
' Copyright 1989, 1993 National Instruments

Corporation.

All Rights Reserved.

GPIB-CT IBCL
Reference Manual

December 1993 Edition

Part Number 320132-01

National Instruments Corporate Headquarters
6504 Bridge Point Parkway
Austin, TX 78730-5039
(512) 794-0100
Technical support fax: (512) 794-5678

Branch Offices:
Australia 03 879 9422, Austria 0662 435986, Belgium 02 757 00 20,
Canada (Ontario) 519 622 9310, Canada (Québec) 514 694 8521,
Denmark 45 76 26 00, Finland 90 527 2321, France 1 48 65 33 70,
Germany 089 714 50 93, Italy 02 48301892, Japan 03 3788 1921,
Netherlands 01720 45761, Norway 03 846866, Spain 91 640 0085,
Sweden 08 730 49 70, Switzerland 056 27 00 20, U.K. 0635 523545

Limited Warranty

The GPIB-232CT, GPIB-422CT, and the GPIB-232CT-A are warranted
against defects in materials and workmanship for a period of two years from
the date of shipment, as evidenced by receipts or other documentation.
National Instruments will, at its option, repair or replace equipment that
proves to be defective during the warranty period. This warranty includes
parts and labor.

A Return Material Authorization (RMA) number must be obtained from the
factory and clearly marked on the outside of the package before any
equipment will be accepted for warranty work. National Instruments will
pay the shipping costs of returning to the owner parts which are covered by
warranty.

National Instruments believes that the information in this manual is
accurate. The document has been carefully reviewed for technical accuracy.
In the event that technical or typographical errors exist, National
Instruments reserves the right to make changes to subsequent editions of
this document without prior notice to holders of this edition. The reader
should consult National Instruments if errors are suspected. In no event
shall National Instruments be liable for any damages arising out of or
related to this document or the information contained in it.

EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS
ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. CUSTOMER'S RIGHT TO RECOVER DAMAGES
CAUSED BY FAULT OR NEGLIGENCE ON THE PART OF NATIONAL
INSTRUMENTS SHALL BE LIMITED TO THE AMOUNT THERETOFORE
PAID BY THE CUSTOMER. NATIONAL INSTRUMENTS WILL NOT BE
LIABLE FOR DAMAGES RESULTING FROM LOSS OF DATA, PROFITS,
USE OF PRODUCTS, OR INCIDENTAL OR CONSEQUENTIAL DAMAGES,
EVEN IF ADVISED OF THE POSSIBILITY THEREOF. This limitation of the
liability of National Instruments will apply regardless of the form of action,
whether in contract or tort, including negligence. Any action against
National Instruments must be brought within one year after the cause of
action accrues. National Instruments shall not be liable for any delay in
performance due to causes beyond its reasonable control. The warranty
provided herein does not cover damages, defects, malfunctions, or service
failures caused by owner's failure to follow the National Instruments
installation, operation, or maintenance instructions; owner's modification of
the product; owner's abuse, misuse, or negligent acts; and power failure or
surges, fire, flood, accident, actions of third parties, or other events outside
reasonable control.

Important Notice

The material in this manual is subject to change without notice. National
Instruments assumes no responsibility for errors which may appear in this
manual. National Instruments makes no commitment to update, nor to keep
current, the information contained in this document.

Copyright

Under the copyright laws, this publication may not be reproduced or
transmitted in any form, electronic or mechanical, including photocopying,
recording, storing in an information retrieval system, or translating, in
whole or in part, without the prior written consent of National Instruments
Corporation.

Trademarks

MicroGPIB™ is a trademark of National Instruments Corporation.

Product and company names listed are trademarks or trade names of their
respective companies.

