Example Application 43
4.2.2 Application Specification 4-3
4.2.3 Application Flowchart 4-3
4.2.4 Commented Program 4.5
4.2.5 Customer Service 4-6
4.3 Editing 4-6
4.3.1 Motion Link Editor 4-6
4.3.2 BDSS Resident Editor 4-7
4.3.2.1 Editor Print (P).... 4-7
4.3.2.2 Next Line 4.7
4.3.2.3 Password (PASS) 4.7
4.3.2.4 INSERT () 4-8
4.3.2.5 FIND (F) 4-8
4.3.2.6 CHANGE (C) 4-8
4.3.2.7 DELETE (DEL) 4-9
4.3.2.8 Size 4-9
4.3.2.9 NEW 4-9
4.4 Building A Program 4-10
4.4.1 Basic Commands 4-10
4.4.1.1 Labels 4-10
44.1.2 RUN 4-10
4.4.1.4 BREAK (B) 4-10
4.4.1.3 GOTO...... 4-10

g

S

\Q%ww“’ ’

&
g

‘\“waf‘.

i

TABLE OF CONTENTS

4.4.1.5 GOSUB and RET
4.4.2 Conditional Commands..........
4.4.2.1 Quick IF (?) Command
4.4.2.2 Nesting ? Commands
4.4.2.3 TIL Command
4.4.2.4 IF, ELIF, ELSE, and ENDIF
Commands
4425 IFvs.?

4.5 Using the General Purpose Inputs................
4.6 Interfacing with the Operator......................
4.6.1 PRINT (P)
4.6.1.1 Printing Decimal Numbers....................
4.6.1.2 Printing Decimal Points
4.6.1.3 Printing Hex Numbers

4.6.1.4 Printing Binary Numbers
4.6.1.5 Printing Switches
4.6.1.6 Printing Expressions
4.6.1.7 Printing ASCII Characters

4.6.1.9 Cursor Addressing
4.6.1.10 Printing BDSS5 Status [0:20) JURR
4.6.2 REFRESH (R & RS) Command..............
4.6.3 INPUT
4.6.3.1 INPUT Limits
4.6.3.2 INPUT and Decimal Point...................
4.6.4 SERIAL Switch .
4.7 ldling Commands
4.7.1 HOLD (H)
4.7.2 DWELL (D)
4.7.3 WAIT (W)
4.8 MULTI-TASKING
4.8.1 Multitasking and Autobauding.................
4.832 MULTI
4.8.3 END Command
4.8.4 Enabling and Disabling Multi-tasking......
4.8.5 1dling
4.8.5.1 Pre-Execution Idle

4.8.5.2 Post-Execution Idle

4.8.5.3 Avoiding Idling

4.8.6 Alarms (Task Levels B L) RO
4.8.6.1 Restrictions of Alarms

4.8.6.2 Printing with Alarms
4.8.7 Variable Input (Task Level L SO
4.8.7.1 Using Variable Input with Profiles.........
4.8.7.2 Restrictions of Variabie Input........euu....
4.8.8 Main Program Level (Task Level) JR—
4.8.8.1 Power-Up Routine (POWER-UPS)........
4.8.8.2 Error Handler (ERRORS)..c.occuerrraen.n.
4.8.8.3 Auto Routine (AUTOS).ccorvmrurrrreerennn.
4.8.8.4 Manual Program (MANUALYS).............
4.8.8.5 Typical AUTO/MANUAL Programs.....
4.8.9 Background (Task Level) O

4.8.9.1 Restrictions of Background.................. 4-32
4.9 Units........uuee.., 4-32
4.9.1 User Units................ 4-32
4.9.1.1 Current Units......... 4-32
4.9.1.2 Other User UnitS.....uusneonrvoooon 4-33
4.9.1.3 External Units........... 4-33
4.9.2 Machine Specific Units......................... 4-35

4.9.3 Position Rotary Mode, ROTARY, &

PROTARY 4-37
4.9.3.1 Choosing PROTARY, PNUM,

and PDEN 4-37
4.9.3.2 Rotary Mode and Absolute Moves......... 4-38
4.10 Serial Communications 4-38
4.10.1 Autobauding 4-.38
4.10.1.1 Setting the BDSS5 to Autobaud............. 4-38
4.10.1.2 Autobauding and MOTION................ 4-38
4.10.1.3 Enabling Autobaud with ABAUD....... 4-38
4.10.1.4 Baud Rate, BAUD 4-39
4.10.2 Prompts 4-39
4.10.3 Serial Watchdog 4-39
4.10.4 Transmit/Recsive Programs.........uuu...... 4-39
4.10.4.1 <BDS Command Receiving from

the BDSS 4-39
4.10.4.2 The >BDS Command Transmitting

to the BDSS 4-39
4.105 System Dump 4-40
4.10.5.1 Version Dump 440
4.10.6 Multidrop Communications.................... 440
4.10.6.1 Broadcast 441
4.11 Program Examples 4-41
CHAPTER 5. DEBUGGING
5.1 Introduction 5-1
52 Debugging Modes 5-1
5.2.1 Single-Step 5-1
5.2.2 Trace...... 5-2
5.2.2.1 Motion Link and Trace...................... 5-2
5.3 Debugging and Multi-Tasking...........u.......... 5-2
5.4 Removing Code 53
5.5 Synchronizing Your Program..........e........ 54
3.5.1 Using the Timers, TMR14.................. 54
5.5.2 Regulation Timer, RD ...voovuoeeo 5-4
5.5.3 Motion Segments 54
5.5.4 WAIT (W)............ 5-5
5.5.5 Gating Motion with GATE................_. 5-6
5.6 Hints 5-6
5.7 Error Loguueu...... 5-8
5.7.1 Error Levels 5-8
5.7.2 DEP 5-9
5.7.3 ErT0r HiSIOTY w..eeereuumenereneenssns oo 5-9
5.7.4 Displaying Error Messages.........oooeennni 5-9
5.75 Firmware EITOrS coovuvuusvunsvoeeso 5-9

e i reommatabine a
A KT

PR

BDSS5

TABLE OF CONTENTS

CHAPTER 6. COMPENSATION

6.1 Introduction
6.2 System Compensation
4.2.1 Cdtical Damping
6.2.2 Underdamping
6.2.3 Overdamping
6.2.4 Ringing
6.3 Tuning
6.3.1 If Your System Is Completely Unstable......
6.3.2 Reducing ILIM
6.4 TUNE Command
6.5 Tuning the BdsS Yourself

6.5.1 Tuning the Velocity Loop c.ceseesescsesresasereses
6.5.2 Tuning the Position Loop
6.6 RECORD and PLAY
6.7 Problems
6.7.1 Overloading the Motor
6.7.2 Compliance
6.7.3 Non-Linear Mechanics
6.7.4 Resonance
6.7.5 Low-Pass Filters

APP%NDD(A. WARRANTY INFORMATION
APPENDIX B. ASCll TABLE

APPENDIX C. SOFTWARE COMMANDS
APPENDIX D. ERROR CODES

APPENDIX E. VARIABLE QUICK
REFERENCE

APPENDIX F. COMMAND TIMINGS

6-1
6-1
6-2
6-2
6-2
6-2
6-3
6-3
6-3

6-4

6-5
6-6
6-6
6-6
6-7
6-7
6-7
6-8

i

% i
i

1
.

N‘kww“j '

% ;
% o
Cagageon

LIST OF FIGURES BDS5
LIST oF FIGURES
EIGURE PAGE HGURE PAGE
1.1 BDS5 Model Number Scheme .14 3.5 Macro Move Example #2. 3-25
1.2 Compensation Model Number Scheme.......... 1-5 3.6 Jog From (JF) Command 3-29
1.3 PSR4/5 Mode! Number Scheme..................... 1-6 3.7 Jog To (IT) Command 3-29
1.4 External Regen Resistor Model 3.8 BDSS Master/Slaving 3-34
Number Scheme 1-7 3.9 BDSS5 Control Modes 340
2.1 BDSS Instruction Screen ' 2-3 4.1 Sample Flowchart .44
2.2 BDSS State Table 2-11 4.2 Auto/Manual Flowchart .4-31
4.3 Master/Slave Block Diagram................. 4-34
3.1 BDSS5 Enabie/Fanit Logic Diagram............. 3-12
3.2 A Simple Profile 3-20 6.1 Critical Damping 6-2
3.3 S-Curve Profile 3-21 6.2 Underdamping 6-2
3.4 Macro Move Example #1 3-25 6.3 Overdamping 6-3
6.4 Ringing 6-4

LIST OF TABLES BDS5
LIST OF TABLES
JABLE PAGE TABLE PAGE
1.1 BDSS Model Number Schemecuen.......... 14 4.4 Printing BDSS Status 4-20
1.2 PSR4/5 Model Number Scheme.................... 1-6 4.5 Multi-Tasking Overview 4-24
1.3 External Regen Resistor Model 4.6 How to Enable Multi-Taskingceecvunu.. 4-25
Number Scheme 17 4.7 How to Disable Multitasking..........coereerunene 4-25

1.4 Specifications 1-8 4.8 Four Idling Commands 4-26
1.5 Environmental Specifications 1-11 4.9 To Execute AUTOS 4-30
1.6 Mechanical Specificationsceessmessrunenss 1-12 4.10 To Execute MANUALS 4-30

4.11 Common User Units 4-32
2.1 Cursor Control Keys 2-8 4.12 System Resolutions 4-33
2.2 BDSS Rules for Prompts 2-10 4.13 Setting External Units in
2.3 BDSS Prompts 2-10 Master/Slave Systems 4-33
2.4 Monitor Mode Commands...........eee.rvnnenn..... 2-12 4.14 English Conversion (12-bit

R/D Only) 4-35
3.1 Standard Units 3.2 4.15 Metric Conversion (12-bit
3.2 Power-Up State of Programmable Units......... 34 R/D Only) 4-35
3.3 Rules For Math Expressions 3-3 4.16 External Units Conversionee.u..... 4--36
3.4 Output 1-8 Decimal Values..................... 3-10 4.17 BDSS Prompts 441
3.5 Input 1-16 Decimal Values......................... 3-11
3.6 PRD: Ranges and R/D Resolutions 3-15
3.7 S-Curve Acceleration Chart........................ 3.21 5.1 Multi-Tasking Debug Prompts..................... .5-3
3.8 R/D Converter Accuracy 3-26 5.2 Segments for Different Moves....................... 5-5
3.9 Encoder Resolution 3-37 5.3 Ermror Severity Levels and Actions.................. 5-8
4.1 BDSS Conditions 4-11 6.1 Tuning Criterion 6-1
4.2 Block-IF Restrictions and Options............... 4-14 6.2 Allowed Tune Command
4.3 Desired Operation of Program Stability Settings 64
Example 4-14 6.3 Velocity Loop Bandwidth vs. KVIL................. 6-5
6.4 Velocity Loop Bandwidth vs. KPMAX 6-5

St

[T A, R SN

h g
j

BDSS

How TO USE THIS MANUAL

How To Use THIS MANUAL

INTRODUCTION

This User's Manual is designed to help you properly
operate a BDSS Servo System. You do not have to
be an expert in motion control to utilize the system
however this manual does assume you have the
fundamental understanding of basic electronics and
motion control concepts. Many of these are
explained in the glossary of this manual.

The BDSS is a programmable motion control device.
An understanding of computer programming
techniques will be beneficial to all users. For
applications that require complex programs, a
professional programmer should be consuited.

RECOMMENDATIONS

It is recommended that you read this entire manual
before you attempt to operate the BDSS so you can
promptly find any information you need. This will
also familiarize you with system command functions,
and their relationship to one another.

After installation and before you apply your own
application check all system functions and features
to insure you have installed your BDSS properly.

These instructions are intended to aid you to
administer the the BDSS to your own applications. .
Your safety and satisfaction are important to
Industrial Drives. Be sure to follow all instructions
carefully and pay special attention to safety.

CONVENTIONS

To assist you in understanding the material in this
manual, conventions have been established to
enhance reader comprehension. Explanations of
these conventions are as follows;

Safety wamnings, cautions, and notes present
material that is important to user safety. Be sure
to read any safety notices you ses as they could
prevent equipment damage, personal injury, or
even death to you or a co-worker.

Bold text highlights other important
information that is critical to system operations.

CAPITALIZED text stresses attention to the
details of the procedure.

Underlined text emphasizes crucial words in
sentences that could be misunderstood if the
word is not recognized.

DOUBLE BLOCKED | text defines words

that are to be typed into the computer by the
user to interface with the BDSS.

SINGLE BLOCKED | text defines words

that are displayed by the BDSS on the
computer terminal to inform the user of system
operations or problems.

BDS5

How 1O USE THIS MANUAL
ABBREVIATIONS

ccw Counter Clockwise
Cw Clockwise

D/L Direction Limit

GC Goldline Cable

GCS Goldline Cable Set
LED Light Emitting Diode
NEC National Electrical Code
BP/N Part Number

RD Resolver-to-Digital
Regen Regeneration

TL Test Limits

UL

i,

Underwriters Laboratories

NOTICE:

This manual is the first of a two part manual
structure. The /nstallation and Setup Manual is

- intended to instruct the user on the installation

procedures and practices to be used with the BDSS.

e

BDS5 - CHAPTER 1 - SYSTEM DESCRIPTION

CHAPTER 1

SYSTEM DESCRIPTION

1.1 INTRODUCTION 1.3 FEATURES
- The information in this chapter will enable you to The BDSS offers a wide feature set to accommodate
understand the BDSS5's basic functions and features. real world positioning requirements:
These concepts will allow you to apply them to your
own unique applications. * LOW COST

The BDSS is very affordable--even though it is full
of advanced features. Use all or only a portion of
1.2 PRODUCT DESCRIPTION these features to accomplish your application.

The BDSS is a full-featured, high-performance, brushless s EASYTO INSTALL
positioning servo in one compact enclosure—it is the
smallest, totaily-integrated package available to motion The BDSS is casy to install because the servo

control users. The BDSS combines a positioner, a servo amplifier and the positioner are integrated into one
amplifier, and an I/O interface into one unit. The BDS5 package. Many interconnects, including the
scts new standards for motion control with its simple tachometer and encoder, are eliminated.

BASIC-like command structure and sophisticated decision-
making capability. The BDSS provides the outstanding * SIMPLE PROGRAMMING LANGUAGE
servo performance that you have come to expect from

Industrial Drives. Using a high-performance The BDSS5 uses simple BASIC-like commands such
microprocessor, the BDSS does not have to compromise on as RUN, GOTO (for branching), and GOSUB /
either positioner software or servo performance. This RETURN (for subroutines). In addition to a simple

single microprocessor closes ail servo loops, resultingina comparison statement, advanced IF / ELIF / ELSE /
truly integrated positioning system. The BDSS has the END IF statements result in more readable and less
features and performance you need in your next positioning error-prone programs. You can comment every line
application. in your program. :

* ADVANCED MOTION CONTROL MOVES

The simple language does not prevent you from
solving complex problems. The BDSS has separate
acceleration and decsleration rates, as well as linear,

1-1

CHAPTER 1 - SYSTEM DESCRIPTION

BDS5

half S-curve, and full S-curve acceleration profiles.
The BDSS has Macro Moves for applications where
simple indexes cannot do the job. A Macro Move is
a combination of up to 30 accelerations, traverses,
and decelerations, which are fully precalculated for
faster exccution. You can program teach modes
where position end points can be changed by a
factory operator.

* MASTER/SLAVE - ELECTRONIC GEARBOX

The electronic gearbox is used to link two motors
together so that the velocity of the slave is
proportional to the velocity of the master. The ratio
can be from 32767:1 to 1:32767 and can be negative
to allow the slave to move in the opposite direction.
Also, the "index-on-gearing” feature permits phase
adjustments,

* MASTER/ SLAVE - PROFILE REGULATION

With profile regulation you can control the slave's
motion profile according to an external master motor
or frequency. Profile regulation modifies the velocity
and acceleration of the slave axis without affecting
the final position of the move. You can use profile
regulation to implement "feed rate override.”

* MOTION GATING AND REGISTRATION

The BDSS can precalculate moves to begin motion
within one millisecond after a transition on the
GATE input. This provides rapid and repeatable
motion initiation. The BDSS has the ability to
capture the current position within 25 microseconds
after a transition of the HOME input. This results in
fast homing and accurate registration sequences.

* MATHEMATICS

Algebraic math is provided for commands such as:
X1=2x(X2+X3)

The BDSS has 100 program labels, 50 user-definable

variables, and 50 user-definable switches. It also has

15 mathematical/logical operations and over 150

system variables.

* USER UNITS

Quantities such as position, velocity, and
acceleration are automatically scaled into user-

1-2

defined units. This feature lets you program the
BDSS in convenient units, such as feet, inches,
miles, RPM, and degrees.

* SUPERIOR SERVO LOOP CONTROL

The BDSS offers smooth, high-resolution control.
Standard BDSS position repeatability is better than
one arc-minute, bidirectional. The BDSS has a 32-
bit position word. The BDSS5 position loop
completely eliminates the digital dither normally
associated with positioning systems. Long-term
speed stability is 0.01%. The standard system
converter (12-bit) provides a resolution of 0.0005
RPM and a maximum speed of 8000 RPM.

* SELF-TUNING

The BDSS can tune itself. You do not have tobea

Servo expert to set up a system quickly. Just specify
the desired bandwidth, and let the BDSS do the rest.

* POWERFUL MICROPROCESSOR

The heart of the BDSS is the 16-bit processor that
delivers high performance. The result: the BDSS
can control 2 motor and execute its motion program
faster than a standard positioner can.

* DIGITAL SERVO LOOPS

Both the position and velocity loops are totally
digital. The digital loops give the BDSS5 features not
available in standard velocity drives, such as self-
tuning, very low velocity offset, and digitally-
adjustable servo tuning parameters. The optional
analog input permits you to use the BDSS as an
analog velocity drive.

* FEED-FORWARD GAIN

The digital feed-forward gain reduces following
error and motion initiation delay, thereby increasing
machine throughput.

* DIAGNOSTICS

The BDSS offers a complete set of error diagnostics.
When an error occurs, the BDSS displays an English
language error message. The BDS5 remembers the
last 20 errors even through power loss. In addition,
the BDSS lets you write your own error handler.
During a fauit condition, you can use the error

e

S

j—

BDS5

CHAPTER 1 - SYSTEM DEScRrIPTION

handler to set outputs, alert an operator, and shut
down your process smoothly. The BDSS5 offers trace
and single-step modes so that you can debug your
program. The BDSS has complete fault monitoring,
including travel limit switches, feedback loss, and
software position limits, as well as hardware safety
circuits (watchdogs) and checksums for more
reliable and safer operation.

s 1O

The BDSS has up to 32 [/O sections that you connect
via ribbon cable to standard OPTO-22 compatible
1/O boards or to INDUSTRIAL DRIVES [/0-32.
The I/O-32 provides either fixed 24-volt or
removable, industry standard, optically-isolated I/O
in a GOLDLINE style package.

* SERIAL COMMUNICATIONS

The BDSS's serial communications provide a
powerful link to other popular factory automation
devices such as PLC's, process control computers,
and smart terminals. The BDSS offers RS-232 for
most terminals and RS-422/RS-485 for muitidrop
communications. With multidrop you can put up to
26 axes on one serial line. The BDSS can autobaud
from 300 baud to 19.2k baud, climinating the need
to set dip switches to start communicating,

* MOTION LINK

Industrial Drives also offers MOTION LINK, a
powerful, menu-driven communications package for
your IBM-PC (c) compatible computer., With this
package, the BDSS5's programs and variables can be
retrieved from or saved to a disk drive. Also, on-line
help and a full screen editor are built into MOTION
LINK.

* MENU-DRIVEN SOFTWARE

The BDS5's programming language allows you to
write operator-friendly, menu-driven software. By
incorporating an INDUSTRIAL DRIVES Data Eatry
Panel, or any other serial communications device,
the operator can be prompted for specific process
data.

* MONITOR MODE

The BDSS provides interactive communications and
permits all system variables and parameters to be
examined and modified at any time--even during
actual program execution or while the motor is
running,

1.4 PART NUMBER DESCRIPTION

A model number is printed on a gold and biack tag
on the front of your BDSS, PSR4/5, Compensation
Card and External Regen Resistor modules. The
model number identifies how the cquipment is
configured. Each component is described to explain
what the mode] configurations are. You should
verify that the model numbers represent the
equipment desired for your application. Also verify
the compatibility between components of the sarvo
system. The model numbers are as follows:

1-3

CHAPTER 1 - SYSTEM DESCRIPTION BDSS

1.4.1 BDS5 Model Number
BDS5 - 203-10000\204 A -2-021/ 2021

AB CDEFG H J L M

Voltage and Current Ratings —-l User Program
Options Firmware Version
Motor and Winding R/D Resolution

Figure 1.1. BDS5 Model Number Scheme

Table 1.1. BDS5 Model Number Scheme

LEGEND DEFINITION

A Voltage Rating
115 VAC
230 VAC

N -

B Curmrent Rating
1 3 Amps/Phase
6 Amps/Phass
10 Amps/Phase
20 Ampe/Phase
30 Ampe/Phase
40 Ampe/Phase
55 Amps/Phase

¢
H8588388

c Mechanical Options (0 indicates standard feature)
Standard

o

D Communication Options

RS-232

RS-422/RS-485

£ Input Options

Encoder Input

Analog input

Puise Input

No Input

F /O Options

810

3210 ,

G R/D Accuracy Options
0 8 Arc-minute

22 Arc-minute

-0 wN -+ O -- 0

-t

H ’ Motor and Winding
204A BR-204 Motor, A Winding

J R/D Resolution

12-Bit (4098counts/rev)
14-8it (16384counts/rev)
16-Bit (85536 counts/rev)

@D N

L Firmware Version {not normally specified when ordering)
021 Varsion 2.1

M User Program (This ig reserved for systems that are programmed by Industrial Drives. This is
not nommally specified when ordering.)
2021 User Program #2021

1-4

-y

< rmraspreey s e v

S

s

" Compensation module modaj Dumbers g agree. For

Voltage RatingJ [-Motor and Winding
Current Ratlng

Figure 1.2 Cornponsatlon Mode/ Numper Scheme

A partia] mode] aumper i Printed op 4 8old and and your motop must be a 2044 An €xample of 5
black 12g on the frog; of the Compensation moduje 204A motor mode! numper is:
(the black Plastic box secured to the frop, of your
BDss by two Screws), See Figure 1.2 fo; the B-204-4-21.
dCScn‘ptions Of the mode] Bumber (that iS, what ABB
mean). The modej Qumber js g¢ follows; -
The Compensatign module depends 0n your motor You MUsT HAVE E
and the voitage ang current rating of your BDSS, 1 PROPER COMPENSATION
MODuLE STALLED FOR

is importane that the motor, the BDSS, ang the

;) THE COMPENSAT!ON
cXample, if your BDss model numbey i MODULE CHANGES IF THE
x 1. AMPUFIER RATINGS
S5 203000002044, 10172021, CHANGE, EVEN FoR 114

then your Compensation moduje mode} Qumber myg; CAUT,ON SAME M OTOR.

be: . Fallure to Ingtafl the Proper
203/204 4 compensaﬂon Mmoduie can

Cause damage 1o the BDss,

the Mmotor, or both.

———

g

CHAPTER 1 - SYSTEM DESCRIPTION

BDSS

1.4.3 PSR4/5 Model Number

PSR4/5-212
AB
Voltage Rating ‘J L

Figure 1.3. PSR4/5 Model Number Scheme

0000
cC D
l—Optlons

Current Rating

Table 1.2. PSAR4/5 Model Number Scheme

LEGEND DEFINITIONS
A Voltage Rating
1 115 VAC
2 230 VAC
B Current Rating
;12 12 Amps/Phase
: 20 20 Amps/Phase
75 75 Amps/Phase
C Options for 12 and 20 Amp Models Only
00 Side Cover
D Regen Options for 12 and 20 Amp Models Only
00 Internal 40 W Regen*
01 External Regen (230 VAC Only) 8.8 Ohms, 400 W., Requires ER-01 Resistor
Kit
02 External Regen (115 VAC Only) 5.5 Ohms, 200 W., Requires ER-02 Resistor
Kit
o3 External Regen (230 VAC Only) 5.8 Ohms, 700 W., Requires ER-03 Resistor
Kit
70 Without Regen or Soft-Start
80 Without Regen
Cc Options for 50 and 75 Amp Models Oniy
00 Side Cover
D Regen Options for 50 and 75 Amp Models Only
00 Standard (with Soft-start) Requires ER-2X Resistor Kit
50 Without Soft-start. Requires ER-2X Resistor Kit

1-6

Side cover not available with internal regen option.

s, e
g

L

e———— A b R S e gy

BDS5 CHAPTER 1 - SYSTEM DESCRIPTION

1.4.4 ER-External Resistor Kit Modei Number

g

& Contact Industrial Drives Application Engineering to size regeneration capabllity.
NOTE

ER-01-XX

A B
Resister Rating—l LOptic:ns

Figure 1.4. Extsrnal Regen Resistor Model Number Scheme

Table 1.3. External Rgggn Resistor Mode/ Number Scheme
LEGEND DEFINITIONS

A Resistor Rating

01 8.8 Ohms, 400 W., 230V, 12 & 20 Amp Models Only
02 5.5 Ohms, 200 W., 115V, 12 & 20 Amp Models Only
03 5.8 Ohms, 700 W., 230V, 12 & 20 Amp Modeis Only
20 4.5 Ohms, 500 W., 230V, 50 & 75 Amp Models Only
21

22

23

) 44 Ohms, 1000 W., 230V, 50 & 75 Amp Models Only
2.2 Ohms, 1000 W., 230V, 75 Amp Models Only
2.2 Ohms, 2000 W., 230V, 75 Amp Models Only
B Options
00 None available at this printing.
1.4.5 Molex Assembly Tools . You can obtain the crimping and extraction tools
from your nearest Molex distributor or by contacting
GOLDLINE series electronics (BDS4's, BDSS's, and Molex at (708) 969-4550.
PSR4/5's) use Molex MINI-FIT JR. series ’ '
connectors. The necessary connectors and pins are Hand Crimping Tool Molex Order# 11-01-0122
included in your BDSS5 and PSR4/5 connector kits.)
Extractor Tool Molex Order# 11-03-0038
w4

1-7

. 01 R M LB LA 18 9Bk S nre o

CHAPTER 1 - SYSTEM DESCRIPTION

BDS5

1.5 SPECIFICATIONS AND RATINGS

Table 1.4. Specifications

PSR4/5-1XX-(90 - 160 VAC L-L INPUT)

DESCRIPTION PSR4/5-212- PSR4/5-220-

Main AC Line Input Voltage 80-1680 VAC 90-160 VAC
Phase 1-3 1-3
Frequency 47-83 Hz 47-63 Hz
Current Cont. (RMS) 3-Phase 12.0 AMPS 20.0 AMPS
Single-Phase 10.0 AMPS 16.0 AMPS
Peak (2.0 sec) 3-Phase 24.0 AMPS 40.0 AMPS
Single-Phase 20.0 AMPS 32.0 AMPS
Peak (50.0 msec) 3-Phase 50.0 AMPS 80.0 AMPS
Single-Phase 42.0 AMPS 64.0 AMPS
Control AC Line Input Voltage 80-132 VAC 80-132 VAC
Phase 1 1
Frequency 47-83 Hz 47-63 Hz
Main DC Bus Output Voltage

(Nominal 115 VAC input) 160 VDC 160 VDC

Current 115 VAC 1.1 AMPS RMS 1.1 AMPS RMS
Regeneration Shunt Resistor (Internal) 15 OHM 7.5 OHM
Shunt Regulator Current (PK) 15.3 AMPS 30.6 AMPS
Power Dissipation (Cont.) 40 WATTS 40 WATTS
Power Dissipation (PK) 3.5 KW 7.0 KW
Internal Heat Dissipation 120 WATTS 120 WATTS
Regeneration Shunt Resistor (External Min) 5.5 OHM 5.5 OHM
Shunt Regulator Current (PK) 41.8 AMPS 41.8 AMPS
Power Dissipation (Cont.) 200 WATTS 200 WATTS
Power Dissipation (PK.) 9.6 KW 8.6 KW
Soft-Start Surge Currrent (Max) 80 AMPS 80 AMPS
Charge Time (Max) 25 MSEC 25 MSEC -

1-8

e

St

AL . VYU AR e

e e v T B a8 S < o

7
g

| §
L

BDS5 CHAPTER 1 - SYSTEM DESCRIPTION
Table 1.4. Specifications (Cont.)
PSR4/5-1XX-(160 - 253 VAC L-L INPUT)
DESCRIPTION PSR4/5-212- PSR4/5-220-

Main AC Line Input Voltage 160 - 253 VAC 160 - 283 VAC
Phase 1-3 1-3
Frequency 47-83 Hz 47-63 Hz
Current Cont. (RMS) 3 Phase 12.0 AMPS 20.0 AMPS
Singie Phase 10.0 AMPS 18.0 AMPS
Peak (2.0 sec) 3 Phase 24.0 AMPS 40.0 AMPS
Single Phase 20.0 AMPS 32.0 AMPS
Peak (50.0 msec) 3 Phase 50.0 AMPS 80.0 AMPS
Single Phase 42.0 AMPS 64.0 AMPS
Control AC Line Input Voltage 890-132 VAC 90-132 VAC
Phase 1 1
Frequency 47-83 Hz 47-83 Hz
Main DC Bus Output Voltage

(Nominal 115 VAC Input) 325 VDC 325 VDC

Current 115 VAC 1.1 AMPS RMS 1.1 AMPS RMS
Regeneration Shunt Resistor (Internal) 25 OHM 12 OHM
Shunt Regulator Current (PK) 15 AMPS 30 AMPS
Power Dissipation (Cont.) 40 WATTS 40 WATTS
Power Dissipation (PK) 5.6 KW 11.2 KW
Internal Heat Dissipation 120 WATTS 150 WATTS
Regeneration Shunt Resistor (External Min) 8.8 OHM 8.8 OHM
Shunt Regulator Current (PK) 44.3 AMPS 44.3 AMPS
Power Dissipation (Cont.) 400 WATTS 400 WATTS
Power Dissipation (PK) 17.3 KW 17.3 KW
Sott Start Surge Currrent (Max) 150 AMPS 150 AMPS
Charge Time (Max) 25 MSEC 25 MSEC

1-9

NodlO LN L ” D IDLIEM DESCRIFITON

BDSS

Table 1.4. Specifications (Cont.)

BDS5-1XXX-(90-160 VAC L-L. OUTPUT TO MOTOR)

DESCRIPTION BDS5-103X | BDS5-106X | BDS5-11 0X | BDSs5-120X
Main DC Bus
Minimum 130 VvDC 130 VDC 130 vDC 130 VDC
Maximum 225VDC 225VDC 225VDC 225 VDC
+15-20 VDC x15-20 VDC +15-20 VDC =15-20 VDC
@0.25 AMPS | @0.25 AMPS | @0.25 AMPS | @0.25 AMPS
Unregulated Logic Bus
+8-12VDC +8-12VDC +8-12VDC +8-12 VDC
@1.00 AMPS | @1.00 AMPS | @1.00 AMPS @1.00 AMPS
Output Current
(RMS/@) Convection Fan
Cooled (45°C AMB) Cooled
Contjnuous (RMS) 3.0 AMPS 6.0 AMPS 10.0 AMPS 20.0 AMPS
Peak (2.0 sec) (RMS) 6.0 AMPS 12.0 AMPS 20.0 AMPS 40.0 AMPS
Output KVA
(@ 180 VDC Bus) .
Continuous (45°C AMB) 0.6 KVA 1.2 KVA 2.0 KVA 4.0 KVA
Peak2.0 sec) (RMS) 1.2 KVA 2.4 KVA 4.0 KVA 8.0 KVA
Internal Heat Dissipation 30 WATTS 40 WATTS 60 WATTS 110 WATTS
PWM Switching Frequency 10.0 kHz 10.0 kHz 10.0 kHz 10.0 kHz
Motor Current Ripple
Frequency =10% 20.0 kHz 20.0 kHz 20.0 kHz 20.0 kHz
Resolver Excitation Frequency | 8.5 kHz 8.5 kHz 8.5 kHz 8.5 kHz
Form Factor RMS/AVG = 1.01 = 1.01 = 1.01 = 1.01
Fan (115 VAC) N/A N/A N/A 0.2 AMPS

1-10

i
g

", W
L

g

% &
i

BDSS5 CHAPTER 1 - SYSTEM DESCRIPTION
Table 1.4. Specifications (Cont.)
BDS5-1XXX-(160-253 VAC L-L OUTPUT TO MOTOR)
DESCRIPTION BDS5-203X | BDS5-206X § BDS5-210X | BDS5-220X
Main DC Bus
Minimum 225 VDC 225VDC 225 vDC 130 VDC
Maximum 360 VDC 360 VDC 360 VDC 225 VDC
+15-20 VDC +15-20 VDC =15-20 VDC +15-20 VDC
@0.25 AMPS | @0.25 AMPS @0.25 AMPS @0.25 AMPS
Unregulated Logic Bus
+8-12VDC +8-12VDC +8-12 VDC +8-12VDC
@1.00 AMPS | @1.00 AMPS @1.00 AMPS | @1.00 AMPS
Qutput Current
(RMS/@) Convection
Cooled (45°C AMB)
Continuous (RMS) 3.0 AMPS 6.0 AMPS 10.0 AMPS 20.0 AMPS
Peak (2.0 sec) (RMS) 6.0 AMPS 12.0 AMPS 20.0 AMPS 40.0 AMPS
Output KVA
(@ 160 VDC Bus)
Continuous (45°C AMB) 1.2 KVA 2.0 KVA 4.0 KVA 8.0 KVA
Peak (2.0 sec) (RMS) 2.4 KVA 4.0 KVA 8.0 KVA 16.0 KVA
internal Heat Dissipation 35 WATTS 50 WATTS 75 WATTS 150 WATTS
PWM Switching Frequency 10.0 kHz 10.0 kHz 10.0 kHz 10.0 kHz
Motor Current Ripple
Frequency =10% 20.0 kHz 20.0 kHz 20.0 kHz 20.0 kHz
Resolver Excitation Frequency | 8.5 kiHz 8.5 kHz 8.5 kHz 8.5 kHz
Form Factor RMS/AVG < 1.01 = 1.01 = 1.01 = 1.01
Fan (115 VAC) N/A N/A N/A 0.2 AMPS

Table 1.5. Environmental Specifications

Operating Temperature*:

3, 6, & 10 AMP Units (Convection Cooled) 0°Cto45°C
20 Amp Units (Internal Fan Cooled) 0°Cto45°C
Storage Temperature 20°Ct070°C
Humidity (Non-Condensing) 10% to S0%

* For operation ambients above 45°C, consuit the Applications Group at Industrial Drives.

1-11

- — o AwATA A A INCINLD L INJLN

BDSS

Table 1.6. Machanical Specifications

MODEL WIDTH HEIGHT DEPTH
NUMBER MM IN. MM IN. MM IN.
BDS5-X03X- | s 2.20 340 13.49 280 11
BDS5-X06X- 76 2.99 340 13.49 280 11
BDS5-X10X- 98 3.86 340 13.49 280 11
BDSS5-X20X- o8 3.90 340 13.49 280 11
PSR4/5-X00¢- 76 3.00 340 13.49 280 11

1.6 THEORY OF OPERATION
Drawing D-93030 shows a system overview.
* MICROPROCESSOR SYSTEM

The BDSS is a digital positioner and servo drive
combined into one unit. The velocity loop is 100%
digital. The BDSS has battery backup RAM to
remember your program and most variables through

power-down.,
* RESOLVER-TO-DIGITAL CONVERTER

The BDSS is based on a Resolver-to-Digital R/D)
converter. The R/D generates a tachometer signal
for your convenience, However, the BDSS does not
use the analog tach signal.

* SERIAL PORT

The BDSS has a serial port for communications,
This port allows you to monitor the operation, issue
commands, and transmit a program.

* DISCRETE INPUTS

The BDSS has 23 discrete inputs, including
REMOTE ENABLE which is on Connector C2 only.
Note that two signals, HOME and CY CLE, can be
input to the BDS on two connectors, C2 and C7.
Connector C2 provides these three signals with
optical isolation. Connector C7 expects non-isolatad
TTL signals on a 26-pin ribbon cable connector,
Optional Connector C8 ¢xpects non-isolated TTL
signals on a 50-pin ribbon cabje connector.

1-12

* DISCRETE OUTPUTS

The BDSS has 10 discrete outputs. Notice that O1
appears both on Connector C2 with optical isolation
and on Connector C8,

* ENCODER INPUT

The BDSS accepts external inputs in encoder format,
This can come from 2 master motor in a master/slave
system. Note that you must use a resolver, even if
you use a feedback encoder with the BDSS,

* ENCODER EQUIVALENT OUTPUT

The BDSS provides encoder format output derived
from the R/D converter.

* ANALOG INPUT (OPT1 CARD)

As an option, the BDSS can accept 2 £10 volt analog
input. This input is converted to digital format by
the BDSS. Gain and offset adjustments are made
digitaily inside the BDSS; not with potentiometers,

* PULSE INPUT (OPT2 CARD)

The BDSS can accept special puise inputs. The
standard BDSS can accept signals directly from
encoders or encoder-like devices. As an option, the
BDSS can accept other pulse formats, such as
count/direction or up/down.

g

e, & g

Sigoin”

e

«MM

S

BDS5

CHAPTER 1 - SYSTEM DESCRIPTION

+ LED'S

The BDSS provides LED's for diagnostics. These
LED's are on the front panel of the BDSS. The
LED's are listed below:

ACTIVE
SYS OK
crU
FAULT
RELAY

* CURRENT LOOP COMPENSATION

The BDSS has analog current loops. The current
loop compensation components are all contained in
the compensation module located on the front of the
BDSS. The current loop compensation changes
when you change the motor model. You must install
the correct compensation module when changing
motor models.

YOU MUST HAVE THE
PRCPER COMPENSATION
MODULE INSTALLED FOR
YOUR MOTOR

Failure to install the proper

CAUTION compensation module can
cause damage t{o the BDSS,
the motor, or both.

1.7 SIMPLIFIED SCHEMATIC
DIAGRAM AND SYSTEM DIAGRAM

Drawings D-93030and A-84847 illustrate a BDSS
servo system with all of the major components.

1-13

et e B Y VYL SR

W 4D L LAY IO LIUN

—
24 VLT OC ¢s-9IN 3
CUSTOMER Tx0—of “— —
§4
SUPRLIED | 1so oe C2-Pin s [ALTERNATE PONER SOURCE RS-232 €s-2IN 2
R i S { FOR AEMOTE, HOME, .AND axo+
commgn C2-PIN 15 CYCLE ONLY! v
P YU R il 120 OHM 3 1
C2-PIN g 2 Pu
O OPTICAL C5-PIN 6 < : 2
REMOTE ISOLATOR TO+ ——< <+ S—
C2~PIN 19 - €5~ PIN 7
+o 00— OPTICAL I— To- —§ 3
HOME lzsouron’ 120 oM 7
C2-PIN 8 RS-485 a sl w v
Sk € IOS“’J‘&CT& ros —§ cs—am 8 P
+ _
IN_COMMON CZ"%? 18) S-PIN 9 =
RO~ -—* =
TFIN S ||
o] « INPUT BUFFERS
C7-PIN 13 AND PULL-~UP
ST &
C7-PIN 11
MIT
] C7-PIN 15
T B —
ch—%?———.((—
C7 (EVEN PINS) MICROCOMPUTER SYSTEM
C7 STANDARD 1/0] @
] [CaTEvEn PIRGT)
3 —
C8-PIN 13
MANUAL | cgepIn 31 HICROPROCESSOR
T
C8-PIN 29
INPUT BUFFERS
e O O e
12 CE-PIN 27 ANG PULL-UP
PO e
3 €8-PIN 25
CB-PIN 23
13 C8~PIN 21
5]
C8-PIN 19
C8-PIN 17
-OI; e
C8-PIN 15
—og e ——
13 CB-PIN 13 1
] BATTERY AoM
]
C8-PIN 13 BACK-UP
- S} CB-PIN g Aun
P-‘o/g_ <
i C8-PIN 7
| e
I C8-PIN §
L4 C8-PIN 3
C8-PIN 1
—rC
118 fca oeTIONAL 1/0
C2-PIN 13
ANALQOG
OIFF CMD HI e 10 s
C2-PIN 1 CONVERTER
OIFF CHD Lo e J—
C1-FIN §
IN A SNTS4TS CHA
N % :{U/ .
R ENCODER
C1-PIN 10 K S BOSS SYSTEM OVERVIEW
C1-PIN 4 DIGITAL
IN B € P SNTS17TS cHR
ws &
C1-PIN g -

1-14

Hgg”

CHAPTER 1 - SYSTEM DESCRIPTION

UPDATED TO REV 2 12-17-92 TL¥

BDSS

1
-T2 TACTIVE®
r—<]—____ Leo
- |
et E
WATCHIOG -
g [HA¥CHITE § | Lo
“CRU”
LED
75178 T
§ U.}‘ ‘FauLT 5
LED el
"RELAY® g
LEC §
75178 C3-9IN 17 rey
j> -1 “RELAY*® :
(N.9.) C2-2IN 1§ RELAY
SZ-9IN 10]
R %;T\;%LT — 01 HI
AL
(] f\' c2-o1m 20
A ISOLATOR S 01 Lo
L= iN 33
> STATUS
OUTPUT BUFFERS CB-OIN 47
WITH OPEN 0t
COLLECTORS C8-PIN 45
D 02
C8-PIN 43
—> 03
C8-AIN 41
ULN2803A — 04
:]-J > C8-PIN 39
- s
C8-2IN 37
06
€8 PTIONAL 1/0
L7"-IN 21 '
. S 07 —
§ C7-PIN 19
F —3 08
C7-PIN 23
aus s 2 CYCLE READY
- u - A
_—— e ABSOLUTE C7 STANOARD 1/0
! }) VALUE | S VOLTS « FULL SCALE 3.01K C2-PIN 4
| CIRCUITY ANV — 1 MONITGR
[C2-PIN 14
85 pIN 10, | A-sHasE ! COMMON
9= - S
19T 0% pys || OO “ T
| Bt SAMPLE ﬂ
-——..ﬁ)_?_
! ST pIN g ' | B-PHASE Pwp
|6 = | | CuRRENT PONER oE0T=1=14] ™ |
42 PIN 4 LaoP STAGE | samene
! l g “oTOR
T ;]
'3 2 pIN g C-PHASE SRR [
= CUARENT SAMPLE
-3
! 1 3] e RESOL vaR
| comeensaTION
L CARD |] = 5N0 .
1.0 C2-PIN 2 TACH
C2-8IN 4 REF H] - AW >3 ONITOR
TACH SCALING = 1000 RPM/V 470001 = C2-A1N 12 0
cz-;m 10 REF L0 oo S COMMON
- CI-PIN 1
53;”‘ L o 7517 c1-P wr A
4 1-BIN &
C3-9IN 1 SIN Lo - 3 aura
L e
0 C3-PIN 9 COs Ml / CI-FIN 2
0IGITAL >— orGITAL cHe e - ur 8
CONVERTER | C3-JIN 3 cos Lo / 174 Ci-PIN 7
— ENCODER guT B
iz CI-9IN 2 -
-~ — au
; 75174 Ci-EIn 8

1-15

At AT)

CUSTOMER 10
MASTER | (0PTO-22 COMPATIBLE)

[SSUE
4

ENCODER

A-84847

B

(o]
(o]
!

] 2ﬁ]

3 fe-s °
El

.HMAMMHAQHEB.I

TERMINAL

R

PC COMPATIBLE

ISSLE
4

A-84847

R. FLRR
1-14-91]

000000000000000000000000

]
I N
»
115 VAC,
| PHASE I3
14
 NE | T
H * 16
- |

230 VAC,
3 PHASE
R
115 VAC,
| PHASE

GOLDLINE
MOTOR

TYPICAL BDS5 SYSTEM INTERCONNECT

x| COPYCODE

1-16

““\mw“’f

BDSS5

CHAPTER 2 - GETTING STARTED

CHAPTER 2

GETTING STARTED

2.1 INTRODUCTION

The information in this chapter will enable you to
get started with programming the BDSS, Computer
requirements and software installation prepare you
for Motion Link, the Industrial Drives’ software
package specially designed for the BDS5. This
chapter also contains an overview of Motion Link
and its basic functions and features. The Motion
Link setup program is introduced to enable the user
to have casy access to the more common Motion
Link procedures, '

2.2 COMPUTER REQUIREMENTS

The BDSS5 requires an IBM-PC or compatible
computer with the following features:

* IBM-PC, XT, AT, PS/2, or compatible
workstation.

* 512X RAM.
* PC-DOS or MS-DOS Version 2.5 or later.
¢ Either 5-1/4" or 3-1/2" Floppy Drive.

* Standard Video Adapter (CGA, MDA, EGA,
MCGA, and VGA).

* Serial Port (for communication link with
BDSS5). The serial communications port may be
COM1 or COM2. The chart below shows the
way your PC should configure COM1 and
COM2. This is the normal configuration:

COM1:(PC Address 3F8h, Interrupt Request #4)

COM2:(PC Address 2F8h, Interrupt Request #3)

2.3 SOFTWARE INSTALLATION

The following section will show you how to back up
and copy the files from the Motion Link disk to your
computer's hard disk or floppy disk.

2.3.1 Backing Up the Disk(s)

Before starting Motion Link, you should back up the
Motion Link disk(s) that came with the BDSS. This
way if something happens to the master disk(s),
you'll always have a copy. Remember, disks can be
damage by heat, magnets, pressure, and dirt — all
extensively found in a manufacturing environment.
Follow the procedure below to back up your disk(s).

1. From DOS, find either the DOS disk or

directory where DISKCOPY.COM is located
and type:

2-1

T LI SRS e Nl At A A LA YND NI LAIN L LAY

B>

DISKCOPY A: A:

Press enter and follow the DOS prompts on
screen concerning source (Motion Link) and
destination (blank disk) disks.

2. After DOS finishes copying the disk(s), place
the Motion Link original disk(s) in a safe place
for storage. Use it only to make extra copies.
Never use the original disk(s) in day-to-day
operation.

2.3.2 Software Installation

Motion Link can be installed on either a hard disk,
5-1/4 floppy disks, or 3-1/2 floppy disks. Follow the
corresponding instructions below for the installation
that your system requires.

2.3.2.1 Install on a Hard Disk
Use this procedure to install Motion Link on a hard
disk.

1. Type:
C:

2. Make a subdirectory named MLS5 on your hard
disk. Type:

MD \ML5

3. Change to subdirectory MLS. Type:

CD \ML5

4. Insertthe Motion Link disk into the A-drive.
This disk should be in the disk holder in the
front of this manual.

5. Copy all the files from the Motion Link disk
onto the hard disk by typing:

COPY A:%.*

6. Store the original Motion Link disk in a safe
Place. Do not use this disk, except to make
other copies.

2-2

2.3.2.2 Install on a Floppy Disk

Use this procedure to install Motion Link on a floppy
disk. Use the procedure for both Motion Link disks
if you are using a 5-1/4 floppy.

1. Insert your DOS disk into the A-drive. The
DOS Disk must have the DOS file,
FORMAT.COM.

2. Insert a blank disk into the B-drive.

FORMAT B./S

5. The Format program will ask you to hit a key
to continue,

6. After the format is completed, your computer
will prompt you to format more disks; answer
"N to exit the Format command.

7. Remove the DOS disk from the your computer.
Leave the formatted disk in the B-drive.

8. Insert the Motion Link disk into the A-drive.
This disk should be in the disk holder in the
front of this manual,

9. Copy all the files from the original Motion
Link disk onto your disk by typing:

"COPY A:*.* B:",

10. Label your disk as Motion Link. Include
today's date on the label.

11. Store the original Motion Link disk in a safe

place. Do not use this disk, except to make
other copies.

2.3.3 Establishing Communications

This procedure will get you started using Motion
Link after you have installed it:

S

Migsa”

g5

e

g

BDSS5

CHAPTER 2 - GETTING STARTED

1. Connect and turn on your BDSS as described
in the Installation and Setup Manual.

2. If you have Motion Link installed on a hard
disk, type:

Figure 2.1. BDSS Introduction Screen

CDO\MLs
ML

Skip to Step 4.

3. If you have Motion Link installed on a floppy
disk. Insert the copy of Motion Link in the A-

drive, type:

A
ML

4. When Motion Link responds the BDS5 should
respond on your PC monitor with the message
in Figure 2.1 (or a similar one).

This screen displays the current BDS5 configuration.

The small box at the lower half of the screen
provides five choices for the operator — Autobaud
BDSS, Autobaud Per ML.CNF, BDSS Offline, Intro.
Help, and Quit. First time users may wish to refer to
the online Intro Help by pressing "H." Choosing to
auto baud with the BDSS allows direct interactive
communication with the BDSS. The BDS5

interactive prompt is "~>." This means the BDSS is
waiting and ready for a command. When you type,
you are talking to the BDSS just as you would with a
terminal. For example, type:

P "HELLO, WORLD"

and the BDSS should response by printing:

|HELLO, WORLD |

You can enter any BDSS command from Motion
Link just as if your IBM-PC compatible computer
were a terminal,

The green SYS OK LED on the front of the BDSS
should turn on and remain on at all times after
power-up (and autobauding).

2.4 MOTION LINK OVERVIEW

Motion Link is 2 full-featured communications
program written by Industriai Drives and designed
especially for the BDSS. Motion Link makes your
IBM-PC compatible into a smart terminal. Of
course, you can enter BDSS commands from your
computer as if you were using a terminal. For
e¢xample, you can start a program with the RUN

2-3

]

Rt I A Raatandhedibaln SR LI S0 B WV op W & S S g

DLISD

command and use the PRINT command to display
values of variables. Motion Link also provides
"smart" features such as a full-screen editor, disk
storage and retrieval, and the communications
"capture” for debugging.

2.4.1 Menus and Windows

Motion Link's special features are accessed through a
menu bar printed at the top of your PC screen.

When you select an entry from the menu bar, a pull-
down window appears, allowing you to select an
item. Press the F10 key, the right arrow key, or the
left arrow key, to display the menu bar. You can
leave 2 window or the menu bar by pressing the
escape key. There are six choices on the menu bar:

. PROGRAM - Edit new or old BDS5
programs; retrieve a program from disk or
from the BDSS. :

* *VARIABLE - Edit new or old BDSS variable

“files; retrieve variable files from disk or from
the BDSS5. Variable files contain static
assignments. A static assignment is an
instruction that sets the value of a variable that
does not change throughout the program. Of
course, static assignments can be included in
your BDSS power-up routine. However,
moving a static assignment from your program
to the variable file saves space in your

program.

. CAPTURE - Start or stop capturing
communications from the BDSS; retrieve
previous capture files from disk; examine
(edit) capture files.

. SCOPE - Retrieve, plot, print, and store
PC-scope.

. OPTIONS - Set up communications, screen
colors, computer configuration.

. HELP - Provide on-screen help for Motion
Link and for the BDSS.

* UTILITIES - Exit Motion Link, enter a DOS
command from within Motion Link, use a
DEPOQ1 Simulator or run Motion Link Setup
program. .

2-4

2.4.1.1 Program

The PROGRAM pull-down window allows you to
retrieve, edit, transmit, and save BDSS programs.

. EDIT - This selection calls the Motion Link
Editor and assumes that you want to "re-edit"
the last program that you edited. It is a short-
cut, allowing you to edit without first loading a
program from the BDSS or from the disk. If
you exit the Motion Link Editor, Motion Link
remembers the program you were last editing.
Note that if you have selected an item from
either the VARIABLES or CAPTURE menu
since you last edited a program, this selection
is invalid.

J FROM DISK - This selection retrieves a
program from your computer disk. Motion
Link will display all of the files currently on
your disk and allow you to choose the file you
want. After you choose a program, the Motion
Link Editor is cailed, allowing you to examine
and change the program.

. FROM BDSS - This selection retrieves the
program currently stored in the BDSS. After
the program is returned, the Motion Link
Editor is called, allowing you to examine and
change the program.

. NEW PROGRAM - This selection calls the
Motion Link Editor, allowing you to enter a

new program.

Upon exiting the Motion Link Editor, you can store
the program to your computer disk and/or transmit it
to the BDSS.

2.4.1.2 Variables

The VARIABLES pull-down window allows you to
retrieve, edit, transmit, and save BDSS variable files.
A BDSS variable file contains a list of some or all of
the BDSS variables with initial values. This
includes user variables and control variables.
Together, these variables configure a BDSS5 for an
application.

. EDIT - This selection calls the Motion Link
Editor and assumes that you want to "re-edit"
the last variable file that you edited. Itis a

Fisguasi”

U ey v we

e mem o f e e e e

R 4
g

\Wﬂ'} '

S’

BDSS5

CHAPTER 2 - GETTING STARTED

short-cut, allowing you to edit without first
loading a variable file from the BDSS or from
the disk. If you exit the Motion Link Editor,
Motion Link remembers the variables you
were last cditing. Note that if you have
selected an item from either the PROGRAM or
CAPTURE menu since you last edited a
variable file, this selection is invalid.

. FROM DISK - This selection retrieves a
variable file from your computer disk. Motion
Link will display all of the variable files
currently on your disk and allow you to choose
the file you want. After you choose a variable
file, the Motion Link Editor is called, allowing
you to examine and change the variable file.

o FROM BDSS - This selection retrieves all of
the variables currently stored in the BDSS.
After the variables are retrieved, the Motion
Link Editor is called, allowing you to examine
and change the variable file.

. NEW VARIABLES - This selection calls the
Motion Link Editor, allowing you to enter a
new set of variables,

Upon exiting the Motion Link Editor, you can store
the variable settings to your computer disk and/or
transmit them to the BDSS5,

2.4.1.3 Capture

This is a
capture and Is unrelated to
the BDSS variables CAP and

CAPDIR which are for
NOTE posgition capture.
. EDIT - This selection allows you to

examine the communications that have been
captured. Upon exiting the Motion Link
Editor, you can store the captured data on
your computer disk. Note that if you
sclected an item from either the PROGRAM
or VARIABLES meny since you last
captured communications or loaded a
communications capture file, this selection
is invalid.

2.4.1.4 Scope {

2.4.1.

FROM DISK - This selection allows you to
retrieve a capture file from disk and
examine it with the Motion Link Edjtor,

START CAPTURE - This selection starts
(or re-starts) capturing communications
from the BDSS. This selection always
clears the capture storage area before
beginning to capture new commurications.

STOP CAPTURE - This selection
terminates the communications capture. If
you want to examine the communications
that were captured, select "EDIT" in this
menu.

VIEW AGAIN - This selection lets you
view playback data that was previously
retrieved from the BDSS.

FROM DISK - This selection retrieves
recorded data from your computer disk.
Motion Link will display all of the playback
files currently on your disk and allow you to
choose the file you want. Playback files
have the file type .CSV for "comma
separated variables." This format is !
compatible with most spreadsheets.

e

FROM BDSS - This selection retrieves
Playback data stored in the BDSS. After the
playback data is retrieved, the data is
plotted and stored on disk.

VIEW DATA - View the data in numerical
(rather than graphical) format.

PRINT PLOT - Print the plot on a line
printer.

S Options
SELECT AXIS - This selection allows you
to sclect options that are available to
systems using RS-485 communications.

BDS5 PASSWORD - This selection allows
you to enter the password that you set in the
BDSS editor. If you set such a password in
the BDSS, Motion Link needs the password
t0 transmit new programs to the BDSS. If

2-5

CHAPTER 2 - GETTING STARTED

BDS5

A

NOTE

you use this selection to change the
password, then you should use the
UPDATE CONFIGURATION function
below to write a new configuration file.

COMMUNICATIONS - This selection
allows you to set up your communications
port. After you have set up this port, Motion
Link will initiate an autobaud sequeace to
re-establish communications. Remember to
power-down the BDSS so that it will
autobaud. If you want Motion Link to use
the new communications setup in the future,
you must use the UPDATE
CONFIGURATION function below to write
a new configuration file on your computer
disk.

SCREEN COLORS - This selection allows
you to change the colors displayed on your
computer monitor. If you want Motion
Link to use the new colors in the future, you
must use the UPDATE CONFIGURATION
function below to write a new configuration

* file,

CABLE DISCONNECT - This selection
provides a safe method of disconnecting the
communication cable from a BDSS that is
powered up. After you have reconnected
the cable, press the space bar and Motion
Link will restart communications.
Disconnecting this cable can generate
random characters. Do not disconnect your
communications cable without using this
function.

Always use this selection to
secure data before
disconnecting the
communications cable.

UPDATE CONFIGURATION - This
selection allows you to examine and write
the Motion Link configuration file. This
file contains information about your
computer, such as what communications
port you are using, the baud rate at which
your computer is transmitting, and what
your screen colors are. All of the settings
displayed in this selection can be changed
by the SETUP-BDSS PASSWORD,

2.4.1,

SETUP-COMMUNICATIONS, and
SETUP-SCREEN COLORS and selections.

After you make these changes, you should
update the configuration file (ML.CNF)
with this selection. This file is read by
Motion Link when you type "ML" from
DOs.

TL FROM DISK - This selection is an
internal function.

TL FROM BDSS - This selection is an
internal function.

8 Help
BDSS HELP <F1> - This selection displays
several pages of help for the BDSS. It lists
BDSS5 commands and variables with brief
descriptions. You can also press F1 for this
help.

INTRO HELP - This selection displays
introductory information about Motion
Link.

LAST COMMAND <F3> - This selection
recalls your last command. You can also
use the function key F3 to recall your last
command.

VARIABLE INPUT *V - If you have
included a variable input routine in your
BDSS program (that is, used VARIABLES)
and your program is running, this selection
will initiate that routine. You can also
press 'V (hold the control key down and
press V) for this function.

STOP MOTION “X - This selection breaks
your BDSS program and stops motion. It
works even if your program is not in the
Interactive or Monitor mode. You can also
press “X for this function.

2.4.1.7 Utllities

RUN DEP01 SIMULATOR - This selection
allows the computer to simulate Industrial
Drives DEP (Data- Entry Panel).

AR AN ¢ e A

s ’

i

%
Y i
oo

BDSS

CHAPTER 2 - GETTING STARTED

. RUN BDSS5 SETUP PROGRAM - This
selection provides utilities to test /O, drive
feedback, communication, and dedicated
switches. Refer to Section 2.6 for more
information.

. EXIT TO DOS Alt-X - This selection
terminates Motion Link and returns to
DOS. You can also press Alt-X (hoid the
alternate key down and press X) for this
function.

. SHELL TO DOS - This selection allows you
to temporarily exit (or "shell") to DOS so
that you can execute a DOS command.,
Type "EXIT" to return to Motion Link.

2.4.2 Editor

The Motion Link Editor is a full-featured screen
editor. Use this editor to examine or edit programs

* and variable files, or to capture data. All of the

editor commands can be accessed from a menu bar

- and pull-down windows. Press the F10 key to

display the menu bar, Then use the left and right
arrow keys to select a pull-down window. Each
editor command can be accessed with a "control key”
or "hot-key" sequence. You can use the contro] key
as a shortcut in place of selecting from the window.
The control-key sequencs s listed beside each
command here, and in Motion Link. For example,
the FILE-PRINT selection can be accessed with *P
(hold the control key down and press P). Many
selections require two control keys, such as FILE-
FILE MERGE “K"R. In this case, hold down the
control key and press and release K, then press R.
The rest of this section will discuss each of the editor
pull-down windows, .

2.4.2.1 Flle
. SAVEFILE “K"S - Copy the file in the
editor to the disk.

. MERGE FILE *K"R - Copy a file into the
editor starting at the cursor. You must
place the editor cursor in the proper
location before you make this selection,

o PRINT... *P - Print the contents of the
editor,

. EXIT <Esc> - This selection exits the
Motion Link Editor. If you modify your
program, Motion Link will prompt you to
Save your program to your computer's disk
when you exit. If you are editing a program
or a variable set, Motion Link wil] normally
prompt you to transmit the program or
variable settings to the BDSS5. You can also
use the escape key for this function.

2.4.2.2 Edit

. MARK START OF BLOCK *K*B - This
selection marks the beginning of a block. If
you want to move or eliminata a block of
text, use this selection to mark the top and
the bottom of the block you want to
manipulate.

. COPY MARKED BLOCK *K*C - Use this
selection after you have marked a block.
This selection copies the marked block into
the Motion Link cut/paste memory. If you
want to copy the block into the cut/paste
memory and delete it from the editor, see
CUT MARKED BLOCK below.

. CUT MARKED BLOCK “K*V - Use this
selection after you have marked a block,
This selection copies the marked block into
the Motion Link cut/paste memory and
deletes it from the editor, If you want to
copy the block into the cut/paste memory
without deleting it from the editor, see
COPY MARKED BLOCK above.

. PASTE CUT/COPIED BLOCK “K"P - Use
this selection after you have sither copied or
cut a block to the cut/paste memory. This
selection copies the cut/paste memory into
the editor starting at the cursor. You must
position the cursor to the proper place
before you make this selection.

. SAVE MARKED BLOCK “K*W - Use
this selection after you have marked a
block. This selection saves the marked
block to a file on your disk. Motion Link
will ask you for the file name after you
make this selection,

UHAPTER £ - GETTING STARTED

BDSs

2.4.2.3 GOTO

. FIND A STRING “QAF - This selection
finds a string in the editor. Motion Link
will prompt you to enter the string.

. REPEAT LAST FIND “L - This selection
repeats the last FIND A STRING.

. GOTO A LINE NUMBER *“Q*I - This
selection moves the cursor to the specified
line. Note that you can transmit your
program to the BDSS without comments.
Since comment lines can be ignored by
Motion Link when your program is
transmitted, the line numbers of your
program in the editor may not agree with
the line numbers of your program in the
BDSS. Because of this, Motion Link will
ask you if you want to count comments. If
you are trying to find a line number from a
BDSS error message, and you transmitted

. your program without comments, specify

1 that you DO NOT want Motion Link to
count comment lines. Otherwise, specify
that you DO want comment lines counted.

. SHOW SIZE OF EDITOR “Q*O - This
selection displays how much space is left in
the Motion Link Editor. Use this selection
if you are concerned that your program is
filling up the editor. The Motion Link
Editor can hold up to 2,000 lines and up to
about 24,000 bytes.

. SHOW FREE MEMORY “K*F - This
selection displays how much space is left for
your BDSS program. Use this command if
you are concerned that your program will
fill up the BDSS program memory.

2.4.2.4 Insert/Delete
. DELETE A WORD T - This selection
deletes the next word after the cursor.

. DELETE TO END OF LINE “Q*Y - This
selection deletes from the cursor to the end
of the line.

. DELETE A LINE Y - This selection
deletes the entire line that the cursor is on.

2-8

. UNDELETE A LINE “U - This selection
inserts the last deléted line in the editor,
starting at the cursor.

J INSERT A NEW LINE N - This selection
inserts a blank line in the editor.

. DELETE ENTIRE EDITOR *KA*Y - This
selection clears the entire Motion Link
Editor.

