GPIB-CT IBCL

Reference M anual

December 1993 Edition
Part Number 320132-01

' Copyright 1989, 1993 National |nstrunments

Cor por ati on.
All Rights Reserved.



National Instruments Cor porate Headquarters
6504 Bridge Point Parkway

Austin, TX 78730-5039

(512) 794-0100

Technical support fax: (512) 794-5678

Branch Offices:

Australia 03 879 9422, Austria 0662 435986, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521,
Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 65 33 70,
Germany 089 714 50 93, Italy 02 48301892, Japan 03 3788 1921,
Netherlands 01720 45761, Norway 03 846866, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 27 00 20, U.K. 0635 523545



Limited Warranty

The GPIB-232CT, GPIB-422CT, and the GPIB-232CT-A are warranted
against defects in materials and workmanship for a period of two years from
the date of shipment, as evidenced by receipts or other documentation.
National Instruments will, at its option, repair or replace equipment that
provesto be defective during the warranty period. Thiswarranty includes
parts and labor.

A Return Material Authorization (RMA) number must be obtained from the
factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will
pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this manual is
accurate. The document has been carefully reviewed for technical accuracy.
In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of
this document without prior notice to holders of this edition. The reader
should consult National Instrumentsif errors are suspected. In no event
shall National Instruments be liable for any damages arising out of or
related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKESNO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESSFOR A
PARTICULAR PURPOSE. CUSTOMER'SRIGHT TO RECOVER DAMAGES
CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE
PAID BY THE CUSTOMER. NATIONAL INSTRUMENTSWILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. Thislimitation of the
liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of
action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner's failure to follow the National Instruments
installation, operation, or maintenance instructions; owner's modification of
the product; owner's abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.



I mportant Notice

The material in thismanua is subject to change without notice. National
Instruments assumes no responsibility for errors which may appear in this
manual. National Instruments makes no commitment to update, nor to keep
current, the information contained in this document.

Copyright

Under the copyright laws, this publication may not be reproduced or
transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or tranglating, in
whole or in part, without the prior written consent of National Instruments
Corporation.

Trademarks

MicroGPIB™ isatrademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their
respective companies.

Warning Regarding Medical and Clinical Use
of National | nstruments Products

National Instruments products are not designed with components and testing
intended to ensure alevel of reliability suitable for use in treatment and
diagnosis of humans. Applications of National |nstruments products
involving medical or clinical treatment can create a potential for accidental
injury caused by product failure, or by errors on the part of the user or
application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by
properly trained and qualified medical personnel, and all traditional medical
safeguards, equipment, and procedures that are appropriate in the particular
situation to prevent serious injury or death should always continue to be
used when National Instruments products are being used. National
Instruments products are NOT intended to be a substitute for any form of
established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.



Contents

About ThISMaNUal ..., XV
Assumption of Previous Knowledge.........ccccoeveirieninennccnnens XV
Organization of the Manual ...........ccceeeveveveiiie v XV
Conventions Used in ThisManua .........c.ccoceoevveneiennicnceninn XVi
Related DOCUMENEALiON ......ovvvvveeeeeees e XVii
Customer COMMUNICALTION ......c.coveurerieriirieiesie e Xvii

Chapter 1

Getting Started With IBCL ..o 1-1
USING IBCL.....cviceeeeseestees e 1-1

SEArting IBCL ....ocveeeeeeeeeerie e 11
Pushing and Popping Numbers from the Stack ......... 1-2
Adding Numberson the Stack .........c.ccocceveveneeiienen 1-2
Defining New Words..........ccccooveerevieneseneseseeneeeem 1-3
Using Loops and ConditionalS.........ccccvvereeereinneennn 1-4
Using Conditionals..........coeeereereenieeneenieesesiesene 1-5
Manipulating the Stack...........cccevreiininiiireeee 1-6
LOODING ..ttt e s 1-6
FOrgetting ...c.ceveceeee e 1-7
Using GPIB FUNCLIONS........ccuevieeeeeesece e 1-8
EXItING IBCL ..ot 1-8

Chapter 2

IBCL REFEIENCE......ooeee st 21
Language StIUCIUNE.........cceverierreeeeeese et 2-1

SEACKS ettt 2-3

NUMENTC OPEratioNS.....c.eoveeerieree et e eenens 2-6

Unary OPEratorsS..........ccevererieesieneesie e see s sneenm 2-7

Binary and Ternary Operators..........ccooveeveeveresvennennns 2-8
MEMOIY ACCESS .....oiireeeieerseeeeetesteseeseeseesresseeseesaesseeeensesseenes 2-10
Load and StOr.......ceeevereeeeerere e se e 2-10
S 2-11
MOVE.....eieieee e e 2-12
Constants, Variables and Arrays.........ccooceeevereecennene 2-12
197010174 @ U o1 | S 2-16
= I o | 2-16
ASCIH-TYPE INPUL ..o 2-16
Binary-Type INPUt ........cccceveieneiineieenn 2-17

© National Instruments Corp. v GPIB-CT IBCL Reference Manual



Contents

IBCL OULPUL......ceverveeiieerieesieesiesaeesaesesiesesieesseneseen 2-17
ASCII-Type Output Words..........cccoeeereenees 2-17
Character-Based Words................. 2-18
Numeric-Based Words................... 2-18
Binary-Type OULPUL........cccoeereereeererieeeas 2-21
BASIC Program Example........c.cccccvrueeene 2-22
Defining New WOrdS.........ocoriiiieneneseece e 2-22
Colon DEFINITIONS ......ccveeiiiie e 2-23
D Tox (047 YT 2-27
VOCADUIAIIES. ...ccveeiveiceeci et 2-28
(00011 (o) TR 2-30
Conditional EXECULION.........ceeeeueieeceie e 2-30
LOOPS ..ttt s 2-31
Chapter 3
GPIB EXIENSIONS ... 31
0] (o [N 32
07, RN 34
(0= oSO 3-6
(070 [0 | S 37
o | TR 3-8
(0101010 [N 39
(< 0T 311
<o TR 313
01 SRS 314
1S N 315
[0TSR 3-16
(00| RN 3-17
0 AT 3-18
8]0 oSO S P RURUPUP PPN 3-19
o [T 321
1 323
£SO 3-24
£ oL P TR 325
(£ 2RO 3-27
£ oS 3-28
LS (ISR 3-29
S = 3-30
1010 3-32
IEg e e 3-34
111V 1 RO 3-35
1T TS TRRR 3-37

GPIB-CT IBCL Reference Manual Vi © National Instruments Corp.



Contents

Chapter 4
Programming EXamples...........cccounennenneenseeseeens 41
Microsoft BASIC IBCL Compiler Programming Example......4-1
EXaMPIE L. .o 4-1
Modem Programming EXamples..........coeererieneinieneneecenenen 4-2
EXAMPI@ 2. 4-2
EXaMpPIe 3. 4-3
Macro Programming EXample .......ccccvvveeereenenenieneeneeeseeseen 4-6
EXaMPIE 4. 4-7
Timed Applications EXamples .........cccocovrinninnencneceneen 4-8
EXaMPIe ... 4-8
EXAMPI@ 6......eoeeeeeceeer e 49
EXAMPIE 7. 49
EXaMPIE8.....eoeeseceeeer e 4-10
Chapter 5
Technical INformMation ... 51
[I07="o (1010 [l = 00 = 0 51
The IBCL INErPreters.......coovoveereireereeesseeseseeesieeseeeseene 51
INner Interpreter SEQUENCE .........ovveveeererinreneseeeenen 52
Outer Interpreter SEqQUENCE.........coeevververreerierienieeeenn 53
EITOS .o s 54
Advanced Defining TeChniquES .........ccoceveveviecececcecc e 55
Machine Code PrimitiVes..........ccccovrreennereenenennenen 5-6
Vectored EXECULION .......ccooeveeeeiririenerenereseene e 58
Memory OrganiZation...........coeceererereeenieieseese e 59
General POrt /O ... 511
Appendix A
Multiline Interface MesSages ... A-1
Appendix B
IBCL Statusand Error Messages ........ccooovenrenneereeenneeneeone. B-1
Appendix C
Creating Permanent IBCL Wordsin EPROM ... c1
Appendix D
Using Extended MemOry ... D-1
About Extended Memory ........ccccevevverereneneneneereeeereee s D-1

© National Instruments Corp. Vi GPIB-CT IBCL Reference Manual



Contents

Appendix E
Other Useful IBCL WOrds........cccconeneneeneenneenseeneeeneeens E-1
UM et E-1
[0 SRS E-3
AEPLN < e E-3
IO ottt e E-4
B e E-4
DINAIY oo e E-5
(0o - SRR E-5
0015 TP TR OU PP RUPTPRPRRUPPO E-5
ST PSSP TR URURRRN E-6
PICK e E-7
FOU o E-8
(0= oo 1 PSPPSR E-9
o £ E-11
Redefining the Basic IBCL Mathematical Operators
to Use INfixX NOATON ..ot E-12
Programming Examples.........c.ccceovonincininennicnn E-12
Redefining = ..o E-12
Redefining + ....ccoovveeeve e E-12
RedefiNiNg - ..o E-12
Redefining * ......ccooieiiireere e E-13
Redefining / ..o E-13
Appendix F
Glossary of IBCL FUNCLIONS........cccocoeieiieeceeeeece F1
Glossary CONVENLIONS........couruerierieneeerierie e F1
GPIB GIOSSAY ...ttt F1
Standard GIOSSAY ......cccvieiierieieieeeee e F2
et F2
Lo o LU P PR F3
ettt ettt e bt e e bRt e A bttt et et e Rt et e bt n s F3
B bbb F3
B e F3
S ettt 3
................................................................................... F4
................................................................................... F4
) TSRS F4
(G5 (0] o) PSR F4
(ADOIL) e F4
(d0) ceeveeeetee 4
(d0) ceeererere e F5
(FIN) e F5

GPIB-CT IBCL Reference Manual viii © National Instruments Corp.



© National Instruments Corp. iX

Contents

GPIB-CT IBCL Reference Manual



Contents

PRACK et F-12
EETMINGL ..o e F-12
@ oo et F12
=00 AN F-12
= o TR F-12
BOAIN oottt F13
= | o SRR F-13
= 010 SRR F-13
070 T F13
(075 < F-13
PEGIN . F14
o [N F-14
BIANKS ...t F-14
017210102 TR F-14
Y e F14
o F14
(oS OTRPRRORR F-15
(o R SRRT F-15
(o (@) LSRR F-15
(01 = VTR F-15
(021 010V TSR F15
(00 [0 SR F-15
COMPITE. .ttt F15
(000 015 =1 | RPN F16
(/0] 11 TSR F16
(oo 10 | ST F16
o C R F-16
(0 (== (T F16
(0. o PP F-16
(oL [ (= | P F17
[0 5 TR F-17
[0 5 SRR F17
o N F17
o N F17
(0720 LTI F-17
AECIMEAL ... e F-17
AEFINITIONS .. F-18
gL F18
o (11 <= TR F-18
AIM e F-18
(0 0 01T LU =R F-18
[0 [0 J TR F-19
AOBSS .. e s F-19
(0] o USSP F-19

GPIB-CT IBCL Reference Manual X © National Instruments Corp.



Contents

APl e e F-20
(0170 o TSRS F20
(0 L1 o SR F-20
(< 1 N F-20
< 1.0, F-20
(< (0 [0 TSR F-21
(< 310 SRR F-21
(< 10 [ TR F-21
(< = S <IN F21
(< 1 (o] F21
(S o U (T F-22
EXPEC .. F-22
LS 1@ ST ETR F-22
L1 L R F-22
{00 = SN F-22
1S (N F-22
1S R F-22
010 TSR F-23
076 [ RN F-23
RN F-23
] o T F23
o F-23
T ettt r e e e e e e e e e e e e e e e e e ra e e s aerereaaan F-24
IMMEAIALE. ... et saee e F-24
] R F24
INEEIPIEL ...ttt F25
Y S F25
L e s ren F25
J@ oo e F-25
(2= TR F-25
[t RN F-25
[C@D ... e F-25
JEAVE ...t F-26
] = F-26
1T 0 TR F-26
1 TSR F-26
TR = DT F-26
[OOPD ettt e F-27
2 RN F-27
1 F-27
(00702000 TR F-27
7= N F-27
IMESSAOE ..uvieeeeeseerieetestee e e saeeeeseesaeebesbe e e e snesaeeseesaean F-28
0071 TR F-28

© National Instruments Corp. Xxi  GPIB-CT IBCL Reference Manual



Contents

GPIB-CT IBCL Reference Manual  xii

IMINUS <.t e et e et e e e e e sare e eenneeeaneeeeseeann F-28
11700 [OOSR F-28
1= VOSSOSO F-28
NUMBES <.ttt e F-28
o SRR F28
(o1 N F-29
(011 = SO SRUOTRROPI F-29
Y ettt bbb et F-29
P@ ..ottt e ens F29
0o S F29
P ettt F29
QUETY <ot e s F29
QUIT et et e F29
ettt ettt et e e et e e be e s e e ebe e s beeebeeabe e e beeaaee s beeaaaeeareeshaeereeren F-29
D et e e e r e e be e e e eeeebe e s reenreesareans F30
(O T F30
TEPEAL ... e s F30
(0] SRR F30
1 OO U PO RURPPRPTN F-30
TP@ ...ttt e F-30
LS o SO PRRSRPRRN F-30
S O F31
SON e e F-31
SIMUAGE ..t F-31
I e bt F31
SP@D.c.eeeeeee et b F31
SPACE. ...eiteeeeeetee s te et nne e F31
SPBCES ..evveveeneeereeeeseesteeeesteseesee e e tesreeae e eaenreen F-31
LS = (RSP SPRN F31
SWEAD .ottt F-31
LS QOO RSN F-32
TNEN e F-32
111 TR F-32
L7000 |1 SR F32
TrAVEISE ..ottt ettt e e e e e e sabr e e e e e sanre e e e e enan F32
TP F-32
Uteeeteeetee et e eteeetee st e eeteeeaeesaeeeabeebeesbeseabeeabe e beesreeeareenrens F-32
U ettt e r e e he e s reer e e be e saaeeareenreas F-32
LU RSN F33
U e e e et b e F33
L0110 N F33
L8111 TR F33
USEY ottt eete et e e st e e e e eare e e eaee e e sabeeaeeareeeenreeesareeaan F34
VaNabl €. F34

© National Instruments Corp.



Contents

VOC-IINKec i F-34
VOCADUIBNY ..ottt F35
(V2= F-35
11T 1 F35
WAINING ..ttt F35
WHITE. e F36
1YLV To o PSRRI F-36
17170 (o R F-36
XOF sttt e e ettt e e e eetb et e e e st be e e e e s e bbb e e e s s e sbrbeeeesenaabeeeeeesanren F36
R F-37
[COMPITE] ..o F-37
................................................................................... F-37

Appendix G

Customer CoOmMMUNICALION ........c.oouvveereeeeeeeee e G1

GlOSSANY ..ot Glossary-1

© National Instruments Corp. Xii  GPIB-CT IBCL Reference Manual



I llustrations

Figure
Figure

Figure

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

Table
Table
Table
Table

Table
Table

Table
Table

2-1.

51.

D-1.

2-1.
2-2.

2-4,
2-5.
2-6.

2-8.
2-9

2-10.
2-11.
2-12.
2-13.
2-14.
2-15.

31
32

3-4.

51

B-1.

F-1.

List of Figures

IBCL Versus the Subroutine Compiler....eeenns 2-3
Logical MEemMOrY Map......eeemsseessssesesssssssssssssesesssaens 59
Physical MemOry Map......cernssssssssssssssssssssssssssanns D-2

List of Tables

Parameter StaCk WOrdS.......eeersereeseessseessssssssessssssssssesns 2-4

Return Stack WOrds........ceueeeesmenesssesssessssssessssssssees 2-5
Supported Number Types and RaNges........ceermreeeesnnns 2-7
UNAIY OPEIBLONS........eeereeermeeessesesssssessssesssssesssssssssssssssssessssssssssssess 2-7

Signed or Unsigned Operands..............ceeeesssssssssssssseens 2-8

SIgNEd OPEIraNdS.........omreermmmsesssmsesssmsssssssmssssssssssssssssssssssssesess 2-8
Mixed Length Signed Operands.......eeessesmsseeeeess 2-9
UnSigned Operands.........eeeeeessssssssessssssessssssssssssees 2-9
Logical, Sign Bit Not Significant.........ocensneneens 2-10

Load and Store WOrds.........esescssssssssssssssssssssssesees 2-11
MeMOTY Fill WOTAS.....ouererrssessesssssesssssssssssssssssssssssssssssens 2-12
User Variables at InitialiZzation......eeeereneesesessesisnnns 2-15
NUMENC OULPUL WOTTS......cveeveerrreessessmesssessssssssssssesssesssseses 2-19
ASCI CRaraCLETS.......eeeeeeereeeeeesess s sssssssssssssssssssssssanens 2-21
Comparison of Non-Immediate and |mmediate

(O P18 (01 (L S (o 2-27
Data Transfer Termination Method..........ooeeeeeenreseesnnns 311
GPIB Status Conditions...........oieeeneesesssessessessssssssssssssssssnns 3-31
Timeout Limit VAIUES......eeeeeeeseeeeeseessesesssesssssssssssssssens 332
Walt MESK LAY OUL.......ooreeeeereeesmreseesssessesssssssessssessesssssesssssses 3-35

1/0 System Map of Ports Supported on the GPIB-CT...5-12
IBCL Status and Error MeESSAgES......eewmmenseessssssssseeessss B-1

Glossary Conventions
GPIB GlOSSAY ....coureerurseessmmssessssmssssssssssesssssssssssssesssssssessssssesees

© National Instruments Corp. xiv. GPIB-CT IBCL Reference Manual



About ThisManual

This manual describes the National Instruments IBCL (Interface Bus
Control Language) operating system for the GPIB-232CT, GPIB-422CT,
and GPIB-232CT-A interface products. This manual describes the built-in
IBCL commands and outlines techniques for adding new ones to the
system.

This manual appliesto the GPIB-232CT, GPIB-422CT, and
GPIB-232CT -A interface products. Rather than mentioning al three
products when areference is made, this manual will use the notation
GPIB-CT to indicate al products.

Assumption of Previous Knowledge

IBCL usersinclude OEMs who have custom applications for the GPIB-CT
and experienced users who wish to access the full power of the on-board
processor.

To use this manual effectively, you should be somewhat familiar with
microcomputers, computer devices, and the GPIB-CT default operating

system. Y ou should also have an understanding of the | EEE 488
functionality.

Organization of the Manual

The following discussion contains a description of each section of the
GPIB-CT IBCL Reference Manual .

e Chapter 1, Getting Sarted with IBCL, contains a brief tutorial which
demonstrates the operation of the IBCL language.

e Chapter 2, IBCL Reference, contains aformal description of the IBCL
language.

e Chapter 3, GPIB Extensions, describes the IBCL extensions you can
useto directly operate and control the GPIB.

e Chapter 4, Programming Examples, contains sample applications
writtenin IBCL.

© National Instruments Corp. xv  GPIB-CT IBCL Reference Manual



About This Manual

e Chapter 5, Technical Information, contains information for improving
and customizing performance from the GPIB-CT.

e Appendix A, Multiline Interface Messages, contains an ASCI| chart,
and alist of the corresponding GPIB messages.

e Appendix B, IBCL Satus and Error Messages, contains atable of the
IBCL status and error messages.

e Appendix C, Creating Permanent IBCL Wordsin EPROM, describes
the procedure for permanently adding new words and datato the IBCL
operating system.

¢ Appendix D, Using Extended Memory, describes the extended memory
of the GPIB-CT and gives guidlines for its use with IBCL.

¢ Appendix E, Other Useful IBCL Words, contains IBCL words that are
application-specific.

e Appendix F, Glossary of IBCL Functions, contains alist of commonly
used IBCL words and a description of each.

e Appendix G, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

e The Glossary contains an alphabetical list and description of terms used
in this manual, including abbreviations, acronyms, metric prefixes,
mnemonics, and symbols.

ConventionsUsed in This Manual

italic Italic text denotes emphasis, a cross reference, or
an introduction to a key concept.

monospace Lowercase text in this font denotes text or
charactersthat are to be literally input from the
keyboard, sections of code, programming
examples, and syntax examples. Thisfontisaso
used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines,
device names, functions, variables, filenames,
and extensions, and for statements and comments
taken from program code.

GPIB-CT IBCL Reference Manual  xvi © National Instruments Corp.



About This Manual

bold monospace Bold lowercase text in this font denotes the
messages and responses that the computer
automatically prints to the screen.

italic monospace Italic lowercase text in this font denotes that you
must supply the appropriate words or valuesin
the place of these items.

<CR> carriage return

<LF> linefeed

The period character (.) is referred to asthe IBCL word "dot" in the
programming examples.

A space () appearsin the examples wherever you should press the spacebar.
It isvery important that you notice where spaces are used in the examples,
because a space is the separator operation for IBCL. In the programming
examples of this manual, characters separated by spaces look like this:

01234
The same string of characters that are not separated by spaces ook like this:
01234

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms
arelisted in the Glossary.

Related Documentation

For more information on the internal workings of IBCL or for more tutorial-
style information, consult one of the Forth language books listed here:

Forth Fundamentals Vol. 1 by C. Kevin McCabe, dilithium Press.
Sarting Forth by Leo Brodie, Prentice Hall (Advanced Techniques).
Forth, An Application Approach by David L. Toppen, McGraw-Hill.
Forth Programming by Leo J. Scanlon, Howard W. Sams Publication.

For more information about the | EEE 488, refer to the |IEEE Standard
Digital Interface for Programmable Instrumentation, published by the
Ingtitute of Electrical and Electronics Engineers, Incorporated.

© National Instruments Corp. xvii  GPIB-CT IBCL Reference Manual



About This Manual

For more information about what each bit representsin each /O register of

the HD64180 microprocessor, refer to the HD64180 8-Bit High Integration
CMOS Microprocessor User Manual, available from Hitachi America, Ltd.,
Semiconductor and |C Division.

For more information about what each bit representsin each /O register of
the GPIB Controller chip used in the GPIB-CT, refer to the description of
the uPD7210 GPIB controller chip in NEC Microcomputer Products,
available from NEC Electronics, Inc. This description isused for interface
products that contain the NAT4882 controller chip aswell asinterface
products that contain the uPD7210 controller chip.

For information about your GPIB-CT hardware, refer to the GPIB-232CT
User Manual (part number 320114-01) the GPIB-422CT User Manual (part
number 320115-01), or the GPIB-232CT-A User Manual (part number
320504-01).

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These formsarein Appendix G, Customer
Communication, at the end of this manual.

GPIB-CT IBCL Reference Manual  xviii © National Instruments Corp.



Chapter 1
Getting Started with IBCL

This chapter contains a brief tutorial which demonstrates the operation of
the IBCL language.

IBCL (Interface Bus Control Language) is a powerful interactive
programming language that can be used to program the GPIB-CT. IBCL
residesin GPIB-CT memory and can serve as both the native language and
the operating system. The GPIB-CT default operating systemisa
command-interpreted GPIB language that is executed on startup. The
GPIB-232CT User Manual , the GPIB-232CT-A User Manual , and the
GPIB-422CT User Manual describe the operation of the GPIB-CT default
operating system.

IBCL is a stack-based language that can be tailored to specific applications
by the addition of hew commands. Userswho are familiar with the Forth
programming language will recognize the similarities between Forth and
IBCL.

Using IBCL

Connect atermina to the GPIB-CT unit. If you do not have aterminal, you
can use aterminal-emulation program on your PC. A terminal or a
terminal-emulation program gives you immediate on-screen response to
your command input. Thiswill allow you to step through the examples
provided in this section.

Feel free to experiment as you work through the following tutorial. You
cannot harm the GPIB-CT hardware or firmware by experimenting with
IBCL. Theworst that could happen is that the RAM copy of IBCL could
get corrupted or that you could get in an infinite loop. In either case, turn
the GPIB-CT power switch off and then back on. When the READY LED
islit, you are ready to start again.

Starting IBCL

IBCL isloaded automatically when the GPIB-CT is started up, so no
initialization sequenceis necessary. The default operating system of the
GPIB-CT isthe GPIB-CT default operating system. To start IBCL from the
GPIB-CT default operating system, enter the command:

© National Instruments Corp. 1-1 GPIB-CT IBCL Reference Manual



Getting Started with IBCL Chapter 1

IBCL<CR>

Y ou should immediately see an ok prompt on your screen signifying that
IBCL isready for input. The IBCL operating system responds with ok after
asuccessful operation. Press <CR> afew timesto verify that IBCL is
responding to input properly. Y ou should see the following lines:

<CR>
ok
<CR>
ok
<CR>
ok

Pushing and Popping Numbersfrom the Stack

IBCL uses a push-down stack to store the numbers you enter. Enter the
following line:

1234... <CR>
Be sure to put a space after every character including the dots (.).

After you enter a<CR>, the line should look like this:

1234....4321
ok

The period character (.), called adot in this context, isan IBCL operator
that returns, or pops, the top number from the stack and printsits value.
Four dots print the top four numbers on the stack. Numbers are pushed onto
the stack in the order in which they are entered and are retrieved in the
reverse order.

IBCL reports the status information (either the ok message or an error code)
from the previous command on a new line for easy program processing.

Adding Number s on the Stack

To add two numbers, first enter the numbers you want to add followed by
the operator:

For example, to add the numbers 9 and 5, enter thisline:

GPIB-CT IBCL Reference Manual 1-2 © National Instruments Corp.



Chapter 1 Getting Started with IBCL

95+ <CR>

Theanswer E isdisplayed. E isthe hexadecimal equivalent of the decimal
value 14. Hexadecimal isthe default base of IBCL.

To change the base to decimal, enter thisline:
decimal<CR>

Enter the following line with no space between the number 5 and the plus
operator (+):

95+ .<CR>
IBCL responds with this message:
5+?MSG #0

MSG #0 isthe unrecognized word error. IBCL operates in terms of words,
wherea word is an unbroken string of any sequence of characters separated
by a space (), acarriage return (<CR>), or alinefeed (<LF>). Because
there is no space entered between the number 5 and the plus sign (+), IBCL
interprets 5+ as one word. Notice that because there was an error, IBCL did
not return the message ok .

If you type dot (.), IBCL responds with the following message:

.46
2MSG#1

MSG # 1 isthe empty stack error. Empty stack meansthat there are no
numbers on the stack. There is nothing on the stack because IBCL clears
the stack after an error occurs. Notice that 46 was printed before the error
message. Thisis because IBCL does not detect errors until after execution
of acommand. In this case, IBCL popped a number off the stack and
printed it before it determined that the stack was empty.

Defining New Words

Y ou can easily add new words to the IBCL dictionary. The dictionary is
thelist of IBCL functions.

To define anew word called 3add, which will add the top three numbers on
the stack, enter thisline:

© National Instruments Corp. 1-3 GPIB-CT IBCL Reference Manual



Getting Started with IBCL Chapter 1

: 3add + + ;<CR>
Now, to execute your new word, enter thisline:

567 3add .<CR> 18
ok

IBCL returns the answer 18 (decimal).

A new word is defined with a sequence starting with acolon (:). Thefirst
word after the colon is the name of the new word. The remaining words, up
to the semicolon (;) comprise the definition of the new word.

Now define a new word, 3addshow, which adds the top three numbers on
the stack and prints out the result. Enter thisline:

: 3addshow " The answer is " 3add . ;<CR>
To execute 3addshow, enter thisline;

345 3addshow<CR> The answer is12
ok

Notice that 3addshow uses 3add, which is now part of the dictionary. The
word ." prints out the charactersto the next " exactly asthey are entered.

Using L oops and Conditionals

Define a new word, doline, which loops five times and prints out the
message line i, wherei isthe loop count. Enter thisline:

:doline 50db a " line" i . loop ;<CR>
To execute doline, enter thisline:

doline<CR>
line0
linel
line2
line3
line4d

ok

GPIB-CT IBCL Reference Manual 1-4 © National Instruments Corp.



Chapter 1 Getting Started with IBCL

do requires two arguments, aterminal count and an initial count. The word
loop increments the index and loops back to do if the index is less than the
terminal count. Theword i pushes the current value of the index onto the
stack. Theword cr performs a carriage return (<CR>).

Looping and conditional constructs only work within aword definition.

Using Conditionals

InIBCL, aTRUE vaueisany non-zero value; a FALSE vaueisazero
value.

Theword if checks the top number on the stack and conditionally executes
words based on the TRUE/FAL SE value of the top nhumber.

Define anew word called tf which will determine whether anumber is
TRUE or FALSE. Enter thisline:

(tfif * TRUE" dse " FALSE " endif ;<CR>
To execute tf afew times, enter the following lines:

1tf<CR> TRUE

ok

0tf<CR> FALSE
ok

-1tf<CR> TRUE

ok

99+ tf<CR> TRUE
ok

99-tf<CR> FALSE
ok

7 4 =tf<CR> FALSE
ok

7 4> tf<CR> TRUE
ok

In the second to the last command line, the equal sign (=) tests the equality
of the top two numbers on the stack. In the last example, the greater-than
sign (>), tests whether the second number on the stack is greater than the
top number on the stack.