Warning Regarding Medical and Clinical Use
of National Instruments Products

National Instruments products are not designed with components and testing
intended to ensure a level of reliability suitable for use in treatment and
diagnosis of humans. Applications of National Instruments products
involving medical or clinical treatment can create a potential for accidental
injury caused by product failure, or by errors on the part of the user or
application designer. Any use or application of National Instruments
products for or involving medical or clinical treatment must be performed by
properly trained and qualified medical personnel, and all traditional medical
safeguards, equipment, and procedures that are appropriate in the particular
situation to prevent serious injury or death should always continue to be
used when National Instruments products are being used. National
Instruments products are NOT intended to be a substitute for any form of
established process, procedure, or equipment used to monitor or safeguard
human health and safety in medical or clinical treatment.

© National Instruments Corp. v GPIB-CT IBCL Reference Manual

Contents

About This Manual ..xv
Assumption of Previous Knowledge ..xv
Organization of the Manual ..xv
Conventions Used in This Manual ... xvi
Related Documentation ..xvii
Customer Communication .. xvii

Chapter 1
Getting Started with IBCL ... 1-1

Using IBCL... 1-1
Starting IBCL ... 1-1
Pushing and Popping Numbers from the Stack 1-2
Adding Numbers on the Stack 1-2
Defining New Words ... 1-3
Using Loops and Conditionals 1-4
Using Conditionals ... 1-5
Manipulating the Stack... 1-6
Looping ..1-6
Forgetting ... 1-7
Using GPIB Functions ... 1-8
Exiting IBCL ..1-8

Chapter 2
IBCL Reference ... 2-1

Language Structure... 2-1
Stacks ... 2-3

Numeric Operations..2-6
Unary Operators ... 2-7
Binary and Ternary Operators2-8

Memory Access ..2-10
Load and Store ... 2-10
Fill ..2-11
Move... 2-12
Constants, Variables and Arrays2-12

Input/Output ... 2-16
IBCL Input ... 2-16

ASCII-Type Input ..2-16
Binary-Type Input 2-17

Contents

GPIB-CT IBCL Reference Manual vi © National Instruments Corp.

IBCL Output... 2-17
ASCII-Type Output Words..........................2-17

Character-Based Words................. 2-18
Numeric-Based Words2-18

Binary-Type Output 2-21
BASIC Program Example............................2-22

Defining New Words.. 2-22
Colon Definitions ... 2-23
Dictionary... 2-27
Vocabularies ... 2-28

Control ..2-30
Conditional Execution..2-30
Loops ..2-31

Chapter 3
GPIB Extensions ... 3-1

brd... 3-2
bwrt ... 3-4
cac... 3-6
caddr ... 3-7
clr ..3-8
cmd ... 3-9
eos... 3-11
eot ... 3-13
gts ... 3-14
ist... 3-15
loc ... 3-16
onl ... 3-17
pct ... 3-18
ppc... 3-19
r d ..3-21
rpp... 3-23
rsc ... 3-24
rsp ... 3-25
rsv ... 3-27
sic ..3-28
sre ... 3-29
stat ... 3-30
tmo ..3-32
trg..3-34
wait ... 3-35
wrt ... 3-37

Contents

© National Instruments Corp. vii GPIB-CT IBCL Reference Manual

Chapter 4
Programming Examples ... 4-1

Microsoft BASIC IBCL Compiler Programming Example 4-1
Example 1... 4-1

Modem Programming Examples ..4-2
Example 2... 4-2
Example 3... 4-3

Macro Programming Example ... 4-6
Example 4... 4-7

Timed Applications Examples ... 4-8
Example 5... 4-8
Example 6... 4-9
Example 7... 4-9
Example 8... 4-10

Chapter 5
Technical Information ..5-1

Loading Programs... 5-1
The IBCL Interpreters... 5-1

Inner Interpreter Sequence ... 5-2
Outer Interpreter Sequence... 5-3

Errors ..5-4
Advanced Defining Techniques ... 5-5

Machine Code Primitives... 5-6
Vectored Execution ..5-8

Memory Organization... 5-9
General Port I/O ... 5-11

Appendix A
Multiline Interface Messages ... A-1

Appendix B
IBCL Status and Error Messages ..B-1

Appendix C
Creating Permanent IBCL Words in EPROMC-1

Appendix D
Using Extended Memory ... D-1

About Extended Memory ... D-1

Contents

GPIB-CT IBCL Reference Manual viii © National Instruments Corp.