2.4.2.5 Cursor

Table 2.1 shows the cursor control keys. Special
keys are shown between greater than and less than
symbols; for example, the Home key is shown as
<Home>,

Table 2.1. Cursor Control Keys

TOP OF EDITOR *<PageUp>
END OF EDITOR “<PageDn>

UP ONE PAGE <PageUp> or “R
DOWN ONE PAGE <PageDn> or AC
BEGINNING OF LINE <Home>

END OF LINE <End>

UP ONE LINE <Up> or “E
DOWN ONE LINE <Down> or “X
LEFT ONE WORD “<Left> or “A
RIGHT ONE WORD “<Right> or “F
LEFT ONE CHARACTER ~ <Left> or S
RIGHT ONE CHARACTER <Right> or *D

2.4.2.6 Help

. BDS5 HELP <F1> - This selection displays
several pages of help for the BDSS. It lists
BDSS commands and variables with brief
descriptions. You can also press F1 for this
help.

. THIS HELP SCREEN <F10> - Displays a
help screen.

i

S

e

g &
i

Sia®

\ ;
K
i

BDSS5

CHAPTER 2 - GETTING STARTED

2.4.3 Types Of Data Flles

Motion Link stores, retrieves, displays, and edits
three types of data files. Each type has a different
file extension or file type. File extension refers to
the characters in the file name that follow the period.
For example, the file TEST.BDS has the file
extension "BDS." The three types of files are:

BDS Programs for the BDSS. Programs are also
called software. Programs are transmitted to
the BDSS and can be run indefinitely.

Variable sets for the BDSS. Variable sets are
BDSS variables that define an application.
For example, you may have different variable
sets to change the tuning when the
application requires it. Variable files may
include some or all of the BDSS variables.
For example, your Motion Link disk has the
file "STANDARD.VAR." This variable file
includes all of the "standard” or "default"
variable settings. Variable files are
transmitted to the BDSS to jnitialize
variables before programs are run.

VAR

Capture files contain captured
communications from the BDS5. The
capture features of the BDSS allow you to
collect and store up to 16,000 bytes of
transmissions from the BDSS. Capture is
provided to help you debug your program,

Any time you store your programs, variable sets, or
captured communication onto your computer disk,
Motion Link will automatically determine the proper
file extension.

2.4.4 Using Convertibles

If you are using an IBM CONVERTIBLE, make sure
it has been booted with the optional serial/paraile]
adapter plugged in. Also make sure it has been
configured to allow the operation of the
serial/parallel adapter on batteries. This
configuration may be accomplished through the
IBM-supplied program SYSPROF.COM. To run
this program, type "SYSPROF"<cr>.

This program may also be reached through the
APP/SELECTOR DISK, but this is a rémain-
resident program that will not leave enough memory

to load Motion Link after running. So a three-key
computer reboot (Ctrl, Alt, Del) must be done to
remove this program from memory before loading
Motion Link. Because of this, it is easier to simply
run "SYSPROF” in order to configure the IBM
CONVERTIBLE.

2.5 MOTION LINK SETUP PROGRAM

The Motion Link Setup Program is accessed through
the Utilities Menu. Setup provides the following test
capabilities:

* Communicate with the BDSS
* Resolver Zeroing Test
* Tune Drive

* Drive Test

* Drive Feedback

* Input Test

* Output Test

* Machine Setup - Units
* Machine Setup - Limits
* Motor Setup
* BDSS Modes
* Communications
* Other
* Send Variables
¢ Reset Variables

This test program provides the operator with user
friendly methods for testing most BDSS functions.
The concepts behind all of these functions are
described later in this manual.

2.6 PROCESSOR MODES

2.6.1 Prompts

The BDSS provides several modes of operation.
Each mode is distinguished by a unique prompt. A
prompt is the short series of characters that the
BDSS5 writes to the screen asking you for input. For
example, the interactive prompt is "-->," This
prompt is unique and tells you that the BDSS5 is in
the Interactive mode.

The BDSS is designed to recsive commands from a
terminal or a computer through a serial port. In

2-9

UHAPTER 2 - GETTING STARTED

BDS5S

order to support computer communications, the
BDSS observes the following conventions:

Table 2.2, BDSS Rules For Prompts

1. Prompts are 3 characters long (except single-
step and trace).

2. Prompts end with a greater than (">").
Each mode has a unique prompt.

Once the BDSS displays a prompt, it stops
transmitting until a new instruction and/or a

Table 2.3. BDS5 Prompts

carriage return is received.

These conventions are designed to allow efficient
communications between the BDSS and a computer,
The last rule ensures that there is never a question
about which device is transmitting, If a ">" has been
issued from the BDSS, then the BDSS will not
transmit anything until a carriage return or escape
has been entered. The only exception is if you
program the BDSS to print a ">" from a PRINT or
INPUT command. The BDS5 will allow ">" in print
statements, though this is considered a poor practice
if you are using a computer to communicate with the
BDSS.

Similarly, the BDSS will not accept input unless a
">" has been issued by the BDSS. The INPUT
command is the only exception to this rule. This
rule can be awkward if you are using the BDS5 from
a terminal; if an error occurs during the interactive
or monitor modes after the ">" has been displayed,
the BDSS will not print the error message until a
carriage return or escape has been entered.

The prompt for each mode is listed below. The only
exception is the Run mode. This mode does not
have a prompt since input is not accepted from the
serial port. Notice that the trace prompt does not
end with the ">." - This is because the trace prompt
does not indicate that the BDSS is waiting for input.
If the BDSS is communicating within a multidrop
communication line, then the prompt is modified to
include a prefix which indicates the axis address.
The table below shows the prompts in both the
normal (non-multidrop) and multidrop
configurations. Note that the multidrop address is 65
or ASCII A.

2-10

Mode Non-multidrop Multidrop
(ADDR=0) (ADDR = 65)
Interactive -—> A=>
Monitor m— Am>
Single-step B-—> As->
Trace t... At..
Edit e-> Ae>
Load I-> Al>
Edit/Insert i-> Ai>
Edit/Find f-> Af>
Edit/Change c=> Ac>

2.6.2 Descriptions of Modes

The following section describes each of the modes of
operation. Refer Figure 2.2 which is a diagram
showing each mode and how it interacts with the
other modes.

2.6.2.1 Interactive Mode

The BDSS normally powers-up in the Interactive
mode. This mode allows you to start programs,
display and change variables, and enter motion
commands for immediate execution. The prompt
(—>) is written to the screen, and the BDSS awaits a
new command. Your program is not running if the
BDSS is in the Interactive mode.

Refer to Figure 2.2. There are many ways to enter
the Interactive mode. First, if the power-up label
(POWER-UPS) is not present, the BDSS will power-
up in the Interactive mode. The BREAK (B)
command and errors that break program execution
cause the BDSS to exit the Run mode and enter the
Interactive mode.

P

Sy

A s g

e s e g i

7
st

‘:‘v f:‘
s’

BDSS

CHAPTER 2 - GETTING STARTED

PROGRAKNING
H0DES

RUNNING

-
S
e
b=
T2

BDS5
TASK

2

i

ALARM A

VARIABLE
\ g POV

o]
\&

%

=z
—

= _GENERAL

&

~JACKGROUN

"texst” = Operator Eatered
“ilalic” = Program Erecyted
(text) = Bquvaleat Command

Figure 2.2. BDSS State Table

2-11

COAArIEK L - UbL LING O LARTED

BDSS

2.7.2.2 Run Mode

The BDSS is normally in the Run mode when a
program is executing. There is no prompt because
input is not accepted from the terminal. The
program is running; it can display errors and print to
the terminal.

Refer to Figure 2.2. After autobauding, the Run
mode is normally entered from either the Interactive
mode, the RUN command, or from muiti-tasking, If
the power-up label (POWER-UPS) is present, the
BDSS will start running your program at that label
on power-up. Also, the BDSS will exit the Run
mode to the Monitor mode if the escape key is
pressed.

Errors can also cause the BDSS to change modes.
Some errors are serious enough to cause the BDSS to
break program execution. Usually, this has the
identical effect of issuing a BREAK (B) command.

As an option, you can write an error handling
routine beginning at labe]l ERRORS. This routine
should be short and should end with a BREAK ®3)
command. The error handler is intended for
graceful error recovery. For example, you can set
outputs or print a message. It is not intended to
continue the program as if the error never occurred.

2.6.2.3 Monitor Mode

The BDSS Monitor mode is a unique mode for
positioners. In this mode, the user program is
running, but commands are accepted from the
terminal for immediate execution. The Monitor
mode allows you to display and change variables
during program execution, including tuning
variables. '

You can print any variable and change any
programmable variable from the Monitor mode. The
commands that are allowed from the Monitor mode
are a subset of the commands allowed from the user
program and Interactive modes, and include the
following commands:

Table 2.4. Monitor Mode Commands

? ; B DIS EN
ERR X MOTOR P PS
R RS S ZPE

In the Monitor mode, all print commands from the
user program are suppressed, and the monitor
prompt (==>) is displayed. Print commands typed in
from the Monitor mode are executed immediately.

To enter the Monitor mode, press the escape key
while a program is running. Pressing the escape key
again will change modes back to the Run mode.
STOP, BREAK, and KILL all return the BDSS to
the Interactive mode.

2.6.2.4 Single-Step Mode

The Single-Step mode is provided for debugging,
and it allows you to execute a program one step at a
time. The single-step prompt (s->) is printed out,
followed by the line that is about to be executed (the
next command). Any command allowed from the
terminal in the Monitor mode is also allowed from
the terminal in the Single-Step mode. These
commands allow you to probe the BDS5 variables
while debugging your program. If you press the
enter key without a command entered, then the next
command in the user program is executed. To stop
the program, enter the S, B, or K command. To turn
off the Single-Step mode and allow the program to
execute normally, press the escape key twice (once to
get into the Monitor mode and again to get into the
Run mode), or type SS OFF.

Single-Step mode is enabled by turning SS on, either
from the program, from the Interactive mode before
running the program, or from the Monitor mode.
After SS is on, the BDSS will enter the Single-Step
mode when the user program is executed. SS can
also be turned on and off from the program. This is
useful if there are certain sections that you want to
single step through. Turning SS off from the
program returns the BDSS to the Run mode.

2.6.2.5 Trace Mode

The Trace mode is provided for debugging. When in
trace, the BDSS5 prints statements before they are
executed. The trace prompt (t...) is printed out,
followed by the line that is about to be executed, and
the line is then executed. This process is repeated
for each command. The trace prompt is not a true
prompt in that you are not allowed to enter a
command after the prompt is issued. This is why it
does not have the ">" that the other prompts use to
indicate that the BDSS is waiting for a command.

s .

FRARED S At DT SR 035

e i e e 5

o
ks

s

BDSS

CHAPTER 2 - GETTING STARTED

The trace is enabled by turning TRC on. When TRC
is on, the BDSS will enter the Tracs mode when the
user program is executed. TRC can be turned on
and off from the Interactive mode before executing
the program or from the program itseif. It can be
turned on from the Monitor mode. Pressing the
escape key from the Trace mode will exit to the
Monitor mode and turn TRC off. If TRC is turned
off from the program, the BDSS will exit to the Run
mode. If both TRC and SS are on, then the BDS5
will be in Single-Step mode.

2.6.2.6 Other Modes

The other modes shown in Figure 2.2 include the
Edit modes (Edit, Insert, Change, and Find) and the
communication modes (Program Load, Program
Dump, and System Dump). These modes are
covered in later chapters.

2-13

CHAPTER 2 - GETTING STARTED

BDS5

2-14

g i
S

g

i G
i

g E

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

CHAPTER 3

PROGRAMMING LANGUAGE

3.1 INTRODUCTION

This chapter discusses the basics of the BDS5 and its
programming language,

Your BDSS system should be mounted and wired as
described in the Installation and Setup Manual, The
AC Line voltage to your PSR4/5 should not be
turned on for examples in this chapter. Tumn on
Control Power only, and establish communications.
If the proper connections are not made, or the
terminal is not communicating, then see the
Installation and Setup Manual.

AC LINE SHOULD NOT BE
TURNED ON!}

WARNING

3.2 INSTRUCTIONS

The BDSS can respond to instructions entered from
the terminal. The format of the instructions is
usually a command followed by one or more
parameters. For example, the jog instruction is a "J"
followed by one parameter: the desired speed.

J 10

would cause the motor to jog at 10 RPM.

The command and parameter must be scparated by
at least one space,

3.2.1 Comments

Instructions can be followed by comments on the
same line. A semicolon marks the beginning of a
comment. The BDSS ignores everything on the line
after the semicolon. For example:

J 10 ;THIS IS A GOOD COMMENT

is a valid instruction. The BDSS ignores everything
that follows the semicolon. Note that a space must
separate the semicolon from the last parameter:

J 10;BAD COMMENT-*;* MUST BE
sPRECEDED BY A SPACE

/GOOD LINE. SPACE NOT REQUIRED-
/WHOLE LINE IS A COMMENT

3.3 VARIABLES

The BDSS uses variables to monitor and control
virtually all of its processes.

L.))
ot

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS5

3.3.1 Variable Units

Some variables have implicit units associated with
their values. For example, all variables that monitor
or control velocity have velocity units. In addition
there are acceleration units, current units, and
position units. Appendix C lists each variable with
its units. Units are programmable; when shipped
from the factory the standard settings are as follows:

Table 3.1. Standard Units

Acceleration RPM / Second

Units:

Current Units: % of Full
Amplifier
Output

Position Units: Counts

Velocity Units: RPM

Exten -

Pos_in'on Units:

External RPM*

Velocity Units:

* This assumes external source is a motor with the
same resolution as the BDSS. That is, external
velocity units are set the same as velocity units.

With standard units, position is expressed in
resolver-to-digital (R/D) converter counts; if your
BDSS is configured with the standard 12-bit
resolution R/D converter, then one revolution is
4096 counts.

You can change the units to whatever is convenient
for your application. For example, you can select
Radians/Second instead of RPM. Also, units can be
tailored to a specific machine. For example, if the
BDSS is driving a lead screw, velocity could be
programmed in inches/minute. If you want to
change the units, see Chapter 4. Examples in this
manual will assume that the BDSS is configured
with standard units.

3.3.2 Three Types of Variables
The BDSS has many variables, all of which are listed

in Appendix C. The variables can be divided into
three groups: monitor, control, and user.

3-2

* MONITCR VARIABLES

Monitor variables watch the system. You may
display their values or use them in calculations.
However, as a rule, you may not change them. The
BDSS automatically changes these variables to
reflect its status. Position feedback, PFB, is an
example of a monitor variable,

* CONTROL VARIABLES

Control variables allow you to change or limit some
process in the BDSS. An exampie of a control
variable is current limit, ILIM. ILIM limits the
maximum current the BDSS can deliver. It can be

changed at any time.
* USER VARIABLES

User variables allow you to store information for
later use or hold intermediate results of calculations.
They are discussed later in this chapter.

3.3.3 Variable Limits

All variables have limits. It is important to be aware
of these limits, since attempting to set a variable to a
value outside its limits generates an error. For
example, ILIM must be between 0 and 100. The
limits of each variable are listed in Appendix C.

3.3.4 Switches

Switches are variables that can be set to 0 or 1 only.
In other words, they have limits 0 and 1. Aside from
this restriction, this discussion about variables also
applies to switches.

3.3.5 Printing Variables

All variables can be displayed. To display a variable
on the terminal, you should use P, the PRINT
command. For example, type:

P ILIM

% Jé
e

b o Vg1

5
g

N

N

BDSS5

CHAPTER 3 - PROGRAMMING LANGUAGE

Since the standard setting of ILIM on most systems
is 100, the terminal should display:

1100

Suppose you want to display PFB, the position
feedback. Type:

P PF8

The position feedback should now be displayed.
Assuming the motor and resolver are connected to
the BDSS, rotate the motor shaft about half a
revolution. Now, print PFB as above and notice that
it has changed to reflect the new position.

3.3.6 Changing a Variable

Variables are changed with assignment instructions.
An assignment instruction begins with the name of

- the particular variable, followed by "=" and ending

with the new value. One or more spaces can be
substituted for the "=". The following examples
assign (or at least attempt to assign) ILIM a new
value:

ILiM=10 ;CORRECT-ASSIGN A NEW
;VALUE TO ILIM
sCORRECT-THE 'x' IS
JOPTIONAL
s#INCORRECT-THERE MUST

;BE A SPACE OR '='

IiLIM 10
ILiM10

A few systems are set up with
ILIM less than 100. If your
terminal displays a number
less than 100, write it down
for referenca later In this
chaptar. The following
examples will change ILIM,
and it must be reset to its
original vaiue.

NOTE

Type the following line on the terminai:

ILIM=10

Next, print the new value of ILIM with the P
instruction:

P ILIM

ILIM should now be 10. Return ILIM to its original
value (normaily 100) and type:

ILIM=100

Print II.IM to make sure the change was carried out
properly.

3.3.7 Programming Conditions

Most variables can be changed, but some can be
changed only under certain conditions. For
example, the maximum acceleration level, AMAX,
can be changed only when the BDSS is disabled.
Attempting to change AMAX with the BDSS
enabled will generate an error. The conditions under
which a variable can be changed are called
programming conditions. Some variables should
never need to be changed after the BDSS has left the
factory; these variables are cailed "factory settable,"
Attempting to change a factory settable variable will
generate an error. The programming conditions of

all variables are listed in Appendix C,
Limits and programming
conditions for all variables
are shown in Appendix C

NOTE

3.3.8 Power-&p and Control -
Variables

Most control variables and all user variables are
stored in non-volatile RAM; their values are not lost
when the BDSS is powered-down. In general,
control variables arc remembered, except the
switches. Table 3.2 shows the condition of all BDS5

programmable switches on power-up, ‘

3-3

P s § 3 Y SRR SPTE £ SR bty POt e o

ra————

IR

CHAPTER 3 - PROGRAMMING LLANGUAGE

BDSS

Table 3.2. Power-Up State of
Programmabile Switches

OFF

ON

REMEMBER
FROM LAST
POWER-UP

capP

CLAMP

DEP
EXTLOOP
FAULT
GATEMODE
GEAR
01-08
PROP
RAME
s
ROTARY

SS
STATMODE
TRC

TQ

WATCH
ZERO

CAPDIR
DIR
MULTI
PL

PLIM
PROMPT

ABAUD
LPF
XS1-XS50

The output word, OUT, is set to zero shortly after

power-up.

3.3.9 Initial Settings of Control and
User Variables

This section briefly discusses the standard initial and
power-up settings for all control and user variables,

The learning process is simplified by using the
standard settings which disable certain functions,

Note that here, "initial" means "as shipped from the
factory." However, "initial" does not imply
settable”; you can change values that are set initially

at the factory but you cannot change "factory

settable” variables.

3-4

"factory

ABAUD

ACC

ADDR

CAPDIR

DEC

DIR

FAULT

Enable autobauding. Initially set to 1
and left at 1 for preliminary
operation.

Acceleration rate, initially in Vot

RPM/Sec. Initially set to 100000.

Address for multidrop applications.
Initially set to 0 for non-multidrop.

Acceleration units denominator.,
Initially set to 1000 for RPM/Sec.

Limits DEC and ACC, acceleration
and deceleration rates, initially in
RPM/Sec. Initially set to 100000.

Acceleration units numerator.
Initiaily set to 4474 for RPM/Sec.

Baud rate for serial communications,
Automaticaily set by autobaud.
Normally, you do not need to set
BAUD.

Enable position Capture mode. Set
to 0 on power-up and normally left at

zero for preliminary operation.

Direction of position capture, Setto
1 on power-up. The value of this
variable does not matter if CAP is 0.

Enables Clamp mode. Set to 0 on
power-up and normally left at 0 for

preliminary operation.

Deceleration rate, initially in
RPM/Sec. Initially set to 100000.

Sets BDSS direction, If 1, then
positive motion is clockwise. If 0,
then positive motion is counter-
clockwise. This is set to 1 on power-
up.

Fault is automatically set and cleared
by the BDSS. You can change its
state during operation, though you do
not need to change it during initial
operation.

-

§
3 &
.

5

g

% rs
Ry

BDSS5

CHAPTER 3 - PROGRAMMING LANGUAGE

GATEMODE Enable Gate mode. Setto 0 on

GEAR

GEARI

GEARO

IDEN

XC

power-up and normally left at zero
for preliminary operation.

Enable electronic gearbox. Set to 0
on power-up and normally left at 0
for preliminary operation.

Number of teeth on the input "gear”
for electronic gearbox. Initially set to
1. Value of this variable does not
matter if GEAR is 0.

Number of teeth on the output "gear”
for electronic gearbox. Initially set to
3. Value of this variable does not
matter if GEAR is 0.

Current units denominator. Initially
set to 100 for percent.

Peak current limit. The initial value
is listed on the Test and Limits (TL)
sheet which should be enclosed with
your system. Normally set to IMAX.
However, you may want to reduce it
for protection. The motor can
normaily run under no-load with 15-
25% current, so you can set ILIM as
low as 15 or 25 during preliminary
operation.

Current units numerator. Initiaily set
to 4095 for percent.

Low speed "graininess”
compeasation. Almost always set to
200. See discussion in the
Instailation and Setup Manual where
a procedure for fine-tuning this -
variable is given.

Tuning gain for velocity feed-
forward. Set to O for preliminary
operation.

Tuning gain for position loop. Leave
at initial setting for preliminary
operation. The initial value is listed
on the Test and Limits (TL) sheet,
which should be enclosed with your
system. Use TUNE command to
change if necessary.

KPROP

LPF

MULTI
01-8

PDEN

Tuning gain for proportional velocity
loop. Leave at initial setting for
preliminary operation. The initial
value is listed on the Test and Limits
(TL) sheet, which should be enclosed
with your system. Use TUNE
command to change if necessary,

Tuning gain #1 for integrating
velocity loop. Leave at initial setting
for preliminary operation. The
initial value is listed on the Test and
Limits (TL) sheet, which should be
enclosed with your system. Use
TUNE command to change if

necessary.

Tuning gain #2 for integrating
velocity loop. Leave at initial setting
for preliminary operation. The
initial value is listed on the Test and
Limits (TL) sheet, which should be
enclosed with your system. Use
TUNE command to change if
necessary.

Enables low pass filter. The low pass
filter is often required to reduce noise
or torsional resonance. Leave at
initial setting for preliminary
operation. Setto 1 if system is too
noisy. The initial value is listed on
the Test and Limits (TL) sheet,
which should be enclosed with your

system.

Low pass filter break frequency. The
low pass filter is often required to
reduce noise or torsional resonance.
Leave at initial setting for
preliminary operation. Reduce value
if system is too noisy. The initial_
value is listed on the Test and Limits
(TL) sheet, which should be enclosed
with your system.

Enable multi-tasking.
General purpose outputs. Reset to 0

on power-up. These variabies are
discussed later in this chapter.

Position units denominator. Initially
setto 1,

3-5

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

PECLAMP Position error limit for clamping.

Initially set to 100. Value of this
variable does not matter if CLAMP is
0 during preliminary operation.

Position error limit for system. This
variable is initially set to 32767 (its
upper limit) for preliminary
operation and can be reduced later,

PEMAX

PEXT PEXT monitors the position of the

external (master) axis. Initially this
variable is undefined. Value of this
variable does not matter during
initial operation.

PL Enable position loop. This variable
is set to 1 on power-up and left at 1

for preliminary operation.

PLIM Enable software travel limits. This
- variable is sct to0 1 on power-up.

This variable is normally set to 0

during preliminary operation.

Positive software travel limit.
Initially set to 100. If PLIM is 0, the
value of this variable does not matter.

oo

PMAX

PMIN Negative software travel limit.
Initially set to -100. If PLIM is 0, the
value-of this variable does not matter.
PROMPT Set to 1 on power-up and almost
always left at 1. When set to 0, all
prompts (such as "->") which are
normally sent to the screen are not
printed. This allows you to print
customized messages.

PNUM Position units numerator. Initially
setto 1.

PROP Enable proportional velocity loop.
This variable is set to 0 on power-up
and usually left at 0 for preliminary
operation.

PXDEN External position units denominator,
Initially set to 1. Value of this
variable does not matter during
initial operation.

3-6

PXNUM

REG

REGKHZ

RTMR

SCRV

STATMODE

TMR4

TQ

External position units numerator.
Initially set to 1. Value of this
variable does not matter during
initial operation.

o
£ 5
S

Enable Profile Regulation mode. Set
to 0 on power-up and normally left at
zero for preliminary operation.

Profile regulation frequency.
Initially set to 1000. Value of this
variable does not matter if REG is 0.

Profile regulation timer. Set to 0 on
power-up. Value of this variable
docs not matter during initial
operation.

Set S-curve level. Initially sct to 2,

Enable Single-Step mode. Set to 0
on power-up and normally left at 0
for preliminary operation,

Set mode of STATUS output. Setto
0 on power-up and normally left at 0

for preliminary operation.

Software timer. Set to 0 on power-
up. Value of this variable does not

matter during preliminary operation.

Software timer. Set to 0 on power-
up. Value of this variable does not
matter during preliminary operation.

S

Software timer. Set to 0 on power-
up. Value of this variable does not

matter during preliminary operation.

Software timer. Setto 0 on power-
up. Value of this variable does not
matter during preliminary operation.

Enable Trace mode for debugging.
Set to 0 on power-up and normally
left at O for preliminary operation.
Enable position trip points.

Enable torque loop, which disables
velocity loop. This variable is set to

i @
S

&, 7

|

BDS5

CHAPTER 3 - PROGRAMMING LANGUAGE

VDEFAULT

VOFF

VOSPD

VXDEN

WATCH

X1..X250
XS1..XS50
ZERO

0 on power-up and left at 0 for
preliminary operation.

Velocity units denominator. Initially
sct to 10 for RPM.

Default velocity for MI and MA.
commands. Initially set to 1 RPM.

Velocity units numerator. Initially
set to 44739 for RPM,

Offset velocity for electronic gearbox,
Reset to 0 whenever GEAR is turned
on. This variable should be left at 0
for preliminary operation.

Overspeed setting. Initially set to
VMAX_1.2. This varisble should be
left at this value for preliminary
operation, but it can be reduced for
protection.

External velocity units denominator.
Initially set to VDEN. Value of this
variable does not matter during

preliminary operation,

External velocity units numerator,
Initially set to VNUM. Value of this
variable does not matter during

preliminary operation.

Enable the serial watchdog timer.
This function disables the BDSS if
command is not received from the
serial port every WTIME
milliseconds. Set t0 0 on power-up.

See WATCH above. Initially set to
1000.

User variables, Initially set to Q.
User switches. Initially set to Q.

Puts the BDSS in Resolver Zeroing
mode. This is set to 0 on power-up.
Zeroing mode is used only during

installation. If 1, BDSS rotates the
motor to the zero position, If 0, the
BDSS controls the motor normally.

3.3.10 User Variables

User variables are like memory on a hand-held
calculator, They can be used as application-specific
variables or for storing intermediate results of
complex calculations, There are 250 user variables:
X1, X2,...X250. They can be displayed and
assigned new values like other variables. They can
store numbers that range from -231 (-2,147,473,648)
102311 (2,147,473,647). For example, if you want
to store PFB, the position feedback, at a particular
time and use it later in a calculation, you can assign
PFB to a user variabje. Type the following line on
the terminal:

X1=PFB

Now, without moving the motor, print X1 and PFB
by typing:

P X1 PFB

This print statement prints both X1 and PFB on one
line and should show them to have approximately
the same value. Note that when the motor is
disabled, the position feedback can change slightly,
so there may be a small difference in the values,
Tura the motor about one-haif of a revolution and
repeat the print statement from above, Notice that
X1 has remembered the old position feedback while
PFB has changed. X1 will not change unless you
assign it a new valuye,

3.3.10.1 Indirect User Variables

An advanced method of accessing the values stored
in user variables is called indirecr. With indirect
user variables, the specified user variable "points” at
another user variable. Indirect references to
variables have the format; X(Xn) where n is between
1 and 250. The value stored in the variable Xn
specifies the variable that X(Xn) refers to. This is
best illustrated with an example.

Suppose you want to look at ejther X1 or X2 when
X10 is either 1 or 2. Type this example:

(i;)
~3

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

X1=100
X2=1000
X10=1 ;USE X10 TO POINT TO X1
P X(X10) JPRINT WHAT X10 POINTS
JAT
The BDSS responds:
[100]

since X(X10) = X1 = 100.

Now type:
X10=2 ;USE X10 TO POINT TO X2
P X(X10) yPRINT WHAT X10 POINTS
AT
The BDSS responds:
(1000 i

since X(X10) is now X2, which equals 1000. So
printing X10 indirect, X(X10), prints the user
variable to which X10 points, not X10 itself,

Indirect user variables are often used to look up data
in tables. For example, they are often used in teach
programs--programs that remember a large number
of positions taught by the operator. In this case,
many user variables are used to remember positions,
and one variable is used to point at the group. Use
indirect references with caution since it is easy 1o
make mistakes with them,

3.3.11 User Switches

User switches are similar to user variables, except
that they can only take on values of 0 or 1. A user
switch can be used in place of a user variable if you
only need to store 0 or 1. An example of a good
place for a user switch would be to store information
for go/no-go decisions. This saves user variables for
other places.

There are 50 user switches ranging from XS1 to
XS50. For example, type:

3-8

XS33=1
P X833

and the BDS5 should respond by printing 1.

3.3.12 Special Constants

The examples above have used decimal numbers in
most of the assignments. There are four special
constants that make the BDSS easier to use: ON,
OFF, Y, and N. ON is the same as 1 and OFF is the
same as 0. Similarly, Y is 1 and N is 0. These
constants are normally used for switches. Compare
the two statements:

O1=1
O1ON

Although both statements have the same effect, the
second is easier to read (that is, more intuitive).
When you write programs, the use of ON and OFF,
and Y and N can make the program easier to
understand. Note, however, that the P command
normally prints numbers, not ON, OFF, Y, or N.
For example:

O1=ON
P OUT

will result in "1" being printed, not "ON." Another
point to recognize is that the equal sign ("=") is
optional. The two statements

O1=0ON
01 ON

produce identical results. The program can be more
readable if the "=" is not used with Y, N, ON, and
OFF.

3.4 MATH

3.4.1 Hexadecimal

The BDSS allows constants to be entered in
hexadecimal, or hex. Hex is base 16 representation

. |
E g M"é

g

IR NS

;i

s

BDSS

which is often used when programming computers.
BDSS hex constants begin with a number and are
followed by an "h.” For example: 16h, 0Fh and
OFFh are all hex numbers. Appendix H shows the
hex conversion of 0 through 255. From the
appendix, you can see that hex 25 is equal to decimal
37. The two instructions:

X9=37
X9=25H

have identical effects because 25 hex equals 37
decimal. Sometimes, the first digit of a hex number
can be a letter. In this case, the number must be
preceded with a zero. For example:

X9=FFH sERROR-HEX NUMBER
sMUST BEGIN WITH A
. ;NUMBER
X9=0FFH ;VALID STATEMENT

Hex is useful when trying to use geaeral purpose
inputs to control the user program. See later in this
chapter for more information about applying these

inputs.

3.4.2 Algebraic Functions

The BDSS provides four standard algebraic
functions: multiplication, division, addition, and
subtraction. The usual algebraic operators (*, /, +, -)
are used. Standard algebraic hierarchy is observed:
all multiplications and divisions are done before any
additions or subtractions. Parentheses are provided
to override this precedence. Type in the following
examples:

P 1+2*3 sTHIS PRINTS 7, NOT 9-*IS
s/DONE BEFORE +
P (1+2)*3 ;THIS PRINTS 9

Math expressions must obey the rules listed in Table
3.3.

CHAPTER 3 - PROGRAMMING LANGUAGE

Table 3.3. Rules for Math Expressions

1. No spaces are allowed.

2. Any valid variables can be used,

3. Any valid constants can be used.

4. Indirect user variables can be used.

5. Any math operator can be used.

6. Parentheses can be nested to 2 levels.
7. Integer math is used for all operations.
8. Expressions are evaluated left to right.

Valid math expressions can be substituted for
numbers in most instructions. A few examples of
math expressions in assignment instructions follow:

X1=500
X1=5*100
X1=5000/10
X1=(7+3)%(28+22)

All set X1 to 500. Furthermore, variables can be
used in the expression:

X1=20
X2=30
X3=X192

fills X3 with 600.

All operations are done with integer math.
Fractional results from division are rounded to the
nearest integer. Also, expressions are evaluated
from left to right. These two conditions can cause
unexpected results. Consider the following
expressions:

P 53/100"280 ;THIS PRINTS 280
P 280/100%53 ;THIS PRINTS 159
P 280*53/100 ;THIS PRINTS 148

Mathematically, these three expressions are
equivalent; they calculate 53% of 280, which is
exactly 143.4. However, with integer math, the first
expression is evaluated as 280, This is because
53/100 is evaluated first. The result, 0.53, is
rounded to the nearest integer, 1, which is muitiplied
by 280. Likewise, in the second expression, the
280/100 is evaluated as 3, which is mulitiplied by 53

3-9

[

v e ot o

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS5

tb get the result 159. Only the third expression gives
the expected result, 148. In this example, round-off
error is minimized by performing the multiplication

first.

3.4.3 Logical Functions: AND, OR

Two logical math functions, AND and OR, can also
be used in math expressions. ANDing is indicated
by "&" operator and ORing is indicated by "I"
operator. When evaluating an expression, AND has
the same level of precedence as multiplication, and
OR has the same level as addition.

Like hex, logical math is often used when
programming computers. With logical functions,
two numbers are converted to binary representation
and compared bit by bit. When the numbers are
ORed, if either bit is set, the result bit is set. With
ANDing, both bits must be set for the result to be set.
Type in the following examples:

P 112;THISIS 3

The BDSS responds: 3,
since
00000001 (Binary 1)
OR 00000010 (Binary 2)
00000011 (Binary 3)
P 1&2 ;THISIS 0
The BDSS5 responds: 0,
since
00000001 (Binary 1)
AND 00000010 (Binary 2)
00000000 (Binary 0)

Logical math is generally used with hex constants.

Logical math is also useful when trying to use
general purpose inputs to control the user program.

3-10

3.5 GENERAL PURPOSE INPUT/
OUTPUT _

The BDSS provides 16 general purpose inputs and 8
gencral purpose outputs. On power-up, all outputs
are turned off. Inputs and outputs can both be
referred to individually or collectively: I1,12,...
116 represent the individual inputs, and O1, 02,...
O8 represent the outputs. You can turn the third

output on and the sixth off by typing:
03 ON ;TURN ON THE THIRD
;OUTPUT BIT
06 OFF ;sTURN OFF THE SIXTH
;OUTPUT BIT
To display the fifth input, type:
PI5

and either 1 or 0 will be displayed.

3.5.1 Whole Word I/0

Inputs and outputs can also be referred to
collectively. In order to do this, the individual inputs
or outputs are referenced as the bits of a digital word,
hence the term Whole Word I/O. Whole Word
references are especially useful when you are trying
to set or clear many output bits at once. If you are
unfamiliar with logical/binary math or you plan to
use J/O one bit at a time, you may not be interested
in Whole Word I/O. However, it can save space and
execution time when properly used.

‘Whole Word 1/O is done using the variables QUT
and IN. OUT is an 8-bit digital word representing
all of the outputs, with O1 as the least significant bit
(LSB), and IN is a 16-bit digital word representing
all of the inputs, with I1 as the L.SB. Each bit has a
value which depends on its position within the word.
The value in OUT or IN is the sum of the values for
each bit that is turned on. The value for each bit is
listed in Table 3.4.

Table 3.4. Output 1-8 Decimal Values

Cut Bits 08 O7 06 OS5 04 03 02 01
Value 128 64 32 16 8 4 2 1

s

L AN Y P

”“www

- ;
Pl

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

For example, if O8 and 04 are on and all other
outputs are off, then:

OUT = 128 (value of 08) + 8 (value of 04)
= 136,

Many bits can be set or cleared with one instruction.
For example,

OouUT=?

turns on O1, 02, and O3 while turning all other
outputs off. One logical math statement can be used
to set some bits without affecting others. For
example:

O1 ON
02 ON
03 ON

can be replaced with:

OUT=0UTI? ;SET 3 BITS WITH LOGICAL
;OR

which turns on 01, 02, and O3 without affecting O4
- O8. The logical AND can be used to turn off
several bits:

OUT=0UT&7 ;CLEAR 5 BITS WITH
LOGICAL AND

turns off O4-08 and does not affect 01-03.

Note that the hex representation can be especially
useful when setting the higher bits:

O4 ON
07 ON
08 ON

is the same as:

OUT=0UTI0CSH

IN is formed with I1-16 in the same way OUT is
formed with 01-8:

Table 3.5. Input 1-16 Decimal Valuesg

In Bits 116 115 114 113
Value 32768 16384 8192 4096
In Bits 112 111 110 I9
Value 2048 1024 512 256
In Bits I8 17 I6 Is
Value 128 64 32 16
In Bits I4 3 2 1
Value 8 4 2 1

For example, if IN were equal to 5010, that would
mean I2, IS, 18, 19, 110 and 113 were on and all
others were off, because 5010 is the sum of those
bits:

5010 = 2 + 16 + 128 + 256 + 512 + 4096

3.6 FAULT LOGIC

This section covers how to enable the BDSS and how
faults affect the operation. This discussion will
center around Figure 3.1. This drawing has six
areas, cach of which is labeled with an encircied
number, 1-6. Note that this drawing is a functional
diagram; it does not directly Tepresent the actual
hardware and software used to implement these
functions.

Your BDSS system should be mounted and wired as
described in the Installation and Setup Manual, The
AC Line to your PSR4/5 should not be turned on
initially for examples in this chapter. If the proper
connections are not made, or the terminal is not
communicating, then see the Inszallation and Semp
Manual,

AC LINE SHOULD NOT BE
TURNED ON.

WARNING

3-11

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

3-12

Y

EY
HAROWARE FAULT e - - - ;
OVER TEMPIAATURE ey !
8US VOLTAGE | |
+/=12 VOLT SUPPLY —de | pTrRo~o=nrcoon
MIT2TIIn ~Sale
OVER CURRENT T l
FEEDBACK LOSS 1] |
HARONARE WATCHO0G ~e—om
COMPENSATION BOARD e |
——— e e §>__ I
I SOFTWARE FAULTS @
| FOLLOWING ZAAOR R !
OVERTRAVEL —] |
' GEARBOX OVERFLOW —_—
INTERNAL ERRORS JSV—— |
| MOTOR PARAMETERS OUT e
OF RANGE |
|
' |
l FIRMWARE FAULTS !
UP FAIL l
| AOM CHECKSUM .
= [TuAN oFF l T
] SOFTWARE WOOG LATCH - L.COMMUNICATION | | -
RESET ==
|5 veLr sy r‘ ©)
| PONER |
w |
|
|
| FAULT* [- - -
SOFTWARE
I = SNITCH ' *FAULT") ‘.ﬁ"’x
LATCH £2
| mser ! S
|
‘EN; "READY® *ACTIVE® l
] CommMaND SOFTWARE ~ SOFTWARE |
| SHITCH == SWITCH = |
SET
[prs- o en -) I ACTIVATE 3RIVE
cnmu‘ﬁt_a>_""’* —
| o O] “ACTIVE®
e LED
l COMMAND !
] “2YS oK*
! HARDWARE LER
WATCHDOG
] | HALT MICROPACCESSOR
l !
L cz-01
AELAY s Ni7
I I L Cc2-=IN16
| *status® | “RELAY-
. . SOFTWARE -
REMOTE® INeUT | wITon - | LED
C2-PIN 8 " gpTICAL 1,
21N § | ISOLATION [T {>—w— sTATUS QUTPUT (OPTIONAL)
-~ ; C3-SIN3S
| *STATMODE® l
SOFTWARE
I SWITCH I
— —— — —— — on— -
Figure 3.1. BDS5 Enable/Fauit Logic Dlagram
)

AN

s

l\c y':('
S

I

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

3.6.1 Firmware Faults, Area 1

Area 1 shows how firmware faults are combined.
Firmware faults are the most serious errors. They
include checksums (to help verify computer
memory), watchdogs (to help verify that the
computer is running properly), and the 5-volt logic
power supply monitor.

These circuits are designed to watch the basic
operation of the microprocessor. They do not
generate error messages because the detected fault
affects the microprocessor directly. Instead, they just
blink the Central Processing Unit (CPU) LED.

As shown in Figure 3.1, firmware faults set a latch to
turn off communications and blink the CPU LED.
The CPU LED blinks in cycles consisting of 2 to 8
blinks and a pause. The number of blinks
corresponds to the error number, which you can look
up in Appendix D. The only way to reset these faults
is to power-down the BDSS. These faults are serious
and you should consult the factory if they occur. Do
not confuse these faults with autobauding on power-
up. When autobauding, the CPU LED blinks at a
constant rate, about three times per second.

3.6.2 Fauit Logic, Area 2

The large OR gate in Area 2 combines thres types of
faults: hardware, software, and firmware. The
circuits that generate these faults are typical of motor
controllers and are listed on the drawing. These
faults are errors that are serious enough to disable
the BDSS, as described in Appendix D.

3.6.3 Fault Latch, Area 3

The latch in Area 3 turns on the FAULT 1LED, the
FAULT software switch, and the FAULT output on
Connector C8. Any fault sets this latch; you can also
WTite your program to turn it on if you detect a fault
condition. The fault latch can be reset by:

1. Turning FAULT off,
2. Typing the enable command (EN), or
3. Powering down the BDSS.

3.6.4 Ready Latch, Area 4

Area 4 shows the logic required to make the drive
ready. If there are no faults, the EN command sets
the ready latch. This turns the READY software
switch on. This latch is reset with the KILL ®
command, the DISABLE (DIS) command, or a fault.
These turn READY off,

3.6.5 ACTIVE, Area 5

Area 5 shows that ACTIVE will be on if both
READY and REMOTE are on. This turns on the
ACTIVE LED. It also allows the BDSS to actively
control the motor.

REMOTE (Remote Enable) is an isolated input that
is accessed from Connector C2 on the front of the
drive. You can print REMOTE with the P
command. It must be 1 to activate the BDSS. If you
cannot turn REMOTE on, see the Installation and
Setup Manual. Note that some faults "hide” the
value of the REMOTE input from the BDSS
microprocessor. This does not normally matter
because all faults must be cleared before the drive
will enable. If this condition exists, the BDSS will
print REMOTE as "-1.”

3.6.6 Relay and STATUS Control,
Area 6 ‘

Area 6 shows how software switch STATUS and the
relay work. You can configure STATUS to indicate
either drive READY (but not necessarily ACTIVE)
or drive ACTIVE. ‘The difference is in how you
want to use STATUS. STATUS can be used for an
interlock. In this case, you want STATUS to
indicate drive ACTIVE. If the BDS5 becomes
inactive for any reason (including the REMOTE
input turning off), then STATUS will turn off. As
an alternative, you can use STATUS to indicate that
the BDSS is ready for the REMOTE input to turn on.
That is, if REMOTE turns on, the BDSS will be
ACTIVE. In this case, you want STATUS to
indicate drive READY.

The software switch STATMODE controls which

state STATUS will indicate. If STATMODE is on,
then STATUS will indicate drive READY. If

3-13

L e & s L L TR TN

CUHAPTER 3 - PROGRAMMING L ANGUAGE

BDSS

STATMODE is off, then STATUS will indicate
drive ACTIVE

The operation of STATUS is shown by the AND-
gate and OR-gate in Area 6. If STATMODE is on,
then READY will turn on STATUS through the
AND-gate. If STATMODE is off, then only
ACTIVE (from Area 5) will turn on STATUS
through the other leg of the OR-gate. The STATUS
output on optional Connector C8, Pin 35, is always
the same as the STATUS software switch. Note,
however, that the state of the STATUS output is
undefined for 25 milliseconds after power-up.

STATUS may turn on for up
to 25 milliseconds during
power-up.

WARNING

3.6.7 Motor Brake

Industrial Drives motors can be purchased with an
optional brake. The brake is fail-safe in that if no
current is applied, the brake is active. If you set .
STATMODE to 0, you can use STATUS to control:
the brake. Then, when the BDSS is disabled or
powered down, the brake will be active.

3.6.8 Output Relay

The relay (Connector C2, Pins 16 and 17) represents
the state of the hardware watchdog. The hardware
watchdog makes a system more reliable because the
watchdog is independent of the microprocessor. If
the processor is not working, the watchdog will
usually detect it (though this is not guaranteed).

On power-up, the contacts are open until the BDSS
passes its power-up self tests. Then the contacts close
and the BDSS begins normal operation. Note that if
the BDSS is set to autobaud on power-up, the
contacts will not close until after autobauding and
establishing communications.

One way to use the relay is to interconnect it with the
main power contactor. In this case, a hardware
watchdog fault will disconnect all power to the
system.

3-14

The SYS OK LED indicates that there is not a
hardware watchdog fault. If this LED goes out, you
should remove the BDSS5 from operation and contact
the factory.

3.7 DRIVE CONTROL

This section discusses several variables that you
must be familiar with before you can control the
BDSS.

3.7.1 Direction Control, DIR

DIR is a switch that controls the algebraic sign of
command and feedback variables. When DIR is on,
clockwise position, velocity, and torque are all
positive. If DIR is off, then clockwise position,
velocity, and torque are negative. DIR is turned on
at power-up.

3.7.2 Position

3.7.2.1 Position Command and
Feedback, PCMD & PFB

PCMD is the commanded position. It is generated
internally from motion commands like the JOG
command. PCMD is in position units. The standard
position units are R/D converter counts as specified
in Table 3.6. PCMD is set to PFB when the BDSS is
disabled.

PFB, the position feedback, is the actual position of
the motor. It is updated every millisecond. PFB is
in position units. Section 3.3.5 explained how to
look at PFB and watch it as the motor turns. PFB is
always active, even when the BDSS is disabled. PFB
is reset to zero when the BDSS is powered-up.

3.7.2.2 Position Error, PE & PEMAX
PE is position error, sometimes referred to as
following error. It is the difference between PCMD
and PFB. PE is zero when the BDSS is disabled. PE
is in position units.

Sot”

i

Y AT 1 WAy

%
Yo

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

When the magnitude of the position error excaeds
the value stored in PEMAX, a Position Error-
Overflow error is generated. This is a serious error,
disabling the BDSS immediately. Note that setting
PEMAX to some value will not limit the position
error. The position error depends on the contro] loop
parameters and the application. Normally, you want
to set PEMAX to as low a level as will allow the
system to run reliably. Setting PEMAX too low can
generate nuisance errors since the position error has
some variation during motion. PEMAX is in
position units, J
Position error is limited to protect the system.
Excessive position error can indicate a fault
condition. For instance, bearings wear out over the
life of a motor. The increased load from worn
bearings can increase the position error during
motion. In many cases position error is the first

indication of wear. A
v

3.7.2.3 R/D Position, PRD

. PRD is the output of the resolver-to-digital (R/D)

converter in counts, PRD is not in position units, If
your system has the standard 12-bit R/D converter,
then 4096 counts will equal one revolution. The
following table shows the R/D ranges versus
resolution:

Table 3.6. PRD: Ranges and R/D

Resoclutions
R/D Resolution PRD Min PRD Max
12-Bit 0 4095
14-Bit 0 46383
16-Bit 0 65535

The BDSS should be disabled at this point (use the
K or DIS command if it is enabled). PRD can be
printed on the screen. From the terminal, type:

P PRD

and the R/D output will be displayed on the screen.
Move the motor shaft by hand to several positions,
printing PRD each time. Notice that PRD changes
for cach position.

3.7.2.4 Sampling PFB, PCMD and
PEXT

When PFB and PCMD are used on the same line,
they are always sampled during the same sampling
interval (millisecond). This allows you to use
PCMD, PFB, and a third variable called PEXT,
which is discussed later in this chapter, without
concern that the variables might be sampled at
different times. For example:

P PCMD *-" PFB " = * PCMD-PFB

This command would print the expected results. This
is because the BDSS stores PCMD and PFB at the
beginning of every command, then uses those stored
values when the command is executed. On the other

hand, if you type:

P PCMD *-* PRD " = * PCMD-PRD

the results may not be as expected. This is because
PRD is not stored at the beginning of the command.
If the motor is turning, the two references to PRD
will produce different results. This command takes
up to 6 milliseconds to execute, and PRD can change
several times while this command is executing,

3.7.3 Velocity

3.7.3.1 VCMD, VFB, VE, & VAVG
VCMD is the commanded velocity. Like PCMD,
VCMD is generated internally from motion
commands. VCMD is zero when the BDSS is
disabled. VCMD is in velocity units.

VEB is the feedback velocity. It is updated every
millisecond. VFB is always active, even when the
BDSS is disabled; if you turn the motor shaft by
hand and print VFB on the terminal, you can see the
velocity changing. Because VFB is updated very
rapidly, the speed can appear to vary, even when the
motor is rotating at a fairly constant speed. This is
because the VFB shows the speed averaged over only
1 millisecond. The speed from one millisecond to
the next normally varies a few RPM. The long term
speed (that is, measured over a few seconds)
normally varies much less (about 0.01%), VFBis in
velocity units.

3-15

Y WK o T3 9L 5

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS5

VE is velocity error. VE is the difference between
VCMD and VFB in velocity units.

VAVG is the average of VFB over the previous

16 milliseconds. Occasionally, the normal sample-
to-sample variation of VFB is undesirable. In these
cases, use YAVG.

3.7.3.2 Velocity Limits, VMAX &
VOSPD

VMAX is the BDSS maximum velocity. It depends
on the motor and the resolution of the R/D converter.
For standard systems with 12-bit R/D converters,
VMAX is less than or equal to 7500 RPM. For
14-bit systems, VMAX is limited to 3000 RPM;
16-bit systems are limited to 750 RPM., VMAX is
set at the factory. VMAX is in velocity units.

VOSPD is the maximum velocity for your system.
The BDSS generates an overspeed fault if VFB is
ever greater than VOSPD. You can set VOSPD to
any level below 1.2_VMAX. This allows you to
limit the speed of your system to any level below
VYMAX. When an overspeed occurs, the BDSS is
disabled immediately.

You should set VOSPD to at least 10% or 15%
above your system’s maximum speed to avoid
nuisance overspeed faults. You can change VOSPD
only when the BDSS is disabled. VOSPD is in
velocity units,

3.7.4 Current

3.7.4.1 Motor Current, ICMD & IMON
ICMD is commanded motor current. ICMD, like
PCMD and VCMD, is generated internally from
motion commands. ICMD is in current units,

IMON is the output of the current monitor circuit,
and it represents the magnitude of the motor current,
IMON is always positive, and it is in current units.
IMON is the digital conversion of the analog signal
I_Monitor on Connector C2.

3.7.4.2 Current Limits, IMAX & ILIM

IMAX is the maximum level of current that the
BDSS can output. It is set at the factory; its value

3-16

depends on both the BDSS rating and on the motor.
IMAX is in current units,

ILIM limits the peak of ICMD, the commanded
current. You can set ILIM to any level below
IMAX. This allows you to limit the current below
the maximum leve! that the BDSS can output. You
can set ILIM at any time, even during profile moves.
ILIM is in current units.

3.7.5 Enabling the Position Loop
with PL

PL is a switch that controls the position loop. IfPL
is on, then the position loop is enabled. If PL is off,
then it is disabled, and the BDSS is running as a
velocity loop. Most positioning applications run
with PL on. See later in this chapter for more
information about the position loops. PL turns on at
power-up. You can change PL at any time.

3.7.6 Controlling the Velocity Loop
with PROP

PROP is a switch that controls the integration
section of the velocity loop. If PROP is on, then the
velocity loop is proportional and the integral is
disabled. If PROP is off, then the velocity loop is
fully integrating. PROP is turned off at power-up.
You can change PROP at any time. Most
applications run with PROP off. Sometimes
proportional velocity loops are used during set-up.
Sec later in this chapter for more information.

3.7.7 Enabling the BDS5

THE BDS5 WILL BE

ENABLED AND THE MOTOR

WILL TURN. SECURE THE
WARNING MOTOR.

At this point you should turn REMOTE on as
described in the Installation and Setup Manual,
Type the following command to print the state of the
REMOTE input:

e o,

© b nsta Mo g o &

Mt

k1 7
ptd

e

BDSS

CHAPTER 3 - PROGRAMMING L ANGUAGE

P REMOTE ;REMOTE SHOULD BE 1

SHOCK HAZARD!

A Large voltages from the AC
Line and the DC Bus can
WARNING cause injury. Ensure that the
wiring is correct. See the
Installation and Setup

Manual.

THE MOTOR MAY MOVE
UNEXPECTEDLY!

BE PREPARED TO DISABLE
THE BDS3!

You should have completed
"Initlal Check-Out" in the
Instailation and Setup
Manual. if not, return to the
instailation and Setup Manua/
WARNING and complete that section.

This section will enabie the
BDSS. The system may be
unstable. The motor may
begin osclilating or run away.
Be prepared to digable the
BDSS quickly. You can
disable the BDSS by turning
off (opening the contacts of)
LIMIT or REMOTE.

To enable the BDSS, turn on the AC Line and enter
the enable command:

EN

The BDSS should turn on. To verify that it did turn
on, print ACTIVE. If ACTIVE is 1, then the BDSS
is enabled; otherwise, it is disabled.

To disable the BDSS, enter the disable command:

DIS

As an alternative, you can disabie the BDSS with the
one-letter kill command by typing:

K

ENABLE, DISABLE, and KILL are examples of
BDSS commands. All of the BDS5 commands are
listed, with their formats and syntax, in Appendix C.

Appendix C is a quick
reference for all BDSS

commands.
NOTE

3.7.8 Limiting Motor Current

The following section discusses how the BDSS limits
motor curreat.

3.7.8.1 Continuous Current, ICONT
The BDSS limits current in two ways: peak current
is limited according to the variable ILIM, which was
discussed earlier in this chapter; continuous (that is,
average) current is limited according to the variable
ICONT. The software that limits the time that motor
current is allowed to be above ICONT is called
foldback, since the current is gradually folded back
to ICONT. ICONT is dependent on the BDSS rating
and on the motor; ICONT is set at the factory, and it
is in current units.

Most BDSS systems have about 2:1 peak to
continuous rating. Generally, ILIM is 100% of the
maximum current and ICONT is about 50%. The
purpose of the foldback software is to allow the
output current to go above ICONT for a short time
(generally 2-3 seconds) while still protecting the
BDSS from overheating.

3.7.8.2 Foldback Current, IFOLD
There are two current limits: ILIM and IFOLD.
ICMD (the commanded current) is limited by either
ILIM or IFOLD, whichever is less, You can set
ILIM but you cannot set IFOLD; IFOLD is
controlled by the foldback software. IFOLD depends
on three things: ICONT (the continuous current
rating of the BDSS), IMON (the current monitor),
and time.

When the BDSS is disabled, IFOLD is sat to some

value well above maximum current IMAX), and
thus, well above ILIM. Since current is limited by _

3-17

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

the lesser of ILIM and IFOLD, IFOLD has no effect
under this condition. If IMON, the output current,
stays below ICONT, then IFOLD remains at its
original, high value. If IMON is greater than
ICONT, IFOLD gradually decreases. The greater
IMON is, the faster IFOLD decreases. Sincs IFOLD
starts out well above ILIM, initially this has no
effect. However, when IFOLD is less than ILIM,
IFOLD will limit the current. This is called "being
in foldback.” If IMON remains (on average) above
ICONT long enough, IFOLD will decrease all the
way to ICONT, forcing IMON eventually to become
less than or equal to ICONT. Typically, it takes at
least 2 to 3 seconds for IFOLD to decrease from its
original high value to IMAX. At this point, the
BDSS is in foldback. It takes an additionai 10
seconds to reduce IFOLD from IMAX to ICONT.

If IMON is reduced below ICONT, then IFOLD will
increase; the smaller IMON is, the faster IFOLD will
increase. If IMON remains below ICONT long
enough, IFOLD will return to its original high value.

3.7.8.3 Monitoring Current Limits
There are two switches that provide information on
current limiting. SAT is a switch that is on if the
current is limited by either ILIM or IFOLD. FOLD
isaswitchthatisonifthemrrentislimitedby
IFOLD only.

The operation of the foldback software is as follows:

.. IMON > ICONT
.. IMON < ICONT

then... IFOLD decreases
then... IFOLD increases

. [FOLD < ILIM
. [FOLD > ILIM

then... FOLD ison
then... FOLD is off

. ICMD = ILIM or IFOLD then... SAT is on
. ICMD <ILIM and IFOLD then... SAT is off

FE RR RM

ICMD is never > ILIM
ICMD is never > IFOLD

In some cases, it may be desirable to know when
foldback is just about to limit current below ILIM.
You can use IFOLD for this; if IFOLD is less than
ILIM, the foldback software is limiting current. If
IFOLD is larger than ILIM, but only by 5% or 10%,
then foldback software is about to limit current.

3-18

3.8 MOTION COMMANDS

This section discusses how ta control motion using
the BDSS. Basic motion commands are described
first. Later sections discuss advanced motion control
including BDSS Macro Moves, electronic gearbox,
and synchronizing motion.

3.8.1 Basic Motion Commands

3.8.1.1 AMAX, ACC, & DEC
The BDSS controls acceleration with three variables:
AMAX, ACC, and DEC.

AMAX is the maximum acceleration allowed for
almost all motion commands. The only exception is
electronic gearbox. AMAX is the upper limit for the
normal acceleration rates, ACC and DEC. AMAX
should always be set below the acceleration level that
can damage your machine. Errors which stop
motion will decelerate the motor at AMAX;
therefore, your machine is subject to deceleration
rates of AMAX at any time. AMAX is in
acceleration units, which are RPM/second asa
default. AMAX can be changed only when the
BDSS is disabled.

Set AMAX below the
maximum accasleration rate
that your machine can
WARNING experience without damage.

A\

ACC s the acceleration rate for most moves. ACC
is in acceleration units. ACC can be changed at any
time, although it must be-less than AMAX.
Attempting to set ACC to a value greater than
AMAX will generate an error.

DEC is the deceleration rate for most moves. DEC
is also in acceleration units. DEC can be changed at
any time. Attempting to set DEC to a value greater
than AMAX will generate an error.

3.8.1.2 EN, STOP, & LIMITS
Before any motion can take place, the BDS5 must be

enabled. Type:

5 i
r
S

S

L)
s

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

EN

3.8.1.3 Enabling Motion with

MOTION

MOTION is a hardware input that enables or
inhibits motion. If MOTION is on, motion is
enabled; if MOTION is off, motion is inhibited. You
can enable the BDSS if MOTION is off, but
commanding motion will generate an error, If you
do not need to connect MOTION for your
application, you must hardwire MOTION on. See
the Installation and Setup Manual for instructions on
how to hardwire MOTION. Before continuing,
make sure that MOTION is on. Type the following
command to print the state of the MOTION input:

P _MOTION ;MOTION SHOULD BE 1

Many times, the MOTION input is controlled by the
normally-closed contacts of 3 push button. This
push button is often called "STOP," since pressing
the button opens the MOTION input and forces the
motor to stop. Emergency Stop should not be
implemented with the MOTION input. Emergency
Stop should be connected to 3 contactor that removes
power from the system. This is because an
emergency stop, which is for safety, should not
depend on BDSS functions to operate properly.

A\

WARNING

Do not use MOTION or any
other BDSS5 input for
Emergency Stop. When
Emergency Stop is activated,
it should directly remove
power from the system.

3.8.1.4 STOP (S) Command

Any motion can be stopped using S, the STOP
command. S has no parameters. § decelerates the
motor at AMAX and terminates all motion
commands. The S command does not disable the
BDSS.

Normally, the STOP command should only be given
from the terminal or from the program in response to
an error condition. A better method for stopping
motion from the program under normal
circumstances is:

J 0 ;JOGTO0SPEED-STOP MOTION

/AT DEC, NOT AMAX

The J 0 command also stops motion from any mode,
much like the STOP command, Unlike S, 7 ¢
decelerates at the rate specified by DEC.,

The S command should not

be used as a part of normal

program operation. Use J 0,
NOTE

At any time, when motion is commanded, if the
MOTION input turns off, an error is generated, and
all motion is stopped, as if the STOP command were
given. Also, any errors with a severity of 2 or 3 will
stop motion in a straight line deceleration at a rate of
AMAX. Appendix D lists all errors and their
severity.

3.8.1.5 STOP and BREAK with
Control X (*X)

You can execute a Stop and break command with the
control-X (*X) character. Controi-X or *X means
that you hold down the contro} key (Ctrl) on your
terminal (or IBM-PC) and press the X key. This has
the same effect as typing B, then S from your
terminal.

3.8.2 Limiting Motion

The BDSS ailows you to limit motion with both
Software and Hardware Travel Limits.

3.8.2.1 Hardware Trave! Limits
Hardware Travel Limits limit the range of motion.
If you have an application with boundaries which
should never be crossed, You are encouraged to use
the Hardware Travel Limits with limit switches.

Exceeding Hardware Travel Limits is a more severe
error than exceeding Software Travel Limits. The
BDSS assumes that Software Travel Limits should
catch normal overtravel conditions and that a
Hardware Travel Limit indicates a serious problem.
Hardware Travel Limits disabje the BDSS5 rather
than just stopping motion, as the software limits do.

3-19

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

This means that the motor must be backed away
from the limit by hand.

The Installation and Setup Manual discusses how to
wire LIMIT. Usually, two limit switches are wired
in series and connected to LIMIT; the contacts of
these switches must be closed for the BDSS to be
enabled. If the contacts open, the BDS5 will be
disabled, the motor will coast to a stop, and an error
will be generated. This limit is a safety device and
not part of normal program operation. Hardware
Travel Limits are always enabled.

3.8.2.2 Software Travel Limits, PMAX
& PMIN

Software Travel Limits limit the range of motion of
the motor. There are two software limits: maximum
and minimum. If position fcedback (PFB) moves
outside the software limits, an error is generated and
motion stops. Software Travel Limits are intended
as a guard against motion that is out of range due to
improper operation or programming errors.

PMAX is the maximum position allowed and PMIN
is the minimum. If PFB is greater than PMAX,
negative motion is allowed, but positive motion is
not. If PFB is less than PMIN, only positive motion
is allowed. PMAX and PMIN are in position units
and can be changed at any time.

Software Travel Limits are enabled with PLIM,
which can also be changed at any time . If PLIM is
on, software limits are active; otherwise, PMIN and
PMAX are ignored. PLIM is turned on at power-up.
If you have an application with boundaries which
should not be crossed, you are encouraged to use
Software Travel Limits,

Note that you should set DIR before setting the
Software Travel Limits. This is because DIR relates
PMAX and PMIN to clockwisc and counter-
clockwise motion limits. If you change DIR, you
must reset PMAX and PMIN,

3.8.2.3 User Position Trip Points,
PTRIP1 & PTRIP2

The BDSS provides two user position trip points,
which control a switch. You can use this switch to
control your program.