© National Instruments Corp. 1-5 GPIB-CT IBCL Reference Manual



Getting Started with IBCL Chapter 1

Manipulating the Stack
There are times when the numbers on the stack are not in the order that you
want, or when you need to verify avalue on the stack without changing its
position. There are several stack words that you can use in these cases, such
as swap, dup and drop.
Enter thisline:

1234swap....<CR>

Theresultis 34 2 1 because swap reverses the order of the top two numbers
on the stack.

Enter thisline:

2dup. .<CR>
Theresultis 2 2, because dup duplicates the top number on the stack.
Another stack word, drop, drops, or pops, the top number from the stack.
L ooping

Using the IBCL words you have already learned, you can explore more
complicated looping structures.

Enter the following three lines:
egd dup 4 = <CR>
:ndec " going " 1- e ;<CR>
: begl 7 begin ndec until ' gone " drop ;<CR>
To execute your program, enter thisline:
beg1<CR> going going going gone
ok
The word begin marks the start of anon-iterated loop. until checks the first

number on the stack, which is the result from ndec, and if it is FALSE loops
back to the begin statement—that is, it loops until ndec returns TRUE.

GPIB-CT IBCL Reference Manual 1-6 © National Instruments Corp.



Chapter 1 Getting Started with IBCL

ndec prints out the string going, then subtracts one from the top number on
the stack. It then calls eg4, which returns a TRUE/FAL SE value indicating
whether the top number on the stack is equal to four. eg4 duplicates the top
number on the stack and comparesiit to four. The number must be
duplicated, because the top two numbers are popped off the stack when the
comparison to four is made. After the begin ... until, the number 4 was still
on the stack; the drop removesiit.

For getting

If you have tried to redefine an existing word definition, you have seen the
IBCL warning message:

XXXX M SG # 4
ok

IBCL does not replace a previously defined word with anew one. It
remembers both, but uses the most recently defined word. To revert to the
previous definition of aword, use forget. forget removes the requested
word and all words that were defined since that word. Enter the following
sequence;

cva " version 1" ;<CR>
&

cve " version 2" ;<CR> ver MSG #4
&

var <CR> version 2

&

forget ver<CR>

&

v <CR> version 1

&

forget ver<CR>

&

va <CR>

ver? MSG #0

In the previous example, the first line of input defines the new word, ver, to
print version 1. The second line of input redefines ver to print version 2.
MSG #4 isawarning message stating that a dictionary word has been
redefined. The original definition is unchanged, but IBCL uses the most
recent definition of aword.

© National Instruments Corp. 1-7 GPIB-CT IBCL Reference Manual



Getting Started with IBCL Chapter 1

In the third line of input, when the word ver is executed, the most recent
definition isdisplayed. In the fourth line of input, the word forget removes
the most recent definition of ver. When ver is executed again in the fifth
line of input, the original definitionisdisplayed. Inthe sixth line of input,
forget removed the original definition. After forgetting the original
definition, executing ver produces the unrecognized dictionary word
message (M SG #0).

Using GPIB Functions

If you do not have access to a GPIB device, you can skip this section. To
use a GPIB device, you must first read the manual on the device to see how
it responds to GPIB commands.

For this example, assume you have a digitizer at GPIB address5. To send a
device clear command to the digitizer, enter thisline:

5clr<CR>

All device functions require the address of the device as their first
argument. To write data to the digitizer, enter thisline:

5" cgpl3;25" wrt<CR>
The double quote character (") creates a buffer with the text cap 13;25init.

It leaves on the stack the address of the buffer and its count. These
arguments are in the correct order for the wrt function.

Exiting IBCL
To exit IBCL, type thisword:

bye<CR>
Thisreturns you to the GPIB-CT default operating system. Notice that any
changes that you have made in the IBCL operating system will now bein
effect in the GPIB-CT default operating system and vice versa. This

sharing of memory resources allows you to switch from one operating
system to the other at any time.

GPIB-CT IBCL Reference Manual 1-8 © National Instruments Corp.



Chapter 2
|BCL Reference

This chapter contains aformal description of the IBCL language.

L anguage Structure

An IBCL program isalist of numbers or one-word commands received
over the GPIB-CT serial port. A word isan unbroken string composed of
up to 31 characters. The IBCL standard word set includes the following
characters:

I"#$%& '()* +,-./0123456789:;<=
>?@abcdefghijklmnopgrstuvwxyz[\]

IBCL defines and recognizes words composed of any sequence of 8-bit
bytes. Space (), carriage return (<CR>), and linefeed (<LF>) characters
serve asword delimiters. The backspace character, ASCII 8, causes IBCL
to back over the last byte entered.

IBCL may use both upper and lower case characters; however, IBCL is
case-sensitive. Thus, the input sequence SAMPLE, sample and Sample will
be interpreted as three distinct words. Notice that all of the standard IBCL
words use lower case characters and must be typed in lower casein order to
be recognized.

Learning IBCL is similar to adding afew hundred words to your
vocabulary. The names of the words will often relate to English words that
you already know. The definitions of the IBCL words are detailed and
specific; they are neither ambiguous nor dependent on context.

IBCL uses postfix notation syntax. In postfix notation, you write the stack
numbers and then the operators. Numbers are pushed onto a stack and
taken fromit. For example, examinethisline:

72123/* -

© National Instruments Corp. 2-1 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

First 7, and then 2, 12, and 3 are pushed onto the stack. The next character,
the dlash (/), is an operator which divides 12 by 3. Theresult, 4, is placed
on the top of the stack. Now 7, 2 and 4 comprise the stack. The next
operator is*, which multiplies 2 by 4. Theresult, 8, is placed on the top of
the stack, leaving 7 and 8 on the stack. The next operator is -, which
subtracts 8 from 7, which leaves -1 on the stack.

The definition of anew IBCL word is composed of alist of previously
defined IBCL words or machine code primitives. A machine code primitive
isthe lowest-level routine, which iswritten in assembly language. A
machine code primitive does not call any other IBCL words.

An IBCL program is executed by executing a sequence of words. 1f aword
in the sequence is defined by a code primitive, that code is executed. When
aword is defined by alist of other IBCL words, execution of the original
list is suspended until the list from the definition is executed. When you run
an IBCL program, each word in the sequence composing the program
executes in turn.

This execution sequence is different from subroutine-oriented languages. In
a subroutine-oriented language, you may still define a higher-level
subroutine as alist of lower-level ones, but time is always wasted by
returning to the high-level routine before proceeding to the next routine in
the definition.

GPIB-CT IBCL Reference Manual 2-2 © National Instruments Corp.



Chapter 2 IBCL Reference

Subroutine Compiler
Execution Sequence

—————»| Subroutine B

Subroutine /

A ——| SubroutineC

/

—————§ SubroutineD

IBCL Execution Sequence

IBCL Word A ——® IBCL Word B

v

IBCL Word C

v

IBCL Word D

Figure 2-1. IBCL Versus the Subroutine Compiler
Stacks

IBCL uses two stacks-the parameter or data stack, and the return stack.

The parameter or data stack is used to pass information from one word to
the next. Itisoftenreferred to as "the stack." The IBCL interpreter uses the
return stack to find its way back up through nested sequences of words
being executed. It isaways called "the return stack."

A stack can be compared to a deck of cards lying face up with each card
only partially covering the one below, asin some solitaire games. With
IBCL, you have the ability to create a copy of any card you see in the deck
and place it on top of the stack. Y ou can aso remove any card and place it
on top, but this takes much longer. The top three cards are most easily
copied or rearranged.

© National Instruments Corp. 2-3 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Using the card scenario, consider the following examples. A mathematical
or logical operator like max (maximum value) would take the top two cards
from the stack, place the higher valued one back, and discard the other.
Addition is defined as removing the top two cards, writing the sum of their
numbers on a blank card, and placing the new card on the stack.

IBCL keepsthe datait is using on the parameter stack. IBCL words
generally take their input parameters from this stack and leave their results
onit. The most fundamental IBCL words are defined in machine code and
perform the following functions:

e Place an address on the stack

¢ Replace an address on the stack with the contents of that address

¢ Replace the top element(s) on the stack with the result of some
mathematical or logical operation using them

« Place acopy of some stack element on top of the stack

¢ Rearrange the top few elements of the stack

¢ Delete element(s) from the top of the stack
The parameter stack grows towards lower memory and is under direct user
control. The parameter stack pointer occupies the sp register. Any words
which refer to the state of the stack refer to the state that existed before the

word was executed.

Table 2-1. Parameter Stack Words

Word Functionality

-dup Duplicate top number on stack if it is non-zero
(useful for if constructs)

drop Drop top number from stack

dup Duplicate top number on stack

over Duplicate second from top word on stack

rot Remove third number from stack, leaving it on top

swap Remove second number from stack, leaving it on top

2dup Duplicate top double number on stack

(continues)

GPIB-CT IBCL Reference Manual 2-4 © National Instruments Corp.



Chapter 2 IBCL Reference

Table 2-1. Parameter Stack Words (continued)

Word Functionality

H@ Return current address of stack pointer
! Initialize stack pointer to value in S0 (clears stack)
D Return the address of the user variable which holds

theinitial value for the stack pointer. When the
stack pointer has this value, the stack is empty.

The return stack is used mainly for system needs and takes care of itself.
When a higher-level word is executed, each lower-level word in its
definition is executed. Each of these words may also be defined in terms of
yet

lower-level words, until the lowest-level words defined in machine code are
reached. AsIBCL descends through each level of adefinition, it leavesthe
address of the next word at the current level on the return stack. When the
lower level is completed, this address is removed from the return stack and
execution proceeds from that point.

Occasionally the return stack is used within aword as temporary storage.
Any temporary items on the return stack must be removed before the word
completes execution. The return stack also holds the index and limit for do
loops within colon definition words. These are automatically removed
when the loop terminates.

The return stack grows towards the parameter stack. The return stack
pointer is stored in the memory location rp@.

The following words are used to manipulate the return stack state. They
should only be used within aword definition and should be used with
extreme caution since an unbalanced return stack will crash the system.

Table 2-2. Return Stack Words

Word Functionality
> Transfer top number from data stack to return stack
r Copy top number from return stack to data stack
r> Transfer top number from return stack to data stack
rp@ Return current address of return stack pointer
(continues)

© National Instruments Corp. 2-5 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Table 2-2. Return Stack Words (continued)

Word Functionality

rp! Initialize return stack pointer to valuein r0O (clears return
stack)
r0 Return the address of the user variable which holds theinitial

value for the return stack pointer. When the return stack
pointer has this value, the return stack is empty.

Numeric Operations

IBCL stores numeric information in consecutive 8-bit byte memory
locations and can represent character (8-bit), single precision (16-hit), or
double precision (32-bit) data. It isthe responsibility of the programmer to
insure that the correct numeric operations are used with the proper data
types, as IBCL does not differentiate between the different data formats.

Both signed and unsigned single and double precision numbers can be
represented, but again, the programmer is responsible for insuring the
correct representation of datatypes. All signed numbers are stored in two's
complement form so that arithmetic operations can be handled without
special consideration.

A number isinterpreted as a double number with the inclusion of a decimal
point anywhere within the number. A number isinterpreted initstwo's
complement form if a negative sign directly precedes the number.

All IBCL arithmetic operations deal with integer quantities. Integer
arithmetic isfast, requires very little memory and is not subject to round-off
error. Although floating point routines can be written in IBCL, the easiest
way to represent quantities that contain fractional partsisto scalethe
number. For example, to represent avalue given in dollars and cents as an
integer value, multiply the number by 100. This gives avalue representing
anumber of cents. Thisinteger value can then be used by any arithmetic
function and the result can be reported back in the normalized format or can
be scaled back to represent afractional value. In asense, IBCL
automatically scales numbers which include decimal points sinceit converts
them to double length integers and reports the position of the decimal place.

The arithmetic and logic words find and remove all of their inputs on the
data stack and return their results on the data stack.

The ranges for the supported number types are given in Table 2-3.

GPIB-CT IBCL Reference Manual 2-6 © National Instruments Corp.




Chapter 2 IBCL Reference

Table 2-3. Supported Number Types and Ranges

Integer Type Decimal Range Hexadecimal Range
signed single -32,768 32,767 -8000 THFF
unsigned single 0 65,535 0 FFFF
signed double -2147483648 2147483647 | -80000000 TFFFFFFF
unsigned double 0 4294967295 0 FFFFFFFF
logical 0 for FALSE; 1 (non-zero) for TRUE

When an arithmetic operation resultsin a number that is too large, positive
or negative, the high-order bits are truncated. The result returned is usually
very different from the desired result, and often does not even have the
correct sign. For example, adding one to 32767 gives -32768.

For division the remainder has the same sign as the dividend and the
quotient is rounded toward zero.

Unary Operators

These words alter the number on the top of the stack. Most operate on either
signed or unsigned integers. The few exceptions (0< and abs) must
obviously deal with signed quantities.

Table 2-4. Unary Operators

Word Functionality

1+ Add 1 to the number on the top of the stack.

2+ Add 2 to the number on the top of the stack.

o< Leaves a TRUE flag if the number on the top of the stack is
less than zero; otherwise leaves a FAL SE flag.

0= Leaves a TRUE flag if the number on the top of the stack is
zero; otherwise leaves a FAL SE flag.

abs Replace the top humber on the stack with its absolute value.

s>d Convert signed single length number on the top of the stack to
a signed double word number on the top of the stack.

dabs Replace the double word number on the top of the stack with
its absolute value.

© National Instruments Corp. 2-7 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Binary and Ternary Operators

Binary integer operators remove the top two words from the stack and
replace them with the result of the operation, usually a single word.
Ternary integer operators remove the top three words from the stack and
replace them with one or two resullts.

Mixed word length operators have one operand that is a double word. For
double word length operators, both operands are double words. A double
length word occupies two words on the stack. The high order half istoward
the top of the stack with the low-order half under it. Mixed operators
generally begin with m, and double operators with d.

All input words are removed from the stack and the result becomes the new
top element on the stack.

Table 2-5. Signed or Unsigned Operands

Word Functionality

+ Add the top two numbers on the stack.

- Subtract the top number on the stack from the second number
on the stack.

= Leaves a TRUE flag if the top number on the stack is equal to
the second number on the stack; otherwise leave a FALSE

flag.

o+ Add the top two double numbers on the stack.

- Return the double number which was second on the stack with
the sign of the product of the double number and the top single
number.

Table 2-6. Signed Operands

Word Functionality

+ Return the top number on the stack with the sign of the
product of the first and second numbers on the stack.

* Multiply the top two numbers on the stack.

/ Divide the second number on the stack by the top humber on
the stack leaving the quotient on the top of the stack.

/mod Like / but the remainder is returned as the second element on

the stack with the same sign as the dividend.

(continues)

GPIB-CT IBCL Reference Manual 2-8 © National Instruments Corp.



Chapter 2

IBCL Reference

Table 2-6. Signed Operands (continued)

Word Functionality

mod Return the remainder of / with the same sign as the dividend.

*/ Multiplies the first and second number, divides the result by
the third number, and leaves the quatient on the stack. The
quotient is rounded toward zero. The intermediary result
(after n1* n2) isadouble number, resulting in greater
precision than nl n2 * n3/.

*/mod Like */ but the remainder is returned as the second element on
the stack. The remainder has the same sign as the product of
nl* n2.

< Leavesa TRUE flag if the first number is greater than the
second; otherwise leaves a FAL SE flag.

> Leaves a TRUE flag if the second number is greater than the
first; otherwise leaves a FAL SE flag.

max Return the greater of the top two numbers on the stack.

min Return the lesser of the top two numbers on the stack.

Table 2-7. Mixed Length Signed Operands
Word Functionality

n Multiply the two numbers on the top of the stack and return
the signed doubl e integer product.

m/ Divide the double integer by the number on the top of the
stack leaving the signed quotient on the top of the stack and
the remainder as the second element on the stack. The
remainder takes its sign from the dividend.

m/mod | Like m/ but returns a double word unsigned quotient and an
unsigned remainder from an unsigned double dividend and an
unsigned single divisor.

Table 2-8. Unsigned Operands
Word Functionality

u* Multiplies two unsigned numbers and leaves the result as an
unsigned double number on the stack.

u< Leaves a TRUE flag if the first unsigned number is greater

than the second unsigned number; otherwise leaves a FALSE
flag.

© National Instruments Corp. 2-9 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Table 2-9. Logical, Sign Bit Not Significant

Word Functionality
and L eaves the bitwise AND of the top two numbers on the stack.
or Leaves the bitwise inclusive-OR of the top two numbers on
the stack.
xor L eaves the hitwise exclusive-OR of the top two numbers on
the stack.
Memor Yy Access

These words allow a single byte, word, or double word to be stored or
returned from memory. An entire block of bytes may be cleared or filled
with any value or a contiguous block may be moved from one location to
another.

Constants, variables and arrays are structures used to reserve memory
locationsin the IBCL system. They also provide user defined label
identification for easy recall.

Load and Store

These words store values into memory or retrieve them from memory using
an address on the top of the stack.

Theroot of these wordsis an at character (@) for load, and an exclamation
point (1) for store. A word with the root @ requires an address on the top of
the stack. A word with theroot ! takes two parameters from the stack, an
address from the top of the stack and a number under the address. Double
word numbers store the most significant portion toward the top, just below
the address word or words.

A word with the root @ replaces the address on the stack with the value
stored at that address.

A word with theroot ! stores the number from the stack under the address
into the location at that address.

GPIB-CT IBCL Reference Manual 2-10 © National Instruments Corp.



Chapter 2 IBCL Reference

Table 2-10. Load and Store Words

Syntax Word| Functionality

nnnn c@ Returns the character from memory
location nnnn.

nnnn @ Returns the single number from the
memory location nnnn.

nnnn 2@ Returns the double number from
memory location nnnn.

nn.nn lc@ Returns the character from the long
double length memory location nn.nn.

nn.nn @ Returns the single number from the
long double length memory location
nn.nn.

character nnnn d Stores character into memory location
byte nnnn.

number nnnn ! Stores number at memory location
starting at nnnn.

double nnnn 2! Stores double number at memory
location starting at_ nnnn.

character nn.nn Ic! Stores character into long double length
memory location nn.nn.

number nn.nn ! Stores number starting at the double
length memory location nn.nn.

number nnnn +H Resembles ! in use but instead of
replacing the single length number
located at memory address nnnn,
number isadded into it.

Notice that there are four words (Ic@, |@, Ic! I!) which store and retrieve
datafrom long addresses. These words are only used if your unit has 256K
of RAM and you wish to use the extended memory space. For more
information, see Appendix D, Using Extended Memory.

Fill

These words fill ablock of memory with copies of asingle byte length
number. Nothing is returned on the stack.

© National Instruments Corp. 2-11 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Table 2-11. Memory Fill Words

Syntax Word Functionality

addr n byte fill Fill n consecutive memory bytes
beginning at addr with the byte.

addr n blanks This behaves like fill, but the byte
stored is hex 20 (blank).

addr n erase erase also behaveslikefill, but the byte
stored is 0.

Move

To copy ablock of memory to anew, possibly overlapping block, enter the
following line:

source-addr dest-addr n cmove
cmove moves a block of memory n bytes long beginning at the source
address to the block at the destination address. The lowest addressed bytes
are moved first.
The two blocks may overlap if the destination is lower in memory than the
source. If the two blocks overlap and the destination is higher in memory
than the source the copy will proceed smoothly until the source address
equals the original destination address. At that point, the original data has
been overwritten and the sequence of bytes copied to that point will repeat
throughout the remainder of the copy.
Congtants, Variablesand Arrays

The words in this section provide abasic set of data objects, which can be
extended to meet the user's specific needs.

A constant may be defined by typing the line:
nnnn constant name-of-new-constant

constant isthe dictionary word you are executing. name-of-new-constant is
anew dictionary entry which is associated with the constant value.

GPIB-CT IBCL Reference Manual 2-12 © National Instruments Corp.




Chapter 2 IBCL Reference

The top word on the stack provides the value for the new constant.
Whenever the new constant is executed, the number nnnn will be pushed
onto the top of the stack. The constant can be executed by entering its name
outside of acolon definition or executed immediately within acolon
definition by using the square bracket pair. It can also be executed when
any definition into which the constant has been compiled is executed.

A signed constant may range from -32768 through 32767 decimal. An
unsigned constant may range from 0 through 65535 decimal.

For example, examine the following lines:

5 constant five<CR>
ok

five.<CR>5

ok

A few small integers are used so frequently that they have been
implemented as IBCL constants. When the interpreter encounters them,
they are located in the dictionary rather than being parsed by number. More
importantly, when used in definitions, they result in compilation of asingle
word rather than the lit and value pair of words produced by other integers.
The predefined IBCL constantsare 0, 1, 2, and 3.

A variable is defined like a constant, except that whenever the new variable
is executed, its parameter field address is pushed onto the stack. Values
may then be stored and retrieved from this location.
A value may be defined by entering the following line:

nnnn variable name-of-new-variable
variable isthe dictionary word you are executing. name-of-new-variable is
anew dictionary entry which will place the value nnnn on the top of the
stack.

A signed variable may range from -32768 through 32767 decimal. An
unsigned variable may range from 0 through 65535 decimal.

© National Instruments Corp. 2-13 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

For example, examine the following lines:

1 variable jellybeans<CR>
ok

jellybeans @ . <CR>1

ok

3 jellybeans +! <CR>
ok

jéllybeans @ . <CR>4
ok

User variables are a special type of variable that permit multi-tasking and
multi-user applications. They are generally system variables that can vary
for different tasks and users. They are assigned sequentially beginning at
address 22a hex. If multiple copies of this array are needed, the user must
create another array, copy the old user array to it, and place the appropriate
addressin user-base for each task.

The user-base is stored at memory location 226 hex. To use your new array
of user variables, you must put the address of the new array into the user-
base by entering the following line:

address-of-array 226!
After you enter thisline, IBCL usesyour array of user variables. If you
want to restore the use of the system array, you must enter 22a hex for
address-of-array, or turn off the GPIB-CT. No IBCL word resets the array
for you.

The user variables at system initialization are listed in Table 2-12.

GPIB-CT IBCL Reference Manual 2-14 © National Instruments Corp.



Chapter 2 IBCL Reference

Table 2-12. User Variables at Initialization

L ocation Variable L ocation Variable
22a reserved 24a context
22c reserved 24c current
22e reserved 24e state
230 D 250 base
232 RO 252 dpl
234 tib 254 reserved
236 width 256 cp
238 warning 258 reserved
23a fence 25a hid
23c dp 25¢c unused
23e voc-link 25e unused
240 unused 260 unused
242 in 262 unused
244 out 264 unused
246 reserved 266 unused
248 reserved 268 unused

If more user variables are required, you can create anew user variable by
typing thisline:

hex 52 user my-var

When executed, my-var would push the sum of the address contained in
user-base and the offset 52 onto the stack. The original user variable array
starts at address 22a hex and is 40 hex bytes long.

Arrays can be created by first defining an array name by using variable,
then reserving extra storage space by adjusting the dictionary pointer by
using allot. allot takes a number off the top of the stack and reserves that
number of bytesin the dictionary space. For example, to create an array
many_items with 1000 bytes of storage, enter the following line:

0 variable many_items FFE allot
FFE is used during the allot since two bytes were already reserved by

variable. Thefirst element in the array will be 0. Any array element can be
designated by its relative location within the array structure.

© National Instruments Corp. 2-15 GPIB-CT IBCL Reference Manual




IBCL Reference Chapter 2

| nput/Output

IBCL has provisions to send and receive both numeric and character data as
well as binary arrays of datato and from the seria port. Numeric values
will be converted to the corresponding base that isin effect.

IBCL Input

IBCL provides several words that receive information from the serial port.
These words may be placed in one of two categories—ASCII-type input
words and binary-type input words. This discussion documents IBCL's
collection of input words.

ASCII-Type Input

2terminal isan IBCL input word which returns a TRUE flag if thereisa
character received by the serial port. Thisisuseful to break from aroutine.

All IBCL input routines use the core word key which waits for the next
character to be received from the serial port and then returnsits value on the
stack.

Whenever IBCL exhaustsits ASCII input stream, it executes the word
expect. Thisword takes an address and count from the stack and waits for
more input from the serial port. For example, the following IBCL fragment
will create abuffer and fill it with ASCII data from the serial port:

0 variable string-buffer 3E allot
string-buffer 40 expect

The IBCL phrase 0 variable string-buffer allocates memory for atwo-byte
IBCL integer variable. The phrase 3E allot adds an additional hex 3E bytes
to the two already allocated, increasing the size of the buffer to hex 40
bytes. When later executed, the word string-buffer will leave the address of
the 40 byte buffer on the stack.

The execution of string-buffer on the second line leaves the buffer address
on the stack, execution of 40 leaves the count of desired bytes on the stack,
and execution of expect waits until either a<CR> or hex 40 bytes are
received from the serial port. These bytes are placed in string-buffer.

GPIB-CT IBCL Reference Manual 2-16 © National Instruments Corp.



Chapter 2 IBCL Reference

IBCL executes expect not only when the user explicitly usesit interactively
or in aprogram, but also when the IBCL interpreter itself needs more ASCI|
input.

Binary-Type Input

The IBCL word dim, for down load memory, allows the host serial device
to transmit large arrays of binary data directly to GPIB-CT memory. This
word expects a count on top of the stack and a buffer address under that.
The IBCL word dim causes the GPIB-CT to wait for the serial device to
send the specified number of bytes over the serial bus and places the data at
the specified address. Unlike the other IBCL input words, dim does not
echo the received characters back to the serial port. The following BASIC
example illustrates operation of thisword:

OPEN "COM1:9600,N,8,1" AS#1
OPEN "SENDFILE" FOR INPUT AS#2
PRINT #1,"0 variable buffer FFE allot"
PRINT #1, "buffer 1000 dim"

FOR COUNT =1+ 0 &H1000

BYTES$ = INPUT$ (1, #2);

PRINT #1, BY TES;

NEXT

IBCL Output

IBCL provides several words that send information out the serial port.
These words may be placed in one of two categories—A SCl I -type output
words and binary-type output words. This section documents IBCL's
collection of output words.

ASCII-Type Output Words

Many different ASCII output words exist, but all of them work by calling
the IBCL word emit one or more times. Thisword outputs asingle ASCI|
character to the serial port. emit also increments the value stored in the user
variable out which is used as on offset pointer to the last character output.
The system constant ¢/1, an abbreviation for characters/line, determines the
maximum number of ASCII characters per display line (default 64
decimal).

The remainder of this section describes the ASCII-type output words.

© National Instruments Corp. 2-17 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Character-Based Words. space will emit one blank space. spaces will take
the top number on the stack and emit that number of spaces. cr will emit a
carriage return followed by alinefeed. bl will leave the ASCII code for a
space on the stack. type uses the top number on the stack as a character
count and the next number as a source address. Consecutive characters
beginning at the source address are emitted until the count is satisfied. If the
count is zero, no action takes place and the address and count are removed
from the stack.

Two words are often used before type. count assumes the top number on
the stack is the address of the count field of astring. It incrementsthe
address by one and returns it and then the count byte on the stack.
-trailing expects the count byte on the stack with the address of the first
character under it, in the form returned by count. Both address and count
are returned on the stack, after the count has been reduced to discard any
trailing blanks.

Numeric-Based Words. The representation of a number depends on the
base being used. For example, the number of statesin the United Statesis
50 if the base is decimal, but if the base is hexadecimal, there are 32 states.
The actual number of states is the same, but the representation is different.
A jigsaw puzzle of the United States could be divided into five piles of ten
states each with none left over (50 in decimal), or it could be divided into
three piles of sixteen states each with two left over (32 in hexadecimal).

In IBCL, the representation base is stored in the user variable base. base
contains ten when in decimal mode and sixteen when in hexadecimal mode,
but may be set to other values. decimal storesten in base and hex stores
sixteen in base. Octal could be set by entering the following line:

8 base!
Thewordsin Table 2-13 output a number from the stack as a character

string. Thetop stack word contains a field width for some of them. The
individual digits are output by emit.

GPIB-CT IBCL Reference Manual 2-18 © National Instruments Corp.



Chapter 2 IBCL Reference

Table 2-13. Numeric Output Words

Syntax Word | Functionality

number . Display number with asingletrailing
blank and, if required, aleading
negative sign.

double d. Like . except for double word length

number, double. The high-order word
ison top of the stack with the low-order
word under it.

number u. Like . but number isunsigned and the

magnitude may therefore range from 0
through 65535 (decimal) or 0 through

FFFF (hexadecimal)

number #char r Display number right aligned in field
#char characterswide. Thesignis
included only if it is negative. If #char
istoo small, no leading blank appears
but the field is expanded to include all

digitsand sign.

double #char dr Like .r but for double word length
number, double.

source-address ? Print the number stored at source-
address. (@.)

The only punctuation included in the above numbersis the leading minus
sign. If more specific formatting is required, words are available to convert
numbers one digit at atime.