Appendix E
Other Useful IBCL Words ..E-1

dump ... E-1
ud. ... E-3
depth ... E-3
not ... E-4
0> ..E-4
binary ..E-5
octal... E-5
msa..E-5
.s ..E-6
pick ... E-7
roll ... E-8
decom ... E-9
cls ..E-11
Redefining the Basic IBCL Mathematical Operators
to Use Infix Notation ..E-12

Programming Examples ... E-12
Redefining = ..E-12
Redefining + ..E-12
Redefining - ... E-12
Redefining *... E-13
Redefining / ... E-13

Appendix F
Glossary of IBCL Functions ... F-1

Glossary Conventions... F-1
GPIB Glossary ..F-1
Standard Glossary... F-2

!... F-2
!csp ... F-3
" ..F-3
#..F-3
#> ... F-3
#s ..F-3
' ... F-4
(... F-4
(.")... F-4
(+loop) ..F-4
(abort) ... F-4
(do) ... F-4
(dq) ... F-5
(find) ... F-5

Contents

© National Instruments Corp. ix GPIB-CT IBCL Reference Manual

(loop) ..F-5
(number) ... F-5
*..F-5
*/ ... F-5
*/mod ... F-6
+ ... F-6
+! ..F-6
+- ..F-6
+loop... F-6
+origin ..F-7
,... F-7
-... F-7
-dup... F-7
-find ..F-7
-trailing... F-7
.. F-8
." ... F-8
.r ... F-8
/... F-8
/mod ... F-8
0 1 2 3... F-8
0< ... F-8
0= ... F-9
0branch... F-9
1+ ... F-9
2!... F-9
2+ ... F-9
2@ ..F-9
2dup..F-9
:... F-10
;... F-10
;s ... F-10
< ... F-10
<# ... F-10
<builds ..F-11
= ... F-11
> ... F-11
>r ..F-11
? ..F-11
?comp ... F-12
?csp... F-12
?error .. F-12
?exec... F-12
?pairs .. F-12

Contents

GPIB-CT IBCL Reference Manual x © National Instruments Corp.

?stack .. F-12
?terminal ... F-12
@ .. F-12
abort ... F-12
abs... F-12
again ... F-13
allot ... F-13
and .. F-13
back .. F-13
base... F-13
begin... F-14
bl ... F-14
blanks ... F-14
branch... F-14
bye .. F-14
c! ... F-14
c, ... F-15
c/l .. F-15
c@ .. F-15
cfa... F-15
cmove ... F-15
cold... F-15
compile ... F-15
constant... F-16
context .. F-16
count ... F-16
cr ... F-16
create .. F-16
csp... F-16
current... F-17
d+ ... F-17
d+- .. F-17
d. ... F-17
d.r ... F-17
dabs... F-17
decimal ... F-17
definitions... F-18
digit... F-18
dliteral... F-18
dlm ... F-18
dminus .. F-18
do.. F-19
does> .. F-19
dp.. F-19

Contents

© National Instruments Corp. xi GPIB-CT IBCL Reference Manual

dpl ... F-20
drop... F-20
dup.. F-20
else ... F-20
emit ... F-20
enclose .. F-21
end .. F-21
endif ... F-21
erase ... F-21
error .. F-21
execute ... F-22
expect ... F-22
fence ... F-22
fill ... F-22
forget .. F-22
here... F-22
hex .. F-22
hld... F-23
hold... F-23
i... F-23
ibcl .. F-23
id. .. F-23
if ... F-24
immediate ... F-24
in... F-24
interpret .. F-25
key .. F-25
l! ... F-25
l@ ... F-25
latest ... F-25
lc! ... F-25
lc@ ... F-25
leave ... F-26
lfa ... F-26
limit .. F-26
lit... F-26
literal... F-26
loop... F-27
m*... F-27
m/ ... F-27
m/mod... F-27
max... F-27
message .. F-28
min ... F-28