3-20

The two trip points are PTRIP1 and PTRIP2. Both
are in position ugits. You can program either at any
time. If the position feedback (PFB) is greater than
or equal to PTRIP1, then the TRIP1 switch will be
on. If PFB is less than PTRIP], then TRIP1 will be
off. Similarly, if PFB is greater than or equal to
PTRIP2, then TRIP2 will be on; otherwise, TRIP2
will be off,

Trip points are not limits in the sense that they do
not inhibit motion. Trip points convert position
feedback to an on-or-off signal. Trip points are
particularly useful with alarms and the HOLD
command, both of which are presented in Chapter 4.

Position trip points require a lot of calculations. As
a result, they slow the execution of the user program
by about 4%. If you are not using trip points, you
can disable them by typing:

TRIP OFF

When the BDSS is powered-up, trip points are
enabled.

3.8.3 Proflles

When a positioner commands the motor to move
from one point to another, it must control
acceleration, deceleration, and traverse speed. The
velocity of the motion versus time is called the
profile. Simple profiles begin and end at zero speed
and have three segments: acceieration, traverse, and
deceleration. You must specify ACC, the
acceleration rate, and DEC, the deceleration rate,
before commanding the move. The traverse speed
and the distance to move.are specified in the move
command itself,

200 RPM

ACC C
O RPM

[i
O 5000
COUNTS COUNTS

Figure 3.2. A Simple Profile

SUB g e s

5 g
R

i
g

i

BDSS

The graph in Figure 3.2 shows a simple profile. The
move begins at position 0 and ends at position 5000.
The traverse speed is 200 RPM. ACC and DEC are
specified independently before the move is
commanded.

3.8.3.1 S-Curves

The BDSS also allows you to specify the type of
acceleration you want. You can select S~curve
accelerations for smoothness or straight-line
accelerations for quickness. The graph in Figure 3.3
shows the profile from Figure 3.2 using S-curves
instead of straight lines.

200 RPM
ACC
DEG
A 0 _RPM
0 5000
COUNTS COUNTS

Figure 3.3. S-Curve Profile

Notice that ACC and DEC are still independent.
Notice also that they specify the average
acceleration, not the peak. Since S-curves reduce the
acceleration rate at the endpoints of the acceleration,
the acceleration rate in the middle must increase.
Typically, when you switch to S-curves, you must
reduce ACC and DEC to stay within the ratings of
the motor. However, since S-curves reduce
overshoot, you may find that you increase the overall
acceleration rate when you use them.

You may need to reduce ACC
and DEC when using

S-curves.
NOTE

For some applications, S-curves can reduce the
average acceleration too much; in others, straight
line acceleration produces motion that jerks the
motor excessively. The BDSS provides different
levels of S—curves allowing you to make the trade-off.
There are five levels that are selected by setting the
variable SCRV to either 1, 2, 3, 4, or 5. For more

CHAPTER 3 - PROGRAMMING L ANGUAGE

information on S-curves, see Industrial Drives
application note B101, "Acceleration Profiles."

Table 3.7, S-Curve Accsleration Chart

For this acceleration... Set SCRV to...
| Straight-Line 1
Modified Polynomial 2
Polynomial 3
Modified Sinusoid 4
Sinusoid 5

3.8.3.2 Move Absolute (MA)
Command

There are two kinds of simple moves: absolute and
incremental. With absolute moves, you specify the
end position; with incremental moves, you specify
the total distance of the move.

The MA command allows you to command absolute

moves by specifying the end position. ACC, DEC,
and SCRYV are all in effect for MA moves. As an

option, you can specify the traverse speed.

For example:

MA 50000 1000

moves to position 50000 at a peak speed of 1000
RPM.

The variable VDEFAULT is the default velocity for
MA and MI commands. If you enter an MA
command without specifying a speed, the traverse
speed will be VDEFAULT. For example,

MA 100000

would move the motor so that PFB is equal to
100000; it would assume a traverse speed of
VDEFAULT. If you do not specify the speed in MA
commands, it reduces the execution time. This
normally means less delay between when the
command is entered and when the motor begins
turning. Appendix F lists the execution times of a
few simple moves.

3-21

CHAPTER 3 - PROGRAMMING I ANGUAGE

BDSS

: Not specifying the speed in
MA commands reduces
axacution time.

NOTE

3.8.3.3 Move Incremental (MI)

Command

The MI command allows you to command
incremental moves by specifying the total distance of
the move. ACC, DEC, and SCRYV are all in effect
for MI moves. Like MA, if you enter an MI
command without specifying a speed, the traverse -
speed will be VDEFAULT.

For example:

M! 5000 200

causes the motor to move 5000 counts at a peak
speed of 200 RPM. The profiles that were shown
carlier as "A SIMPLE PROFILE" or "S-CURVE
PROFILE" could have been generated from this
example.

As with the MA command,

Ml 25000

causes the motor to move 25000 couants, with the
peak speed at the speed VDEFAULT.

For both the MI and MA commands, not specifying
speed reduces execution time and program size.

A\

NOTE

Not specifying the speed In
MIi commands reduces
exacution tima.

3.8.3.4 Incremental Move Example
SHOCK HAZARD!
A Large voitages from the AC
line and the DC bus can
WARNING . cause Injury. Wire the BDS5S
as described in the

Installation and Setup
Manual,

THE MOTOR MAY MOVE
UNEXPECTEDLY!

BE PREPARED TO DISABLE
THE BDSs!

You should have completed
“Initlal Check-Out” In the
Installation and Setup
Manual. It not, return to the
WARNING nstallation and Setup Manual
and complete that section.

This section will enable the
BDSS. The system may be
unstable. The motor may
begin osclllating or run away,
Be prepared to disable the
BDSS quickly. You can
disable the BDSS5 by turning
off (opening the contacts of)
LIMIT or REMOTE.

Turn on the AC line voltage. Type in the following
example:

EN

ACC 1000
DEC 1000
Ml 4000 100

This should cause the motor to rotate 4000 counts
with a traverse speed of 100 RPM. With the next
¢xample the motor will repeat the move, Type:

VDEFAULT = 100
MI 4000

Notice that the motor again moves 4000 counts.
Now, to bring the motor back to the original

position, type:

Ml -8000

3.8.3.5 Profile Limits

With both the MA and MI tommands, if the traverse
speed cannot be reached because ACC or DEC is too
small for the specified move, then the BDS5 reduces

e

i ;
i

%
gy

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

the maximum speed so that the move, for all
practical purposes, is triangular. Actually, there is a
very short (less than 5 milliseconds) traverse
segment so that the move still has three segments.

The maximum time for an entire move is not
limited. However, the time for each acceleration or
deceleration is limited to 30 seconds. If the
acceleration rate is so low that this limit is exceeded,
then the BDSS generates an error explaining that
either ACC or DEC is too low. This error is issued
before the motion command begins. In this case
ACC or DEC must be increased, or the peak speed of
the move must be decreased.

3.8.3.6 Mulitipie Profile Commands
The BDSS allows one succeeding move to be
calculated while the present move is being executed.
This reduces inter-index delay, the delay between
successive moves, almost to zero, When you are
commanding motion from the Interactive mode
(+~>), be careful not to type in two move commands
while another is executing (motion from the original
command is not complete). This generates an error.
If you are commanding motion from your program,
the BDSS automatically pauses before calculating a
third motion profile, thus stopping this error from
oceurring.

3.8.3.7 Proflle Final Position, PFNL

If you want to keep track of the end position of the
present move, the variable PFNL (Position Final) is
provided. This variable contains the final position of
a move. The variable can be used to compute the
distance remaining by combining it with PFB
(Position Feedback):

P "DISTANCE TO GO * PFNL-PFB
;PRINT THE AMOUNT OF
JPOSITION TO GO TO
;FINISH THE MOVE

3.8.4 JOG (J) Command

This section describes J, the JOG command.
Jogging is useful when you want to command motion
without position endpoints. For example,

J 500

causes the motor to rotate at 500 RPM indefinitely.
Jogs are useful for machine set up and testing.

ACC and DEC are in effect with Jogs, as is SCRYV.
Software and Hardware Travel Limits are also in
effect. Jog is the only move command that can cause
motion to change direction without stopping first.
However, since changing directions involves both
acceleration and deceleration, Jog commands that
change direction of rotation use ACC or DEC,
whichever is lower. Jog commands should be used
with caution, since motion continues indefinitely.

3.8.5 NORMALIZE (NORM) Command

NORM, the NORMAILIZE command, is required if
you want to reset the BDSS position feedback, PFB.
Often, you may want to set the position feedback to
some known value. For example, on power-up the
position feedback is set to zero. After a homing
sequence, you may need to reset the position register.
This is done using NORM, the NORMALIZE
command. For example,

NORM 10000

sets PFB (position feedback) as well as PCMD
(POSITION command) to 10000 in position units.
As an alternative, you can enter:

PFB=10000

Setting PFB has the same effect as the NORM
command. Use whichever you think makes your
program ¢asier to understand.

Now, type in:

P PFB

Now, normalize the position to 1000 with:

NORM 1000

Again, print PFB:

P PFB

3.23

SaAriER D - FROGRAMMING LANGUAGE

BDS5

and see that it is now 1000. The NORMALIZE
command cannot be used when either GEAR is on,
or when motion is commanded from MA, Mi, or any
other motion command.

3.8.6 Zero Position Error (ZPE)
Command

The ZPE command zeros position error by setting
PCMD to PFB without changing PFB. There are
occasions when this will bs necessary. For example,
if the BDSS is run for some time as a velocity loop,
then position error can accumulate well beyond
PEMAX. If the position loop is turned on with this
condition, a position error overflow error will occur,
To prevent the error, you must first zero the position
error, then turn the position loop on by entering:

ZPE
PL ON

The ZPE command is also frequently used with
clamping. See the explanation of clamping later in
this chapter,

3.8.7 MACRO MOVES

This section describes functions to implement Macro
moves. Macro moves are complex, user-defined
moves that execute as one move, Simple moves,
such as MI and MA, always begin and end at zero
speed and have ope acceleration segment, one
deceleration Segment, and one traverse segment,
Macro moves allow up to 30 user definable segments
for one move. The moves are fully precalculated
and, therefore, can execute very fast. Like other
moves, ACC, DEC, and SCRY are in effect. These
parameters can be changed between Macro move
Segments allowing more flexibility. Also, PFNL
indicates the ending position of the entire Macro
move. Like MI and MA, the entire Macro move
must begin and end at zero speed, although
beginning and ending speeds of individua] sections
are not constrained to 0 RPM. Dwel] segments can
be embedded in Macro moves,

3-24

3.8.7.1 MCA, MCl, MCD, & MCGO
There are two kinds of Macro moves: Macro
Absolute (MCA) and Macro Incremental (MCT).
Dwells can be inserted using the Macro Dwell
(MCD) command. When the move is completely
specified, the Macro Go (MCGO) can be used to
execute the move. MCGO can be executed as many
times as desired, once calculations for the entire
move are complete.

Both Macro Absolute and Macro Incremental moves
are specified in a similar manner, You must specify
cither the end position (for Absolute moves) or the
distance (for Incrementa] moves). You also can
specify up to two velocities. If two velocities are
specified, then the first is the traverse speed and the
second is the ending speed.

Ifoncvelocityisspeciﬁed, then it is assumed to be
the ending speed. In this case, the BDSS uses the
larger speed, either the beginning or ending speed,
for the traverse speed. All velocities are specified
greater than zero. The BDSS determines the
direction based on the specified position. If no
velocities are specified, then the BDSS continues the
Macro section at the beginning speed until the
specified position is reached,

If you want to include a dwell in the middle of a
Macro move, use the Macro Dwell MCD)
command. In this command, you specify the time of
the dwell in milliseconds. For example,

MCD 100 ;100 MSEC DWELL

This example specifies a 100 millisecond dwell,
Macro dwells are only allowed at the beginning of a
Macro move and when th previous section has
ended at zero speed.

After all motion sections have been specified, with
the final motion ending at zero speed, use the Macro
Go (MCGO) command to begin the motion. MCGO
is only allowed when the speed at the end of the last
Macro move is 0. MCGO also ends calculations for
Macro moves. Subsequent MCI, MCA, or MCD
commands reset the Macro move sequence.

Subsequent executions of MCGO will execute the
move again. The effect of multiple MCGO's on
Incremental Macro moves is that.the Incremental
move is executed again. The effect of multiple

&
g

R

%,
v

g

R —

BDS5

CHAPTER 3 - PROGRAMMING LANGUAGE

MCGO's on Absolute Macro moves is more difficuit
to understand. This is because all Macro moves are
converted to Incremental before being executed,
whether they are MCI or MCA based. This can
cause undesirable effects if the position does not
return to the starting point at the end of the Macro
move. Absolute Macro moves that are to be exacuted
more than once should return to the starting
position.

Enabling the BDSS resets the Macro move memory.
If you are typing in a Macro move and you make an
error, you should disable, then enable the BDSS, and
retype the entire move. Jog, MA, and MI commands
do not reset the Macro move memory. This means
you can execute jogs or simple moves after the
Macro move is calculated; the MCGO command will
still execute the move properly.

3.8.7.2 Macro Move Example #1
As an example of Macro moves, consider the
following profile:

1000 RPM

200 RPM

10000
COUNTS

11000

0
COUNTS COUNTH

Figure 3.4. Macro Move Exampile #1

There is no way to use MA or MI to accomplish this
profile, so Macro moves must be used. The
following sequence will generate the move shown in
Figure 3.4, .

ACC=20000

DEC=20000

MC! 10000 1000 200;MOVE 10000
JCOUNTS,
JTRAVERSE

JAT 1000 RPM
;AND END AT 200
JRPM, '
;MOVE 1000 MORE
;COUNTS
;TRAVERSING AT
;200 RPM (THE
JFINAL SPEED

;OF THE PREVIOUS
sMOVE) AND END ;
/AT 0 RPM.

JBEGIN MOTION

MCI 1000 0

MCGO

Every subsequent MCGO will generate a similar
move, 11000 couats long.

3.8.7.3 Macro Move Example #2

The profile can be made slightly more complex by
adding a 0.5 second dwell and a return to the
original position on the end. This profile is
demonstrated below:

200
1000
EP \ RPM
5 SEQ
£
10000 COUNTS
11000 COUNTS
- 1000
RPM

Figure 3.5. Macro Move Example #2

- Note that this diagram is a shorthand "schematic” of

motion. This curve is plotted as velocity-versus-time
for forward motion (the first § segments) and for the
dwell. However, return motion is shown as negative
motion returning to the origination time. Obviously,
time does not go backwards. This method of
diagramming motion is commonly used because it is
simple (if not in all respects accurate) and conveys
the necessary information.

3-25

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

The above sequence should be modified as follows.
Note that here the profile is converted to Absolute
rather than Incremental--this is a matter of
convenience as either will work:

MCA 10000 1000 200

MCA 11000 0

MCD 500 ;JADD A DWELL

MCA 010000 JRETURN TO HOME.
;NOTE THAT
sYELOCITY IS
JALWAYS POSITIVE

MCGO

Note that Macro moves have one inherent weakness.
If you are using user units and you specify an
incremental move that translates to a non-integer
number of counts, the Macro move will move the
closest number of integer counts. If the move is
repeated, the small error in the position command
will accumulate. This problem does not happen if
you use MI commands.

3.8.8 R/D BASED MOVE (MRD)
Command

This section describes MRD, the command that
generates moves based on the feedback from the R/D
converter, rather than the Position command
(PCMD). These moves are less than one revolution
and are always Absolute, rather than Incremental.

With the MRD command, you specify the desired
R/D output (at the end of the move) and the peak
velocity. For example, the command:

MRD 1000 100

moves the motor so that the R/D output is 1000.
100 RPM is the traverse speed. ACC, DEC, and
SCRY are all in effect with MRD. As with MI and
MA, if 100 RPM is too large to be attained given
ACC and DEC, the move becomes triangular.

As an option, directions of CW or CCW can be
specified to force the motor to rotate the desired
direction. If direction is left out, then the motor
rotates whichever direction is shortest. For example:

3-26

MRD 1000 100 CW ;MOVE R/D TO 1000,
;BUT ALWAYS CwW

moves the motor clockwise, even if the specified
position (1000) is just a few counts counter-
clockwise. The variable DIR has no effect on MRD
commands.

The limit of position is based on the R/D converter
accuracy as shown in Table 3.8.

Table 3.8 R/D Converter Accuracy

Resolution Maximum Position
12 4095
14 16383
16 65535

MRD moves are not buffered. They are not allowed
when the BDSS is jogging or if a move is in

progress.

MRD moves can be used to improve the accuracy of
homing sequences. First, use the BDSS to position
the motor as close as possible to the home limit
switch trip point. Then, use the MRD command to
move the motor to a specified R/D position. In this
case, the limit switch must be accurate only to one-
haif revolution of the motor for the R/D moves to be
useful.

3.8.9 Capturing Position

Position capture is a feature where the position
feedback (PFB) is captured when a hardware input
transitions. The BDSS5 position capture is accurate
to +/-25 microseconds. In other words, the position
that is stored after a capture is equal to the actual
position of the motor at the time of the capture,
within 25 microseconds. Capture uses the HOME
hardware input as the capture trigger.

3.8.9.1 Enabling Capture, CAP &

PCAP
The switch CAP controls capture. If CAP is on, then
capturing is enabled. When capturing is enabled,
the BDSS will watch the HOME input. When the

. r
Sy

e

TR TR

i

S

’; ;
% e
p e

BDS5

HOME input changes to the state specified by
CAPDIR, the BDSS will store the position in the
variable PCAP. After the capture, the BDS5 turns
CAP off. This tells you that the capture is complete.
PCAP is in position units. You can then use PCAP
as you would any other monitoring variable,

3.8.9.2 Capturs Direction, CAPDIR
The capture is triggered when the HOME input
changes from 0 to 1, or vice versa. If CAPDIR is 1,
the capture occurs when the HOME input changes
from 0 to 1. If CAPDIR s 0, the capture occurs
when HOME changes from 1 to 0, CAPDIR can be
changed at any time. Changing CAPDIR always
turns CAP off,

3.8.9.3 Speeding Up Homing
Sequences

One application of capture is to speed up homing
sequences. Homing sequences traverse very rapidly
until the HOME switch is tripped. Then the motor
decelerates to zero and begins to traverse at a
medium speed in the opposite direction until the
HOME switch trips again. Then the motor
decelerates again to a slow speed until the HOME
switch trips again. Since the fina] speed was low,
the distance to decelerate is considered negligible,
and the motor is assumed to be at home,

Using capture, the approximate home location can be
determined when the motor is traversing at high
speed, eliminating the need for the medium speed
traverse. The following program illustrates this.

CHAPTER 3 - PROGRAMMING LANGUAGE

CAPDIR=1

CAP ON

J 5000 JOG AT -5000 RPM
sTO GET TO HOME

TIL CAP EQ 0 sWAIT FoRr
JCAPTURE TO
;JOCCUR

Jo /STOP MOTION

MA PCAP 200 /RETURN TO PCAP-
JAPPROXIMATE
/HOME

J1 +JOG AT A Low
7SPEED TIL HOME
;CAN BE FOUND

TIL HOME EQ 0 :ONCE HOME |s
JCROSSED, STOP.

J O

The capture position is accurate to 25 microseconds.
The resuiting error is proportional to speed. For
example, for a 12-bit R/D converter, if the capture
were done while the motor was rotating at 5000
RFPM, the error would be limited to about 1 degree.
If this is not close cnough, you can jog the few bits
until tbcswitchisn-ippcd,oryoucanuscthem
as discussed sbove, ‘

3.8.10 Clamping

Clamping stops BDSS motion when the position
error exceeds a set point. This is used to determine
that the motor, usually through a lead screw, has run
a part into a mechanical stop. The profile stops and
the part is held with limited torque. This is
sometimes referred to as "Feed to Positive Stop.”
The stop is detected by watching position error;
when position error éxceeds the variable PECLAMP,
the part is assumed to have run into a stop. When a
stop has been detected, the BDSS will hold the
current at ILIM which should be set to the proper
holding current. ILIM can be increased or decreased
after the stop has been detected. To enable
clamping, turn CLAMP on, PECLAMP can be
changed at any time, '

In general, clamping is done at low speeds with the
current limited to some low level, After the clamp
has occurred, the motor is assumed to be at zero
speed. When the clamp has occurred, you can raise
or lower ILIM to set the holding torque as desired.
You can tell whether 2 clamp has occurred by

3-27

CHAPTER 3 - PROGRAMMING LLANGUAGE

BDSS

looking at SEG, the present motion segment. If SEG
is 0, then motion has stopped.

After the BDSS5 stops motion, the position error stays
at-approximately PECLAMP. Before commanding
any new motion, you should zero the position error
with the ZPE command.

Clamping can be used with all move and jog
commands. If jogs are used, the motion continues
until the stop is found. If move commands are used,
then motion does not continue past the specified
endpoint, regardless of whether a part is found.

An example of clamping follows:

PECLAMP=1000 ;SET CLAMP = 1000
;POS UNITS
JENABLE
JCLAMPING MODE
;MOVE AT MOST
;100000 POS UNITS
JIF THE MOTOR
JGETS ALL THE
sWAY TO 100000,
;THEN THE STOP
;WAS NOT
;ENCOUNTERED.
JASSUMED

;sTHE PART IS NOT
sTHERE,

CLAMP ON
MA 100000 400

wo JDELAY UNTIL
;MOTION STOPS

IF PCMD EQ 100000 P "PART NOT
FOUND*
;IF PCMD = 100000 =
;FINAL POSITION,
;THEN THE PART
;WAS NOT FOUND.

3.8.10.1 Clamping and Homing
Clamping can be used to home your machine by
gently running the machine into a stop; this
eliminates the need for a home limit switch. In this
case, you should reduce ILIM to a level just high
enough to overcome running friction at low speed.
ILIM is lowered to reduce the torque exerted by the
motor when the machine stop is encountered. Set
PECLAMRP to a level well above the normal
following error; usually the position unit equivalent

3-28

of several hundred counts is sufficient. Then turn
CLAMP on and jog, at low speed, toward the stop.
The BDSS5 will run the machine into a stop and limit
current to ILIM. When SEG is equal to 0, the BDSS
has clamped and thus recognizes that the machine
has been run into the stop.

Often, the repeatability of this operation is
unacceptable because the stop may be "soft” or it
may wear over time. Here, you can use the MRD
command to force the BDSS to move to a fixed R/D
converter position. This means that you will get a
repeatable home as long as the clamp position does
not vary more than one-half of one revolution
between different clamping operations. This is not
normally a problem.

To set the proper R/D converter position for the
MRD command, first do the clamping operation by
hand a few times. Reduce ILIM and jog, at low
speed, into the stop. After the unit has clamped, as
indicated by SEG = 0, print the R/D converter
position using;:

P PRD

Do this several times and record the average of PRD.
Now use the MRD command to back away from the
stop about one-half of one revolution. For example,
suppose you jog clockwise into the stop several times
and record PRD each time. It turns out that the
average value of PRD is 1500 counts. Then use the

following MRD command:
MRD 1500+2048 200 CCW ;MOVE TO 1/2
;JREVOLUTION
;FROM 1500
yCOUNTS

You must specify the direction (CW or CCW) so that
the BDSS always backs away from the stop.
Remember that, for example, J 1000 is not
necessarily clockwise since the direction of jog
rotation is controlled by the variable DIR.

You should be aware that if you replace your motor,
you must repeat this process since the relationship of
PRD to the motor shaft position is different for each
motor.

o ‘

SRR ——

% 7
R

&WV

BDSS CHAPTER 3 - PROGRAMMING LANGUAGE
2000 RPM
It you repiacs your motor, f
repeat this process. COMMAND
ENTERED
NOTE HERE
1000 RPM
50000 -
COUNTS

3.8.11 JOG TO (JT) & JOG FROM
(JF)

In some applications, JOG commands nesd to be
synchronized with position feedback. With J, the
standard JOG command, the speed changes when the
command is entered. Position dependent jogs (Jog
To and Jog From) delay the speed change untii a
specified position is reached. You specify the
position at which the change in speed begins with
the Jog From (JF) command. Similarly, you specify
the position at which the change in speed ends with
the Jog To (JT) command.

With position dependent jogs, you must specify a
position and the new speed. ACC, DEC, and SCRV
are in effect. Position dependent jogs are always
Absolute moves (not incremental),

The following graph shows the effect of a JF
command. This example assumes that the speed is
already 2000 RPM when the JF command is
executed.

FASSUME PRESENT SPEED IS 2000 RPM
JF 50000 1000

2000 RPM
f

COMMAND

ENTERED

HERE

1000 RPM

50000
COUNTS

Figure 3.8. Jog From (VF) Command

The next graph shows the effect of the Jog To (JT)
command. This example also assumes that the speed
is 2000 RPM when the command is executed:

/ASSUME PRESENT SPEED IS 2000 RPM
JT 50000 1000

Figure 3.7. Jog To (JT) Command

Position dependent commands must be used with
care. If you specify a position that has already
passed, the BDS5 will generate ERROR 42, :
"MOVE W/O TIME." Also, if the Jog To command
is given so that ACC or DEC prohibits the profile
from reaching final speed before the specified
position, the BDSS will generate ERROR 42,
ERROR 41, "MOVE NEEDS MOTION," is
generated if Jog To or Jog From are commanded
when the velocity is 0. Finally, a position dependent
jog that attempts to change the direction of rotation
will generate an error, All of these errors stop
motion.

3.8.11.1 Registration

The BDSS allows you to combine the position
capture with the Jog To command to implement
index-to-registration. One example of index-to-
registration is a conveyor belt on which items are
placed in random positions. An optical sensor
detects the item upstream of the operation. The
BDSS, controlling the conveyor, continues at full
speed and stops the item where the operation will
take place. The high-speed position capture works at
all velocities and during accelerations. It is accurate
to 25 microseconds (if Connector C2, Pin 19 js used)
and, therefore, will work properly on demanding
index-to-registration applications. If the OPTO-22
Connector (C7) is used with standard industrial
OPTO-22 style modules, the optical module may add
as much as 25 milliseconds of delay, so be careful to
properly specify the optical coupling to the
registration switch.

To implement index-to-registration, you usually jog
the motor at a constant speed, capture the position
(With the registration device connected to the HOME
input), then use the Jog To command to stop the
motor at an endpoint (normally a specified distance
beyond the registration input).

3-29

W PR RN e e

amast by

badee,

a3

P

CHAPTER 3 - PROGRAMMING LANGUAGE

BDS5

3.8.11.2 Registration Example

The following example shows how to program the
BDSS for registration. The desired operation of the
program is as follows:

1. Set CAPDIR (1 for low-to-high transition, 0
for high-to-low transition).

2. Enable capturing.
3. Begin move.
4. Wait for the BDSS to capture.

5. Use the captured position to set the endpoint
of the move..

For example, the following code segment jogs at
2000 RPM and stops 4000 counts after the
registration input transitions from low to high.

CAPDIR 1 ;SET CAPDIR FOR
) ;LOW TO HIGH

CAP ON s/ENABLE CAPTURE

J 2000 ;BEGIN MOVE

TIL CAP EQ 0 ;WAIT FOR
sPOSITION
/CAPTURE

JT PCAP+4000 0

Note that the motor comes to rest 4000 counts after
the position that was captured, not 4000 counts after
the JT command is executed. If 4000 counts was not
enough distance, ERROR 42, "MOVE W/O TIME"
would be generated. This means that the
commanded speed change cannot be accomplished
given DEC, the deceleration limit. Note also that
you must leave an additional 10-15 milliseconds for
the TIL and JT commands to be executed.

The JT command example given here brings the
system to rest. As an alternative, you can change the
speed to any value the motor can run, as long as you
do not attempt to change direction with one JT
command. For example, the following command
replaces the above JT command when you want to
change speed to 100 RPM at 4000 counts past
PCAP.

3-30

JT PCAP+4000 100
JCHANGE SPEED TO
7100 RPM. BEGIN
;/DECEL SO THE
ySPEED IS JUST
JREACHING 100
7RPM WHEN THE
/POSITION IS 4000
JCOUNTS PAST
JREGISTRATION
TMARK

For more information about registration, see
Industrial Drives application note "Cut to Length."

3.8.11.3 Multiple JF/JT Commands
Many applications require that multiple Jog From
(IF) and Jog To (JT) commands be executed
sequentiaily. In most cases, you will have to insert a
delay in your program between JT and JF
commands. For example, if you enter:

558
EN 'ENABLE BDSS
ACC 100000 ;SET ACCEL AND
;DECEL RATES
DEC 100000 ‘
NORM 0 /NORMALIZE TO
sZERO POSITION
J 100 +JOG TO 100 RPM
JT 20000 400 ;ERROR-~-SHOULD
: sDELAY TIL SPEED
JREACHES 100 RPM
;/BEFORE
JEXECUTING JT
JCOMMAND.
JT 30000 0 7ERROR-SHOULD
SDELAY TIL SPEED
JREACHES
/400 RPM BEFORE
yEXECUTING JF
yCOMMAND.
Dis
B

You might think the motor will first jog to 100 RPM,
then to 400 RPM (at 20,000 counts) and finally come
to rest at 30,000 counts. Actually, the motor will jog
to about 40 RPM and continue at that speed until it
comes to rest at 30,000 counts. This is because the
JF/IT commands cause the motion profile to hold the

r
s

% J

s

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

velocity command constant, even if an acceleration
is commanded from the previous motion command.
The solution is to insert delays to force the program
to wait until the motor reaches the fina| speed from
the previous motion command. For example, the
above program can be modified as follows:

558

EN JENABLE BDS5

ACC 100000 ;SET ACCEL AND
;DECEL RATES

DEC 100000 '

NORM 0 /NORMALZE TO
;ZERQ POSITION

J 100 +JOG TO 100 RPM

TIL VCMD EQ 100 ;WAIT TIL SPEED
yREACHES 100 RPM

JT 20000 400 SEXECUTE JT
sCOMMAND

TIL VCMD EQ 400 ;WAIT TIL SPEED
;REACHES 400 RPM

JT 30000 0 JEXECUTE JT
;COMMAND

Dis

B8

Although delays with the TIL command work,
delays usually should be inserted with the WAIT w)
command. The WAIT (W) command takes less
space and works better with multi-tasking, a subject
discussed in Chapter 4. For our example, the first
TIL command can be replaced with "W 2" and the
second can be replaced with "W 3."

3.9.11.4 Changing Profiles During
Motion

Position dependent jogs can also be used to change
the speed or endpoints of an MA, MI, MCT, or MCA
command that is already in progress. For cxample,
Suppose you want to change the speed of a profile
depending on an input, you could write the following
program to reduce the speed when I1 is 1.

X1 = 10000 X1 STORES THE
JENDPOINT

MA X1 5000 ;BEGIN AT 5000
JRPM

TIL SEG EQ 0 GOSUB 25
;258 WATCHES I1
;TO CHANGE
SSPEED

B

258

? 1 EQ 0 RET ;CHANGE ONLY IF
A1 =1

J 1000 ;REDUCE SPEED
;TO 1000 RPM

TIL SEG EQ 2 ;sWAIT UNTIL SPEED
;1S 1000 RPM

JT X1 0 JUSEJTTOGETTO
;ORIGINAL
JENDPOINT AT NEW
;SPEED

TIL SEG EQ 0 ;WAIT FOR MOTION
;TO STOP

8 ;DONE

Youmustbeweﬁﬂnottobeginthcmoﬁontoolate
in the profile. For example, suppose 1 became 1
after the profile was well into deceleration, and the
speed was, say 200 RPM. In this case, the JT
command would generate an error because by the
time it was executed, the motor position would be
past X1, the original endpoint. This is because the
unit would accelerate up to 1000 RPM before the JT
command was executed. In general, you must limit
the time during which you are looking for the speed
change. After this point, the profile must either
continue along the original profile or the endpoint
must be extended. For example, the program section -
beginning at label 25 could be re-written so that it
watched a position trip point, X1-2000:

258

? PFB GT X1-2000 RET ;D0 NOT
;REDUCE
iSPEED IF
; PFB >
/SETPOINT

SREST OF 255 PROGRAM THE SAME

7

What value to use for the setpoint varies from one
application to another. These values must be set by

3-31

-t

CHAPTER 3 - PROGRAMMING L ANGUAGE

BDS5

experience. On many applications, the input will not
request a speed reduction near an endpoint, so that
this may not be a problem.

3.8.12 External Inputs

External inputs are normally from a "master” motor.
As a standard, these inputs are in digital encoder
format. Examples of "master” motors include the
encoder-like output from another BDSS, output from
an actual encoder, or a customer synthesized encoder
signal. The external input can control motion in the
two BDS5 Master/Slave modes: electronic gearbox
and profile regulation. The BDSS, acting as the
slave, accepts commands from these external
sources. The external input can also come from a
feedback encoder which is mounted to the motor;
this encoder is occasionally used to improve the
accuracy of the BDSS.

External inputs are connected to Channel A and
Channel B inputs of the Encoder Equivalent
Connector.

Your program has direct access to the external input
through the variables VEXT and PEXT. The
frequency of the external input is provided in VEXT.
VEXT is in external velocity units (VXNUM and
VXDEN). PEXT is the accumulation of counts from
the external input. PEXT can be set to any value
from the terminal or from your program at any time;
this is equivalent to normalizing the external
position. PEXT is in external position units
(PXNUM and PXDEN). If the external input comes
from a motor, VEXT and PEXT represent the
"master” motor's velocity and position, although you
must properly calculate the external velocity and
position units. In this way, PEXT, the master
position, is similar to PFB, the slave position.
Likewise, VEXT is similar to VFB. If the "master"
motor has the same resolution as the slave, then set
PXNUM, PXDEN, VXNUM, and VXDEN equal to
PNUM, PDEN, VNUM, and VDEN, respectively.
Otherwise, see Chapter 4 for more information on
calculating the units.

VXAVG is the average of VEXT over the previous
16 milliseconds. Occasionally, the normal sample-
to-sample variation of VEXT is undesirable. In
these cases, use VXAVG in place of VEXT.

3.32

3.8.12.1 Analog Input

The standard BDSS is configured with digital
external inputs. As an option, the BDS5 provides an
analog external input. Note, however, that you
cannot have both types of inputs at the same time.
For systems configured with analog inputs, the
BDSS5 converts the analog input to a pulse train,
where 10 volts of input is equivalent to 2 MHz. If
the analog input is a velocity command, then use
clectronic gearbox Master/Slave mode to make the
BDSS a velocity drive. See Appendix G for more
information. If the analog input is going to be used
for "fecdrate override," use profile regulation.

The analog external input is connected to the analog
input of the Customer I/O Connector.

3.8.13 Electronic Gearbox

Electronic gearbox is one of two BDSS Mastar/Slave
modes. Refer to Figure 3.8 for a diagram of the two
modes. Electronic gearbox is used to link two
motors together so that the velocity of one is
proportional to the velocity of the other. The
constant of proportionality can be negative, allowing
the velocities to be in opposite directions.

3.8.13.1 Gear Ratio, GEARI & GEARO
In electronic gearbox, the command signal comes
from the external input. The pulses are multiplied
by a gear ratio to form the position or velocity
command. The ratio is defined by two variables:
input gear teeth (GEARI) and output gear testh
(GEARO). GEARI must be between +32767;
GEARO must be between 1 and 32767, If the sign
of GEARI is changed, then the direction of rotation
will be reversed.

If the master is a motor or encoder, calculate GEAR]
and GEARO with:

RESOLUTION LAV
RESOLUTION JASTER

GEARI REV . e

GEARO REV

where:

REV is an arbitrary number of revolutions

of the master motor,

o 4

e vt s 1w 4

H
g

“Mwe’j

BDSS

REV, \vg is the corresponding number of
revolutions of the slave motor,

RESOLUTION; ,r is the resolution of the

slave motor in counts/revolution, and

RESOLUTION,,srr is the resolution of the

master motor in counts/revolution.

If the master is a pulse train that does correspond to
a motor or eacoder, calculate GEARI and GEARO

with:

GEART _ REVy,., x RESOLUTION SLAVE

GEARO COUNTS, oy

where:

COUNTS,srzx is an arbitrary number of counts
of the master signal and

REVg,y: and RESOLUTION, . reas
before.

To enable the Gearbox mode, type:

GEAR ON

If the ratio is not an integer, the BDS5 does not
"drop pulses.” The BDSS keeps track of partial
pulses to eliminate dropping pulses over time. If the
number of pulses coming into the BDSS is at a rate
that is too large, then ERROR 97, "GEAR
OVERFLOW," will be generated. This error can
also be caused by the ratio of GEARO to GEARI
being too large. Note that large feed-forward XF >
4000) is normally undesirable in electronic gearbox
systems because it causes overshoot.

3.8.13.2 Gearbox Example 1
Two BDSS5's are connected in a master/slave system.
Both have 12-bit R/D converters so that one

revolution is equivalent to 4096 counts. Suppose we

want the slave motor to rotate at one third the speed
of the master motor. What are the values of GEARI
and GEARO?

CHAPTER 3 - PROGRAMMING LANGUAGE

GEARI _ REVg,..
GEARO REV,, .,

S (1u(1) - &
GEARO \3 1 3

You can select any integer values for GEARI and
GEARO that have the ratio 1/3.

. RESOLUTION, .,
RESOLUTION ,,__

3.8.13.3 Gearbox Example 2

Suppose the master signal in Example 1 came from a
500-line encoder. With quadrature eacoding, 2 500-
line encoder will generate 2000 counts per
revolution. If you still wanted 1:3 gearing, then:

GEARI _ REVy,, RESOLUTION,,,
GEARO = REV,,r RESOLUTION,,__

GEARI -(l)x(‘“’%) 4096
GEARO \3/ \2000) ~ 6000

So, GEARI would be 4096 and GEARO would be
6000.

3.8.13.4 Profiles and Gearbox
Gearboxing can be done in conjunction with
incremental moves and jogs. MI and Macro moves
based on MCT are summed with the gearbox
command to form the profile. This can be used for
"phase adjustment,” a common function used with
electronic gearbox. Phase adjustment means that the
slave will be locked to the master through the
electronic gearbox, but occasionally the slave BDS5
adds a short profile on top of the gearbox command.
For example, you may want to increase the siave
position (phase) by 90° while remaining in gear. In
this case, enter the following commands:

3-33

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

3-34

- Analog Input —)Lc

BDS5 Master/Slaving
Slave

Mator [

-

Electronic Gearbox

Resotver
Feedback

Slave BDSS:

Digital Input
or

Profile Regulaﬂon

' ."Slave BDS5
' Posttion EXDEN , PEXT
Digital Inptt Conn, C1 xa PXNUM |
. or '
Analog Input Conn. C2 AD Velocity YXDEN VEXT
Opoon ¢ > vun [
Card
1
REGKHZ
v
Mction _____). Profile
Command Generation)PCMD

Figure 3.8. BDSS Master/Slaving

W MM AN IR 3T 1 e

Nt

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

GEAR ON ;ENABLE ELECTRONIC
;GEARBOX

: ..NORMALLY, SOME TIME WOULD
:PASS BETWEEN THESE COMMANDS...

Mi 1028 10 ;PHASE ADJUST 50
;DEGREES AT 10 RPM.
;SYSTEM REMAINS IN
;GEARBOX THROUGH THE
;PHASE ADJUSTMENT.

You cannot use MA or MCA commands when
GEAR is on. Also, you cannot use position-
dependent jogs (T or JF) when GEAR is on.

3.8.13.5 Velocity Offset, VOFF
VOFF, velocity offset, is added to the Velocity
command when the gearbox is enabled. VOFF is in

- velocity units. It is normally used with the analog

input to correct voltage offset in the optional analog
velocity input. VOFF can be changed at any time.
Note that VOFF is set to zero when GEAR is
enabled. This is done because if VOFF is large (say,
2000 RPM), enabling the gearbox would
immediately command motion.

() VOFF is set to zero when
‘Yk GEAR Is turned on.

NOTE

3.8.13.6 Gearbox, ACC/DEC, and
Jogs

When the BDSS is run as a velocity loop (PL off),
acceleration and deceleration rates can be limited by
the variables ACC and DEC. This allows you to
limit the acceleration from external velocity
commands that are otherwise unlimited. If you want
the acceleration and deceieration to be limited by
ACC and DEC, type:

RAMP ON ;LIMIT ACC AND
yDEC WHEN PL IS OFF

3.8.14 Profile Regulation

This section describes profile regulation, one of the
BDSS5 Master/Slave modes. Profile regulation allows
you to synchronize the rate of profile execution
according to the external input. This modifies the
velocity and acceleration of move commands without
affecting the final position of the move. The rate of
the move is dependent on the frequency of an
external clock, which is connected to the external
input, in addition to the normal limits of the move
(ACC, DEC, and the velocity are set in the move
command itself). The external input may be a
master motor to which all moves must be
synchronized (such as a conveyor belt motor), or it
may be a signal that you generate electronically. As
an option, an analog signal can be fed directly to the
BDSS, where it is converted to a pulse train and can
be used as the external input. Profile regulation
works with MA and MI, as well as Macro moves.

All profile regulation is based on an accumulation of
counts from the external input during the move. If
the external frequency changes during a move, the
velocity of that move will be proportional to the
changing clock frequency. In fact, if the external
input frequency goes to zero, then motion will stop.
Note that if the external input changes rapidly, the
profile is not limited to ACC or DEC. For example,
if the external frequency stopped suddenly, the BDSS
would command motion to stop just as suddenly.
Note also that large feed-forward (KF > 4000) is
normally undesirable during reguiation because it
causes overshoot.

3.8.14.1 REG & REGKHZ

REG enables the Profile Regulate mode. If REG is
on, then profile regulation is ¢nabled. REG and
GEAR cannot be on at the same time.

To use profile regulation, you must determine:

1. The maximum frequency of the external input.
Set REGKHZ to this value.

2. The desired speed of the move when the
external input frequency is REGKHZ. Use
this value as the commanded velocity of the
profile.

33

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

The maximum frequency of the external input is
stored in the variabie REGKHZ in kHz, The profile
will execute normally (that is, at the specified
velocity and acceleration) when the external input
frequency is equal to REGKHZ. If the input
frequency is less than REGKHZ, then the profile will
move the specified distance, but the acceleration and
velocity will be less than, and in proportion to, the
input frequency. The move will never go faster than
specified in the original move command, even if the
input frequency goes above REGKHZ. However, the
input frequency should always be less than
REGKHZ. REGKHZ is only resolved to 1 kHz (for
example, 499.5 kHz is converted to 500 kHz).

REGKHZ is somewhat arbitrary; it must be greater
than the maximum frequency of the external input
and less than 2 MHz. Beyond those limits you can
set it to any frequency that is convenient and adjust
the commanded motion by changing the speed of the
profile.

.

NOTE

The frequency of the external
Input shouid always be less
than REGKHZ.

3.8.14.2 Profile Reguiation and

Counting Backwards

In general, if you use profile regulation, the external
input should count forward (that is, VEXT should be
positive when VXNUM and VXDEN are positive).
The profile regulation firmware ailows the input to
count backwards for up to 30000 counts. This is
useful for applications such as conveyor beits that
generally go forward, but can go backward for short
distances. If the external input counts backwards,
the Profile Regulation mode works as follows:

* The profile stops (that is, no motion is
commanded) during backward counting,

. The backward counting must be limited to
30000 counts. Otherwise, ERROR 64 is
generated.

. The profile does not continue as soon as
forward counting begins. The forward counts
must completely offset the backward counts
before the profile will continue.

3-36

. At the point where forward counts offset
backward counts, the profile continues as if the
input had never gone backwards.

Profile Regulation works with standard moves (MA,
MI, and MRD), Macro moves, and all jogs (J, JT,

and JF).

3.8.14.3 Regulation Example

A machine has an axis that operates on parts passing
by on a conveyor belt. The profiles executed by the
motor must be at a rate proportional to the.conveyor
belt speed. The beit moves at about 200
inches/minute. An encoder has been placed on the
conveyor, and the maximum belt speed of 275
inches/minute is equivalent to 780 kHz on the
encoder. If the belt is at maximum speed, the profile
of the motor is to rotate one revolution at a peak
speed of 400 RPM.

Solution:

Connect the conveyor belt motor encoder to the input
channel of the BDSS, as shown in the Installation
and Setup Manual, "Wiring C1." The following
program should be executed:

REG ON JENABLE PROFILE
JREGULATION
;SET THE MAX
JEXTERNAL
JFREQUENCY TO
;780

sMOVE ONE
JREVOLUTION AT

;400 RPM

REGKHZ=780

M| 4096 400

In the case above, the MI move will generate a one-
revolution move at a speed proportional to the
external input frequency with 400 RPM the
maximum rate when the external input frequency is
780 kHz.

Note that the belt speed virtually never reaches 275
inches/minute. However, REGKHZ must be higher
than the worst case maximum belt speed. For
example, the above program can be modified to
allow an even larger belt speed.

i
r

S

s’

s

Nega”

% ;
g™

BDSS

CHAPTER 3 - PROGRAMMING LANGUAGE

REG ON
REGKHZ=1560

yENABLE PROFILE
;REGULATION
sSET THE MAX
JEXTERNAL
;FREQUENCY

;70 1.56 MHZ
;MOVE ONE
JREVOLUTION AT
,800 RPM

M| 4096 800

Notice that REGKHZ was doubled. However, since
the speed of the move was also doubled to 800 RPM,
the commanded move is identical.

3.8.15 Encoder Feedback

Some special applications demand more accuracy
than can be provided with a resolver based system.
For these cases, you can mount an encoder to the
motor and feed the encoder's output into the external
input. The requirements for such a system are:

1. The resolution of the encoder must match the
resolution of the resolver on your BDSS
system. Refer to the Instailation and Setup
Manual and the mode] number to determine
the resolution of your system. Select the
encoder as follows:

Table 3.9. Encoder Resolution

R/D Resolution Encoder Lines/Revolution
12-bit 1024
14-bit 4096
16-bit 16384

2. The encoder must be mounted directly to the
motor. It cannot be connected through
gearboxes, lead screws, or any other
mechanical device.

3. You must turn the switch EXTLOOP on. This
switch configures the BDSS to close the
position loop with feedback from the external
input rather than from the resoiver.

When EXTLOORP is on, PE, the position error, is the
difference of PCMD and PEXT, rather than the
difference of PCMD and PFB. The ZPE command

zera's the difference of PCMD and PEXT. Also, the
NORM command normalizes both PEXT and PFB
simuitaneously.

3.8.16 CONTINUE

The CONTINUE command is provided as a
controlled way to turn off master/slave position
control. The CONTINUE command tells the BDS5
to keep the motor going at its present speed while
simultaneously turning off REG and GEAR. One
use of this command is to cause a controlled
deceleration to 200 RPM, for example, when the
electronic gearbox is enabled. If you just typed:

J 200

it would have the effect of adding 200 RPM to the
command from the gearbox. However, if you typed:

CONTINUE
J 200

the CONTINUE would disable the electronic
gearbox while commanding the motor to continue at
whatever speed it was going when the command was
executed. Then theJ 200 command would bring
about a controlled deceleration to 200 RPM.

CONTINUE normally looks at the velocity command
for 1 millisecond. If the velocity command is
generated from the electronic gearbox or a regulated
profile, the velocity can vary considerable. The
CONTH*IUEcommandanowsyoutospecifyatimc
period, up to 1 second, over which velocity command
is averaged. For example, if you entered:

CONTINUE 50

the CONTINUE command would change the
velocity command to the average velocity command
over the previous 50 milliseconds. CONTINUE
always sets SEG to 1.

The BDSS provides several control loops. These

loops, or control aigorithms, allow you to select the
best control method for your applications.

3-37

CHAPTER 3 - PROGRAMMING LANGUAGE

BDSS

3.9 CONTROL LOOPS

There are four sections of control loops that are of
interest: input, output, feedback, and tuning
variables. The input is compared to the feedback to
generate an error. The error signal is modified using
the tuning variables to generate the output. The
tuning variables can be modified to produce higher
levels of performance; unfortunately, higher
performance brings with it greater noise
susceptibility and reduced stability. The system
designer must optimize noise and performance for
the application.

BDSS control loops have one or two tuning
variables. All BDSS loops follow the convention
that larger constants provide higher gain. Each
BDSS loop is described below and shown on the
drawing at the end of this chapter.

3.9.1 Position Loop

The Position Loop input is the variable PCMD, the
Position command. The feedback is PFB, the
position feedback. The output is VCMD, Velocity
command, and its two tuning variables are XP, the
position loop gain, and KF, the position loop feed-
forward gain.

The position loop calculates the position error (PE)
as the difference of PCMD and PFB. As a secondary
command source, PCMD is differentiated
(d/dt)PCMD. The position loop then performs the
following calculations:

VCMD=KP_PE+KF_(d/dt)PCMD.

The position loop is optional. If the switch PL is on,
then the position loop is enabled; if it is off, then the
position loop is bypassed. PL is turned on at power-
up.

The feed-forward gain reduces position error at high
speed. Without feed-forward, the velocity command
is generated only from position crror; a large
position error is required to command a high speed.
If XF is large enough, then a high velocity command
can be generated with little or no position error. The
BDSS scales KF so that unity feed-forward occurs
when KF equals 16384, In other words, if KF is
16384, no position error is required to generate the

3-38

velocity command in steady-state running
conditions. KF should never be larger than 16384, {
In addition, larger KF makes the system more ’
responsive to commands.

Unfortunately, large values of KF cause overshoot.
KP must be reduced to reduce overshoot. If you need
to minimize position error when the motor is
turning, you will need to optimize KF and KP.
Typically, KF ranges from 2000 to 10000.

TQ should be off when PL is turned on. The system
becomes unstable when PL and TQ are both on. If
you do not turn TQ off before turning PL on, the

BDSS will force TQ off.
When PL Is turned on, TQ is
turned off automaticaily.

NOTE

3.9.2 Velocity Loop

The velocity loop takes its input from the position
loop if PL is on. If PL is off, motion commands
directly control the velocity command (VCMD).
The feedback is VFB, velocity feedback, and the
difference of these two signals is VE, velocity error.
Velocity error can be used in two control loops:
proportional and integrating.

3.9.2.1 Proportional Velocity Loop

If a proportional velocity loop is selected, then the
velocity error is multiplied by KPROP, the
proportional constant, to gencrate ICMD, the current
command. Proportional velocity loop is selected
when the PROP switch is on. PROP is turned off on

power-up.

Proportional velocity loops are much easier to
stabilize than integrating loops, so they are often
used during machine setup. However, they also
allow steady-state velocity error and therefore, they
are generally replaced with integrating loops when
the machine is fully operational.

3.9.2.2 Integrating Velocity Loop
If an integrating velocity loop is selected, then the
velocity error is integrated and muitiplied by KVI,

S

aa LTI TR

s
% &
gl

% 1
S

gt

BDSS5

CHAPTER 3 - PROGRAMMING LANGUAGE

the velocity integration constant. Velocity feedback
is subtracted from this signal, then the signal is
multiplied by KV, the velocity loop gain, to form
ICMD. This velocity loop is selected when PROP is
off,

3.8.3 Torque Command

In a few applications, the BDSS is given a "torque”
command. Actually, this is a current command, but
at lower speeds, motor torque is approximately
proportional to current. In this case, VCMD is
multiplied by KPROP to form ICMD. Note that this
differs from the proportional velocity loop only in
that VFB is not subtracted from VCMD. The switch
TQ must be on to select the torque mode and off for
all other modes. The position loop should be off (PL
off) when the BDSS is running in Torque command
mode. The BDSS will turn PL off when TQis
turned on.

A

NOTE

When TQ Is turned on, PL is
forced off.

3.9.4 Power-Up Control Loops

The BDSS has, at power-up, the following settings:
. Position loop enabled (PL on),

. No feed-forward (KF=0)

* Integrating Velocity Loop (PROP off, TQ off)
These settings meet the requirements of a large

number of applications. Figure 3.8 shows each of
the five BDSS controller modes.

3-39

CHAPTER 3 - PROGRAMMING L ANGUAGE

BDS5

3-40

—

(PL=1, TG=0, PROP=0]

Fl
Hi?

& Mk
SEARING & t
+ 1N+ }
PROFILE Kp Sat =1 Kyp Ky
gaenuTiny |PO0 S P S - 1t
I
PFR VEB_ POSITION LOP v/ INTEGRATION
iy (PL=1. TA=0, PAOP=I]
rAuk:
GEARING & :
¢ 1N 4
PROFILE Kp K prop
cEERATION | PO s PE e 09
oD
PFB VB POSITION LOCP w/a INTESRATION
d [PL=0, T-0, PROP=0)]
i
=i
+
dt Fremd -,
Gggi%m PC0 00 \AE] 100
l
VEB VELOCITY LOOP v/ INTEGRATION
T [PL=0, T0=0, PROP=1]
dt
BEARING & I
+
PROFILE | K prp
GENERATION PCHD ‘ 0 NAVE I
VFB_ VELOCITY LOOP ¥/ INTESRATION
d [PL=0, TQ=1, PROP=1]
- &
CEARING & _]—
PROFILE K prop
cevERATION | OO i 100

OPEN LOOP - TORQUE (CURRENT)

Figure 3.9. BDS5 Control Modes

+
Kyr "Q‘ Ky

% /
i

BDSS

CHAPTER 4 - USER PROGRAMS

CHAPTER 4

USER PROGRAMS

4.1 INTRODUCTION

The information in this chapter will enable you to
understand the capabilities of the system. You will
also explore important consideraions that must be -
addressed before you implement your own
application. Examples of programming techniques
will aid you to develop your own applications.

4.2 PROGRAMMING TECHNIQUES

User programs are combinations of BDS5 commands
which are stored in the BDSS5 memory. These
programs are stored in non-volatile RAM; they are
not lost when the BDSS is powered down. User
programs are composed mostly of the commands that
have been described in earlier chapters. In addition,
there are commands necessary for controlling the
way the program executes; these commands are
covered in this chapter. The first section describes
the BDSS Editor, which allows you to enter and
modify programs from the terminal. If you have not
already done so, ing.
This manual is written to be read sequentially. Do
not attempt to save time by skipping ahead to this
chapter.

READ THIS ENTIRE SECTION CAREFULLY.

This section discusses programming practices. The
BDSS has a flexible language. You must follow

proper programming principles to insure that the
flexibility does not lead to overly-complex programs.
If you follow good programming practices you will:

. be able to modify programs when the
application changes;

. have fewer programming errors;

. have an easier time fixing the programming
errors that do occur; and

. be able to get help with errors you cannot fix.

People who are new to programming often disregard
good programming practices because they have not
experienced the problems that result from poor
programming practices. Save yourself the misery of
having to re-write your entire program. Follow these
steps:

1. DONOTPROGRAM SAFETY
FUNCTIONS.

Always hardwire personal
safety functions. Never

program these functions.
WARNING

Always hardwire safety functions. This
includes EMERGENCY STOP or ESTOP.
You should not depend on your program for

4-1

P P

oy s

LUHAPIER 4 - USER PROGRAMS

BDSS5

safety functions because of three potential
problems: 1) You can easily make
programming errors (software problem); 2)
A function on the BDSS may not work in
exactly the way you expect it to in every
condition (firmware problem); and NA
critical component in your system may fail
and prevent the function from working
(hardware problem). Remember, safety
functions are rarely exercised so that if one of
these problems does occur, it can go
undetected indefinitely. If personal safety is
involved, always hardwire the function,

2. USE CAUTION WHEN PROGRAMMING
EQUIPMENT PROTECTION FUNCTIONS.

Use caution when
programming equipment-
protection functions.
CAUTION Programming errors can
damage your equipment.

Sometimes you can hardwire equipment
protection functions, but other times this is
impractical and you must program the
functions. Ifthisisthceasc,bcvcrycarcﬁﬂ.
Remember, if your program has an error, it
can result in damage to your equipment. For
example, suppose you want to wire your motor
thermostat so that when a fault occurs, the
present machine cycle continues unti]
complete. In this case, you must program the
function (hardwiring the thermostat would
result in motion stopping the moment a
thermostat fault is encountered). Carefully
test these functions, :

3. WRITE A SIMPLE SPECIFICATION FOR
YOUR APPLICATION.

Write an outline of all the functions your
application will require before you start
programming. This will serve as a
specification. Everyone who is involved with
your system (customers, supervisors, co-
workers, operators) should agree on the
specification. While last-minute requests for
program changes will still occur, this is a
Teasonable step towards reducing the
incidence of such requests.

4-2

WRITE A FLOWCHART OF YOUR
PROGRAM. (o

People who are new to programming often
have a natural distaste for writing flowcharts.
Many view flowcharts as something between a
crutch and unnecessary work. Most
experienced programmers have a different
view,
fowel is that 1 irtuall ired if
Always
write flowcharts for programs that are longer
than 20 to 30 lines.

COMMENT YOUR PROGRAM.

Always comment your programs. Comments
help explain your program to other people.
Keep in mind that others may need to modify
your program in the future. Comments also
heip you remember why you chose certain
ways to do things,

AVOID SPAGHETTI CODE.

A program with too much branching is often

cailed spaghetti code because of the look of o
the flowcharts. Avoid a lot of branching, ™y
especially branching up (that is, towards the 7
top of your program); logic in programs that

branch down is more intuitive and thus, less

prone to errors. If you do branch up, branch

to the top of a major section. In most

programs there should only be one or two

places that you branch up to. Feel free to use

small loops (2 or 3 lines) which, of course,

repeatedly branch to the top of the loop.

Avoid branching between sections,

AVOID USER SV;'ITCHES THAT MODIFY
BLOCKS OF CODE.

Switches that modify functions can be difficult
to understand. This is commonly done when
programmers attempt to use one block of code
for two similar functions. If possible, write
two different blocks of code rather than trying
to use one block for two functions.

© oy Amea b s«

% e
S

BDSs5

CHAPTER 4 - USER PROGRAMS

4.2.1 Example Appllcation

Suppose you are working on a project that is defined
by someone besides yourseif, Itmaybe g Co-worker,
a supervisor, a customer, or an operator, For this
example, we will use 3 customer. Suppose you have
this conversation:

Customer: "My machine feeds plastic from a rof
onto a conveyor then cyts it into sheets,
The length of the sheet varies, There is
a registration mark op each plastic
sheet which is detected while the
plastic is moving. After this mark is
detected, the motor must move the
plastic a variabje distance and stop.
There is a Stop input that shouid stop
and disable the BDS5 after it completes

You: "Are there other parameters that shoujd
be variable such as speed, acceleration,
and deceleration?"

Customer: "Now that you mention it, al] thoge

Parameters should be variable, [ajgo

need an output at the end of the move

10 start the saw blade rotating,"

You: "How often do these variables change?"

Customer; "About once or twice a year,”
You: "Do you mind typing them in from a
keyboard?"

Customer- "No. That would be fine_ "

You: "What controjs the start of the move?"

Customer: "My PLC activates an input, Cap
ESTOP be programmed so that jt can
be overridden Wwhen the cycle i almost

complete?"

You: "No. Since ESTOP Is a safety function,
it is always hardwired to remove
power.”

"Okay. About how long do yoy think ¢
will take?"

Customer-

You:; "Il be in touch.”

4.2.2 Application Speclﬂcaﬂon

1. Allowa variable cut length, acceleration,
deceleration, ang speed. Use user variables X1-
X4 as follows:

X1 Acceleration
X2 Deceleration
X3 Speed

X4 Cut Lengrh (added to registration mark)
2. Tumonan output at the end of the move. This
output will be connected to start the saw, Use
3. Allow contacts that stop the Process after the
Present cycle is complete. Use input I1,

4. Wait for g start signa] to begin each cycle. Use
input I2,

4.2.3 Application Flowchart

condition is trye apg the other if it is false, "Sample
Flowchart" is 4 flowchart for this application,

4-3

CHAPTER 4 - USER PROGRAMS

BDSS

V
URN OFF SAW QUTPUT.
ENABLE BDSS.
SET .REGISTRATION
DIRECTION TO
POSITIVE

NO

S STOP INPUT

YES

DISABLE THE BOSS.

:

PRINT

*STOP HAS BEEN
IssueD”

Y

NORMALIZE TO ZERO.

| SET ACC AND DEC.

TURN ON
REGISTRATION.

:

YAIT FOR START

.J7

START MOVE.

TURN OFF SAW QUTPUT

:

¥AIT FOR
RESISTRATION MARK.

:

SET ENO POSITION TO
REGISTRATION
POSITION + OFFSET.

:

WAIT FOR MOTION TO
STOP.
TURN ON SAW OUTPUT.

1

Figure 4.1 Sampie Flowchart

4-4

‘\‘x\}

#
p—

Mt

Mg

i

BDSS5

CHAPTER 4 - USER PROGRAMS

4.2.4 Commented Program

The following program will work for this
application:

s THIS PROGRAM DOES NOT HAVE A

THE BEGINNING

s SECTION WHICH HAS A LOTOF

s INFORMATION). US

7 APPENDIX E AS AN EXAMPLE OF A
R

s HEADER (THAT IS,

; PROGRAM HEADE,

15
O1 OFF
CAPDIR = 1

EN

53

IF 11 EQ 1
GOTO 10
ELSE
NORM ¢
ACC = X1
DEC = x2
CAP ON
TIL 12 EQ 1
01 OFF

J X3
TIL CAP EQ 0

JT PCAP+X4 0

TIL SEG EQ o
o1 on)
GoTO 5
ENDIF

108

K
P "STOP HAS BEEN
B

& THE PROGRAM IN

sSTART OF
sPROGRAM
;TURN OFF THE
'SAW outPUT
JSET
;JREGISTRATION
sDIR. POSITIVE
;ENABLE BDSs

/BEGIN LOooOP

/1S STOP INPUT ON?
/GOTO TO *“sToP
/ROUTINE"

sNORMALIZE TO 0
JSETACC

ySET DEC

;TURN ON CAPTURE
WAIT FOR START
JINPUT

;TURN OFF sAw
;OUTPUT

sSTART MOVE
;WAIT FOR
;REGISTRATION
sSET END POSITION
;TO CAPTURED
;POSITION PLUS AN
;JOFFSET (X3)
;WAIT FOR MOTION
;TO STOP

sTURN ON SAW
;ouUTPUT

;GO TO TOP OF
;LOoP

/START OF "sTopP
;ROUTINE"
/DISABLE BDSs
ISSUED*

;STOP EXECUTION

4-5

CHAPTER 4 - USER PROGRAMS

BDSS

4.2.5 Customer Service

If you need help with software or understanding
BDSS functions, you can contact the Regional
Industrial Drives' Sales Office. Ask for the Sales
Applications Engineer. Please observe the following
procedure;

1. Contact Industrial Drives for each new
problem. Occasionally, an applications sales
representative may refer you to the
Engineering Department if necessary.
However, if you call later with a new problem,
please ask for a applications sales
representative,

2. Beprepared to provide the following items:
2. A written spec of the system;
b. A flowchart; and
¢. A hard copy of the program.

3. Be prepared to take the following actions,
should the application sales representative

determine that these actions are necessary:

a. Strip out sections of your program to heip
locate a problem.

b. Rewrite sections of your program that do
not conform to the programming practices
described in this chapter.

¢. Video tape your machine to help
demonstrate the problem.