The following example will output the negative decimal single word
number -12345 and insert a decimal point between the 3 and 4:

decimal -12345 dup s->d dabs
<### 46 hold #srot sign #> type

In the previous example, decimal changes the base to decimal and

-12345 places -12345 on the stack. dup places two copies of -12345 on the
stack. s->d sign extends the top copy to double length. dabs takes the
absolute value of the double number. <# initializes for output conversion.
The next # places the lowest order digit (5) in the buffer. The next # places
the second lowest order digit in the buffer. 46 isthe ASCII code for a
decimal point.

© National Instruments Corp. 2-19 GPIB-CT IBCL Reference Manual




IBCL Reference Chapter 2

hold places the ASCII character represented by the top value on the stack
into the buffer. #s placesthe remaining digits into the buffer. rot rotates the
original signed number to the top of the stack. sign placesthe sign of the
top number on the stack into the buffer. #> terminates the output
conversion and leaves the buffer address below number string length on
stack. type typesthe number -123.45.

The <# ... #> construct converts an unsigned double length number to a
string. The string is built rightmost character first and grows downward
from the buffer address returned by pad. pad pointsto atext buffer which
serves as a scratchpad area where output strings may be constructed. The
opening <# stores this address in the user variable hld, which thereafter
holds the address of the character most recently added to the string.

Each instance of # extracts the next higher order digit from the double
number on the stack and adds it to the downward growing string. The
unsigned double number is divided by the base. The double word quotient
isleft on the stack, eventually becoming zero. The remainder is converted
toits ASCII code and added to the string. If # isused after all digits have
been converted, leading zeroes will be added to the string.

#swill convert al remaining digits but stop before generating any leading
ZEeroes.

Any character may be inserted anywhere in the string by placing its ASCI|
code on the stack and using hold. hold can be used to insert decimal points,
commas, hyphens, slashes, and so on.
The following lines are examples of strings containing such characters:
$1,234,567.89
4-15-89
4/15/89
2:37:15

Table 2-14 lists the ASCII codesin decimal of some useful ASCI|
characters.

GPIB-CT IBCL Reference Manual 2-20 © National Instruments Corp.



Chapter 2 IBCL Reference
Table 2-14. ASCI| Characters
Decimal ASCI| Decimal ASCI| Decimal | ASCII
32 blank 43 + 47 /
35 # 44 , 58 :
36 $ 45 - 59 ;
37 % 46

If asignisrequired, the IBCL word sign can be used as long as a number
with the correct sign is available on the stack. The double word number on
the stack cannot be used, since it must be converted to its absolute value. In
the example, the signed number was kept on the stack under the double
word unsigned number. Thislocation is convenient but not necessary. The
signisusually added after all of the digits are converted, and placed in the
number string's first character position. The sign could just as easily be
added to the string before any digits are converted, thus placing it at the end
of the number string as required by some financial formats (123.45-).

The#> drops the double number from the stack. At this point, it should
have been zero. The address of the first character in the string (from the
user variable hld) is returned on the stack under the number of characters
included in the string. This address and count are the arguments expected
by type, which is used to output the string.

Binary-Type Output

IBCL's binary output word is ulm, for up load memory. Thisword expects
acount on top of the stack and a buffer address just below that. Assoon as
the serial device requests an ulm, the GPIB-CT sends the specified nhumber
of bytes over the serial port, starting at the specified address.

Proper handling of binary output involves cooperative action by the
GPIB-CT and the serial device, as the following example shows.

© National Instruments Corp. 2-21 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

BASIC Program Example:

OPEN "COM1: 9600, N, 8, 1" AS#1
OPEN "RECVFILE" FOR OUTPUT AS#2
PRINT #1, "0 variable data_buffer ffe alot"
PRINT #1, "data_buffer 1000 fill_up"
PRINT #1, "data_buffer 1000 ulm"
FOR COUNT =1 to &H1000 ulm

BYTES$ = INPUTS$ ( 1, #1);

PRINT #2, BYTES,
NEXT

ulm is most useful when you want to program a custom EPROM with user-
defined words and/or an autoboot routine. For more information, see
Appendix C, Creating Permanent IBCL Words in EPROM.

Defining New Words

This section describes the heart of IBCL. By defining new words
interactively with minimal overhead costs, IBCL surpasses both interpreted
and compiled high-level languages. Since word definitions can be kept
short without excessive overhead, they can be easier to write than the longer
subroutines usually written in higher-level languages.

IBCL can define several kinds of words, and can even define words that
define new types of words. At the simplest level, it can provide direct
language support for almost any data type or structure imaginable.

For example, the dot product of order n vectors can easily be reduced to this
line:

avector b-vector dot

Thisis both simpler and more efficient than BASIC, which requires the
following code:

result=0

fori=1ton
result=result+a(i)* b(i)
nexti

Even high-level languages with decent subroutine syntax quickly fill with

distracting calls and parentheses that have nothing to do with your
algorithm or your problem.

GPIB-CT IBCL Reference Manual 2-22 © National Instruments Corp.



Chapter 2 IBCL Reference

The primary word used to define all new wordsis create, asin:
create new-name

This enters new-name in the context vocabulary with a memory word
initialized to point to the next available dictionary location. Y ou can then
place machine language opcodes directly into this and later dictionary space
by using c,. Thisallowsyou to write your own machine language
primitives for speed-sensitive applications. createisused by all system-
defining words.

create will truncate names longer than the value contained in the user
variablewidth. Theinitial value, also the maximum value, is decimal 31
characters. If truncation occurs, the system remembers only the shortened
length.

Colon Definitions

These are the most pervasive definitionsin IBCL. They resemble the
subroutines or functions of other high-level languages such as Pascal or
Fortran, but have some important differences.

The syntax is not cluttered with parentheses and parameter lists. This
enables IBCL words to be used more nearly like the words in a human
language. IBCL syntax is admittedly more like German than English, since
the action is specified after any values or addresses required.

Values and addresses are passed either on the data stack or through
locations specified within the definition. Use of the data stack aidsin the
creation of more generally useful words.

The other crucia difference isthat the definition is compiled when it is
entered. No distracting or time consuming compile and link sequenceis
required.

In avery small way, BASIC shares this convenient lack of extra steps.
IBCL may be used calculator style like BASIC, or it may be used to define
the equivalent of asingle IBCL word with the name RUN. InIBCL, you
could type thisline:

:run IBCL equivalent of BASIC program ;

© National Instruments Corp. 2-23 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

In IBCL, of course, run could be named anything and you could have
hundreds of programs at your fingertips simultaneously. No need for
BASIC'sincomprehensible tangle, single program limits, or incomparable
sowness.

The basic format of the colon definitioniis:
: name-of-new-word wor ds-comprising-definition ;

The colon and name must be on the first line, but the remainder of the
definition may occupy as many lines as required. Each word or number
must be complete on asingleline.

After : hasinitialized the definition and set compilation mode, the following
words are compiled into the definition for execution when the defined word
is executed. When aword is compiled, the address of its code field is
appended to the list being created for the word being defined. 1f a number
is encountered, the word lit is compiled into the definition followed by the
number. Later execution of lit will cause the number to be placed on the
stack and the interpreter will skip the location that held the number. The ;
terminates the definition by compiling a ;s at its end and setting execution
mode. ;swill unwind the interpreter nesting one level, returning control to
the word after the instance of the one that finished execution.

The following example will print the number followed by a % sign when
the word's name is entered: (37 is ASCII code for %)

decimal <CR>

ok

: fifteen-percent 15 . 37 emit ; <CR>
ok

fifteen-percent <CR>15%

ok

hex<CR>

ok

fifteen-percent <CR>F%

ok

Numbers are interpreted using the current base. 1n the example, the
previous base was discarded in favor of hexadecimal. Changing the base to
hex changes the output representation of the number, but not the ASCII
character. The output of an ASCII character requires no numeric
conversion.

GPIB-CT IBCL Reference Manual 2-24 © National Instruments Corp.



Chapter 2 IBCL Reference

Notice that the following definition would not have changed the base until
the definition executed:

: fifteen-percent decimal 15 . 37 emit ;

The 15 and 37 would be interpreted according to the previous base, and
typing fifteen-percent would always change the base to decimal .

Thewords . and emit perform no action when used in a definition. Instead,
their code field addresses are stored in the definition and will be executed
only when the defined word is executed. All hon-immediate words follow
this pattern.

Another type of word isimmediate. |mmediate words execute even when
used within a colon definition. The word may, but need not, alter or add to
the definition. Primary examples include the flow control words, definition
terminator words, and embedded string words.

To create an immediate word, use immediate after defining the new word:
: name definition ; immediate

Every definition needs at least one immediate word-the word that signalsits
end. ; providesthis servicein the previous example and for al simple high-
level colon definitions.

Another immediate word often used in definitions is the apostrophe
character (), which is often called a"tick" in this context. Thisword places
the parameter field address of the next word in the input stream on the
stack. Assuming that we have a code field address on the stack, we could
determine whether it was a variable with the following word:

:var @[ ' memory cfa@] literal =
if ." variable" else." not variable" then ;

Note: memory isan IBCL variable.

The." immediate word is used to include amessage in adefinition. If ." is
in an active path, the message prints when the word is executed.

Sometimesiit is necessary to cause compilation of an immediate word asiif

it were anon-immediate one. Thisis accomplished by preceding the
immediate word with [compil€].

© National Instruments Corp. 2-25 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

A word to print the parameter field address of another word could be
defined as follows:

. .address [compile] ' cr ." addressis” . ;
.address some-word
addressis nnnn

Thisisbasically ameans for reusing the function of an immediate word
within another word which isitself often immediate.

Occasionally it is necessary to cause execution of non-immediate words
while creating a colon definition. Thisis accomplished by a pair of words,
the opening sguare bracket ([) which switches the user variable state from
compile to execute mode, and the closing sguare bracket (]), which switches
state from execute to compile mode. The [ word leaves the definition open.
The most common use for this pair would be the calculation of some offset,
address, or constant. This pair is frequently used with the literal word,
which takes the top value on the stack and entersit into the current
definition. Refer to the example on the previous page that begins with :
var for an example of the correct usage of [ and ]. A similar word, dliteral,
isavailable for compiling double length values from the stack into the
definition.

The following lines are examples of equivalent ways to define aword
returning the address of the fifth line of a block given its base address on the
stack. Notice that the first isinefficient, since the operations are performed
every time the word is executed:

:line5 644* +;

644* :line5 literal +;

;line5 [ 644*] literal +;

The second format could lead to ambiguity in areal program, and might not
be usable if the stack was busy with control parameters for loops.

Sometimes the word we are defining will be used to build part of the
definition of other words. In this case, our definition may contain words
that we do not want to execute even when the word executes. Instead we
want the word to be copied to the definition being created.

GPIB-CT IBCL Reference Manual 2-26 © National Instruments Corp.



Chapter 2 IBCL Reference

compile is used within immediate words to allow the word following
compile to be compiled into the dictionary entries of other words that
contain the immediate word. Because compile takes the next word from the
definition list, the word following compile should never be immediate.

Table 2-15 compares the behavior of an example word, called a-word,
defined as non-immediate or immediate.

Table 2-15. Comparison of Non-Immediate and
Immediate Characteristics

Non-Ilmmediate Immediate
aword executed executed
1q[aword]; executed executed *
:gaword; compiled executed
. g [compile] aword ; compiled * compiled
: g compile aword ; immediate compiled ** error

*  Theseforms are not really used since they are redundant.
**  Thisg must be used in a definition and a-word will be compiled into
that definition.

Comments may be inserted within the definition by enclosing them in
parentheses. The opening parenthesis (() must be preceded and followed by
aspaceto be interpreted as an IBCL word. The terminating parenthesis ())
isadeimiter and needs no preceding space. For example:

: name some words ( comments) more words;
Dictionary

IBCL recalls word definitions using a data structure called the dictionary.
When you define a new word, IBCL adds a dictionary entry for that word.
The only words IBCL understands which are not in the dictionary are
numbers.

The actual definition of an IBCL word consists of four parts-the name field,
the link field, the code field, and the parameter field. The namefield
contains the ASCII codes of characters making up the word's name,
preceded by alength byte which specifies the number of charactersin the
name and certain attributes of the definition.

© National Instruments Corp. 2-27 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Thelink field immediately follows the namefield. Thelink field holds a
pointer to the name field of the next most recent word in the same
vocabulary. Thesetwo fields allow for an easy comparison of input words
to dictionary entries by using alinked list technique.

The code field contains an address pointer to the word's execution
procedure, which is executable machine code. The parameter field
immediately follows the code field. The purpose of the parameter field
varies from word to word. For example, the code field of a constant holds a
pointer to an execution procedure that causes a single precision constant
value to be copied from the constant's parameter field to the stack whenever
the name of that constant is entered. Likewise, the codefield of avariable
contains a pointer to an execution procedure which causes the address of a
variable's parameter field (rather than the single precision value stored
there) to be placed on the stack when the variable name is executed.

The parameter field of a colon-defined word contains one or more address
pointers designating the code field of a component word.

Vocabularies

IBCL allows separate vocabularies that separate definitions into well-
organized groups, much like you would place related C functionsin asingle
file. IBCL can find words faster when it only has to search a couple of
vocabulariesinstead of the entire dictionary.

The two vocabularies, context and current, are aways singled out for
special treatment. The context vocabulary is searched first for words
encountered in the input stream. If the word is not found, the root
vacabulary, named ibcl, is searched. The current vocabulary isthe
vocabulary to which new definitions are added. The variables context and
current contain pointers to these two vocabularies.

An IBCL system initially contains a single vocabulary named ibcl. New
words are added to this vocabulary as they are defined. It is possibleto
create additional vocabularies and to limit the scope of word searches to one
of the additional vocabularies followed by the IBCL vocabulary.

GPIB-CT IBCL Reference Manual 2-28 © National Instruments Corp.



Chapter 2 IBCL Reference

A new vocabulary may be created by typing this command:
vocabulary new-vocabulary-name immediate

where the term new-vocabulary-name would be replaced by the name you
want to give the new vocabulary. For example:

vocabulary assembler immediate
will create anew vocabulary titled assembler.

To cause the assembler vocabulary to be searched before the IBCL
vacabulary, type the vocabulary name:

assembler
At this point, no words will be found in the assembler vocabulary, but the
user variable context will contain a pointer to the assembler vocabulary
rather than to the IBCL vocabulary. New definitions would still be assigned
to the IBCL vocabulary.

To cause new definitions to be assigned to the context vocabulary, type this
line:

definitions
Now the user variable current points to the assembler vocabulary instead of
the IBCL vocabulary. current governs which vocabulary receives new
definitions. If you want to enter new definitions in the vocabulary my-
words, but limit interpreter searches to the IBCL vocabulary, type thisline:

vocabulary my-words immediate my-words definitions
assembler

Thiswould have reset context to point to assembler.

Note: Entering a colon definition sets context to current.

In the course of defining new words, you may discover that you have made
amistake. Words can be forgotten and dictionary space can be recovered

by typing thisline:

forget word-to-forget-through

© National Instruments Corp. 2-29 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

Thistype of forget may only be used in the newest vocabulary. If that
vocabulary is still the IBCL vocabulary, the user variable fence contains a
pointer to aword below which forgetting is disabled, to protect you from
forgetting the system.

Y ou can move fence by entering thisline:
new-fence-limit fence!

This raises the fence beyond which forgetting is not allowed, and prevents
accidental forgetting of newly-defined function words.

Control

IBCL contains high-level control structures similar to those found in
BASIC and Pascal. These perform conditional execution and repeated
execution of word blocks. They also eliminate the need for any program
position labels such as BASIC's line numbers.

Words that control the flow of program execution are used only within
colon definitions. They are immediate words which execute when the colon
definition isfirst compiled. Most cause branches or conditional branchesto
be compiled into the definition list of the word being compiled, but a few
merely save an address and identifier on the stack for use by alater control
word.

The branch compiled into the definition list may be a conditional Obranch or
an unconditional branch. The Obranch isignored if the top word on the
stack isnonzero. In either case, the branch fills two words in the definition
list. Thefirst, aswith any compiled word, is a pointer to the code field
address of the word, in this case branch or Obranch. The second word isthe
byte offset of the destination relative to the second word. The conditional
branch always uses and drops the top stack word.

Conditional Execution

Theif true-phrase el se fal se-phrase then construct is used within colon
definitions to enable a number on the stack to control whether or not groups
of words within the definition are executed. A phraseisany list of words
normally allowed in a colon definition. |f conditional or loop constructs are
included, they must be completed within the phrase. Nesting islimited only
by stack size; overlapping is forbidden.

GPIB-CT IBCL Reference Manual 2-30 © National Instruments Corp.



Chapter 2 IBCL Reference

The following example will display a game score along with one of two
messages (the new score is on the stack):

0 variable high-score

:.score dup high-score @ >
if dup high-score! ." new high score!!!" .
else." your scoreis” .
" high scoreis" high-score @ . then ;

When .score is executed, your latest score should be at the top of the stack.
It is duplicated and compared with the old high score. The comparison sets
the top number on the stack to O (FALSE) if your score is not greater than
the old high score. It sets the top number to a nonzero (TRUE) value
otherwise. If the number is O, execution will branch to the words after the
else. If it isnonzero, execution will continue after the if, then skip the
words between else and then. The true part sets the new high score, then
displays new high score!!! and the new score. The false part displays your
scoreis nnnn high scoreis nnnnn.

else and the words between it and then may be omitted, in which case no
action istaken if the condition isfalse.

The if compiles a Obranch and puts the address of its destination field on the
stack. It then places an identifier on the stack to signal its presence to else
or then. The else checksfor anif identifier and issues an error message if it
isn't found. else next compiles an unconditional branch. It calculatesthe
offset from the address on the stack to the word after the branch and stores
that offset into the original Obranch. The address of the destination field of
the branch is placed on the stack, followed by another copy of the identifier.
The then aborts with an error message if the identifier isn't found, but does
not need to know whether it follows an if or an else. It calculates the offset
from the address on the stack to the next free word and stores it into the
previous branch.

L oops

L oop constructing words are similar to the conditional execution wordsin
that they compile branches and leave addresses on the stack. As described
in the previous discussion, a phrase may be any list of words normally
allowed in acolon definition. 1f conditional or loop constructs are included,
they must be completed within the phrase. Nesting islimited only by stack
size; overlapping is forbidden.

© National Instruments Corp. 2-31 GPIB-CT IBCL Reference Manual



IBCL Reference Chapter 2

There are three types of conditional loops—begin-again, begin-until, and
begin-while-repeat.

The loop begin phrase again, isreally an unconditional infinite loop since it
has no exit. The only legal exit would be an abort within the phrase or
within aword in the phrase.

In the conditional loop, begin phrase until, until functions like if except that
it compiles a backward branch to the beginning of the phrase. The phrase
executes repeatedly until the top word on the stack is TRUE (nonzero). The
phrase always executes at least once.

In begin test-phrase while phrase repeat, after the test phrase is executed,
the top word on the stack is examined. If it is TRUE (nonzero), the phrase
is executed and control branches back to the test-phrase. If it isFALSE
(zero), the loop is exited and execution continues after the repeat. The
second phrase will not execute even once if the initial test-phraseisfalse.

There are two types of do loops-do-loop and do-+loop.

In the loop limit start do phrase loop, the do |oop starts execution with an
index set to start and increments that index by one for every encounter of
loop. The phrase is executed repeatedly until the index equals or exceeds
the limit using asigned comparison. The limit and start values are taken
from the data stack at execution time. While executing the loop, the index
ison top of the return stack with the limit under it. Y ou may use the return
stack within the phrase, but its condition at the end of the phrase should be
the same as at the beginning. The data stack is not used other than on entry.

Thelimit start do phrase number +loop is similar to the first do loop, but
the +loop takes a signed number from the data stack and adds this to the
index instead of incrementing the index by one. If the increment is positive,
termination isthe same as for loop. If the increment is negative, execution
repeats until the index is lessthan the limit.

GPIB-CT IBCL Reference Manual 2-32 © National Instruments Corp.



Chapter 2 IBCL Reference
In addition to the loop control words just mentioned, there are afew words
that are designed to help loop processing:

e iisused within aloop to place the current loop index onto the top
of the stack. For example, the following definition:

:display 100 doi c@ u. loop ;
outputs to the serial port the bytesin memory locations 0 to 9.
e leaveisused within aloop to set the index equal to the limit, thus
causing an exit of the loop after the current loop finishes. Thisis

useful if a certain condition became TRUE during execution of a
loop.

© National Instruments Corp. 2-33 GPIB-CT IBCL Reference Manual



Chapter 3
GPIB Extensons

This chapter describes the IBCL extensions you can use to directly operate
and control the GPIB. These functions are in aphabetical order and are
formatted so that you can easily reference them.

The following discussion of the GPIB-related extensions contains
referencesto the constantsi bent i berr ,and i bst a. These constants
refer to memory locations within the IBCL operating system which contain
information pertaining to GPIB actions.

i bent storesthe number of bytes transferred from or received by the
GPIB-CT during brd,rd,bwt ,wt ,or crd. i berr storesflagsto
indicate certain error conditions that may have occurred. i bst a stores
information about the current state of the GPIB system to which the GPIB-
CT isattached. For more information about what each bit representsin

i bst a and what each value representsin i ber r , refer to the st at
function description later in this section.

To aid in the use of these variables, you can define IBCL constantsin your
dictionary by typing the following lines:

4 constant ibcnt
2 constant iberr
0 constant ibsta

When you need to use the information in these locations, type the following
lines:

ibcnt @
i berr c@
ibsta @

This puts the information stored at these locations onto the stack. Notice
thati berr isan8-bit value and i bent andi bst a are 16-bit values.

Another way to obtain the information stored in i bst a andi bcnt isto

usethe IBCL command st at , which puts these two values on the stack for
you.

© National Instruments Corp. 31 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

brd

brd:
Syntax:

Remarks:

Read Datafrom GPIB

buf cnt brd

buf isthe address of the buffer to use.

cnt specifies the number of bytes to read from the GPIB.

br d attemptsto read cnt bytes of datafrom a GPIB device
that is assumed to already be properly initialized and
addressed.

If the GPIB-CT GPIB port is CIC, crmd must be called prior to
br d to address a device to talk and the GPIB-CT GPIB port to
listen. If the GPIB-CT GPIB port is not CIC, the device on
the GPIB that is the CIC must perform the addressing.

If the GPIB-CT GPIB port is Active Controller, the GPIB-CT
GPIB port isfirst placed in Standby Controller state with ATN
off and remains there after the read operation is completed.

An EADR error resultsif the GPIB-CT GPIB port is CIC but
has not been addressed to listen with cnrd. An EABO error
results if the GPIB-CT GPIB port is not CIC and is not
addressed to listen within the time limit. An EABO error also
resultsif the device that isto talk is not addressed and/or the
operation does not complete for whatever reason within the
time limit.

GPIB-CT IBCL Reference Manual 3-2 © National Instruments Corp.



Chapter 3 GPIB Extensions

br d terminates on any of the following events:
¢ Whencnt byteshave been read
e Error isdetected
e Timelimitisexceeded
¢ END message is detected
e eos character is detected (if this option is enabled)
e DeviceClear (DCL) or Selected Device Clear (SDC)
command is received from another device whichiis
CIC
When br d returns, i bcnt  contains the actual number of data
bytes read from the device. A short count can occur on any of
the previous events but the first.
SeeAlso:  cnd, eos.
Example:
1. Toread 56 bytes of datafrom adevice at talk address 0x4C (ASCII L)

and then unaddress it (the GPIB-CT GPIB port is at listen address 0x20
or ASCII blank):

" 2L " cmd ( address tal ker and |istener)
buf 56 brd ( read data)
" ?" cmd ( unaddress talker)

(

and |istener)

© National Instruments Corp. 3-3 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

bwrt

bwrt :
Syntax:

Remarks:

Write Data to GPIB

buf cnt bwt

buf isthe address of the buffer to use.

cnt specifies the number of bytes to be sent over the GPIB.

bwrt attemptsto writecnt bytes of datato a GPIB device
that is assumed to already be properly initialized and
addressed.

If the GPIB-CT GPIB port is CIC, crmd must be called prior to
bwrt to addressthe device to listen and the GPIB-CT GPIB
port to talk. Otherwise, the device on the GPIB that isthe CIC
must perform the addressing.

If the GPIB-CT GPIB port is Active Controller, the GPIB-CT
GPIB port isfirst placed in Standby Controller state with ATN
off and remains there after the write operation is compl eted.

An EADR error resultsif the GPIB-CT GPIB port is CIC but
has not been addressed to talk with cnrd. An EABO error
results if the GPIB-CT GPIB port is not CIC and is not
addressed to talk within the time limit. An EABO error also
results if the operation does not complete for whatever reason
within the time limit.

GPIB-CT IBCL Reference Manual 3-4 © National Instruments Corp.



Chapter 3 GPIB Extensions

bwrt terminates on any of the following events:
¢ Whencnt bytes have been written
e Errorisdetected
e Timelimitis exceeded

¢ When no listeners are detected after the operation
begins (the GPIB-CT reports ENOL in this case)

¢ DeviceClear (DCL) or Selected Device Clear (SDC)
command is received from another device whichis
CiCc

Whenbwrt returns, i bent contains the actual number of
data bytes written. A short count can occur on any of the
previous events but the first.

SeeAlso: cmd, eos.
Example:
1. Towrite 10 instruction bytesto adevice at listen address 0x35 (ASCI|

5) and then unaddressiit (the talk address of the GPIB-CT GPIB port is
0x40 or ASCIl @):

" ?2@" cmd ( UNL MTA MLA )
" F3RLX5P2Q0" bwrt ( send instruction bytes )
_?" cmd ( unaddress talker )
(

and |istener )

NOTE: The double quote (") places text in memory up to the closing
guote or decimal 65 characters. " also leaves the address and string
length on the stack and isthus ideal for use with bwr t . For instance,
" abc" leavesthe address of the string and a count of 3 on the stack.

© National Instruments Corp. 35 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

cac
cac: Become Active Controller
Syntax: VvV cac

Remarks: If v isnon-zero, the GPIB-CT takes control synchronously
with respect to data transfer operations; otherwise, the GPIB-
CT takes control immediately (and possibly asynchronously).

It is generally not necessary to use the cac word. Words such
as cnd andr pp, which require that the GPIB-CT take
control, do so automatically.

To take control synchronously, the GPIB-CT waits before
asserting the ATN signal so that data being transferred on the
GPIB will not be corrupted. If adatahandshakeisin
progress, the take control action is postponed until the
handshake is complete; if ahandshakeis not in progress, the
take control action is done immediately. Synchronous take
control is not guaranteed if ar d or wt operation completed
with atimeout or error.
Asynchronous take control should be used in situations where
it appears to be impossible to gain control synchronously (e.g.,
after atimeout error).
The ECIC error resultsif the GPIB-CT isnot CIC.

SeeAlso: gts,sic.

Examples:

1. Totake control immediately without regard to any data handshake in
progress:

0 cac
2. Totake control synchronously and assert ATN:

1 cac

GPIB-CT IBCL Reference Manual 3-6 © National Instruments Corp.



Chapter 3 GPIB Extensions

caddr

caddr: Change GPIB Address of GPIB-CT

Syntax: addr caddr

Remarks: addr isavalid GPIB address.
caddr isused to change the GPIB address of the GPIB-CT.
The new address will remain in effect until caddr iscaled

again or the GPIB-CT isturned off.

The power-on default is zero with secondary addressing
disabled.

Examples:

1. To changethe GPIB address of the GPIB-CT to 5 with secondary
addressing disabled:

5 caddr

2. To change the GPIB address of the GPIB-CT to 7 with a secondary
address of 8:

7 8 hex 100 * + 8000 + caddr

© National Instruments Corp. 37 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

dr

clr: Send Selected Device Clear (SDC)
Syntax: addr clr
Remarks: addr isavalid GPIB address.
cl r sends the selected device clear (SDC) message. SDC
reinitializes all device functions. cl r sendsthe following
commands:
e Unlisten (UNL)
e Listen address of the device
e Secondary address of the device if applicable
e Selected Device Clear (SDC)
e Unlisten (UNL)
If thisisthefirst function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.
If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.
Example:

1. Toclear the device at GPIB address 5:

5c¢clr

GPIB-CT IBCL Reference Manual 3-8 © National Instruments Corp.



Chapter 3 GPIB Extensions

cmd

cnd: Send Command Message to GPIB
Syntax: buf cnt cmd

Remarks: buf isthe addressof abuffer containing the commands to be
sent over the GPIB.

cnt specifies the number of bytes to be sent over the GPIB.
cmd isused to transmit interface messages (commands) over
the GPIB. These commands include devicetalk and listen
addresses, secondary addresses, serial and parallel poll
configuration messages, and device clear and trigger
instructions.
cmd is not used to transmit programming instructions to
devices, programming instructions and other device dependent
information are transmitted withbrd, bwt ,rd,and wrt .
cnd terminates on any of the following events:

¢ All commands are successfully transferred

e Error isdetected

e Timelimitis exceeded

e Take Control (TCT) command is sent

¢ Interface Clear (IFC) message isreceived from the
System Controller (not GPIB-CT)

Whencnd returns, i bent contains the actual number of
command bytes sent.