Contents

GPIB-CT IBCL Reference Manual xii © National Instruments Corp.

minus .. F-28
mod... F-28
nfa... F-28
number ... F-28
or... F-28
out ... F-29
over ... F-29
p!... F-29
p@ .. F-29
pad .. F-29
pfa... F-29
query... F-29
quit ... F-29
r... F-29
r> .. F-30
r0... F-30
repeat .. F-30
rot ... F-30
rp! ... F-30
rp@... F-30
s->d... F-30
s0 .. F-31
sign ... F-31
smudge ... F-31
sp! ... F-31
sp@... F-31
space... F-31
spaces ... F-31
state... F-31
swap ... F-31
task ... F-32
then... F-32
tib ... F-32
toggle .. F-32
traverse ... F-32
type... F-32
u.. F-32
u*.. F-32
u< ... F-33
u/ ... F-33
ulm ... F-33
until... F-33
user ... F-34
variable ... F-34

Contents

© National Instruments Corp. xiii GPIB-CT IBCL Reference Manual

voc-link... F-34
vocabulary .. F-35
vlist ... F-35
warm... F-35
warning... F-35
while ... F-36
width... F-36
word ... F-36
xor... F-36
[... F-37
[compile] .. F-37
]... F-37

Appendix G
Customer Communication ..G-1

Glossary.. Glossary-1

© National Instruments Corp. xiv GPIB-CT IBCL Reference Manual

Illustrations

List of Figures

Figure 2-1. IBCL Versus the Subroutine Compiler..................................2-3

Figure 5-1. Logical Memory Map..5-9

Figure D-1. Physical Memory Map..D-2

List of Tables

Table 2-1. Parameter Stack Words..2-4
Table 2-2. Return Stack Words...2-5
Table 2-3. Supported Number Types and Ranges...................................2-7
Table 2-4. Unary Operators..2-7
Table 2-5. Signed or Unsigned Operands..2-8
Table 2-6. Signed Operands..2-8
Table 2-7. Mixed Length Signed Operands...2-9
Table 2-8. Unsigned Operands...2-9
Table 2-9. Logical, Sign Bit Not Significant..2-10
Table 2-10. Load and Store Words... 2-11
Table 2-11. Memory Fill Words .. 2-12
Table 2-12. User Variables at Initialization...2-15
Table 2-13. Numeric Output Words... 2-19
Table 2-14. ASCII Characters... 2-21
Table 2-15. Comparison of Non-Immediate and Immediate

Characteristics.. 2-27

Table 3-1. Data Transfer Termination Method...3-11
Table 3-2. GPIB Status Conditions.. 3-31
Table 3-3. Timeout Limit Values... 3-32
Table 3-4. Wait Mask Layout.. 3-35

Table 5-1. I/O System Map of Ports Supported on the GPIB-CT....5-12

Table B-1. IBCL Status and Error Messages...B-1

Table F-1. Glossary Conventions ..F-1
Table F-2. GPIB Glossary...F-1

© National Instruments Corp. xv GPIB-CT IBCL Reference Manual

About This Manual

This manual describes the National Instruments IBCL (Interface Bus
Control Language) operating system for the GPIB-232CT, GPIB-422CT,
and GPIB-232CT-A interface products. This manual describes the built-in
IBCL commands and outlines techniques for adding new ones to the
system.

This manual applies to the GPIB-232CT, GPIB-422CT, and
GPIB-232CT-A interface products. Rather than mentioning all three
products when a reference is made, this manual will use the notation
GPIB-CT to indicate all products.

Assumption of Previous Knowledge

IBCL users include OEMs who have custom applications for the GPIB-CT
and experienced users who wish to access the full power of the on-board
processor.

To use this manual effectively, you should be somewhat familiar with
microcomputers, computer devices, and the GPIB-CT default operating
system. You should also have an understanding of the IEEE 488
functionality.