If you need help with your program, please bear in
mind that Industrial Drives is committed to helping
you. BDSS software support is provided by:

1. Helping you organize your program.

2. Explaining proper programming practices.

3. Discussing BDSS5 functions.

Contact the local Industrial Drives sales application

representative. All Regional Sales Offices are listed
in Appendix I of this manual.

4.3 EDITING

Writing or modifying a program is called editing,
There are two ways you can edit a BDS5 program.
The BDSS has a simple editor which is built in, or
resident. As an alternative, you can edit your
program on a computer and transmit it to the BDSS.
Motion Link is a software package designed
specifically for this purpose. Motion Link runs on
IBM-PC's and compatibles, and it handles the
communications between the BDSS and the
computer. Motion Link also features a full-screen
editor.

Editing with Motion Link is preferred because it has
more features than the resident editor, and it allows
you to save your program on disk. Having the
program on disk is a significant advantage since it is
a simple matter to transmit, or download, the
program, should the BDSS be replaced or multiple
BDSS's be programmed.

4.3.1 Motlon Link Editor

Chapter 3 provided an in-depth procedure for
installing and using Motion Link. This section
provides you with enough information to get started

in most cases. Enter a simple program with the
following procedure:

1. Establish communication with the BDSS as
discussed in Chapter 2.

2. Press the right arrow key to display the menu
bar. Select PROGRAM.

3. Seclect NEW. -

4. Enter this program:

108 _
P "HELLO WORLD"
B

S. Press the escape key to exit the Motion Link
Editor.

6. Follow the instructions on your computer
screen. Motion Link will ask you if you
want to save your program. Enter "Y" and

R

WA T Aep e s v o

“%«W’

S

BDSS5

CHAPTER 4 - USER PROGRAMS

give the name "TEST" as the name of your
program.

7. Motion Link will now ask you if you want
to transmit the program to the BDSS, Enter
HY'H

8. After the transmission is complete, you
should receive the interactive prompt (—>).

Type:

ARUN 10

Your program should print:

HELLO WORLD

-2

This should provide you with enough information to
enter the examples from this chapter. Read Chapter
3 for a complete description of Motion Link.

4.3.2 BDS5 Resident Editor

If you are not using the BDSS Editor, skip ahead to
the next section, "Building a Program.” The BDSS
resident editor allows you 1o enter small programs
and make changes without Motion Link. Note that
you can use this editor from Motion Link just as you
would use it from a terminal,

To enter the BDSS Editor, type:

ED

When you are in the Editor, the BDSS will respond
with the editor prompt:

Ea]

To exit the Editor, press the escape key.

4.3.2.1 Editor Print (P)

The Print (P) command prints a program line (or
lines) then goes to that line, Each line in the
program memory has a number, Many editor
instructions, such as Print, expect you to specify the
line number (or numbers) that applies to the

instruction. Type in the following example from the
BDSS Editor:

P BEG END

The BDSS will print the entire program and go to
the end of the program. When you specify a range,
the command works for all the lines in the range.
You can specify one line. For example, type:

P 1

and the BDSS will print and go to line 1. If you
want to print the current line, then do not specify a
line. For example:

P

prints the current line, If you attempt to print a line
that is not in the Program, such as, line 100 of a 10-
line program, the Editor will issue an error like:

[BAD ENTRY]

4.3.2.2 Next Line

If you enter an empty line, then the BDSS goes down
one line in the program and prints that line. The
empty line is entered by pressing only the enter key.
This makes it ¢asy to move down through the
program.

4.3.2.3 Password (PASS) -

The BDSS Editor has password protection. The
Password allows you to prevent the user program
from being changed. If the password is set, the
program cannot be changed, but jt can still be

long. The defauit setting of the password is nuj] (i.e.
empty), which means there is 10 password
protection. From the Editor, type:

PASS

and the BDS5 will ask you for the new password.
If you do not want password protection, enter an

empty line. Note that the NEW command, discussed
later, also clears the password.

4-7

CHAPTER 4 - USER PROGRAMS

BDSS5

4.3.2.4 Insert ()

Entering the Insert (I) command causes the Editor to
enter the Insert mode. When you are in the Insert
mode, everything you type is put directly into the
program memory. You exit the Insert mode by
pressing the escape key or entering an empty line.
For example, type in a line as follows. Type:

P BEG ;GO TO THE BEGINNING OF

THE PROGRAM
/ ;ENTER THE INSERT MODE

and the BDSS will respond with:

=

indicating that you are in the Insert mode. Now
type:

JTEST LINE FOR LEARNING ABOUT THE
;EDITOR

Press the escape key to exit the insert mode. Type:

P1

and the BDSS shouid respond with:

1 ;TEST LINE FOR LEARNING ABOUT
THE EDITOR

You can specify the line you want to insert directly.
For example:

15

enters the Insert mode. The next line you type is
entered directly into the program as the new line 5.
Subsequent lines, 6, 7, and so on, follow line 5.

4.3.2.5 Find (F)

The Find (F) command will search down through the
program memory for a particular word, letter, or
string of characters. For example, the Find command
can be used to find the word "EDITOR" from the
Insert command above. From the Editor, type:

4-8

P BEG ;JUSEPTO GO TO
;TOP AND SEARCH
F

The BDSS should respond with:

FIND WHAT?
Fe>

then type:

EDITOR

and the Find command will find line 1 since the
word EDITOR occurs in that line. Now F can be
used to find the next line with "EDITOR." Type:

F

and the BDSS should respond with:

FIND WHAT? EDITOR?

Fe>

In this example, the Find command has a default
"FIND WHAT" string. The default is the find string
from the last Find command. If you enter an empty
line, the next line with "EDITOR" will be found. If
you do not want to use the default string from the
last Find command, type in the word or words you
want to find this time. Pressing the escape key will
abort the F command.

If the Editor cannot find the specified word, it will
respond with "NOT FOUND" and return to the edit
mode:

NOT FOUND
E->

4.3.2.6 Change (C)

The Change (C) command is similar to the Find
command. However, Change allows you to change
the string you found. Also, Change only searches
the current line. Use the P command to go to line 1
and print the line you typed from the previous
discussion of the Insert command. Type:

P1

it

BDSS

CHAPTER 4 - USER PROGRAMS

and the BDSS should respond:

1 ;TEST LINE FOR LEARNING ABOUT
;THE EDITOR

Now use the C command to change "EDITOR" to
"BDS5 EDITOR." Type:

c

and the BDSS will respond with:

CHANGE WHAT? "EDITOR®*?
C->

Again, "EDITOR" from the Find command is the
default input. Press the return key to accept the
default and the BDSS5 will respond with:

CHANGE TO WHAT?
C->

Now type:

BDS5 EDITOR

The BDS5 will change the line to read:

1 i TEST LINE FOR LEARNING ABOUT
;THE BDS5 EDITOR

C has defaults for both the "CHANGE WHAT" and
the "CHANGE TO WHAT." This allows you to step
through memory, changing each occurrence of one
string to another string with minimal keystrokes.
Like F, pressing the escape key will abort the process
and return to the Edit mode.

4.3.2.7 Delete (DEL)
The Delete (DEL) command can be used to deleta
one line or a whole range of lines.

DO NOT TYPE THESE EXAMPLES!

For example:

All of these delete instructions are valid.

For an example that you can type in, if you entered
line 1 "TEST LINE FOR LEARNING ABOUT THE
EDITOR," then type in the following command to
delete that line:

oo T £

Line 1 should be deleted.

4.3.2.8 Size | |
The BDSS program memory has space for about :
16000 characters. If you want to see how much

memory is left, type:

SIZE

The BDS5 will respond with:

[65 % LEFT]

which means the available space is about 65%. If
you try to enter a program larger than the BDS5 can
store, an error will be generated,

4.3.2.9 NEW

The NEW command resets the password and clears
the program. The user program is stored in battery
backed-up RAM. Normally, the program is
remembered indefinitely. However, if power to the
BDSS is lost when it is executing an Editor
command, there is a small chancs that the program
will be corrupted. This can happen, for example, if
power is lost during the Change or Delete command.
In this case, the BDS5 will generate a "USER
PROGRAM CORRUPT" error and the program
cannot be modified or run. If this happens, use the
NEW command to ciear the user program and reset
the corrupt error.

DO NOT TYPE IN THIS EXAMPI E!

4-9

CHAPTER 4 - USER PROGRAMS

BDSS

The NEW command also clears the editor password.

The >BDS command, which is discussed later in
this Chapter, will also reset the program so that it is
no longer corrupt, although it will not clear the
password.

4.4 BUILDING A PROGRAM

Programs are sequences of commands, most of
which can also be executed directly from the
keyboard. A program stores the sequences of these
normal commands. Examples of these commands
are MI, MA, and P (Print). However, in order for a
program to run properly, other commands, called
program control commands, are required. Examples
of these commands are GOTO and GOSUB.

4.4.1 Basic Commands

4.4.1.1 Labels

Labels are used to mark places in the program where
execution begins or continues. There are two kinds
of labels: general purpose labels and dedicated
labels.

General purpose labels are numbers from 0 to 500
followed by a dollar sign ($). You can execute 2
program that begins at a general purpose label with
the RUN command. You can jump to a label from
within your program with the GOTO and GOSUB
commands. RUN, GOTO, and GOSUB are
described later in this chapter.

Dedicated labels each have specific functions.
Dedicated labels include alarms, auto programs, and
the user error handler. These labels are letters or
words followed by a dollar sign. For example, AS is
the A-Alarm label. Dedicated labels cannot be used
by the RUN, GOTO, or GOSUB commands. These
labels are discussed with multi-tasking later in this
chapter.

4-10

-4.4.1.2 RUN [

——

The RUN command is used to start the program
from the Interactive mode. For example, type:

RUN 3

If there are no errors, and if label 3 is in the user
program, then program execution begins at label 3.
The RUN command can execute all valid general
purpose labels. If the label is not in the program, an
error is generated and no part of the program is
executed. You cannot use the RUN command for
dedicated labels.

Before the program is run, the BDSS searches the
entire program for some types of errors. If, after you
enter 2 RUN command, an error is detected, the
BDSS will display the appropriate error message
together with the offending line. Also, RUN verifies
that the program has not changed since the last edit.
If the program has changed, a "PROGRAM
CORRUPT" error is generated. The program
corrupt error can be cleared, though this requires
that the entire program be erased with the Editor
NEW command or the >BDS command. If a
"Program Corrupt” error occurs, and it was not
caused by losing power while you were editing, this
may indicate 2 serious condition. Contact the
factory.

4.4.1.4 Break (B)

The Break (B) command is the opposite of RUN; it
Stops program execution and normally returns to the
interactive state. The Break command does not stop
motion. Profile commands are allowed to continue
until they are complete. If you want to break the
program and stop motion, precede the Break
command with the Stop (S) command.

4.4.13 GOTO

The GOTO command is used within the program to
jump to a label. Before the following example of
GOTO can be done, another function of the Print @
command should be explained. From the terminal,

type:

P "THIS PRINTS TEXT JUST LIKE |
TYPED IT IN"

i J

BDSS

CHAPTER 4 - USER PROGRAMS

and the result will be:

| THIS PRINTS TEXT JUST LIKE | TYPED [T IN]

When using the Print command, characters between
double quotes are printed back without modification.

Returning to the GOTO command, use the Editor
Insert command to enter the short program below:

28

P "AT LABEL 2*

GOTO 3

P *NEVER GOT HERE"
35

P "AT LABEL 3*
B

Exit the Editor and type:

RUN 2

The result should be:

AT LABEL 2

|AT LABEL 3

It is a good programming practice to avoid the use of
GOTO commands in favor of Block-IFs, Quick-IF's,
and GOSUB's. This practice makes programs more
readable and easier to modify.

4.4.1.5 GOSUB and RET

The third command that uses labels is GOSUB. The
GOSUB command goes to a subroutine at the
specified label. For example:

GOSUB &5

begins a ‘subroutine at label 66. The RET command
returns from the subroutine and begins executing the
program one line below the original GOSUB
command.

GOSUB's can be nested up to four levels.

For example, type in the following program:

45

GosuB 5

P “RETURNED FROM SUBROUTINE 5+
8

58
P *EXECUTING SUBROUTINE 5+
RET

Exit the Editor and type:

RUN 4

The result should be:

EXECUTING SUBROUTINE 5
RETURNED FROM SUBROUTINE 5

4.4.2 CONDITIONAL COMMANDS

The BDSS provides several conditional commands
which allow your program to make decisions,
Conditional commands inciude ? (Quick-IF), TIL,
IF, and ELIF. These commands all depend on
conditions. A condition is an arithmetic comparison
of any two numbers, variables, or expressions. The
BDSS supports all 6 common types of arithmetic
conditions. Note that you should not use the =, >, or
< symbols for these conditions, Instead, you must
use the following two-character codes:

Table 4.1, BDSs Conditions

GT Greater Than

GE Greater Than Or Egqual To
LT . Less Than

LE Less Than Or Equal To
EQ Equal To

NE | NotEqual To

4.4.2.1 QUICK IF (7) COMMAND

The ?, or Quick IF, is a single-line command that
allows you to specify a condition, a command to be
executed if the condition is true, and another to be
executed if the condition is false, The format of the
? command is;

4-11

CHAPTER 4 - USER PROGRAMS

BDSS

? condition TRUE-command : FALSE-command

TRUE-command is executed if the condition is true
and FALSE-command is executed if the condition is
false. Both TRUE-command and FALSE-command
are optional, although at least one must be present.
Some examples of the 7 command are:

?X1 GT 5P "X1>5": P *X{<=5"

? VFB GT 3000 P "HIGH SPEED" : P

*LOW SPEED"

? 2*X2-5 LE X1/100 GOSUB 40

? X1/2*2 EQ X1 GOTO 5
JGOTOS5IFX1IS
;EVEN. DO
JNOTHING IF X1 1S
;O0D.

?KEQ1J2000 :4ISAJOG
;BUTTON

Note that each condition has an exact opposite: EQ
& NE, LE & GT, and LT & GE are all pairs of
opposites. Since the ? command allows both TRUE-
command and FALSE-command, you have your
choice of which command to use in the condition.
For example, the two ? commands that follow have
exactly the same effect:

? X1 EQ 10 B : P "X1 OK"
‘ yBREAKIF X1 > 10

? X1 NE 10 P "X10K" : B
/BREAK IF X1 > 10

The ? command can be used to make a loop counter.
Suppose you want to go to subroutine 25 twenty
times. You could just write GOSUB 25 twenty
times, but it would probably be better to use a
program loop. The following statements show how
the ? command can be used to control that program
loop:

4-12

X30=1 X3G IS THE
;LOOP COUNTER

12% JTHE LOOP BEGINS
;AT 128

GOSUB 25 ;GO TO
;SUBROUTINE 25

X30 = X30+1 JINCREMENT THE
;LOOP COUNTER

? X30 LE 20 GOTO 12
SEXECUTE LOOP 20
JTIMES

;CONTINUE PROGRAM

4.4.2.2 Nesting ? Commands

You can nest one ? command inside another. For
example, suppose you want to break program
execution if X1 is less than 100 and greater than -
100. You couid use:

? X1 LT 100 : GOTO 20
? X1 GT -100 : GOTO 20
B

208

However, those four commands can be replaced by
just one nested ? command:

? X1 LT 100 ? X1 GT -100 B

Nesting two ? commands is the same as ANDing the
two conditions. The example above only executes
the B command if both X1 < 100 and X1 > -100.
Nesting of ? commands is limited by the number of
entries and the maximum length of a line. BDSS
commands are limited to 15 entries (the example
above has 9 entries: ?, X1, LT, 100, ?, X1, GT, -
100, and B). Since each level of ? command nesting
requires 4 entries, you cannot have more than three
levels of nesting. Also, a ? command must be less
than 80 characters long since it must fit on a single
line.

4.4.2.3 TIL COMMAND

The TIL is a single-line command that allows you to
specify a condition and a command to be executed
repeatedly until that condition is true. The TIL
command has the following format:

TIL condition FALSE-command

s

g

S

BDSS

CHAPTER 4 - USER PROGRAMS

FALSE-command is repeatedly executed as long as
the condition is false. If the condition is true at the
beginning of the TIL command, then FALSE.
command is never executed. In this case, program
execution continues to the next step. An example of
the TIL command would be to print a line to the
operator continuously until the variable PFB is
greater than 10000. This statement delays program
execution until the condition is true and also
refreshes the display while the program waits:

TIL PFB GT 10000 P "WAITING FOR
PFB > 10000

The TIL command can be used to simply delay your
program, because the statement that follows the
condition is optional. For example, this statement
delays execution, but does not refresh the display:

TIL PFB GT 10000

The TIL can be used to delay
program execution.

NOTE

More examples of the TIL. command are:

TIL 11 EQ ON /DELAY EXECUTION

TIL 1 EQ ON P *PRESS INPUT #1+

TIL SEG EQ 0 ;DELAY UNTIL
/MOTION STOPS

TIL SEG EQ 0 P PFB
sPRINT UNTIL
yMOTION sTOPS

4.4.2.4 IF, ELIF, ELSE, and ENDIF

Commands

The IF command, together with ELIF, ELSE, and
ENDIF, will allow you to conditionally execute large
blocks of commands. These commands are provided
because the ? command, which is limited to a single
line, does not provide the most efficient means to
control blocks of commands. You can use the IF
command to write more readable, and thus less error

prone, programs.

The format of the IF, ELIF, ELSF, and ENDIF
commands follows. Note that the conditions have

the same format as the conditions for the TIL and ?
commands. Note also that block can indicate any
number of commands:

IF [F-condition
Block-IF

ELIF ELIF-condition #]
ELIF-block #1

ELIF ELIF-condition #2
ELIF-block #2

ELSE

ELSE-block

ENDIF

The above example shows two ELIF commands,
You can have any number of ELIF commands. The
operation of this example IF command is as follows:

If..

Otherwise if...

IF-condition is TRUE,
All commands in the Block-IF are executed.

No other blocks are executed, even if some
or all of the other conditions are true.

Program execution continues after the
ENDIF command.

ELIF-condition #1 is TRUE,

All commands in ELIF-block #1 are
executed.

No other blocks are executed, even if the
conditions that follow are true,

Program execution continues after the
ENDIF command, .

Otherwise if... ELIF-condition #2 is TRUE,

All commands in ELIF-block #2 age
executed.

No other blocks are executed, even if the
conditions that follow are true.

Program execution continues after the
ENDIF command.

Otherwise...

All commands in ELSE-block are executed

4-13

CHAPTER 4 - USER PROGRAMS BDSS
Program execution continues after the IF PFB GT 50 ;BEGIN BLOCK-IF
* ENDIF command. 01 OFF ;01 MEANS "WITHIN
. JRANGE”
Note that only the first block with a true condition is P "PFB EXCEEDED MAXIMUM"
executed. The IF, ELIF, ELSE, and ENDIF JPRINT ERROR
commands have several restrictions and options: MESSAGE
ELIF PCMD LT -50 ;CHECK THE
; JNEGATIVE LIMIT
Table 4.2. Blog.: :IF; I}::strlctlans and P *PFB EXCEEDED MINIMUM®
;PRINT ERROR
JMESSAGE
Each [F/ELIF/ELSE/ENDIF set... 01 OFF 101 MEANS *WITHIN
..must have one and only one IF. JRANGE" -
JF THEN
...may have any number of ELIF's. ELSE :;VI’;fI'ﬁVEkA?IEGE
..need not have any ELIF's. 01 ON ;TURN ON O1
P "PFB WITHIN RANGE*
...may have one ELSE. :PRINT MESSAGE
...nced not have an ELSE. ENDIF JEND OF BLOCK-IF

...must have one and only one ENDIF.

4.4.2.5 IFvs.?

You can use ? in place of IF commands. For
example, clamping applications make decisions

based on the final position of the motor after a move.

For our example, assume that the PFB should be
between 50 and -50. If PFB is within range, the
program should turn output O1 on and print an
appropriate message. If it is out of range, O1 should
be turned off and a message should be printed. The
table below shows the desired operation:

Table 4.3. Desired Operatlon of Program
Example

PFB RANGE O1 | MESSAGE TO PRINT

PFB > 50 OFF | PFB TOO LARGE
PFB < -50 OFF | PFB TOO SMALL

-50<PFB <50 | ON | PFB WITHIN RANGE

The IF, ELIF, ELSE, and ENDIF commands
implement the desired functions:

4-14

This example could have been written with ?
commands as the following program shows. Notics
that the program requires more lines, uses 3 labels,
and is harder to read (that is, less intuitive):

? PFB LE 50 GOTO 108
;START OF
;"BLOCK"
01 OFF JEXECUTE BLOCK
sIF PFB>50
P "PFB EXCEEDED MAXIMUM™
GOTO 208 ;s/DONE-GO TO END
108
? PFB GE -50 GOTO 118
JEXECUTE BLOCK
;IF PFB<-50
P "PFB EXCEEDED MINIMUM"
O1 OFF
GOTO 208 ";DONE-GO TO END
118 yGET HERE IF
;WITHIN RANGE
O1 ON
P *PFB WITHIN RANGE*
208 yEND OF "BLOCK"

You can choose whether to use ? or the IF command
when you are writing your program. You should
choose the command that results in the most
readable form. For example, if multiple commands
are to be executed, the IF command's block structure
sets off the commands and avoids the use of a GOTO
and a label. On the other hand, if a single
instruction is to be executed, the ? may be more

"M%WM"‘

CRy e s

P

BDSS

CHAPTER 4 - USER PROGRAMS

readable. Usually, one form results in less program
space or faster execution, and this may dictate which
to use. However, if space or timing are not critical,
use the most readable form,

4.4.2.6 Nesting IF commands
You can nest IF commands, For example, the
following program shows two levels of nesting:

558
IF X1 GT o
IFX2 GTro
P "BOTH X1 AND X2 > o*
ELSE
P *ONLY X1 GT 0"
ENDIF
ELSE
IFX2GTo
P "ONLY X2 GT 0"
ELSE
P *NEITHER X1 NORX2> 0"
ENDIF
ENDIF
B

You can nest IF commands indefinitely. You should
be careful to include all of the ENDIF's to close each

also apply to nested IF's, The indentation shown
above is not required, but i present to make the
program more readable, The BDSS ignores the
indentation,

4.4.2.7 IF's with GOTO and GOSUB
You can use the GOSUB command from within a
Block-IF, even if you have another Block-IF in that
subroutine. In this case, the IF in the subroutine is
like a nested IF, However, be careful to return from
the subroutine gfter you have executed the ENDIF.,
You should never return from a subroutine from
between IF and ENDIF, Finally, you may use a
GOTO to jump completely out of an IF-THEN-ELSE
control structure. When a GOTO is executed after
an IF has been executed, but before an ENDIF has
been executed, all ENDIF's are automatically
cxecuted. This means that you cannot jump to a
label within any IF-THEN-ELSE structure, Note
that jumping out of a control structure in such a
manner is a poor programming practice and should
be avoided. Also, you may notjump to a labe]

You cannot GOTO the middie
of an IF/ENDIF set. You
should never @xecute a RET
from between an IF and

NOTE ENDIF,

4.5 USING THE GENERAL PURPOSE
INPUTS

General purpose inputs can be used to control the
program. From Chapter 3 you may recall that thesa
inputs can be referred to one at a time using
variables I1-16, or collectively IN. If the program
must wait for a particular input to be on or off
before continuing execution, the TIL command can
be used:

TIL 15 EQ 0

If this statement is executed from the program, the
program will delay execution unti] I5isQ.

If the program must wait for many inputs to be on or
off, then the TTL command can be expanded. For
example, if inputs 1, 4,5, and 6 must ajl be on,
either of the following TIL instructions can be usad:

TIL I1+14+i5+]6 EQ 4
sTHIS USES
JALGEBRAIC MATH
TIL 11&I4&I5816 EQ 1
;THIS USEs
JLOGICAL MATH
; BOTH WoRK

It is slightly more complicated if the Program must
wait for some inputs to be on and others off. For
example, if inputs 1, 4, and 5 must be on, and input
6 must be off, the following TIL instructions can be
used:

TIL I1+I4+IS+(7-IG) £Q 4
JALGEBRAIC MATH
TIL 11&14&15&(1-16‘) EQ 1
/LOGICAL MATH

4-15

CHAPTER 4 - USER PROGRAMS

BDSS5

Notice the use of (1-16). This is a logical NOT,
because if 16 equals 1, then (1-16) is 0, and if 16
equals 0, (1-16) is 1. The logical NOT is useful
when checking to see if inputs are off.

If more than a few inputs must be tested, then
referencing them one at a time can be cumbersome.
As an alternative, IN can be used. This can be
demonstrated with the example above. If the
program must wait for inputs 1, 4, and 5 to be on
and input 6 to be off, logical math can be used to
mask the inputs that are not supposed to be tested:
inputs 2, 3, and 7-16. A mask is a binary word with
a 0 for each input that is not tested and a 1 for each
that is. In this example, the mask wouid be:

InputNumber 8 7 6 S§ 4 3 2 1

Testlpu? N N Y
BinaryMask 0 0 1

o
-
o z
o =z

v

Input Number 16 15 14 13 12 11 10 9

Testhoput? N N N N N N N N
BinaryMask 0 0 0 0 0 0 0 O

Since the mask must be in hex or decimal, it can be
expressed as:

0000000000111001 (BINARY) equals 39 (HEX) or
57 (DECIMAL),

which equals 1+8+16+32 (DECIMAL).

Now that the mask is known, the condition must be
determined. The condition is formed much like the
mask. In this case, there is a binary 1 for each input
that must be on and a binary 0 for cach input that is
either off or masked:

¥/O Number 8§ 7 6 5 4 3 2 1

1/O On? N N N Y Y N N Y
Binary Mask 0 0

(=]
(=]
[=]
-
-

/O Number 16 15 14 13 12 11 10 9

/0 On? N N N N N N N N
Binary Mask

o
o
(=]
[=3
(=]
(=1
o
o

4-16

Since the condition must be in hex or decimal, it can
be expressed as:

0000000000011001 (BINARY) equals 19 (HEX) or
25 (DECIMAL),

which equals 1+8+16 (DECIMAL).

Now the mask and the condition can be used in a
TIL instruction in the format:

TIL IN&mask EQ condition

For our example,

TIL IN&3SH EQ 19H;THIS USES HEX
;CONSTANTS

or

TIL IN&57 EQ 25 THIS USES
;DECIMAL. BOTH
;WORK.

This accomplishes the same function as the TIL
instruction which refers to inputs one at a time.
However, using the IN word allows the function to
be done in a less cumbersome manner.

4.6 INTERFACING WITH TH
OPERATOR '

This section covers interfacing via the serial port
(Connector CS). Often, it is necessary to have the
BDSS send information to the operator or ask the
operator for information.” For example, it may be
useful to output speed and position, or ask the
operator for a new speed command. This is easily
accomplished using BDSS serial I/O instructions.

4.6.1 PRINT (P)

The PRINT (P) command prints text and variables to
the terminal. Text and variables may be freely
intermixed, limited only by the 80-character
maximum instruction length. The following
command prints the speed on the terminal:

s

“‘W“’

BDS5

CHAPTER 4 - USER PROGRAMS

P "SPEED =" VFB *mpm-~

Assuming VFB is 1962, the BDSS will respond with:

SPEED = 1962 RPM

Note that the text must be enclosed by double quotes,
and that text and/or variables must be separated by at
least one blank space.

4.6.1.1 Printing Decimal Numbers
Variables are normaily printed as decimal integers in
a field which is 12 characters wide, Formatting can
be used to adjust the field width or to print decimal
points,

To change the width of the field, follow the variable
name with the width enclosed in square brackets
([]). Referring to the above example,

P "SPEED =" VFB[5] " RPM*

will cause the BDSS to print:
SPEED = 1962 RPM
If you try to print a number and do not have enough

space in the format for the number, then the BDS5
will fill the format width with X's. For example,

P "SPEED = * VFB[3] * RPM*

will result in:
SPEED = XXX RPM

(again, assuming the speed is 1962 RPM).

4.6.1.2 Printing Decimal Points

You can also use the BDSS to print a decimal point,
The BDSS performs calculations with integers
because it is much faster thag floating point math,
However, it is often desirable to convert integers to
floating point numbers, especially when printing out
information for the operator. This allows you to
make the integer math of the BDSS transparent to
the operator. For our e¢xample, suppose you would
prefer to print out the speed in KRPM (thousands of
RPM). You can use print formatting to convert the

Program uaits (RPM) to KRPM with the following
print command:

P "SPEED = * VFB(5.3] * KRPM*"

Assuming VFB was 1962, this command would
produce:

SPEED = 1.962 KRPM.

The ".3" which follows the "5" in the format causes
the BDSS t0 insert a decima] point three places from
the right of the number. To the operator, this is
more convenient, though the programmer still must
work in integer units,

You also have the option of printing fewer than all
the digits which follow the decimal point. This also
can be specified in the format, For example, suppose
you only wanted to print one digit after the decimal
point. The print command from above would be
changed to limit the number of digits to be printed:

P _“SPEED = * VFB[5.3.1] * KRpAf*

This command would produce:

SPEED = 1.9 KRPM.

So the general format for decimal format is;
[OVERALL WIDTH.DECIMAL POSIHON.PRMELEDIGHS]

For the example above ([5.3.1], the overall width
was 3, the decimal position was 3, and the number of
printable digits after the decimal was 1. You can
leave off any of these three specifications. The
overall width defaults to 12, the decimal position to
2er0, and the printable digits to the value of the
decimal position,

4.6.1.3 Printing Hex Numbers

To print a variable in hexadecimal, follow the
variable name with an enclosed in square brackets
((H]). The variable will be printed in a field 9
Characters wide, including an appended "H"
indicating hex. The default field width of 9 can be
changed by following the "H" with the desired field
width., For cxample:

4-17

CHAPTER 4 - USER PROGRAMS

BDSS5

X1 =255
P "X1 =" X1[H]
P "X1=" X1[H3]

will cause the BDSS to print:

X1= FFH
X1 = FFH

Two's-complement notation is used when printing in
hex. This means that printing negative hex values
requires the full field width of 9 characters. When
printing in hex format, the field must be wide
enough to include the appended "H."

4.6.1.4 Printing Blnary Numbers

To print a variable in binary format, follow the
variable name with a B enclosed in square brackets
([B]). The variable will be printed in a field 33
characters wide, including an appended "B,"
indicating binary, All of the leading zeros will be
printed. The default field width of 33 can be reduced
by following the "B" with the desired field width.
For example:

X2 =127
P *X2=* X2[B]
P "X2 = * X2[B10]

will cause the BDSS to print:

X2 = 0000000000000000000000001111111B
X2 = 001111111B

4.6.1.5 Printing Switches

Formatted printing can also be used to display
switches (any variable with a value of 0 or 1) either
as Y or N or as on or off. This allows you to
communicate with the operator better than just
printing 0 or 1. The switch format (on or off) is
printed with a bracketed S ([S]) following the
variable:

XS1=1
P "USER SWITCH #11S * XS1[S]

These commands would result in;

4-18

[USER SWITCH #11S ON]

Similarly,

XS1=0
P "USER SWITCH #1 1S " XS1[S]

results in:

|USER SWITCH #1 IS OFF |

In addition, you can print a switch as Y or N if you
follow the switch with a bracketed Y ([Y]). For
example,

P XSs1[Y]

will print either Y or N depending on whether XS1
is 1 or 0, respectively. This format is useful with the
input command which we will discuss later. The
input command allows the operator to respond with
Y or N and stores 1 or 0 in a BDSS variable. This
print format allows you to print the previous answer
on the screen the way it was entered.

4.6.1.6 Printing Expressions

The P instruction is not restricted to printing only
variables. In general, any numeric expression can be
formatted and printed. All the following examples
are valid:

P "MINUS 1IN HEXIS * -1[H]

P X1+X3 " IS THE RESULT OF ADDING
X1 AND X3°

P *SENSE OF DIRECTION IS * DIR*2-1{2]
P *DISTANCE TO GO IS * PFNL-PFB[.3]
*INCHES"

P *HIGHBYTE OFIN IS *
(IN&OFOH)/10H[H3]

4.6.1.7 Printing ASCII Characters

The BDSS will also convert numbers to ASCII
format before printing. You can do this by following
the variable or expression with a bracketed C ([C]).
This will cause the BDSS to print out the character
for which the number is an ASCII code. For
example,

g

C

p—

BDSS

CHAPTER 4 - USER PROGRAMS

X6 = 65
P "THE NUMBER " X6[2] * IS THE ASCl
CODE FOR * Xs[C]

will result in:

| THE NUMBER 65 IS THE ASCIl CODE FOR Al

If the number is greater than 127 (that is, the eighth
bit is set), the BDS5 removes the eighth bit before
transmitting the character. For example:

P 65[C] *IS THE SAME AS * 128+65[C]

since the BDSS removes the cighth bit of the
expression on the right, which has the end effect of
reducing the number by 128. If the number is larger
than 255, the BDSS5 divides the variable or
expression into four bytes and prints them out
separately. For example:

X2 =
256%256%256%65+256"256%65+ 25665465
P X2[c]

prints:

lAAAA]

since the number stored in X2 is equivalent to 4
bytes of 65.

The default field width of the character format is 4,
and you can change the field width by following the
C with the desired format.

4.6.1.8 Printing Control Characters
The BDSS5 uses the standard ASCTI character set as
shown in Appendix B. There are unprintable
characters, such as the bell (ASCII 7) and carriage
return (ASCII ODH). These characters have an
effect on the terminal but do not print anything on
the screen. Unprintable characters range from
ASCII 1 to 1FH. The BDSS5 cannot print ASCII Q.

As Appendix B shows, each unprintable character
can be produced with a control sequence. For
example, most terminals will sound a be] when you
press <Control>G (hold down the contro] key while
pressing the G key). As Appendix B shows,

<Control>G produces 07 or the ASCII bell. You can
use the BDSS to produce unprintable characters by
preceding the appropriate character with the carat
(*) to signify an unprintable character. For example,
the following BDSS command will sound the bell on
your terminal:

P .AG.

You can also use the character format to print
control characters. For example:

P o7[C]

also sounds the bell. The character format allows
you 10 print variables as ASCIT codes. However, the
easiest way to print control characters is normally
with the carat (*). One reason for this is that control
characters can be within text strings. For example:

P "BELL = <CONTROL>G. *G SOUNDS A
BELL"

If you use the carat to specify an invalid control
character, such as *1, the BDS5 will print the carat
and the 1 ("*1"), Only *A to0 *Z, %", M and A
are allowed.,

4.6.1.9 Cursor Addressing

Many displays allow you to address the cursor., For
example, the DEP-01 from Industrial Drives is an 80
character display that allows you to address any
location from 0 (leftmost top line) to 79 (rightmost
bottom line). First, send ASCII 27 ("™ followed
by the address of ASCII 0 (""@") through ASCII 79
("O"). For example, you can address the rightmost
space of line one (space #39) with the control
character sequence *['. The *[specifies cursor
addressing and ™" (ASCII 39) specifies spaca #40.

One problem with cursor addressing is that the
BDSS5 cannot transmit ASCII 0 (*@). Thisisa
common limitation for terminals. If you want to
address space #0, you must first address space #1,
then transmit a backspace (ASCII 8 or "*H"). For
example, if the following line is executed from the
user program while the BDSS serial portis
connected to the DEP-01, "X" will be printed on
space #0.

4-19

CHAPTER 4 - USER PROGRAMS

BDSS

P "*[*A*HX MARKS THE FIRST SPACE"

4.6.1.10 Printing BDS5 Status (PS)
The PRINT STATUS (PS) command is like the P
command except that it appends the BDSS5 status to
the end of the printed line. There are five different
status words that can be printed with the PS
command. Each is listed with its meaning:

Table 4.4. Printing BDSS Status

Status Explanation
OFF BDSS is OFF
READY BDSS is ready, but REMOTE is
OFF.

ACTIVE | BDSS is active, but no motion.
FAULT | BDSS has a fault condition.
JOG BDSS is jogging.

PROFILE | BDSS is executing profile.
GEAR BDSS is in gear mode.

You can use all formats and combinations with PS
that you did with P. These results are identical
except that the BDSS status is appended onto the
line.

4.6.2 REFRESH (R & RS) Commands

The REFRESH commands, R and RS, are identical
to P and PS, except that R and RS send only a
carriage return. The P and PS commands print lines
that end with linefeed and carriage return pairs. R
and RS commands display lines that can be
overwritten.

The following example demonstrates how the
REFRESH commands work. Type in this example
from the Editor:

78 :
RS "VELOCITY FEEDBACK=" VFB
GOTO 7

Now exit the Editor and type:

4-20

RUN 7

Rotate the motor shaft by hand so that the velocity
feedback changes. Press the escape key and enter
the Break command to break program execution.
Notice that the velocity is continuously updated, but
the line appears to be stationary. A similar program
with the P or PS commands would cause the lines to
scroll to the top of the screen.

4.6.3 INPUT

So far, printing information to the operator has been
discussed. This section will discuss how to prompt
the operator for information using the INPUT
command. The INPUT command causes the BDSS
to print a message to the terminal and wait for a
response from the operator. The input information
can be stored in any programmable variable. This
allows the operator to change or enter information
without making any changes to the program itseif.
You can only execute the INPUT command from the
user program.

Type in the following example INPUT instruction:

INPUT "ENTER NEW SPEED : * X2

This causes the BDSS to print :

.y

|ENTER NEW SPEED :

Type the new speed into the terminal. After you are
prompted, enter a number and press the enter key.
The number you enter is stored in the variable X2.
If you press the enter key-without entering a number,
the variable X2 is left unchanged. Use the Print
command to display the new value of X2:

P X2

4.6.3.1 INPUT Limits

You can also specify an upper and lower limit for the
operator entry. If the above INPUT instruction were
written as:

INPUT "ENTERNEW SPEED :* X2 10
100

S

BDSS

CHAPTER 4 - USER PROGRAMS

the BDSS would force the operator to input a value
between the specified low limit (10) and high limit
(100). If the input is invalid or outside the range, an
error message is seat and the operator is prompted
again,

The limits can be constants, as shown above, as well
as any valid numerical expression. If the limits are

outside the variable's normal range, they are ignored.

If they are not specified at all, the variable's normal
range is used as the limit. For example, the limits
on ACC are 0 and AMAX. Type in this command:

X1=ACC JSTORE ACC
INPUT "ENTER NEWACC :* ACC -1000
1000

The BDSS knows that the lower limit on ACC is 0
so that no negative numbers will be accepted. If
AMAX is less than 1000, AMAX will be the upper
limit. Otherwise, 1000 will be the upper limit. If
you specify limits that are outside the variable's

. program limits, the BDS5 uses the program limits.

Appendix E lists all variables and their program
limits.

4.6.3.2 INPUT and Decimal Point

You can use the INPUT to prompt the operator for
values that include a decimal point. You must
specify the number of characters after the decimal
point. This is the only way you can enter numbers
having a fractional part into the BDS5. For
example, suppose your user position units are mils
(0.001 inches). You can prompt the. operator for any
position in inches with the INPUT. The following
example stores the results of the INPUT command in
X1. Enter this short program in your BDSS; then
type RUN 44:

443

INPUT. "ENTER NEW POSITION: * X 1{3]
P *NEW POSITION = * X1[.3]

P "ACTUALLY, X1=* X1

B

Notice the bracketed 3 following X1 in the INPUT
command. This causes the operator input to be
multiplied by 1000 (10°) before it is stored in X1.
The print statements that follow display X1 in inches
(as the operator would prefer to see it), then in mils
(as the BDS5 motion commands process it).

4.6.4 SERIAL Switch

You can use the SERIAL switch to make sure that
the serial port is not busy before you execute a
command. If SERIAL is on, the serial port is ready.
Otherwise, the serial port is not ready. For example,
suppose you do not want to execute an INPUT
command if the serial port is busy. It might be busy
from a print command, or from a previously
executed input command. In that case, use these
commands:

? SERIAL EQ ON INPUT *"ENTER SPEED*
X1

4.7 IDLING COMMANDS

There are four idling commands: Hold (tD), Dwell
(D), Wait (W), and INPUT. This section discusses
the first three. The INPUT command was discussed
above. Hold, Dwell, and Wait cause the user
program to wait for an event before executing the
next command. Hold waits for switches, Dwell waits
for a timer, and Wait waits for a motion segment.

4.7.1 HOLD (H)

The HOLD command waits for a switch to be either -
on or off. You specify the HOLD command with the
switch and the desired state. For example,

H I1 ON 7HOLD UNTIL INPUT
i11S ON

H 02 OFF - ;/HOLD UNTIL
OUTPUT 02 IS OFF

H TRIP1 ON sHOLD UNTIL PFB >
yPTRIP1

Use the BDSS to enter the following program:

295

P "TURN |1 ON"
HI1 ON

P *I11S NOW ON*"
B

Now exit the Editor, turn inpui 11 off, and observe
the action of the HOLD command by typing:

CHAPTER 4 - USER PROGRAMS

BDSS

RUN 29

You can Hold for any switch except REMOTE and
user switches (XS11-XS50). User switches XS1-
XS10 are allowed with the HOLD command.

4.7.2 DWELL (D)

Sometimes it is desirable to delay execution for a
specified amount of time. The Dwell (D) command;
is the easiest way to do this. The delay is specified
in milliseconds. For example:

D 1000 ;JDWELL 1000
;MILLISECONDS

delays execution for 1000 milliseconds or 1 second.
The Dwell command can be demonstrated by typing
in the following simple program;

65

P "BEGIN 5 SECOND DWELL"*
D 5000

P "END 5SECOND DWELL"
B8

Now exit the Editor and type:

RUN 6

The result should be:

BEGIN 5 SECOND DWELL
END 5 SECOND DWELL

with 5 seconds between lines being printed. Dwells
can be up to 2,147,483,647 milliseconds or about 25
days.

4.7.3 WAIT (W)

When using Move commands, it is often necessary to
synchronize the execution of your program to
motion. The Wait (W) command can be used to wait
for the specified motion segment. Examples of the
Wait command are:

4.22

wo sWAIT FOR MOTION TO
sSTOP

w1 ;WAIT FOR MOTION
;COMMAND TO BEGIN

W 14 sWAIT FOR SEGMENT 14
;(MACRO MOVE)

These commands are similar; W 0 delays program
execution until the last motion command entered has
stopped. W I delays program execution until the last
motion command entered has started. W 14 waits
for segment 14 of the last motion command to begin.

In the example below, the WAIT command is used
to delay the calculations of the third move until the
second move has begun. The use of W7 here allows
the third move to be calculated while the second is
being executed. i i
¢xample--it is meant to run as a part of the user
program.

The WAIT (W) command and synchronization will
be discussed in more detail later in this chapter.

4.8 MULTI-TASKING

Multi-tasking is an important feature of the BDSs.
Multi-tasking allows you to write separate tasks that
run concurrently, which means more than one task
executes at the same time. For example, you can
write a program with two separate tasks: one to ask
the operator questions and another to command
motion. These two tasks can run independently so

e

Bpp s en e s e e e s

L s 15 oty P

WA W e

e et e 5 g

S

g

BDSS

CHAPTER 4 - USER PROGRAMS

that while the Operator is answering Questions, the
motion continues,

Each task has a priority level. The BDSS has 6
different task levels as shown on "Multi-Tasking
Overview." High priority means that if two tasks
both need to run at the Same time, then the
commands from the task with highest priority wil]

éxecute first. For example, Alarm A has the highest

priority. If Alarm A and Alarm B are "fired" at the
same time, Alarm A will un until it is complete;
then Alarm B will run unti] it is complete.

4.8.1 Multltasklng and Autobaudlng

If you set the BDSS to autobaud, multi-tasking wil]
not be enabled unti] communications have beag
established. This means that the BDSS5 will not -
operate if a terminaj or computer is not present,
Therefore, you normally will want to disable
autobauding by tuming ABAUD off.

Turn ABAUD oft it You plan to
use multi-tagking. The BDSs
will remember that ABAUD ig
off through Power-up.

NOTE

4.8.2 MULTI

If you want to disable Alarm G, the variable input
routine and background, type:

MULTI OFF

For example, if you have a time critica] section of
code, you may turn MULTI off at the beginning of
the section and theg back on at the end of the

4.8.3 END Command

Tasks are normally terminated with the END
command. END signifies the end of the task,
whereas Break (B) implies that all tasks stop
exccuting, For example, if you end an alarm with
the Break command, the entire program stops
running and the BDSS returns to the Interactive

mode. However, if you end an alarm with the END
command, the alarm Stops, but the other tasks
continue running.

4.8.4 Enabling ang Disabling Muit-
tasking

AUN 55

If your program ends with a Break command, theg
the program will Stop executing and multi-tasking
will be disabled; that is, the BDSS wil] return to the
Interactive mode, If your program ends with an
END command, thep only the task leve] that
executed the END wil] S1Op executing; other tagks
will continue executing. If there are o other tasks
that are executing, then the BDSS does not return 1o
the Interactive mode, but instead becomes dormant,
In this case, multi-tasking remaing enabled. For

example, alarms will continye to be servicad.

If you want to enabje multi-tasking without running
a particular Program, type:

RUN

without entering a label,

e

CHAPTER 4 - USER PROGRAMS

BDSS

Table 4.5. Multl-Tasking Overveiw

: How to Typical Uses
Task Level Task Name | Task Labels | Start Task of Task
1 ALARMA Hardware or
(Highest Priority) Software Switch
2 ALARMB Hardware or Monitor Inputs
Software Switch
3 ALARMC Hardware or
Software Switch
"ATTN" from Prompt Operator
4 VARIABLE DEP-01 or *V for Input
INPUT fromaPCora
Terminal
POWER-UP Power-up BDSS | Imitialize BDSS for
PROGRAM and Establixh Application
Comminication
Manual Switch Off | Run One Cycle of
AUTO PROGRAM | and Positive Auto Program
Transition Of
5 Cycle Input
MANUAL Manual Switch On Run Manual
PROGRAM Program
- Continuously
GENERAL Run <LABEL> General Purpose
PURPQOSE Programs
PROGRAM
USER ERROR Any Error That Gracefuily Exit on
HANDLER Breaks Execution Error Condition
6 BACKGROUND All Other Tasks | Print Messages to
(Lowest Priority) PRINT AND Idle the Screen
MONITOR

4-24

g

% ;
Fsiguos”

s

S

BDSS

CHAPTER 4 - USER PROGRAMS

The following two tabjes show how to turn my;.
tasking on and off:

Table 4.6. How to Enable Multl-TaskIng

1. Runm any label (Type "RUN <label>™),
2. Run multi-tasking (Type "RUN™,
3. Include a POWER-UPS label and power-up.

Tabla 4.7. How to Disable Multi. Tasking

1. Execute a Break from your program,
2. Enter a Break from the Monitor mode,
3. Cause an error that breaks execution,

4.8.5 Idling

exccute. For example, if
an alarm cannot run because it is waiting for some

4.8.5.1 Pre-Execution Idle

A task can be jdled by waiting for a condition before
executing a command. This is called a "pre.
execution idle” because the task is idled before

For example, the BDSS can store up to two MI or
MA commands. This was called buffering in
Chapter 3. This means that if you wrote a task with
three MI commands in a row, then the third MI
command could not be executed until the first move
Was complete. So that task would ba idled until the
first move finished, If there was another, lower-
priority task, it would execute uatil the first move

finished. When the first move finished, the first task
would no longer be idled, and thus wou]d proceed.

background task is the lowest priority task and will
only execute when the general purpose task is idle.
In the following cxample, the task is jdle between
the second and third motion command. Use the
BDSS Editor to enter this program.

/TASK LEVEL 5

18 sMAIN PROGRAM

EN

Ml 10000 10 sFIRST MOVE

P *FIRST MoOvE PROCESSED"

MI 10000 10 +SECOND MOVE
P "SECOND MoOVE PROCESSED"

Ml 10000 10 ;THIRD MOVE

P "THIRD MovEe PROCESSED*
8

JTASK LEVEL ¢
BACKGROUNDS

P "UPPER TASK IDLED"

D 250 DWELL 0.25 sec,
END

Apply DC bus power to your BDSS and type:

RUN 1

The result should be:

FIRST MOVE PROCESSED
SECOND MOVE PROCESSED
UPPER TASK IDLED

UPPER TASK IDLED

UPPER TASK IDLED
UPPER TASK IDLED
THIRD MOVE PROCESSED

The first and second moves are processed
immediately, Theq task level 5 is idled while the
first move finishes, While task leve] 5 is idle, the
background task executes over and over, printing the
simpie message on the screeq,

4-25

CHAPTER 4 - USER PROGRAMS

BDSS

4.8.5.2 Post-Execution idle

A task also can be idled by waiting for a condition
after executing a command. This is called a "post-
execution idle” because the task is idled after
executing the command that causes the idle.
Commands that cause post-execution idling are
called idling commands. There are four idling
commands:

Table 4.8. Four Idling Commands

Wait (W)
Dwell (D)
Hold (H)

Input (INPUT)

For example, you can modify the above program to
make one move, then run the background routine
until motion has stopped. Use the BDSS5 Editor to
enter this program,

JTASKLEVEL S

15 JMAIN PROGRAM
EN

MI 10000 10 JSTART MOVE

P "MOVE PROCESSED"

wo sWAIT FOR MOVE
P "ALL MOTION STOPPED"

B8

;TASKLEVEL 8

BACKGROUNDS

P "UPPER TASK IDLED"

D 250 ;DWELL 0.25 SEC.
END

Apply DC bus power to your BDSS and type:

RUN 1

The result should be:
MOVE PROCESSED

UPPER TASK IDLED
UPPER TASK IDLED

4-26

UPPER TASK IDLED
UPPER TASK IDLED ;
ALL MOTION STOPPED

Note that task level 5 immediately processes the
move and then is idled until motion stops. While
task 5 is idled, the lower level, background task
executes continuously.

4.8.5.3 Avolding idling

You can avoid idling the BDSS by using the TIL
command in place of Dwell, Wait, or Hold. For
example,

TIL SEG EQ 0

is the same as:

W o

except the TIL command locks out lower priority
tasks since it is not an idling command. The Wait
command allows lower level tasks to execute since it
is an idling command.

4.8.6 Alarms (Task Levels 1-3)

Alarms are the highest priority tasks. There are
three alarms: A, B, and C. A is the highest priority
and C is the lowest. Normally, alarms are used to
monitor hardware inputs, but they can monitor any
user switches (XS1 - XS50) and MANUAL. Using
an alarm relieves you of having to write your
program so that it checks switches. After you define
an alarm, the BDSS will watch the switch and
automatically execute the code that you specify,
should the alarm "fire."

Alarms are specified on one line, along with the
switch that triggers the alarm and the transition. For
example, the A alarm can be defined to fire when
input I1 transitions from off to on with this
command:

AS I1 ON

You can follow the alarm definition with the code
that you want to execute when the alarm fires. For
example, if I1 turned on, it might indicate an error

h”’“-»ww"j

A
i

S’

RISTRICE RN

S

BDS5

CHAPTER 4 - USER PROGRAMS

condition. In this case you might disable the BDSS,
turn off all outputs, and break execution. The
following program would accomplish this using the
A alamm.

AS 11 ON sDEFINE THE
JALARM

Dis ;DISABLE THE BDS5

ouT=0 ;TURN OFF ALL
;OUTPUTS

B yBREAK EXECUTION

4.8.6.1 Restrictions of Alarms

Alarms have many restrictions. 1) You cannot
execute GOTO, GOSUB, or RET commands from an
alarm. 2) You cannot execute a label. 3) You
cannot use the REMOTE switch to fire an alarm. 4)
Alarms must be self-contained programs--they
cannot "mix" with your program. 5) They must be
terminated with an END, Kill (K), or Break (B)
command. 6) Also, if all three alarms are preseant,
the execution time of your program increases by
about 3%. Most other commands are allowed for
alarms, including motion commands and Block-IFs.

4.8.6.2 Printing with Alarms

You must be careful when executing print
commands from alarms. If you need to print from an
alarm task, always print after the critical commands
have been executed. This is necessary because the
input command from a lower task will stop any task,
even a higher priority task, from printing. The input
command stops all printing until the operator
responds with a new value, For example, write your
program like this:

BS HOME ON ;FIRE ALARM WITH
JHOME

O=0 ;TURN OFF

- ;JOUTPUTS

Dis ;DISABLE DRIVE

P "MESSAGE” JNOW PRINT A
JMESSAGE

8

Do not print before you turn outputs off or disable
the BDSS. Otherwise, an INPUT command from
another task may idle the alarm indefinitely.

4.8.7 Varlable Input (Task Levei 4)

The variable input task is the next highest priority.
Normally, the variable input task is used to prompt
the operator for input, while still allowing the main

section of the program to continue. For example, the

operator could be entering a new distance while the
main program continues executing the program
using the old distance. The variable input task is
similar to an alarm, except that it is fired upon
receiving a special character from the terminal or
computer, which is *V (control-V), or ASCII 16H.
The "ATTN" button on the DEP-01 Data Entry
Panel from Industrial Drives also transmits a AV to
fire the variable input task.

The variable input task begins with VARIABLES.
You can then follow that label with various
statements, usually printing and input commands.
For example, enter the following program:

JTASKLEVEL 4

VARIABLES

P "X11s* X1

INPUT "INPUT NEW VALUE OF X2* X2
P "X1IS NOW * X1

B JEND EXECUTION

sssnnsescssassnssvocssar

JTASKLEVEL 5

108
X1=0
118

X1 = X1+1
GOTO 11

Now you can enable muiti-tasking by typing:

AUN 10

This program resets X1, then begins to count up.
Now enter "V from your terminal or ATTN from
your DEP-01. The BDSS5 should print the value of
X1 which has been continuously incrementing since
you typed RUN 10. Next, enter a new value for X2
and notice that the program prints out a new value
for X1, which is larger than the value it printed at
the beginning of the variable input task. This is
because the variable input task was idle while you
were entering the new value. Since the higher

4-27

CHAPTER 4 - USER PROGRAMS

BDSS

priority task is idle, the lower priority (118) will run
and continuously increment X1.

4.8.7.1 Using Variabie Input with
Profiles

You can use the variable input routine while the
BDSS is executing motion profiles. However, you
must be careful if you are changing parameters of -
motion. Specifically, if you are changing two or
more parameters which you want to take effect at the
same time, you must write your program to store
those values away. For example, SuUppose you are
using the variable input routine to prompt for speed
and distance. You might use a program like this:

JTASKLEVEL 4

VARIABLES

INPUT *INPUT NEW DISTANCE" X1
INPUT *INPUT NEW SPEED" X2

END 7END VARIABLES

JTASKLEVELS

20$
Ml X1 X2
GOTO 20

If you type:

RUN 20

this program will continuously move the motor X1
distance at X2 speed, even after you press *V to start
the variable input routine. However, after you have
entered a new value for X1, the variable input
routine will be idled, waiting for you to enter X2, In
this case, the next MI command will be executed
with the new X1 and the g]d X2. You can correct
this problem by temporarily storing the input values
in user variables and loading them all together. For
example, the above program can be modified as
follows:

JTASK LEVEL 4

VARIABLES '

INPUT *INPUT NEW DISTANCE" X711

INPUT *INPUT NEW SPEED" X12

X1 =X11 ;JLOAD X1 AND X2
JWITH

X2 =X12 s INPUT VALUES

END JEND VARIABLES

JTASKLEVEL 5

208

Ml X1 X2

GOTO 20

Temporarily storing the input values in X11 and
X12 guarantees that the MI command will executs
with either all new or all old values. Since there are
no idling commands between the commands that
load X1 and X2, there is no possibility for task level
5 to run until X1 and X2 are both Joaded or neither
is loaded.

In addition, if the variable input routine changes
variables that are used in different lines of task level
3, you probably should turn MULTI off at the
beginning of the block of lines and back on at the
end. This prevents the variable input routine from
reloading the variables in the middle of block of
lines.

4.8.7.2 Restrictions of Variable Input
Like alarms, variable input has many restrictions. 1

"You cannot execute GOTO, GOSUB, or RET

commands from the variable input task. 2) You
cannot exccute a label. 3) The variable input must
be seif-contained--it cannot "mix” with other tasks.
It must be terminated with an END, Kill (X), or
Break (B) command. Again, most other commands
are allowed for the variable input task, including
motion commands and Block-IFs. If the variable
input task is present, the execution time of your
program increases by about 1%.

i

)

BDSS

4.8.8 Maln Program Leve| (Task
Level 5)

Most of the time, your program will run at tagk level
5. All the program examples given earlier in this
chapter executed at task Jeve] 5. Notice from "Mult-
Tasking Overview" that all general purpose labels
(0$ - 5008) and many dedicated labels (POWER-
UPS, AUTOS, MANUALS, and ERRORS) share
task level 5. The routines that follow these labels
share one task leve] and cannot run concurrently.
For example, you cannot run AUTOS and

ALS concurrently, In other words, only one
task-level-5 routine cap run at a time,

Alarms and the varigb]e input task are higher
priority than task leve] 5, For example, if an alarm
fires while your Program is running a task that
begins at a general purpose label (task level 5), task
level 5 will be suspended until the alarm js complete,
The background program (BACKGROUNDS) runs
at the lowest leve], Generally, alarms respond to
conditions that are more urgent than most other
sections of the program. Similarly, background is
for tasks that are not critical, such as printing,
Multi-tasking controls which task rups by executing
commands from the highest priority task that is not
idle.

The rest of this section will discuss the dedicated
labels in task Jeve] 5: POWER-UPS, ERRORS,
AUTOS, and MANUALS.

4.8.8.1 Power-Up Routine (POWER.
UPS$)

On power-up, the BDSS checks your program to ses
if you entered POWER-UPS. If you did, the power-
up routine is executed, For example, enter the
following program:

POWER-UPS

X1 = X1+1 sSAMPLE COMMAND
8

Now power-down your BDSS for a few seconds and
power-up again, jshi cat]
the BDSS should display the sign-on message
followed by:

[iXECUT!NG POWER-UP LABEL]

>

CHAPTER 4 - USER PROGRAMS

indicating that the POWwer-up routine was executed,

The Power-up label Ig ryn
after the autobaud,

NOTE

If you want your program to start automaticaily on
power-up, begin it with POWER-UPS. 1f POWER-
UPS is not found in the program, then the BDSS
POWers-up in the Interactive mode. If the BDSS is
Set 1o autobaud, then it wil] not execute the power-up
label unti} communications have beeg established.

If you want to leave multi-tasking active after your
Power-up routine is done, and the power-up routine

command. If your routine ends with the END
command, then multi-tasking will be enabled, and
the Alarms, Background, and other muiti-tasking

the Interactive mode after power-up, then end the
Power-up routine with the Break command,

4.8.8.2 Error Handler (ERRORS)

When a serious error occurs, the BDSS breaks
cxecution of your Program and checks your program
to see if you enterad ERRORS. If you did, the error

4.8.8.3 Auto Routine (AUTOS)

If you want to start Program from an externa]
switch, you should use the auto routine, Yoy can use
the auto routine to interfacs to simple operator
panels or to programmabe logic controllers (PLCs),

CYCLE (Connector C7,Pin13)isa hardware input
that, under the Proper conditions, will cause the
BDSS to begin executing one cycle of the auto
program. The AUTO program begins at AUTOS.
Y is a hardware output that indicates
the BDSS is Teady to run another cycle of the AUTO
program,

The following conditions must be met for the BDSS
to execute the AUTO program. When these

4-29

o B IR S B L o

CHAPTER 4 - USER PROGRAMS

BDSS

conditions are met, the CYCLE READY output
(Connector C7, Pin 23) will turn on. Otherwise, it
will be off,

Table 4.8. To Exscute AUTOS...

Multi-tasking must be enabled.

AUTOS must be present in the user program.
No routines can be executing at task level 5.
The MANUAL input must be off.

The CYCLE input must be low.

A O

If these conditions are met, the CYCLE READY

output will turn on. Then, when CYCLE turns on,
the BDSS will begin executing the user program at
AUTOS, and CYCLE READY output will turn off,

4.8.8.4 Manual Program (MANUAL $)
The following conditions must be met for the BDS5
to execute the MANUAL program. When these
conditions are met, the BDSS5 will begin executing
label MANUALS.

Table 4.10. To Exscute MANUALS...

BACKGROUNDS

| P "EXECUTING BACKGROUND"
D 500 JDWELL
END

1. Multi-tasking must be enabled.

2. MANUALS must be present in the user
program.

3. No routines can be executing at task level 5.

4. The MANUAL input must be off.

If these conditions are met, the BDSS will execute
the user program at MANUALS. You may have
noticed that AUTO and MANUAL are very similar,
The important difference is that while the AUTO
program begins when CYCLE START turns on, the
MANUAL program runs continuously.

4.8.8.5 Typical AUTO/MANUAL
Programs :

Drawing A-84983 shows typical AUTO and
MANUAL programs. This flowchart shows the
cffects of the MANUAL and CYCLE switches. The
sample AUTO program causes the motor to rotate
one revolution each time the CYCLE switch

4-30

transitions from off to on. The sample MANUAL
program is written so that I1 and I2 are JOG+ and
JOG- switches. So when the MANUAL switch is on,
the BDSS monitors the jog buttons; when MANUAL
is off, the CYCLE button causes the motor to rotate
one revolution. Note that both the AUTO and
MANUAL programs end with the END command;
this is the normal way to conclude these programs.

4.8.9 Background (Task Level 6)

The background task is the lowest priority.
Normally, the background task is used for non-
critical tasks such as refreshing the display and
checking low priority inputs. The background task
runs continuously, as long as no other task is active.

The background task begins with BACKGROUNDS.
You can then follow that label with various
statements, usually printing commands. For
exampie, enter the following program:

Now you can enable multi-tasking by typing:

RUN

Notice that you did not need to specify a label, If
you type RUN without a label, you will enable multi-
tasking without executing a specific label. When
you are done with this example, press *X (control X)
to break the program and.return to the Interactive
mode., .

Ve S e

PP S—

i, i

BDSS

CHAPTER 4 - USER PROGRAMS

SAMPLE
AUTO
ROUTINE

AUTCS
MI 4086 100
END

MANUAL SWITCH IS
AN INPUT ON
CONNECTOR C8~PIN 33

CYCLE SWITCH IS

AN INPUT

ON

CONNECTOR C7-PIN 13

SAMPLE
MANUAL
ROUTINE

EXECUTE AUTD
ROUTINE

EXECUTE
ROUTINE

MANUAL

MANUALS

IF I3 £Q 4
J 1000

ELIF I2 £Q ¢
é) ~1000

J o
ENDIF
END

Figure 4.2. Auto/Manuai Mode Flowchart

4-31

UHAYIEK 4 - USER FPROGRAMS

BDSS

4.8.9.1 Restrictions of Background
Like alarms, background has many restrictions. 1)
You cannot execute GOTO, GOSUB, or RET
commands from background. 2) You cannot execute
a label. 3) The background task must be salf-
contained--it cannot "mix" with other tasks. It must
be terminated with an END, Kill (X), or Break (B)
command. Again, most other commands are
allowed for the background task, including
Block-IFs. If the background task is present, the
execution time of your program increases by about
1%.