An ECIC error resultsif the GPIB-CT GPIB port isnot CIC.
If the GPIB-CT GPIB port is not Active Controller, it asserts
ATN prior to sending the command bytes. The GPIB-CT
GPIB port remains Active Controller afterward.

© National Instruments Corp. 39 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

Examples:

In the following examples, GPIB commands and addresses are coded as
printable ASCII characters. When the hex values to be sent over the GPIB
correspond to printable ASCII characters, thisis the simplest means of
specifying the values. Appendix A contains conversions of hex valuesto
ASCII characters.

1 Tounaddressall Listeners with the Unlisten command (ASCII ?) and
address a Talker at 0x46 (ASCII F) and aListener at 0x31 (ASCII 1):

" ?F1" cmd
NOTE: The double quote (") places text in memory up to the closing
guote or decimal 65 characters. " also leaves the address and string
length on the stack and isthusideal for use with cnd. For instance,
" abc" leavesthe address of the string and a count of 3 on the stack.

2. Same as Example 1 except the Listener has a secondary address of
Ox6E (ASCII n):

" ?F1n" cmd

GPIB-CT IBCL Reference Manual 3-10 © National Instruments Corp.



Chapter 3

GPIB Extensions

aos
€o0s: Change/Disable GPIB EOS Termination Mode
Syntax: val eos
Remarks: val specifiesthe eos character and the data transfer
termination method according to Table 3-1.
The assignment made by this function remainsin effect until
eos iscaled again or the GPIB-CT isturned off. By default,
no eos modes are enabled.
Table 3-1. Data Transfer Termination Method
M ethod Valueof val *
Bytel Byte0
A. Terminate read when eosis detected REOS €0S
(brd andrd) 04 hex
B. Send END when eosiswritten XEOS €0s
(bwt andwrt) 08 hex
C. Compareal 8 bits of eos byte rather BIN €0S
than low 7 bits (all reads and writes) 10 hex

* Byte O istheleast significant byte.

See Also:

Methods A and C determine how read operations terminate. If
Method A aloneis chosen, reads terminate when the low 7 bits
of the byte that is read match the low 7 bits of the eos
character. I1f Methods A and C are chosen, afull 8-bit
comparison is used.

Methods B and C together determine when write operations
send the END message. If Method B aoneis chosen, the
END message is sent automatically when the low 7 bits of any
byte match the low 7 bits of the eos character. If Methods B
and C are chosen, afull 8-bit comparison isused. The eos
character should always be the last byte sent.

eot .

© National Instruments Corp. 3-11 GPIB-CT IBCL Reference Manual




GPIB Extensions

Examples:

Chapter 3

1. Tosend END when the linefeed character is written for operations

involving device dvm:

80A eos

31 buf c! ( data bytes to be witten)
32 buf 1+ c! ( are placed in buffer with)
33 buf 2+ c! ( ECS character as |last byte )
OA buf 3 + c!

dvm buf 4 wt

2. Toprogram device devl to terminate aread on detection of the
linefeed character that is expected to be received within 512 bytes:

40A eos
devl buf 512 rd

( The END bit in status word is set if the )
( read term nated on the eos character with )
( the actual number of bytes received )

( contained in ibcnt.)
3. Todisable EOS termination:

0 eos

GPIB-CT IBCL Reference Manual 3-12

© National Instruments Corp.



Chapter 3

eot
eot :
Syntax:

Remarks:

Examples:

GPIB Extensions

End of Transfer Mode
VvV eot

If v isnon-zero, the GPIB-CT automatically sends the END
message with the last byte of eachwr t . If v iszero, END is
not sent. The power-on default is 1.

eot isused to change how the GPIB-CT terminates GPIB
writes. Using eot , you tell the GPIB-CT to automatically
send or not send the GPIB END message with the last byte
written to the GPIB.

The assignment made by eot remainsin effect until eot is
caled again or the GPIB-CT isturned off.

The GPIB-CT sends the END message by asserting the GPIB
EQI signa during the last byte of a datatransfer.

1. Todisable END termination:

0 eot

2. Toenable END termination:

1 eot

© National Instruments Corp. 3-13 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

ots
gts:
Syntax:

Remarks:

See Also:

Example:

Go from Active Controller to Standby
v gts
v isthetype of go-to-standby.

gt s causesthe GPIB-CT to go to the Controller Standby state
and to unassert the ATN signal if it isthe Active Controller.

gt s permits GPIB devicesto transfer data without the
GPIB-CT being a party to the transfer.

Itisgeneraly not necessary touse gt s. Functionssuchasrd
and wrt , which require that the GPIB-CT go to standby, do so
automaticaly.

If v isnon-zero, GPIB-CT shadows data transfer handshakes
as an Acceptor and when the END message is detected,
GPIB-CT enters a Not Ready For Data (NRFD) handshake
holdoff state on the GPIB. If v iszero, no shadow handshake
or holdoff is done.

If the shadow handshake option is activated, the GPIB-CT
participates in data handshake as an Acceptor without actually
reading the data. It monitors the transfers for the END
message and holds off subsequent transfers. This mechanism
allowsthe GPIB-CT to take control synchronously on a
subseguent operation such as cnd or r pp.

The ECIC error results if the GPIB-CT isnot CIC.

cac,cnd,wait .

1. Toturnthe ATN line off:

0 gts

GPIB-CT IBCL Reference Manual 3-14 © National Instruments Corp.



Chapter 3

ist:
Syntax:

Remarks:

See Also:

Examples:

GPIB Extensions

Set or Clear Individual STatus Bit (IST)
vV ist

v isthe sense of the IST bit. If v isnon-zero, theindividual
status hitisset. If v iszero, the bitis cleared. The power-on
default isthat the individual status bit is cleared.

i st isused when the GPIB-CT participatesin a parallel poll
that is conducted by another device that is the Active
Controller. The Active Controller conducts a parallel poll by
asserting the EOIl and ATN signals which send the | dentify
(IDY) message. While this message is active, each device that
has been configured to participate in the poll responds by
asserting a predetermined GPIB data line either true or false,
depending on the value of itslocal IST bit. The GPIB-CT, for
example, can be assigned to drive the DIO3 data line true if
IST=1 and false if IST=0; conversely, it can be assigned to
drive DIO3 trueif IST=0 and false if IST=1.

The relationship between the value of IST, thelinethat is
driven, and the sense at which the line is driven is determined
by the Parallel Poll Enable (PPE) message in effect for each
device. The GPIB-CT receives this message via a command
from the Active Controller. Once the PPE messageis
executed, i st changesthe sense at which thelineisdriven
during the parallel poll, and in this fashion the GPIB-CT can
convey a 1-hit, device dependent message to the Controller.

ppc.,rpp.

1. Tosettheindividua status bit:

1 ist

2. Toclear theindividua status bit:

0 ist

© National Instruments Corp. 3-15 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

loc

| oc: Goto Local Mode

Syntax: addr | oc

Remarks: addr isavalid GPIB address.
| oc isused to move devices temporarily from aremote
program mode to alocal mode. A device enters remote mode
when the REN line is asserted and the device detectsits listen
address.

| oc placestheindicated device in local mode by sending the
command sequence;

e Unlisten (UNL)

e Listen address of the device

e Secondary address of the device if applicable

e GoToloca (GTL)

e Unlisten (UNL)
If thisisthe first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.
If you passed control to some other GPIB device, control must
be passed back to you or you must send |FC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.

Examples:

1. Toreturn device plotter to local state:

plotter |oc

GPIB-CT IBCL Reference Manual 3-16 © National Instruments Corp.



Chapter 3

onl

onl :
Syntax:

Remarks:

Examples:

GPIB Extensions

Place Device Online or Offline
v onl
v isatrue/false value indicating online/offline.

onl isused to disable communications between the GPIB-CT
and the GPIB.

NOTE: Unlikethe onl inthe GPIB-CT default operating
system, IBCL onl does not restore the GPIB-CT operating
parameters. To reset your GPIB-CT to its default
characteristics, you must exit to the GPIB-CT default
operating system and call theonl function. Refer to your
GPIB-CT User Manual for a description of the GPIB-CT onl
function and the default characteristics.

If v isnon-zero, the GPIB-CT placesitself onling; if zero, the
GPIB-CT placesitsdf offline. By default, the GPIB-CT starts
up online, isin the Idle Controller state, and configures itself
to be the System Controller.

Placing the GPIB-CT offline may be thought of as
disconnecting its GPIB cable from the other GPIB devices.

Placing the GPIB-CT online allows the GPIB-CT to
communicate over the GPIB.

1. Toput the GPIB-CT online:

1 onl

2. To put the GPIB-CT offline to prevent it from communicating on the

GPIB:

0 onl

© National Instruments Corp. 3-17 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

pct
pct :
Syntax:

Remarks:

Example:

Pass Control
addr pct
addr isavalid GPIB address.
pct passes CIC authority to the specified device. The
GPIB-CT GPIB port automatically goesto anidle state. The
function assumes that the device has Controller capability.
pct sends the following commands:

e Tak address of the device

e Secondary address of the device, if applicable

e Take Control (TCT)

If pct iscaled and the GPIB-CT isnot CIC, the ECIC error
iS posted.

1. Topasscontrol to the device at GPIB address 3:

3 pct

GPIB-CT IBCL Reference Manual 3-18 © National Instruments Corp.



Chapter 3

ppc

ppc:
Syntax:

Remarks:

GPIB Extensions

Parallel Poll Configure

addr v ppc

addr isavalid GPIB address.

v isavalid parallel poll enable/disable command.

ppc enables or disables the device from responding to parallel
polls.

ppc sends the following commands:
*  Unlisten (UNL)
e Listen address of the device
e Secondary address of the device, if applicable
e Paradld Poll Configure (PPC)
e Paradle Poll Enable (PPE) or Disable (PPD)
e Unlisten (UNL)

Each of the 16 PPE messages specifies the GPIB dataline
(D101 through DIO8) and sense (one or zero) that the device
must use when responding to the Identify (IDY) message
during aparallel poll. The assigned message is interpreted by
the device along with the current value of the individual status
(IST) bit to determine if the selected line is driven true or
false. For example, if PPE=0x64, DIO5 isdriven trueif IST=0
and falseif IST=1. Andif PPE=0x68, DIOL isdriven trueif
IST=1 and falseif IST=0. Any PPD message cancels the PPE
message in effect.

If thisisthe first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.

© National Instruments Corp. 3-19 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.

Which PPE and PPD messages are sent and the meaning of a
particular parallel poll response are all system dependent
protocol matters to be determined by the user.

The 16 valid PPE messages and the 16 valid PPD messages
arelisted in Appendix A.

SeeAlso:  rpp,ist.
Example:

1. To configure device dvmto respond to a parallel poll by sending data
line DIO3 trueif 1ST=0:

dvm 62 ppc

2. To configure device dvmto respond to aparallel poll by sending data
line DIO1 trueif IST=1.

dvm 68 ppc
3. Tocancel the paralld poll configuration of device dvm:

dvm 70 ppc

GPIB-CT IBCL Reference Manual 3-20 © National Instruments Corp.



Chapter 3

rd

rd:
Syntax:

Remarks:

GPIB Extensions

Read Datafrom GPIB
addr buf cnt rd
addr isavalid GPIB address.

buf isthe address of the buffer to use (buf might have been
created using al | ot ).

cnt specifies the number of bytes to read from the GPIB.

rd attemptstoread cnt bytes of datafrom a GPIB device.
The following steps are performed:

1 UNL issent.

2. Thedeviceisaddressed to talk and the GPIB-CT
GPIB port to listen, if not already addressed to do so.

3. The GPIB-CT reads the data from the device.

An EABO error results if the operation does not complete for
whatever reason within the time limits.

rd operation terminates on any of the following events:
e Whencnt byteshave been read
e Errorisdetected
e Timelimitis exceeded
¢ END message is detected
e eoscharacter is detected (if this option is enabled)
¢ DeviceClear (DCL) or Selected Device Clear (SDC)

command is received from another device which is
CciCc

© National Instruments Corp. 3-21 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

Whenr d returns, i bcnt contains the actual number of data
bytes read from the device. A short count can occur on any of
the previous events but the first.

If thisisthefirst function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.
If you passed control to some other GPIB device, control must
be passed back to you or you must send |FC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.

Example:

1. Toread hex 56 bytes of datafrom device tape:

tape buf 56 rd

GPIB-CT IBCL Reference Manual 3-22 © National Instruments Corp.



Chapter 3

rpp
r pp:
Syntax:

Remarks:

See Also:

Example:

GPIB Extensions

Conduct a Parallel Poll

rpp

r pp conducts aparallel poll of previously configured devices
by sending the IDY message (ATN and EOI both asserted).

When done, the parallel poll response byteis passed back as
the top element on the stack. The program should also check
i berr to determineif the response byteisvalid.

If thisisthe first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.

i st,ppc,ppu.

1. Toremotely configure a device at listen address 0x23 to respond
positively on DIO3 if itsindividual status bit is 1, and then parallel poll
all configured devices:

3 6a ppc configure device at )
listen address 3)
rpp parallel poll all )

configured devices )
response passed back on )
stack )

ANASN AN AN A~

© National Instruments Corp. 3-23 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

rc

rsc:
Syntax:

Remarks:

Example:

Request or Release System Control (SC)
V rsc
v specifies request or release system control.

If v is non-zero, functions requiring System Controller
capability are subsequently allowed. If v iszero, functions
requiring System Controller capability are disallowed.

r sc isused to enable or disable the capability of the GPIB-
CT to send the Interface Clear (IFC) and Remote Enable
(REN) messages to GPIB devicesusing thesi ¢ andsre
functions. The GPIB-CT GPIB port must not be System
Controller to respond to Interface Clear sent by another
Controller.

In most applications, the GPIB-CT will aways be the System
Controller. In other applications, the GPIB-CT will never be
the System Controller. In either case, r sc isused only if the
GPIB-CT isnot going to be System Controller for the
duration of the program execution. While the IEEE 488
standard does not specifically allow schemesin which System
Control can be passed dynamically from one device to
another, r sc would be used in such a scheme.

1. Torequest to be System Controller if the GPIB-CT GPIB port is not
currently so designated:

1 rsc

GPIB-CT IBCL Reference Manual 3-24 © National Instruments Corp.



Chapter 3 GPIB Extensions

Y

rsp: Conduct a Seria Pall

Syntax: addr rsp

Remarks: addr isavalid GPIB address.

rsp isused to serialy poll one device and obtain its status
byte. If the 0x40 bit of the responseis set, the status response
ispositive, i.e., the deviceis requesting service. Beforer sp
completes, all devices are unaddressed.

Upon completion, the serial poll response is returned in the
low-order 8 bits of the word on the top of the stack. If the
device did not respond within the alotted time a-1 will be
returned on the top of the stack.

The interpretation of the response, other than the RQS hit, is
device-specific. For example, the polled device might set a
particular bit in the response byte to indicate that it has datato
transfer, and another bit to indicate a need for reprogramming.
Consult the manufacturer's documentation for the device for
interpretation of the response byte.

If thisisthe first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.

© National Instruments Corp. 3-25 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

rsp sendsthe following commands:
e UNL (Unlisten)
*  SPE (Seria Poll Enable)
e GPIB-CT listen address
e Tak address of the device
¢ Read inresponse byte
*  SPD (Serial Pall Disable)
e UNL (Unlisten)
«  UNT (Untalk)
ATN and REN remain asserted after the function call.
Example:
1. Toobtain the Seria Poll response byte from device tape:

tape rsp

GPIB-CT IBCL Reference Manual 3-26 © National Instruments Corp.



Chapter 3

rsv

rsv:

Syntax:

Remarks:

See Also:

Examples:

GPIB Extensions

Request Service and/or Set Serial Poll Status Byte
val rsv
val specifiesthe seria poll response byte.

If the Ox40 bitissetinval , the GPIB-CT additionally
requests service from the Controller by asserting the GPIB
SRQ line.

r sv isused to request service from the Controller using the
Service Request (SRQ) signal and to provide a system
dependent status byte when the Controller serially pollsthe
GPIB-CT.

Itisnot an error to call r sv when the GPIB-CT is CIC,
although this usage makes sense only if control will be passed
later to another device. In thiscase, the call updates the status
byte, but the SRQ signal is asserted only if the 0x40 bit is set
and only when control is passed.

rsp.

1. To set the Seria Poll status byte to 0x41, which simultaneously
requests service from an external CIC:

41 rsv

2. To stop requesting service (unassert SRQ):

0 rsv

3. To change the status byte to 1 without requesting service:

1 rsv

© National Instruments Corp. 3-27 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

sc
sic:
Syntax:

Remarks:

See Also:

Example:

Send Interface Clear (IFC)
sic

si ¢ causesthe GPIB-CT to assert the IFC signal for at least
100 psec, provided the GPIB-CT has System Controller
authority. Thisaction initializes the GPIB and makes the
GPIB-CT GPIB port CIC. si ¢ isgenerally used when you
want to become CIC or clear abus fault condition.

The IFC signal resets only the GPIB interface functions of bus
devices and is not intended to reset interna device functions.
Device functions are reset with the Device Clear (DCL) and
Selected Device Clear (SDC) commands. To determine the
effect of these messages, consult the device documentation.

The GPIB-CT records the ESAC error if you have disabled its
System Controller capability with ther sc function.

rsc.

1 Toinitialize the GPIB and become CIC at the beginning of a program:

sic

GPIB-CT IBCL Reference Manual 3-28 © National Instruments Corp.



Chapter 3 GPIB Extensions

Se
sre: Set or Clear Remote Enable (REN)
Syntax: vV sre

Remarks: v specifies set or clear.

sr e turnsthe REN signal on and off. If v isnon-zero, the
Remote Enable (REN) signdl isasserted. If v iszero, the
signal isunasserted. REN is used by devices to select between
local and remote modes of operation. REN enables the remote
mode. A device does not actually enter remote mode until it
receives its listen address.

The ESAC error occurs if the GPIB-CT is not System
Controller.

SeeAlso: cmd,loc,rsc,sic.
Examples:
1. Toplaceadevice at listen address 0x23 (ASCI| #) into remote mode:

1 sre ( set RENto true )
" # cmd ( MA)

2. Toexcludethelocal ability of the device, send the Local Lockout
command (0x11), or include it in the command string in Example 1:

11 buf c! ( send LLO)

buf 1 cnd

or
1 sre ( REN true )
23 buf c! ( MLA LLO)
11 buf 1+ c!
buf 2 cnd

3. Toreturn al devicesto loca mode:

0 sre ( set RENto false )

© National Instruments Corp. 3-29 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

dat

stat: Return GPIB-CT status
Syntax: st at

Remarks: st at isusedto obtain the status of the GPIB-CT to seeif
certain conditions are currently present. Use st at most often
to verify if the previous operation resulted in an error.

Use stat frequently in the early stages of program devel opment
when your device's responses are likely to be unpredictable.

Status represents a combination of GPIB-CT conditions.
Internally in the GPIB-CT, statusis stored as a 16-bit integer.
Each bit in the integer represents a single condition. A bit
value of 1 indicates that the corresponding condition isin
effect; abit value of zero indicates that the condition is not in
effect. Since more than one GPIB-CT condition may exist at
one time, more than one bit may be set in status. The highest
order hit of status, also called the sign hit, is set when the
GPIB-CT detects a GPIB error. Consequently, when statusis
negative, an error condition exists, and when statusis positive,
no error condition exists. Table 3-2 lists the indication of each
bit in the status.

The status is returned on the stack astwo words. The top
number represents the 16-hit status of the GPIB-CT. The
second number isthe count of bytes last transferred using
brd,bwt ,rd andwt .

GPIB-CT IBCL Reference Manual 3-30 © National Instruments Corp.



Chapter 3 GPIB Extensions

Table 3-2. GPIB Status Conditions

Numeric Symbolic

Value (n) Value(s) Description Bit

-32768 ERR Error detected 15

16384 TIMO Timeout 14

8192 END EOI or EOS detected 13

4096 SRQ SRQ detected while CIC 12

2048 - Reserved 11

1024 - Reserved 10

512 - Reserved 9

256 CMPL Operation completed 8

128 LOK Lockout state 7

64 REM Remote state 6

32 CIC Controller-In-Charge 5

16 ATN Attention asserted 4

8 TACS Talker active 3

4 LACS Listener active 2

2 DTAS Devicetrigger state 1

1 DCAS Device clear state 0

See Also:  Appendix B inyour GPIB-CT User Manual for a detailed
description of the conditions under which each bit in statusis set or cleared.

© National Instruments Corp. 3-31 GPIB-CT IBCL Reference Manual



Chapter 3

Change or Disable Timeout Limit

GPIB Extensions

tmo

t no:

Syntax: val tno
Remarks:

val specifiesthe timeout limit, as shown in Table 3-3.

Table 3-3. Timeout Limit Vaues

M nemonic val Minimum Timeout
TNONE 0 disabled
T10us 1 10 psec
T30us 2 30 psec
T100us 3 100 psec
T300us 4 300 psec
Tlms 5 1 msec
T3ms 6 3 msec
T10ms 7 10 msec
T30ms 8 30 msec
T100ms 9 100 msec
T300ms 10 300 msec
Tls 11 1 sec
T3s 12 3 s
T10s 13 10 s
T30s 14 30 s
T100s 15 100 sec
T300s 16 300 sec
T1000s 17 1000 s

Notice that if thefield value is zero, no limit isin effect.

Thetime limit is an escape mechanism used to exit gracefully
from a hung bus condition. Sincethe GPIB isan
asynchronous bus, read and write operations can be held up

indefinitely.

GPIB-CT IBCL Reference Manual 3-32

© National Instruments Corp.




Chapter 3 GPIB Extensions

Examples:

1 Tochangethetimelimit for device level 1/O operations to 300 pisec:
4 tno

2. To perform I/O operations with no timeout in effect:

0 tno

© National Instruments Corp. 3-33 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

trg
trg:
Syntax:

Remarks:

Example:

Send Device Trigger
addr trg
addr isavalid GPIB address.

t r g addresses and triggers the specified device, then
unaddresses all devices on the GPIB.

t r g sendsthe following commands:

e Unlisten (UNL)

e Listen address of the device

e Secondary address of the device, if applicable

¢ Group Execute Trigger (GET)

e Unlisten (UNL)
If thisisthe first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.
If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.

The response to atrigger is device dependent.

1 Totrigger deviceanal yzer :

anal yzer trg

GPIB-CT IBCL Reference Manual 3-34 © National Instruments Corp.



Chapter 3 GPIB Extensions

wait
wait: Wait for Selected Events
Syntax: mask wait

Remarks: Themask bit is set to wait for the corresponding event to
occur.

wai t isused to monitor the events selected in nask and to
delay processing until any of them occur. These events and
bit assignments are shown in Table 3-4.

Table 3-4. Wait Mask Layout

Decimal | Mnemonic Description Hex Bit

Value Value
- - Reserved - 15
16384 TIMO Timeout 4000 14
8192 END EOI or EDS detected 2000 13
4096 SRQI SRQ detected while CIC | 1000 12
- - Reserved - 11
- - Reserved - 10
- - Reserved - 9
- - Reserved - 8
128 LOK L ockout state 80 7
64 REM Remote state 40 6
32 CIC Controller-In-Charge 20 5
16 ATN Attention asserted 10 4
8 TACS Talker active 8 3
4 LACS Listener active 4 2
2 DTAS Devicetrigger state 2 1
1 DCAS Device clear state 1 0

If mask = 0, thefunction returnsimmediately. Thisis used
to report the current device or GPIB-CT GPIB port state.

If the TIMO bitis 0 or thetime limit is set to 0, timeouts are
disabled. Disabling timeouts should be done only wheniitis
certain the selected event will occur; otherwise the GPIB-CT
waits indefinitely for the event to occur.

© National Instruments Corp. 3-35 GPIB-CT IBCL Reference Manual




GPIB Extensions Chapter 3
All activity on the GPIB-CT GPIB port is suspended until the
event occurs.

SeeAlso:  stat,tno.

Examples:

1. Towait for aservice request or atimeout:

5000 wai t
2. Toupdate the status:
0 wait
3. Towaitindefinitely until control is passed from another CIC:
20 wait
4. Towait indefinitely until addressed to talk or listen by another CIC:

C wait

GPIB-CT IBCL Reference Manual 3-36 © National Instruments Corp.



Chapter 3 GPIB Extensions

wrt

wt: Write Datato GPIB
Syntax: addr buf cnt wt
Remarks: addr isavalid GPIB address.

buf isthe address of the buffer that contains the data to be
sent over the GPIB.

cnt specifies the number of bytes to be sent over the GPIB.

wt attemptstowritecnt bytes of datato the specified GPIB
device. Thefollowing steps are performed:

1 UNL issent.

2. Thedeviceisaddressed to listen and the GPIB-CT
GPIB port to talk, if not already addressed to do so.

3. The GPIB-CT writes the data to the device.

An EABO error resultsif the operation does not complete
within the time limit.

wrt terminates on any of the following events:
*  Whencnt bytes have been written
e Error is detected
e Timelimitis exceeded

¢ When no listeners are detected after the operation
begins (the GPIB-CT reports ENOL in this case)

¢ DeviceClear (DCL) or Selected Device Clear (SDC)

command is received from another device which is
CiCc

© National Instruments Corp. 3-37 GPIB-CT IBCL Reference Manual



GPIB Extensions Chapter 3

Whenwr t returns, i bcnt contains the actual number of data
byteswritten. A short count can occur on any of the previous
events but the first.

If thisisthefirst function you call that requires GPIB
Controller capability, and you have not disabled System
Controller capability with r sc, the GPIB-CT sends Interface
Clear (IFC) to makeitself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send |FC to make yoursel f
CIC before making thiscall. Otherwise, the ECIC error will
be posted.
Example:
1. Towrite 10 bytes of instructions to device dvm:
dvm " F3RLX5P2Q0" wrt
NOTE: The double quote (") places text in memory up to the closing
guote or decimal 65 characters. " also leaves the address and string

length on the stack and isthusideal for use withwr t . For instance, "
abc" leavesthe address of the string and a count of 3 on the stack.

GPIB-CT IBCL Reference Manual 3-38 © National Instruments Corp.



Chapter 4
Programming Examples

This contains sample applications written in IBCL Some examples are
standal one; others have software that communicates with ongoing IBCL
code from an external computer. These examples are smplified so that you
can enhance them to meet your own programming needs.

Microsoft BASIC IBCL Compiler Programming
Example

Example 1 demonstrates how you can use a high-level language that has
access to the system's seria port to download afile of IBCL source code,
macros, or datato IBCL.

Example 1

10 CLS
20  INPUT "Enter the filename of the source code using a
correct pathname: “;file$

0 OPENffile3 FOR INPUT AS#1
' Opensthe disk file for
"input

40 OPEN "COM1:9600,N,8,1" AS#2
' Opens the RS-232 com-
' munications port

5 LINENUM =1:Locate2,1: PRINT "Compilingline#";

LINENUM "Initialize aline count

'variable

60 CMDSTR$="ibcl"+CHR$(13) ' Command to enter IBCL from
" the GPIB-CT default
' operating system.

0 PRINT #2,CMDSTR$ ' Send the string to RS-232
' port

8  LINEINPUT #2,STAT$ ' Ensure ok message given

D STAT$=RIGHTS$ (STATS,2)

100 IFSTAT$<>"ok" THEN 500
' Check if successfully
"entered IBCL

110 while (not EOF(1)) ' Keep reading until disk
'fileis depleted of words,
' macros, and commands.

© National Instruments Corp. 4-1 GPIB-CT IBCL Reference Manual



Programming Examples Chapter 4

120 LINE INPUT #1,CMDSTR$ ' Get command from disk file

130 PRINT #2,CMDSTR$ ' Send command to IBCL

140 LINEINPUT #2,COPY$ ' Read in echo of CMDSTR$
'from IBCL

150 LINEINPUT #2,STATS$ ' Get status of last command

160 STAT$=RIGHTS$ (STATS$,2)

170 IF STAT$<>"ok" THEN 500 ' Some error occurred. Stop!

180 LINECNT =LINECNT +1 ' Increment count of lines
'sent

190 WEND ' Repeat the loop

200 PRINT : PRINT LINECNT;" lines were successfully

transmitted.”
210 END

500 REM 'Thiserror routine could be any action you

510 REM 'takewhen an error occursin atransfer.

520 PRINT : PRINT "Transmission interrupted due to an
error."

530 PRINT "Vaue of CMDSTR$ which created an error is
".CMDSTR$

540 PRINT "Value of STATS after theerror is";STATS

550 EBEND

Modem Programming Examples

Example 2 isan IBCL program that loops twenty decimal times reading the
settings from an oscilloscope located at GPIB address 1. When all the
readings are obtained, IBCL will use amodem and dial the number of a
modem attached to another computer executing Example 3.

Example 3 isaMicrosoft BASIC program that dials a modem connected to
adistant GPIB-CT, downloads afile (the program from Example 2), and
then waitsfor IBCL to call back with the results of its operation.

Example 2
0 variable buff ( Create a buffer named "buff")
1000 alot (‘Allocate 1000 hex bytesfor)

(the buffer)
:andyze ( Defineaword "anayze")
buff (Origina buffer address onto)

(the stack)
140do (Loop 20 decimal times)
dup dup ( Duplicate the moving buffer)
(‘addresstwice)
ctmo ( Set up a3 sec timeout)

GPIB-CT IBCL Reference Manual 4-2 © National Instruments Corp.