Organization of the Manual

The following discussion contains a description of each section of the
GPIB-CT IBCL Reference Manual .

• Chapter 1, Getting Started with IBCL, contains a brief tutorial which
demonstrates the operation of the IBCL language.

• Chapter 2, IBCL Reference, contains a formal description of the IBCL
language.

• Chapter 3, GPIB Extensions , describes the IBCL extensions you can
use to directly operate and control the GPIB.

• Chapter 4, Programming Examples, contains sample applications
written in IBCL.

About This Manual

GPIB-CT IBCL Reference Manual xvi © National Instruments Corp.

• Chapter 5, Technical Information , contains information for improving
and customizing performance from the GPIB-CT.

• Appendix A, Multiline Interface Messages , contains an ASCII chart,
and a list of the corresponding GPIB messages.

• Appendix B, IBCL Status and Error Messages , contains a table of the
IBCL status and error messages.

• Appendix C, Creating Permanent IBCL Words in EPROM, describes
the procedure for permanently adding new words and data to the IBCL
operating system.

• Appendix D, Using Extended Memory, describes the extended memory
of the GPIB-CT and gives guidlines for its use with IBCL.

• Appendix E, Other Useful IBCL Words , contains IBCL words that are
application-specific.

• Appendix F, Glossary of IBCL Functions, contains a list of commonly
used IBCL words and a description of each.

• Appendix G, Customer Communication, contains forms you can use to
request help from National Instruments or to comment on our products
and manuals.

• The Glossary contains an alphabetical list and description of terms used
in this manual, including abbreviations, acronyms, metric prefixes,
mnemonics, and symbols.

Conventions Used in This Manual

italic Italic text denotes emphasis, a cross reference, or
an introduction to a key concept.

monospace Lowercase text in this font denotes text or
characters that are to be literally input from the
keyboard, sections of code, programming
examples, and syntax examples. This font is also
used for the proper names of disk drives, paths,
directories, programs, subprograms, subroutines,
device names, functions, variables, filenames,
and extensions, and for statements and comments
taken from program code.

About This Manual

© National Instruments Corp. xvii GPIB-CT IBCL Reference Manual

bold monospace Bold lowercase text in this font denotes the
messages and responses that the computer
automatically prints to the screen.

italic monospace Italic lowercase text in this font denotes that you
must supply the appropriate words or values in
the place of these items.

<CR> carriage return

<LF> line feed

The period character (.) is referred to as the IBCL word "dot" in the
programming examples.

A space () appears in the examples wherever you should press the spacebar.
It is very important that you notice where spaces are used in the examples,
because a space is the separator operation for IBCL. In the programming
examples of this manual, characters separated by spaces look like this:

0 1 2 3 4

The same string of characters that are not separated by spaces look like this:

01234

Abbreviations, acronyms, metric prefixes, mnemonics, symbols, and terms
are listed in the Glossary.

Related Documentation

For more information on the internal workings of IBCL or for more tutorial-
style information, consult one of the Forth language books listed here:

Forth Fundamentals Vol. 1 by C. Kevin McCabe, dilithium Press.
Starting Forth by Leo Brodie, Prentice Hall (Advanced Techniques).
Forth, An Application Approach by David L. Toppen, McGraw-Hill.
Forth Programming by Leo J. Scanlon, Howard W. Sams Publication.

For more information about the IEEE 488, refer to the IEEE Standard
Digital Interface for Programmable Instrumentation , published by the
Institute of Electrical and Electronics Engineers, Incorporated.

About This Manual

GPIB-CT IBCL Reference Manual xviii © National Instruments Corp.

For more information about what each bit represents in each I/O register of
the HD64180 microprocessor, refer to the HD64180 8-Bit High Integration
CMOS Microprocessor User Manual, available from Hitachi America, Ltd.,
Semiconductor and IC Division.

For more information about what each bit represents in each I/O register of
the GPIB Controller chip used in the GPIB-CT, refer to the description of
the µPD7210 GPIB controller chip in NEC Microcomputer Products ,
available from NEC Electronics, Inc. This description is used for interface
products that contain the NAT4882 controller chip as well as interface
products that contain the µPD7210 controller chip.