4.9 UNITS

The BDSS provides user units so that both you and
the machine operator can work in units that are
convenient. The BDSS allows you to define the units
of acceieration, current, velocity, and position for
your machine. Also, if your BDSS has an external
input, you can define the units of external position
and external velocity.

4.9.1 User Units

The BDSS uses internal units, called BDSS-basic
units, that are very inconvenient to use. For
example, velocity is in (1/65.536)*counts/second.
User unit constants scale the BDSS-basic units. For
example, if you type:

VOSPD = 1000

the 1000 is multiplied by VNUM/VDEN before it is
stored in the BDSS memory. Your BDSS is shipped
with VNUM and VDEN set so that the user velocity
units are RPM. However, with a simple, step-by-step
procedure, you can redefine the units as
inches/minutes, degrees/second, or any other units
that are convenient for your machine,

The following table shows some common user units.

Table 4.11. Common User Units i(
Current | Peccent INUM=4095 IDEN=100 3
Amps INUM=4095 IDEN=FULL ’
AMPS
Position Couats PNUM=1 PDEN=1
Velocity | RPMrnadfsec VNUM=44739 VDEN=10
(12-Bit) VNUM=42723 VDEN=l
Accel RPM/sec ANUM=4474 ADEN=1000
(12-Bit) rad/(secxsec) ANUM=4272 ADEN=100

4.9.1.1 Current Units

The BDSS commands current with a 12-bit digital-
to-analog converter (DAC). The BDS5-basic current
unit is 1/4095th of full-scale current. Full-scale
current refers to the peak rating of your BDSS, not
the continuous rating. For example, the peak rating
of a 6 Amp BDSS5 is 12 Amps.

The conversion constants that determine user current
units are INUM, current units numerator, and IDEN,
current units denominator:

ILIM[basic units] = ILIM[user units] x UM

INUM and IDEN have a range of 0 to 231, For 7
standard current units (percent), INUM is 4095 and
IDEN is 100. For example, when setting ILIM to

100 in Chapter 3, you typed:

ILIM=100 ;SETILIM TO 100%

The BDSS converted the 100% to 4095 BDSS5-basic
units:

4095

100 x = 100 x —— = 4095
100

This sets ILIM to 4095 or 100% of full current.
When you typed:

P ILIM

the BDSS converted the 4095 BDSS5-basic units to
100% by multiplying by IDEN and dividing by
INUM.

g o

S’

BDSS5

CHAPTER 4 - USER PROGRAMS

4.9.1.2 Other User Unitg

BDS5-basic units for position, velocity, and
acceleration vary with the System resolution. The
resolution is determined by the R/D converter, which
converts the position of the motor into g 12-, 14-or
16-bit number. The system resolution is indicated by
the model number.

Table 4.12. System Resolutions

R/D Resolution Counts in One Revolution
12-Bit 4096
14-Bit 16384
16-Bit 65536

When shipped from the factory, the standard BDSs
user units are velocity in RPM, acceleration in
RPM/second, current in percent of full-scale, and
position in counts,

The velocity and acceleration units shown on
"COMMON USER UNITS" above are for the
standard 12-bit R/D converter. For 14-bit resolution,
multiply VNUM and ANUM by 4. For 16-bit
resolution, multiply by 16. Do not change VDEN or
ADEN.

All variables that have units associated with them
should be set after you have specified the user units,
This is because the values actually stored in the
variables are in BDSS-basic units, not user units,
Changing the user units will not affect the basic
value stored in the variables, For example, if you
want VOSPD to be 100 inches/minute, and you type:

VOSPD = 100

when velocity units are in RPM, VOSPD would be
100 RPM. Then, if you change the velocity units to
inches/minute, VOSPD would remain 100 RPM--it
would just be converted 1o the equivalent of

100 RPM in inches/minute, If you change any user
units, you should resat all programmabje variables
that depend on those units. Refer to Appendix E,
which lists all variables and the units associated with
them.

4.9.1.3 External Units

External units are for the external inputs, VEXT and
PEXT. The user units are Set by VXNUM and
VXDEN for external velocity (VEXT) and by
PXNUM and PXDEN for external position (PEXT).
Drawing A-84866 shows how externa] position and
velocity come into a slave BDSS and are displayed as

PEXT and VEXT.

If the external input is a system with the same
resolution as your BDSS, set external units as
follows:

Table 4.13. Setting External Unitg In

Master/Siave Systems
VXNUM = VNUM
VXDEN = VDEN
PXNUM = PNUM
PXDEN = PDEN

If the command is something other than a motor of
similar resolution, see "Machine Specific Units" in
the next section.

BRI s

L)

_HAPFTER 4 - USER PROGRAMS BDSS

COUNTS FROM MASTER
PFESOLYER-TO-OIBITAL
CONVERTER

)

Y

] ¢ o B9oR FEEDBACK T

— < u.u}_"

b
(A= 6] N PN
mcmmm 174 INTERNAL
Joex
YN

s

MASTER BDS5S I

e mm e - w — w — ——

COUNTS FROM SLAYE
RESOLYER-TO~OIRITAL
CONVERTER

)

\'s

INTERMAL
FEEDBACX

POEN

PN

YOEN,

YU
| S PXDEN

PEXT

{CONMECTOR f=—-=C x4 mmm] R
| VXDEN

YXNUM

3% pemeeCed DECOOER

PGsson
SLAVE BDSS

T SR e e e e i e e e D i Gwe e ewh e e e G e an e e s v v oo

Figure 4.3. Master/Slave Block Diagram

4-34

S

BDS5

CHAPTER 4 - USER PROGRAMS

4.9.2 Machine Specific Units

The BDSS allows you to specify user units for your
machine. You must determine the conversion
constants: PNUM & PDEN for position, VNUM &
VDEN for velocity, and ANUM & ADEN for
acceleration. Two tables have besn provided to help
you calculate those constants. Tables 4.14 and 4.15
are for position, velocity, and acceleration units
based.

Table 4.14. English Conversion (12-bit A/D

Only)
POSITION UNITS
PNUM - 4096 x Motor Movement (In Revolutions)
PDEN Machine Movement (In Your Units)
VELOCITY UNITS
YNUM _ .o 92 x | Motor Velocity (In Rev / Min)
VDEN) Machine Velocity (In Your Units)
ACCELERATION UNITS
- 4.47392x Motor Acceleration {In RPM / Sec)
ADEN Machine Acceienation (In Your Units)

Table 4.15, Metric Conversion (12-bit R/D

Only)

POSITION UNITS
PNUM Motor Movement(In Radians)
PDEN - L8971x [Machine Movement(In Your Um'zs)]

VELOCITY UNITS
VNUM Motor Velocity (In Rad / Sec)

= 712.047 x - - -
VDEN Machine Velocity (In Your Units)
ACCELERATION UNITS

ANUM 112047 [Motor.Amclmﬁon‘(Rxd /See/ Scc)J
ADEN Machine Acceleration (Your Units)

The procedure to determine PNUM and PDEN js as

follows:

A. Select Table 4.14 (revolutions) or 4.15
(radians).

B. Select a convenient amount of motor
movement in revolutions or radians.

C. Calculate the corresponding machine
movement in your user units.

D. Perform the operation indicated in the table
under POSITION UNTTS and set
PNUM/PDEN equal to this value,

E. Ifyour R/D converter resolution is 14-bits,

multiply PNUM by 4. Multiply PNUM by 16
for a 16-bit system.

The procedure to determine VNUM and VDEN is as

follows:

A, Select Table 4.14 (RPM) or 4.15
(radians/second).

B. ' Select a convenient amount of motor velocity
in RPM or radians/second.

C. Calculate the corresponding machine velocity
in your user units.

D. Perform the operation indicated in the table
under VELOCITY UNTTS and set
VNUM/VDEN equal 1o this value,

E. Ifyour R/D converter resolution is 14-bits,

multiply VNUM by 4. Multiply VNUM by 16
for a 16-bit system,

The procedure to determine ANUM and ADEN is as

follows:

A. Select Table 4.14 (RPM/sec) or 4.15
(radians/(second‘sccond).

B. Select a convenient amount of motor
acceleration.

C. Calculate the corresponding machine
acceleration.

4-35

[RpRT -

CHAPTER 4 - USER PROGRAMS

BDSS

D. Perform the operation indicated in the table
under ACCELERATION UNITS and set
ANUM/ADEN equal to this value.

E. If your R/D converter resolution is 14-bits,
multiply ANUM by 4. Multiply ANUM by 16
for a 16-bit system.

For external inputs PEXT and VEXT, the procedure
for calculating the conversion constants PXNUM,
PXDEN, VXNUM, and VXDEN is similar. It
differs in that the external inputs are not functions of
the motor position or R/D resolution. Table 4.16 has
been provided to assist in calculating the conversion
constants.

Table 4.16. External Units Conversion

EXTERNAL POSITION UNITS

Foa |

External Input (In Counts)
PXDEN

Machine Movement (In Your Units)

EXTERNAL VELOCITY UNITS

_65‘535"[External Input (In Counts/ Sec)]

VXNUM
VXDEN Machine Velocity (In Your Units)

The procedure to determine PXNUM and PXDEN is
as follows:

A. Select a convenient number of counts on the
external input.

B. Calculate the corresponding machine
movement in your user units.

C. Perform the operation indicated in Table 4.16
under EXTERNAL POSITION UNITS and
set PXNUM/PXNUM equal to this value.

The procedure to determine VXNUM and VXDEN
is as follows:

A. Select a convenient number of counts per
second on the external input.

B. Calculate the corresponding machine velocity
in your user units.

4-36

C. Perform the operation indicated in Table 4.16
under EXTERNAL VELOCITY UNITS and

A machine has a motor coupled to a 0.1 inch pitch
lead screw which drives a table. A 0.1 inch pitch
lead screw means the table moves 0.1 inch Pper motor
revolution. The R/D resolution is 12 bits.

The user units for table motion you desire are:
Position Units mils (1 mil = 0.001 inch)
Velocity Units inches/minute (IPM)

inches/minute/second
(IPM/second)

Acceleration Units

Objective:

Find PNUM and PDEN.

Find VNUM and VDEN.

Find ANUM and ADEN,

Solution:

Find PNUM and PDEN.

A. Select Table 4.14.

B. Select a motor movement of 1 revojution.

C. 1revolution of the 0.1 pitch lead screw
transiates to 0.1 inch or 100 mils of table

movement.

D. Refer to Table 4.14 under POSITION UNITS
for the formula:

PNUM/PDEN = 4096 * (1 /100) = 40.96
Select PNUM and PDEN:
PNUM = 4096 PDEN = 100

E. Since a 12-bit R/D converter is used,
calculations in step E are not needed.

Find VNUM and VDEN.

Al Select Table 4.14,

i

g

Mg’

BDS5

CHAPTER 4 - USER PROGRAMS

B. Select 10RPM motor velocity.

C. 10RPMofthe 0.1 pitch lead screw translates
to 1 IPM of table velocity.

D. Referto Table 4.14 under VELOCITY UNITS
for the formula:

VNUM/VDEN = 4473.92 * (10/ 1) =
447392

Select VNUM and VDEN:

VNUM = 447392 VDEN = 10

Find ANUM and ADEN,
A. Referto Table 4.14.
B. Select 10 RPM/second motor acceleration,

C. A1l RPM/second acceleration of the 0.1
pitch lead screw transiates to 1 IPM/second of
table acceleration.

D. Referto Table 4.14 under ACCELERATION
UNITS for the formuia:

ANUM/ADEN = 4.47392 * (10)=
44,7392

Select ANUM and ADEN:
ANUM = 447392

The BDSS does not Support floating point
operations. You must use fractional units to make
the resolution finer, For cxample, if the units for
velocity need to be finer than IPM, 0.1 IPM could be
chosen. In this case VDEN would be 100 instead of
10. Thento jog at 1 IPM the command J 10 would
be required,

ADEN = 10000

4.9.3 Position Rotary Mode,
ROTARY, & PROTARY

The BDSS stores position in a 32-bjt number, This

number is large enough to count many revolutions,

For example, the 32-bjt number will store the counts
§ from a 12-bit R/D converter for about 10 million

revolutions before the 32-bit limit is exceaded.
Normally, this is sufficient, However, some
applications require the moror 10 rotate in one
direction indefinitely. Eventually, the 32-bit limit

mode allows the BDS5 to Support these
unidirectional applications,

When ROTARY is on, the Rotary mode is enabjed.

If PFB is greater than PROTARY, then PFB, PCMD,
and PFNL are decremented by PROTARY. If PFBis
less than zero, then PFB, PCMD

You cannot change PNUM, PDEN, or PROTARY
when ROTARY is ON - In addition, you must
normalize PFB so that 0 < PFB < PROTARY before
turning ROTARY ON. Enable the Rotary mode by

typing:
ROTARY ON

4.9.3.1 Choosing PROTARY, PNUM,
and PDEN

If you have 3 rotary application such as g printing
drum, set PROTARY in position user units to be the
exact equivalent of one revolution of the drum,
PROTARY must be €xact or position error wil]
accumulate over many revolutions. For example,
Suppose the motor of an application is connected
through a 5:3 gearbox. For convenience, assume the
user units are i degrees . PROTARY

The key is selecting PNUM and PDEN so that
PROTARY can be Tepresented exactly as an integer.
This does not mean that PROTARY must be an
integer number of counts. In fact, it normally will
not be, Returning to the ¢xample, a motor
movement of 5 revolutions would cause 3 revolutions
of machine (table) rotation, or 1080 user units
(degrees), Returning to Tabje 4.14,

4-37

CHAPTER 4 - USER PROGRAMS

BDSS

PNUM=4096"*5 PDEN =360 *3

thus, PROTARY would be 360. Notice that
PROTARY is not exact in counts; it is 5/3 of a
revolution or 6826 and 2/3 counts. However, it is
exact in user units. Therefore, error will not
accumulate as the table rotates.

The incorrect way to choose PNUM, PDEN, and
PROTARY would be to select PNUM and PDEN so
that PROTARY could not be represented as an
integer. For example, we could have stated that 5/3
revolution of the motor would cause one revolution
of the machine. Then:

PNUM = 4096 * 5/3 or about 6827
PDEN = 360

In this case, PROTARY would not be exactly 360
degrees (actually, it would be 359.98 degrees), so
that error would accumulate as the table turned.
Remember, PROTARY must be an integer in user
units, though it can have fractional counts.

4.9.3.2 Rotary Mode and Absolute

Moves

When the BDSS is in the Rotary mode, you must
limit the final position of all absolute moves to
between 0 and PROTARY. If you want to move
more than PROTARY, you can use incremental
moves. For example,

M! 50*PROTARY

is a legal command.

4.10 SERIAL COMMUNICATIONS

This section discusses details of BDSS5 serial
communications. This includes autobauding,
multidrop connections, and transferring your
program to and from the BDSS. If you are using
Motion Link, the Industrial Drives software package
for the BDSS, you do not need to read the sections on
transmitting and receiving your program, or on
system dump. Motion Link provides facilities for
these functions. :

4-38

4.10.1 Autobauding

It is not necessary to set the baud rate on the BDSS
directly. Once the BDSS is properly connected, it can
determine the terminal's baud rate, then set its own
baud rate accordingly. This is called autobauding.
After the BDS5 determines the correct baud rate, it
will store this rate away in BAUD. The BDSS5 will
flash the CPU light to indicate that it is autobauding.
In order for the BDSS to determine the baud rate
setting on your terminal, you must press the enter
key several times. Press only the enter key;
otherwise the BDSS will not autobaud correctly. The
system will only autobaud during power-up.

4.10.1.1 Setting the BDS5 to
Autobaud

There are three ways to set the BDSS to autobaud at
power-up:

1. Powering-up with the MOTION input off.

2. Turning the switch ABAUD on before the next
power-up.

3. Setting the value of the variable BAUD to an
invalid value (say, 1000).

4.10.1.2 Autobauding and MOTION

If the MOTION input is off during power-up, the
BDSS5 will autobaud. (Note that this also sets ADDR
to zero.) This allows you to command autobaud
without being able to communicate with the BDSS.
The other ways to start autobauding require that
communications be set up first. See the section on
ADDR and multidrop communication later in this
chapter for more information.

4.10.1.3 Enabling Autobaud with

ABAUD

The autobaud software switch (ABAUD) is the usual
way to tell the BDSS5 to autobaud on power-up. If
ABAUD is on, then the system will autobaud when it
is powered-up or reset, provided that the multidrop
address, ADDR, is 0. After a successful autobaud,
the baud rate will be stored in BAUD.

If you do not want your BDSS5 to autobaud when the
unit is powered-up, then turn ABAUD off. This is

i

p -4
g

BDS5

CHAPTER 4 - USER PROGRAMS

important if you want the BDSS5 to run the Power-Up
Label (POWER-UPS), because if ABAUD is on, the
BDSS will not execute the program until
communications have been established.

4.10.1.4 Baud Rate, BAUD

If the MOTION input is on, ADDR is zero, and
ABAUD is off, then the system will check the
variable BAUD for the desired baud rate. If it is not
a valid baud rate, the BDSS will autobaud. After a
successful autobaud, an error is generated indicating
that the baud rate was out-of-range on power-up.

4.10.2 Prompts

The BDSS issues a prompt when it is ready to
receive a new command. Prompts are discussed in
Chapter 3. The BDSS allows you to suppress the
prompt characters by typing:

PROMPT OFF

PROMPT is turned on at power-up. Prompts are
particularly important when communicating with
computers, since the computer that is transmitting to
the BDSS must wait for a prompt before beginning a
new line. After the prompt is received, the computer
can transmit at the full baud rate, without inserting
delays. '

4.10.3 Serial Watchdog

The BDSS provides a serial watchdog timer for
applications where a command should be received
from a computer on a regular basis. If a compiete
command is not received from the serial port in the
specified time, an error will be geaerated that will
disable the BDSS and break the user program.

The serial watchdog is a safety feature that disables
the BDSS5 if the communications line breaks. The
serial watchdog waits for a carriage return to signify
a completed command. It does not test the validity
of the command. For example, if your computer
fails and begins sending random carriage returns,
the serial watchdog will not generate an error.

The BDSS serial watchdog Is

intended to detect a broken
A serlal communications line. &

does not test the valldity of

WARNING data recelved from your
computer.

Set WTIME in milliseconds to the time that you
want the serial watchdog to timeout. To enable the
serial watchdog, type:

WATCH ON

4.10.4 Transmit/Receive Programs

The BDSS provides commands that allow programs
to be transmitted and received without using the
Editor. These commands are intended for
applications which require that a computer directly
transmit and receive programs. This does not
include Motion Link, the software communications
package that is run from an IBM-PC or compatible.
Refer to the Installation and Setup Manual for
communications format.

4.10.4.1 <BDS Command Recsiving
from the BDS5

The <BDS command is used to send the BDSS user
program through the serial port to the terminal or
computer. The transmission can be stopped by
sending an escape character. You should not rely on
the BDSS to store all your programs. Keep back-up
copies eisewhere. The <BDS command will cause
the BDSS to transmit the entire user program to your
computer. It cannot be issued in the Program mode.
For example, from the terminal type:

<BDS

and the BDSS will respond by printing out the entire
user program.

4.10.4.2 The >BDS Command
Transmitting to the BDSS

The >BDS command is used to send a new user
program through the serial port to the BDSS. The
transmission is ended by sending an escape

4-39

CHAPTER 4 - USER PROGRAMS

BDS5

character. Note that this command writes over the
contents of the user program stored in the BDSS.
This command allows the program to be directly
entered, presumably by a computer, to the BDSS. It
cannot be issued in the program mode.

The >BDS command writes
over the entire user program.

NOTE

The BDSS issues the "l->" prompt to indicate that it
is ready to load a new program line. If you are
loading from a computer, you must wait for the
prompt before beginning to transmit a new line.

The >BDS command is password protected. If a
password was set in the BDSS5 Editor, then it must be
given in the >BDS command.

Typing In these examples will
erase the user program In the
BDSS. Do not type them in
unless your program is
backed up.

o)

/1N

NOTE

For example, if a password was not set in the Editor:

>BDS

will begin transmitting the new program. If you
press the escape key before typing anything else, the
process will be aborted without changing the
program in the BDSS.

If a password was sct in the Editor, then the
password must follow the command. For example, if
the password was set as SECRET, type:

>BDS SECRET

and the BDSS will accept programs directly from the
terminal.

The user program is stored in battery backed-up
memory. If the program changes because of a
hardware problem, the BDSS issues a "USER
PROGZAM CORRUPT" error. The >BDS

comr. sd resets the user program memory, which
elimin:ces this condition. |

4-40

4.10.5 System Dump

The BDSS can transmit all variables in addition to
the user program. This is called a system dump, and
you request it with the DUMP command. For
example, type:

DUMP

and the BDSS will provide pages of information
including the program, all BDSS variables, user
variables, and user switches. This also includes all
protected variables.

“The system dump is provided so that the information

from the dump can be directly re-transmitted to any
BDSS. This changes all NON-PROTECTED
variables. The DUMP command precedes protected
variables with a semicolon (";"). This makes the line
2 comment so that when the line is re-transmitted, it
bas no effect. If the ";" were not there, re-
transmitting the dump information would generate
an error when a protected variable was changed.
Every line of the user program is preceded with a
semicolon for the same reason.

4.10.5.1 Version Dump
Your BDSS will print out its firmware version at any
time with the DUMP VERSION command:

DUMP VERSION

4.10.6 Muitidrop Communications

A

NOTE

This function is not available
for the RS-232 option.

Multidrop communication allows you to have many
(up to 32) axes on one serial line. This is only
supported with RS-485. When the BDSS is in
Muitidrop mode, each axis must have a unique
address. This address is a prefix on all
communications to and from the BDSS. The adZress
is stored in variable ADDR. ADDR is set to 0 for
standard (single-drop) communications. Valid
addresses are 48 (ASCII '0') through 57 (ASCII '9")

S

S

g

S

N #
pe

%, y
S

BDSS

CHAPTER 4 - USER PROGRAMS

and 65 (ASCII 'A") through 90 (ASCII 'Z") (see
Appendix B). Note that the address must be set
before multiple units are connected to the same serial
line.

When the BDSS powers-up in Multidrop mode it is
"asleep.” When asleep, the BDSS continues to
execute programs and control the motor properly,
but it does not communicate over the serial line. The
BDSS executes commands which normally print to
the serial port (P, PS, R, RS, INPUT, and errors)
except that the output is not sent to the serial
transmitter. The delays incurred by printing are still
present. If you have print statements that delay the
program whean the axis is awake, you will have the
same delays when it is asleep, even though no
characters are being transmitted.

When you transmit its address, the BDS5 wakes up
and communicates. The address is a backslash (\)
followed by the ASCII character represented by
ADDR. For example, if your BDSS has the RS-485

option, type:

ADDR=65 sSET ADDRESS TO
,65=ASCll A

A ;WAKE UP "A”

P "THIS IS AXIS* ADDR

' ;PRINT ADDR

ADDR=0
yRAESET DRIVE TO
ySINGLE-DROP

This example sets the address
to upper case A.

NOTE

Setting ADDR to 65 makes this axis address "A" and
automatically puts the BDS5 in Multidrop mode.
This axis then waits for the "A." After this, BDSS
is awakened and it remains awake until it receives a
"\." A backslash puts ALL drives on the serial line
to sleep. If you select an axis in multidrop, only that
axis transmits and recsives.

During multidrop, the prompts are changed. If you
typed in the example from above, you would have
noticed the prompt in the above example going from
"->"to "A->" after you typed in the second line. All
prompts in a multidrop system have the axis address
as the first character of the prompt. This allows you

to know which axis you are communicating with at
all times. For example, the edit prompt goes from
“e->"to "Ae>". In this way, each prompt from each
axis is unique.

Table 4.17. BDS5 Prompts

Non-multidrop Multidrop
(ADDR=0) (ADDR = 65)

- A=>
== A=>
B> Ag->

t... At..
e-> Ae>
i-> Ail>
f-> Af>
c-> Ac>

4.10.6.1 Broadcast

You may want to send all BDSS's on the serial line a
command simulitaneously. This is called a
broadcast. You can broadcast by sending "*." In
this case, all BDS5's execute the command. During
a broadcast, none of the BDSS's can transmit, but all
will receive and execute the command.

4.11 PROGRAM EXAMPLES

This section lists a typical application program as
well as a sample velocity drive program. Use these
programs as models for your own. This format uses
extensive comments. The assumption is that you are
using Motion Link so that these comments will not
be transmitted to the BDSS, as they would normally
take an unacceptable amount of space. You are
encouraged to use comments because they make the
program easier to understand and correct.

For the velocity drive program first you must select
whether the input will be analog or digital (encoder
cquivalent). Be sure to set GEARI and GEARO for
your application.

4-41

- oo et £

1A LERK 4 - USER PROGRAMS

BDSS

iNAME OF APPLICATION: PRETZEL MACHINE
\DATE A.E. NEUMAN
“REVISION HISTORY:

8-9-90 ADDED JOG BUTTONS
7-17-80 CORRECTED TEACH BUG

e Ve g, e, N,

JALARM DESCRIPTION
AS WATCH THERMOSTAT
Bs,Cs NOT USED
VARIABLES FiLL X1 WITH SPEED

BACKGROUNDS BACKGROUND PRINTING

Te N MmNy gy e,

;4O DESCRIPTIONS

JGENERAL PURPOSE INPUTS

; 1 JOG+ PUSH BUTTON

; r JOG- PUSH BUTTON

H B TEACH POSITION PUSH BUTTON

; “ CONTACTOR INTERLOCK SWITCH
; 5 PLC INTERFACE

;] HOME REQUEST PUSH BUTTON

; Ird THERMOSTAT

/GENERAL PURPOSE OUTPUT

H o1 COOLING FLUID PUMP
; 02 SPINDLE MOTOR CONTACTOR
; 03 PLC INTERFACE

;' MANUAL NOTUSE

READY CONNECT TO PLC
STATUS NOT USED
;USER VARIABLES

; X1 STORE NUMBER OF CYCLES RUN
; x2 STORE LAST POSITION RUN TO

; X3 INTERMEDIATE CALCULATION

; X4 LOOP COUNTER

; X5 LOOP COUNTER

4-42

/DEDICATED l/O
; CYCLE CONNECTED TO PLC
GATE NOT USeD
HOME CONNECTED TO HOME LIMIT SWITCH
umrr CONNECTED TO OVERTRAVEL LIMIT SWITCH
D

MOTION CONNECTED TO STOP PUSH BUTTON

e

i

i
A

i

BDSS CHAPTER 4 - USER PROGRAMS

i X6-X250 NOT USED

USE'R SWITCHES
; XS1-XS50 NOT USED

)
2

.
2
.

;APPLICATION PRO GRAM

POWER-UPS ;PO WER-UP LABEL

PLIM OFF SOFTWARE LIMITS NOT USED HERE
iCONTINUE YOUR POWER-UP PROGRAM HERE

END

s 1 OFF

P "THERMOSTAT (INPUT I7) OPENED*
P "PROCESS BEING CLOSED DOWN™

DIS ;DISABLE THE BDss
B ;BREAK PROGRAM EXECUTION
VARIABLES

INPUT *ENTER NEW SPEED* X

END

Auros {AUTO LABEL

sWRITE YOUR AUTO PROGRAM HERE
END

MANUALS /MANUAL LABEL
/WRITE YOUR MANUAL PROGRAM HERE
END

:WRITE MORE OF YOUR PROGRAMS HERE
END

BACKGROUNDS
/WRITE YOUR BACKGROUND PRINTING ROUTINE HERE
END

!

isanom ERROR HANDLER
/WRITE YOUR ERROR HANDLER HERE
B /END OF SAMPLE PROGRAN

4-43

CHAPTER 4 - USER PROGRAMS

BDSS

;VELOCITY DRIVE SAMPLE PROGRAM

‘DATE NAME
POWER-UPS$;EXECUTE ON POWER UP
PL OFF :DISABLE THE POSITION LOOP
VNUM=447392 ;SETS VELOCITY UNITS TO RFM.

{ VDEN=100)
ANUM=447392 ;SETS ACC UNITS TO RPM/SEC
ADEN=100000
AMAX=100000 ;SET THE MAX ACCEL RATE (RPM/SEC)
ACC=1000 ;SET THE NORMAL ACCEL LIMIT
DEC=1000 +SET THE NORMAL DECEL LIMIT
;ACC AND DEC ARE RAMP LIMITS FOR GEAR MODE,
:ASSUMING THAT PL IS OFF.
;
GEARI=10 ;THIS SETS THE GEAR MODE FOR 25%,
GEARO=40 ;APPROX. 10 V = 3000 RFM FOR AN

;ANALOG INPUT. THE PROPER LEVEL OF
;GEARI AND GEARO DEPENDS ON THE
;SYSTEM AND THE INPUT FORMAT. THE
;JADJUSTMENT OF GEARI AND GEARO IS
JEQUIVALENT T2 A DC GAIN ADJUSTMENT OR
sSCALE FACTO#® POT FOUND ON MANY

*ANALOG DRIVES.

;:NOTE THAT ACC/DEC RATES ARE LIMITED BY ACC AND

*DEC ONLY WHEN PL IS OFF.

EN :ENABLE DRIVE

GEAR ON ‘ENABLE ELECTRONIC GEARBOX

VOFF=0 “THIS SETS THE OFFSET VELOCITY.
‘VOFF IS SET TO ZERO WHEN GEAR IS
‘TURNED ON.

;IF THERE IS NEED TO ADJUST FOR VELOCITY

;DRIFT IN THE INPUT, THEN ADJUST VOFF

;TO THE PROPER LEVEL SO THAT DRIFT STOPS.

’B yDRIVE IS NOW IN ELECTRONIC GEARBOX
;END OF SAMPLE PROGRAM

e ,y"
S

i

N

BDSS

CHAPTER 5 - DEBUGGING

CHAPTER 5

DEBUGGING

5.1 INTRODUCTION

The information in this chapter will enable you to
rectify problems you may have while programming
the BDS5. When you write programs, you probably
will inadvertently include a few errors or bugs. The
best step you can take to correct errors is to prevent
them by following the programming practices
provided in this manual. Every effort has been made
to make the BDSS language as simple as possible
with BASIC-like commands, algebraic math, and a
varicty of conditional commands. Still, some bugs
are almost certain to surface in a new program. The
BDSS provides two execution modes to help you
debug your program: Trace and Single-Step.

5.2 DEBUGGING MODES

5.2.1 Single-Step

If the error occurs in a section of your program that
is not time-~critical, you can use single-stepping to
help track down the error. When you execute your
program in the Single-Step mode, each command is
printed out. The BDSS waits for you to press the
ENTER key before executing the command. Use the
nested-IF example given previously in this manual.
Enter the program, set X1 and X2 equal to 1, and
turn SS on by typing SS ON. Then begin execution

at label 55 by typing RUN 55. The following line
should be displayed:

55%
Se>

Press the ENTER key and the response should be:

IFX1GTO
Se>

You can probe the BDSS5 variables from the Single-
Step mode without stopping your program. For
cxample, type:

P X1

and the BDS5 should respond with;

1
S—=> .

In this case, the BDS5 executed the print command
and displayed the single-step prompt, indicating it is
ready for another command. Now press the ENTER
key repeatedly to step through the program.

This example shows several characteristics of the
Single-Step mode:

* All commands are preceded by the trace prompt:

5-1

CHAPTER 5 - DEBUGGING

BDSS

=

» Print statements are active in the Single-Step
mode. Notice that the results of the P command
are printed normally, as they are in the Trace
mode.

s Ouly the executed commands in the IF, ELIF,
ELSE, and ENDIF sets are shown. Notice that
none of the commands following the first print
command are shown.

* You can execute commands from the Single-
Step mode.

‘You can also enter the Single-Step mode from your
program. To do this, you should include SS ON in
your program. To exit the Trace mode, you can
include SS OFF in your program or type it from the
single-step prompt. You can also press the escape
key two times.

5.2.2 Trace

If the error occurs in a section of your program that
is not very time-critical, you can use trace to help
track down the error. When you execute your
program in the Trace mode, each command is
printed out just before it is executed. Use the nested-
IF example given earlier in this chapter. Enter the
program, set X1 and X2 equal to 1, and turn TRC on
(TRC ON). Then begin exccution at label 55 (RUN
55), and the following lines should be displayed:

T...558

T.IFX1GTO

T.IFX2GTO

T.. P "BOTH X1 AND X2 > 0"
BOTHX1 ANDX2>0

T.. ELSE

T.. ENDIF

T..ELSE

T...ENDIF

T..B

-

This example shows several characteristics of the
Trace mode:

* All commands are preceded by the trace prefix:

5-2

ot i man

+ Print statements are active in the Trace mode.
Notice that the results of the P command are
printed just below where the print command is
displayed.

* QOnly the executed commands in IF, ELIF,
EILSE, and ENDIF sets are shown. Notice that
none of the commands following the first print
command are shown. This helps you debug
your program by only showing the commands
that are executing.

* You cannot type in commands from your
terminal while the BDSS is executing in the
Trace mode.

You can also enter the Trace mode from your
program. To do this, you should include TRC ON in
your program. To exit the Trace mode, you can
include TRC OFF in your program, or you can press
the escape key two times. '

5.2.2.1 Motion Link and Trace

Motion Link is the software communications
package provided for the IBM-PC and compatibles.
IBM-PC and compatibles can communicate at 9600
baud only in that they can receive and transmit a
character at that frequency. However, they cannot
receive an indefinite number of characters at that
rate because the computers are not fast enough to
process the characters. This leads to a problem in
the Trace mode because the BDSS can transmit
characters much faster than most PC's can process
them. This can lead to delays of minutes between
when the BDSS5 transmits a character and when the
computer displays it. The best way to cure this
problem is to reduce the baud rate from Motion Link
(use the *U command), and power the BDS5 down
and then up to cause a second autobaud (make sure
ABAUD is on before powering down). Start with
1200 baud and see if the problem is cured.

5.3 DEBUGGING AND MULTI-
TASKING

If your program uses multi-tasking, the Trace and
Single-Step modes show you which level is currently

"\u«wﬂ,f

%
agpga”

BDSS5

CHAPTER 5 - DEBUGGING

being executed. For example, enter the program
given in Section 4.8.5.2. Turn on the Trace mode
and type:

RUN 1

The result should be something like this:

T...18 ;MAIN PROGRAM
T..EN

T...MI 10000 10 ySTART MOVE
T...P *"MOVE PROCESSED*

MOVE PROCESSED
T.W 0
T.*.BACKGROUNDS
T.%.P "UPPER TASK IDLED"
UPPER TASK IDLED
T*D 250

T.*END

iWAIT FOR MOVE

;DWELL 0.25 SEC.

T*.BACKGROUNDS

T.*P "UPPER TASK IDLED"
UPPER TASK IDLED
T*D 250

T.*END

;DWELL 0.25 SEC,

(AT THIS POINT, ASSUME MOTION STOPS
AND TASK 5 IS NOT IDLED)

T...P "ALL MOTION STOPPED"
ALL MOTION STOPPED
T...B

Table 5.1. Multl- Tasking Debug Prompts

TASKLEVEL | SINGLE-STEP TRACE
PROMPT PROMPT PROMPT
Alarm A 5-A> LA,
Alarm B s-B> t.B.

“Alarm C s-C> t.C.
Variable Input 5-V> tV.
Main Program S~> t...

Background 5-*> t.*.

Notice that when the example is executing the
background level task, an asterisk (*) is printed.
Each task level prints out a slightly different prompt
in the Trace and Single-Step modes, as the following
table shows:

5.4 REMOVING CODE

If you cannot find the bug in your program with
single-step or tracs, then you must begin removing
sections of your code that you do not think are
causing the problem. The procedure is to remove
sections of your program a few lines at a time. (Of
course, save the original program on your computer
for later use.) Remove lines that you do not think
are involved in the problem. Removing lines that
you suspect are causing the problem can provide
false leads; for cxample, the problem may be
interaction between 2 section you removed (which -
Wwas operating properly) and another, unsuspected
section of your program (that was the actual source
of the problem). Your false suspicions can be
incorrectly confirmed,

The best situation is when you can make a short

(< 20 line) program demonstrate the problem. After
this, it is usually ¢asy to determine the problem. If
you get to the point where you cannot figure out your
problem, call INDUSTRIAL DRIVES for help; we
will be happy to help you. However, in order to
make efficient use of your time and ours, you must
trim down your program to a few lines that are not
working. It is very difficuit for even a skilled person
to help debug a large program over the telephone.

5-3

BDSS

CEAPTER 5 - DEBUGGING

5.5 SYNCHRONIZING YOUR
PROGRAM

This section describes the functions and variables
that allow you to synchronize the program to events,
both external and internal.

S.5.1 Using the Timers, TMR1-4

The general purpose timers TMR1, TMR2, TMR3,
and TMR4, are provided for situations where the
required timing is too complex for the Dwell
command. The timers are set in milliseconds and
are limited to 2,147,483,647 milliseconds or about
25 days. The BDSS then counts down the timer
until it reaches zero.

Type in this example, which continuously reprints a
message for 1 second:

8’ -

TMR1=1000

TIL TMR1 LE 0 P *WAITING FOR
SECOND DELAY" '

B

and type:

RUN S8

Type in this example showing how multiple waits
can be based on one timer setting:

98

TMR1 3000 ;SET TMR1TO 3 SECONDS
P "3 SECONDS* '
TIL TMR1 LE 2000

P "2 SECONDS*

TIL TMR1 LE 1000

P "1 SECOND"

TIL TMR1 EQ 0

B

and type:

RUN 9

5-4

5.5.2 Reguiation Timer, RD

Fixed length delays can be added into a program
with the DWELL (D) command. In some
applications, especially those that use profile
regulation, it is necessary to add a delay with a
length that varies with the regulating frequency.
The DWELL (RD) command is provided for these
occasions. When the external input frequency is
equal to REGKHZ the delay of the RD command is
in milliseconds, just like D command. However,
when the external input frequency decreases, the
regulated dwell time lengthens so that the DWELL
is proportional to the inverse of the extemal
frequency. For example:

458

REGKHZ 100 +SET REGKHZ TO
;100 KHZ

RD 2000 JREG DOES NOT
JNEED TO BE ON
sFORRD TO
;OPERATE

P "DELAY COMPLETE"

B

In this case, the RD command causes a 2-second
dwell when the external input frequency is 100 KHz
and a 4-second dwell when the frequency is 50 KHz.
Note that MACRO DWELLS (MCD) are regulated
by the external input that when REG is on. RD
delays are always regulated by the external
frequency, even when REG is off.

5.5.3 Motion Segments

All moves and jogs occur in segments. Normal jogs
have two segments: accel/decel, and traverse.
Simple moves (MRD, MI, and MA) have three
segments: accel, traverse, and decel, Position
dependent jogs have three segments: traverse to
position, accel/decel, and traverse. The following
table shows the different segments for BDSS moves:

vy

J
F
S

“Wﬁwﬁ g

BDSS

CHAPTER 5 - DEBUGGING

Table 5.2. Segments for Different Moves

Segment | MILMAMRD J JTAF
1 Accel Accel/Decel Traverse
2 Traverse Traverse Accel/Decel
3 Decel NA. Traverse

Macro moves have up to 30 segments, where each
accel, decel, traverse, and dwell counts as a segment.
In each case, every move begins with the variable
SEG equal to 1. As the move progresses, SEG is
incremented. When all moves are complete, SEG is
set to zero.

You can use the SEG to determine when motion is
complete, since SEG is zero when the BDSS is not
commanding a profile. For example,

46%

MA 10000 1000

TIL SEG EQ 0 P "MOTION IN
PROGRESS"

B

continually prints a message until motion stops.
Note that when SEG is zero, the BDSS is not
commanding motion. However, because there is a
lag between the command and the response of the
motor, you may want to insert a short delay after
SEG is zero:

463

MA 10000 1000

TIL SEG EQ 0 P "MOTION IN

PROGRESS"

D 100 ;ODWELL 100 MSEC-WAIT
;FOR MOTION TO SETTLE
;OUT. AT THIS POINT
;MOTION SHOULD BE
,ZERO

]

The commands TIL SEG EQ 0 and W 0 are similar,
since both delay execution until motion profiles are
complete. However, the W 0 command is an idling
command and thus allows lower level tasks to
execute. Also, the TIL command can be followed
with a statement (such as the P command above),
which is executed continuously until motion stops.

If you want to synchronize to a segment, the SEG
variable can be used with the TIL command. For
example, suppose you want to twIn on an output after
the dece] of an MI move begins. The following
sequence can be used:

473

01 OFF ;TURN OFF QUTPUT
b

Ml -50000 1000 ;sBEGIN THE MOVE

TIL SEG EQ 3 JWAIT HERE UNTIL
;SEGMENT 3 IS
;STARTED

01 ON ;TURN ON OUTPUT
;1

B

5.5.4 WAIT (W)

The WAIT (W) command can also be used for
synchronization. The WAIT command is W
followed by the segment for which you want the
program to wait, or a 0 if you want the program to
wait for motion to stop. WAIT is provided in
addition to the TIL command because it takes less
space in your program. For example, W 3 performs
a similar function to 7ZL SEG EQ 3.

The WAIT command provides a few special features
needed for motion synchronization. For example, in ..
the following program, the Wait delays execution
until segment 2 of the second move.

Mi 50000 1000 ;BEGIN THE FIRST
SMOVE

Ml -50000 1000 JCALCULATE THE
;SECOND MOVE

w2 yWAIT FOR SEG 2
;OF THE SECOND
;JMOVE .

If TIL SEG EQ 2 were used in place of W2, then
execution would delay until segment 2 of the first
move. Since you normally want to wait for the

specified segment of the last move calculated, the
WAIT command always applies to the last move.

The WAIT command never waits when motion has
stopped. For example, if you entered this program:

5-5

BDSS5

CHAPTER 5 - DEBUGGING

Mi -50000 1000
TIL SEG EQ 4 yBUG~DELAYS

JINDEFINITELY

the TIL command would delay execution indefinitely
because SEG would never equal 4. However,

Ml -50000 1000

L /BUG-DELAYS
;UNTIL MOTION
;STOPS

only delays until motion stops because the WAIT
command does not delay program execution when
motion has stopped. Normally, you should use the
WAIT command when you are synchronizing
motion to program execution. It is an idling
command and thus allows lower level tasks to
execute; also, it takes less space, waits for the last
motion program, and it does not delay execution
when motion has stopped. Use the TIL command
when you need a special function, such as printing
during the wait or if you specifically want to stop
lower level tasks from executing,

Another example of the WAIT (W) command is seen
when using multiple JOG TO/JOG FROM
commands. Normally, you should place a WAIT
(W) command between these commands. This is
because, the initial traverse of 2 JOG FROM/JOG
TOcommandbeginsassoonasthecommandis
entered. Usually, you will want the traverse to begin
at the end last specified acceleration segment. For
example, consider the Macro Move Example #1 in
Chapter 3. It could have been done with one JOG

and two JOG TO commands:

J 1000 ;START MOTION

w2 SWAIT TIL JOG
JACCEL IS DONE

JT 10000 200 JENTER JT FOR
;FIRST DECEL

w3 JWAIT TIL JT DECEL
;IS DONE

JT 11000 0 JENTER FINAL
ISEGMENT OF
JMOVE

5-6

8.5.5 Gating Motion with GATE

The GATEMODE variable allows you to pre-
calculate a profile and begin motion within 1.5
milliseconds of a switch closure. To enable GATE,
turn on GATEMODE and follow it with either:

1. One or two MA or MI commands,
2. One or two Macro Go (MCGO) commands, or
3. One Jog or MRD command.

When the hardware input GATE transitions from
low to high, motion begins. GATE is on Connector
C7, Pin 17. After motion is begun, GATEMODE is
turned off. You must re-enable GATEMODE for
cach move that you want gated. Also, you cannot
turn GATEMODE on when motion is commanded
from Jogs, MA, M, or MCGO commands. If you
turn GATEMODE on and command motion, but
turn GATEMODE off before the GATE input turns
on (thus, allowing motion to begin), the commanded
motion will be "forgotten” by the BDSS5.

In the following example, two MI commands are
eatered and precalculated with GATEMODE on,

GATEMODE ON /ENABLE GATING

MI 1000 100 +PRECALC MOVES.
MOTION

M! -1000 ;DELAYED TIL GATE
;1S HIGH

wo sWAIT FOR MOTION
;TO START

This means no motion will take place until the
hardware input GATE is high. If the above lines
were part of a program, the W command would
delay program execution until the GATE switch was
om. .

5.6 HINTS

The following section lists some hints addressing the
most common problems. Most result from a minor
misuse or misunderstanding of a BDSS function.

If you change your program in the Motion Link
Editor and the program function does not change,
you may have forgotten to transmit your updated
program to the BDSS.

5, &
S

P

BDSS5

CHAPTER 5 - DEBUGGING

If you command motion with MI, MA, MCGQ, J,
JT, or JF, and the motor does not move...

-.make sure GATEMODE is not preventing motion
(turn GATEMODE off if you are not
certain).

-.make sure CLAMP is not preventing motion (turn
CLAMRP off if you are not certain). Ifit is
CLAMP, try raising the clamp limit,
PECLAMP, somewhat. If that does not
help, turn CLAMP off. If you now get
PE OVERFLOW errors, it may be because
the motor is undersized. See the hints for
PE OVERFLOW errors below.

---make sure REG is not preventing motion (turn
REG off if you are not certain). If REG is
on, you may not be feeding in the master
encoder signal properly. Remember, it
must always count up. Check VEXT. It
should be greater than zero for profile
regulation to work.

...make sure ZERO is off,

~.make sure all tuning constants are well above zero.

Check KP, KV, KV1, and KPROP. Each
should be at least one hundred: generally,
they are above one thousand.

...make sure ILIM is not too small. IfII.IM is below

10%, the motor may not be able to
overcome frictional load.

..make sure you are commanding a speed that you

can see. The BDS5 can command speeds as

low as .0004 RPM or about one revolution
every three days, depending on how you
program velocity units. If you have
changed VNUM or VDEN from the factory
setting, temporarily restore them to see if
‘'the problem goes away.

If the motor moves and you get "PE OVERFLOW"
error (ERROR 25)...

...if the error occurs occasionally, it may be because
you have the limit (PEMAX) set too low.
Raise it by 20% and see if the problem is
corrected.

-..use the BDSS RECORD function to record ICMD
when a PE overflow occurs. If ICMD is

saturating (that is, equal to ILIM for more
than a few milliseconds), you are
commanding motion that your motor cannot
perform. See hints on motor loading, ILIM,
ACC, DEC, and PEMAX below. If the
overflow occurs at high speeds and with low
ICMD (below ILIM), see the hint about
speed problem.

-.make sure that the load does not exceed the

capability of the motor.

...make sure that ILIM is set high enough,

-..if you get the error during acceleration or

deceleration, make sure ACC and DEC are
not set too high. If they are too high, the
commanded profile will exceed the
capability of the motor.

--if you get the error during constant speed, verify

that the AC line voltage is large enough.
Chapter 1 lists the BDSS model numbers.
If the voitage you apply to the BDSS is
lower than the specified voltage, the motor
will not operate properly at high speed.

If you get overspeed errors (ERROR 13)...

...if the error occurs occasionally, it may be because

you have the limit (VOSPD) set too low.
Raise it by 20% (or as high as 120% of
VMAX) and see if the problem is corrected.

-..if it happens on acceleration, it may be because

your motor is not tuned properly. Is your
motor overshooting or ringing? Retuning
the motor-should correct the problem.

-..if it happens when the motor is rotating very

slowly so that you are sure that the speed is
not near YOSPD, your resolver or R/D
converter may have failed. This is simple to
confirm. Disable the BDS5 and write a
program that continuously prints PRD.
Rotate the motor slowly by hand and
observe PRD to see if it skips several counts
(do not be concerned if PRD skips a few
counts—look for skips of 50 counts or
more). If PRD skips more than 50 counts
when the motor is rotating slowly, contact
the factory.

5-7

CHAPTER 5 - DEBUGGING

BDSS

If the system works differently on power-up than it
does after your program starts running, remember
that many switches are reset on power-up. Your
program may set a switch that is cleared, or clear
one that is set during the initial cycle. After that, the
program may operate differently. You may also be
setting or clearing switches in your power-up routine
that may have the same effect.

5.7 ERROR LOG

The BDSS responds to a variety of conditions, both
internal and external, hardware and software, which
are grouped in a single broad category: errors. An
error indicates that there is a problem somewhere.
More serious errors are grouped as faults.

5.7.1 Error Levels

The BDSS's response to an error depends on the
error's severity. There are four levels of severity,
listed below in increasing order:

Table 5.3. Error Severity Levels and
Actions

Errors which cause warnings.

2. | Errors which cause a program break and
stop motion, in addition to Lavel 1 Actions.

3. | Errors which disable the system and set the
FAULT LED, in addition to Level 2 Actions.

4. | Ermrors which disable almost all BDSS
functions (including communications) and
flash the CPU LED to indicate the error

number. These are called firmware errors.

When any error except a firmware error occurs, a
message is displayed on the screen. The following
items are printed: the error number, the offending
entry, and an abbreviated error message. For
example, disable the drive and type in a jog:

DIs
J 100

The BDSS5 will respond with:

5-8

|ERR 50 J 100' BDS5 INHIBITED |

The error number (50), the offending entry (the
whole line), and the error message (you cannot
command a jog when the drive is inhibited) are
given on one 80-character line. The error message
starts at character 40 so that if a 40-character display
is used, the error message will not be printed. You
can display the line directly, either with the Motion
Link Editor (GOTO A LINE NUMBER selection or
*Q*0), or with the BDS5 Editor (P command).

Sometimes only an entry is bad and not the whole
line. In this case only the bad entry is printed. For
example,

PROP 2

generates:

|[ERR 83 2' ;BAD OR OUT OF RANGE |

since PROP is a switch and cannot be set to 2. If the
error comes from the program, the line number of
the offending entry is also printed. Use the Editor to
enter these lines at the top of the user program:

118
PROP 2
B

Exit the Editor and type:

RUN 11

and the response should be:

ERR 83 LINE2 '2' ;BAD OR OUT OF
iRANGE

This message shows that the error occurred on line
2. You can enter the Editor and type:

P2

and the line:

|PROP 2 _ |

will be displayed.

S

s TR AR AR

%,
S

\w«i

p

BDSS5

CHAPTER S - DEBUGGI'NG

5.7.2 DEP

If your BDSS prints to 3 Data Entry Pape] (DEP-01)
or any other 40 character wide display, the standard
error messages will not print properly. The problem
is that error messages are based on an 80 character
wide display and the DEP-01 is only 40 characters
wide. To correct this problem, the BDSS provides
the DEP switch, which, when turned on, cuts all
e1Tor messages down to 40 characters, If your BDS5
prints to a DEP-01, type:

DEP ON

5.7.3 Error History

The BDSS stores the twenty most recent errors in the
Error History. To display the entire Error History,

ERR HIST

This causes the Error History to be sent to the
terminal, with the mogt Tecent error sent first. Whep
the BDSS is powered-up, a "DRIVE POWERED Up"
message is inserted into Error History even though
this is not an actuaj error.

To clear the Error History, type:

ERR CLR

Error History remaing intact even through power.
down.

S5.7.4 Dlsplaylng Error Messages

The ERR command cap also be used to display an
abbreviated description of the eror, For example,

type:

ERR 50

The BDSS responds with:

(ERR 50 BDS5 INHIBITED]

You may display messages for errors from 1 through
999. If you tyPe in an error number that the BDSS
does not recognize, it will respond with:

[ERROR NOT FOUND]

A description of aj] CITors is given in Appendix D,

5.7.5 Firmware Errors

Firmware errors are an indication of 3 serious
problem with the BDS5, These errors stop
communications, disabje the drive, and flash the
CPULED. The CPU LED flashes several times,

CHAPTER 5 - DEBUGGING BDSS

5-10

S

c——

Wit

BDSS

CHAPTER 6 - COMPENSATION

CHAPTER 6

COMPENSATION

6.1 INTRODUCTION

The information in this Chapter will enable you to
compensate your motor for load conditions, Tuning
is an important step in setting up and maintaining
your BDSS5 servo system. This chapter defines and
explains tuning in detail. A flowchart is also
provided for easy step-by-step instructions to tune
the servo system,

6.2 SYSTEM COMPENSATION

Feedback systems (like a motor controller) require
tuning to attain high performance. Tuni g is the
process whereby the position and velocity loop gains
are set, attempting to optimize the performance of a
system (a BDS5 and a motor connected to a load) to
a three-part criterion:

" Table 6.1, Tuning Criterion

Noise Suscepibility
Response
Stability

Tuning is normally a laborious procedure requiring
an experienced person. However, the BDSS provides
many tools to aid tuning, making it a much simpler
process than it has been in the past.

In a broad sense, the performance of a system is
characterized by its noise susceptibility, response,
and stability. These quantities tend to be mutually
exclusive. The system designer must decide what
noise susceptibility (in the form of 2 "busy” motor) is
acceptable,

"Busyness" is random activity in the motor and can
often be felt on the motor shaft, Busyness in a motor
should not be confused with PWM noise. PWM
noise is high-pitched, relatively constant noise and
cannot be felt on the motor shaft,

Response is a measure of the system's quickness.
Response can also be characterized by bandwidth
and by rise time in response to a step command.,
Normally, designers want high bandwidth, though
sometimes the response is purposely degraded to
reduce stress on mechanica] components, This is
called detuning. Typical velocity loop bandwidths
range from 20 to 60 Hz, Typical position loop
bandwidths range from 0.1 to 0.2 times the velocity
loop bandwidth,

Stability measures how controlled the system is.
Stability can be measured with damping ratio or with
overshoot in response to a step command. A
discussion of different Jevels of stability follows.

S AT e e 1

CHAPTER 6 - COMPENSATION

BDSS

6.2.1 Critical Damping

Generally, the most desirable amount of damping is
Critical Damping. Critically damped systems
respond as fast as possible with little or no
overshoot. In Figure 6.1, the graph shows the
response of a BDS5 TACH signal (on Connector C2,
Pin 2) to a square wave input when the system is
critically damped.

s . ']
———— -
'

TIME (APPROX 10 Msec/Div)

Figure 6.1. Critical Damping

6.2.2 Underdamping

Sometimes the system is tuned for critical damping
and the system is still too slow. In these cases, you
may be willing to accept less than critical damping.
For applications that can work properly with a
slightly underdamped system, you may reducs the
stability to improve the response. The graph in
Figure 6.2 shows a BDSS slightly underdamped.

................................. g TETLTTTETISTS
.] [.
. . .

. . .

a 4 T

* . .

* . .
. by

- romacs
I .
. 1

.] ¢ ’

.

.
..........
..............................

.

. s

H . i

* . 1

. .]

» . ’

2 . :

<

. '

* N

. N

. .

. .

H h
PUE SR NI AU WU I S v . :
...

H

*

H

.

’

.

. ' H . . : H 1}
cmanay =
v + . .

s
I
.

TIME (APPROX 10 Msec/Div

Figure 6.2. Underdamping

6.2.3 Overdamping

An overdamped system is very stable but has a
longer response time than critically damped or
underdamped systems. Also, overdamped systems
are noisier than less damped systems with the same
response rate. The graph in Figure 6.3 shows an
overdamped system.

s
. .
. : ' .
3 3
' . 1 .
* . . ’
» i i .
’ D 1 .
. H .
1 H .
’ : ' :
') Y +
' ' . .
» » . .
H ' 1 .
.] 2
1 . '
. : L

TIME (APPROX 10 Msec/Div)
Figure 6.3. Overdamping

6.2.4 Ringing

When you are tuning the BDSS you may tune it so
that the response rings. Ringing is caused when you
attempt to tune the BDSS for either too rapid
response (too high bandwidth) or too much stability
(too much damping) or both. The only solution is to
reduce the bandwidth or the stability or both. In
Figure 6.4, the graph shows a system that rings.

TIME (APPROX 10 Msec,/Div)

Figure 6.4. Ringing

g 7
g E
g

S

e

Fisiga’

% g
ks

BDSS CHAPTER 6 - COMPENSATION
6.3 TUNING ;TYPE THESE LINES ONLY IF YOUR
;BDS5 /S UNSTABLE WHEN YOU
The TUNE command shakes {ENABLEF.I-'ZLDV?/Z,T FORGET TO
the motor vigorously, Securs ’-gi?sTgEn TUNIN GEN YOU HAVE
the motor before tuning. ;’L OFF :
WARNING
KVi=0
KV =100

The BDSS is usually shipped with a tuning that will
work reasonably well with the load inertia between

0 to 4 times the rotor inertia. Many applications
have approximately matching inertia. If your system
does, you may not have to adjust the tuning of your
BDSS. The following section describes how you can
Te-tune your system.

A

NOTE

When tuning a system, it may
be desirable to disable the
BDSS quickly. You can use
K, the KILL command, to
disabie with a one-letter
command.

The BDSS provides self-tuning. This is a feature
that senses the inertial load of your system and then
attempts to set tuning parameters accordingly. Note
that self-tuning is not fool-proof. You may need to
adjust one or two of the tuning parameters to get
exactly the response you need.

THE MOTOR MAY
OSCILLATE!

Unloaded motors tuned for a
large inertia load may become
unstable when the system is
activated. If the system
becomes unstabie, remove
the power Immediately,

WARNING

8.3.1 If Your System Is Completely
Unstabile...

If your system is completely unstable when you
enable it, remove power immediately. After
restoring power, but before enabling the BDSS, tun
off the switch PL, reduce KV to 100, and reducs XVI
to 0. This should make the system stable.

If the BDSS is still unstable, remove power and
contact the factory. If it is stable, continue on with
tuning. Do not forget to turn PL back on when you
have finished tuning. Also, PL is always turned on
during the BDSS power-up.

6.3.2 Reducing ILIM

You may need to reduce ILIM before executing the
TUNE command since the TUNE command causes
the motor to "shake" at about 15 Hz and at full
torque. This may damage some machines, Also,
lightly loaded motors can overspeed if ILIM is too
high. You should raise ILIM to the highest level
that does not cause problems, because the tuning
may not be acceptable if ILIM is too low. The effect
can be that the torque the BDSS produces is
"swamped out” by friction. If you are not sure how
much ILIM is necessary, reduce ILIM to a low value
(say 5 or 10%) and gradually raise it. If the tuning is
acceptable (that is, it does not ring or overshoot
excessively, and it does respond fast enough), then
you are done. Do not forget to restore ILIM to its

original value,

The TUNE command shakes
the motor vigorously. You
may need to reducse ILIM
before executing the TUNE
command to protect your
machine. Do not forget to
restore ILIM when tuning Is
completa.

CAUTION

6-3

BDSS

CHAPTER 6 - COMPENSATION
The TUNE command can
cause the motor to
overspeed. You may need to
reduce {LIM to prevent
overspeed errors. Do not
NOTE forgst to restore ILIM when
tuning Is compiste.

6.4 TUNE COMMAND

‘When you enter a TUNE command, you specify the
response time and the stability level. The response
time is specified in the form of bandwidth. The
higher the bandwidth, the faster the response. The
level of stability is specified as follows:

Table 6.2, Allowed Tune Command
Stability Settings

Slightly overdamped
Critically damped
Slightly underdamped

[V I S I

The drive will be enabied and
the motor will turn. Make
sure the motor is secured.
Even If the BDSS is disabled,
WARNING 1t will enable long enough to
execute the TUNE command.

Enable the BDSS and type this command:

TUNE 30 2

The BDSS will shake the motor and set the tuning so
that the velocity loop has a bandwidth of
approximately 30 Hz and is critically damped. The
allowed bandwidths are 5, 10, 15, 20, 25, 30, 40, and
50 Hz.

The tune command does not always provide an
acceptable tuning. If not, you can tune the BDSS
yourself,

6.5 TUNING THE BDSS5 YOURSELF

If you use the TUNE command, and the resuiting
tuning variables cause the system to oscillate, there
are generally two reasons:

1. The bandwidth in the TUNE command is set
too high for the system to function properly.

2. The low-pass filter is set too low (this only
applies if LPF is on).

In either case, first raise the low-pass filter frequency
(LPFHZ) to as high a level as is acceptable. You
may even decide to remove it by setting LPF to off.

If the TUNE command does not provide a suitable
set of tuning variables, then you have the option of
tuning the BDSS yourself. You will need an
oscilloscope. Connect an oscilloscope channel to
TACH MONITOR on Connector C2, Pin 2; attach
the scope ground to COMMON on Connector C2,
Pin 14. Use the TUNE command to get as close as

possible.

6.5.1 Tuning the Velocity Loop

The drive will be enabled and
the motor will turn. Make

sure the motor Is secured.
WARNING

Drawing A-84888 shows how to manually tune an
integrating velocity loop. This procedure sets KV
and KVI. First, you should use the TUNE command
to set KV and KVI close to optimum values. Apply
DC bus voltage to the BDS5. Follow the instructions
shown on Drawing A-84888. The motor should start
and stop every second. Press the escape key to enter
the Monitor mode where you can change tuning
constants. The tach should be on the oscilloscope,
showing the motor performance. As the drawing
notes, you should increase KV for increased stability
and increase KVI to make the system more
responsive,

You need to make several decisions: Is the unit
underdamped? Is the system response too fast? Is
the system ringing? Is there a resonance present?

e

R Tt e ST N

o &
s

i

BDSS

CHAPTER 6 - COMPENSATION

Then, take the action listed on Drawing A-84888 in
the the Installation and Setup Manual.

There is a close relationship between the response of
the system and the variable KVI. Response is often
measured by the system bandwidth. Bandwidth is
the frequency with which the system response falls to
70% of the nominal response. For example, if your
velocity command was a sine wave with peaks of
2100 RPM, the bandwidth would be the frequency
that the response fell to a sine wave with peaks of
+70 RPM. The relationship between velocity loop
bandwidth and XVI is shown in Table 6.3.

Table 8.3. Velocity Loop Bandwith vs. KVI

VELOCITY LOOP
KVI BANDWIDTH
1400 5Hz
2650 10 Hz
4000 15 Hz
5000 20Hz
6250 25Hz
7500 . 30Hz
8750 40Hz
10000 50 Hz

If you are using a proportional velocity loop (PROP
is on), then adjust KPROP until the motor is
performing appropriately.

6.5.2 Tuning the Position Loop

Once the velocity loop is tuned, you can tune the
position loop. Break program execution and stop

motion by typing S. Type in the following
commands:

The drive will be enabled and
the motor will turn. Maks

sure the motor is secured.
WARNING

PEMAX 30000

ZPE ;ZERQO POSITION
JERROR TO AVOID
;POSITION ERROR
JOVERFLOW WHEN
JENABLING POSITION
;LOOP

PL ON

KF=0

RUN 80

The motor should again begin turning. Now adjust
KP until the motor is performing appropriately.
Table 6.4 shows the relationship between a properiy
tuned position loop (that is, the highest setting for
KP) and velocity loop bandwidth. Note that the
position loop bandwidth will be substantially lower
than the velocity loop bandwidth (usually by a factor
of 5 to 10).

Table 6.4. Velocity Loop Bandwidth vs.