Chapter 4 Programming Examples

4000 wait (Wait 3 sec between data)
(‘acquisitions)

dtmo ( Reset default 10 sec timeout)

1" set?' wrt ( Request the instrument state)
( of the Tektronix 2230)
(oscilloscope located at GPIB)
(address1)

1swap 1000 rd ( Read data from instrument at)

( GPIB address 1 into the)
(buffer whose addressis on)
(the stack)

d swap ( Put a<CR> on the stack and)
('swap its value with the)
( remaining buffer address)

stat drop + ( Get actua count of chars.)
('read and add this value to)
(the buffer address)
d ( Store the <CR> into the)
(‘buffer)
stat drop 1+ + ( Get new buffer address by)
(‘adding count of chars. read)
(plus1for <CR>)
loop ('Loop and do again)
" ATDT9,3358570" ( Send command to modem serial)
(port to dial)
a (Send a<CR><L F>--." does not)
(‘automatically)
4000 wait (Wait 10 sec to insure)
( Carrier Detect)
buff - buff swap ( Get starting address of)
(‘buffer and count of chars.)
(to send to the host)
um ( Upload the data to the)
('serial port)
Example 3
10CLS: KEY OFF
20 DIM RESULT$(20) ' Create an array for results
30 ON COM(1) GOSUB 520 ' Trap routine for incoming
' serial data
40 INPUT "filename"; FILE$ ' Disk file of IBCL data,
' program, etc.
50 OPEN FILE$ FOR INPUT AS#1 'Open IBCL command file
60 OPEN "com1:1200,n,8,1" AS#2
70 PRINT #2,"ATs2=42" ' Local modem escape character
"isthe asterisk (*)
80 LFCR$=INPUT$(2,2) ' Get leading CR and LF

© National Instruments Corp. 4-3 GPIB-CT IBCL Reference Manual



Programming Examples Chapter 4

90 LINE INPUT #2,ESCSTATS$ ' Status from modem
100 LF$=INPUT$(1,2) 'Get trailing LF

110 PRINT #2,"ATDT9,3358570" ' Dia IBCL modem

120 LFCR$=INPUT$(2,2) ' Get leading CR and LF
130 LINE INPUT #2,DLSTATS$ ' Status from modem
140 LF$ = INPUT$(1,2) ' Get trailing LF

150 IF INSTR(DLSTATS$,"CONNECT") =0 THEN PRINT
"No carrier detected" : END

' Check if CONNECT message
' received

160 FOR PAUSE =1 TO 3000 : NEXT PAUSE
' Wait to ensure Carrier
' Detect

170 PRINT #2,"task" " An IBCL do-nothing word -
"insuresthat IBCL
"isready for commands

180 LINE INPUT #2,COPY $ " Echo of IBCL command
190 LINE INPUT #2,STAT$ ' Status after IBCL processes
' command
200 LF$=INPUT$(1,2) ' Get trailing LF
210 PRINT #2,"cold" ' OPTIONAL--IBCL will beina

" known state after execution
" of thiscommand

220 LINE INPUT #2,COPY $ ' Echo of IBCL command

230 LINE INPUT #2,STAT$ ' Status after IBCL processes
' command

240 LF$=INPUT$(1,2) ' Get trailing LF

250 IF INSTR(STATS$,"ok") = 0 THEN PRINT "IBCL is not
responding. Program terminated” : END
' Check if status was an ok

' message

260 LINENUM =1 : LOCATE 2,1: PRINT "Compiling line

#";LINENUM

270 IF EOF(1) THEN PRINT "downloaded file" : GOTO 400

280 LINE INPUT #1,CMDSTR$ ' Get next IBCL command from
'file

290 PRINT #2,CMDSTR$ ' Send IBCL command to GPIB-CT
" to be compiled

300 LINE INPUT #2,COPY$ ' Recelve echoed command line -
' disregard

310 LF$ = INPUT$(1,2) 'Get trailing LF

320 LINE INPUT #2,STATS$ ' receive status line (ok or
' error message)

330 LF$=INPUT$(1,2) ' Disregard line feed character

340 IF STAT$ <> "ok" THEN GOTO 380
"if not ok then go to error
"routine

350 LINENUM = LINENUM + 1 " increment line number

GPIB-CT IBCL Reference Manual 4-4 © National Instruments Corp.



Chapter 4

360 LOCATE 2,18 : PRINT LINENUM

370 GOTO 270

Programming Examples

380 PRINT : PRINT "Compile error on line number " ; LINENUM ' error routine
390 PRINT CMDSTR$ : PRINT STAT$: END

400 PRINT #2, "analyze"

' Name of the program just
' downloaded--'analyze' in our
' example

410 FOR PAUSE =1 TO 5000 : NEXT PAUSE

420 PRINT #2,"***";

' Modem guard time for esc.
' sequence
' Enter modem escape mode

430 FOR PAUSE =1 TO 5000 : NEXT PAUSE

440 RESP$=INPUT$(LOC(2),2)
450 PRINT #2,"ATHO"
460 LFCR$=INPUT$(2,2)

470 LINE INPUT #2,STATUS$
480 LF$=INPUT$(L,2)

' Modem guard time for esc.

' sequence

' Get any charactersin comm.
' buffer-disregard these

' Modem command to hang up
' phone

'Get CRand LF

' Get hang-up status string

' Get trailing LF

490 REM The following section of code is the trap routine for

incoming serial data.
500 COM(1) ON

510 GOTO 510

520 COM(1) OFF

' Enable communications

' trapping

' No meaningful work to be

' done, so wait for results

' Stop communi cations trapping

530 CLS:PRINT "Now getting ring and connect status"

540 CRLF$=INPUT$(2,2)
550 LINE INPUT #2,RING$
560 LF$=INPUT$(1,2)

570 WHILE RING$="RING"

580 CRLF$=INPUT$(2,2)
500 LINEINPUT #2,RING$
600 LF$=INPUT$(1.2)
610 WEND

' Get leading CR and LF

' Get ring status string (RING)
"Gettrailing LF

' Keep getting ring status

' string until not = to RING

620 FOR PAUSE =1 TO 3000 : NEXT PAUSE

' Wait to insure Carrier Detect

630 IF INSTR(RINGS,"CONNECT") = 0 THEN PRINT "No carrier

detected” : END

640 ON COM (1) GOSUB 670
650 COM (1) ON

660 GOTO 660
670 COM(1) OFF

© National Instruments Corp.

' Stop program if no Carrier

' Detected

' New trap address

' Enable communications

' trapping

' No meaningful work, so wait
' Disable communications

4-5 GPIB-CT IBCL Reference Manual



Programming Examples Chapter 4

" trapping
680 CLS:PRINT "Now waiting for the results"
690 FORRESULT=1TO20
700 LINE INPUT #2,RESULT$(RESULT)

' Get aresult string

' from the communications

' buffer
710 PRINT : PRINT RESULT$(RESULT)
720 NEXT RESULT
730 FOR PAUSE =1 TO 5000 : NEXT PAUSE

' Modem escape guard time
740 PRINT #2,"***", ' Local modem escape sequence
750 FOR PAUSE = 1 TO 5000 : NEXT PAUSE

' Modem escape guard time
760 IF LOC(2) <> 0 THEN RESP$=INPUT$(LOC(2),2)

" Insure comm. buffer empty

770 PRINT #2,"ATHO" ' Command for modem to hang-up
780 CRLF$=INPUT$(2,2) ' Get leading CR and LF

790 LINE INPUT #2,STAT$ ' Get modem status

800 CLOSE #2 ' Close the communi cations port
810 CLOSE #1 ' Closethedisk file

820 END

Macro Programming Example

Example 4 isan IBCL macro that will set your GPIB-CT to default values
different from those of the GPIB-CT default operating system. For this example,
assume you want the following default values for the GPIB-CT default operating
system that differ from those at startup or at ONL 1.

¢ Do not send EOI on the last byte of a GPIB write

¢ Send EOI with the carriage return (ASCII 13)

e Terminate GPIB reads upon receiving a carriage return

e Configurean IBM 7372 color plotter to participate in a parallel poll by
returning a positive response when its pen is down

e Settimeout limit at 3 sec

GPIB-CT IBCL Reference Manual 4-6 © National Instruments Corp.



Chapter 4 Programming Examples

In the GPIB-CT default operating system, you would have to type al of the
instructions each time that you wanted these changes to occur. However, with the
addition of the IBCL operating system, you have the ahility to create a macro
caled mydefault that will do these steps for you.

This solution still requires you to type in the macro definition at startup, but it will
be there whenever needed thereafter (for instance, after an ONL 1 is executed and
all startup defaults are reset). For an even more powerful macro ability, after
studying this example, refer to Appendix C, Creating Permanent IBCL Wordsin
EPROM, to learn how to make the macros permanent and avoid typing in each
macro definition after each startup. Notice that mydefault is defined the same way
as any other IBCL word. It iscalled a macro because its function resembl es that
of amacro. Thereisno special defining technique required for defining macros.

Example 4

Follow these steps to create a macro named mydefault which sets the five
previously described defaults:

1. Inthe GPIB-CT default operating system, enter:
ibcl<CR>
2. If you are using aterminal emulator program, wait for an ok message
from IBCL. If you arein BASIC or some other language, read in the
status string and check for ok. The ok appearsinstantly if thereisno

problem.

3. Now, create an IBCL word which will be the macro:

- mydefault ( Macro name)
0 ect ( Disable EQI sent with the)
(last byte of GPIB writes)
COD eos ( Enable EOI sent with <CR>)

(‘and GPIB readsto terminate)

(when a<CR> isreceived)
5"im 223,0,1;" wrt

(‘Sendsto 7372 plotter at)

( GPIB addr ess 5 the command)

(to participate in aparallel)

( poll when it's pen is down)

ctmo ( Change timeout limit to 3)
(se0)
bye ( Inclusion of this command)

(will cause areturn to the)

© National Instruments Corp. 4-7 GPIB-CT IBCL Reference Manual



Programming Examples Chapter 4

( GPIB-CT default operating)
(system)

(immediately upon completion)
(of the macro. Leaving this)

( statement out allows you to)
(remainin IBCL &fter)

( execution of the macro.)

( End the macro definition)

This example demonstrates only afraction of the power available to you with
IBCL and macros. After you have completed this example, you can type
mydefault if you are operating in IBCL, or ibcl<CR> mydefault<CR> if you are
in the GPIB-CT default operating system, to set these defaults.

Timed Applications Examples

Example5

Within IBCL, you can access the on-board system timer to time activities.
To do this, you must convert the required time limit into a 4-byte value that
the timer can use and load those values into four specified memory
locations within IBCL.

To program any value, you may derive the values required for IBCL in the
following manner:

e Thefirst number isthe actual number of timer interrupts that will
occur before the routine completes. Valid values for this number
liein therange of 1 to 65535.

¢ The second number is the length of time before atimer interrupt
will occur. Valid valuesfor this number lie in the range of 3 to
65535. Each increment in the second number represents atime of
3.26 psec (0.0000326 sec). Therefore, the minimum vaue of time
which can be generated is roughly 10 psec (3, the minimum value
of the second number, times 3.26 psec is roughly equal to 10 psec).
Incrementing the second number by 1 produces atimer value of
roughly 13 pisec (4, the minimum value of the second number, + 1
* 3.26 psec isroughly equal to 13 psec).

A useful general formulais given here:

(VAL2* 3.26 psec) * VAL1 = desired time value

GPIB-CT IBCL Reference Manual 4-8 © National Instruments Corp.



Chapter 4 Programming Examples

Example 6

Assume you have an application which requires servicing approximately
every 24 psec Using the previousformula, VAL2=8and VAL1=1
produce the proper values for this application ((8 * 3 pusec) * 1 = 24 usec).

Example 7

Assume you have an application requiring service at approximately 48 jusec
intervals. Oneway to producethisvalueistolet VAL1 =2 ((8 * 3 psec) *
2 =48 psec). However, thisis not the most efficient solution because the
timer interrupt has to be serviced more often than necessary. A more
efficient method of achieving the same time limit isto change VAL 2
instead of VAL1 ((16 * 3 usec) * 1 =48 psec). Of course, when VAL2
becomes larger than 65535, VAL 1 will have to be adjusted to accommodate
longer times.

After you have these numbers (VAL1 and VAL 2 comprise the necessary 4
bytes for the timer), they have to be loaded into the memory locations
starting at 1C hex using the IBCL command ! (pronounced store). In this
example, the values used are from the 24 psec given in Example 6.

First, store VAL, the actual number of timer interrupts at memory location
1C hex by typing:

11c!

Next, store VAL2, the time interval between interrupts, at memory location
1E hex by typing:

8le!

© National Instruments Corp. 4-9 GPIB-CT IBCL Reference Manual



Programming Examples

Example 8

Chapter 4

Suppose you have an application that takes measurements at 5 sec intervals.
Y ou want to continuously read the data (guaranteed to be 2 bytes long) into
abuffer for aduration of 10 min. Follow these steps:

1. Setupabufferin IBCL to accommodate the readings by typing the

following:

0 variable buff ee allot<CR>

This step creates a buffer named buff and all ocates 240 (12
readinggmin* 10 min * 2 bytes/reading) decimal bytes of space

for the readings.

2. Derivethe values which should be stored at location 1c hex to
ensure proper timing using the following formula:

5 sec = 5,000,000 psec/ 65500 (almost as large as possible) / 3
=VAL1 = number of timestimer must interrupt = 19 hex and
65500 = ffdc hex = VAL 2 = time before an interrupt occurs.

3. Create aword that will perform the specified application:

ranaysis
20 1cdo
i c@>r
loop
191c!
ffdc 1e!
buff dup

5" put cmd here" wrt

1200do

GPIB-CT IBCL Reference Manual 4-10

( Defineaword to take)
(readings)

(** Seewarning bel ow-copies)
(old timer values)

( Get byte and put onto)
(‘return stack)

( Store the new timer values)

( Put the address of buffer)
(‘on stack)

( Issue command for the)
(device)

(at GPIB address 5 to start)
( taking measurements.)

( Take the 120, 2 byte)
(readings)

© National Instruments Corp.



Chapter 4

Programming Examples

dup 2+ swap ( Get next buffer location)
(and leave old buffer)
(location on top of stack)
S5swap 2 ( Put the GPIB address of)
( device on the stack, swap)
('with old buffer location,)
(‘and put the number of)
( charactersto read {2} on)
(top. Thisleavesthe)
( parameters required for &)
( GPIB read on the stack--)
(‘addr{5} buffer{old buffer})

(and count {2})
4000 wait (Wait therequired 5 sec)
rd ( Execute a GPIB read of 2)

( charsinto the buffer)

loop ( Start the loop again)
40do ( Get old timer values from)
(‘return stack and put them)
r> (‘on the computation )
loop (stack)
20 1cdo ( Store the old values)
icl
loop

6. Typethefollowing to execute the program:

Warning:

analysis<CR>

Using this method of setting timeout limits will work and will
remain in effect until changed again by this method or by the
tmo command. However, if the >r and r> blocks of code are
omitted from the previous exampl e, the reporting of timeout
limitsin the GPIB-CT default operating system will be
incorrect because the string holding the TMO value will not be
changed. So, although the string contains one value, the actual
value in the timer routine will be your last value stored. By
using the >r and r> blocks in the previous example, the string
reports the correct value as the values before you make any
changes will have been reset at the end of execution of the
code.

© National Instruments Corp. 4-11 GPIB-CT IBCL Reference Manual



Chapter 5
Technical Information

This chapter contains information for improving and customizing
performance from the GPIB-CT.

L oading Programs

There are severa waysin which you can load IBCL source code. Since
IBCL treats incoming source code as normal text, any method you have of
sending data over the seria port is an effective way to download source
codeinto IBCL.

The easiest way to communicate with the GPIB-CT is through a terminal
emulation program. Using aterminal emulator is a preferred way of
creating and debugging an application as you can see everything sent and
received over the serial port at onetime. If you are using aterminal
emulation program, downloading source codeis as easy as sending atext
file of the code over the serial port.

Another way you could download source code is through a programming
language which has access to the system's serial port. An example using
this method is provided in Section Four, Programming Examples, Microsoft
BASIC IBCL Compiler Programming Example.

If you wish to make your code permanent in IBCL after downloading, see
Appendix C, Creating Permanent IBCL Wordsin EPROM, for instructions.

ThelIBCL Interpreters

IBCL has two interpreters—the inner interpreter, and the outer interpreter.
Theinner interpreter does nothing except branch from one machine code
routine to the next. The nesting and unnesting routines supporting high-
level IBCL definitions are among the code routines through which
execution passes.

The outer interpreter accepts text from the host. It then attempts to parse
the text string as a sequence of IBCL words and numbers. In execute mode,
words are executed and numbers are placed on the stack. In compile mode,
words and numbers are entered into the definition of a new word.

© National Instruments Corp. 51 GPIB-CT IBCL Reference Manual



Technical Information Chapter 5

Inner Interpreter Sequence

If the definition list which the inner interpreter isinterpreting consists of a
list of pointersto simple machine code primitive instructions, such as stack
and math words, execution proceeds from one word to the next in the list.
A few special machine code primitives alter this orderly flow.

One of these diverting primitives, :, is compiled by (docol) whichisan
IBCL word to which users have no access. This primitive nests control to a
lower-level definition.

;sisthelast pointer in adefinition list. 1ts machine code primitive pops the
top element from the return stack and continues list interpretation at that
address. Thisisthe word from which control was originally diverted.

There are several other words which alter the sequential interpretation of a
definition list. (.") and (abort) are compiled by the immediate words, ." and
abort. (.") controls display of the subsequent in-line string and causes
interpretation to skip to the word subsequent to that string, while (abort)
could cause execution of a user-supplied routine in the event of an error. lit
causes the next word value to be pushed onto the stack; interpretation
continues after that value.

execute causes a branch to the word pointed to by the top value on the stack,
just asif the pointer to that word's code field address had been in the list
instead of execute.

The remaining control-flow altering words handle the high-level flow
control within asingle definition list. branch causes control to skip forward
or backward the number of words contained in the subsequent location.
Obranch does so only if the top word on the data stack is zero. Otherwise
control continues with the word following the unneeded relative offset.

The do loop terminating words are similar in function and appearance to
Obranch. First, these words perform the additional task of updating an
index and comparing it to alimit. If the limit has exceeded bounds, control
istransferred as with branch. If the bound has not been exceeded,
interpretation continues after the relative offset.

GPIB-CT IBCL Reference Manual 5-2 © National Instruments Corp.



Chapter 5 Technical Information

Outer Interpreter Sequence

Text is accepted one line at atime from the host. A line can be up to 80
byteslong. The interpreter further breaks each line or block into individual
words and processes them sequentially. A word isastring of characters
preceded and followed by blank spaces or by a<CR>. A few words require
text strings as following arguments and use a specia delimiter such as quote
to end the string. Within these strings, blanks are not interpreted as word
separators. These strings are processed by the preceding word rather than
by the interpreter.

One such special string is the comment which opens with an opening
parenthesis ((). Theinterpreter ignoresinput after the ( word until the next
closing parenthesis ()) or until the end of the current line. Theinitial (isa
true IBCL word, but the closing ) is only adelimiter and need not be
preceded by a blank.

Once aword is extracted, an attempt is made to locate it in the dictionary.
If itisfound, its code field addressisreturned. In execution mode, the
definition beginning at this addressis executed, but when compiling a
higher-level word, the address is appended to the definition being created
unlessit is an immediate word. These execute immediately—even within a
colon definition.

If the word was not located, the interpreter assumes that it is a number and
attemptsto convert it to binary form. The value stored in base identifies the
current numerical base. The number may begin with aminussign. If it
contains a decimal point, it is converted as a double length number.
Otherwise, it must fit in asingle byte-pair. When a single byte-pair number
istoo large, high-order bitsare lost. Double byte-pair numbers cannot
overflow, but the correct decimal point location must be determined from
the user variable dpl.

The decimal point in the double numbers identifies them as double numbers
but does not affect the binary value generated. The two numbers 123. and
1.23 produce the same binary value. The location of the decimal point is
available in the user variable dpl, which is 0 and 2 for the previous numbers.
dpl can be used by the application to scale numbers according to the
location of the decimal point.

© National Instruments Corp. 53 GPIB-CT IBCL Reference Manual



Technical Information Chapter 5

In execution mode, the binary value is placed on the stack. For single byte-
pair numbers in compilation mode, the code field address of lit (literal) is
appended to the definition followed by the binary value. For double byte-
pair numbers in compilation mode, the behavior is similar except that each
byte-pair will be compiled separately, along with pointersto lit.

If the string cannot be converted, the interpreter aborts with an error
message. The stacks are cleared and the rest of the line being interpreted is
ignored.

Theinterpreter uses -find to locate the potential word in the dictionary.
Since the source string for -find is the next word in the input stream, this
also advances the interpreter over the input text.

If the string is not aword, number is used to convert it to binary form.
number compiles (number) which does the conversion. (number) expects
the address of the source string's count byte on the stack. It replacesthe
address with the double word binary value converted using the current base.
If conversion is not possible, (number) abortswith a? MSG #0 error. The
user variable dpl will contain -1 if no decimal point was present in the
numeric string. In this case, the number was of single word length and the
top word on the stack may be dropped. The interpreter ignores dpl except
as aflag to drop the top word of single word entries.

When al wordsin the input stream have been executed, query is used to
obtain more input and the entire cycle repeats.

Errors

When an error is encountered during interpretation, an error message is
usually generated using abort. Execution of the run-time portion of this
word, (abort), clears the stacks and prints an error message. Control isthen
returned to the terminal to await the next line of input. See the discussions
Defining New Words, Colon Definitions, and IBCL Input, in Chapter 2,
IBCL Function Reference.

GPIB-CT IBCL Reference Manual 5-4 © National Instruments Corp.



Chapter 5 Technical Information

Error-checking is performed by the following words:

e Zcomp Error if not compiling

e P Error if stack position is not that in csp
e ?pars Error if top two stack elements unequal
o Wack Error if stack out of bounds

Defining a new word increases the memory allocated in the dictionary. If
an error causes the definition to abort before completion, memory allocated
in the dictionary is reclaimed.

Advanced Defining Techniques

Two actions must be specified when defining words. Thefirst is done when
the defining word is executed. The next is done when the word defined
using the defining word is executed. Asan example, assume that the
system does not provide the word defining constants. One way to define
this defining word is given here:

: constant <builds, does> @ ;

does> is an immediate word. 1t executes when the definition is entered.
The @ is compiled as usual.

To define the constant five using this defining word, type thisline:
5 constant five<CR>

The5is placed on the stack and momentarily ignored. Referring to the
definition of constant, the <builds requires aword from the input stream. It
takes the string five and adds it to the current vocabulary with a pointer to
the next free word in the definition list. Thisword isinitialized with a
pointer to the code for constants, and the working end of the definition list
isincremented by two to point to the parameter field of the word being
defined, five. Next the comma (,) takes the top value on the stack, 5, and
storesit at the working end of the definition list, the parameter field of five,
and increments the end pointer by two.

© National Instruments Corp. 55 GPIB-CT IBCL Reference Manual



Technical Information Chapter 5

Next, the does> replaces the contents of the code field with a pointer to a
few bytes of code created by does> each timeit isused. This code has two
functions. It neststhe interpreter one level deeper, transferring control to
the word after does>, and it places the parameter field address of the word
being defined, five, on the stack. The code is executed only when fiveis
executed. Finally, the @ is compiled and the ; causes aroutine to be
compiled that unnests the interpreter one level, and then terminates the
definition.

When five is executed, the code created by does> is executed. The address
of the parameter field of five is placed on the stack and the interpreter nests
down to the @ in the definition of constant. A 5 iswaiting at the parameter
field address and is returned on the stack. The exit compiled by ; returnsthe
interpreter to the next higher level, with the 5 remaining on the stack. Or,
stated simply, executing five causes 5 to be | eft on the stack.

For a dlightly more complex case, consider a double length constant:

: deonstant <builds swap , ,
does> dup @ swap 2+ @ ;

hex 1234.5678 dconstant longfellow
dconstant creates a double length constant named longfellow. When
longfellow executes, it leaves a double length number on the stack. First
5678 is pushed onto the stack, then 1234.
The complexity and utility of words that define words is unlimited.
Machine Code Primitives
This discussion provides a simple means of entering machine code
definitions for words which must execute rapidly or which require machine
resources not immediately available in high-level IBCL.
The GPIB-CT contains a Hitachi HD64180 microprocessor which has an
instruction set that is a superset of the Z-80 instruction set. Y ou should be

familiar with the Z-80 instruction set before attempting machine code
primitives.

GPIB-CT IBCL Reference Manual 5-6 © National Instruments Corp.



Chapter 5 Technical Information

Three addresses very important to creating your own machine code
primitives are dpush, hpush, and next. There are no given system constants
for these addresses, although the fixed offsets from the origin are 6A hex for
dpush, 6B hex for hpush, and 6C hex for next. To get the true address of
these words, you can enter thisline:

offset +origin u.

The 64180 has six general-purpose registersB, C, D, E, F, G, H, and L.

Y ou can combine these six into three general-purpose 16-bit registers (BC,
DE, and HL), an 8-bit accumulator, an 8-bit flag register (F), and two index
registers (IX and 1'Y). Along with these registers, the 64180 has an aternate
register set (HL', BC', DE', and AF).

dpush is used to push onto the stack the value stored in the DE register pair,
and then push onto the stack the value stored in the HL register pair. hpush
is used when you wish to push onto the stack only the value stored in the
HL register pair. next isaroutine which returns control to the IBCL
operating system after execution of the primitive. dpush and hpush
automatically execute next, but in all primitives which do not put anything
onto the stack with dpush or hpush, you will specifically need to jump to
next at the end of your primitive.

Warning: IBCL usesthevaluein register pair BC asits address
pointer; therefore, register pair BC should be used with
extreme caution to prevent a system crash.

The following example, fastadd, demonstrates these topics. Notice that this
is how the + word is defined, so this example will not execute faster than
the existing + operation.

Enter this sequence:

creste  fastadd (Makesadictionary )
(entry for fastadd)

el G (pophi)

d G (pop de)

19 G (‘add hl, de)

c3 c,6Bc 2c, (jp hpush)

( see note about hpush following example)

smudge ( Toggle the definition's)

('smudge kit to allow)
(fastadd to be found in)
(dictionary searches)

© National Instruments Corp. 57 GPIB-CT IBCL Reference Manual



Technical Information Chapter 5

Note: Inthe current version of the IBCL software, the code for hpush is
at 026Bhex. This code is not guaranteed to remain in that location
in future software revisions. Before doing this step, you should
find out the address of hpush as detailed earlier in this section in
the discussion of +origin.

In the previous example, create makes a dictionary entry for fastadd and
leaves the dictionary pointer at the code field of fastadd. c, then putsthe
byte on the stack into the memory location pointed to by the dictionary
pointer and increments the dictionary pointer. This process places the
machine language sequence into the dictionary.

Vectored Execution

Y ou cannot include aword in adefinition if that word has not already been
defined. If the function you wish to perform cannot be defined before the
word in which it is used, you must first define a variable that will eventually
contain the code field address, or vector, of the word to be defined.

Consider the following example:

nnnn variable vector-name
( creates avariable called vector-name, initialized to)
( nnnn, athough this value does not matter)

: some-word words vector-name @ execute words;
( defines some-word, which needs to use a currently)
(‘undefined word)

: future-word words ;
( define the future word)

future-word cfavector-name !
( put the code field of future-word into the vector)

some-word ( execute the compl ete word)

The vector name used in some-word compiles like any variable. When
executed, it leaves its parameter field address on the stack and @ replaces
that address with the variable's contents. This variable was initialized on
the last line to contain the code field address of future-word. ' returnsthe
parameter field address of the next word in the input stream and cfa
converts the parameter field address to the code field address. execute
executes the word whose code field address is on the stack as if it had been
compiled into the definition.

GPIB-CT IBCL Reference Manual 5-8 © National Instruments Corp.



Chapter 5 Technical Information

Memory Organization

Figure 5-1 isalogical memory map of the IBCL operating system. IBCL
memory space is actually located from physical 40000H to 4FFFFH, but
IBCL recognizes only 16-bit addresses 0 through FFFFH.

O [ GPIB-CT Operating
O0FFH System Variables
0100H
O1FFH Reserved for System
0200 Startup Literals < 0 +origin
022AH )
026AH User Variables y P
Dictionary
(consists of core
definitions and
user-defined
definitions)
Word Buffer* <4— dp (Floatsup and down)
<4— pad
Text Buffer*
* (SeeNOTE
M following figure)
oo 44— ** (See WARNING
S00oH following figure)
¢— sp (Floatsup and down)
T Computation
Stack
tib— _ < 0
[ porna rp  (Floats up and down)
in Buffer ) f
FFEEH Return Stac 0

Figure 5-1. Logica Memory Map

© National Instruments Corp. 59 GPIB-CT IBCL Reference Manual



Technical Information Chapter 5

Note:  These buffers float immediately above the dictionary at afixed
offset from the dictionary pointer.