For information about your GPIB-CT hardware, refer to the GPIB-232CT
User Manual (part number 320114-01) the GPIB-422CT User Manual (part
number 320115-01), or the GPIB-232CT-A User Manual (part number
320504-01).

Customer Communication

National Instruments wants to receive your comments on our products and
manuals. We are interested in the applications you develop with our
products, and we want to help if you have problems with them. To make it
easy for you to contact us, this manual contains comment and configuration
forms for you to complete. These forms are in Appendix G, Customer
Communication , at the end of this manual.

© National Instruments Corp. 1-1 GPIB-CT IBCL Reference Manual

Chapter 1
Getting Started with IBCL

This chapter contains a brief tutorial which demonstrates the operation of
the IBCL language.

IBCL (Interface Bus Control Language) is a powerful interactive
programming language that can be used to program the GPIB-CT. IBCL
resides in GPIB-CT memory and can serve as both the native language and
the operating system. The GPIB-CT default operating system is a
command-interpreted GPIB language that is executed on startup. The
GPIB-232CT User Manual , the GPIB-232CT-A User Manual , and the
GPIB-422CT User Manual describe the operation of the GPIB-CT default
operating system.

IBCL is a stack-based language that can be tailored to specific applications
by the addition of new commands. Users who are familiar with the Forth
programming language will recognize the similarities between Forth and
IBCL.

Using IBCL
Connect a terminal to the GPIB-CT unit. If you do not have a terminal, you
can use a terminal-emulation program on your PC. A terminal or a
terminal-emulation program gives you immediate on-screen response to
your command input. This will allow you to step through the examples
provided in this section.

Feel free to experiment as you work through the following tutorial. You
cannot harm the GPIB-CT hardware or firmware by experimenting with
IBCL. The worst that could happen is that the RAM copy of IBCL could
get corrupted or that you could get in an infinite loop. In either case, turn
the GPIB-CT power switch off and then back on. When the READY LED
is lit, you are ready to start again.

Starting IBCL

IBCL is loaded automatically when the GPIB-CT is started up, so no
initialization sequence is necessary. The default operating system of the
GPIB-CT is the GPIB-CT default operating system. To start IBCL from the
GPIB-CT default operating system, enter the command:

Getting Started with IBCL Chapter 1

GPIB-CT IBCL Reference Manual 1-2 © National Instruments Corp.

IBCL<CR>

You should immediately see an ok prompt on your screen signifying that
IBCL is ready for input. The IBCL operating system responds with ok after
a successful operation. Press <CR> a few times to verify that IBCL is
responding to input properly. You should see the following lines:

<CR>
ok
<CR>
ok
<CR>
ok

Pushing and Popping Numbers from the Stack

IBCL uses a push-down stack to store the numbers you enter. Enter the
following line:

1 2 3 4<CR>

Be sure to put a space after every character including the dots (.).

After you enter a <CR>, the line should look like this:

1 2 3 4 4 3 2 1
ok

The period character (.), called a dot in this context, is an IBCL operator
that returns, or pops , the top number from the stack and prints its value.
Four dots print the top four numbers on the stack. Numbers are pushed onto
the stack in the order in which they are entered and are retrieved in the
reverse order.

IBCL reports the status information (either the ok message or an error code)
from the previous command on a new line for easy program processing.

Adding Numbers on the Stack

To add two numbers, first enter the numbers you want to add followed by
the operator:

For example, to add the numbers 9 and 5, enter this line:

Chapter 1 Getting Started with IBCL

© National Instruments Corp. 1-3 GPIB-CT IBCL Reference Manual

9 5 + .<CR>

The answer E is displayed. E is the hexadecimal equivalent of the decimal
value 14. Hexadecimal is the default base of IBCL.