KPuax
VELOCITY LOOP
KPyax BANDWIDTH
500 5Hz
1000 10Hz
1500 15Hz
2000 20Hz
2500 25Hz
3000 30Hz
4000 40 Hz
5000 - 50Hz

If you want to eliminate some or all of the following
error, you can raise KF as high as unity feed-
forward (Unity is defined as KF = 16384). However,
the larger you make KF, the more you must reduce
KP to eliminate overshoot and thus reduce the
position loop performance. If you cannot get the
desired performance from the position loop, then try
reducing ACC and DEC to reduce overshoot. This
can be a good way to limit overshoot in the position
loop, and you may be able to raise KP slightly (about
20%) to improve performance.

6-5

e s e

ST S P

CHAPTER 6 - COMPENSATION

BDSS

6.6 RECORD AND PLAY

The RECORD command allows you to record most
BDSS variables in real time for later playback. You
can simultaneously record up to four variables. You
can record any variable except PE, REMOTE,
TMR1, TMRZ2, TMR3, TMR4, VAVG, VXAVG, or
any user switches. You can specify the time between
points from one millisecond to one minute. You can
record up to 1000 instancss of 1 variable, 500
instances of 2 variables, 333 instances of 3, and 250
instances of 4 variables.

The format of the RECORD command is:
RECORD <Number> <Time> <1 to 4 Variables>

Where number is the number of intervals over which
the variables will be recorded, and time is the time in
milliseconds of each intarval.

Note: <Number> <= 1000 for 1 Variable
<Number> <= 500 for 2 Variables
<Number> <= 333 for 3 Variables
<Number> <= 250 for 4 Variables

For example,
405% sBEGINNING LABEL
EN JENABLE BDSS
RECORD 500 1 VFB ;RECORD VFB8 FOR
J 1000 ;1/2 SECOND JOG
B8 ;1000 RPM

Records the velocity response of the BDS5 to 2 JOG
command,

After data is recorded, you can use the PLAY
command to print each point on the screen.
However, Motion Link provides all the routines to
retrieve, plot, print, and store recorded data on your
computer and line printer. See Chapter 3 for details
on using the PLAYBACK selection.

The RECORD command is useful when tuning a
system because you can display the BDSS response
to commands without an oscilloscope. However, it is
not limited to tuning. For example, you can record
VCMD to plot a motion profile, or you can plot
VEXT to watch the external encoder/analog input.
You can also plot user variables to watch the
performance of your program.

6-6

6.7 PROBLEMS

Some times there are problems tuning. Usually the
TUNE command will provide you with a tuning that
is either acceptable or close to acceptable. If not, you
can tune the system yourself. Sometimes there are
physical factors that prevent you from attaining the
performance you need. These problems fall into four
categories:

1. Overloading the Motor
2. Compliance
3. Resonance

4, Changing Load Inertia or Reflected Inertia

6.7.1 Overloading the Motor

Overloading the motor is the most common problem
for positioning systems (that is, systems with PL on).
If you overload the system, the position error can
8TOW to very large values. When the command
stops, the motor "reels in" the following error and
can overshoot excessively. It looks like a tuning
problem, but it is actually caused by the motor being
undersized, ACC or DEC being set too high, or
ILIM being set too low.

When 2 motor is overloaded, it has the following
characteristics:

. The system overshoots, sometimes
excessively, but does not ring or oscillate,

. Reducing ACC and DEC eliminates the
problem.

. Turning off PL eliminates the problem.

. The motor current is near or at saturation
during 1 large part of the move. Use the
BDSS RECORD function to record ICMD. If
ICMD is equal to ILIM for more than a few
milliseconds, then your system is saturated.

Gverloading the motor can be corrected by the
following actions:

. Reducing ACC and DEC.

-

BDSS

. Reducing the load on the motor.
. Increasing ILIM (if it is less than IMAX).
. Using a BDSS with a higher current rating.

. Using a motor with more peak stall torque.

6.7.2 Compliance

In compliant systems, the load is not tightly coupled
to the motor shaft. If you move the load by hand,
you can feel springiness. Compliant systems often
are very stable when you tune with lower target
bandwidths. However, they oscillate vigorously at
low frequencies when you try to tune them for higher
bandwidths.

When a system is compliant, it has the following
characteristics:

. There is springiness between the motor and
the load or at the motor mounting plate.

i The TUNE command calculates tuning
variables that cause the system to oscillate.

. The frequency of oscillation is less than
100 Hz.

Compliance can be corrected by the following
actions:

. Reduce the bandwidth of the system.

* Stiffen the machine so the load is not springy.

6.7.3 Non-Linear Mechanics

BDSS tuning is based on linear control theory. The
most important requirement of a linear motor
controller is that the total reflected inertia should not
change substantially during operation. Load inertia
includes all the inertia reflected to the motor, such as
inertia through gearboxes and leadscrews. Inertia
can change in ways that are easy to understand, such
as the inertia of a spool of cable decreasing when the
cable is unrolled. It can aiso change in less intuitive
ways, such as chain drives (which have load in one
direction but are unloaded in the other) and systems

CHAPTER 6 - COMPENSATION

with excessive backlash (where there is no load
when gear teeth are not touching).

When the inertia changes, the system has the
following characteristics:

. System performance is excellent when the
motor is in some positions and unacceptable
when the motor is in other positions.

. Reducing the bandwidth eliminates the
problem.

If the system performance is poor because of
changing inertia, you can make the following
corrections:

. Correct the system mechanics so that inertia is
constant.

. Detune (that is, reduce the bandwidth of) the
system. If the times when your system will
have excessively changing inertia are
predictable, you can write your program to
detune your system in these regions.

6.7.4 Resonance

Resonance is a high frequency (> 500 Hz) where the
system mechanics oscillate. Normally, systems with
resonance will be very stable when you tune with
lower target bandwidths. As you increase the target
bandwidth, you will begin to hear a fairly pure, high
pitch. If you want to decrease resonance, use
shorter, larger diameter driving shafts. Often, the
low-pass filter can help you raise the bandwidth 20%
or 30%, but this can be a difficult trial-and-error
process: you slowly lower the low-pass filter
frequency (LPFHZ) and attempt to raise the target
bandwidth for tuning.

When your system has a resonance, it will have the
following characteristics:

. The system will make a clear, high pitch
(>500 Hz). Do not confuse this problem with
compliance, which has a low pitch.

If the system performance is poor because of
changing inertia, you can make the following
corrections:

CHAPTER 6 - COMPENSATION BDSsS

. Enable the low-pass filter (LPF) and reduce

LPFHZ, if necessary. {f

. Reduce the bandwidth of the system.

. Shorten the length and increase the diameter
of shafts and lead screws.

6.7.5 Low-Pass Filters

The LPF switch enables the low-pass filter. It can be
turned on and off when the drive is operating., The
frequency of the low-pass filter is stored in I PFHZ
in Hz. It can also be changed when the drive is
operating. For example, if LPFHZ is 200 and LPF is
on, then a 200 Hz low-pass filter is run in the BDSS.
The filter can be modeled as two cascaded, low-pass,
single-pole filters, both with a 3 dB frequency of 200
Hz. LPFHZ should be set as high as possible, since
it degrades the system performance.

For example, the following sequence sets the low-
pass filter to 250 Hz and enables the drive.

LPF ON ;ENABLE LOW-PASS FILTER
LPFHZ 250 ;SET BREAK FREQ, TO 250
yHZ

It the low-pass fllter Is on, the
TUNE command may not

work well.
NOTE

6-8

_

BDSS5

APPENDIX A

WARRANTY | NFORMATION

APPENDIX A - WARRANTY INFORMATION

Industrial Drives, a Kollmorgen Division, warrants
that equipment, delivered by it to the Purchaser, will
be of the kind and quality described in the sales
dgreement and/or catalog and that the equipment
will be free of defects in design, workmanship, and
material.

The terms and conditions of this Warranty are
provided with the product at the time of shipping or
In advance upon request,

T3 em

APPENDIX A - WARRANTY INFORMATION

BDS5S

R

BDS5

APPENDIX B- ASCII TABLE

APPENDIX B
ASCIl TaBLE

The chart on the following page is an ASCI Code
and Hexadecimal conversion chart. The BDSS does
not support extended ASCT (128-255).

F e I

BDSS

APPENDIX B - ASCII TABLE

B Tt L R I P S, P

"00]543AU0) X 0y o “(GGZ-BZ1) T1JSY Papuayxa yoddns jou saop gyg My
001510007 X34{ 0y jou|33 Jof papjaod S| jqy Ay Jo pys spy)

114 T 1 7] S._”E] o - O \ m. w: 7
94 vl N u v N < -
o Lnﬂlu Eﬂh w F 1 ﬂ " mle
T _ [N b 3 A » g]
ivs RE? Lﬁ Elu T : A] ¥ s
e.m - q 7 mh —. wm|n|w
1 |/ : n
R lir4 T b I§ I X I
e Fx Pu Fx fur
IR m_m 14 u g A al&lw
e A Wogr——18 b B—4
9y A] A % d @
(4 m& 0 i . i n 9 s_a 0 1]
14 (2] T
: } I P I
14 :NN m EL S 9 g U
4 LE 3 T 1 q 1 q
o 2
i :.NN 1 UE __Le_ “q_:_ s_ | ”w ¢] G] v 1y
A Q @

LIVID NOISTAANOD XdAH NV dd0D I

B-2

BDSS APPENDIX C - SOFTWARE COMMANDS

APPENDIX C

SOFTWARE COMMANDS

C.1 EXPRESSIONS AND SYMBOLS

The following expressions and symbols are used in defining the syntax of the instruction set:

<Label>$ One or two digits followed b

¥ & dollar sign. When using GOSUB or GOTO, a user
variable can be used as <L.a

bel> if its value is between 0 and 99,

<Time> Specifies time in milliseconds. Must be between 0 and 2,147,483,647 (about 25
days).
<Logical> - One of the following: GT, GE, LT, LE, EQ or NE for greater-than, greater-than-or-

equal-to, less-than, less-than-or-equal-to, equal-to, or not-equal-to, respectively.

TS TRy { R

<Expr> Any valid math expression. Valid math expressions include user variables, indirect
references to user variables,

constants, algebraic and logical math operators,
parentheses.

Examples of valid expressions are:

i
T, AT 4R

X1"X2*X3
(X2-VFB)/VOFF
X1&07FH
PFB-PCMD
TMR1/100

(X1+X2)*(X1+(X2-X3))

<Position> Any valid expression for position. The result is assumed to be in position units. The
range is +/-2,147,483,647 counts. If your syste;

m has position units, then the limits
are the position unit equivalent of +/-2,147,483,647.

C-1

APPENDIX C - SOFTWARE COMMANDS BDSs

C-2

<Ve locity> Any valid expression for velocity. The result is assumed to be in velocity units,

<Traverse> Any valid expression for velocity. The result is assumed to be in velocity units.
Traverse is used in macro-moves as the middle speed of three speed moves.

<End> Any valid expression for velocity. The result is assumed to be in velocity units. End
is used in macro moves as the end speed of two and three speed moves.

<Text> <Text> is any text string of characters. The control character symbol(*} converts the
: succeeding character to a control character,

{} Indicates an optional paramet=r.

Constants-0O N, ONandYare equivalent to 1. OFF and N are equivalent to 0. The constants can be
OFF,Y,and N used in any expression and in response to the Input command.

S

BDS5 APPENDIX C - SOFTWARE COMMANDS

C.2 COMMANDS

The following commands are the instructions used to program the BDSS5.

-

Comment. Comments can follow any instruction. Also, entire lines can be

comments. The semicolon must be preceded by a space unless it is the first character
in a line. Allowed on any line including the BDSS Editor.

GOTO 5 ;THIS IS A COMMENT FOR A COMMAND
;THIS ENTIRE LINE IS A COMMENT

Labels. Labels can be 0-500 and cannot be repeated. They must be decimal
constants. They are allowed only from the user program. The following labels are
special purpose labels:

AS A alarm label

Bs B alarm label

cs C alarm label
VARIABLES variable input labe]
POWER-UPS power-up label
AUTOS AUTO label
MANUALS MANUAL labe]
ERRORS " error handler label.
BACKGROUNDS background label.

Format: <lLabel>$
<Alamm Label>$ <Switchs> <On/Off>

Example:

55%
BACKGROUNDS
A$ i1 ON

i s ST s S s F

APPENDIX C - SOFTWARE COMMANDS BDSs

?

CONTINUE

DUMP

Quick If. Conditionally executes one instruction if the condition is true, and another
instruction if the condition is false. Allowed from the interactive and monitor modes,

and the user program.
Format: ? <Condition> {Instruction} {:} {Instruction}

Example:

? PFB GT 100 P PFB

?X1 EQ 1P "X1=1":P "X1 <> 1"
? X1*X2 NE X4/(X5+5) B)
? LIMIT EQ ON : P "LIMIT IS OFF"

<Condition> is the same as <Expr> <Logical> <Expr>.

<Instruction> is any instruction except TIL.

Break program execution. Allowed from the user program or the monitor mode.

Format: B

Continue motion at the present speed. Turn REG and GEAR off. Optionally, you
can specify the number of milliseconds, up to 1 second, that you want the present
speed averaged over. If this time is not specified, the speed is averaged over 1
millisecond.

Format: CONTINUE
CONTINUE <time>

Example:

CONTINUE 100 ;AVERAGE SPEED FOR .1 SEC.

Display all the variables and the user program on the terminal, or display the version.
Allowed from interactive. Drive must be disabled.

Format: DUMP ;Dump variables and program
DUMP VERSION ;Dump firmware version

%
g

S’

i

g

BDS5

APPENDIX C - SOFTWARE COMMANDS

Dis

ED

Delay program execution for a specified amount of time, up to 2,147,483 647
milliseconds or 25 days. D is an idling command (that s, if you are using multi-
tasking, D suspends the task but lets other tasks proceed). Allowed only from the
user program.

Format: D <Time>

Example:

D 1000 ;DWELL FOR 1 SECOND

Disable the BDSS. This command turns off the variable READY. Referto Drawing
C-84732 for more information. Allowed from interactive mode, monitor mode, and
user program.

Format: DIS

Edit the user program. Allowed only from interactive mode.

Format: ED
Editor Commands:
DEL Delete a line
F Find string
C Change string
I Enter insert mode
P Go to a line and print it
NEW Clear user program
SIZE Show remaining program memory
PASS Change password
Empty Line Go to the next line and print
Escape Key Exit the insert mode/editor

C-5

Cor g o

APPENDIX C - SOFTWARE COMMANDS BDS35

ELIF

ELSE

EN

END

ENDIF

C-6

Part of block if. Conditionally begins block execution. Allowed from the user
program. (See the IF command).

Format: ELIF <Expr> <Logical> <Expr>

Example:

ELIF PFB GT 100

<Expr> <Logical> <Expr> is the condition.

Part of block if. Begins last block execution, Allowed from the user program. (See
the IF command).

Format: ELSE

Enable the BDSS5 This command turns on the variable READY. Refer to Drawing
C-84732 for more information. Allowed from interactive mode, monitor mode, and

user program.
Format: EN

End a task. If you are using multi-tasking, END ends that task. If there are no
special labels present in the program (except POWER-UPS), then END is equivalent
to Break (B). If there are special labels, the BDS5 becomes inactive waiting for a task
to resume execution.

Format: END

Part of block if. Ends block if. Allowed from the user program. (See the IF
command),

Format: ENDIF

1
S 4
i

BDS5 APPENDIX C - SOFTWARE CoMMANDS
ERR Display ap eITor message, display the error history, or clear the error history,
Allowed from interactive and monitor modes ang USser program,
Format: ERR <Error Ni umber>
ERR <Option>
Where <Error Numbers is 3 vajig eITor number apg <Option> cap be HISTor LR
Exampje
ERR 25 +DISPLA Y MESsAgs FOR ERR 25
ERR HIST DISPLA Y ERROR HISTORY
ERR CLR ;CLEAR ERROR HIsToRY
GOSuUB Gotoa subroutine, Allowed only from the yser program.
Format; GOSUB <Label>
Example:
GOSUB 25
GOSUB x3
A GOTO Go to a program label. Alloweq only from the yser program

C-7

APPENDIX C. - SOFTWARE COMMANDS BDSS

C-8

H

IF

Delay (Hold-up) execution of a task undl a switch is in the specified state. You can
use any switch except REMOTE and XS11-XS50 (XS1-XS10 are allowed.) His an
idling command; if you are using multi-tasking, H suspends the task but lets other
tasks proceed. Allowed only from the user program.

Format: H <Switch> <ON/OFF>

Example:

H XS1 ON
H 11 OFF

Conditionally execute a block of instructions. Allowed from the user program.

Format: IF <Expr> <Logical> <Expr>
Example:
IF PFB GT 100
JFOLLOW WITH ELSE, ETC

IF X1*X2 NE X4/(X5+5)

yFOLLOW WITH ELSE, ETC

o

s

S

’
B e TRt R

N 7
ol

BDS5

APPENDIX C - SOFTWARE COMMANDS

INPUT

JF.

Prompt the operator for an input variable, If limits are specified, then make sure
operator stays within them. If they are not specified, then use the limits of the
variable being prompted for. W is an idling command (that is, if you are using
multi-tasking, INPUT suspends the task until the operator presses the enter key, but
lets other tasks proceed). Allowed only from the user program.

Format: INPUT "<Text>" <Variable>{decimal} {Min} {Max}

Where <Variable> is any valid, programmable variable. You can optionally specify
maximum and minimum limits (if you include one, you must include the other).
{Min} is the minimum input allowed and {Max} is the maximum input allowed.

If you specify decimal, the input received from the operator will be multiplied by
10" {decimal}. The BDSS5 does not use floating point math internally. The input
command allows you to receive floating point input from the operator.

Example:

INPUT "ENTER NEW SPEED" X1[3] 5000 5000
INPUT "ENTER NEW CURRENT LIMIT" ILIM

In the first cxaﬁple, if the operator entered 1.234, the BDSS would store 1234.0 in
X1; that is, 1.234 is multiplied by 10*3 = 1000. Note that if you specify {decimai},

{Max} and {Min} limit the value after the multiplication. In the above example,

{Max} = -5000 limits the operator to -5.000,

Jog at a continuous speed. Allowed from the interactive mode and the user program.
Format: T <Velocity>

Example:

J 1000
J X1 -

Jog, but wait until the Position command (PCMD) crosses the specified position
before beginning accel/decsl. Speed must not be zero when executing this
instruction. Allowed from the interactive mode and the user program.

Format: JF <Position> <Velocity>

Example:

JF 10000 10
JF 100*X1 4000

APPENDIX C - SOFTWARE COMMANDS BDSS

JT

MA

MCA

C-10

Jog at a continuous speed, but delay beginning accel/decsi so that the Position
command will equal the specified position when the accel/dece] is complete. Allowed
from the interactive mode and the user program.

Format: JT <Position> <Velocity>
Example:
JT -610000 100

JT 100*X45 -800

Disable the drive and break the program. Allowed from interactive and monitor
modes and the user program. See Drawing C-84732 for more information.

Format: K

Move to the specified position at the specified speed. If the speed is not specified, it is
assumed to be VDEFAULT. Allowed from the interactive mode and the user
program.

Format: MA <Position> {Velocity}

Example:

MA 10000 1000 yMOVE AT 1000
MA 0 ;MOVE TO 0 AT VDEFAULT

Define an absolute macro-move section to the specified position at the specified
traverse and ending speeds. See Chapter 5 for descriptions of defauits. Allowed from
the interactive mode and the user program. -

Format: MCA <Position> {Traverse} {End}

Exampie:

MCA 1000 100 500
MCA 2000 10
MCA 5000

MCA 7000 0

‘“«wwﬁ“/

o
Sz

S

S

BDSS APPENDIX C - SOFTWARE COMMANDS
MCD Define a macro-move dwell section for the Specified time. This is only valid when
the previous macro-move section ended at Zero speed. When used with the profile
regulation mode, time is inversely proportional to external input frequency. Allowed
from the interactive mode and the user program,
Format: MCD <Time>
Example:
MCD 500 ;DWELL 0.5 SECONDS
MCGO Execute a macro move. This is only valid when the last macro-move section ended at
zero speed. Allowed from the interactive mode and the user program,
Format: MCGO
MCl1 Define an incremental macro-move section for the specified distance at the specified
traverse and ending speed. See Chapter 5 for descriptions of defaults. Allowed from
the interactive mode and the user program.
Format: MCI <Position> {Traverse} {Ead}
Example:
MCI 100000 500 5000
MC! 3000 10
MC! 56000
MC! 80000 ;LAST SECTION
Mi Incrementally move the specified distance at the specified speed. If the speed is not

specified, it is assumed to be VDEFAULT. Allowed from the Interactive mode and
the user program.

Format: MI <Position> {Velocity}

Exampie:

MI 10000 1000 ;MOVE AT 1000
M! -1000 ;MOVE BACK 1000

C-11

APPENDIX C - SOFTWARE COMMANDS BDS5

MOTOR

MRD

NORM

C-12

Display the present motor drive combination. This command is used to determine the
motor for which your BDSS was configured when it was shipped. This command is
not normally used by the customer.

Format: MOTOR

Make an absolute move so that the output of the Resolver-to-Digital converter output
(PRD) will equal the specified value. A direction option indicates whether the motion
should be clockwise (CW), counter-clockwise (CCW), or whichever way is shortest
(no option specified). Allowed from the interactive mode and the user program.

Format: MRD <R/D-Position> <Velocity> {Option}

Where R/D-Position is greater than 0 and less than the rssolution of the Resolver-to-
Digital (R/D) converter. For the standard 12-bit resolution R/D converter, the upper
limit is 4095. Option is either CCW or CW.

Example:

MRD 3200 100 CCW;MOVE CCW AT 100 RPM
MRD 0 50 ;GO BEST WAY AT 50 RPM

Normalize the Position command and position feedback to the specified position.
Allowed from the interactive mode and the user program when there is no
commanded motion.

Format: NORM <Position>

Example:

NORM 1000

Vg

&, o
St

BDS5 APPENDIX C - SOFTWARE COMMANDS
-] Print the variables specified with optional formats on a new line, Allowed from the
interactive and monitor modes and the user program.
Format: P <Expr>{format} | "<Text>" ..
Where {format} is the print format specifying field width and Hex output, The
ellipsis (...) indicates that the P can be followed by up to 15 different expressions and
texXt strings.
Format can be: B Binary
H Hex
S ON or OFF
C ASCII Character
Blank Decimal Integer
an.m Floating Point Output where
nn is the total number of digits
m is the number of digits after the
decimal point,
on.m.p Same as an.m except only print p
digits after the decimal point (p must
be less than m),
Examples:
P PFB VFB IMON /PRINT 3 FEEDBACK VARS
P PFBI4] /PRINT PFB IN 4 CHARS
P IN[H] /PRINT INPUT IN HEX
P IN[5H] sPRINT INPUT, 5 HEX CHARS
P 123458[.4] /PRINT 12.3458
P 123456(.4.2] /PRINT 12.34
P *BDS5* /PRINT "BDS5* ON THE SCREEN
P *XPOS=" pPFB /PRINT PFB WITH TEXT
PS Print with status. This is identical to the P command, except status of the BDSS js
displayed on the end of the printed line. See P for format and ¢xamples. Allowed
from the interactive and monitor modes and the user program
PLAY Playback recorded points. This command prints all the variables that were recorded

by the last RECORD command. Normally, you should use Motion Link's
PLAYBACK.,FROM BDSS command rather than the BDS5 PLAY command.
Motion Link formats, plots, and prints data in a much more readable form than does
the BDSS.

C-13

APPENDIX C - SOFTWARE COMMANDS BDSS

R

RD

RECORD

C-14

Refresh screen. This command is the same as the P command except that no line
feed is printed. This command can be used to overprint, the practice of refreshing the
display by printing a line with new values over the same line with old values. Itis
generally used for status updating. See P for examples and formats. Allowed from
the interactive and monitor modes and the user program.

Delay program execution for a specified period of time, but use the external clock to
time the delay. REG need not be on for RD to function properly. Allowed only from
the user program.

Format: RD <Time>

Example:

AD 1000

Record 1-4 variables for a specified period of time. Thxs command allows you to
record most BDSS5 variables in real time for later playback. You cannot record PE,
REMOTE, TMR1, TMR2, TMR3, TMR4, VAVG, VXAVG, or any user switches.
Allowed from the user program or from the interactive mode.

Format: RECORD <Number> <Time> <1 to 4 Variables>

Where <Number> is the number of intervals over which the
variables will be recorded,

and <Time> is the time in milliseconds of each interval.
Note: <Number> <= 1000 for 1 Variable

<Number> <= 500 for 2 Variables

<Number> <= 333 for 3 Variables

<Number> <= 250 for 4 Variables

Examples:

RECORD 1000 1 VFB
;AECORD VFB ONCE/MSEC FOR 1 SECOND
RECORD 500 10 VCMD VFB
7RECORD VCMD AND VFB ONCE/10 MSEC FOR
5.0 SECOND
RECORD 100 1000 VCMD VFB PCMD
;JRECORD VCMD, VFB, AND PCMD
JONCE/SECOND FOR 100 SECONDS

5 r
s

i

BDSS

APPENDIX C - SOFTWARE COMMANDS

RET

RS

RUN

TIL

Return from a subroutine. Allowed only from the user program.

Format: RET

Refresh screen with status. This command is identical to the R command, except
status of the drive is displayed at the end of the printed line. See P for format and
examples. Allowed from the interactive and monitor modes and the user program.

Run a program starting at the specified label. Allowed from the interactive mode. If
no labe] is specified, run mujti-tasking.

Format: RUN <Label>
RUN ;RUN MULTITASKING

Example:

RUN 4
RUN X1
RUN

Stop motion using 2 deceleration of AMAX. Allowed from the interactive and
monitor modes and the user program.

Format: S

Continuously execute an optional instruction until condition is true. If no instruction
is specified, then delay program execution until the condition is true. <Instruction>
cannot be another TIL. Allowed only from the user program.

Format: TIL <Expr> <Logical> <Expr> [Instruction]

Exampile:

TIL PFB GT 100 P PFB
TIL X1*X2 NE X4/(X5+5) GOSUB 100
TIL VFB LT 100 ;DELAY EXECUTION

C-15

APPENDIX C - SOFTWARE COMMANDS BDSs

TUNE

ZPE

<BDS

C-16

Tune the motor to a new load. This command is used if the motor needs to be re-
tuned. The tuning parameters (KP, KV, KVI, and KPROP) determine the motor
stability and response time. Often when the motor load is changed, tuning
parameters need to be reset. The Tune command specifies Bandwidth and Stability,
Higher bandwidth will produce faster response time. Higher stability will produce
less overshoot, but noisier performance. Allowed from the interactive mode and the
user program.

Format: TUNE <Bandwidth> <Stability>
Where Bandwidth is 5,10,15,...50 Hz and stability is 1, 2, or 3.

Example:

TUNE 25 2

Wait for a specified motion profile segment to start before continuing program
execution. W is an idling command (that is, if you are using multi-tasking, W

.suspends the task but lets other tasks proceed). Allowed only from the user program,

Format: W <Segment>

Where Segment is a motion segment

Examples:
w3 ;WAIT FOR SEGMENT 3 TO START
Wo ;WAIT FOR MOTION TO STOP

Clear the position error. This command is useful when enabling the position loop
when position error has been allowed to accumulate. Allowed from the interactive
and monitor modes and the user program.

Send (download) a program from the BDSS Program Memory to the terminal.
Allowed from the interactive mode and the user program,

Format; <BDS

kY 7
L

BDSS

APPENDIX C - SOFTWARE COMMANDS

>BDS

Format: >BDS {PASS}
where PASS is the password as set in the editor,

Example:

>8DS SECRET sUPLOAD, PASS WORD=SECRET
>8DS ;UPLOAD, NO PASSWORD

XU s e TV

C-17

T,

S

s

g

e

BDSs5 APPENDIX D - ERROR CODEs

APPENDIX D

ERRORS CODES

D.1 INTRODUCTION

The BDSS5's response to an error depends on the error's severity, There are four levels of severity, listed below in
increasing order:

Table D.1. Error Severity Lavels and Actions

Errors which cause Warnings.
2. Erors which cause a program break and stop motion, in addition to Level 1 Actions.

Errors which cause the system to disable and sct the FAULT Hardware Output, in addition to Level 2
Actions,

4. Errors which disable almost all BDSS functions (including communications) and flash the CPU LED to
indicate the error number. These are called firmware errors.

See Chapter 5 for more information about error severity. The following is a complete list of errors generated by the
BDSs.

D.2 HARDWARE FAULTS

D.2.1 Firmware Fauits —_—

ERROR 2 *HARDWARE. U-P FAIL" SEVERITY 4

The microprocessor cannot pass self-test. This fault causes the
microprocessor to blink the CPU light twice and then pause. The BDSS will
Dot communicate or run the user program. Contact the factory.

ERRCR 3 ‘HARDWARE-CHECKSUM" SEVERITY 4

The microprocessor cannot pass the checksum self-test. This fauit causes the
microprocessor to blink the CPU light three times and then pause. The
BDSS5 will not communicate or run the user program. Contact the factory.

D-1

APPENDIX D - ERROR CODES BDSs5

ERROR 4

ERROR S

"SOFTWARE WATCHDOG* SEVERITY 4

The microprocessor has failed the software watchdog self-test. This fault
causes the microprocessor to blink the CPU light four times and then pause.
The BDSS will not communicate or run the user program. Contact the
factory.

“+5 VOLTS" SEVERITY 4

The +5 volts is too low. This fault causes the microprocessor to blink the
CPU light five times and then pause. The BDSS will not communicate or
run the user program. Check the +10 VDC input into the BDS5 (Connector
C4, pin 4 or 8). If it is below 6.5 Volts for even a short time, this error will
occur. This happens when the logic supply is loaded too heavily, or when
the line voltage (PSR4/5 Connector C1, pins 2 and 3) is below 98 VAC (115
VAC less 15%).

D.2.2 BDSS5 Faults

ERROR 10

ERROR 11

ERROR 12

D-2

"REMOTE OFF" SEVERITY 2

You attempted to execute an instruction that requires the hardware input
REMOTE on the signal connector to be active. This error breaks program
execution.

"OVER-TEMP* : SEVERITY 3

The thermostat on the BDS5 heatsink opened, indicating overheating.
Overheating may be caused by excessive ambient temperature, obstructed
airflow, broken fan, etc. Correct any such condition before resuming
operation. REMOVE ALL POWER BEFORE CHECKING THIS. If
everything is functioning properly, a drive with a higher current rating may
be required. This error breaks program execution and disables the BDSS.

"OVER-CURRENT" SEVERITY 3

The BDSS detected an overcurrent. This can be caused by a shorted motor
winding, a shorted power transistor or a short circuit in the wiring. Be sure
to check all wiring before resuming operation. This error breaks program
execution and disables the BDSS5.

|
4

g

L

BDSS5

APPENDIX D - ERROR CODES

ERROR 13

ERROR 14

ERROR 15

ERROR 17

ERROR 18

ERROR 19

ERROR 20

*OVER-SPEED"
The BDSS determined that the speed of the motor was greater than the

variable VOSPD. If this occurs occasionally, it may be a nuisance fault that

should be corrected by raising VOSPD by 5% or 10%. This error breaks
program execution and disables the BDSS.

‘POWER BUS

The power supply high voltage bus has either an overvoltage fault or an
undervoltage fault. This error breaks program execution and disables the
BDSS.

"COMP BOARD"

You attempted o0 enable the BDSS with the compensation board removed.
Replace the compensation board. This error breaks program execution.

‘FEEDBACK LOSS*

The BDSS has detected that one or more wires to the resolver have been
broken, or the resolver connector has been removed. This error bregks
program execution. '

“BAD TL*

The BDSS has two boards: a small MC board and a larger IBD board. Both
boards have the current and voltage rating encoded and they must match. If

this error occurs -because you exchanged the MC card, then you should
replace the original card. If it occurs for some other reason, contact the
factory. This error breaks program execution.

- "MOTION (HDWR LINE)*
The MOTION input was off at the beginning of a motion instruction, or it

turned off during a motion instruction. This signal comes from the optional

I/O card. This error breaks program execution.

*TUNE FAILED"
The Tune command failed. Either the inertia on the motor is too large for

the desired bandwidth, the motor is not functioning properly, the bus voltage
is too low, or the BDSS is not functioning properly. Try reducing the desired

bandwidth to correct this problem. Make sure REMOTE is on. If this does
not work, attempt to tune the system by hand.)

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 2

SEVERITY 3

D-3

APPENDIX D - ERROR CODES BDS5

ERROR 22

"+/- 12 VOLTS" SEVERITY 3

The =12 volts is out of tolerance. Contact the factory. This error breaks
program execution.

D.2.3 Positioner Faults

ERROR 23

ERROR 24

ERROR 25

ERROR 25

D-4

"SOFTWARE OVERTRAVEL" SEVERITY 2

Software travel limits are enabled and either PMAX or PMIN, the software
limits, have been exceeded. If your application does not nesd software travel
limits, or if you want to disable software travel limits temporarily, type:

PLIM OFF

This error breaks program execution.

"HARDWARE OVERTRAVEL" SEVERITY 3

The BDSS detected an overtravel condition while it was enabled. You can
print the state of the overtravel limit switch by typing:

P LIMIT

If LIMIT is 0, then an overtravel condition exists. LIMIT should be
connected to a limit switch that has contacts that are normally closed but
which open where an overtravel condition occurs. Hardware overtravel limits
cannot be disabled. This error breaks program execution and disables the
BDSS.

*PE OVERFLOW" SEVERITY 3

The variable PE, the position error, exceeded the variable PEMAX. This is
also called a following error overflow. This error breaks program execution
and disables the BDS5.

"PFB ROLLOVER" SEVERITY 3

The variable PFB, the position feedback, exceeded +/-2,147,483,647 counts.
If you are using position units, then PFB exceeded the position unit
equivalent of +/-2,147,483,647 counts. This can occur if the motor rotates
indefinitely in one direction. If your application requires this, consider using
the rotary mode.

e~

/

. J

", &
g

Y ry
M"*wMt‘“‘“

5 ; 4

BDSS

APPENDIX D - ERROR CODES

ERRCR 27

*R/D JUMPERS" SEVERITY 3

Either the jumpers on your BDSS MC2 card are incorrectly set or the wrong
TL has been loaded. Contact the factory.

D.3 MOTION ERRORS

D.3.1 Positlon Calculation Errors

ERROR 30

ERROR 31

ERROR 22

ERROR 33

"TOO MANY MOVES* SEVERITY 2

You typed in too many move commands (MA, MI, MCGO) from the
interactive mode. You can have one move executing and the other pending,
The error does not occur when move commands are executed from the user
program, because the BDSS5 sees that the motion buffer is full and delays
execution to prevent the error. This error breaks program execution.

"TOO MANY MRD MOVES"” SEVERITY 2

You attempted to execute a motion instruction that required the profile buffer
to be empty. This occurs when two MRD instructions are active at once.

You should use a synchronizer to delay the execution of the instruction that
caused the error. This error breaks program execution.

"ACC/DEC TOO LOW" SEVERITY 2

You entered a motion command that calculated a motion profile where either
the acceleration or deceleration Segment was more than 30 seconds long.
You must increase ACC or DEC or reduce the speed change of the move,
This error breaks program execution. -

VEL OUT OF BOUNDS SEVERITY 2

You entered a motion command where the commanded velocity was out of
the allowable range. The range for Jog (J) commands is *VMAX. The
range for other motion commands is 0 to +VMAX. This error breaks
program execution.

APPENDIX D - ERROR CODES

BDSS

D.3.2 Macro Move/JT/JF Errors

ERROR 40

ERROR 41

ERROR 42

EAROR 43

ERROR 44

ERROR 45

ERROR 46

D-6

“CHANGED DIRECTION"

You attempted to change direction with an instruction that does not allow
direction to change. These instructions include JT, JF and macro moves.
This error breaks program execution.

*MOVE NEEDS MOTION"

You attempted to execute an instruction that requires the motor to be in
motion. These instructions include JT, JF and MCI/MCA with no velocity
parameter specified. This error breaks program exscution.

*MOVE w/o TIME”

You attempted to execute a move that required more time than was available.
For example, you attempted a JT or macro segment where the final position
could not be reached because of acceleration limits. You may have

atempted a JT or JF when you were already well beyond the specified
position. This error breaks program execution.

“MACRO NOT READY"

You attempted to execute a macro move (with the MCGO instruction) in
which the last segment of the move did not end at zero speed, or the macro-
move memory is empty. The macro-move memory is cleared every time the
BDSS is turned on. This error breaks program execution.

MCD w/MACRO MOVING

You attempted to insert a macro-move dwell when the previous macro-move
segment ended at 2 speed other than zero. This error breaks program
execution.

*"MCA ACTIVE"

You attempted to insert an MCA segment after an MCI segment. This error
breaks program execution.

"MCI/ ACTIVE*

You attempted to insert an MCI segment after an MCA segment in 2 macro
move. This error breaks program execution.

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

%y =4
g™

BDSS APPENDIX D - ERROR CODES
ERROR 47 *MCI/MCA TOO COMPLEX™ SEVERITY 2
You attempted to execute a macro move that required too many segments.
This error breaks program execution.
ERROR 48 *MCA/MCI RUNNING* SEVERITY 2
You attempted to build a macro move while another macro move was
running. This error breaks program execution.
D.4 SOFTWARE ERRORS
D.4.1 Programming Modes or Motion Modes
ERROR 50 "DRIVE INHIBITED" SEVERITY 2
You attempted to execute an instruction that required the BDSS to be
enabled while it was inhibited. This error will break program execution if
the instruction is issued from the user program,
ERROR 51 *DRIVE ENABLED* SEVERITY 2
You attempted to execute an instruction that required the BDSS5 to be
inhibited while it was enabled. This error will break program execution if
the instruction is issued from the user program,
ERROR 52 *NOT FROM TERMINAL" SEVERITY 1
You attempted to execute an instruction from the terminal that is not allowed
from the terminal. This error generates no action.
ERRCR 53 *NOT FROM PROGRAM" SEVERITY 1

it

You attempted to execute an instruction from the program that is not allowed

from the program. This error breaks program execution.

APPENDIX D - ERROR CODES

BDSS

ERROR 54

ERROR 55

ERROR 56

ERRCR 57

ERROR 58

ERROR 59

D-8

*NOT FROM MONITOR"

You attempted to execute an instruction while in the monitor mode that is
not allowed from the monitor mode. This error generates no action.

*NOT FROM RECOVERY"

You attempted to execute an instruction from the error recovery (the user's
error handler or "ERRORS") that is not allowed. This includes attempting to
enable the BDSS, GOSUB, and GOTO. This error breaks execution,

*NOT w/GEAR"

You attempted to execute an instruction when the gear mode was enabled
that is not allowed with the gear mode. For example, MRD, MA, JT, and JF
are not allowed with the gear mode on. This error breaks execution if the
instruction was issued from the program.

*NOT w/PROFILE"

You attempted to execute an instruction that is not allowed while the BDSS
is profiling. Profiling occurs when move instructions (MA, MI, MRD) or
macro moves are executing. Other examples of this are the traverse segment
before the accel/decel portion of position dependent jogs (JT, JF), and the
accel/decel portions of all jogs (J, JT, JF). This error breaks execution.

*NOT w/JOGGING"

You attempted to execute an instruction that is not allowed when the BDSS
is jogging. This error breaks execution if the instruction was issued from the

program.

*NOT w/ROTARY"
You attempted to execute an instruction that is not allowed when the BDS5

is in the rotary mode. Type:

ROTARY OFF

to turn the rotary mode off. This error breaks execution if the instruction
was issued from the program.

SEVERITY 1

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

e M’

<i‘%wwf"

% /
LI
g

BDSS

APPENDIX D - ERROR CODEs

ERROR 80

ERROR 871

ERROR 82

ERAOR 63

ERROR 64

ERRCR &5

*OUTSIDE PROTARY" SEVERITY 2

You attempted to make an absolute move (either MA or MCA) beyond
PROTARY. For example, if PROTARY is 1000 and you typed:

MA 2000

‘NORMALIZE FIRST" SEVERITY 2

"RD ALREADY IN USE*" SEVERITY 2

‘NOT AT THIS LEVEL * SEVERITY 2

level. For cxample, GOSUB and GOTO are not allowed from within an
alarm. This error breaks program execution.

"BACKWARD REGULA TION" -SEVERITY 3

The external input counted backwards more than 30,000 counts when REG
was on. This error breaks Program execution and disabjes the BDSS.

"RECORD NOT READY" SEVERITY 3

You entered a PLAY command when nothing had been recorded since the
Iast time the BDS5 powered up.

D-9

APPENDIX D - ERROR CODES BDSs5

D.4.2 Improper Use of Labels

ERROR 70

ERROR 71

ERROR 74

"LABEL NOT FOUND* SEVERITY 2

You attempted to branch to a label (either from RUN, GOSUB, or GOTO)
that does not exist. This error breaks program execution,

"LABEL USED TWICE" SEVERITY 2

The user program has a label that is used more than once. This error breaks
program execution.

"ERROR$ MUST BE LAST" SEVERITY 2

The user's error (ERRORS) must be the last label in the program buffer.

You cannot have labels after ERRORS, nor can you use the GOTO or
GOSUB commands when the BDSS is executing the error handler. The
error handler is intended to provide a graceful exit during error conditions
and cannot be used to restart the program. You can use the IF, TIL, and ?
commands to execute conditional commands in the error handler. This error
breaks program execution.

D.4.3 Invalid Instructions or Entries

ERROR 79

ERROR 80

D-10

"BAD FORMAT" SEVERITY 2

You entered a format that the BDS5 does not recognize. For example, you
may have entered:

INPUT "INPUT X1* X1[.3]

In this case, the decimal point (following the "[") is incorrect. Pay careful
attention to the rules for formats in Chapter 4. This error breaks program
exccution if the instruction is issued from the user program.

*INVALID INSTRUCTION" SEVERITY 2

You attempted to execute an instruction or change a variable that the BDSS
does not recognize. This error breaks program execution if the instruction is
issued from the user program.

1y
p /
i

%, &
g’

BDSS

APPENDIX D - ERROR CODES

ERROR 81

ERROR 82

ERROR 83

ERROR 84

ERROR 85

ERRACR 8s

*NOT PROGRAMMABLE"

You attempted to change a variable that is not programmable, This error
will break program execution if the instruction is issued from the user

program.

"BAD NUMBER ENTRIES"

The instruction that is executing has too many or too few parameters. Look
up the instruction in Appendix B to determine the correct number of entries,
This error breaks program execution if the instruction is issued from the user

program,

*BAD OR OUT OF RANGE"

You entered a parameter to an instruction that was too large or too smail.
Check Appendix C for limits on variables, This error can also occur when a
parameter is in the wrong format, such as a character string where a number
is expected. This error breaks program execution if the instruction is issued
from the user program.

"OUT OF BOUNDS*

The variable listed is out of bounds. If the variable is protected (that is, set
by the factory as defined in Appendix C), contact the factory. If the variable
is not protected, set it within its bounds, This error breaks execution.

"BAD INDIRECTION"

You attempted an indirect reference to g user variable that does not exist.
For example:

X1 10000
P X(X1)

X(X1) refers to user variable X10000, which does not exist. The P XX
will generate this error. This error breaks program execution if the
instruction is issued from the user program.,

"USER PROGRAM FULL"

You attempted to load a program larger than the BDSS can hold. This
occurs with the >BDS instruction and from the Motion Link
communications software "Program Transmit (*T)". This error breaks
program exescution.

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

D-11

APPENDIX D - ERROR CODES

BDSS

ERROR 87

ERROR 88

ERROR 89

ERROR g0

*EMBEDDED QUOTE"

You entered a command with an embedded quote. A space must precede an
opening quote and follow a closizg quote. For example:

P*BAD COMMAND"*

has an embedded quote after the "P". This error breaks program execution if
the instruction is issued from the user program.

"NO CLOSING QUOTE"

You entered a command with an odd (as opposed to even) number of quotes.
This error breaks program execution if the instruction is issued from the user

program.

*NOT FOR ALARM/HOLD/RECORD"

You have specified a switch that is not an allowable switch for an alarm or a
hold or record command. For cxample:

A$ REMOTE ON ;ERROR-REMOTE NOT ALLOWED FOR
ALARMS

This line causes Error 89 since REMOTE is not allowed to fire an alarm.

*TOO MANY POINTS"

You specified too many points in a RECORD command. Only 1000 points
total can be recorded. ‘For example, if you are recording four variables, they
can be recorded no more than 250 times, since 4*250 = 1000.

D.4.4 Math Errors

ERROR 92

D-12

ZERO DIVIDE

You attempted to divide a number by 0. This error breaks program
execution if the instruction is issued from the usar program.

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

P

E "ww»*“zf

g

‘MMW/ &

Mg’

BDS5

ERROR 93

ERROR 34

ERROR 95

ERROR 96

ERROR 97

APPENDIX D - ERROR CODEs

"MATH OVERFLOW™

The final resuit of 2 calculation or an intermediate resujt during the
calculation of an expression was greater thag 231 or less than -231, Thjs
error breaks program eXxecution,

>2 PARENTHESES"

The BDSS evaluated ag expression with more levels of parentheses than the
BDSS supports. Up to twa levels of Parentheses are aflowed. This error
breaks program eXecution,

"UNEVEN PARENTHESES*

The BDSS encountered an expression in which the number of closing
parentheses was not cqual to the number of opening parentheses, This erTor
breaks program execution.

‘SCALING OVERFLOW*

During a conversion to or from user units, the result was greater than 231 of
less than 231, This error breaks program execution if the instruction js
issued from the user program,

‘GEAR OVERFLOW"

The BDSS encountered an overflow when calculating the velocity from the
external pulse input. This can be caused when the variable GEARI is too
small or GEARO is too large. That is, the input times the ratip of
GEARO/GEARI was greater than the highest allowable input frequency, 2
MHz. This error breaks program cxecution and disables the BDSs.

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 2

SEVERITY 3

APPENDIX D - ERROR CODES

BDSS

D.4.5 Communication Errors

ERROR 103

ERROR 104

ERROR 105

"BAUD RATE"

The variable BAUD contains a value that is not supported by the BDSS5.

This error occurs during the autobaud sequence and so is never printed to the
terminal. You will only see it in the error history buffer. This error has no
action.

ABAUD & MULTIDROP

This error is caused by attempting to autobaud while in multidrop
communications, which is not allowed. The variable ABAUD is on,
indicating request for autobaud, and the variable ADDR is not zero,
indicating multidrop communications. This error occurs during the
autobaud sequence and so is never printed to the terminal. You will only see
it in the error history buffer. This error has no action.

"SERIAL WDOG"*

The serial port did not receive a valid command for WTIME milliseconds
when the serial watchdog was enabled (that is, WATCH = 1). This error
breaks program execution and disables the BDSS.

D.4.6 Password Errors

ERROR 110

ERROR 111

D-14

EDIT PASSWORD

You attempted to execute an instruction that requires the Editor password.
This occurs with the >BDS command. In this case, you must follow the

- command wita the password.

"FACTORY SETTABLE"

You attempted to change a variable that is protected. These variables are set
at the factory. This error breaks program execution if the instruction is
issued from the user program.

SEVERITY 1

SEVERITY 1

SEVERITY 3

SEVERITY 1

SEVERITY 2

i F
i

i

% ;
s

BDSs APPENDIX D - ERROR CODES

D.4.7 Errors From IF, TIL and GOsSUB Commandsg

ERROR 115 *IF w/o ENDIF"

The program executed an IF command to begin an IF BLOCK, but could not

find the corresponding ENDIF to end the [F block. This error breaks
program execution,

SEVERITY 2

ERROR 116 ‘IF NOT STARTED"

An EISE, ELIF, or ENDIF was cnc'ountcrcd when there was no IF, This
will occur, among other times, if you use a GOTO to branch to the middle of
an IF/ELIF/ELSE/ENDIF block. This error breaks program execution.

SEVERITY 2

ERROR 117 'TIL FOLLOwWS 2/T1L*

The ? or TIL instruction w

SEVERITY 2
as used to execute a conditional TIL. This error
breaks program execution,

ERROR 118 *TOO MANY Gosuss*
The last GOSUB was one

SEVERITY 2 -
GOSUB too many. The BDSS has 4 levels of .
subroutines. This error breaks program exccution, :

ERROR 119 *RETURN w/o GOSUB*

The BDSS encountered a RET when it was not expecting one. This occurs
when there are more returns than GOSUBs. This error breaks program
execution,

SEVERITY 2 i

D.4.8 Power-Up Marker (Not an Error)

ERROR 199 "DRIVE POWERED yp- N/A

. i istory buffer
when the BDSS powers-up.

D-15

APPENDIX D - ERROR CODES

BDSS

D.4.9 lnternél Errors

ERROR 200

ERROR 201

ERROR 202

ERROR 203

ERROR 204

ERROR 205

ERAOR 206

D-16

"FOLDBACK OUT"

The factory set variables that control foldback are out of bounds. Contact the
factory. This error breaks program execution and disables the BDSS.

SLIP TOO BIG

The induction motor variables that control slip are out of bounds. Contact
the factory. This error breaks program execution and disables the BDSS.

"USER PROGRAM CORRUPT"

The user program is corrupt. Usually, this problem is caused by installing a
new battery back-up RAM. This can also occur if power to the BDSS is lost
while editing the program. This error will break program execution. (See
BDS5 Editor New Command to reset the user program; you will need to
reload your program.)

"AMPS BAD"

The BDSS variable AMPS is invalid. Contact the factory. This error breaks
program execution.

"PROGRAM OVERRUN"

This is an internal error. Contact the factory. This error breaks program
execution and disabies the BDSS.

"MBUF OVRRUN*

This is an internal error. Contact the factory. This error breaks program
execution and disables the BDSS.

*PROFILE OVERFLOW"

This is an internal error. Contact the factory. This error breaks program
execution and disables the BDSS.

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 3

SEVERITY 3

% ¢
g, &
g

&
gy

%
i

S’

BDSS5 APPENDIX D - ERROR CODES
ERROR 208 "GENERAL INTERNAL" SEVERITY 3
This is an internal error, Carefully write down the entire line that is printed
with the error and contact the factory. This error breaks program execution

and disables the BDSS,
ERROR 209 "STACK OVERFLOW" SEVERITY 3
This is an internal error. Carefully write down the entire line that is printed
with the error and contact the factory. This error breaks program execution
and disables the BDSS.
ERROR 211- *INTERNAL 1-8* SEVERITY 3
218
These are internal errors. Contact the factory. These errors break program
execution and disable the BDSS.,
ERROR 255 *UNKNOWN" SEVERITY 3

This is an internal error. If this error exists in the error history upon initia]
power-up, clear it with ERR CLR. Contact the factory if this error occurs
during operation. This error breaks program execution and disables the
BDSS.

D-17

g™

i

BDSS5

APPENDIX E

VARIABLE QUICK REFERENCE

APPENDIX E - VARIABLE QUICK REFERENCE

E.1 INTRODUCTION

This appendix lists all the variables on the BDSS. All variables are shown with the re

conditions. For example, ABAUD has the programming condition "ALWAYS".

quired programming
This means ABAUD can be

changed at any time. Other variables require the BDSS to be enabled or disabled. Others, such as feedback
variables, are never programmable. "FACT: ORY" variables can only be changed at the factory. Factory variables
program the BDSS for the particular motor it will be controlling. The MOTOR command (Chapter 6) changes

these variables as necessary for the motor.

E.2 STANDARD VARIABLES

Table E.1. Standard Variables

VARIABLE DESCRIPTION PROGRAM | UNITS | PROGRAM LIMITS!
CONDITION

AMPS Drive Amps Factory I

ABAUD Autobaud On Always None 0,1

ACC Acceleration Rate Always ACC 0-AMAX

ACTIVE Monitor Drive Never None

ADDR Multidrop Address Always 0,48-57,65-90

ADEN ACC Units Denominator Always None ... Long

AMAX Acc/Dec Maximum Disabled ACC Long>0

ANUM ACC Units Numerator Always None long

BAUD - Baud Rate Always None 300-19200

CAP Enable Capture Always None 0,1

CAPDIR Polarity of Capture Always None 0,1

) 1 See table at end of selection for description of long and short.

E-1

APPENDIX E - VARIABLE QUICK REFERENCE

BDSS

VARIABLE DESCRIPTION PROGRAM UNITS PROGRAM LIMITS
CONDITION

CLAMP Enable Clamp Mode Always None 0,1
CYCLE Start Cycle Never None

DEC Deceleration Rate Always ACC 0-AMAX
DEP Shorten Error Msgs Always None 0,1
DR On if CW is Positive Always None 0,1
EXTLOOP On for Encoder feedback Disabled None 0,1
FAULT On for BDSS Fauit Always None 0,1
FOLD Monitor Foldback Mode Never None

GATE Monitor GATE Input Never None

GATEMODE | Enable Gate Mode Always None 0,1
GEAR Enable Gear Mode Always None 0,1
GEARI Input Gear Teeth Always None Short
GEARO Qutput Gear Tecth Always None Short>0
HOME Monitor HOME Input Never None

ICMD Commanded Current Never I

ICONT Continuous Current Factory I

IDEN I Units Denominator Always None Long
IFOLD Monitor Foldback Never I

ILIM Set Current Limit Always I " 1-IMAX
IMAX Maximum Current Factory I

IMON Monitor Current Never I
11-16 Monitor 16 Input Lines Never None
IN Input Word Never None
INUM I Units Numerator Always None Long
XC Low Speed Adjust Always None 0-255
XF Feed-Forward Gain Always None Short>(
Kr Pos Loop Gain Always None Short>0
KPROP Prop. Vel Loop Gain Always None Short>0
Kv Integrating Vel Loop Gain Always None Short>0
KV1 Integrating Vel Loop Gain Always None Short>0

S

A R O A0

g

W
S’

g

BDS5 APPENDIX E - VARIABLE QUICK REFERENCE
YARIABLE DESCRIPTION PROGRAM UNITS PROGRAM LIMITS
CONDITION
LIMIT Monitor LIMIT Input Never None
LPF Enabie Low Pass Filter Always None 0,1
LPFHZ Low Pass Filter Freq Always Hz 0-500
LSTERR Last error Never None
LSTLBL Last labe] executed Always None
MANUAL Monitor MANUAL Input Never None
MOTION Monitor MOTION Input Never None
MULTI Enable Multi-tasking Always None 0,1
N Special Constant=0 Never None
01-8 Set/Monitor Output Lines Always None 0,1
OFF Special Constant=0 Never None
OK2EN OK to enable BDS5 Never None
ON Special Constant=1 Never None
ouUT Set/Monitor Output Word Always None 0-255
PCAP Capture Position Never POS
PCMD Position Command Never POS
PDEN POS’ Units Denominator Always None Long
PE Position Error Never POS
PECLAMP Clamp Position Error Always POS Short>0
PEMAX Maximum Position Error Always POS Short>0
PEXT Externa] Position Always POS Long
PFB Position Feedback No Motion POS Long
PFNL Final Position Never POS
PL Enable Position Loop Always None 0,1
PLIM Enable Soft Limits Always None 0,1
PMAX Soft Upper Limit Always POS Long
PMIN Soft Lower Limit Always POS Long
PROMPT Enabie Prompts Always None 0,1
PROTARY Rotary Distance Always POS Long
PNUM POS Units Numerator Always None Long

E-3

APPENDIX E - VARIABLE QUICK REFERENCE

BDSS

VARIABLE DESCRIPTION PROGRAM UNITS PROGRAM LIMITS
CONDITION

PRD Position from R/D Never Counts

PROP Enable Prop. Mode Always None 0,1
PTRIP1 Position Trip Point #1 Always POS Long
PTRIP2 Position Trip Point #2 Always POS Long
PXDEN Extern. Pos Denominator Always None Long
PXNUM Extern. Pos Numerator Always None Long
RAMP Ramp control with gear Always None 0,1
READY Enable Drive Never None

REG Enable Profile Regulation Always None 0,1
REGKHZ Max Regulation Freq. Always kHz 1-2000
REMOTE Monitor REMOTE Input Never None

ROTARY Enable Rotary Mode Always None 0,1
SAT Monitor Saturation Never None

SCRV S-curve Type Always None 1.3
SEG Motion Segment Never None

SERIAL Monitor Serial Port Never None

SS Enable Single Step Always None 0,1
STATMODE | Select STATUS Type Always None 0,1
STATUS Monitor STATUS Qutput Never None
TMR1 Standard Timer Always Msec Long>0
TMR2 Standard Timer Always Msec Long>0
TMR3 Standard Timer Always Msec Long>0
TMR4 Standard Timer Always Msec Long>0
TRC Enable Trace Always None 0,1
TRIP Enable Trip Points Always ~ None 0,1
TRIP1 Trip #1 Indicator Never None 0,1
TRIP2 Trip #2 Indicator Never None 0,1
TQ Enable Torque Loop Always None 0,1
YAVG Averaged VFB Never VEL
YCMD Velocity Command Never VEL

E-4

§
i

BDS5 APPENDIX E - VARIABLE Quick REFERENiE

i F
p—

YARIABLE DESCRIPTION PROGRAM UNITS PROGRAM LivITS
CONDITION
VDEFAULT | MI/MA Default Velocity] Always l VEL [<VMAX
VDEN VEL Units Denominator [Always ’ None ’ Long
VE Velocity Error I Never I VEL ’
VEXT External Velocity ’ Never ’ VEL ’
VEB Velocity Feedback t Never ’ VEL I
VMAX ’ Maximum Speed t Factory I VEL !
VNUM ’ VEL Units Numerator I Always ’ None ’ Long
VOFF ' Gearbox Velocity Offset I Always ’ VEL I Long
VOLTS I Drive Voltage ’ Factory I Volts I
VOSPD ’ Overspeed Setpoint ’ Disabled ’ VEL Long
VXAVG l Averaged VEXT ’ Never ’ VEL
VXDEN I External Vel Denominator ’ Always I None Long
VXNUM ' External Ve] Numerator I Always I None Long
WATCH , Enable Seria] Watchdog I Always I None 0,1
WTIME I Serial Watchdog Timeout I Always ’ Msec ’ Short>0
X1-X250 l User Variables ’ Always l None ! Long
XS1-Xs50 I User Switches [Always ’ None [0,1
X(X1-X250) I User Indirect Vars } Always I None , Long
Y l Special Constant=1 I Never 1 None l
ZERO ’ Enable ZEROing Mode I Always I None ’ 0,1
Table E.2, Description of Program Limits

Long Limit -2147483648 < 4 < 2147483647

Long>0 Limit 0 < X < 2147483647

Short Limit -32768 < x < 32767

Short>0 Limit 0 < x < 32767

E-S

APPENDIX E - VARIABLE QUICK REFERENCE BDSS

E.3 INTERNAL VARIABLES

The following variables are internal variables and are not normally used by customers. They are set at the factory
and program the BDSS for the particular motor it will be controlling. The Motor command (Chapter 6) changes
these variables as necessary for the motor.

Table £.3. Internal Variables

VARIABLE DESCRIPTION PROGRAM UNITS
CONDITION

Al-Alf Internal
ADVSLIP Internal
ADVSPD Internal
ADVLD Internal _
ANGLD Internal Factory none
BSLIP Inductn Base Slip Factory mHz
FOLDD Foldback Delay ' Factory sec/100
FOLDR Foldback Reset Factory sec/100
FOLDT Foldback Const Factory sec/100
IBASE Inductn Base Amps Factory I
IMAG Induc Mag Current Factory I
IND Select Induction Factory None
IZERO Zeroing Current Factory I
MADV Enable Manual Adv Factory None
MANG Internal
MSLIP Manual Slip Factory . None
POLES Motor Poles ' Factory - Poles*128
SGOOSE Induction Angle Factory ~ None
SLIP ' Induction Slip Never None
SLOPE Inductn Slip Slope Factory 1/10%
VADVTIBL Angle Table Max ’ Factory VEL
VBASE Inductn Base Speed Factory VEL

E-6

;

¢

‘ ¥
S

% ;
S

g

7

BDSs APPENDIX F - COMMAND TIMINGS

APPENDIX F

CoMMAND TIMINGS

1. The BDSSis cnabled.

2. PLIM, PL, and LPF are on,

3. TQ, and PROP are off,

4. No profiles are being calculated. That is, the BDSS is cnabled, but not in motion,

5. GEAR and REG are off.

 IThese times are based on tests run at Industria] Drives Electronic Lab. Reference Test 67 of May 21, 1990,

BDSS

APPENDIX F - COMMAND TIMINGS

GOSUB 10 ;1.6 MSEC

GOTO 10 ;1.6 MSEC

JT 50000 1000 ;5.8 MSEC (CALCULATION TIME ONLY)
JF 50000 1000 ;5.8 MSEC (CALCULATION TIME ONLY)
MA 4096 100 ;5.5 MSEC (CALCULATION TIME ONLY)
MA 4096 ;5.0 MSEC (CALCULATION TIME ONLY)
Ml 4096 100 75.8 MSEC (CALCULATION TIME ONLY)
Ml 4096 ;5.0 MSEC (CALCULATION TIME ONLY)

MC! 10000 1000 200

MC! 1000 0
MCGO ; (CALCULATION TIME ONLY)
MRD 1000 100 CW ;3.5 MSEC
01 ON ;J1.8 MSEC
01 OFF ;1.9 MSEC
OUT=0UTIOC8H ;2.8 MSEC
NORM 0 ;2.0 MSEC
P X1 ;3.5 MSEC
P X1[8] ;3.5 MSEC
P "X1=" X1 ;3.8 MSEC
RET ;0.8 MSEC
TIL 1 EQ 0 ;2.6 MSEC
X1=X2 ;1.7 MSEC
X1=X2+1 ;2.2 MSEC
X1=X2-1 2.2 MSEC
X1=X2*100 2.3 MSEC
X1=X2/100 ;2.3 MSEC
2ZPE ;1.0 MSEC
?1EQ 101 ON 4.0MSEC
IF1EQOQ +9.0 MSEC (ALL 7 LINES)

X1=1
ELIF 1 EQ O

X1=2
ELSE

X1=3
ENDIF

108 ;1.0 MSEC

;11.0 MSEC FOR ALL 3 COMMANDS

F-2

S

%
S

et e i 44 Sl ot

-

Vit

BDSS5

GLOSSARY

G LOSSARY

Absolute Position

Position referenced to 2 fixed zero position,

Absoiuts Positioning

Refers to a motion control system employing position
feedback devices (absolute encoders) to maintain a
given mechanica] location,

Absoiute Programmlng

programming, where distances are specified relative
to the current position. '

AC Ad]ustabla-Speed Drive

All equipment required to adjust the speed or torque
of AC electric motor(s) by controlling both frequency
and voltage applied to the motor(s).

AC Servo Drive

A servo drive used to contro] either or both
synchronous or induction AC motors,

Acceieration

The change in velocity as a function of time.
Acceleration usually refers to increasing velocity and
deceleration describes decreasing velocity,

Accuracy

A measure of the difference between expected
position and actua] position of a motor or
mechanical system. Motor accuracy is usually
specified as an angle Tepresenting the maximym
deviation from expected position.