Warning: After expanding the IBCL dictionary past logical address
7FFFH, any definitions made are not guaranteed to
remain if you leave IBCL to the GPIB-CT default
operating system, because the GPIB-CT default operating
system uses addresses starting at 8000H as a serial port
input buffer.

The operating system variables at the top of IBCL space are shared between
the GPIB-CT default and IBCL operating systems. This sharing of
resources ensures that any changes made to the characteristics of the GPIB-
CT in either operating system are present in the other operating system as
well.

Logical space from 100H to IFFH is reserved for the system and should
never be changed.

Startup literals begin at the origin of IBCL, 200H. These values are
necessary for system initialization. Some literals specify valueswhich are
copied to the user area of memory during initialization. Other literals
specify the starting address of the user area, the ASCII code of the
GPIB-CT's backspace character, and pointers to the top definition and the
end of the core dictionary.

The user variables section contains the user variables dp, fence, r0, <0, tib,
vac-link, warning, width, base, context, current, in, out, dpl, csp, hld, and
state. For moreinformation on the user variables, refer to the discussion
Constants, Variables, and Arrays, in Chapter 2, IBCL Function Reference.

The dictionary is the largest and most essential element of IBCL. Thisarea
contains the definitions of all core and user-created words. The dictionary
area expands in memory as new words are defined, and contracts when
word definitions are deleted. The user variable dp always contains the
address of the next available dictionary location and floats as the dictionary
grows and shrinks.

The word buffer floats immediately above the top of the dictionary,
beginning at the location stored in dp. The fixed length of the buffer is 68
characters. Asthe dictionary expands and contracts, the limits of the word
buffer move the same distance up or down in memory without retaining its
contents.

GPIB-CT IBCL Reference Manual 5-10 © National Instruments Corp.



Chapter 5 Technical Information

The text interpreter parses the input stream by obtaining individual words
from the terminal input buffer and placing them into the word buffer.

The text buffer liesimmediately above the word buffer afixed distance
abovethedictionary. Liketheword buffer, thisarea goes up or down in
memory in response to dictionary movements, without saving its contents
during relocation. This buffer serves as a scratchpad area where output text
strings may be constructed character by character, or the IBCL word quote
(") constructs the buffer for bwrt, wrt, or cmd. This buffer isthe same
length as an output line that is stored in the system constant ¢/l and defaults
to 64 decimal bytes.

The terminal buffer and return stack share memory from address FFFFH to
FF60H. AsIBCL calls other wordsin a definition, the return stack grows
towards low memory. AsIBCL returns from each level of execution, the
return stack shrinks towards high memory.

The terminal buffer begins at the value stored in tib and grows toward high
memory. This buffer holds each line of input data from the serial port. As
soon as alineis entered and processed, the buffer isreset for the next line.

The computation stack is the stack where parameters are stored. It is based
in s0, and grows towards low memory and the dictionary. sp containsthe
stack pointer at all times. The value in sp can be viewed and altered using
sp@ and sp!.

General Port 1/0

IBCL provides two port input/output words, p! and p@, which change or
recall theinternal parameters of the GPIB-CT. These words transfer data
between the top of the stack and any of the on-board GPIB-CT 1/O ports. In
normal applications, these words should be used only in the following
circumstances:

e Toread the states of the user defined switch (U20)

e Toset up the DMA controller for GPIB reads and writes to
extended memory

All other port accesses should be done with extreme caution. Improper use
can cause the system to crash.

© National Instruments Corp. 511 GPIB-CT IBCL Reference Manual



Technical Information Chapter 5

p! outputs a byte to the I/O port address represented by the word on top of
the stack. The byte to be output isin the low-order position of the second
word on the stack. The high-order byte of the second word is ignored.

p@ inputs a byte from the 1/0 port address represented by the word on the
top of the stack. The byte input replaces the 1/0 address on the top of the
stack and the high-order bytes of the word is zero-filled.

Table 5-1 isan /O system map of the ports supported on the GPIB-CT.
Only the port addresses noted should be used. Any accessto any other
addresses could produce unexpected results.

Table 5-1. 1/O System Map of Ports Supported on the GPIB-CT

Name Address
Asynchronous Serial Communication Interface (ASCI):
ASCI Control Register A, Channel 0 00H
ASCI Control Register A, Channdl 1 01H
ASCI Control Register B, Channel 0 02H
ASCI Control Register B, Channel 1 03H
ASCI Status Register, Channel 0 04H
ASCI Status Register, Channel 1 05H
ASCI Transmit Data Register, Channel 0 06H
ASCI Transmit Data Register, Channel 1 O7H

ASCI Receive Data Register, Channel 0 08H
ASCI Receive Data Register, Channel 1 09H

Programmable Reload Timer (PRT):

PRT Data Register, Channel OL O0CH
PRT Data Register, Channel OH ODH
Reload Register, Channel OL OEH
Reload Register, Channel OH OFH
Timer Control Register 10H
PRT Data Register, Channel 1L 14H
PRT Data Register, Channel 1H 15H
Reload Register, Channel 1L 16H
Reload Register, Channel 1H 17H

(continues)

GPIB-CT IBCL Reference Manual 5-12 © National Instruments Corp.



Chapter 5 Technical Information

Table 5-1. 1/O System Map of Ports Supported on the GPIB-CT
(continued)

Name Address

Direct Memory Access (DMA):
DMA Source Address Register, Channel OL 20H
DMA Source Address Register, Channel OH 21H
DMA Source Address Register, Channel 0B 22H
DMA Desdtination Address Register, Chan. OL  23H
DMA Destination Address Register, Chan. OH  24H
DMA Destination Address Register, Chan. 0B 25H
DMA Byte Count Register, Channel OL 26H
DMA Byte Count Register, Channel OH 27H
DMA Memory Address Register, Channel 1L 28H
DMA Memory Address Register, Channel 1H ~ 29H
DMA Memory Address Register, Channel 1B 2AH
DMA 1/O Address Register, Channel 1L 2BH
DMA 1/O Address Register, Channel 1H 2CH
DMA Byte Count Register, Channel 1L 2EH
DMA Byte Count Register, Channel 1H 2FH

DMA Status Register 30H

DMA Mode Register 31H

DMA/WAIT Control Register 32H
Interrupts:

IL Register (Interrupt Vector Low Register) 33H

INT/TRAP Control Register 34H
Dynamic RAM Refresh:

Refresh Control Register 36H
Memory Management Unit (MMU):

MMU Common Base Register 38H

MMU Bank Base Register 39H

MMU Common/Bank Area Register 3AH

I/O Control Register 3FH

* See NOTE following table.

GPIB Controller Read Only I/O Address Registers:

Data In Register 40H
Interrupt Status Register 1 41H
Interrupt Status Register 2 42H
Serial Poll Status Register 43H
Address Status Register 44H

(continues)

© National Instruments Corp. 5-13 GPIB-CT IBCL Reference Manual




Technical Information Chapter 5

Table 5-1. 1/O System Map of Ports Supported on the GPIB-CT

(continued)

Name Address
GPIB Controller Read Only 1/0O Address Registers (continued):
Command Pass Through Register 45H
Address Register 0 46H
Address Register 1 47H

GPIB Controller Write Only 1/0O Address Registers:
Command/Data Out Register 40H
Interrupt Mask Register 1 41H
Interrupt Mask Register 2 42H
Serial Poll Mode Register 43H
Address Mode Register 44H
Auxiliary Mode Register 45H
Address Register 0/1 46H
End of String Register 47H

* See NOTE following table.

GPIB Controller DMA Acknowledge Register:

DMA Acknowledge Register 48H
Board Registers:
Board Control Register (write only, 50H
controls front panel LEDS)
Switch 1 Register (read only, settings of 68H

DIP Switch U20; use this register
to set your own switch configurations)
Switch 2 Register (read only, settings of 70H
DIP Switch U22; thisis used by the
GPIB-CT operating system)

Note:  1/0O addressesin the range of O0H to 3FH areinternal to the
microprocessor (HD64180). For specific information about what
each bit representsin each 1/0 register, refer to the HD64180 8-Bit
High Integration CMOS Microprocessor User Manual, available
from Hitachi America, Ltd.

GPIB-CT IBCL Reference Manual 5-14 © National Instruments Corp.




Chapter 5 Technical Information

I/O addressesin the range of 40H-47H are internal to the GPIB Controller
chip used in the GPIB-CT. For specific information about what each bit
representsin each /O register, refer to the section describing the uPD7210
intelligent GPIB controller chip in NEC Microcomputer Products, available
from NEC Electronics, Inc. Thisdescription is used for interface products
that contain the NAT4882 controller chip as well asinterface products that
contain the uPD7210 controller chip.

© National Instruments Corp. 5-15 GPIB-CT IBCL Reference Manual



Appendix A
Multiline I nterface M essages

The following tables are multiline interface messages (sent and received
with ATN TRUE).

The subsequent pages contain an interface message reference list, which
describes the mnemonics and messages which correspond to the interface
functions.

© National Instruments Corp. A-1 GPIB-CT IBCL Reference Manual



Multiline Interface Messages Appendix A

Multiline I nterface M essages

Hex Od Dec ASCIL Msy  Hex Od Dec ASCIL Msg
(00] 000 O NUL .0} 040 2 SH MLAO
0oL 001 1 SOH GTL 2 41 3 ! MLA1
(0% 002 2 STX 2 042 A " MLA2
(0¢] 003 3 ETX 23 43 > # MLA3
o 04 4 EOT SDC 24 M4 B $ MLA4
® 005 5 ENQ PPC 5 45 7 % MLAS
(03) 006 6 ACK % 046 3B & MLAG6
(014 o007 7 BEL 27 047 39 ! MLA7
®B 010 8 BS GET 28 050 4 ( MLAS
(02] o011 9 HT TCT 2 051 4 ) MLA9
A 012 10 LF 2A 052 & * MLA10
03] 013 11 VT B 053 43 + MLA11
ac o4 12 H X 054 4 , MLA12
(00] 015 13 CR 2D 055 46 - MLA13
CE 016 14 0 E 056 46 MLA14
= 017 1 S F 057 47 / MLA15
10 020 16 DLE D 060 48 0 MLA16
1 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 22 062 90 2 MLA18
13 023 19 DC3 B 063 &l 3 MLA19
14 024 2 DC4 DCL A 064 = 4 MLAZ20
15 025 21 NAK  PPU b 065 53 5 MLA21
16 026 22 SYN b 066 ™S 6 MLA22
17 027 2 ETB 37 067 S 7 MLA23
18 030 24 CAN SPE 3B 070 % 8 MLA24
19 031 &5 BV SPD 0 071 5 9 MLA25
1A 032 2% SUB 3A 072 9= : MLA26
B (05¢ 27 ESC 3B 073 ™ : MLA27
1c 034 2B s Ko 074 & < MLAZ28
1D 035 XN &S D 075 a6l = MLA29
1E 036 D RS xE o6 & > MLA30
F 037 3 us F o077 ? UNL

GPIB-CT IBCL Reference Manual A-2 © National Instruments Corp.



Appendix A Multiline Interface Messages

Multiline I nterface M essages

Hex Oa Dec ASCII Mg Hex Oa Dec ASCII Mg

40 100 &4 @ MTAO &0 140 % MSAOQ,PPE
4 101 & A MTA1 6l 141 9 a MSA1,PPE
L 102 & B MTA2 &2 142 =B b MSA2,PPE
3 103 6/ C MTA3 63 143 99 c MSA3,PPE
7] 14 &8 D MTA4 &4 144 100 d MSA4,PPE
) 105 & E MTAS &b 145 101 e MSAS5,PPE
46 106 @™ F MTAG6 66 146 102 f MSAG,PPE
47 07 1 G MTA7 67 147 103 ¢ MSA7,PPE
48 110 72 H MTA8 63 150 104 h MSAS8,PPE
29 m B 1 MTA9 @ 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 | MSA10,PPE
B 113 B K MTA1l B8 153 107 Kk MSA11,PPE
L 114 7® L MTA12 & 154 108 | MSA12,PPE
D 115 77 M MTA13 D 155 109 m MSA13,PPE
4E 116 7B N MTA14 6 156 110 n MSA14,PPE
& 1177 ™® O MTA15 & 157 111 o MSA15,PPE
0 120 & P MTA16 7O 160 112 p MSA16,PPD
51 121 8 Q MTA1l7 71 161 113 q MSA17,PPD
2 122 & R MTA18 72 162 114 r MSA18,PPD
53 23 8 S MTA19 73 163 115 s MSA19,PPD
A 24 & T MTA20 74 164 116 t MSA20,PPD
9] 25 & U MTA21 7 165 117 u MSA21,PPD
% 126 & V MTA22 76 166 118 v MSA22,PPD
57 127 & W MTA23 77 167 119 w MSA23,PPD
8 130 8 X MTA24 78 170 120 X MSA24,PPD
D 13 & Y MTA25 ™ 171 121y MSA25,PPD
A 132 0 Z MTA26 7A 172 122 z MSA26,PPD
B 133 a4 | MTA27 B 173 123 { MSA27,PPD
T 134 2 |\ MTA28 T 174 124 | MSA28,PPD
D 135 B ] MTA29 ™D 175 125 } MSA29,PPD
E 16 A~ MTA30 7E 176 126 -~ MSA30,PPD
F 137 % _ UNT = 177 127 DEL

© National Instruments Corp. A-3 GPIB-CT IBCL Reference Manual



Multiline Interface Messages

Mnemonic

Message

Appendix A

I nterface M essage Reference List

I nterface Function(s)

LOCAL MESSAGES RECEIVED (by interface functions)

gs
s
lon
[lpe]
In
lun
nba
pon

rdy
p
rc
rsv
rl

sc
ge
tca
tcs
ton

go to standby

individual status qualifier
listen only

local poll enable

listen

loca unlisten

new byte available
power on

ready

request parallel poll

request system control
request service

return to local

send interface clear

send remote enable

tek e control asynchronously
take control synchronously
talk only

REMOTE MESSAGESRECEIVED

ATN

DAB
DAC
DAV
DCL
END
GET
GTL
IDY
IFC
LLO
MLA
[MLA]
MSA or [MSA]
MTA
[MTA]
OsA
OTA
PCG

atention

data byte

data accepted

datavalid

device clear

ed

group execute trigger
gotoloca

identify

interface clear

local lockout

my listen address

my listen address

my secondary address
my talk address

my talk address

other secondary address
other talk address
primary command group

GPIB-CT IBCL Reference Manual A-4

I 3Io
m

mr
-

e
-
3
0

000THOOZQRY

=H>
- T
Mo

SH, AH, T, TE, L, LE,
PP,C

(viaL, LE)

H

AH

DC

(viaL, LE)

DT

R

L,LE, PP
T,TE L,LEC
R

L,LERL

T

TE, LE

T,TE

L

TE

T,TE

TE, LE, PP

© National Instruments Corp.



Appendix A Multiline Interface Messages

I nterface M essage Reference List (continued)

Mnemonic M essage I nterface Function(s)

REMOTE MESSAGESRECEIVED (continued)

PPC parallel poll configure P
[PPD] parallel poll disable PP
[PPE] parallel poll enable P
PPRn parallel poll response n (viaC)
PPU parallel poll unconfigure PP
REN remote enable R
RFD ready for data H
RQS request service (viaL, LE)
[SDC] selected device clear DC
SPD serial poll disable T,TE
SPE seria poll enable T,TE
SRQ service request (viaC)
STB status byte (viaL, LE)
TCT or [TCT] take control C

UNL unlisten L,LE
REMOTE MESSAGES SENT

ATN attention C
DAB data byte

DAC data accepted AH
DAV datavalid H
DCL device clear (viaC)
END end (viaT)

GET group execute trigger (viaC)
GTL gotolocd (viaC)
IDY identify C

IFC interface clear C

LLO locdl lockout (viaC)
MLA or [MLA]  my listen address (viaC)
MSA or [MSA] my secondary address (viaC)
MTA or [MTA]  my talk address (viaC)
OsA other secondary address (viaC)
OTA other talk address (viaC)
PCG primary command group (viaC)
PPC parallel poll configure (viaC)
[PPD] parallel poll disable (viaC)
[PPE] parallel poll enable (viaC)
PPRn parallel poll response n P
PPU parallel poll unconfigure (viaC)
REN remote enable C

RFD ready for data AH

© National Instruments Corp. A-5 GPIB-CT IBCL Reference Manual



Multiline Interface Messages Appendix A

I nterface M essage Reference List (continued)

Mnemonic M essage I nterface Function(s)

REMOTE MESSAGES SENT (continued)

RQS request service T,TE
[SDC] selected device clear (viaC)
SPD serial poll disable (viaC)
SPE seria poll enable (viaC)
SRQ service request R

STB status byte (viaT, TE)
TCT take control (viaC)
UNL unlisten (viaC)
UNT untalk (viaC)

GPIB-CT IBCL Reference Manual A-6 © National Instruments Corp.



Appendix B

IBCL Statusand Error M essages

This appendix contains atable of the IBCL status and error messages.

Table B-1 contains alist of the status and error messages returned by IBCL

and a description of each. Message numbers shown are in decimal.

TableB-1. IBCL Status and Error Messages

M essage Number
(MSG #) Description
0 Unrecognized dictionary word
1 Empty stack
2 Dictionary full
3 Has incorrect address mode
4 Is not unique (dictionary word
redefined)
7 Full stack
17 Lega only within a colon definition
18 Not legal within a colon definition
19 Conditionals not paired (for example,
IF but no THEN)
20 Definition not finished
21 In protected dictionary
24 Declare vocabulary

© National Instruments Corp.

B-1 GPIB-CT IBCL Reference Manual




Appendix C
Creating Permanent IBCL Wordsin
EPROM

This appendix describes the procedure for permanently adding new words
and data to the IBCL operating system. It will also explain how to
automatically run a permanently-saved application when the GPIB-CT is
powered-on.

All newly defined IBCL words are compiled and stored into the dictionary
which is stored in the system’'s dynamic RAM. Since dynamic RAM is
volatile, its contents will be lost if power to the unit is removed.

Compiled words and data can be permanently added to the IBCL system by
including them in an unused section of the system's EPROM. Then, each
time the unit is powered on, the new IBCL system stored in the EPROM
will be copied to and run out of RAM.

To add additional code to the EPROM of the GPIB-CT you will need an
EPROM programmer and software as well as a blank 27256 or 27C256
EPROM with a maximum access time of 150 nsec. Do not reprogram the
EPROM provided with the system. The system EPROM is like a master
diskette—onceit is copied it should be put aside for safekeeping. Y ou may
only copy the GPIB-CT system EPROM to add code to its dictionary,
because the operating system within the EPROM is copyrighted.

Follow these steps to permanently save anew custom IBCL dictionary in
EPROM:

1 Enter IBCL and create your extended dictionary. Thiscan be done
several ways. The most common method uses colon definitions to
compile new words into the dictionary, and uses const ant ,
vari abl e andal | ot to add datato the dictionary.

Make sure that your words are fully tested and debugged before

attempting to put them in EPROM. It is much easier to make changes
while you are running in RAM than to program another EPROM.

© National Instruments Corp. C1 GPIB-CT IBCL Reference Manual



Creating Permanent IBCL Wordsin EPROM Appendix C

2. After you have compiled and debugged your code, you need to verify
that the extended dictionary will fit into the available EPROM space.
A 27256 EPROM has 32K (8000 hex) bytes of storage.
Approximately 11,520 (2D00 hex) bytes are taken up by the GPIB-CT
operating system. Thisleaves 21,248 (5300 hex) bytes available for
the IBCL system and your extended words.

The IBCL operating system starts at 200 hex. Thus, if you enter the
hex here 200 - u. command string and the value that is
returned is less than 5300, then the added code will fit into the 27256
EPROM. If the value returned is greater than 5300, then the extended
dictionary exceeds the capacity of the EPROM. This probably means
that you have allocated extremely large amounts of buffer space,
because compiled IBCL code is very compact.

Here are some tips for reducing the amount of storage space required
for the dictionary due to buffer space:

¢ Beredlistic when alocating space for buffers. Do not allocate
1000 bytes of spaceif you only expect to use 100 bytes of the
buffer.

e If thebuffer is uninitialized (thereisno valid datain it prior to
your application being run), buffer space can be allocated within
RAM when your application is run rather than creating and storing
the buffer space in the EPROM. For instance, you could include a
word in your application that would allocate space for a buffer just
before the space was needed. In thisway you would not be
increasing the dictionary size until your application has been
copied out of the EPROM and executed.

e If the buffer is uninitialized prior to your application, consider
defining the buffer space to be in extended RAM (see Appendix
D). Thiscan be done by defining a constant which is a pointer to a
buffer areain extended RAM. Be careful not to allow buffersto
overwrite one another in extended space, as this spaceisfree to be
used, and no protection mechanism isimplemented.

GPIB-CT IBCL Reference Manual G2 © National Instruments Corp.



Appendix C Creating Permanent |BCL Wordsin EPROM

3. Itisnow necessary to change the boot-up literals which IBCL uses on
start-up to determine the size and placement of the dictionary. These
new values of the literals can be determined and stored in the start-up
area by the following code:

here l1le +origin !
here 1c +origin !
|atest ¢ +origin !

Thefirst lineis used to store the location of the end of the dictionary.
Notice that only code and data added to the system through memory
location her e will be saved. Any code or data stored outside the
dictionary will not be recognized and stored.

The second line is used to determine where the fence will be placed.
Thisis not absolutely necessary, but is highly recommended so that
words defined in the newly expanded dictionary will not be
inadvertently forgotten.

The third line stores the name field address of the last word defined in
your extended dictionary. Thistells IBCL whereto begin its
dictionary searches.

If you want to auto-boot, that is, to start an application on power-up,
you will also need to store the code field address of the word you want
to boot with in the boot-up area. This can be done by the following
code:

hex nane- of - power - on-word cfa 258 !

When the GPIB-CT is power-on, it will look at location 258 hex. If it
finds the code field address of aword, it will execute that word. This
word will most likely consist of an infinite loop that will continuously
run an application, but it could consist of aword that will terminate.

© National Instruments Corp. CG-3 GPIB-CT IBCL Reference Manual



Creating Permanent IBCL Wordsin EPROM Appendix C

4. Younow have an exact image of the extended operating system in
RAM. This memory needs to be stored in the system EPROM so that
it will get loaded back into RAM at boot-up time.

The following example shows you how to upload the IBCL system
over the serial port using the ul mword. It assumes you are using an
IBM PC or compatible and are running BASICA, but other computers
and languages can be handled in a similar fashion. The program will
create a DOSfile that is an exact binary image of the IBCL system.

NOTE: It will be necessary to start BASICA with the / ¢: numoption
in order to allocate enough space for the BASIC communication
buffer to receive the entire IBCL system. numis the total number of
bytesin the IBCL system determined in Step 2 of this procedure.

10 open "ibcl.bin" for output as #1

20 open "conil: 9600, n, 8, 1" as #2

30 cnd$ = "decimal 512 here 512 - dup . ulnf
40 print #2, cnd$

50 copy$ = input$(l en(cmd$), 2)

60 i nput #2, bytes

70 for iter =1 to bytes + 1

80 print #1,input$(1,2);

90 next iter

100 end

Since you are uploading binary data, make sure that your program
opens up your communications port for 8-bit data and that the
configuration switchesin your GPIB-CT are set accordingly. The
IBCL system starts at memory location 200 hex and extends through
memory location her e. The number of bytesto uploadisher e -
512. Thisvalueis returned to the program in line 60. Lines 70
through 90 input each byte of the IBCL system and store them in the
binary file.

5. Toremove and copy the system EPROM and program a new custom
IBCL EPROM, follow these steps:

a Disconnect power to the GPIB-CT and disconnect any cables that
may be connected to the GPIB-CT.

GPIB-CT IBCL Reference Manual G4 © National Instruments Corp.



Appendix C Creating Permanent |BCL Wordsin EPROM

b. Unscrew the two screws on the opposite sides of the rear panel.

NOTE: Before attempting to change the system EPROM,
remember that the system's EPROM, as well as most of the
system's circuitry, uses CMOS technology and can be damaged by
static electricity. Avoid touching the legs of components, and take
any necessary CMOS handling precautions before opening the
unit.

¢ Removetherear pand bezel by pulling it straight away from the
rest of the unit. The board should slide out the back of the
enclosure.

d. Locate and remove the system EPROM (U19). This can be done
with an IC extractor tool, or by carefully prying up on each end of
the EPROM with aflat head screwdriver until it pops out of the
socket. Be careful not to bend any of the EPROM's legs while
removing it.

e Placethe EPROM into your EPROM programmer and read its
contents into a buffer file. Y ou must read at least from 0 to 2CFF
hex, but you may read all of the contents.

f. Loadthebinary filei bcl . bi n (created in Step 4 of this
procedure) into the EPROM programmer's buffer starting at
address 2D00 hex.

g. Placethe blank EPROM in the programmer and program the
EPROM from address 0 to 7FFF hex.

6. Carefully insert the newly programmed EPROM back into the
GPIB-CT EPROM socket, insuring that pin 1 of the EPROM is aligned
with pin 1 of the socket. Also, make sure that al the EPROM legs are
firmly inserted into the socket and that none are bent underneath the
EPROM.

7. Close the unit and reinsert the rear panel screws removed in Part b. of
Step 5.

8. Reconnect the power cord and power on the unit. Y our new extended
dictionary has now become a permanent part of IBCL.

© National Instruments Corp. G5 GPIB-CT IBCL Reference Manual



Appendix D
Using Extended Memory

This appendix describes the extended memory of the GPIB-CT, and gives
guidelinesfor its use with IBCL.

About Extended Memory

The baseline GPIB-CT comes with 64K bytes of dynamic RAM. 32K bytes
are used to store the IBCL system. The remaining 32K bytes are used by
the GPIB-CT default operating system as a serial input buffer, and by the
IBCL operating system as stack space and free dictionary area.

If the GPIB-CT was ordered with 256K bytes of RAM, an additional 192K
bytes of memory is available for use by the IBCL system. Thismemory is
referred to as extended memory, and can be used to store data and compiled
IBCL code. Extended memory isfor storage purposes only—BCL cannot
run outside of its 64K byteslogical address range.

Extended memory lies hidden from IBCL and is only accessible by
reprogramming the onboard Memory Management Unit (MMU). The
actual programming of the MMU israther complex, and is taken care of
automatically by the extended access words. The MMU is used to form the
upper address lines to map the logical 64K bytes address range of the GPIB-
CT into the 512K bytes physical address space. The physical memory map
of the GPIB-CT is shown in Figure D-1.

Notice that although the IBCL operating system appears to be operating in
memory ranging from location 0 to FFFFH, it is actually operating from
physical memory location 40000H to 4FFFFH. The MMU isloaded at
power-on with the values needed to form this offset. Extended RAM space
liesfrom physical locations 50000H to 7FFFFH.

© National Instruments Corp. D-1 GPIB-CT IBCL Reference Manual



Using Extended Memory Appendix D

/ NI610
0 0O.S.EPROM Operating System
7FFFH : 2DOOH
IBCL Operating Systen
and Core Dictionary*
(32K)
Additional EPROM
Not Used Space Available
for User-Created
Extended Dictionary
7FFFH
3FFFFH 0.S. \ariables | 40000H
RAM 40100H
40000H | (Corresponds td Reserved 40200H
(256K) | the Logical IBCL Operating System
Memory Map) .
AFFFFH and Dictionary
50000H 48000H
(320K) Serial Input
Buffer for
Extended Memory l NI1610
for users with
the 256K RAM T
GPIB-CT**
IBCL Stacks AFEEEH
7FFFFH
(512K)

* Copied into RAM at start-up.
** This space is useful for data storage only.

Figure D-1. Physical Memory Map

GPIB-CT IBCL Reference Manual D-2 © National Instruments Corp.



Appendix D Using Extended Memory

There are four IBCL words that are used to move data between extended
memory and the data stack. Thesewordsarel@ (long at), lc@ (long
character at), I! (long store), and Ic! (long character store). These words
program the MM U to allow access to any physical address space within the
system. They aso restore the MMU to its default condition after the
memory access is complete, so that normal operation may continue.

All extended access words use a double number on the top of the stack to
represent the physical address of the memory address to be accessed. For
example, to print the byte at physical memory location 65848H, you would
enter thisline:

hex 6.5848 Ic@ .<CR>

The period between the 6 and the 5 forms a double number of the address
on the stack. Notice that only addresses through location 7FFFFH are
supported. If alarger double number is supplied the unused upper bits of
the specified address will be truncated.

Although you could write to and retrieve any physical memory location
using these long words, it is suggested that you use @, c@, !, and c! to
access memory in the physical range of the IBCL system (40000H to
AFFFFH). These words are dightly faster, asthey do not require the
reprogramming of the MMU.

Y ou can a'so use extended memory as a buffer areafor GPIB read and write
operations. Both of these operations use the on-board DMA controller,
which bypassesthe MMU. Thisallows you to directly specify a starting
address for aDMA transfer anywhere in physical memory.

