Current Transducer LT 100-P/SP55

100 A I_{PN} =

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data						
I _{PN}	Primary nominal r.m.s. current		100		А	
I _P	Primary current, measuring range		0 ± 120		Α	
R _м	Measuring resistance		$\mathbf{R}_{\mathrm{Mmin}}$	$\mathbf{R}_{_{Mmax}}$		
	with ± 12 V	@ ± 100 A _{max}	30	60	Ω	
		@ ± 120 A _{max}	30	50	Ω	
I _{sn}	Secondary nominal r.	m.s. current	100		mA	
κ _N	Conversion ratio		1:100	0		
V _c	Supply voltage (± 5 %	b)	± 12		V	
۲ _с	Current consumption		10 + I		mA	
Ŭ _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 min		3		kV	

Accuracy - Dynamic performance data						
Х _с е	Overall accuracy @ $I_{PN,} T_{A} = 25^{\circ}C$ Linearity error		± 0.5 < 0.1		% %	
С _L I _о I _{от}	Offset current @ $I_p = 0$, $T_A = 25^{\circ}C$	25 °C + 85°C	Typ ± 0.4	Max ± 0.4		
t,	Response time 10 @ 90 % of I_{PN}	25 °C + 85°C	< 1	± 1	μs	
di/dt	di/dt accurately followed		> 50		A/µs	

di/dt accurately followed di/dt f Frequency bandwidth (- 1 dB)

General data

T _A	Ambient operating temperature	- 25 + 85	°C
T _s	Ambient storage temperature	- 40 + 100	°C
R _s	Secondary coil resistance @ T _A = 85°C	30	Ω
m	Mass	50	g

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated self-extinguishing plastic case.

Special features

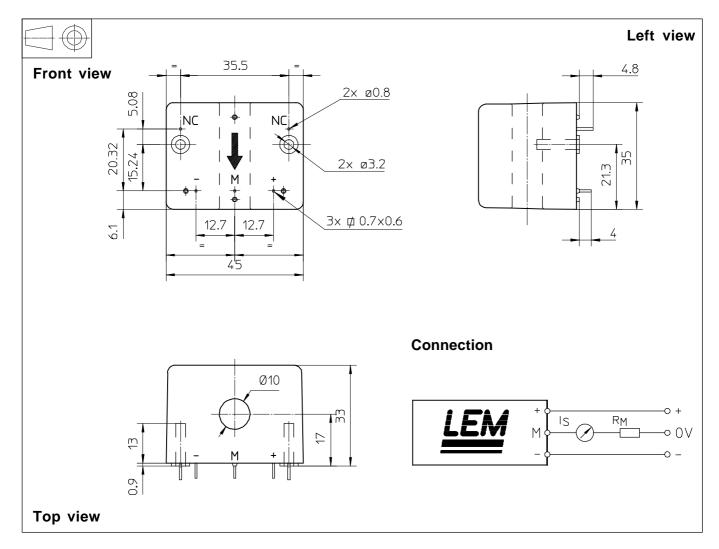
$$I_{\rm D} = 0.. \pm 120 A$$

- \mathbf{V}_{c} = ± 12 (± 5 %) V
- $T_{A} = -25^{\circ}C ... + 85^{\circ}C.$

Advantages

kHz

DC .. 150


- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Note : ¹⁾ With a di/dt of 50 A/µs.

Dimensions LT 100-P/SP55 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

± 0.3 mm

Ø 10 mm

0.9 mm

2 pins Ø 0.8 mm

2 holes Ø 3.2 mm

2 PT KA 35 screws

1.1 Nm or 0.81 Lb. -Ft.

3 pins 🖞 0.7 x 0.6 mm

long. 12 mm

 General 	tolerance
-----------------------------	-----------

- Primary through-hole
- Transducer fastening Recommended PCB hole Or
- Supplementary fastening
- Recommended fastening torque
- Connection of secondary

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.
- In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.