Actuator

A device which creates mechanical motion by
converting various forms of cnergy to mechanica]
energy.

Adaptive Contro|

A technique to allow the controi to automatically
compensate for changes in System parameters such
as load variations,

Ambient Temperature

Amplifier

Electronics which convert low level command
signals to high power voltages and currents to
Operate a servomotor,

ASCIl

(American Standarg Code for Information
Interchange) This code assigns a number to each
numeral letter of the alphabet. In this manner,
information can be transmitted between machines as
a series of binary numbers,

Back EMF

The voltage generated when a permanent magnet
motor is rotated. This voltage is proportional to
motor speed and is present regardless of whether the
motor winding(s) are energized or un-energized.

Bandwidth

The frequency Tange in which the magnitude of the
System gain expressed in dB is greater than -3 dB,

GLOSSARY

BDSS

Baud Rate

The number of binary bits transmitted per second on
a serial communications link (such as RS-232).

Bit (Blnary Diglt)

A unit of information equal to 1 binary decision or
having only a value 0 or 1.

Block Dlagram

A simplified schematic representing components and
signal flow through a system.

Bode Plot

A plot of the magnitude of system gain in dB and the
phase of system gain in degrees versus the sinusoidal
input signal frequency in logarithmic scale.

Brownout

Low-line voitage at which the device no longer
functions properly.

Brush

Conducting material which passes current from the
DC motor terminals to the rotating commutator.

Brushiess Servo Drive

A servo drive used to control a permanent magnet
synchronous AC motor. May also be referred to as
an AC Servo Drive.

Bus

A group of paralle]l connections carrying pre-
assigned digital signals. Buses usually consist of
address and data information and miscellaneous
control signals for the interconnection of
microprocessors, memories, and other computing
¢lements.

Byte

A group of 8 bits treated as a whole with 256
possible combinations of ones and zeros, each

combination representing a unique piece of
information.

CAM Protlle

A technique used to perform nonlinear motion
electronically similar to that achieved with
mechanical cams.

Characteristic Equation

1+GH = 0, where G is the transfer function of the
forward signal path and H is the transfer function of
the feedback signal path.

Circuiar Coordinated Move

A coordinated move where the path between
endpoints is the arc of a circle.

Class B Insulation

A NEMA insulation specification. Class B
insulation is rated to an operating temperature of 130

degrees centigrade.

Class H Insuiation

A NEMA insulation specification. Class H
insulation is rated to an operating temperature of 180
degrees centigrade.

Closed Loop

A broadly applied term relating to any system where
the output is measured and compared to the input.
The output is then adjusted to reach the desired
condition. In motion control, the term is used to
describe a system wherein a velocity or position (or
both) transducer is used to generate correction
signals by comparison to desired parameters.

Cogging

A term used to describe non-uniform angular
velocity. Cogging appears.as a jerkiness especially
at low speeds.

Wi

;
r
——

BDSS

GLOSSARY

Command Position
The desired anguiar or linear position of an actuator,

Commutation

A term which refers to the action of steering currents
or voltage to the Proper motor phases so as to
produce optimum motor forque. In brush type
motors, commutation is doge elcctromcchanically
via the brushes and commutator. In brushiess
motors, commutation is doge by the switching
electronics using rotor position information typically
obtained by haj] Sensors, a tachsyn, a resojver or an

Commutator

A mechanica] cylinder consisting of alternating
Segments of conductive and insulating materja].

from the brushes into the rotor windings and
performs motor commutation as the motor rotates,

Compensation

The corrective or control action in a feedback loop
System which is used tg improve system performance
characteristics such ag accuracy and response time,

Compensaﬂon, Feedforward

A contro] action which depends on the command
only and not the error to improve System response
time,

Compensatlon, Integrai

A contro] action which Is proportional to the integral
Or accumulative time error valye product of the
feedback loop error signal, 1t s usually used to
reduce static error,

Compensatlon, Lag

A control action which causes the lag at low
frequencies and tends 1o increase the delay between
the input and output of a system while decreasing
static error,

Compensaﬂon, Lead

A control action which Causes the phase tg Jead at
high frequencies and tends to decrease the delay
between the Input and output of system.

Compensatlon, Lsad Lag

A control action which combines the characteristics
of lead and lag compensations,

Compensaﬂon, Proportionai

A control action which Is directly Proportional to the
error signal of a feedback loop. It is used to improve
System accuracy and response time.

Compliance

The amount of displacement per unit of applied
foree.

Computer Numericai Controj

A computer-based motion contro] device
Programmable in a numerjcaj word address format.
A computer numerica] control (CNC) product
typically includes a CPy section, operator interfaca
devices, input/output signal and data devices,
software and related peripheral apparatus,

Control Systems or Automatic Contro|
Systems

An engineering or scientific field that deals with
controlling or determining the performance of
dynamic systems such as servo systems,

Coordinated Motion

Multi-axis motion where the position of each axis js
dependent on the other axis such that the path and
velocity of a move cap be accurately controlled.
(Requires coordination between axes.)

Coupling Ratio

The ratio of motor velocity to load velocity for a load
coupled to motor through a gear or similar
mechanical devic,

GLOSSARY

BDSS

Critical Damping

A system is critically damped when the response to a
step change in desired velocity or position is
achieved in the minimum possible time with little or
no overshoot.

Daigy Chain

A term used to describe the linking of several
RS232C devices in sequence such that a single data
stream flows through one device and on to the next.
Daisy-chained devices usually are distinguished by
device addresses which serve to indicate the desired
destination for data in the stream.

Damping

An indication of the rate of decay of a signal to its
steady state value. Related to setting time.

Damping Ratio

Ratio of actual damping to critical damping. Less
than one is an underdamped system and greater than
one is an overdamped system.

DC Adjustable-Speed Drive

All equipment required to adjust the speed or torque
of DC motor(s) by controlling the voltages applied to
the armature and/or field of the motors.

DC Drive

An electronic control unit for running DC motors.
The DC drive converts AC line current to a variabie
DC current to control a DC motor. The DC drive
has a signal input that controls the torque and speed
of the motor.

Dead Band

A range of input signals for which there is no system
Iespomnse.

Decibei (dB)

A logarithmic measurement of gain. If Gisa
systems gain (ratio of output to input) then 20 log G
= gain in decibels (dB).

Demag Current

The current level at which the motor magnets will be
demagnetized. This is an irreversible effect which
will alter the motor characteristics and degrade
performance.

Detent Torque

The maximum torque that can be applied to an un-
energized stepping motor without causing
continuous rotating motion.

Dielectric Test

A high voitage breakdown test of insulation's ability
to withstand an AC voltage. Test criterion limits the
leakage current to a specified magnitude and
frequency, applied between the specified test points.

Differential

An electrical input or output signal which uses two
lines of opposite polarity referenced to the local

signal ground.

Distributed Procsssing

A technique to gain increased performance and
modularity in control systems utilizing multiple

COmMpUters Or processors.

DNC, Direct Numerical Control

Technique of transferring part program data to a
numerical control system via direct electrical
connection in place of paper tapes.

Drive

This is the electronics portion of the system that
controls power to the motor.

Drive, Analog

Usually referring to any type of motor drive in which
the input is an analog signal.

S

\ S
\MWP”{

g

BDS5

GLOSSARY

Drive, Digitai

Usually referring to any type of motor drive in which
the tuning or compensation is done digitally. Input
may be an analog or digital signal.

Drive, Linear

A motor drive in which the output is directly
proportional to either a voltage or current input.
Normally both inputs and outputs are analog signals.
This is a relatively inefficient drive type.

Drive, PWM

A motor drive utilizing Pulse-Width Modulation
techniques to control power to the motor. Typically
a high efficiency drive that can be used for high
response application.

Drive, SCR

A DC motor drive which utilizes internal silicon
controlled rectifiers as the power control elements.
Usually used for low bandwidths, high power
applications.

Drive, Servo

A motor drive which utilizes internal feedback loops
for accurate control of motor current and/or velocity,

Drive, Stepper

Electronics which convert step and direction inputs
to high power currents and voltages to drive a
stepping motor. The stepping motor driver is
analogous to the servo motor amplifier.

Duty Cycle

For a repetitive cycle, the ratio of an on time to total
cycle time.

@n Time L
D e = 100%
uty Cyele = e Off Time =

Dynamic Braking

A passive technique for stopping a permanent
magnet brush or brushless motor. The motor
windings are shorted together through a resistor
which results in motor braking with an exponential
decrease in speed.

Efficlency
The ratio of power output to power input,

Electrical Time Constant

The ratio of armature inductancs to armature
resistance.

Electronic Gearing

A technique used to electrically simulate mechanical
gearing. Causes one closed loop axis to be slaved to
another open or closed loop axis with a variable
ratio,

EMI: Electro-Magnetic Interference

EMI is noise which, when coupled into sensitive
electronic circuits, may cause problems.

Encoder

A type of feedback device which converts
mechanical motion into electrical signals to indicate
actuator position. Typical encoders are designed
with a printed disc and a light source. As the disc
turns with the actuator shaft, the light source shines
through the printed pattern onto a sensor. The light
transmission is interrupted by the patterns on the
disc. These interruptions are sensed and converted
to electrical puises. By counting these pulses,
actuator shaft position is determined.

Encoder, Absoiute

A digital position transducer in which the output is
representative of the absolute position of the input
shaft within one (or more) revolutions. Output is
usually a parallel digital word.

GLOSSARY

BDSS

Encodaer, Incremental

A position encoding device in which the output
represents incremental changes in position.

Encoder, Linear

A digital position transducer which directly
measures linear position.

Encoder Marker

A ounce-per-revolution signal provided by some
incremental encoders to specify a reference point
within that revolution. Also known as Zero
Reference signal or index puise.

Encoder Resoiution

A measure of the smallest positional change which
can be detected by the encoder.

Explogion-proof

A motor classification that indicates a motor is
capable of withstanding internal explosions without
bursting or allowing ignition to reach beyond the
confines of the motor frame.

Fall Time

The time for the amplitude of system response to
decay to 37% of its steady-state value after the
removal of a steady-state step input signal.

Feed Forward

A technique used to pre-compensate control a loop
for known errors due to motor, drive, or lead
characteristics. Provides improved response.

Feedback

A signal which is transferred from the output back to

the input for use in a closed loop system.

Field Weakening

A method of increasing the speed of a wound field
DC motor; reducing stator magnetic field instantly
by reducing magnet winding current.

Fllter (Control Systems)

A transfer function used to modify the frequency or
time response of a control system.

Flutter

Flutter is an error of the basic cycle of an encoder
per one revolution.

Following Error

The positional error during motion resulting from
use of a position control loop with proportional gain
only.

Form Factor

The ratio of RMS current to average current. This
number is a measure of the current ripple in a PWM
or other switch mode type of controller. Since motor
heating is a function of RMS current while motor
torque is a function of average current, a form factor
greater than 1.00 means some fraction of motor
current is producing heat but not torque.

Four Quadrant

Refers to a motion system which can operate in ail
four quadrants ie. velocity in either direction and
torque in either direction. This means that the motor
can accelerate, run, and decelerate in either
direction.

Friction

A resistance to motion caused by surfaces rubbing
together. Friction can be constant with varying
speed (coulomb friction) or proportional to speed
(viscous friction) or present at rest (static friction).

Full Load Current

The armature current of a motor operated at its full
load torque and speed with rated voltage applied.

St

St

S

Hig®

Wt
i

BDS5

GLOSSARY

Full Load Speed

The speed of a motor operated with rated voltage and

full load torque.

Gain

The ratio of system output signal to system input
signal.

Hall Sengors

A feedback device which is used in a brushless servo
System to provide information for the amplifier to
electronically commutate the motor. The device uses
4 magnetized whee] and hall-effect sensors to
8cnerate the commutation signals,

Holding Torque

Sometimes called torque, it specifies the maximum
external force or torque that can be applied to 2
stopped, energized motor without causing the rotor
to rotate continuously,

Home Position

Host Computer

An auxiliary computer system which is connected to
a controller or controllers, The host computer in
distributed controj Systems is frequently involved
with controlling many remote and distributed motion
control devices, It may also be used for off-line tasks
such as program Preparation, storage, and
supervisory control and evaluation.

HP: Horsepower

One horsepower is equal to 746 watts. Since Power
= lorque x Speed, horsepower is a measure of a
motor's torque and speed capability (e.g.a1HP
motor will produce 35 Ib.-in, a 1800 rpm).

Hunting

The oscillation of the System response about g
theoretical steady-state value.

Hybrid Stepping Motor
A motor designed to move in discrate increments or

currents are commutated ag a function of time to
produce motion.

Hysteragis

The difference in Tesponse of a system to an
increasing or a decreasing input signal,

/O: Input/Output

The reception and tansmission of information
between contro] devices, In modern contro] systems,

- /O has two distinct forms: switches, relays, etc.,

which are in ejther an og or off state, or analog
signals that are continuous in nature such as speed,
temperature, flow, etc, .

Idle Current Reduction

This reduces motor heating and allows high machine
throughput to be obtained from a given motor,

Incrementai Motion

A motion control term thar Is used to describe 3
device that produces One step of motion for each step
command (usually a pulse) received,

Indexer

Electronics which convert high level motion
commands from a host computer, programmabje
controller, or operator Panel into step direction pulse
streams for use by the stepping motor driver,

GLOSSARY

BDS5

Inartia

The property of an object to resist changes in
selocity unless acted upon by an outside force.
Higher inertia objects require larger torques to
accelerate and decelerate. Inertia is dependent upon
the mass and shape of the object.

inertial Match

An inertial match between motor and load is
obtained by selecting the coupling ratio such that the
load moment of inertia referred to the motor shaft is
equal to the motor moment of inertia.

Inrush Current

The current surge generated when a piece of
equipment such as a servoamplifier is connected to
an AC line. This surge is typically due to the
impulse charging of a large capacitor located in the
equipment.

ingtabllity

Undesirable motion of an actuator that is different
from the command motion. Instability can take the
form of irregular speed or hunting of the final rest
position.

Lead Ball Screw

A lead screw which has its threads formed as a ball
bearing race; the carriage contains a circulating
supply of balls for increased efficiency.

Lesad Screw

A device for translating rotary motion into linear
motion, consisting of an externally threaded screw
and an internally threaded carriage (nut).

Least Significant Bit

The bit in a binary number that is the least
important, or having the least weight.

Limits

Properly designed motion control systems have
sensors called limits that alert the control electronics

that the physical end of travel is being approached
and that motion should stop.

Linear Coordinated Move

A coordinated move where the path between
endpoints is a line.

Linearity

For a speed control system it is the maximum
deviation between actual and set speed expressed as

a percentage of set speed.

Logic Ground

An electrical potential to which all control signals in
a particular system are referenced.

Loop, Feedback Control

A control method that compares the input from a
measurement device, such as an encoder or
tachometer, to a desired parameter, such as a
position or velocity and causes action to correct any
detected error. Several types of loops can be used in
combination (i.e. velocity and position together) for
high performance requirements.

Loop Gain, Open

The product of the forward path and feedback path
gains.

Loop, PID: Proportional, integral, and
Derivative Loop o

Specialized very high performance control loop
which gives superior response.

Loop, Position

A feedback control loop in which the controlled
parameter is motor position.

Loop, Velocity

A feedback control loop in which the controlled
parameter is mechanical velocity.

S

i

e

BDS5

GLOSSARY

Master Slave Motion Control

A type of coordinated motion control where the
master axis position is used to generate one or more
slave axis position commands.

Mechanical Time Constant

The time for an unloaded motor to reach 63.2% of its
final velocity after the application of a DC armature

voltage.

Microstepping

An electronic control technique that proportions the
current in a step motor’s windings to provide
additional intermediate positions between poles.
Produces smooth rotation over a wide speed range
and high positional resolution.

Mid-Range Instability

A phenomenon in which a stepping motor can fall
out of synchronism due to loss of torque at mid-
Tange speeds. The loss of torque is due to interaction
between the motor's electrical characteristics and the
driver electronics. Some drivers have circuitry to
eliminate or reduce this phenomenon.

Most Significant Bit

The bit in a binary number that is the most
important or that has the most weight.

Motor, AC

A device that converts electrica] alternating current
into mechanical energy. Requires no commutation
devices such as brushes. Normally operated off
commercial AC power. Can be single- or multiple-
phase. -

Motor, AC Asynchronous or Induction

An AC motor in which speed is proportional to the
frequency of the applied AC, Requires no magnets
or field coil. Usually used for non-precise constant
speed applications.

Motor, AC Synchronous
Another term for brushless DC motor.

Motor Constant

The ratio of the motor torque to motor input power.

Motor, DC

A device that converts electrical direct current into
mechanical energy. It requires a commutating
device, either brushes or electronic, Usually requires
a source of DC power.

Motor, DC Brushiess

A type of direct current motor that utilizes electronic
commutation rather than brushes to transfer current.

Motor, DC Permanent Magnet

A motor utilizing permanent magmets to produce a
magnetic field. Has linear torque speed
characteristics.

Motor, DC Wound Fieid

A direct current utilizing a coil to produce a
magnetic field. Usually used in high power
applications where constant horsepower operation is
desired.

Motor, Stepping

A specialized AC motor that allows discrete
positioning without fesdback. Normally used for
non-critical, low power applications, since positional
information is easily lost if acceleration or velocity
limits are exceeded. Load variations can also cause
loss of position. If encoders are used, these
limitations can be overcome.

NC, Numerical Control

Usually refers to any type of automated equipment or
process used for contouring or positioning.

GLOSSARY

BDSS

Negatlve Feedback ‘

The type of feedbacks used in a closed loop system
where the output value is inverted and combined
with the input to be used to stabilize or improve
system characteristics.

.No Load Speed
Motor speed with no external load.

Cpen Collector

A term used to describe a signal output that is
performed with a transistor. An open collector
output acts like a switch closure with one end of the
switch at ground potential and the other end of the
switch accessible.

Open-Loop System

A system where the command signal results in
actuator movement but, because the movement is not
sensed, there is no way to correct for error. Open
loop means no feedback.

Operator interface

A device that allows the operator to communicate
with 2 machine. This device typically has a
keyboard or thumbwheel to enter instructions into
the machine. It also has a display device that allows
the machine to display messages.

Optically Isolated

A system or circuit that transmits signals with no
direct electrical connection, Used to protectively
isolate electrically noisy machine signals from low
level control logic.

Oscillation

An effect that varies periodically between two values.

Overshoot

The amount of the parameter being controlled
exceeds the desired value for a step input,

Phase-Locked Servo System
A hybrid control system in which the output of an

optical tachometer is compared to a reference square

wave signal to generate a system error signal
proportional to both shaft velocity and position
errors.

Phase Margin

The difference between 180 degrees and the phase
angie of a system at the frequency where the open
loop gain is unity.

PID

Proportional-Integral-Derivative. An acronym that
describes the compensation structure that can be
used in a closed-loop system.

PLC

Programmable Logic Controller. An industrial
control device that turns on and off outputs based
upon responses to inputs.

PMDC Motor

A motor consisting of a permanent magnet stator
and 2 wound iron-core rotor. These are brush type
motors and are operated by application of DC
current,

Point to Point Move

A multi-axis move from one point to another where
each axis is controlled independently. (No
coordination between axes is required.)

Pole

A frequency at which the transfer function of a
system goes to infinity.

Pole Pair, Elactromechanical

The number of cycles of magnetic flux distribution
in the air gap of a rotary electromechanical device.

i, i
L

Ry
i

% s
S

e

BDSS5

GLOSSARY

Position Error ;

The difference berween the present actuator
(feedback) value and the desired position command
for a position loop.

Position Feedback

Present actuator position as measured by a position
transducer,

Power

The rate at which work is doze. In motion control,
Power = Torque x Speed.

Process Control

A term used to describe the contro] of machine or
manufacturing processes, especially in continuous
production environments.

Pull-in Torque

The maximum torque at which an energized
stepping motor or synchronous motor will start and
run in synchronism.,

Pull-Out Torque

The maximum torque that can be applied to a
stepping motor or synchronous motor running at
constant speed without causing a loss of
synchronism,

Puise Rate

The frequency of the Step pulses applied to 2 stepper
motor driver. The pulse rate divided by the
resolution of the motor/drive combination (in steps
per revolution) yields the rotationa] speed in
revolutions per second.

PWM

Pulse Width Modulation. Ag acronym which
describes a switch-mode contro] technique used in
amplifiers and drivers to contro] motor voltage and
current. This control technique is used in contrast to
linear control and offers the advantages of greatly
improved efficiency.

Quadrature
Refers to signal characteristics of interfaces 1o

positioning devices such as encoders or resolvers,
Specifically, that property of position

Ramping
The acceleration and deceleration of a motor, May

also refer to the change in frequency of the applied
Step pulse train.

Rated Torque

The torque producing capacity of a motor at a given
speed. This is the maximum continuous torque the
motor can deliver to a load and is usually specified
with a torque/speed curve.

Regeneration

The action during motor braking, in which the motor
aCts s a generator and takes kinetic energy from the:
load, converts it to electrical energy, and returns it to
the amplifier,

Repeatability

The degree to which the positioning accuracy for a
given move performed repetitively can be duplicated.

Resolution

The smallest Positioning increment that can be
achieved. Frequently defined as the number of steps
or feedback units required for a motor's shaft to
rotate one complete revolution,

Resociver

A position transducer utilizing magnetic coupling to
measure absolute shaft position over oge revolution.

Resonance

The effect of a periodic driving force that causes
large amplitude increases at a particular frequency.
(Resonance frequency.)

GLOSSARY BDSS
RF by passing binary information signals as a time
] series of "1"s and "0"s on a single line.
Radio Frequency Interference.
Ringing Servo Ampilifier/Servo Drive

Oscillation of a system following sudden change in
state.

Rise Time

The time required for a signal to rise from 10% of its
final value to 30% of its final value.

RMS Current

Root mean square current. In an intermittent duty
cycle application, the RMS current is equal to the
value of steady state current which would produce
the equivalent resistive heating over a long period of
time.

RMS Torque

Root Mean Square Torque. For an intermittent duty
cycle application, the RMS torque is equal to the
steady state torque which would producs the same
amount of motor heating over long periods of time.

Robot

A reprogrammable multifunctional manipulator
designed to move material, parts, tools, or
specialized devices through variable programmed
motions for the performance of a variety of tasks.

Robot Control

A computer-based motion control device to control
the servo-axis motion of a robot.

Rotor

The rotating part of a magnetic structure. Ina
motor, the rotor is connected to the motor shaft.

Searlal Port

A digital data communications port configured with
2 minimum number of signal lines. This is achieved

An ¢electronic device which produces the winding
current for a servo motor. The amplifier converts a
low level control signal into high voltage and current
levels top produce torque in the motor.

Servo System

An automatic feedback control system for
mechanical motion in which the controlled or output
quantity is position, velocity, or acceleration. Servo
systems are closed loop systems.

Settling Time

The time required for a step response of a system
parameter to stop oscillating or ringing and reach its
final value.

Shunt Resistor

A device located in a servoamplifier for controlling
regenerative energy generated when braking a
motor. This device dissipates or "dumps” the kinetic
energy as heat.

Singie Point Ground

The common connection point for signal grounds in
a control wiring environment.

Slew

In motion control the portion of 2 move made ata
constant non-zero velocity.

. Slew Speed

The maximum velocity at which an encoder will be
required to perform.

Speed

In motion control, the concept used to describe the
linear or rotational velocity of 2 motor or other object
in motion.

3 &
s

““"N»»»"" ¢

y
|)
g

BDS5

GLOSSARY

Speed Reguiation

For a speed control System, speed regulation is the
variation in actual speed expressed as 2 percentage

of set speed.

SPS

Steps-Per-Second. A measure of velocity used with
stepping motors.

Stall Torque

The torque available from a motor at stall or zero
pm.

Static Torque

The angle the shaft rotates upon receipt of a singje
step command.

Stator

The non-rotating part of a magnetic structure. In a
motor the stator usually contains the mounting
surface, bearings, and non-rotating windings or
permanent magnets.

Stiffness

The ability to resist movement induced by an applied
torque. It is often specified as a displacement curve,
indicating the amount a motor shaft will rotate upon
application of a known externa] force when stopped.

Synchronism

A motor rotating at a speed correctly corresponding
to the applied step puise frequency is said to be in
synchronism. Load torques in excess of the motor's
capacity (rated torque) will cause 2 loss of

" synchronism.

Tachometer

An electromagnetic feedback transducer which
produces an analog voltage signal proportional to
rotational velocity. Tachometers can be either brush
or brushless.

Tachsyn

A brush]ess, electromagnetic feedback transducsr
which produces an analog velocity feedback signal
and commutation signals for a brushless servo
motor. The tachsyn is functionally equivalent 1o hall
sensors and a tachometar,

Torque

The rotary equivalent to forca, Equal to the product
of the force perpendicular to the radius of motion
and distance from the center of rotation to the point
Where the force is applied. '

Torque Constant

A number representing the relationship between
motor input current and motor output torque,
Typically expressed in units of torque/amp,

Torque Ripple

The cyclical variation of generated torque given by
the product of motor angular velocity and number of
commutator segments.

Torque-to-inertia Ratlo

Defined as a motor's torque divided by the inertia of
its rotor, the higher the ratio the higher the
acceleration will be

Transducer

Any device that translates a physical parameter into
an electrical parameter, Tachometers and encoders
are examples of transducers,

Transfer Functlon

The ratio of the Laplace transforms of systsm output
signal and system input signal.

Trapezoidal Profile

A motion profile in which the velocity vs. time
profile resembies 2 trapezoid. Characterized by
constant acceleration, constant velocity, and constant
deceleration.

GLOSSARY

BDSS5

TTL

Transistor-Transistor Logic.

Variable Frequency Drive

An electronic device used to control the speed of a
standard AC induction motor. The device controls
the speed by varying the frequency of the winding

current used to drive the motor.

Vector Control

A method of obtaining servo type performance from
an AC motor by controlling two components of
motor current.

Valocity

The change in position as a function of time.
Velocity has both a magnitude and a direction.

Voitage Constant (or Back EMF Constant)

A number representing the reiationship between
Back EMF voltage and angular velocity. Typically

expressed as V/Krpm.

28ro

A frequency at which the transfer function of a
system goes to zero.

: g
s

%
L

INDEX

<BDS Command, 4-39
>BDS Command, 4-9, 4-39
? Command, 4-11

VY, 4-27

*X, 3-19

AS, 4-26

ABAUD, 4-38

ACC, 3-18, 3-20, 3-21, 3-23, 3-24, 3-26, 3-
29, 3-35

Acceleration, 3-20
Limit, 3-18

ACTIVE, 3-13

ACTIVE LED, 1-13, 3-13
ADDR, 4-38, 4-40
ADEN, 4-33

Alarms, 4-26

Algebraic Functions, 3-9
AMAX, 3.18, 3-19

Analog Input (OPT1 Card), 1-12, 3-32,
3-35

AND, 3-9

ANUM, 4-33

Application Flowchart, 4-3
Application Specification, 4-3
Application Software, 4-41
ASCII, 4-18, 4-19

AUTOS, 4-29

Autobauding, 1-13, 2-12, 4-23, 4-29, 4-38
Disabling, 4-38

BS, 4-26

Background, 4-30
Restrictions, 4-32

Backing Up the Disk(s), 2-1

Bandwidth, 6-5

Basic Units, 4-32

BAUD, 4-38, 4-39

BDS5 Model Number, 14

Binary, 4-18

BLOCK.TF, 4-13

Brake, 3-14

Break (B) Command, 2-10, 4-10, 4-23
Broadcast, 4-41

Cs, 4-26

CAP, 3-26

CAPDIR, 3-27

Capture, 2.5

Capturing Position, 3-26

Changing Profiles During Motion, 3-31
CLAMP, 3-27

Clamping, 3-27

COM1, 2-1

COM2, 2-1

Command, 3-1

Commands _
<BDS, 4-39
>BDS, 4-9, 4-39
2, 4-11
Break (B), 2-10, 4-10, 4-23
Commenting, 3-1
CONTINUE, 3-37
Disable (DIS), 3-13
DUMP, 440
Dwell (D), 4-22, 5-4
Edit (ED), 4-7
ELTF, 4-13
ELSE, 4-13
Enable (EN), 3-13, 3-18
END, 4-23 .
ENDIF, 4-13
GOSUB, 4-11, 4-15

INDEX BDS5
GOTO, 4-10, 4-15 CONTINUE, 3-37
Hold (H), 4-21 ,]
IF, 4-13 Control Variables, 3-2
INPUT, 4-20 Control-V, 4-27
Jog (), 3-1, 3-19, 3-23, 3-33, 3-36 v a
Jog From (TF), 3-29, 3-36, 5-6 Control-X, 3-19
Jog To (JT), 3-29, 3-36, 5-6 Control Characters, 4-19
I_Klanbe(é(%s?‘i?m Control Loops, 3-37
Macro Absolute (MCA), 3-24, 3-33, 3- Power-Up, 3-39
36, 4-38, 5-6 Convertibles, 2-9
Macro Dwell (MCD), 3-24, 3-33, 3-36, CPU LED, 1-13. 2-3. 3-13
5-4, 5-6 ’ i
Macro Go (MCGO), 3-24, 3-33, 3-36, 5- Critical Damping, 6-2
6 Current
Macro Incremental (MCI), 3-24, 3-33, Command, 3-16
3-36, 5-6 Limit, 3-16
Move Absolute (MA), 3-21, 3-33, 3-36, Maximum, 3-16
4-38, 5-6 Almum,
Move Incremental (MI), 3-22, 3-33, 3- Monitor, 3-16
36, 5-6 Current Loop Compensation, 1-13
MRD, 3-26, 3-28, 3-36
Normalize (NORM), 3-23, 3-37 Cursor, 2-8
PLAY, 6-6 Cursor Addressing, 4-19
Print (P), 4-10, 4-16 .
Print Status (PS), 4-20 Customer Service, 4-6
Quick If (), 4-11 CYCLE, 2-12, 4-29
RD, 54
RECORD, 6-6 CYCLE READY, 4-29
Refresh (R), 4-20 Data Files, 2-9
Refresh Status (RS), 4-20 .
Return (RET), 4-11, 4-15 Debugging, 5-1
RUN, 2-12, 4-10 Debugging and Multi-Tasking, 5-2
i‘gf 52'23'19 » 4-10 DEC, 3-18, 3-19, 3-20, 3-21, 3-23, 3-24, 3-
TUNE, 6-4 26, 3-29, 3-35
Wait (W), 3-31, 4-22, 5-5 Deceleration, 3-20
Zero PE (ZPE), 3-24, 3-28, 3-37 Limit, 3-18
Commented Program, 4-5 Decimal Point, 4-17
Comments, 3-1 Decisions, 4-11
Communication Dedicated Labels, 4-10
Multidrop, 2-10, 4-40 Default Tuning, 6-3
Compensation, 6-1 Delay, 4-22
Compensation Module Model Number, 1-5 DEP-01, 4-19. 4-27. 5-9
Complement, 4-16 Detuning, 6-1

Compliance, 6-7
Computer Requirements, 2-1
Conditional Commands, 4-11
Conditions, 4-11

DIR, 3-14, 3-20, 3-26, 4-37
Direction, 3-14
Disable (DIS) Command, 3-13

: 5
s

p—

BDSS5

Discrete Inputs, 1-12
Discrete Outputs, 1-12
Distance To Go, 3-23
Disturbance, 6-8
Downloading, 4-39
Drive Control, 3-14
DUMP Command, 4-40
Dwell (D) Command, 4-22,54
Edit, 2.7
Editing, 4-6
Editor, 2.7
Change (C), 4-8
Delete (D), 4-9
Enter/Exit, 4.7
Find (F), 4-8
Insert (7), 4-8
NEW, 4-9
Next Line, 4-7
Password (PASS), 4-7

Print/Goto @), 4-7
SIZE, 4-9

Editor (ED) Command, 4-7
Electronic Gearbox, 3-32

ELIF Command, 4-13

ELSE Command, 4-13
Emergency Stop, 3-19

Enable (EN) Command, 3-13, 3-18
Enabling the BDSS, 3-16
Encoder Equivalent Output, 1-12
Encoder Feedback, 3-37
Encoder Input, 1-12

END Command, 4-23

ENDIF Command, 4-13

ER-Externa] Resistor Kit Mode]
Number, 1.7

Error
Display Message, 5-9
Firmware, 5-9
From Program, 2-12, 5.8
Handler, 2-12
Hardware, 5.8
History, 5-9

Message, 5-8
Program Corrupt, 4-9, 4-10
Severity, 5-8

Error Levels, 5-8
Error Log, 5-8

ERRORS, 2-12, 4-29
Establishing Communications, 2-2
Exampie Application, 4-3
External Inputs, 3-32
External Units, 4-33, 4-36
EXTLOOP, 3-37
FAULT, 3-13

FAULT LED, 1-13, 3-13
Fault Logic, 3-11

Faults, 5.8
Firmware, 313
Hardware, 3-13
Software, 3-13

Features, 1-1
Feed-forward, 3-38

Feed To Positive Stop, 3-27
Feedback Position, 3-14
Feedrate Override, 3-32
File, 2-7

Filter
Low Pass, 6-8

Fina] Position_,A3-23
Firmware Vex;sion, 4-40
Floating Point, 4-37
FOLD, 3-18

Foldback, 3-17
Following Error, 3.14, 6.5
Formatting, 4-17
GATE, 5-6
GATEMODE, 5-6
Gating Motion, 5-6
GEAR, 3-32

GEARJ, 3-32

INDEX

BDSS

GEARO, 3-32

General Purpose Input/ Output, 3-10
General Purpose 1/O, 4-15 |
General Purpose Timers, 5-4
Getting Started, 2-1

GOSUB Command, 4-11, 4-15
GOTO, 2-8

GOTO Command, 4-10, 4-15
Hardware Errors, 5-8

Hardware Travel Limit, 3-19
Hardware Watchdog, 3-13

Help Menu, 2-6

Help, Editor, 2-8

Hexadecimal, 3-8, 4-17

Hold () Command, 4-21
HOME, 3-26, 3-27

Homing, 3-27, 3-28

1_Monitor, 3-16, 6-6

11-16, 3-10, 4-15

11-16 DECIMAL VALUES, 3-11
ICMD, 3-16

ICONT, 3-17

IDEN, 4-32

Idling Commands, 4-21

IF Command, 4-13

IFOLD, 3-17 .
ILIM, 3-2, 3-16, 3-17, 3-27, 4-32, 6-3
IMAX, 3-16

IMON, 3-16

IN, 3-10, 3-11, 4-15

Indirection, 3-7

Inertia
Matching, 6-3

Initial Settings, 3-4
Initjation, 4-29
Input/ Output, 3-10

INPUT Command, 4-20

Inputs
General Purpose, 4-15
Masking, 4-16

Insert/Delete, 2-8

Instruction Format, 3-1
Instructions, 3-1

Integrating Velocity Loop, 3-38
Integrating Velocity loop, 3-16
Interactive Mode, 2-10

INTERFACING WITH THE OPERATOR,
4-16

INUM, 4-32
Jog (J) Command, 3-1, 3-19, 3-23, 3-33, 3-
36

Jog From (JF) Command, 3-29, 3-36, 5-6
Jog To (JT) Command, 3-29, 3-36, 5-6

Jogs
Position Dependent, 3-29, 5-6

KF, 3-38, 6-5

Kill (K) Command, 3-13
KP, 3-38, 6-5

KPROP, 3-38, 6-5

KV, 3-38, 64

KVI, 3-38, 6-4

Labels, 4-10
AUTOS, 4-29
Dedicated, 4-10
ERRORS, 4-29
MANUALS, 4-30
POWER-UPS, 4-29

1ED
ACTIVE, 1-13, 3-13
CPy, 1-13,2-3,3-13
FAULT, 1-13,3-13
RELAY, 1-13, 3-13
SYSOK, 1-13
SYS 0K, 2-3, 3-14

LED', 1-13
Limiting Motion, 3-19
Limiting Motor Current, 3-17

s

p—

S’

; i
; #
S

§
o

Limits

Travel, 3-19, 3-20
Logical Math Functions, 3.9
Logical NOT, 4-16

Loop

Control, 3-37
Position, 3-38
Position Gain, 3-38
Position Tuning, 6-5
Velocity

Integral, 3-38
Proportional, 3-38
Velocity Tuning, 6-4

Low-Pass Filter, 6-4, 6-8
LPF, 6-8

IPFHZ, 6-8

Machine Specific Units, 4-35

Macro Absojute (MCA), 3-24, 3-33, 3-36,
4-38, 5.6

Maczo Dwell (MCD), 3-24, 3.33, 3.36, 54,
5-6 ‘

Macro Go (MCGO), 3-24, 3-33,3-36,5-6

Macro Incrementa] MCD, 3-24,3-33, 3-36,
5-6

Macro Moves, 3-24, 5-5

Masking, 4-16

Master Slave, 3-32, 3.35, 4-33
Matching Inertia, 6-3

Math, 3-8

Maximum Profile Time, 3-23
Menus and Windows, 2.4

Mode, 2-10
Interactive, 2-10
Monitor, 2-12
Run, 2-12
Single-Step, 2-12
Trace, 2-12

Modes of Operation, 2-9
Modified S-Curve, 3.2
Molex Assembly Tools, 1.7

MONITOR, 2-12

Monitor Variables, 3-2
Monitor Mode, 2-12
MOTION, 3-19, 3-23,4-38

Motion
Enabling, 3-18
Error, 3-19
Gating, 5-6
Limits, 3.18
Macro, 3.24
Stopping, 3-18

Motion Commands, 3-18
Motion Link, 2-3

Motion Link Editor, 4-6

Motion Link Setup Program, 2-9
Motion Link, 4-6, 5-2

Motor
Noisy, 6-1

Motor Brake, 3-14
Motor Disturbance, 6-8

Move Absolute (MA), 3-21, 3.33, 3-36, 4-
38, 5-6

Move Incremental D), 3-22, 3-33, 3-36,
5-6

Moves
Buffering, 3-26
Incremental, 3-22
Triangular, 3.2

MRD Comx_:_r_zand, 3-26, 3-28
MULTI, 4-23, 4.28

Multi-Tasking, 4-22
Debugging, 5-2

Multidrop, 2-10, 4-40

Multipie JF/IT Commands, 3-30
Multiple Profiles, 3-23

N, 3-8

Nesting, 4.12, 4.15

Noise Susceptibility, 3-38, 6-1
Noisy Motor, 6-1

Non-Linear Mechanics, §-7

INDEX

BDSS

Normalize NORM), 3-23, 3-37

Numeric Expression, 4-18
01-8, 3-10, 4-15

01-8 DECIMAL VALUES, 3-10

OFF, 3-8

ON, 3-8

Options, 2-5

OR, 3-9

OUT, 3-10, 4-15
Qutput Relay, 3-14

Qutputs
General Purpose, 4-15
Masking, 4-16

Overdamping, 6-2
Overloading the Motor, 6-6
Overshoot, 3-21, 3-38
Overspeced, 3-16
Parameters, 3-1
Parentheses, 3-9

Part Nunber Description, 1-3
Password, 4-7

password, 4-40

PC-Scope, 24, 6-6

PCAP, 3-26

PCMD, 3-14, 3-38

PDEN, 4-33

PE, 3-14, 3-37, 3-38
PECLAMP, 3-27

PEMAX, 3-15, 3-24
PEXT, 3-15, 3-32

PFB, 3-3, 3-7, 3-14, 3-20, 3-38

PFNL, 3-23, 3-24

Phase Adjustment, 3-33
PL, 3-16, 3-35, 3-38, 3-39
PLAY Command, 6-6
PLC Interface, 4-29
PLIM, 3-20, 3-23

PMAX, 3-20, 3-23
PMIN, 3-20, 3-23
PNUM, 4-33

Position
Capture, 3-26
Command, 3-14
Error, 3-14, 6-5
Feedback, 3-14
R/D, 3-15
Resetting, 3-23

Position Dependent Jogs, 3-29, 5-6

Position Error, 3-38
Minimized, 3-38
Overflow, 3-15
Zeroing, 3-24, 3-28

Position Feedback, 3-3

Position Loop, 3-16, 3-38

Position Loop Gain, 3-38

Position Loop Tuning, 6-5

Position Units, 3-14

POWER-UPS, 2-10, 2-12, 4-29, 4-39
Power-Up Condition, 3-3

Power-Up Control Loops, 3-39

PRD, 3-15, 3-28
Ranges, 3-15, 4-33

Print
ASCI, 4-18
Binary, 4-18
Control Characters, 4-19
Decimal Point, 4-17
Expressions, 4-18
Formatting, 4-17
Hexadecimal, 4-17
Ignored, 2-12
Status, 4-20
Switches, 4-18

Print (P) Command, 4-10, 4-16
Print Status (PS) Command, 4-20
Printing, 3-2

Processor Modes, 2-9

Product, 1-1

Profile Regulation and Counting
Backwards, 3-36

»";
i

N

S

s

BDSS

INDEX

Profile Pre-Calculation, 5-6
Profile Regulation, 3-32, 3-35,54
Profiles, 3-20

Profiles and Gearbox, 3-33
Program, 24

Program Control, 4-10

Program Corrupt Error, 4-9, 4-10
Program Dump, 4-39
Programming Language, 3-1
Programming Conditions, 3-3
Programs, 4-1

PROMPT, 4-39

Prompts, 2-9, 4-39
List, 2-10, 441
Rules, 2.9

PROP, 3-16, 3-38
Proportional Velocity Loop, 3-38
PROTARY, 4-37

PSR4/5 Model Number, 1-6
PTRIP1,PTRIP2, 3-20

Pulse Input (OPT2 Card), 1-12
PWM Noise, 6-1

PXDEN, 4-33, 4-36

PXNUM, 4-33, 4-36

Quick If (?) Command, 4-11
R/D Based Move (MRD), 3-26, 3-28, 3.36
R/D Resolution, 3-15, 4-33
RAMP, 3-35

RD Command, 5-4

READY, 3-13

RECORD Command, 6-6
Refresh (R) Command, 4-20
Refresh Status (RS), 4-20
REG, 3-35,54

Registration, 3-29

REGKHZ, 3-35, 5-4

Relay, 3-13

RELAY LED, 1-13, 3-13
REMOTE, 3-13, 3-16
Remote Enable, 3-13
Removing Cod.c, 5-3
Resident Editor, 4-7

Resolution
R/D, 3-15, 4-33

Resolver-to-Digital Converter, 1-12
Resonance, 6-7

Response, 6-1

Return (RET) Command, 4-11, 4-15
Ringing, 6-2

ROTARY, 4-37

RS-48s, 4-40

RUN Command, 2-12, 4-10

Run Mode, 2-12

S-curve, 3-21

SAT, 3-18

Scope, 2-5

SCRY, 3-21, 3-23, 3-24, 3.26, 3-29
SEG, 3-27, 5-4, 5-5

Segments, 3-22, 5-4

SERIAL, 4-21

Serial Communications, 4-38
Serial Port, 1-12, 2-1

serial busy, 4-21

Serial Watchdog, 4-39

Simplified Schematic, 1-13
Single-Step, 2-12, 5-1

Software Installation, 2-1

Software Gearbox, 3-32

Software Trave} Limits, 3-20
Software Watchdog, 3-13
Special Constants, 3-8
Specifications and Ratings, 1-8

S§, 2-12, 5-1

it w Ve

e E Mg

INDEX

BDSS

Stability, 3-38, 6-1

Standard Units, 4-33
STATMODE, 3-13

STATUS, 3-13

Stop (S) Command, 3-19, 4-10
Switches, 3-2

Synchronize
Segments, 5-5

Synchronizing, 4-22
Synchronizing Your Program, 5-4
SYS OKLED, 1-13

SYS OKLED, 2-3, 3-14

System Compensation, 6-1
System Description, 1-1

System Diagram, 1-13

System Dump, 4-40

Tasks, 4-22

Theory of Operation
Microprocessor System, 1-12

Theory of operation, 1-12
TIL Command, 4-12

Timers
General Purpose, 5-4

TMR14, 54

Torque Command, 3-38
Torque Command Mode, 3-39
Torsional Resonance, 6-8
TQ, 3-38, 3-39

Trace, 2-12, 5-2

Travel Limits, 3-19, 3-20
Traverse, 3-20

TRC, 2-13, 5-2
Triangular Moves, 3-22
TRIP, 3-20

Trip Points, 3-20
TRIP1,TRIP2, 3-20
TUNE Command, 6-4

Tuning, 3-38, 6-1, 6-3, 64
Criterion, 6-1 ;
Default, 6-3 ' ™
Position Loop, 6-3 J
Velocity Loop, 6-4

Tuning Problems, 6-6

Typical Application, 4-41

Underdamping, 6-2

Units
Application Specific, 4-35
Basic, 4-32
Current, 4-32

External, 4-33, 4-36
Standard, 4-33

Uastable System, 6-3
Uploading, 4-39

User Programs, 4-1

User Variables, 3-2

User Error Handler, 4-29
User Switches, 3-8

User Trip Points, 3-20
User Units, 4-32 4
User Variables, 3-7
Utilities, 2-6

Variable Units, 3-2
VARIABLES, 4-27

Variables, 24, 3-1
Changing, 3-3
Control, 3-2
Factory Settable, 3-3
Indirect User, 3-7
Limits, 3-2
Monitor, 3-2
Printing, 3-2
User, 3-2

VAVG, 3-16

VCMD, 3-15, 3-38

VDEFAULT, 3-21

VDEN, 4-33

VE, 3-16, 3-38

Velocity

e

Command, 3-15 ' N

i

B |
S

s
o

BDS5

INDEX

Error, 3-16
Feedback, 3-15
Maximum, 3-16
Offset, 3-35

Velocity Drive, 4-41
Velocity Command, 3-38
Yelocity Loop, 3-16, 3-38
Velocity Loop Tuning, 6-4
Version, 440

VEXT, 3-32

VFB, 3-15

VMAX, 3-16

VNUM, 4-33

VOFF, 3-35

VOSPD, 3-16
VXAVG, 3-32
VXDEN, 4-33, 4-36

VXNUM, 4-33, 4-36

Wait (W) Command, 3-3 1,4-22,5.5

WATCH, 4-39

Watchdog
Serial, 4-39

Watchdogs, 3-13
Whole Word 1/0, 3-10

WTIME, 4-39
X(X1)-X(X250), 3-7

X1-X250, 3-7

XS1-XS50, 3-8

Y, 3-8

Zero PE (ZPE), 3-24, 3-28, 3.37

St

BDSS UPGRADE NOTICE

VERSION 3.0.0

* It provides a reaj time frace function,

* It provides an electronjc cam function,

* Itprovides a random number generator,

* It provides for using the run commang from within the user program for purposes of
Testarting 2 program,

* Itprovides up to 5% higher position loop bandwidth,

EXISTING APPLICATIONS

When upgrading older systems with 3.0.0. be sure to initialize the three pew non-volatile flags

for proper operation:
¢ ECHO=1

* MSG=1

* EXTDX=0

750 USER REGISTERS

Be aware that while the extra 500 user registers are enabled, the PC-SCOPE and PC.-TRACE
commands will be unavailabje,

BDSS version 3.0.0 Firmware
BDS5300.00C Rev4 June 15, 1983

MONITOR 01 This will automatically force entry into the
Monitor mode at the start of running a program,
MONITOR is set to 0 on Power-up.

ECHO Q{1 Used to suppress the echo of serial port characters
ECHO is remembered on Power-up.

MSGOl1 Used to suppress the power-up message and the

Monitor mode message.
MSG is remembered on Power-up.

PA <expr>{[<format>]} | "<text>" {...}

Print Append command - This command is liks
the Print command except there is no terminating
<carriage return> & <linefeed>. Also see the "R"
and "RS" print command.

PAS <expr>{[<format>]} | "<text>" {...}

Print Append Status command - This is identical
to the PA command except it also prints drive
status information.

RUN {<label>}

Now Allowed from within program - This can
allow the user to "restart” a program from an
Alarm or Error label.

CLEARX

This command will clear all user registers and
user flags to zero. Note: The Variable upload can
be greatly sped up if all user registers and flags
are zero. Edit the .VAR file and remove all XS1-
X850 ad X1-X750 lines and replace them with
one "CLEARX" command.

(X1-X750 & XS1-XS50

EXTDX 0|1

This will enable the Extended User Registers
X251-X750.

Note: The PC-SCOPE command and the Real
Time Trace command can not be used while the
Extended User Registers are enabled.

EXTDX is remembered on Power-up

RAND <seed>
RAND X<user register> <exprl> <expr2>

Random number generator command
<seed> = 0 - 31,000

-This generates the random number sequence.

<user reg>=1-250
-This is the user register used to store the
random number.
<exprl>
-This is 2 random number boundary (limit).
<exprl>
-This is the other random number boundary
(limit).

|<exprl>-<expr2>| <=31.000

This internal switch indicates if the 128 point -
Camming mode with linear interpolation is
enabled.

PCAM

Position command from CAM table. The CAM
table is contained in user registers X100-X227.

S

4
g

NORM <pos> {CaM}

Used to enabje the C

- GEAR mode must be turned off be
CAM, after which GEAR must be

am at the Normalize position
fore enabling
turned op 1o

DUMP {TL | VERSION}

TRECORD START | STOP | CONTINUE

Real Time Trace Record command. This can be
buried in the user program to control Real
Time Tracing.

Real Time Trace Playback command.

TPLAY - this will dump the entire Real Time Trace buffer
to the serial port.
TPLAY NEWEST <#lines> -this will output the newest # of lines.
TPLAY OLDEST <#lines> -this will output the oldest # of lines.
TPLAY <i#lines> -this will output a # of lines.
TPLAY «linel> <line2> -this will output from <linel> to <line2>.
See the Output syntax below

Output Format: #<line> LINE <pgm line> <prompt> <command>

#<line> is the trace line number.

<pgm line> is the user program line number.

<prompt> is 2 modified trace prompt that in addition to indicating the trace mode and the multi-
drop address, also indicates the multi-task active.

L 3 - L] . L] L] L 3 L

ta. indicates Alarm AS was active

tB. indicates Alarm BS was active

tC. indicates Alarm CS$ was active

tV. indicates Variable$ was active

t.. indicates the MAIN PROGRAM ($-$500) was active
t*. indicates BACKGROUNDS was active

tl. indicates INTERACTIVE was active

tM. indicates MONITOR was active.

<command> is the user program command that executed.

Output Example: #1 LINE 22 AT .. 58

;this indicates program trace linel was
;at user program line 22 from the Main
;program task and it was a label (53).

NOTE: When upgrading from an older version of firmware the following variable must be
initialized to insure proper operation of the BDS5. This is because they are not forced to defauit
power-up state and therefore will assume the value of the previously unitialized memory
locations. the flags ECHO and MSG should be set to 1 and the flag EXTDX should be set to 0
for 250 user registers and set to 1 for 750 user registers. Remember that when EXTDX is
enabled, it will disable the PC-SCOPE and PC-TRACE features of the BDSS.

* ECHO=1
* MSG=1
* EXTDX=0

e i e 38, g BT 0 L1

Mg

BDS5 TIMING TESTS

INSTRUCTION SPECIAL CONDITION TIMING TIME (msec) TIME (msec)
METHOD Ver2.0.%8 Ver 2.0.5
01 0ON None 1 1.90 1.94
01 OFF None 1 1.90 1.92
OUT=0UTI0CSh None 1 2.86 2.89
?71EQ1010N None 1 3.99 4.04
X1=2 None 1 1.72 2.03
X1=X2+1 None 1 2.18 2.50
X1=X2-1 None 1 2.17 2.50
X1=X2*100 None 1 2.33 2.65
X1=X2/100 None 1 2.36 2.67
ZPE None 1 1.20 1.67
NORM 0 None 1 2.00 2.64
01 On GEAR ON 1 2.07 2.11
X1=X2+1 GEAR ON 1 2.37 2.72
MI 40960 1000 None 2 6.00 6.00
MI 40960 1000 GEAR ON 2 6.80 6.80
MI 40960 1000 GEAR & REG ON 2 8.00 8.00
MI 40960 1000 REG ON 2 6.20 6.10
MI 40960 1000 REG ON & IN MOTION 2 7.00 7.00
MTI 40960 * NONE 2 5.00 5.10
MI 40560 * GEAR ON 2 5.80 5.40
MI 40960 * REG ON 2 5.10 5.20
* (YDEFAULT 1000)
TIMING METHOD #1 TIMING METHOD #2

Divide the number of loops counted (X1) into 10
seconds (10 / X1) to get the single loop time.
Perform this operation twice, once with the

<instruction> and once without the <instruction>.

Subtract the amount of time it takes to run this
program with the <instruction> from the time to
run without the <instructions. The result is the

amount of time it takes to exccute the instruction.

With an oscilloscope measure the amount of time
that Qutput #1 is ON while running the program
with the <instruction> and subtract from this the
amount of time the Cutput #1 is ON while
running the program without the <instruction>.
The result is the amount of time it takes to
execute the instruction.

43 58

X1=0 PLIMO

TMR1=]-m EN

53 010N

X1=X1+1 <instruction>

<iostruction> 01 OFF

?TMR1 GT0 GOTO 5 0]

B D 1000
GOTO 5

CAMMING with the BDS5
BDSS-CAM.DOC Rev3 June 02, 1893

Rotational
Motlon

Drive Shaft

2

\) Cam

N

Linear Motion

Figure 1. A Conventional Cam

Conventional Cams

Conventional cams convert rotational motion to linear motion. As Figure 1 shows, the
"command” signal comes from a master-drive shaft which is fitted with a cam. The cam
generates linear motion on a follower. Cams are used when a specific profile must be generated
each time a drive shaft turns. The cam itself can have a wide variety of shapes. This leads to
tone of the most important features of cams: you can generate a wide range of linear motion
profiles using only constant rotational motion.

Electronic cams offer many advantages over conventional, mechanical cams. For example, the
profile of an electronic cam is much easier to change. These profiles can be changed without
machining parts, and without disassembling the machine. With electronic cams, the machine
comes off-line only for the few minutes it takes to load 2 new profile. another advantage is that
electronic cam profile are not subject to wear like their mechanical counterparts.

The profile of an electronic cam is stored in a table such a the one shown in Figure 2. This table
defines the relationship between the drive and follower positions. You define the table directly
or take it from an existing conventional cam. If the cam already exists, you determine the radius
of the cam profile at different angles as shown in Figure 3. Here, 4 radii are shown, though in
practice; many more are specified.

Ny

P

5
S

% g
G
s

1.70" -

.
’
.
’
'
*
' ' v
a
.
.
.

L : |

0 20 180 270 360

Figure 2. Electronic Cam Table

One of the most important features of an electronic cam is that the master drive can rotate in one
direction indcﬁm‘tcly. With conventiona] positioners, this wil] eventually cause an error because
the internal position counter will overflow. Also, the electronic cam controller must support
gear ratios between the drive shaft and the follower, Again, the drive can rotate indefinitely, and
the controller must not Jose counts. The BDSS has been designed with both of these Criteria,
allowing it to serve as both 2 conventional positioner and as an electronic cam,

4.00" Radius

o
o
—

0
2.75" Radius -\37(30@90 >/ 2.75" Radius
| | \ 180°

[_ .1.70" Radius

Figure 3. Conventional Cam Tabie

Setting up the BDS5
To use BDSS camming, you need to follow these steps:

1) Generate a cam table and enter it into the BDSS.
2) Scale the BDSS electronic gearbox.
3) Align the machine and enable camming,

1) Generating a Table

To generate a table, start with a graph, like the
one in Figure 2, showing the master drive position
versus the follower position. Divide this graph
into 128 evenly spaced sections. Each section
represents about 2.81 degrees (360/128). Now
load the follower positions into the BDSS user
variables X100-X227 as shown below:

Figure 4
Dividing a CAM

Master Position Master Degrees Load Follower Position in
This User Variable
1 0 X100
2 2.81 X101
3 5.62 X102
4 8.43 X103
126 351.56 X225
127 354.38 X226
128 357.19 X227

Note that the beginning position (X100) should be close to the ending position (X227). This is
because this is an absolute electronic cam that will always cycle back to it's original starting
position. and begin the cam again. The next position after X227 is X100. when the cam table is
written it must wrap around so that position X227 and position X100 are close. If the positions
are not close the motor will jump and will possible trip out due to either an overspeed or a
position following error.

%, ¥
Stk

\\

S

2) Scale the gearbox
The BDSS processes the master drive signal through the gearbox so JOU can select the gear ratjo

GEARI 32,768 4096
GEARO 4000 500

or, GEARI=4096 and GEARO=500.
If you want to test your scaling, enable your BDSS (without camming), turn GEAR ON, and

rotate the drive motor 360 degrees. The follower motor should rotate 32,768 counts (8 rev's for
2 12-bit system or 2 rev's for a 14-bit system),

3) Align the Machine

Some applications require that the master drive be aligned; others assume the drive is 0 degrees
at power-up. If your application requires drive shaft alignment, YOU must provide the nece.
mechanisms as the BDS5 will not have contro] of the drive shaft, Virtually aj applications
require that you align, or "home", the follower position. Depending on your system, you may
need a home switch, In any event, the two positions must line-up somewhere in the cam table,
For example, in Figure 2, if the drive shaft were at 0 degrees and the follower wers at 3.00
inches, either the master drive or the follower would have to move, You would either have to:

This command simultaneously aligns and enable camming, When camming is enabled, the
software switch CAM is on. To disable camming, you must reset the BDSS, disable the BDSs,
or enter the NORM command without the "CAM". You cannot directly change the value of
CAM. Note that the BDSS must be enabled to use NORM with the "CAM" entry.

When the "NORM <Master Drive Position> CAM" command is executed, PCMD is determined
by the cam table and is set to the corresponding value for PCMD. PFB is set to the same value
as PCAM and therefore there is no PE (position error).

Returning to Figure 2, assume you know the follower to bed 4.00 inches. The master drive
should be at 0 degrees. You would normalize the position as follows:

EN
NORM 0 CAM

If you are using position units, the most convenient place to normalize for camming is when the
master drive is at zero. This is because the master drive position (PCMD) uses position units
(PNUM and PDEN) which are normally scaled for the follower. When you normalize to zero,
the units do not have any effect. However, if you want to normalize the master to 2 non-zero
position, you must
A) Determine the position of the drive master to which you will normalize;
B) Convert the position to counts where 360 degrees equals 32.768 counts;
C) Temporarily set position units to 1:1 (PNUM = PDEN = 1
D) Normalize to the position in counts:
EN
NORM <Master Drive Position in Counts> CAM
E) Restore the position units to their original values.

For example, if you knew the follower to be 3.00 inches and you knew the drive to be at 90
degrees:

A) Drive position = 90 degrees.
B) Drive position = 8192 couants.

C) PNUM=1
PDEN=1

D) EN |
NORM 8192 CAM

E) Restore PNUM and PDEN

10

)

S

S

s

i

Finally, you must turn GEAR on. This connects the drive to the follower. If you want tot test
your system before you connect the master-drive, you can use VOFF, VOFF is the offsat speed
for the electronic gearox. For example, if the master drive ig Dot moving and you turn GEAR

The BDSS5 uses a special variable for camming, PCAM. PCAM is the position command from
the cam table. This is usually the role for PCMD (position command). However, when
camming is enabled, PCM Tepresents the position from the electronic gearbox; that is, the
position that goes into the tabje, PCeM is the output from the table.

PCMD s automatically in a "ROTARY" mode where the distance of one rotation is fixed at
32.768 counts. PCAM can be printed or recorded with PC-Scope. In fact, if you want to see
your cam profile, you can record PCAM and PCMD simultaneously. For example, the following
line records both positions for 0.5 seconds.

RECORD 500 1 PCMD PCAM

You can then use PC-Scope to verify your profile. Also, the PS and RS commands display
"CAMMING" if GEAR and CAM are both ON,

Limitations

functions of the BDSS are not useful when caming. For example, profile commands (ML Ma, 1,
IT, JF, MCGO) are not allowed. ROTARY must be OFF. Any error that disabjes the drive aiso

11

s remind paramiowe ph

CAMMING DETAILS
by George Ellls 7/92
(Edited by Rick Furr June 02, 1993)

Camming is implemented as a modification of the BDS5 gearbox. As Figure 5 shows, the
standard gearbox produces PCMD by multiplying PEXT by the ratio GEARI/GEARO. PE is
formed by subtracting PFB from PCMD. Usually, PEXT is generated from another motor's
feedback sensor. In this way, a master motor position (PEXT) controls the slave motor position

(PFB).

PEXT Ratio: PCMD PE
GEARI E
GEARO .
PFB

Figure 5. BDSS5 Gearbox

This method of controlling motors is limited. The only profile that is allowed is one where the
slave position is proportional to the master position. Often, applications require that a master
motor will be tur='~g at a relatively constant speed, but the slave motor must execute a profile.
Actually, the BDSS has "Profile Regulation”, a mode where the rate of the siave profile is tied to
the master speed. At first we thought this would work for camming. Unfortunately, each time a
new profile is started, there are a few milliseconds when the master position is ignored. So,
although the rate of the profile is controlled by the master, the master phase and slave phase are
not locked together. Over time, the master position drifts with respect to the siave position,

12

L’*, §
B

./'7.
P’

o

To implement camming, a new approach had to be takey, We decided 1o modify the gearbox by
adding a look-up table, Ag Figure 6 shows, PEXT is Processed by the gearbox to form PCMD.
s then used as ag index into 5 CAM look-up table o produce a pew variable, PCAM.

Interpolation
The BDS5 CAM Table only has 128 Points but with the help of interpolation, the BDSS is abje

one turn of the CAM then the master input would Teceive 16,000 (8,000x2) counts of position
command per turp of the CAM. thig means that the varigpje GEARO should be programmed to
16,000

Note: The variable GEARQ must be number between 0 and 32,767. The variable GEART must
be a number between 32,768 and 32,767,

BDss MASTER/SLAVE
The next page will provide 5 more detailed biock diagram of the Electronjc Gearbox, Profile
Regulation, ang Electronic CAM master/slave modes of the BDSS,

13

ELECTRONIC GEARBOX

f’. DIGTAL | VELOCITY [v

%—I [VIRIM = BT
-
| DECODE ™ PIDEH —
PN
¢ &R YOFF
(WG| &0 4
l ; Z = PCUD
WOTION | | pROFILE |
COMMAD GENERATION
- PROFILE REGULATION
?[DIGITAL | VELCITY [yimg -
% _+ o
X .
< | DECODE
PIDEX
I t L> PO = M7
o1 7 POSITION
| K
W] | Em | -
WOTION [PROFILE |
oMk || i | = Kb
“ELECTRONIC CAM
?1 DIGITAL VELICITY [v - VET
%‘. i T
x | DECODE
=
T PESITION
0| &R YOFF
T 0, | % L
L\TT, SO o | e
BDS5 MASTER/SLAVE! i e |1ttt
BT i |5

14

NP WP RN p s e s

. !
S

&
s

Sy’

TESTING
A simple tast Program was written. This test performs the following task:

1. Loads X100-X227 with a triangle wave where X100 = 0, x101 = 100, x102 =200,

2. Enable the BDSS and enabje camming [Lines 28-32].

3. Use VOFF to move PCMD through the cam cycle. VOFF is usually used with the
gearboxto add ap offset speed. It was designed for yse with analog input where 3
customer may needto gq4q an offset speed to adjust out error from a D/A converter,
Here, we use it 1o simplify the test (without VOFF, testing would Tequire a second motor be
connected to the gearbox),

4) Loop control [Lines 35.37, 58-61]

5) Calculate which segment this iteration is in (it repeats from Segment 0 to scgment 127
cvery 128 iterations) and stors itin X2, [Line 38]

6) Determine PCMD gt the end of the segment. [Line 40]

7) Wait until PCMD reaches the boundary. Store the commanded position (PCAM) [Lines
45-53)

15

W oo~ hbh LW

CAM TEST PROGRAM FOR THE BDS5

;CAMTEST ghe 7/16/92

;use voff set to keep vemd moving at a constant speed. Selected that
;speed to be 20 RPM which is about 1365 counts/second. The entire
'cam cycle is 32768 counts. Each of the 128 segments is 256 counts.
:So0. 20 RPM cycles through the cam cycle at one cycle per 32768/1365
;seconds or 24 seconds. Each of the 128 cycles requires 24/128 or

'187 msecs.