The upper address register of the DMA controller supplies the upper four
address lines during aDMA transfer. Thisiswhy it isonly necessary to
specify a 16-hit buffer address during GPIB read and write operations.
Normally this register is programmed at power-on by the operating system
to always DMA data within the IBCL address range (40000H to 4FFFFH).

The DMA upper address register can be changed at any time to allow DMA
transfers to take place within the extended memory space. Thisregister can
be changed by writing the new value of the upper 4 address bitsto 1/0 port
address 2AH.

© National Instruments Corp. D-3 GPIB-CT IBCL Reference Manual



Using Extended Memory Appendix D

For example, to read 8 bytes from GPIB device 3 to an extended memory
buffer starting at physical address 58000H, enter these lines:

52ap! ( change DMA address range to 50000H thru 5FFFFH )
380008 rd ( read 8 bytes from device 3 into offset 8000 )
42ap! ( restore DMA addressrange to IBCL space)

Notice that the last line restores the DMA controller upper address register
toitsoriginal default condition. Thisinsuresthat any future DMA
operations will be performed in IBCL space. This step can be omitted if
your next DMA operation is scheduled to use the same page in extended
memory. The DMA upper address register aswell as all datastored in
extended memory remain the same until the unit is powered-down or these
values are overwritten, even if you return to the GPIB-CT default operating
system and later come back to IBCL.

To print the 8 bytes received from GPIB device 3 in the previous example,
you can use the lc@ word as shown here:

: read_extended 8 0do 5.8000i s->d d+ Ic@ . loop ;

GPIB-CT IBCL Reference Manual D-4 © National Instruments Corp.



Appendix E

Other Useful IBCL Words

This appendix contains descriptions of IBCL words that are application-
specific. Theword description includes the purpose of the word, the kind of
parameters required for execution, and where the code expects any
incoming parameters. The fully commented programming examples that
follow the descriptions create dictionary words. Use these programming
examplesto add these words to the IBCL dictionary.

dump

dump takes an address followed by a byte count as its arguments from the
stack and displays the bytesin memory locations beginning with the
memory address on the stack. Values are generated in hex and printable
ASCII characters are also generated. Characters that are not printable (0 to
19 hex and 7F to FF hex) are displayed as a period. The byte count that is
the second argument is rounded up to an even 10 hex.

Programming Example

: dump
base @ rot rot

0do

cr dup hex

0

<HH#HHHH> type

100do

© National Instruments Corp.

( Memory dump)

( Store the current base)

( at bottom of stack)

( Loop from 0 to the count)
( specified)

( Duplicate the address)
(‘and change output base)
(to hex)

( Zero fill upper 16 bits)

( of double word)

( Convert address and)
(display it)

( Separate address from)

( contents with this)
(string.)

( Go from address through)
(10 addresses)

E-1 GPIB-CT IBCL Reference Manual



Other Useful IBCL Words
dup c@ dup ( Get the byte at the)
( address)
0 ( Zero fill upper 16 bits)
( of double word)
<# 20 hold # # #> type

> r>rot >r >r >r

1+
loop
100do

( Display A SCII code)
(of byte)

( Put copy of byte onto)
( return stack)
( Increment address)

r>r>r>rot rot >r >r

loop
5 spaces

100do
dup
20<

if

drop 2e

then
dup
Te>

if

drop 2e

then
emit
loop
10

+loop
drop cr

base !

GPIB-CT IBCL Reference Manual E-2

( Bring the bytes from the)
( return stack.)

(Insert 5 spaces into)
(‘output string)

( Duplicate byte)
( Check if less than 20)
(‘hex-unprintable)

(' If unprintable, replace)
('with a period)

( Duplicate byte)
( Check if greater than 7€)
(‘hex-unprintable)

(' If unprintable, replace)
('with a period)

( Display the byte)

( Increment address by 10)
(hex)

( Drop what would have)
( been the address of the)
('next row of the dump)

( Restore base)

Appendix E

© National Instruments Corp.



Appendix E

ud.

Other Useful IBCL Words

ud. removes the top double length number from the stack and displaysit as

unsigned in the current base.
Programming Example

;ud.
<# #s#> type

space

depth

( Unsigned double print)

( Convert to astring and)
(typeit out)

(Insert a space in output)
('string)

depth counts the number of words on the stack (prior to execution of the
word) and leaves the count as the top value on the stack.

Programming Example
: depth
L@
Q@

2-

2/

© National Instruments Corp.

( Count the depth of the)
( data stack)

( Put stack's origin)

( address on stack)

( Put current stack)

( address on stack)

( Get {depth + 2}*2)

( Compensate for length)
(' being on stack)

( Depth is distance)

( between address / 2)

E-3 GPIB-CT IBCL Reference Manual



Other Useful IBCL Words Appendix E

not

not performs the logical NOT of the value on the stack. Thisis an example
of redefining an existing IBCL word with a more meaningful name (the
IBCL word 0= performsthe logical NOT).

Programming Example

> not (Logica NOT function)
0= ( 0= provides the)
(logical NOT operation in)
(1BCL)

o>

0> checksif the word on the top of the stack has a value greater than zero.
If it does, a TRUE flag isleft on the stack. If itisnot, a FALSE isleft on
the stack.

Programming Example

0> ( Zero greater)
-dup 0= ( Duplicateif not zero)
( the number to be checked)
(then compare it to zero)
if ( If number tested was)
( zero, put false flag on)
( the stack)

dse
o< ( Determine whether number)
(is<0)
not ( Get thelogical NOT of)

(theflag)
then

GPIB-CT IBCL Reference Manual E-4 © National Instruments Corp.



Appendix E Other Useful IBCL Words

binary

binary sets the I/0 base to binary, in the same way that decimal and hex set
the 1/0 base to decimal and hexadecimal respectively.

Programming Example

: binary (Set1/O baseto 2)
[ decimal | 2 base!
( Store a2 inthe)
( base user variable)

octal

octal setsthe I/O baseto binary, in the same way that decimal and hex set
the 1/0 base to decimal and hexadecimal respectively.

Programming Example
: octal (Set 1/0 baseto 8)
[ decimal | 8 base!

( Store an 8 in the base)
(user variable)

msa

msa takes its arguments on the stack a primary address with a secondary
addresson top. It formulates the single word necessary to use with any
GPIB word requiring a device address as a parameter. Use the word like
this:

23 ( primary) 67 ( secondary) msa caddr
or likethis:

23 ( primary) 67 ( secondary) msaclr

© National Instruments Corp. E-5 GPIB-CT IBCL Reference Manual



Other Useful IBCL Words

Programming Example

s msa
1f and

100*

8000 or

or

S

Appendix E

( Make secondary address)
( AND out unnecessary)

( bitsin sec. addr)

( Only lower 5 bhits make)
('up an address)

( Shift the secondary)
(addressinto the low 5)

( bits of the high order)
(byte)

( Set the upper bit to)
(indicate the presence of)
(asecondary address)

( Put in the primary)

( address)

.sdisplays the contents of the stack non-destructively. In this example, the
program prints the contents as unsigned words. If you want the contents to
be displayed differently, change cr i @ u. accordingly (for example, cri @ .

for asigned stack display).
Programming Example
.S
D@
P@-2-
-dup 0=

( Show the stack)

( Get number of words on)
( the stack)

( Duplicate the length if)
('not zero and check if)
(‘equal to zero)

cr." EMPTY STACK"

dse
2+

GPIB-CT IBCL Reference Manual E-6

( Tell user no data on the)
(stack)

( Increment word count)
(by?2)

© National Instruments Corp.



Appendix E

pick

Other Useful IBCL Words

( Get do loop limit-this)
(isthe highest stack)
(address plus 2)

( Get beginning address)

( Get current address)
( Get what's at that)

( address)

( Display the value)

( Loop again-loop index)
(‘now at next stack word)

pick takes asits parameter the top word on the stack. Thisword is treated
as an index into the stack. pick copiesthe value at that index onto the top of
the stack. If the stack is not deep enough to have a corresponding value on
it, no error message is printed, nothing is put on the stack, and the word

aborts, causing the stack to be reset.

Programming Example

: pick

dup
depth 2 -

drop

abort
dse
2 *

© National Instruments Corp.

( Pick the number from the)
( stack and duplicateit)
(‘on the top of the stack)
( Duplicate top number -)
(index into stack)

( Get depth of stack - 2)

( because of the extra)

( count on top)

( Check if the requested)
( element exists on the)
(stack)

( Remove duplicate index)
(into stack)
( Stop executing)

( Convert byte index to)
('word index)

E-7 GPIB-CT IBCL Reference Manual



Other Useful IBCL Words

@

+

@

then

roll

Appendix E

( Get current stack)
(location)

( Get address of desired)
( stack location)

( Get value stored there)

roll takes asits parameter the top word on the stack. Thisword istreated as
an index into the stack. roll puts the value at that index onto the top of the
stack, removing it from its present location in the stack. If the stack is not
deep enough to have a corresponding value on it, no error message is
printed, nothing is put on the stack, and the word aborts, causing the stack

to bereset.

Programming Example

2 roll

dup
depth 1 -
>
if
drop
abort
dse
dup dup >r >r
pick
>
0do

r>r>

GPIB-CT IBCL Reference Manual E-8

( Put avalue from the)
(stack on top of stack)

( Duplicate stack index)

( of element wanted)

( Get true depth-disregard)
(the extraindex)

( Check if stack is deep)
(‘enough)

( Remove the extraindex)
( Stop executing the word)

( Duplicate index and)

( store on return stack)
(twice)

( Get acopy of the)

( desired value)

( Get one of the indexes)
( from the return stack)
(doloop limit)

( Bring the do loop cnt)

(‘and limit from the)
(‘return stack)

© National Instruments Corp.



Appendix E

rot

[

swap

> >r >r >r

loop

drop
r>0do

r>r>r>
rot

rot
>r>r

loop
then

© National Instruments Corp.

Other Useful IBCL Words

( Put the value that was)
(top value on stack)

( before r> r> onto top)

( Bring over last index)
(from return stack)

( Swap it with the value)
(that was rotated up from)
(the data stack)

( Put al values on return)
( stack-value from stack,)
(index, do limit, do)

( count)

( Do this until we get to)
(wherethe value is on)

( the stack that we rolled)
(up)

( Remove that value)

( Get the index-do loop)
(limit)

( Bring over do limit, do)
( count and stack value)

( Put the do limit on top)
( Put the do count on top)
( Put these two back on)

( the return stack-leaving)
(the data value on the)

( data stack)

E-9 GPIB-CT IBCL Reference Manual



Other Useful IBCL Words Appendix E

decom

decom decompiles aword which is composed of other IBCL words, such as
aword defined in a colon definition. 1t goes through the definition of the
word specified and prints each component word's name. Use thisword in
this form:
decom <dname>
where dnameis a defined word.
There are afew limitations to this word:
e |t cannot decompile a machine code primitive
e Ifawordhasa." or " followed by ASCII data, this program
continues trying to decompile the ASCII data. This might cause
IBCL to crash. If IBCL does not crash, the output of this type of
operation will look strange.

Even with these restrictions, it is a useful word if you have forgotten
what you have previously entered as aword's definition.

Programming Example

: decom ( Decompile an IBCL word)
[compil€] * cr ( Get the pfa of the)
( requested word)
dup cfa@ ( Get the address of the)
(first word composing its)
( definition)

['task cfa@] litera
( Compileinto the)
( definition the value of)
(‘aknown non-machine)
( coded IBCL word)
= ( Check to seeif the word)
(‘asked for is a machine)
( coded word, variable,)
( constant, or a colon)
( definition)

GPIB-CT IBCL Reference Manual E-10 © National Instruments Corp.



Appendix E Other Useful IBCL Words

begin ( Theword is composed of)
(‘other IBCL words-NOT)
(- machine coded)

dup 2+ swap ( Get address of next)
( component word and store)
(‘at bottom of the stack)

@ ( Get the cfa of component)
(‘word)

dup 2+ ( Convert to pfaof)
( component word)

nfa ( Convert to nfa of)
( component word)

id. cr ( Display the name of the)
(' word whose nfais on the)
(stack)

";scfa ( Get the cfa of the word)

(that hasto complete a)
( colon definition)
= until ( Keep decompiling until)
(thisword is reached)
drop ( Remove the address which)
(' was the next component)
(word)
(in the requested word's)
(pfalist)
ese
cr. "Machine Code Primitive"
( Display message)
then

cls

cls clears the screen on many terminals by emitting an ASCII 1A hex
(decimal 26), or <CTRL -z>, which clears many terminal screens.

© National Instruments Corp. E-11 GPIB-CT IBCL Reference Manual



Other Useful IBCL Words Appendix E

Programming Example

:cls ( Clear the terminal)
(screen)
laemit ( Ctrl-z character)

Redefining the Basic IBCL Mathematical
Operatorsto Use Infix Notation

These five examples show how you can redefine the basic IBCL
mathematical operatorsto useinfix notation. These examples are very
simple. They work on only 2 operands, must have an = entered after each
expression (for example, 3+4=+5=.insteadof 3+4+5=.), and
execute from left to right. Precedence rules are obeyed only if you enter the
expression in the correct order.

Programming Examples
Redefining =

i= ( Redefinition of IBCL =)
rot execute ( Leaves on the stack the)
(‘result from the)
( operation whose cfais)
(‘under the 2 operands)

Redefining +

T+ ( Redefinition of IBCL +)
[+ cfa] literal swap
( Putsthe cfa of the IBCL)
(+ on the stack and swaps)
(it with thefirst)

(‘operand)

GPIB-CT IBCL Reference Manual E-12 © National Instruments Corp.



Appendix E

Redefining -

["-cfa] literal swap

Redefining *
%

['* cfa] literal swap

Redefining /

)
['/cfa] literal swap

© National Instruments Corp.

Other Useful IBCL Words

( Redefinition of IBCL -)

( Putsthe cfaof the IBCL)
( - on the stack and swaps)
(it with thefirst)

( operand)

( Redefinition of IBCL *)

( Putsthe cfaof the IBCL)
(* onthe stack and swaps)
(it with thefirst)

(‘operand)

( Redefinition of IBCL /)

( Putsthe cfa of the IBCL)
(/ on the stack and swaps)
(it with the first)

( operand)

E-13 GPIB-CT IBCL Reference Manual



Appendix F
Glossary of IBCL Functions

This appendix contains alist of commonly used IBCL wordsand a
description of each. The definitions are divided into two parts-GPIB
Glossary, which contains GPIB-related IBCL functions, and Sandard
Glossary, which contains al other IBCL words.

Glossary Conventions

Table F-1 contains the conventions that are used throughout this glossary.

Table F-1. Glossary Conventions

Abbreviation M eaning

addr avalue representing a memory address
b avalue representing an 8-hit byte
c avalue representing an 7-bit ASCII code
d a 32-bit signed double number
f aBoolean value (0=FALSE, not 0 = TRUE)
gaddr avalue representing a GPIB device address
n a 16-bit signed integer
ud a 32-bit unsigned doubl e number
un a 16-bit unsigned integer

GPIB Glossary

Table F-2 contains alisting of the IBCL GPIB extensions. For a detailed
description of each word in the GPIB glossary, refer to Chapter 3, GPIB
Extensions.

Table F-2. GPIB Glossary

Word Stack
brd addr un —
bwr t addr un —
cac f —

(continues)

© National Instruments Corp. F-1 GPIB-CT IBCL Reference Manual



Glossary of IBCL Words Appendix F

Table F-2. GPIB Glossary (continued)

Word Stack

caddr gaddr —
clr gaddr —
crd addr un —
€0s un —

eot f —

gts f —

i st f —

| oc gaddr

onl f -

pct gaddr —

ppc gaddr b —
rd gaddr addr un —
rpp - b

rsc f —

rsp gaddr — n
rsv b —

sic

sre f —

st at — un n

t mo b —

trg gaddr —
wai t un —

Wt gaddr addr un —

Standard Glossary

All IBCL words other than the IBCL GPIB extensions are listed here.
Because IBCL words can contain non-al phanumeric characters, the words
in this glossary are arranged in the order that the characters appear in the
ASCII chart of Appendix A, Multiline Interface Messages:

I"#BUR' () *+,-./0123456789: ; <=
>?@bcdef ghi j kl mopgr st uvwxyz[\]

Word: !

Stack: n addr —
Description: Storevalue n at address addr . Called "store.”

GPIB-CT IBCL Reference Manual F-2 © National Instruments Corp.



Appendix F

Word:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

lcsp
Save the stack positionin csp. Used as part of the
compiler security.

Usedintheform " cccc" wherecccc isdatato be
written over the GPIB or to be sent as commands over the
GPIB. " compilesanin-linestring cccc (delimited by
thetrailing " ) with an execution procedure that places the
addr and n on the stack that is required forwrt orcnd.
If executed outside a definition, " immediately places the
addr andn on the stack.

#

dli — d2

Generate from a double number d1 the next ASCII
character which is placed in an output string. Result, d2,
isthe quotient after division by base, and is maintained
for further processing. Used between <# and #>. See
#s.

#>

d — addr count

Terminates numeric output conversion by dropping d,
leaving the text address and character count suitable for

type.

#s

dl — d2

Generates ASCII text in the text output buffer, by the use
of the #, until azero double number d2 results. Used
between <# and #>.

F-3 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:

Description:

GPIB-CT IBCL Reference Manual F-4

Appendix F

-
Used in the form:

nnnn

L eaves the parameter field address of dictionary word
nnnn. Asacompiler directive, executesin acolon-
definition to compile the address as a literal. If the word
is not found after asearch of cont ext andcurrent ,
an appropriate error messageis given. Called "tick."

(
Used in the form:

( cccc)

Ignore a comment that will be delimited by a close
parenthesis on the same line. May occur during execution
or in acolon-definition. A blank after the leading
parenthesisis required.

(.")
The run-time procedure, compiled by . " , which transmits
the subsequent in-line text to the serial port. See. " .

(+l oop)
n —

The run-time procedure compiled by +I oop, which
increments the loop index by n and tests for loop
completion. See+l oop.

(abort)

Executes after an error when war ni ng is-1. Thisword
normally executes abor t , but may be changed (with
care) to auser's dternative procedure.

(do)

The run-time procedure compiled by do which movesthe
loop control parameters to the return stack. See do.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

(dq)
-

The run-time procedure compiled by " which putsthe
addr and n on the stack asrequired for bwt ,wt and
cnd. See".

(find)

addrl addr2 — pfabt f (ok)
addrl addr2 — f (bad)
Searches the dictionary starting at the name field address
addr 2, matching to thetext at addr 1. Returns
parameter field address, length byte of name field, and
boolean TRUE for agood match. If no match isfound,
only aboolean FALSE is|eft.

(1 oop)
The run-time procedure compiled by | oop which

increments the loop index and tests for loop completion.
Seel oop.

(nunber)

dl addrl — d2 addr2

Convert the ASCI| text beginning at addr 1+1 with
regard to base . The new valueisaccumulated into
double number d1, being left asd2. addr 2 isthe
address of the first unconvertible digit. Used by nunber .

*

ni n2 — n3
Leave the signed product, n3, of two signed numbers.

*/

ni n2 n3 — n4

Leavetheration4 = nl*n2/ n3 whereal are signed
numbers. Retention of an intermediate 31 bit product
permits greater accuracy than would be available with the
sequence:

ni n2 * n3 /

F-5 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

GPIB-CT IBCL Reference Manual F-6

Appendix F

* [ nmod

ni nZ n3 — n4 n5

Leave the quotient N5 and remainder n4 of the operation
n1*n2/ n3. A 31 hitintermediateisused asfor */ .

+
ni n2 — n3
Leavethe sum n3 of n1+n2.

+
n addr —
Add n to the value at the address. Called "plus-store.”

+
ni n2 — n3
Leave n3, with magnitude of nl1 and sign of n1*n2.

+l oop

nli — ( run)

addr n2 — (compile)

Used in a colon-definition in the form:

do ... nl +loop

At run-time, +| oop selectively controls branching back
to the corresponding do based onnl, theloop index and
theloop limit. The signed increment nl is added to the
index and the total compared to the limit. The branch
back to do occurs until the new index is equal to or
greater than the limit (n1>0), or until the new index is
equa to or lessthan the limit (n1<0). Upon exiting the
loop, the parameters are discarded and execution
continues ahead.

At compiletime, +l oop compiles the run-time word
(+1 oop) and the branch offset computed from her e to
the address |eft on the stack by do. n2 isused for
compile time error-checking.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

+origin

n — addr

Leave the memory address with arelative offset of n to
the origin parameter area. n isthe byte number; that is, to
access the fourth word in the origin area, you would
specify n to be 6. This definition is used to access or
modify the boot-up parameters at the origin area.

n —-
Store n into the next available dictionary memory cell,
advancing the dictionary pointer. Called "comma."

nil n2Z — n3
Leavethe difference of n1- n2 asn3.

-dup

ni — nl (if zero)

nl — nl nl1 (non-zero)

Reproduce n1 only if it isnon-zero. Thisisusually used
to copy avalue just beforei f , to eliminate the need for
an el se todropit.

-find
— pfa b f (f ound)
— f (not found)

Accepts the next text word (delimited by blanks) in the
input stream to her e, and searchesthe cont ext and
then cur r ent vocabularies for amatching entry. If
found, the dictionary entry's parameter field address, its
length byte, and aboolean TRUE isleft. Otherwise, only
aboolean FALSE is|eft.

-trailing

addr nl1 — addr n2

Adjusts the character count n1 of atext string beginning
at addressaddr to suppress the output of trailing blanks.
For example, the characters at addr +n1 to addr +n2
are blanks.

F-7 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

GPIB-CT IBCL Reference Manual F-8

Appendix F

n —

Print a number from asigned 16-bit two's complement
value, converted according to the numeric base. A
trailing blank follows. Called "dot."

U$d in the form:

cccc”

Compilesanin-linestring cccc (delimited by the trailing
") with an execution procedure to transmit the text to the
serial port. If executed outside a definition, . " will
immediately print the text until thefinal " . See(. ") .

T
nl n2 —

Print the number nl right aligned in afield whose width
isn2. No following blank is printed.

/
nl n2 — n3
Leave the signed quotient of n1/ n2 asn3.

/ mod

nl n2 — n3 n4

Leave the remainder n3 and signed quatient n4 of
nl/ n2. Theremainder hasthe sign of the dividend.

0123

—n

These small numbers are used so often that it is helpful to
define them by name in the dictionary as constants.

0<

n — f

Leave a TRUE flag if the number isless than zero
(negative), otherwise leave a FAL SE flag.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

0=

n — f

Leave a TRUE flag if the number is equal to zero,
otherwise leave a FAL SE flag.

Obranch

f —

The run-time procedure to conditionally branch. If f is
FALSE (zero), the following in-line parameter is added to
the interpretive pointer to branch ahead or back.
Compiledbyi f ,until ,and while.

1+
nl — n2
Incrementnl by 1.

2!
d addr —
Store the double number d beginning at addr .

2+
nl — n2
Increment n1 by 2.

2@

addr — d

Leave the 32-bit contents of address addr on the stack.
2dup

d— dd

Duplicate the top double number on the stack.

F-9 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words Appendix F

Word:
Description:

Word:
Description:

Word:
Description:

Word:
Stack:
Description:

Word:
Description:

Um in the form called a colon-definition:
cccc . ;

Creates adictionary entry defining cccc asequivalent to
the following sequence of IBCL word definitions ' . . .
until thenext"' ;' .

The compiling process is done by the text interpreter as
long asst at e isnon-zero. Other details are that the
cont ext vocabulary is set tothecur r ent vocabulary
and that words with the precedence bit set (see

i mredi at e) are executed rather than being compiled.

Terminate a colon-definition and stop further compilation.
Compilestherun-timeword ; s.

S
; S isthe run-time word compiled at the end of acolon-
definition which returns execution to the calling
procedure.

<

nl n2 — f

Leavea TRUE flagif n1 islessthan n2; otherwise leave
aFALSE flag.

<#
Setup for pictured numeric output formatting using the
words:

<# # #s sign #>

The conversion is done on a double number producing
text at pad.

GPIB-CT IBCL Reference Manual F-10 © National Instruments Corp.



Appendix F

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

<bui | ds
Used within a colon-definition:

cccc <bui | ds
does> .. :

Each time cccc isexecuted, <bui | ds definesanew
word with a high-level execution procedure.

Executing cccc intheform:
cccce nnnn

uses <bui | ds to create adictionary entry for nnnn with
acall to the does> part for nnnn.

When nnnn islater executed, it has the address of its
parameter area on the stack and executes the words after
does> incccc.

nl n2 — f
Leavea TRUE flag if n1=n2; otherwise leave a FALSE

flag.

>

nl n2 — f

Leavea TRUE flagif n1 isgreater than n2; otherwise
leave a FAL SE flag.

>r

n —

Removes a number from the computation stack and places
it as the most accessible on the return stack. Use should
be balanced with r > in the same definition. Called "to-
R" Alsoseer> andr .

?

addr —

Print the value contained at the address in free format
according to the current base.

F-11 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Description:

Word:
Description:

Word:
Stack:
Description:

Word:
Description:

Word:
Stack:
Description:

Word:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Description:

Word:
Stack:
Description:

GPIB-CT IBCL Reference Manual F-12

Appendix F

?conp
Issue error message if not compiling.

?csp
Issue error message if stack position differs from value
saved in csp.

?error

f n—

Issue an error message number n, if the boolean flag is
TRUE.

?exec
Issue an error message if not executing.

?pairs

nl n2 —

Issue an error message if N1 doesnot equal n2. The
message indicates that compiled conditionals do not
match.

?st ack
Issue an error message if the stack is out of bounds.

?term nal

— f

Perform atest of the serial port to seeif acharacter has
been sent. A TRUE flag indicates that a character has
been sent.

@

addr — n
Leave the 16-bit contents of address addr on the stack.

abort
Clear both the computation stack and the return stack.
Return control to the operators terminal.

abs

n —u
Leave the absolute value of n asu.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

agai n

addr n — (conpiling)

Used in a colon-definition in the form:
begi n again

At run-time, agai n forces execution to return to the

corresponding begi n. Thereisno effect on the stack.

Notice that thisis an infinite loop structure and execution

cannot leave thisloop (unless r > dr op isexecuted one
level below).

At compiletime, agai n compilesbr anch with an
offset from her e to addr . n isused for compile-time
error-checking.

al | ot

n —

Add the signed number to the dictionary pointer dp. May
be used to reserve dictionary space or re-origin memory.

and
nl n2 — n3
Leave the bitwise logical AND of n1 andn2 asn3.

back

addr —

Calculate the backward branch offset from her e to
addr and compile into the next available dictionary
memory address.

base

— addr

A user variable containing the current number base used
for input and output numerical conversion.

F-13 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Description:

Word:
Description:

Word:
Stack:
Description:

GPIB-CT IBCL Reference Manual F-14

Appendix F
begi n
— addr n (conpiling)
Occursin a colon-definition in the form:
begi n until
begi n again
begi n whil e r epeat

At run-time, begi n marks the start of a sequence that
may be repetitively executed. It serves as areturn point
from the correspondingunt i | , agai n, or r epeat .
When executing unt i | , areturnto begi n will occur if
the top of the stack isFALSE. For agai n andr epeat ,
areturn to begi n always occurs.

At compiletimebegi n leavesits return address and n
for compiler error-checking.

bl
— C
A constant that |eaves the ASCII value for "blank."

bl anks

addr n —

Fill an area of memory beginning at addr with blanks for
n bytes.

branch

The run-time procedure to unconditionally branch. Anin-
line offset is added to the interpretive pointer to branch
ahead or back. br anch iscompiled by el se, agai n,
repeat .

bye

Exit IBCL to the GPIB-CT default operating system.
c!

b addr —

Store 8 bitsat addr .

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:

Description:

© National Instruments Corp.

Glossary of IBCL Words

c!

b —

Store 8 bits of b into the next available dictionary byte,
advancing the dictionary pointer.

c/|

— n

A constant leaving the number of characters per source
code screen line.

c@
addr — b
Leave the 8-bit contents of addr .

cfa

addr1l — addr2

Convert the parameter field addressaddr 1 of aword to
its code field address addr 2.

cnove

addrl addr2 n —

Move n bytes beginning at address addr 1 to address
addr 2. The contents of addr 1 ismoved first and
proceeds toward high memory.

cold

The cold start procedure to adjust the dictionary pointer to
the minimum standard and restart via abort . May be
called to remove application programs and restart.

conpi l e

When the word containing conpi | e executes, the
execution address of the word following conpi | e is
copied (compiled) into the dictionary. Thisalows
specific compilation situations to be handled in addition
to simply compiling an execution address (which the
interpreter already does).

F-15 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words Appendix F

Word: const ant
Stack: n —
Description: A defining word used in the form:

n constant cccc
to create word cccc, with its parameter field containing

n. When cccc islater executed, it will push the value of
n onto the stack.

Word: cont ext
Stack: — addr
Description: A user variable containing a pointer to the vocabulary

within which dictionary searches will first begin.

Word: count
Stack: addrl1 — addr2 n
Description: Leavethe addressaddr 2 and byte count n of text

beginning at address addr 1. It ispresumed that the first
byteat addr 1 contains the text byte count and the actual
text starts with the second byte. Typically count is
followed by t ype.

Word: cr
Description: Transmit a carriage return and linefeed to the serial port.
Word: create

Description: A defining word used in the form:
create cccc
to create adictionary header for an IBCL definition. The

code field contains the address of the word's parameter
field. The new word is created in the cur r ent

vocabulary.
Word: csp
Stack: —> addr
Description: A user variable temporarily storing the stack pointer

position, for compilation error-checking.

GPIB-CT IBCL Reference Manual F-16 © National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

© National Instruments Corp.

Glossary of IBCL Words

current

— addr

A user variable containing a pointer to the vocabulary
within which new dictionary words will be entered.

d+

dl d2 — d3

Leave the double number sum d3 of two double numbers
dl + d2.

d+-
di n — d2
Leave d2, with magnitude of d1 and sign of n*d1.

d.

d =

Print a signed double number from a 32-bit two's
complement value. The high-order 16 bits are most
accessible on the stack. Conversion is performed
according to the current base. A blank follows. Called
"D-dot.”

d.r

dn—

Print a signed double number d right aligned in afield n
characters wide.

dabs
d — ud
Leave the absolute value ud of a double number d.

deci nal

Set the numeric conversion base for decimal input-
output.

F-17 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words Appendix F

Word: definitions
Description: Used in the form:

cccc definitions

Setthe cur r ent vocabulary to the cont ext
vocabulary. Inthe example, executing vocabulary name
cccc madeitthecont ext vocabulary and executing
def i ni ti ons made both specify vocabulary cccc.

Word: digit
Stack: c nl - n2 f (ok)
c nl —f (‘bad)
Description: Convertsthe ASCII character ¢ (using basenl) toits

binary equivalent n2, accompanied by a TRUE flag. If
the conversion isinvalid, leaves only a FAL SE flag.

Word: dliteral
Stack: d —d (executi ng)
d — (compi ling)
Description: If compiling, compile a stack double number into aliteral.

Later execution of the definition containing the literal will
push it to the stack. If executing, the number will remain

on the stack.

Word: dm

Stack: addr un —

Description: dl misabinary input word. dl mdownloads from the
host directly to the GPIB-CT memory un bytes starting at
addr .

Word: dm nus

Stack: dl — d2

Description: Convert d1 to its double number two's complement.

GPIB-CT IBCL Reference Manual F-18 © National Instruments Corp.



Appendix F
Word:
Stack:

Description:

Word:
Description:

Word:
Stack:
Description:

Glossary of IBCL Words

do
nl n2 --- (execut e)
addr n --- (conmpil e)
Occurs in a colon-definition in the form:
do ... loop
do ... +loop

Atrun-time, do begins a sequence with repetitive
execution controlled by aloop limit n1 and an index with
initial value n2. do removes these from the stack. Upon
reaching | oop, theindex isincremented by one. Until
the new index equals or exceeds the limit, execution loops
back to just after do; otherwise the loop parameters are
discarded and execution continues ahead. Both n1 and
n2 are determined at run-time and may be the result of
other operations. Withinaloop i will copy the current
value of the index to the stack. Also seei , | oop,

+l oop, | eave.

When compiling within the colon-definition, do compiles
(do) , which leaves the following addressaddr andn
for later error-checking.

does>

A word which defines the run-time action within a high-
level defining word. does> altersthe code field and first
parameter of the new word to execute the sequence of
compiled word addresses following does>. Usedin
combination with <bui | ds. When the does> part
executes, it begins with the address of the first parameter
of the new word on the stack. This allows interpretation
using thisarea or its contents. Typical usesinclude multi-
dimensiona arrays, and compiler generation.

dp

— addr

A user variable, the dictionary pointer, which contains the
address of the next free memory above the dictionary.

The value may beread by her e and altered by al | ot .

© National Instruments Corp. F-19 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

GPIB-CT IBCL Reference Manual F-20

Appendix F

dpl

—> addr

A user variable containing the number of digitsto the
right of the decimal on double integer input. It may also
be used to hold output column location of a decimal point
in user generated formatting. The default value on single
number input is-1.

drop
n —-
Drop the top number from the stack.

dup
n—nn
Duplicate the top value on the stack.

el se
addrl1 nl — addr2 n2 (conpiling)
Occurs within a colon-definition in the form:

if ... else endi f
Atrun-time, el se executes after the TRUE part
followingi f . el se forces execution to skip over the

following FAL SE part and resumes execution after the
endi f . It has no stack effect.

At compile-time, el se compilesbr anch reserving a
branch offset and leaves the address addr 2 and n2 for
error-checking. el se aso resolves the pending forward
branch from i f by calculating the offset from addr 1 to
her e and storing at addr 1.

emt
c —

Transmit the ASCII character ¢ to the serid port. out is
incremented for each character output.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

encl ose

addrl ¢ — addrl nl1 n2 n3

The text scanning primitive used by wor d. From the text
addressaddr 1 and an ASCII delimiting character c, is
determined the byte offset to the first non-delimiter
character n1, the offset to the first delimiter after the text
n2, and the offset to the first character not included. This
procedure will not process past an ASCII null, treating it
as an unconditional delimiter.

end
Thisisaduplicate definition for unt i | .

endi f
addr n — (conpile)
Occurs in a colon-definition in the form:

if ... endif
if ... else endi f

Atrun-time, endi f servesonly asthe destination of a
forward branch from i f or el se. It marksthe
conclusion of the conditional structure. t hen isanother
nameforendi f . Seealsoi f andel se.

At compile-time, endi f computes the forward branch
offset fromaddr to here and storesitataddr . nis
used for error-checking.

erase

addr n —

Clear aregion of memory to zero from address addr
over n addresses.

error
n —

Execute error notifications and restart of system.

war ni ng isfirst examined. If war ni ng isaOor1, nis
printed as a message number. If war ni ng isa-1, the
definition (abort) isexecuted, which executesthe
systemabort . The user may cautiously modify this
execution by altering (abort) . Fina actionis
execution of qui t .

F-21 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:

Description:

GPIB-CT IBCL Reference Manual F-22

Appendix F

execut e

addr —

Execute the definition whose code field address is on the
stack. The code field addressis also called the
compilation address.

expect

addr n —

Transfer characters from the serial port to address addr
until areturn or the count of n characters have been
received. One or more nulls are added at the end of the
text.

fence

— addr

A user variable containing an address addr below which
f or get ting istrapped. To forget below this point, the
user must alter the contents of f ence.

fill

addr n b —

Fill memory at the addressaddr with the specified
quantity, n, of bytesb.

f or get
Executed in the form:

forget cccc

Deletes definition named cccc from the dictionary with
all entries physically following it. An error message will
occur if thecur rent and cont ext vocabulariesare
not currently the same.

here

—> addr

L eave the address of the next available dictionary
location.

hex
Set the numeric conversion base to sixteen (hexadecimal).

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

hl d

—> addr

A user variable that holds the address of the latest
character of text during numeric output conversion.

hol d

c —

Used between <# and #> to insert an ASCII character
into a pictured numeric output string. For example, 2E
hol d will place adecimal point.

i

—n

Used withinado- | oop to copy the loop index to the
stack. Alsoseer.

i bel

The name of the primary vocabulary. Execution makes
i bcl thecont ext vocabulary. Until additional user
vocabularies are defined, new user definitions become a
part of i bcl . i bcl isimmediate, soit will execute
during the creation of a colon-definition to select this
vocabulary at compile time.

id.
addr —
Print a definition's name from its name field address.

F-23 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words Appendix F

Word: if
Stack: f — (run-tinme)
— addr n (conmpil e)
Description: Occursin acolon-definition in the form:;
if (true part) ... endif
if (true part) ... else (false part) ... endif

Atrun-time, i f selects execution based on a boolean flag.
If f isTRUE (non-zero), execution continues ahead
through the TRUE condition. If f is FALSE (zero),
execution skips until just after el se to execute the
FALSE condition. After either condition, execution
resumes after endi f . el se and its FALSE condition
are optional; if missing, FAL SE execution skipsto just
after endi f .

At compile-timei f compilesObr anch and reserves
space for an offset at addr . addr andn are used later
for resolution of the offset and error-checking.

Word: i mredi at e

Description: Mark the most recently created definition so that when
encountered at compiletime, it will be executed rather
than being compiled. In other words, the precedence bit
inits header isset. This method allows definitions to
handle unusual compiling situations, rather than build
them into the fundamental compiler. The user may force
compilation of an immediate definition by preceding it

with [ conpi | e] .
Word: in
Stack: — addr
Description: A user variable containing the byte offset within the

current input text buffer from which the next text will be
accepted. wor d uses and movesthevaueof i n.

GPIB-CT IBCL Reference Manual F-24 © National Instruments Corp.



Appendix F

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

i nterpret

The outer text interpreter which sequentially executes or
compiles text from the serial port dependingon st at e.

If the word name cannot be found after a search of the
cont ext andthenthe current vocabulary, itis
converted to a number according to the current base. That
also failing, an error message echoing the name with a

" 2" will begiven. Text input will be taken according to
the convention for wor d. If adecimal point isfound as
part of a number, adouble number value will be left. The
decimal point has no other purpose than to force this
action. Also see nunber .

key

— C

Leave the ASCII value of the next seria character
received.

[
nd —
Stores value n at address specified by the doubled.

| @

d —=n

L eave the 16-bit contents of the memory addressed by d
on the stack.

| at est

—> addr

Leave the name field address of the topmost word in the
current vocabulary.

[ c!
bd —
Store 8 bits of b at address specified by the doubled .

lc@

d = b

L eave the 8-hit contents of the memory addressed by d on
the stack.

F-25 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words Appendix F

Word:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

| eave

Force termination of a do- | oop at the next opportunity
by setting the loop limit equal to the current value of the
index. Theindex itself remains unchanged, and execution
proceeds normally until | ocop or +l oop is encountered.

Ifa

pfa — Ifa

Convert the parameter field address of adictionary
definition to itslink field address.

limt

- u

A constant leaving the address of the highest system
memory available.

it

—n

Within a colon-definition, | i t isautomatically compiled
before each 16-bit literal number encountered in input
text. Later executionof | i t causesthe contents of the
next dictionary address to be pushed to the stack.

literal

n —

If compiling, then compile the stack valuen as a 16-bit
literal. Thisdefinition isimmediate so that it will execute
during a colon-definition. The intended useis:

XXX [ calculate ] literal ;
Compilation is suspended for the compile time calculation

of avalue. Compilationisresumedand | it er al
compilesthisvalue.

GPIB-CT IBCL Reference Manual F-26 © National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

| oop
addr n — (conpiling)
Occurs in a colon-definition in the form:

do ... loop

At run-time, | oop selectively controls branching back to
the corresponding do based on the loop index and limit.
Theloop index isincremented by one and compared to
the limit. The branch back to do occurs until the index
equals or exceeds the limit; at that time, the parameters
are discarded and execution continues ahead.

At compile-time, | oop compiles (| oop) and uses
addr tocaculatean offsettodo. nisused for error-
checking.

mf

nlin2 - d

A mixed magnitude math operation which leaves the
signed double number product of two numbers.

i

d n1 - n2 n3

A mixed magnitude math operator which leavesthe
signed remainder n2 and signed quotient n3 from a
double number dividend d and divisor n1. The
remainder takes its sign from the dividend.

m nod

udl u2 — u3 wud4

An unsigned mixed magnitude math operation which
leaves adouble quotient ud4 and remainder u3 froma
double dividend ud1 and single divisor u2.

nmax

nl n2 — n3
L eave the greater of two numbers.

F-27 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

GPIB-CT IBCL Reference Manual F-28

Appendix F

nmessage
n —

Prints MBG# n. n may be positive or negative.
nessage could be used to alert auser of acondition,
provided the user knows what each message number
represents.

mn
nl n2 —- n3
Leave the smaller of two numbers.

m nus
nl — n2
L eave the two's complement of a number.

nod
nl n2 —- n3
Leavetheremainder of n1/ n2, with the same signasnl.

nf a

pfa — nfa

Convert the parameter field address of aword to its name
field address.

nunber

addr — d

Convert a character string left at addr to asigned double
number using the current numeric base. The string
consists of the characters for conversions preceded by a 1-
byte count of characters to convert followed by a blank
(hex 20). If adecimal point is encountered in the text, its
position will be given in dpl, with no other effect. If a
numeric conversion is not possible, error message 0 will
be given.

or
nl n2 — n3

Leave the bit-wise logical inclusive-OR of two 16-bit
values.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

out

—addr

A user variable that contains a value incremented by
em t . Theuser may alter and examine out to control
display formatting.

over
nl n2 — nl1 n2 nl
Duplicates the second element on the stack.

p!
b addr —
p! placeb into1/O addr . Pronounced "P-store.”

p@
addr - b
p@readsb from /O address addr . Pronounced "P-at."

pad

—> addr

Leave the address of the text output buffer, which floats at
afixed offset above here.

pf a

nfa — pfa

Convert the name field address of aword to its parameter
field address.

query

Input 80 characters of text (or until areturn) from the
serial port. Text ispositioned at the address contained in
tib within settozero.

qui t
Clear the return stack, stop compilation, and return
control to the operator'sterminal. No ok messageis sent.

r

—n
Copy the top of the return stack to the computation stack.

F-29 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

GPIB-CT IBCL Reference Manual F-30

Appendix F

r>
—n

Pops the top value from the return stack and pushesiit
onto the computation stack. Called "R-from." Also see
> andr .

ro

—> addr

A user variable containing the initial location of the return
stack. Called "R-zero." Alsoseer p!

r epeat

addr n — (conpiling)

Used within a colon-definition in the form:
begi n whil e repeat

At run-time, r epeat forcesan unconditional branch

back to just after the corresponding begi n.

At compile-time, r epeat compilesbr anch andthe
offset from her e to addr . n isused for error-checking.

r ot

nl n2 n3 - n2 n3 nl

Rotate the top three values on the stack, bringing the third
to the top.

rp!

A procedure to initialize the return stack pointer from user
variable r0. Extreme caution should be used with this
word.

rp@

— addr

A procedure that places the return stack pointer address
onto the stack.

s->d

n—-d
Sign extend a single number to form a double number.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:

Description:

Word:
Stack:
Description:

Word:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

© National Instruments Corp.

Glossary of IBCL Words

sO

—> addr

A user variable that contains the initial value for the stack
pointer. Called "S-zero." Also see sp!

sign

nd—d

Stores an ASCII hyphen (- ) just before a converted
numeric output string in the text output buffer whenn is
negative. n isdiscarded, but double number d is
maintained. Must be used between <# and #>.

smudge

Used during word definition to toggle the "smudge bit" in
aword'snamefield. This prevents an uncompleted
definition from being found during dictionary searches
until compiling is completed without error.

sp!
A procedure to initialize the stack pointer from sO.

sp@

— addr

A procedure to return the address of the stack position to
the top of the stack, asit was before s p @was executed.
For example, thelinel 2 sp@ @

wouldtype2 2 1)

space
Transmit an ASCII blank to the seria port.

spaces
n —
Transmit n ASCII blanks to the seria port.

state

—> addr

A user variable containing the compilation state. A non-
zero value indicates compilation state. A zero value
indicates execution state.

swap

nl n2 — n2 nl
Exchange the top two values on the stack.

F-31 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Description:

Word:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

Word:
Stack:
Description:

GPIB-CT IBCL Reference Manual F-32

Appendix F

task
A no-operation word which can mark the boundary
between user definitions and the ibcl default dictionary.

t hen
Anadiasfor endi f .

tib

— addr

A user variable containing the address of the terminal
input buffer.

toggl e
addr b —
Complement the contents of addr by the bit patternb .

traverse

addrl1 n — addr2

Move across the name field of avariable length IBCL
namefield. addr 1 isthe address of either the length
byte or the last letter. If n=1, the motion istoward high
memory; if n=- 1, the motion istoward low memory.
Theaddr 2 resulting is the address of the other end of the
name.

type

addr n —

Transmit n characters from address addr to the serid
port.

u
un —

Print a number from an unsigned 16-bit value, converted
according to the numeric base. A trailing blank follows.
Pronounced "U-dot."

u*

ul u2 — ud

L eave the unsigned double number product of two
unsigned numbers.

© National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

u<
ul u2 — f

Leavea TRUE flagif ul islessthan u2; otherwiseleave
aFALSE flag.

u/

ud ul — u2 u3

Leave the unsigned remainder u2 and unsigned quotient
u3 from the unsigned double dividend ud and unsigned
divisor ul.

ul m

addr un —

ul misabinary output word. ul muploads from the
GPIB-CT to the host un bytes starting at addr .

unti |
f — (run-tinme)
addr n — (compil e)

Occurs within a colon-definition in the form:

begi n unti |

At run-time, unt i | controlsthe conditional branch back
to the corresponding begi n. If f iSFALSE, execution
returnsto just after begi n; if TRUE, execution continues
ahead.

At compile-time, unti | compiles( Obranch) andan
offset from her e to addr . n isused for error-checking.

F-33 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words Appendix F

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

user
n —
A defining word used in the form:

n user CcccC

which creates auser variable cccc. The parameter field
of cccc containsn as afixed offset relative to the user
pointer register user-base for this user variable. When
cccc islater executed, it places the sum of its offset and
the user area base address on the stack as the storage
address of that particular variable.

vari abl e
A defining word used in the form:

n variable cccc

Whenvar i abl e isexecuted, it creates the definition
cccc withits parameter field initialized to n. When
cccc islater executed, the address of its parameter field
(containing n) isleft on the stack, so that afetch or store
may access this location.

voc- | i nk

—> addr

A user variable containing the address of afield in the
definition of the most recently created vocabulary. All
vocabulary names are linked by these fields to allow
control for f or get ting through multiple vocabularies.

GPIB-CT IBCL Reference Manual F-34 © National Instruments Corp.



Appendix F

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:

Description:

Word:
Stack:

Description:

© National Instruments Corp.

Glossary of IBCL Words

vocabul ary
—

A defining word used in the form:

vocabul ary cccc inmmediate

to create a vocabulary definition cccc . Subsequent use
of cccc will makeit thecont ext vocabulary whichis
searched first by i nt er pr et . The sequence cccc
defi ni ti ons will dsomakecccc thecurrent
vocabulary into which new definitions are placed.

cccc will be so chained asto include all definitions of
the vocabulary in which cccc isitself defined. All
vocabularies ultimately chainto i bcl . By convention
vocabulary names areto be declared i nmedi at e. Also
seevoc- i nk.

vlist

->

List the names of the definitionsin the cont ext
vocabulary. Any serial character received will terminate
thelisting.

war m
Similar to col d, except that the dictionary is not cleared.

war ni ng

— addr

A user variable containing a value controlling messages.
If war ni ng is0or 1, messages are displayed by number.
If war ni ng is-1, execute (abort) for auser-specified
procedure. Seenessage, error .

F-35 GPIB-CT IBCL Refer ence Manual



Glossary of IBCL Words

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

Word:
Stack:

Description:

GPIB-CT IBCL Reference Manual F-36

Appendix F
whil e
f (run-tine)
addrl nl --- addrl nl addr2 n2

Occurs in a colon-definition in the form:

begin ... while (true part) ... repeat

At run-time, whi | e selects conditional execution based
on booleanflag f . If f isTRUE (non-zero), whi | e
continues execution of the TRUE part through to

r epeat , which then branches back to begi n. If f is
FALSE (zero), execution skipsto just after r epeat |,
exiting the structure.

At compile-time, whi | e emplaces (Obr anch) and
leavesaddr 2 of the reserved offset. The stack values
will be resolved by r epeat .

wi dt h

— addr

A user variable containing the maximum number of
characters saved in the compilation of a definition's name.
It must be 1 through 31, with a default value of 31. The
name character count and its natural characters are saved,
up tothevaluein wi dt h. The value may be changed at
any time within the above limits.

wor d

C —

Read the next text characters from the input stream being
interpreted until adelimiter ¢ isfound, storing the packed
character string beginning at the dictionary buffer her e.
wor d leaves the character count in the first byte, the
characters, and ends with two or more blanks. Leading
occurrences of ¢ areignored.

xor
nl n2 — n3
Leave the bitwise logical exclusive-OR of two values.

© National Instruments Corp.



Appendix F

Word:

Description:

Word:

Description:

Word:

Description:

Glossary of IBCL Words

Used in a colon-definition in the form:
xxX [ words ] nore words ;

Suspend compilation. Thewords after [ are executed, not
compiled. Thisallows calculation or compilation
exceptions before resuming compilation with ] . Also see
literal and] .

[ conpil e]
Used in a colon-definition in the form:

XXX [ compil e] ccce

[ conpi | e] will force the compilation of theimmediate
word cccc that would otherwise execute during
compilation.

]

Resume compilation, to the completion of a colon-
definition. Alsosee| .

© National Instruments Corp. F-37 GPIB-CT IBCL Refer ence Manual



Appendix G
Customer Communication

For your convenience, this appendix contains forms to help you gather the
information necessary to help us solve technical problems you might have
aswell asaform you can use to comment on the product documentation.
Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around
theworld. Inthe U.S. and Canada, applications engineers are available
Monday through Friday from 8:00 am. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questionsto us at
any time.

Corporate Headquarters
(512) 795-8248
Technical Support fax: (512) 794-5678

Branch Offices Phone Number Fax Number
Austraia 03 879 9422 038799179
Austria 0662 435986 0662 437010 19
Belgium 02 757 00 20 02 75703 11
Denmark 45 76 26 00 45767111
Finland 90 527 2321 90 502 2930
France 148653300 148651907
Germany 08971450 93 0897146035
Italy 02 48301892 02 48301915
Japan 03 3788 1921 03 3788 1923
Netherlands 01720 45761 01720 42140
Norway 03 846866 03 846860
Spain 91 640 0085 91 640 0533
Sweden 087304970 087304370
Switzerland 056 27 00 20 056 27 00 25
UK. 0635 523545 0635 523154

© National Instruments Corp.

or 0800 289877 (in U.K. only)

G-1 GPIB-CT IBCL Reference Manual



Technical Support Form

Photocopy this form and update it each time you make changes to your
software or hardware, and use the completed copy of thisform asa
reference for your current configuration. Completing this form accurately
before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products

related to this problem, include the configuration forms from their user
manuals. Include additional pagesif necessary.

Name

Company
Address

Fax (___) Phone (___)

Computer brand

Model Processor

Operating system

Speed MHz RAM M
Display adapter

Mouse yes no
Other adaptersinstalled

Hard disk capacity M Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)



National Instruments software product

Version

Configuration

The problemis

List any error messages

The following steps will reproduce the problem




Documentation Comment Form

National Instruments encourages you to comment on the documentation
supplied with our products. Thisinformation helps us provide quality
products to meet your needs.

Title  GPIB-CT IBCL Reference Manual

Edition Date: December 1993

Part Number:  320132-01

Please comment on the completeness, clarity, and organization of the
manual.

(continues)



If you find errors in the manual, please record the page numbers and
describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ( )

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678



Glossary

Prefix Meaning Value
m- milli- 103
- micro- 106
n- nano- 109

EPROM

erasable programmable read-only memory
hexadecimal

inches

1,024 bytes (of memory)

megabytes of memory

seconds

© National Instruments Corp. Glossary-1 GPIB-CT IBCL Reference Manual



	GPIB-CT IBCL Reference Manual
	Limited Warranty
	Important Notice
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Contents
	About This Manual
	Assumption of Previous Knowledge
	Organization of the Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Getting Started with IBCL
	Using IBCL
	Starting IBCL
	Pushing and Popping Numbers from the Stack
	Adding Numbers on the Stack
	Defining New Words
	Using Loops and Conditionals
	Using Conditionals
	Manipulating the Stack
	Looping
	Forgetting
	Using GPIB Functions
	Exiting IBCL

	Chapter 2 IBCL Reference
	Language Structure
	Stacks
	Numeric Operations
	Unary Operators
	Binary and Ternary Operators
	Memory Access
	Load and Store
	Fill
	Move
	Constants, Variables and Arrays
	Input/Output
	IBCL Input
	ASCII-Type Input
	Binary-Type Input
	IBCL Output
	ASCII-Type Output Words
	Character-Based Words
	Numeric-Based Words
	Binary-Type Output
	BASIC Program Example
	Defining New Words
	Colon Definitions
	Dictionary
	Vocabularies
	Control
	Conditional Execution
	Loops

	Chapter 3 GPIB Extensions
	brd
	bwrt
	cac
	caddr
	clr
	cmd
	eos
	eot
	gts
	ist
	loc
	onl
	pct
	ppc
	rd
	rpp
	rsc
	rsp
	rsv
	sic
	sre
	stat
	tmo
	trg
	wait
	wrt

	Chapter 4 Programming Examples
	Microsoft BASIC IBCL Compiler Programming Example
	Example 1
	Modem Programming Examples
	Example 2
	Example 3
	Macro Programming Example
	Example 4
	Timed Applications Examples
	Example 5
	Example 6
	Example 7
	Example 8

	Chapter 5 Technical Information
	Loading Programs
	The IBCL Interpreters
	Inner Interpreter Sequence
	Outer Interpreter Sequence
	Errors
	Advanced Defining Techniques
	Machine Code Primitives
	Vectored Execution
	Memory Organization
	General Port I/O

	Appendix A Multiline Interface Messages
	Appendix B IBCL Status and Error Messages
	Appendix C Creating Permanent IBCL Words in EPROM
	Appendix D Using Extended Memory
	About Extended Memory

	Appendix E Other Useful IBCL Words
	dump
	ud.
	depth
	not
	0>
	binary
	octal
	msa
	.s
	pick
	roll
	decom
	cls
	Redefining the Basic IBCL Mathematical Operators to Use Infix Notation
	Programming Examples
	Redefining =
	Redefining +
	Redefining -
	Redefining *
	Redefining /

	Appendix F Glossary of IBCL Functions
	Glossary Conventions
	GPIB Glossary
	Standard Glossary
	!
	!csp
	"
	#
	#>
	#s
	'
	(
	(.")
	(+loop)
	(abort)
	(do)
	(dq)
	(find)
	(loop)
	(number)
	*
	*/
	*/mod
	+
	+!
	+-
	+loop
	+origin
	,
	-
	-dup
	-find
	-trailing
	.
	."
	.r
	/
	/mod
	0 1 2 3
	0<
	0=
	0branch
	1+
	2!
	2+
	2@
	2dup
	:
	;
	;s
	<
	<#
	<builds
	=
	>
	>r
	?
	?comp
	?csp
	?error
	?exec
	?pairs
	?stack
	?terminal
	@
	abort
	abs
	again
	allot
	and
	back
	base
	begin
	bl
	blanks
	branch
	bye
	c!
	c,
	c/l
	c@
	cfa
	cmove
	cold
	compile
	constant
	context
	count
	cr
	create
	csp
	current
	d+
	d+-
	d.
	d.r
	dabs
	decimal
	definitions
	digit
	dliteral
	dlm
	dminus
	do
	does>
	dp
	dpl
	drop
	dup
	else
	emit
	enclose
	end
	endif
	erase
	error
	execute
	expect
	fence
	fill
	forget
	here
	hex
	hld
	hold
	i
	ibcl
	id.
	if
	immediate
	in
	interpret
	key
	l!
	l@
	latest
	lc!
	lc@
	leave
	lfa
	limit
	lit
	literal
	loop
	m*
	m/
	m/mod
	max
	message
	min
	minus
	mod
	nfa
	number
	or
	out
	over
	p!
	p@
	pad
	pfa
	query
	quit
	r
	r>
	r0
	repeat
	rot
	rp!
	rp@
	s->d
	s0
	sign
	smudge
	sp!
	sp@
	space
	spaces
	state
	swap
	task
	then
	tib
	toggle
	traverse
	type
	u
	u*
	u<
	u/
	ulm
	until
	user
	variable
	voc-link
	vocabulary
	vlist
	warm
	warning
	while
	width
	word
	xor
	[
	[compile]
	]

	Appendix G Customer Communication
	Glossary
	Figures
	Figure 2-1. IBCL Versus the Subroutine Compiler
	Figure 5-1. Logical Memory Map
	Figure D-1. Physical Memory Map

	Tables
	Table 2-1. Parameter Stack Words
	Table 2-2. Return Stack Words
	Table 2-3. Supported Number Types and Ranges
	Table 2-4. Unary Operators
	Table 2-5. Signed or Unsigned Operands
	Table 2-6. Signed Operands
	Table 2-7. Mixed Length Signed Operands
	Table 2-8. Unsigned Operands
	Table 2-9. Logical, Sign Bit Not Significant
	Table 2-10. Load and Store Words
	Table 2-11. Memory Fill Words
	Table 2-12. User Variables at Initialization
	Table 2-13. Numeric Output Words
	Table 2-14. ASCII Characters
	Table 2-15. Comparison of Non-Immediate and Immediate Characteristics
	Table 3-1. Data Transfer Termination Method
	Table 3-2. GPIB Status Conditions
	Table 3-3. Timeout Limit Values
	Table 3-4. Wait Mask Layout
	Table 5-1. I/O System Map of Ports Supported on the GPIB-CT
	Table B-1. IBCL Status and Error Messages
	Table F-1. Glossary Conventions
	Table F-2. GPIB Glossary