;18
;This section loads cam variables with a trianguiar profile where
;each segment is different from the last by 100 counts

;First, load variabies x100-x164

;xi = 100 ;starting variable

;28 ;loop beginning

X(X1) = = (X1-100)*100 ;load the "up side" of the triangle
X1=X1+1 ;increment the loop counter

7x1 1e 164 goto 2 'test loop—-keep going uatil X164

;Now, load variables X165-X227 with the "down side" of the counter
3s ;loop beginning

X(X1) = X164-(X1-164)*100

X1 =X1+1 ;increment the loop counter

?7X1LE227GOTO3 ;test loop—keep going until X227

?
;Now, it's time to start the CAM

43

PLIM OFF ;Standard line to enable

GEAR OFF ;Disable GEAR so we can enable CAM

EN

NORM 0 CAM :Normalize and enable CAM

GEAR ON ;Now, we can enable GEAR

VOFF 20 ;Use offset speed of 20 RPM to go through
; cam cycle

B ;Break back to Immediate mode

16

5 ;
e

L

BDS5 SERIAL COMMUNICATIONS 1

DOC=BDS5COMI1.DOCRey 3 June 03,1993

The following chart shows the various ASCII codes and formats that will be used in all examples
in this document.
CONTROL CODE DEFINITION,
Name Symbol Control Hex Decimal
Bell <bell> ‘F 07h 7
Backspace <bs> AG 08h 8
Line Feed <If> *J 0Ah 10
Carriage Return or Enter <Cr.> ‘M 0Dh 13
Escape <esc> A 1Bh 27
Space <Sp> - 20h 32
XX - Number of Spacas <XX-Sp> - 20h 32
Comment Statements {Comments} -~ - o
Repeating or Additiona] {wn} -— —_ —
Data
| BDS5 EXAMPLE FORMATS
All examples will have the following format:
<Initial Prompt> <Host Command> <BDSS Echo>
<Response Data>

<...>Final Prompt>

17

The BDSS is designed to easily interface with a human (via a standard dumb terminal) and is
also designed to interface to a general purpose computer. Part of this design involved the
selection of unique prompts for each of the BDSS's 9 modes. These unique prompts will allow
the computer to determine the BDSS's current mode.

BDS5 NON-MULTIDROP PROMPTS
PROMPT DEFINITION
—-> INTERACTIVE MODE
==> MONITOR MODE
5-> SINGLE STEP MODE
t.. TRACE MODE
l-> PROGRAM UPLOAD
e> INTERNAL EDITOR
i->) EDITOR INPUT
f-> EDITOR FIND
c- EDITOR CHANGE

Every prompt is preczded by a <cr><|f>.

The BDS5 will print a prompt to the serial port whenever it is ready to receive a character. The
BDSS will echo each character transmitted to it.

The BDSS5 will never print data to the serial port while a prompt or input statement is active.
This means that if an error occurred the BDSS would hold the error message if a prompt was
present or if an input statement was active.

All error messages respond with the first three characters of "ERR".

The BDSS can be programmed in the user program to print out data with the "PRINT" statement
and the background (BACKGROUNDS) routine can be programmed to print out data on an
asynchronous interval with the "PRINT" statement.

The BDS5 can be programmed to enter an autobaud sequence on power-up Or can be
programmed to a fixed baud rate on power-up. By setting "ABAUD=1" the BDSS5 will autobaud
on power-up. After autobauding, the variable "BAUD" will contain the current baud rate.

The BDSS can also be set to automatically power-up at a fixed baud rate. By setting
"ABAUD=0" and "BAUD=9600" the BDSD5 would power-up at 9600 baud.

The BDSS can be reset to it's default serial conditions (Autobaud) by holding the MOTION input
off during power-up. This allows communications to be reestablished it au incompatible baud
rate was programmed into the BDSS.

18

-~
kY

g

]
S

g™

RS-232 COMMUNICATIONS -- INTERACTIVE MODE

The interactive mode is the normal state the BDSS will be in when it is 0Ot running a program.
The following are typical BDSS response sequences.

The BDSS5 will respond to a <cr> with a "<cr><|f>—>" character string while in the interactive
mode. The interactive prompt (-->) indicated that the BDS5 is ready for the next command.

->"<cr>" "<er><if>"

ll..>"

The BDSS generates the Same response with the <ascs character as it does with the <cr> (see
above) while in the interactive mode.

—=>"<esco" "<cr><ff>"

!l__>ﬁ
The Jog command or any typical BDS5 command wil] generate the following response:

~>"J 1000<cr>" "7 1000<cr><jf>"

>

The Print command can be used to print the contents of any BDSS variable. Remember that
variables print right justified so up to 11 Spaces could precede the value to be printed.

~>"P SEG<cr>" "P SEG<cr<ifs"
"<11-sp>0<cr><ifs"
n__>p
The BDSS Print command can specify a format to use for printing the variable, The only
restriction is that if the format is too small "X"s will be printed.

=>"P SEG[1]<cr>" "P SEG[1]<cr><f>"

"O<cr><if>"
"_>N

{ASSUME PFB=1024}

->"P PFB<crs>" "P PFB<cr><if>"
"<8-SP>1024<cr><f>"
N~>"

19

->"P PFB(3]<cr>" "P PFB[3]<cr><|f>"
XXX<er<|>"

L)
"‘_>N

->"P PFB(4]}<cr>" "P PFB[4]<cr><|f>"
"1024<cr><|f>"

".->N

Any programmable variable (user and dedicated can be programmed with a value by using the
BDSS equate function.

X1 1000" "X1=1000<cr><|f>"
"“>l’

The BDSS equate function will work with either an Equal Sign (=) or a Space.

X1 1000" "X1 1000<cr><|f>"

D

The Run command can be used to enable the BDS5 multitasking by typing "RUN". Notice that
once the BDSS has started running that the prompt does not return,

—~>"RUN<cer>" "RUN<cr><{f>"

The RUN command can also start a specific program label.

~>"RUN<cr>" "RUN<cr><{f>"

If an error occurs it will not print out if a prompt is present until a <cr> is received.
->"<cr>" "<er><{f>"

"<bell>ERR 17 FEEDBACK LOSS<cr><|f>"

N~>"

., r
-y

-

% ;
S

20

7
p—

%, 5
Wassugon”

If the host was sending a command to the BDS5 and an error occurred before the command was
finished the BDSS will ignore the command and respond with the following sequence.

—->"<cr>" "<er><{f>"
"._>]

{NOW AN ERROR OCCURS}

{TYPE IN A COMMAND AND A <cr>}
~>"P PFB<cr>" "<er><if>"
"ERROR MSG WAITING-COMMAND IGNORED<cr><jf>"
"<er><if>"
n <‘bn
"<bell>ERR 17 FEEDBACK LOS<cr><|f>"

N-> "

After an error with a severity level high enough to disable the drive the fault light will turn on.
to clear this light simply re-enable the BDS5 with the Enable command. The Enable command
takes a few seconds to complete and returns a prompt.

->"EN" "EN<cr><if>
<...time delay...>

H“>ﬂ

21

RS-232 COMMUNICATIONS -- RUNNING A PROGRAM

If a program is running -- then an ESCAPE character must be sent to get the attention of the
BDSS. The monitor mode will be active on getting the attention of the BDSS5. A second
ESCAPE will drop the BDS5's attention and exit the monitor mode. The monitor mode will
accept a sub-set of the BDSS commands. This subset includes:

? ; B DIS EN ERR K

MOTOR P PS R RS S ZPE

To enter the monitor mode while running a program send an <esc> character.

"<esc>" "<ero<if>"
"ENTER MONITOR MODE. PUSH ESCAPE TO EXIT <cr><{f>"

N==>"

If the response is as follows then the <esc> has caused the BDSS5 to exit the monitor mode. If
this is the case then send another <esc> to reenter the monitor mode.

"<esc>" "<Cr><‘f>"
"ENTER MONITOR MODE.

A single <cr> will return the following response. If there is no response then the monitor mode
is not active and an <esc> should be sent tot he BDSS to enter the monitor mode.

"<er>" "<cr><{f>"

ﬂ=>!l

A Stop command will stop motion at AMAX and break the program. The interactive prompt
will be returned indicating that the BDSS5 has stopped running the program.

==>"S" "S<cr><|f>"

l__>"

A Break command will stop at AMAX and break the program. The interactive prompt will be
returned indicating that the BDSS has stopped running the program.

==>"B" "Becr><|f>"

n._>n

22

A Kill command wij disable the motor ang break the program. The interactive prompt will be

returned indicating that the BDSS hag Stopped running the program,

==>"K" "K<Cr><lf>"
"“>ﬁ

==>"] 1000 <cr> "T 1000<cr><|f>"
"<er<Ifs>"
H<Ibﬂ

"<bell>ERR 63 '7 1000'<22-sp>NOT AT THIS LEVEL<cr><Ifs"

"z=mat

==>"P SEG[1]"<c> "P SEG[1]<cr><If>"

"O<er><If>"
Ha>ﬂ

{ASSUME PFB=1024}

=2>"P PFB<crs>” "P PFB<cra<fs"
"<8-5p>1024<cr><1f>"

'l==> "
==>"PPFB[4]<c>" p PFB(4]<cr><jf>"
"1024<cr><Ifs"

"“> L]

==>"P PFB[5]" "P PFB[5]<cr><lf>"
"<sp>1024<cr><Ifs"

==t

==5"p PFB[3]" "P PFB[3]<cr><ff>"
XXX <er<Ifs"

==>"X1=1000" "X1=1000<cr><If>"

{THIS SETS VARIABLE X1 TO 1000}

==>"X1.1000" "X1.1000<cr> <If> "
==>

{THIS SETS VARIABLE X1 TO 1000}

==>"RUN<cr>" "RUN<cr><If>"
"<er><if>"
N<Ibn
"<bell>ERR 63 'RUN'<28-sp>NOT AT THIS LEVEL<cr><If>"
n==>"

{THE RUN COMMAND IS NOT ALLOWED IN THE MONITOR MODE}

A ~X will act like 2 "S"top and a "B"reak command. The BDS5 will respond to this command
while in the monitor mode, while in the interactive mode, or while running program.

==>"RUN 6" "RUN 6<cr><If>"
{NOW A PROGRAM IS RUNNING AND NO PROMPT IS PRESENT}

{NOW AN ERROR OCCURS}
"<er><IH>"
n<1bn
"<beil>ERR 17 FEEDBACK LOSS<cr><If>"

N..>"

==>"RUN 6" "RUN 6<cr><if>"
{NOW A PROGRAM IS RUNNING AND NO PROMFT IS PRESENT}

{TYPE AN ESCAPE TO ENTER MONITOR MODE}
"<asc>” "<cro<I>"
wdbl'
"ENTER MONITOR MODE. PUSH ESCAPE TO EXIT<cr><If>"

==>
{NOW AN ERROR OCCURS BUT A PROMPT IS PRESENT SO}

{ THE ERROR WILL NOT PRINT OUT}
{TYPE A <cr>}
==>lcr>ﬂ ﬁ<cr><1b"
R<Ibll
"<bell>ERR 17 FEEDBACK LOSS<cr><If>"

n“>n

24

-y,

g

£y
S

==>"RUN 6" "RUN 6<cro<Ifs>"
{NOW A PROGRAM IS RUNNING AND NO PROMPT IS PRESENT}

{TYPE AN ESCAPE TO ENTER MONITOR MODE}
"<esco>" "<ers<If>"
"<Ibn
"ENTER MONITOR MODE. PUSH ESCAPE TO EXIT<er><If>"

"t

{NOW AN ERROR OCCURS BUT A PROMPT IS PRESENT}
{SO THE ERROR WILL NOT PRINT ouT}

{TYPE IN A COMMAND AND A <>}
==>"P PFB<cr>" "<cr><if>"
"ERROR MSG WAITING--COMMAND IGNORED<cr><If>"
"<ero<If>"
Hdﬁ"
"<bell>ERR 17 FEEDBACK LOSS<er><If>"

N->N

UPLOADING & DOWNLOADING PROGRAMS

The BDSS has two commands to allow the up-loading and down-loading of the BDSS program
memory.

"<BDS" will print to the serial port each line of the program memory. Each program line is
terminated with a <cr><If>, This command terminates with a "<cr><If>.->" prompt.

->"<BDS<cr>" "<BDS<cr><If>"
"<Program Line #1><cr><If>

"<Last Program Line #><cr><If>"

l!.->"

">BDS" will place the BDSS into the program upload mode. On getting the first <cr>
terminated line the program memory will be erased. Each <cr> terminated line will respond
with a "<cr><If>}->" prompt. Sending an <esc> tot he BDSS will end the program upload mode.
Upon completing a program upload the host may request a special BDS5 checksum of the data
stored in memory. After receiving this special checksum the host may in future uploads use this
value to verify the BDSS program has been uploaded error fres.

~>">BDS>cr?" "BDS<cr><If>"
nl_>n

{THE |-> PROMPT INDICATES THE BDSS IS READY TO RECEIVE A PROGRAM}

[->"<your first program line><cr>" "<your first program line><cr><If>"

[->"<.c.>" o>
|->"<your last program line><cr>" "<your last program line><cro><If>"
[->"<esc>" "<cr><If>"

N‘oﬂ

Recalculation of this checksum by the host is not possible because this is a special word
checksum of the BDSS's internal program memory with a varying offset. As stated earlier the
most efficient method of exploiting this checksum is to upload the BDSS program, print out the
checksum variable, and then use that value for comparison of future uploads.

->"P CHECKSUM<cr>" "P CHECKSUM<cr><If>"
"<7-sp>65280<cr><If>"

"

{YOU CAN ALSO PRINT THE CHECKSUM IN HEX}

~>"P CHECKSUM[H]<cr>" "P CHECKSUM[H]<cr><If>"
"<4-sp>FFO0H<cr><If>"

n‘_>n

26

Y, ‘9‘&‘)
S

UPLOADING & DOWNLOADING SYSTEM VARIABLES

The BDSS can print to the seria] port two groups of interna] variables. The firgt group is al] of
the variables. The second group is a subset consisting of compensation specific variables,

"DUMP" will print to the serial port all variables from the BDSS,
"DUMP TL" wili print to the seria] port the compensation specific variables from the BDSS,

To upload Don-factory variables to the BDSS5 simply transmit cach variable followed by a Space
or Equal Sign followed by the numerical value and terminated by a <cr>. Do not transmit the
Dext variable line unti} a prompt has been recsived, The prompt indicates that the BDSS js ready
to receive the next variabje Or command,

—=>"BAUD 9600<cr>" "BAUD 9600<cr><Ifs"

LAY

~>"ABAUD=l<cr>" "ABAUD=1<cr><If>"

n“>n

=>"X1=111234<cr>" "X1=111234<cro<if>"

n._>n

Not all BDSS5 variables are programmable and some variables are programmable at the factory
only. The factory protected variables contain motor specific information,

% :
g

27

MULTIDROP COMMUNICATIONS

Multidrop communications will allow you to have up to 32 axes on serial communications line.
Each axis must have an unique address. The valid addresses are "0"-"9" and "A"-"Z". The Axis
Attention Character is a Backslash "\". The Backslash when followed by a valid Axis ID will
wake up the addressed axis. "*" is a special Axis Broadcast All command that will wake-up all
the axes to respond to any transmitter command but no axis may transmit. The BDSS prompts
are slightly different from the standard RS-232 prompts. The Multidrop prompts always print
the Axis ID as their first character. The normal first character is then slid over to the second
position in the prompt. The prompt terminates with a ">".

BDSS MULTIDROP PROMPTS
ASSUME: ADDR=65 AXISLD.="A"
PROMPT DEFINITION
A-> INTERACTIVE MODE
A=> MONITOR MODE
As> SINGLE STEP MODE
At. TRACE MODE
Al> PROGRAM UPLOAD
Ac> INTERNAL EDITOR
Ai> EDITOR INPUT
Af> EDITOR FIND
Ac> EDITOR CHANGE

All handshaking will be identical to the above examples except the prompts will change as
shown in the above chart,

{WAKE UP AN AXIS "A" (ADDR=65)}

"A<er" "<ero<Ifs>"
A"

28

& e
Mg

Figin”

BDS5 SERIAL COMMUNICATIONS 2

DOC=BDS5COM2.DOC

* The serial protocol is six;zplc ASCII with full duplex echo.

Revd July 13, 1993

1. The simple ASCT protocol was chosen to allow ¢asy communications with any ASCIT

device.
compatibles running terminal emulation software, etc.

2. With full duplex echo, the BDSS will transmit sach character rece

device. This allows the host to verify each character was correctly sent,

Le. dump terminals, hand held terminals, panel mounted terminals, [BM

ived back to the host

* The BDSS will transmit a unique prompt when it is ready to receive commands. The
interactive prompt will be "—>". If a prompt is not present, then the BDSS is not listening to

the serial port.
BDS5 PROMPTS
MODE NON-MULTIDROP MULTIDROP
(ADDR=0) (ADDR=65)

INTERACTIVE - -> A->
MONITOR ==> =>
SINGLE-STEP S-> As>
TRACE t.. At.

EDIT e-> Ae>
LOAD 1-> Al>
EDIT/INSERT j=> Ai>
EDIT/FIND f-> Af>
EDIT/CHANGE c-> Ac>

* The following control codes will be used throughout this discussion:

CONTROL CODE DEFINITIONS
NAME SYMBOL CONTROL | HEX DECIMAL
Acknowledge <ack> “F 06h 6
Bell <bell> ‘G 07H 7
Backspace <bs> ‘H 08h 8
Linefeed <[f> AT OAh . 10
Carriage Return or_Entcr <cr> ‘M 0Dh 13
Not Acknowledge <nak> U 15h 21
Escape <esc> Af 1Bh 27
Space <Sp> - 20h 32

29

Some of the more important serial commands that have been available in all versions of software

are in the following table:

BDS5 SERIAL COMMANDS

(Firmware version 2.0 and later)

PROMPT 0j1

Used to suppress the printing of the three character prompt
to the serial port. PROMPT is remembered on Power-up.

<variable>=<expr>

Used to equate any system variable to any valid math
expression. Valid math expressions include user variables,
indirect references to user variables, constants, algebraic and
logical math operators, parentheses. Parentheses can be
nested up to two levels deep. Spaces are not allowed in
expressions.

P <expr>{[<format>]} | "<text>" {...}

Print command - Used to print strings and variables
specified with the optional format terminated by a <cr><If>
sequence. Also see the "R", "RS", "PA", and "PAS" print
commands.

PS <expr>{[<format>]} | "<text>" {...}

Print Status command - Used to print strings and variables
specified with the optional format terminated by the drive
status and a <cr><If> sequence.

R <expr>{[<format>]} | "<text>" {...}

Refresh command - Used to print strings and variables
specified with the optional format terminated by a <cr>.
This command identical to the P command except there is
only a terminating <cr>. Also see the "R", "PS", "PA", and
"PAS" print commands.

RS <expr>{[<format>]} | "<text>" {...}

Refresh Status - Used to print strings and variables specified
with the optional format terminated by the drive status and a
<Ccr>.

30

il
S

g

BDS5 COMMUNICATIONS

The BDSS will communicate over ag RS-232 serial bus with simple ASCII commands.

* Each ASCII character transmitted to the BDSS will be echoed back to the host. This echo
will allow a simple character by character verification that the data was properly received,

* Each ASCI command string will be terminated by an ASCI carriage return (<cr>).
* Upon receiving the <cr> the BDSS will acknowledge the command by transmitting a

"<er><If>" followed by a system prompt ("->"). The prompt is used to indicate what mode
is currently active in the BDSS and that the BDSS is ready to receive another command,

SERIAL COMMAND EXAMPLES:
"ILIM=50<cr>" This would set the current limit to 50%.
~"OUT=1FH<c>" ~ This would set the 8 user programmable outputs to 1F hex.

"EN<cr>" - This would enable the BDSS.

"DIS<cr>" This would disable the BDSS,

"] 1000<cr>" This would Jog an enabled axis at 1000 using the acceleration and
deceleration rates programmed into ACC and DEC.

"P PFB<c>" This would print the feedback Position to the serial port,

"P PFB[4]<cr>" This would print the feedback position formatted to 4 places to the serial
port, terminated by a <cr><If>,

R PFB[H]<cr>" This would print the feedback Position in hex format to the serial port
terminated by a <cr>.,

"R PFB[HS}<cr>" This would print the feedback position in 5 places using hex format to
the serial port terminated by a <cr>.

"PA" PFB<cr>" ~ This would print the feedback position to the serial port terminated by no
characters.

31

Additionally, for more communications capabilities, the following commands have been added

to firmware version 3.0.0:

NEW BDSS SERIAL COMMANDS

(Firmware Version 3.0.0 and Later)

MONITOR 0|1 This will automatically force entry into the Monitor mode at
the start of running a program.
MONTITOR is set to 0 on Power-up.

ECHO 01 Used to suppress the echo of serial port characters, *
ECHO is remembered on Power-up.

MSG Q|1 Used to suppress the serial Power-up message and the

Monitor mode message. »
MSG is remembered on Power-up. :

PA <expr>{[<format>]} | "<text>" {...}

Print Append command - Used to print strings and variabjes
specified with the optional format. This command identical
to the P command except there-is no terminating <cr><Ifs
sequence. Also see the "P",-"PS", "R", and "RS" print
commands, e '

PAS <expr>{[<format>]} | "<text>" {.}

Print Append Status command ~-Used to print strings and
variables specified with the optional format terminated by

the drive status. This command is identical to the PS |

command except there is no tcrminatin‘gicrdb sequence.

Note, the BDSS now has a full set of Print
“and PAS. The only differences being the P
<cr><If>, the R and RS commands termina
PAS commands do not terminate the output

commands. These commands are P, PS, R, RS, PA,
and PS commands terminate the output string with a
te the output string with just a <cr>; and the PA and
string at all.

The Monitor mode switch will cause the BDSS to automatically enter the Monitor mode upon
the execution of a BDSS program. This will in essence cause the BDSS to always have the serial
port active and waiting for a command. Previously BDS5 required an <esc> character to be
received in order to activate the serial port while 2 user program was running,

32

oy sl

e

ey,

89/21/1995 15:43 4844511883

G0 4 w-' F20

BDSS Lxsrxud'

KOLLMORGEN

P&GE 81

PAGE 1

.103..;4;' il
P UV R .u.},vra t6]
MF’ el

PN

ey
<4

Py
. v

.3 " ICMD[éJ 4 PFB = ¥ PFB/(4096*3)

S

|

BDSS APPENDIX C - ERROR CODES

APPENDIX C

ERROR CODES

C.1 INTRODUCTION

The BDSS's response to an error depends on the error's severity. There are four levels of severity, listed below in
increasing order:

Table C.1. Error Saverity Leveis and Actions

1. Errors which cause warnings.
2. Errors which cause 2 program break and stop motion, in addition to Level 1 Actions.

3. Errors which cause the system to disable and set the FAULT Hardware Output, in addition
to Level 2 Actions.

4, Errors which disable almost all BDSS functions (including communications) and flash the
CPU LED to indicate the error number. These are called firmware errors.

See Chapter 5 for more information about error severity. The following is a complete list of errors generated by the
BDSS.

C.2 HARDWARE FAULTS

C.2.1 Firmware Fauits

ERROR 2 *HARDWARE- U-P FAIL* SEVERITY 4

The microprocessor cannot pass self-test. This fault causes the microprocessor to blink
the CPU light twice and then pause. The BDSS will not communicate or run the user

program. Contact the factory. :

ERROR 3 "HARDWARE-CHECKSUM" SEVERITY 4

The microprocessor cannot pass the checksum self-test. This fault causes the
microprocessor to blink the CPU light three times and then pause. The BDSS will not
communicate or run the user program. Contact the factory.

C-1

APPENDIX C - ERROR CODES - BDSS

ERROR 4 "SOFTWARE WATCHDOG* SEVERITY 4

The microprocessor has failed the software watchdog self-test. This fault causes the
microprocessor to blink the CPU light four times and then pause. The BDSS will not
communicate or run the user program. Contact the factory.

ERROR S "+5 VOLTS" SEVERITY 4

The +5 volts is too low. This fault causes the microprocessor to blink the CPU light five
times and then pause. The BDSS will not communicate or run the user program. Check
the +10 VDC input into the BDSS (Connector C4, Pin 4 or 8). If it is below 6.5 Volts
for even a short time, this error will occur. This happens when the logic supply is
loaded too heavily, or whea the line voltage (PSR4/5 Connector C1, Pins 2 and 3)is
below 98 VAC (115 VAC less 15%). '

C.2.2 BDSS5 Faults

ERROR 10 *REMOTE OFF"* SEVERITY 2

You attempted to execute an instruction that requires the hardware input REMOTE on
the signal connector to be active. This error breaks program cxecution.

ERROR 11 “OVER-TEMP"* SEVERITY 3

The thermostat on the BDSS heatsink opened, indicating overheating. Overheating may
be caused by excessive ambient temperature, obstructed airflow, broken fan, etc. Correct
any such condition befare resuming operation. REMOVE ALL POWER BEFORE
CHECKING THIS. If everything is functioning properly, a drive with a higher current
rating may be required. This error breaks program execution and disables the BDSS.

s

ERROR 12 "OVER-CURRENT" SEVERITY 3

The BDSS detected an overcurrent. This can be caused by a shorted motor winding, a
shortcdpowcrmnsistor,ora:honcimuitinthewiring. Be sure to check all wiring
before resuming operation. This error breaks program execution and disables the BDSS.

ERROR 13 "OVER-SPEED* SEVERITY 3

The BDSS determined that the speed of the motor was greater than the variable VOSPD.
Ifthi:soocmzocasiomﬂy,hmybcanuismcefxultthatshouldbccormctedbymising
VOSPD by 5% or 10%. This error breaks program execution and disables the BDSS.

ERROR 14 - "POWER BUS" SEVERITY 3

The power supply high voltage bus has either an overvoltage fault or an undervoltage
fuult. See Chapter 3 £+ more information. This error breaks program execution and
disables the BDSS.

g’

C-2

%
N

BDSS APPENDIX C - ERROR CODES

ERROR 15 *COMP BOARD* SEVERITY 3

You attempted to enable the BDSS with the compensation board removed. Replace the
compensation board. This error breaks program execution.

ERROR 17 *FEEDBACK LOSS" SEVERITY 3

The BDSS has detected that one or more wires to the resolver have been broken, or the
resolver connector has been removed. This error breaks program execution.

ERROR 18 *‘BADTL" SEVERITY 3

The BDSS5 has two boards: a small MC boa:d and a larger IBD board. Both boards have
the current and voltage rating encoded and they must match. If this error occurs
because you exchanged the MC card, then you should replace the original card. If it
occurs for some other reason, contact the factory. This error breaks program execution.

ERROR 19 *MOTION (HDWR LINE)" SEVERITY 2

The MOTION input was off at the beginning of a motion instruction, or it turned off
during a motion instruction. This signal comes from the optional /O card. This error
breaks program execution.

ERROR 20 *TUNE FAILED" SEVERITY 3

The TUNE command failed. Either the inertia on the motor is too large for the desired
bandwidth, the motor is not functioning properly, the bus voltage is too low, or the
BDSS is not functioning properly. Try reducing the desired bandwidth to correct this
problem. Make sure REMOTE is on. If this does not work, attempt to tune the system

by hand as described in Chapter 9.

ERROR 22 "+/- 12 VOLTS" : SEVERITY 3
The £12 volts is out of tolerance. Contact the factory. This error breaks program
execution.

C.2.3 Positioner Faults

ERROR 23 *SOFTWARE OVERTRAVEL" SEVERI'}'Y 2

Software travel limits are enabled and either PMAX or PMIN (the software limits) have
been exceeded. If your application does not need software travel limits, or if you want to
disable software travel limits temporarily, type:

PLIM OFF

This error breaks program execution.

C-3

APPENDIX C - ERROR CODES BDSS

ERROR 24 *"HARDWARE OVERTRAVEL" SEVERITY 3

The BDSS detected an overtravel condition while it was enabled. You can print the
state of the overtrave] limit switch by typing:

P LIMIT

If LIMIT is O, then an overtravel condition exists. LIMIT should be connected to a limit
switch that has contacts that are normally closed but which open where an overtravel
condition occurs. Hardware overtravel limits cannot be disabled. This error breaks
program execution and disables the BDSS.

ERROR 25 *PE OVERFLOW" SEVERITY 3

The variable PE, the position error, exceeded the variable PEMAX. This is also called a
following error overflow. This error breaks program execution and disables the BDSS.

ERROR 28 *PFB ROLLOVER" SEVERITY 3

The variable PFB, the position feedback, exceeded +/-2,147,483,647 counts. If you are
using position units, then PFB exceeded the position unit equivalent of +/-2,147,483,647
counts. This can occur if the motor rotates indefinitely in one direction. If your
application requires this, consider using the rotary mode as described in Chapter 11,

ERROR 27 *R/D JUMPERS" SEVERITY 3

Either the jumpers on your BDSS MQC2 card are incorrectly set or the wrong TL has
been loaded. Contact the factory.

C.3 MOTION ERRORS

C.3.1 Position Calculation Errors

ERROR 30 'TOO MANY MOVES " SEVERITY 2

Youtypedintoomxnymovecommmds(MA,hﬂ,MCGO)ﬁnmtheinterscdvemode.
You can have one move executing and the other pending. The error does not occur
when move commands are executed from the user program, ° -cause the BDSS sees that
the motion buffer is full and delays execution to prevent the - cor. This error breaks
program execution.

ERROR 31 *TOO MANY MRD MOVES* SEVERITY 2

You attempted to execute a motion instruction that required the profile buffer to be
empty. This occurs when two MRD instructions are active at once. You should use a
synchronizer to delay the execution of the instruction that caused the error. This error
breaks program execution.

C4

WW

% 5
St

BDSS APPENDIX C - ERROR CODES

ERROR 32 *ACC/DEC TOO Low* SEVERITY 2

You entered 2 motion command that calculated a motion profile where either the
acceleration or deceleration segment was more than 30 seconds long. You must
increase ACC or DEC or reduce the speed change of the move. This error breaks
program execution.

ERROR 33 *VEL OUT OF BOUNDS"* SEVERITY 2

You entered 2 motion command where the commanded velocity was out of the allowable
range. The range for Jog (J) commands is *VMAX. The range for other motion
commands is 0 to +VMAX. This error breaks program execution.

C.3.2 Macro Move/JT/JF Errors

ERROR 40 *CHANGED DIRECTION" SEVERITY 2

You attempted to change direction with an instruction that does not allow direction to
change. These instructions include JT, JF and macro moves. This error breaks program
execution.

ERROR 41 "MOVE NEEDS MOTION* SEVERITY 2

You attempted to execute an instruction that requires the motor to be in motion. These
instructions include JT, JF, and MCI/MCA with no velocity parameter specified. This
error breaks program execution.

ERROR 42 *MOVE w/o TIME* SEVERITY 2

You attempted to execute a move that required more time than was available. For
example, you attempted a JT or macro segment where the final position could not be
reached because of acceleration limits. You may have attempted a JT or JF when you
were already well beyond the specified position. This error breaks program execution.

ERROR 43 *MACRO NOT READY" SEVERITY 2

You attempted to execute 2 macro move (with the MCGO instruction) in which the last
scgment of the move did not end at zero speed, or the macro-move memory is empty.
The macro-move memory is cleared every time the BDSS is turned on. This error
breaks program execution.

ERROR 44 "MCD w/MACRO MOVING" SEVERITY 2

You attempted to insert 2 macro-move dwell when the previous macro-move segment
ended at a speed other than zero, This error breaks program execution.

APPENDIX C - ERROR CODES BDSS

ERROR 45 *"MCA ACTIVE" SEVERITY 2

You attempted to insert an MCA segment after an MC] segment. This error breaks
program execution,

ERROR 46 *MCIACTIVE" SEVERITY 2

You attempted to insert an MCI segment after an MCA segment in a macro move. This
error breaks program execution.

ERROR 47 *MCU/MCA TOO COMPLEX" SEVERITY 2

You attempted to execute a macro move that required too many segments. This error
breaks program execution.

ERROR 48 "MCA/MCI RUNNING* SEVERITY 2

You attempted to build 2 macro move while another macro move was running. This
error breaks program execution.

C.4 SOFTWARE ERRORS
C.4.1 Programming Modes or Motion Modes

ERROR 50 ‘DRIVE INHIBITED" SEVERITY 2

You attempted to execute an instruction that required the BDSS to be enabled while it
was inhibited. This error will break program execution if the instruction is issued from
the user program.

ERROR 51 *DRIVE ENABLED" SEVERITY 2

You attempted to execute an instruction that required the BDSS to be inhibited while it
was enabled. This error will break program execution if the instruction is issued from
the user program.

ERROR 52 — *NOT FROM TERMINAL" SEVERITY 1

You attempted to execute an instruction from the terminal that is not allowed from the
terminal. This error generates no action.

ERROR 53 *NOT FROM PROGRAM" SEVERITY 1

You attempted to execute an instruction from the program that is not allowed from the
program. This error breaks program execution.

C-6

Hall

C

—
%

com 2y
— IZ» EXSTIG
P— ADDED
{Z 0{:0/ 44&5 ”}YDM C‘{*“a’fic’&’{ (:!!535“ <t
Stohns ob !
2] i
1413 AL
C<% cg -
f R Lo 4 SRR
e r~" "7 Wi = FsD
r |
Med] \
E , LHITE ! : Rk — S ET
RLAC I \;/i/' : G
e :
) .
I “ 7§ ‘ !

o

BDSS : APPENDIX C - ERROR CODES

ERROR 54 *NOT FROM MONITOR" SEVERITY 1

You attempted to execute an instruction while in the Monitor mode that is not allowed
from the Monitor mode. This error generates no action.

ERROR 55 *NOT FROM RECOVERY" SEVERITY 2

You attempted to execute an instruction from the error recovery (the user's error handler
or "ERRORS") that is not allowed, This includes attempting to enable the BDSS,
GOSUB, and GOTO. This error breaks execution.

ERROR &6 *NOT w/GEAR"* SEVERITY 2

You attempted to execute an instruction when the Gear mode was enabled that is not
allowed with the Gear mode. For example, MRD, MA, IT, and JF are not allowed with
the Gear mode on. This error breaks execution if the instruction was issued from the

program.

ERROR 57 *NOT w/PROFILE" SEVERITY 2

You attempted to execute an instruction that is not allowed while the BDSS is profiling.
Profiling occurs when move instructions (MA, M1, MRD) or macro moves are
executing. Other examples of this are the traverse segment before the accel/decel
portion of position dependent jogs (JT, JF), and the accel/decel portions of all jogs (J,
JT, JF). This error breaks execution.

ERROR 58 *"NOT w/JOGGING" SEVERITY 2

You attemsted to execute an instruction that is not allowed when the BDSS is jogging.
This error breaks execution if the instruction was issued from the program.

ERROR 59 *NOT w/ROTARY" SEVERITY 2
You attempted to execute an instruction that is not allowed when the BDSS is in the
Rotary mode. Type
ROTARY OFF
to turn the Rotary mode off. This error breaks execution if the instruction was issued
from the program.
ERROR 60 "OUTSIDE PROTARY™ SEVERITY 2

You attemnpted to make an absolute move (cither MA or MCA) beyond PROTARY. For
example, if PROTARY is 1000 and you typed:

MA 2000

Use incremental moves (MI and MCU) if you want to move beyond the rotary limit. This
error breaks execution if the instruction was issued from the program.

APPENDIX C - ERROR CODES BDSS5S

ERROR 61 *‘NORMALIZE FIRST" SEVERITY 2

You attempted to turn on the Rotary mode when PFB was less than zero or greater than
PROTARY. Use the NORM command to normalize the position to between 0 and
PROTARY. This error breaks execution if the instruction was issued from the program.

ERROR 62 ‘RD ALREADY IN USE* SEVERITY 2

You attempted to execute RD when RD was in use from some other task. This error
occurs when two task levels attempt to simultaneously use the RD command. This error
breaks program execution.

ERROR 63 ‘NOT AT THIS LEVEL" : SEVERITY 2

You attempted to execute a command that is not allowed at the present task level. For
example, GOSUB and GOTO are not allowed from within an alarm. This error breaks
program execution.

ERROR 64 "BACKWARD REGULATION" SEVERITY 3

The external input counted backwards more than 30,000 counts when REG was on.
This error breaks program execution and disables the BDSS.

ERROR &5 *RECORD NOT READY™ SEVERITY 3

You entered a PLAY command when nothing had been recorded since the last time the
BDSS powered up.

C.4.2 Improper Use of Labels

ERROR 70 ‘LABEL NOT FOUND* SEVERITY 2

You attempted to branch to a labe] (cither from RUN, GOSUB, or GOTO) that does not
exist. This error breaks program execution.

ERROR 71 *LABEL USED TWICE" SEVERITY 2
'I‘hcuscrpmgramhuahbclthuisusedmorethmoncc. This error breaks program
execution,

ERROR 74 *ERRORS$ MUST BE LAST" SEVERITY 2

'Ihcuscr‘scrror(ERRORS)mnstbethehnhbelinthcpmmmbuﬂer. You cannot
have labels after ERRORS, nor can you use the GOTO or GOSUB commands when the
BDSS is executing the error handler. Theexrorhmdlcrisintmdedtopmvidcagrwcf\ﬂ
exit during error conditions and cannot be used to restart the program. You can use the
IF, TIL, and ? commands to execute conditional commands in the error handler, This
error breaks program execution.

|
Ny

%»»j

]
Sl

g

S’

BDSS APPENDIX C - ERROR CODES

C.4.3 Invalid Instructions or Entries

ERROR 79 "BAD FORMAT" SEVERITY 2

You entered a format that the BDSS does not recognize. For example, you may have
entered:

INPUT “INPUT X1* X1[.3]

In this case, the decimal point (following the "[") is incorrect. Pay careful attention to
the rules for formats. This error breaks program execution if the instruction is issued
from the user program.

ERROR 80 "INVALID INSTRUCTION" SEVERITY 2

You attempted to execute an instruction or change a variable that the BDSS does not
recognize, This error breaks program execution if the instruction is issued from the user

program,

ERROR 81 *NOT PROGRAMMABLE" SEVERITY 2

You attempted to change a variable that is not programmable. This error will break
program execution if the instruction is issued from the user program.

ERROR 82 "BAD NUMBER ENTRIES" SEVERITY 2

The instruction that is executing has too many or too few parameters. Look up the
instruction in Appendix B to determine the correct number of entries. This error breaks
program execution if the instruction is issued from the user program.

ERROR 83 *BAD OR OUT OF RANGE" SEVERITY 2

You entered a parameter to an instruction that was too large or too small. Check
Appendix C for limits on variables. This error can also occur when a parameter is in
the wrong format, such as a character string where a number is expected. This error
breaks program execution if the instruction is issued from the user program.

ERROR &4 *OUT OF BOUNDS"* SEVERITY 2

The variable listed is out of bounds. If the variable is protected (that is, set by the

factory as defined in Appendix C), contact the factory. If the variable is not protected,
set it within its bounds. This error breaks execution.

C-9

APPENDIX C - ERROR CODES

BDSS5
ERROR 85 ‘BAD INDIRECTION® SEVERITY 2
You attempted an indirect reference to a user variable that does not exist. For example:
X1 10000
P X(X1)
X(X1) refers to user variable X10000, which does not exist. The "P X(X1)" will
generate this error. This error breaks program execution if the instruction is issued from
the user program,
ERROR 86 "USER PROGRAM FULL" SEVERITY 2
You attempted to load a program larger than the BDSS can hold. This occurs with the
>BDS instruction and from the Motion Link communications software "Program
Transmit (*T)." This error bresks program execution.
ERROR 87 ‘EMBEDDED QUOTE" SEVERITY 2
You entered a2 command with an embedded quote. A space must precede an opening
quote and follow a closing quote. For exampie:
P"BAD COMMAND"*
has an embedded quote after the "P." This error breaks program execution if the
instruction is issued from the user program,
ERROR 88 “NO CLOSING QUOTE" SEVERITY 2
You entered 3 command with an odd (as opposed to even) number of quotes. This error
breaks program execution if the instruction is issued from the user program.
ERROR 89 "NOT FOR ALARM/HOLD/RECOR!.* SEVERITY 2
You have spedﬁedlswitchth:tlsnotmmowxblcswitchformmrm or 2 hold or
record command. For example:
A$S REMOTE ON ;ERROR-REMOTE NOT ALLOWED FOR ALARMS
T‘hislincmsaEmr89sinccREMO'I'Eisnotdlowcdtoﬁrunahrm.
ERROR 90 ‘TOO MANY POINTS* SEVERITY 2

You specified too many points in 8 RECORD command. Only 1000 points total can be

recorded. For example, if you are recording four variables, they can be recorded no
more than 250 times, since 4°250 = 1000,

C-10

kS &
e

g

| —

BDSS APPENDIX C - ERROR CODES

C.4.4 Math Errors

ERROR 82 *ZERO DIVIDE* SEVERITY 2

You attempted to divide & number by 0. This error breaks program execution if the
instruction is issued from the user program.

ERROR 83 "MATH OVERFLOW" SEVERITY 2

The final result of a calculation or an intermediate result during the calculation of an
expression was greater than 231 or less than -231. This error breaks program execution.

ERROR 94 *>2 PARENTHESES® SEVERITY 2

The BDSS evaluated an expression with more levels of parentheses than the BDSS
supports. Up to two levels of parentheses are allowed. This error breaks program
execution.

ERROR 88 *UNEVEN PARENTHESES" SEVERITY 2

The BDSS encountered an expression in which the number of closing parentheses was
not equal to the number of opening parentheses. This error breaks program execution.

ERROR 96 "SCALING OVERFLOW" SEVERITY 2

During a conversion to or from user units, the result was greater than 231 or less than -
231, This error breaks program execution if the instruction is issued from the user
program.

ERROR 97 "GEAR OVERFLOW" SEVERITY 3

The BDSS encountered an overflow when calculating the velocity from the external
pulse input. This can be caused when the variable GEARI is too small or GEARO is too
large. That is, the input times the ratio of GEARO/GEARI was greater than the highest
allowable input frequency, 2 MHz. This error breaks program execution and disables
the BDSS.

C.4.5 Communication Errors

ERROR 103 "BAUD RATE" SEVERITY 1

The varisble BAUD contains a value that is not supported by the BDSS. This error
occurs during the autobaud sequence and so is never printed to the terminal. You will
only see it in the error history buffer. This error has no action.

C-11

APPENDIX C - ERROR CODES » BDSS

ERROR 104 ‘ABAUD & MULTIDROP" SEVERITY 1

This error is caused by attempting to autobaud while in multidrop communications,
which is not allowed, The variable ABAUD is on, indicating request for autobaud, and
the variable ADDR is not zero, indicating multidrop communications. This error occurs
during the autobaud sequence and so is never printed to the terminal. You will .only see
it in the error history buffer. This error has no action. '

ERROR 105 "SERIAL wWDOG" SEVERTY 3

The serial port did not receive a valid command for WTIME milliseconds when the
serial watchdog was enabled (that is, WATCH = 1). This error breaks program
execution and disables the BDSS.

C.4.6 Password Errors

ERROR 110 *EDIT PASSWORD" SEVERITY 1

You attempted to execute an instruction that requires the Editor password. This occurs
with the >BDS command. In this case, you must follow the command with the
password.

ERROR 111 *FACTORY SETTABLE" SEVERITY 2

You attempted to change a variable that is protected. These variables are set at the
factory. Thisermrbreahpmmmexecutioniftheinmucﬁonixissuedfromthcuscr
program.

C.4.7 Errors From IF, TIL and GOSUB Commands

ERROR 118 *IF w/o ENDIF* SEVERITY 2

TheprognmcxccutcdmlFoommandtobeginmIFBIDCKbutcmﬂdnotﬁndthc
corresponding ENDIF to end the IF block. This error breaks program execution.

ERROR 118 “IF NOT STARTED" SEVERITY 2

An ELSE, ELIF, or ENDIF was encountered when there was no IF. This will occur,
améngotberﬁmu,ifyouuulGOTOtobnnchtothemiddleofm
IF/ELIF/ELSE/ENDIF block. This error breaks program execution,

ERROR 117 “TIL FOLLOWS ?/TIL* SEVERITY 2

Thc?ormmsuucdonwuusedwemteacondiﬁonﬂm This error breaks
program execution.

C-12

S

"‘\"Qm«-»"”:

BDSS APPENDIX C - ERROR CODES

ERROR 118 "TOO MANY GOSUBS* SEVERITY 2

The last GOSUB was one GOSUB too many. The BDSS has 4 levels of subroutines.
This error breaks program execution.

ERROR 119 *RETURN w/o GOSUB* SEVERITY 2

The BDSS encountered a RET when it was not expecting one. This occurs when there
are more returns than GOSUBs. This error breaks program execution.

C.4.8 Power-Up Marker (Not An Error)

ERROR 199 *DRIVE POWERED UP* NA
This is not 2 true error. ERROR 199 is used to mark the error history buffer when the
BDSS powers-up.

C.4.9 Internal Errors

ERROR 200 *FOLDBACK OUT* SEVERITY 3

The factory set variables that control foldback are out of bounds. Contact the factory.
This error breaks program execution and disables the BDSS,

ERROR 201 *SLIP TOO BIG* SEVERITY 3

The induction motor variables that control slip are out of bounds. Contact the factory.
This error breaks program execution and disables the BDSS.

ERROR 202 "USER PROGRAM CORRUPT* SEVERTY 3

The user program is corrupt. Usually, this problem is caused by installing a new battery
back-up RAM. This can also occur if power to the BDSS is lost while editing the
program. This error will break program execution.

ERROR 203 "AMPS BAD" SEVERITY 3
The BDSS variable AMPS is invalid. Contact the factory. This error breaks program '
execution. ‘

ERROR 204 "PROGRAM OVERRUN" SEVERITY 3
This is an internal error. Contact the factory. This error breaks program execution and
disables the BDSS.

C-13

APPENDIX C - ERROR CODES BDS5

ERROR 205 "MBUF OVRRUN" SEVERITY 3
This is an internal error. Contact the factory. This error breaks program execution and
disables the BDSS. <y
ERROR 206 *PROFILE OVERFLOW" SEVERITY 3
| © This is an internal error. Contact the factory. This error breaks program execution and
disables the BDSS. : '
ERROR 208 "GENERAL INTERNAL" SEVERITY 3

This is an internal error. Carefully write down the entire line that is printed with the
error and contact the factory. This error breaks program execution and disables the
BDSS.

ERROR 209 "STACK OVERFLOW" Lo SEVERITY 3

This is an internal error. Carefully write down the entire line that is printed with the
error and contact the factory. This error breaks program execution and disables the
BDSS.

ERROR 211-219 *INTERNAL 1-§* SEVERITY 3

These are internal errors. Contact the factory. These errors break program execution
and disable the BDSS.

ERROR 255 “UNKNOWN" SEVERITY 3

This is an internal error. If this error exists in the error history upon initial power-up,
clear it with ERR CLR. Contact the factory if this error occurs during operation. This
error breaks program execution and disables the BDSS.

C-14

o

WlNTRODUCTlON

These bidirectional data converters are
used to change RS232 data streams into
RS422 compatible data streams. It will
also make RS422 data look like RS232
compatible signal levels. This is done with
solid state, level shifter Integrated
Circuits. See Figure 2 for system block
diagram. These modules make it possible
for RS232 equipped devices, such as an
IBM personal computer, to interface with
an RS422 equipped device, such as the
Anaheim Automation CL1694 Control
Links hoard or the DPB11VA Series Driver
Pack.

FEATURES

These small modules can be mounted ina
location that is convenient and can be
mounted in any plane. The mounting tabs
can be used to boit the unit to a chassis
or two- sided tape can be used to stick it
out of the way. See Figure 1. Since the

RS422 mterface is mtended to have-

AA1709/DC1709
RS§232- DBZSS/FS422 -DBSS

DC2170
RS232-0B9S/RS422-DBIP

Dc2102
RS232-DB258/RS422-DBIP

excellent nmse lmmumty over long
distances, it wopld be wise to install the
converter close to the RS232 source. For
_ long transmission lines (up to-4,000 feet)
. a jumper adde(j terminating resistor of
180 ohms is made available (J1 and J2).
In most apphcatlons this termination is
not required. Se= Figure 1 for locations.

POWER SUPPLY| OPTIONS

These converterts‘operate off & small wall
mount power supply, that provides 9 volis
of filtered DClat 150 mllllamps This

INSTALL dUHPERS J1 AND J2
TO ADD TERMINATORS .)

power supply is Provided with each unit.
Current drains of 75 milliamps without
terminating and 120 milliamps with
terminating resistors can be expected. The
converter has an onboard regulator and -
can take voltages from another source, if
connected inside the module. The external
power supply can range from +7 to +20
volts without terminating and +7 to +15
volts with terminating resistors in. By
connecting to the proper pin on J3, a +5
volt source can also be used. See Figure 7
for schematic.

o o] J10 [9] ﬁ g®| — ®0 | - . i
Js20 lolba 2.59 ® Oz {“g
O |Len DB . o)
Ja n
0} Olols7, [Iee O® o :
DB25S N . A |
2.90 ——{ .78 =
. 3.53
.. INSTALL JUMPERS J1 AND J2 ;
TO ADD TERMINATORS : RO t
Al oy =) N
7] | L ge .
E g2l el 3 : Pys) ® [290 ‘
o] O |LED oBgP E @ O
& | :
374 [les - . L
e fi‘j
2 g - - Rt o §% l—-‘—-
i 3.53

DC Series Dimension Drawings, Figure 1

Although every effort has been made fo ensure the accuracy of the information contained in this brachure, the technical dala and dimensions ore subje fo change
without notice. Please contact us to verify oll witical porometess.

3-8911-10

910 E. Orangefair Lane, Anaheim, CA 92801
(714) 992-6990 Telex: 2978217 MCI
FAX: (714) 992-0471

i

INSTALLATION

Thiese- modules are designed to be
‘inserted between the two devices that are
communicating. Since each installation
will require different lengths of cable, we
do not supply the RS232 or RS422
cables. The RS232 cable plugs into the
female DB25S or DBSS connector P3 and
the RS422 cable plugs into the female
DBYS or male DB3P connector P2. The
user must supply the mating DB25P and
DBYP/S. See Chart 1. for pinouts. The
" power supply output plugs into the power
. connector P1. See Figure 1. There is no

‘set up or configuration required for these -

» modules. Request To Send (RTS) and
Clear To Send (CTS) are handshake lines
supported by these modules. See Figure
2. When the converter is powered, the red
- LED in the. cover of the enclosure wnH be
lllummated

TROUBLESHOOTING

These converters are ‘a level shifter that
has an onboard voltage regulator. The red
LED is wired across the +5 volt supply so
that any power problem will not allow the
LED to be properly illuminated. If the
supply is connected with wrong polarity
(center pin is +) or if supply is defective,
the LED will not. light. Communication
problems may manifest themselves as
system hangup or lockup. The test
circuit shown in Figure 4 will check each
element of the converter. This test
requires wiring of the two connectors into
a test set and looking at the CTS pin of the
RS232 connector pinf5 (DC1709 and
DC2102) or pin 8 (DC2170) with a

A _oscnloscope See Testing.

TESTING

The test of the RS232 to RS422 converter
is achieved by using a set of connectors
that turns the board into an oscillator. The
connectors are wired such that each
element of the converter is used as an
inverter or buffer and forms an oscillator.
See Figure 3. Figure 4 shows the Inte-
grated Circuit pin connections as wired by
the test set. The equivalent circuit is
shown in Figure 5. Across the 470K
resistor is a rectangular waveform that
oscillates at approximately 5.5KHz. The
frequency is not too critical and the
waveform should go + and -9 volts. If
the circuit does not oscillate a pulse
generator can be used to inject a signal at
the 10K and .01 junction for further
troubleshooting.

CHARE1

L - R§-232 . . RS-422
-+ DBYS DB25S b L DBQS or DBQP)
el oo PIN # FUNCTION- - | =+ - -PIN#:i FUNCTION.
1 GROUND . 1 GROUND
3 2 XMIT. DATA (TXD) L 2 + BUSY
= 2 3 REC. DATA (RXD) [- 3 - BUSY
: 7 4 REQ. SEND (RTS) ‘ 4 +RX
8 5 CLR. SEND (CTS) ! 5 -RX
6 6 _ NO CONNECTION . 6 + REQ
5 7 0OVdc RETURN 7 -REQ
- 1 8 NO CONNECTION ¥ 8 +TX
: 9 9 NO CONNECTION ; 9 -TX
4 10-25 NO CONNECTION ! ' '
b
RS232 AS422 RS232 AS422 P
pBSS DBSP 0B255 DBSS
P3 P2 P3 P2
RX+ 3 + 3
E XD axe - E TX! . ax-
ar REQ~ g REQ+ a
E REQ~ :7] E REQ- Zl
e “ri: g ‘ L ' ;X: g
g et s R
E5: avoce _TJ %_—1 SVRC II : =
I M P1 i3y «i ﬂ;[m EXTERNAL HOOK UP TO MAKE
o - ’ 2 & SCOPE| AN OSCILLATOR
BLOCK DIAGRAM « BLOCK DIAGRAM j L
Figure 2 Figure 3
.Q;Y.‘UF i g VIN
18K & . O1uF cR2 evoe
} W 2.5mm l—-@ ravee
JACK
b. E'-:" b). i __Do_;} PG cﬁl 1—729:-} +3VDC
ﬂﬂﬂ scupE.._: 470K scors-—i:wox é weo
v svac]
TEST CIRCUIT EQUIVALENT CIRCUIT \Y
Figure 4 Figure 5 Figure 6

{
/

RS232 INTERFACE WIRING SCHEMES

- GENERAL

Since there is no standard for the RS422
connector, the RS422 pinouts are defined
to conform to our Control Link interface
modules. Occasionally problems will
occur on the RS232 wiring due to the
many different standards in the
commercial computer industry. -

SIGNAL INPUTS/QUTPUTS

These modules have two RS232 to RS422-
converters and two RS422 to RS232
converters. A schematic showing the
RS232 and RS422 internal converters is
shown on the cover of the moduies. The
RS232 to RS422 converter inputs are
connected to pins 2 and 4 (DG1709 and
DC2102) or pins 3 and 7 (DC2170) of P3
and are labeled TXD (Transmit) and RTS
(Request To Send). These are outputs
from the user’s terminal. The converter
outputs are connected to P2, pins 4 and 5
and 6 and 7 respectively. ‘

The RS422 to RS232 converte'r bdtputs
are connected to pins 3 and 5 (DC1709
and DC2102) or pins 2 and 8 (DC2170) of

~Since there are

P3 and are labeled.RXD (Receive) and
CTS (Clear To Send). These are outputs to
the user’s terminal. The inputs to these
come from the FS422 connector P2, pins
8 and 9 and 2 and 3 respectlvely See
schematic in Fig'lre‘7

SYSTEM OPERATION AND; o7
HANDSHAKING (DC1708 and DC2102)

nany ways to connect the
RS232 systemis the user must.first
determine what type of system is
operating. There are two standard types of
operating systems, DCE (Data

Communicatlo r:s Equipment) and DTE -

(Data Terminal Equipment). The type of
handshaking (fiardware, XON/XOFF or
software), must be determined. And

- fmally, the- user“must determine n‘ RTS,

CTSor DTR is reqmred' '

In a DTE (Dat1$Termtna| Equipment)
system, pm 2 |s always a transmit (TXD)
line and pin 3 is; always the receive (RXD)
line on the RS232 port. Pin 4 is.the output
Request To Sen!’d.: (RTS) and pin 5 is the

input Clear to Send (CTS). These two lines
are normally used for handshaking. Pin 7
is the Signal Ground and must be wired.
Pin 1 (for DC2170 do not use) is Earth -
Ground in some systems and pins 1 and 7
are connected internally. In some
computers pin 4 and pin 20 DTR (Data

. Terminal Ready) are wired together for a

hardware handshake. These two pins are
not connected and the user must make
the required connections i;n their cable.

WIRING SCHEMES

The following diagrams show some
common connection schemes for wiring

- the RS232 cable. The drawings show only

the required pins that need to be wired.
Most “store bought” cables have ail 25 or
9 wires connected in the cable. These
extra wires should not cause any
problems. It should be noted that the
drawings do not show pin 1 connected.
This pin is used as earth ground (DB25),
and although not required for operation,
functions similar to the ground plug on a
three contact AC line cord.

2 - T ;‘g .
£2 la Iw A
2 T
16 \ J— P3
11 {><> 14 cTs — —
RIS — | L gy 1K 478K
pss8g22 HAX232 Y ay — Tur scoPE
- T
9 - i»——-—f -
S~ ls 1o 5/*.' -
12{ |- S
N R
14 oo s || |#svoe “'13
' 2 .12 oq 13 s .__.% ®
13] ‘ N - 3 -
vk v
11 :] . ' ‘
7 9 <><} 1a CR1 CR2 avoc
12 1 4 330 1R3 —OPL gync
F]oh= 7805
ce
4 1i5 |8 ’]:cz laJ§ 1:1] l‘c‘& vm“«.mF - _ '
[T}evec cC3 T T sl T2sv .
Ex 25V :
x
b
g
Al .
Schematic

See Chart 1 Eor P3 Pin Assignments
' Figure 7

XON/XOFF OR SOF TWARE HANDSHAKE XON/XOFF OR SOFTWARE HANOSHAKE

(MODEM CONVENT 1ON) (TERMINAL CONVENT 10N)
~[Rs232
<)) <) o
o] o o (o)] o o [o]
[»} o o [o]
o® o4 RX— o 04 S RX—
° fo) o TX= ° [o} o ° RS422 8 TX—
0%s /09| 0c1709 T COMPUTER |G o , 00| DC1709 ;S
COMPUTER £ D |22 280 DC2102
DTE O% 7_GROUND 7 %O . 'DCZ‘IOZ - DATA g%__v__m_z_z-.g. . A
o H ERNA 2 COMMUNI CAT | ONS - I INTERNAL X
DAE&T%?“ 09, s 08 :..95:'.0559115@. . EQUIPMENT 0%, 5| O] .RwECTION, 3
Lo b o= -0 N . 1 GND o1 -0 H __GND
T rxo gc 3 3150 RXD go—:" :"‘-og :
i Ocz 2o O X0 oo_z 2‘00
. 7 %_‘_ _l._o.9 B \/Q.-._‘-. ..‘__Q..ij....
RS232 CABLE ' RS232 CABLE
XON/XOFE OR SOFTWARE HANDSHAKE - : o XON/XOFF OR SOFTWARE HANDSKAKE ¥
(MODEM CONVENT |ON) g (TERMINAL CONVENT ON)
50 o 50 o
Q o] 0 o} o] o
o] o] o] (o]
0? o o) RX~ o o S5
p o - RS422 X o° o, RX
computer |02 Lz 00| DC1709 Rxx COMPUTER | S0l 00| DC1709 e
DTE -O——‘g_ 7 _GROUND__ 7 _0‘9'0 be2102 3 BusY=) gﬁ% *3-—&___.__7 GROUND _ 7| _%O ..DC21 02 o
DATA TERMINAL | 1@ o - INTERNAL 7 BUSY+ COMMUNICATIONS | { O o] INTERNAL 7 BUSY+
ruipuent ([0 c° s s go --------------- 5 EQUIPMENT || g g_ s . g ol .oowEcTion, 3
USER JUMPER ADDED %o..i_ I g =0 _g_o_ﬂ_og =
el P o3 3o rRxo | 5 o043~ 3o
™o | - o2 2059 ™ | © o——z-ﬂ-o o
%_‘_ .L_Q..o %_’_ ._L_o.g.
RS232 CABLE RS232 CABLE
DC1709 and DC2102 Wiring -
XON/XOFF OR SOFTWARE HANDSHAKE - . XON/XOFF OR SOFTWARE HANDSHAKE
(MODEM CONVENT ION) . R (TER»{!NAL CONVENT 1ON)
COMPUTER COMPUTER
bTE . : DC2170 A DCE DC2170
DATA TERMINAL . .. B RXs] DATA RXw
EQUIPMENT oXs_cRouno s L RS232 . RS422 TX= ¢ COMMUN 1 CAT10NS 5 GROUND & TX=
o o o6 Rxx ¥ gquiPmeNT ° gz'“—"—: L
™ |2 g- 3 _J—-g o 3 f ™o | 2 o3 2 3
RXD gc 2 2 og | INTERNAL > * RXD go-D 2| 3
oL o . CONNEGTION . e ol al50) icowecmion :
RS232 CABLE RS232 CABLE o
XON/XOFF OR SOFTWARE HANDSHAKE . XON/XOFF OR SOFTWARE HANDSHAKE
(MODEM CONVENT10N) - (TERMINAL CONVENTION)
COMPUTER COMPUTER
- DIE DC2170 DCE DC2170
ATA TERM s RX-~
EWHE;”E:";AL s GROUND s{~LR5232 RS422 CN mmxﬂms s crounp s/ ~LRS5232 RS422 L~ /T RX-—~
. Jo8T RX+ i, . EQUIPMENT . oaT o2 s
o R ' 091, o1E _res
3 3 BUSY— 3 3l O3 Busy=
12 —Lg INTERNAL o —2_——-—\3—2 9 inreria | © g-_‘:‘
- 1 9 i comecnion | O g et 1 2o 0) | i comeenion Lo
CTS e i__GND CTS \—1 \)_' GND
RS232. CABLE RS232 CABLE
i
;
H
DC2170 Wiring
}
Although every effort has been made fo ensure the accurocy of the informotion cantained in this brochure, the technical dota ond dimensions are subied fo change 910 E. QOrangefair Lane, Anaheim, CA 92801
without notice. Please contact us to verify ofl criical porometers. (714) 992-6990 Telex: 2978217 MCI

FAX: (714) 992-0471

o