To change the base to decimal, enter this line:

decimal<CR>

Enter the following line with no space between the number 5 and the plus
operator (+):

9 5+ .<CR>

IBCL responds with this message:

5+? MSG # 0

MSG # 0 is the unrecognized word error. IBCL operates in terms of words,
where a word is an unbroken string of any sequence of characters separated
by a space (), a carriage return (<CR>), or a linefeed (<LF>). Because
there is no space entered between the number 5 and the plus sign (+), IBCL
interprets 5+ as one word. Notice that because there was an error, IBCL did
not return the message ok .

If you type dot (.), IBCL responds with the following message:

. 46

.? MSG # 1

MSG # 1 is the empty stack error. Empty stack means that there are no
numbers on the stack. There is nothing on the stack because IBCL clears
the stack after an error occurs. Notice that 46 was printed before the error
message. This is because IBCL does not detect errors until after execution
of a command. In this case, IBCL popped a number off the stack and
printed it before it determined that the stack was empty.

Defining New Words

You can easily add new words to the IBCL dictionary. The dictionary is
the list of IBCL functions.

To define a new word called 3add, which will add the top three numbers on
the stack, enter this line:

Getting Started with IBCL Chapter 1

GPIB-CT IBCL Reference Manual 1-4 © National Instruments Corp.

: 3add + + ;<CR>

Now, to execute your new word, enter this line:

5 6 7 3add .<CR> 18
ok

IBCL returns the answer 18 (decimal).

A new word is defined with a sequence starting with a colon (:). The first
word after the colon is the name of the new word. The remaining words, up
to the semicolon (;) comprise the definition of the new word.

Now define a new word, 3addshow, which adds the top three numbers on
the stack and prints out the result. Enter this line:

: 3addshow ." The answer is " 3add . ;<CR>

To execute 3addshow, enter this line:

3 4 5 3addshow<CR> The answer is 12
ok

Notice that 3addshow uses 3add, which is now part of the dictionary. The
word ." prints out the characters to the next " exactly as they are entered.

Using Loops and Conditionals

Define a new word, doline, which loops five times and prints out the
message line i, where i is the loop count. Enter this line:

: doline 5 0 do cr ." line " i . loop ;<CR>

To execute doline, enter this line:

doline<CR>
line 0
line 1
line 2
line 3
line 4
ok

Chapter 1 Getting Started with IBCL

© National Instruments Corp. 1-5 GPIB-CT IBCL Reference Manual

do requires two arguments, a terminal count and an initial count. The word
loop increments the index and loops back to do if the index is less than the
terminal count. The word i pushes the current value of the index onto the
stack. The word cr performs a carriage return (<CR>).

Looping and conditional constructs only work within a word definition.

Using Conditionals

In IBCL, a TRUE value is any non-zero value; a FALSE value is a zero
value.

The word if checks the top number on the stack and conditionally executes
words based on the TRUE/FALSE value of the top number.

Define a new word called tf which will determine whether a number is
TRUE or FALSE. Enter this line:

: tf if ." TRUE " else ." FALSE " endif ;<CR>

To execute tf a few times, enter the following lines:

1 tf<CR> TRUE
ok
0 tf<CR> FALSE
ok
-1 tf<CR> TRUE
ok
9 9 + tf<CR> TRUE
ok
9 9 - tf<CR> FALSE
ok
7 4 = tf<CR> FALSE
ok
7 4 > tf<CR> TRUE
ok

In the second to the last command line, the equal sign (=) tests the equality
of the top two numbers on the stack. In the last example, the greater-than
sign (>), tests whether the second number on the stack is greater than the
top number on the stack.

Getting Started with IBCL Chapter 1

GPIB-CT IBCL Reference Manual 1-6 © National Instruments Corp.

Manipulating the Stack

There are times when the numbers on the stack are not in the order that you
want, or when you need to verify a value on the stack without changing its
position. There are several stack words that you can use in these cases, such
as swap, dup and drop.

Enter this line:

1 2 3 4 swap<CR>

The result is 3 4 2 1 because swap reverses the order of the top two numbers
on the stack.

Enter this line:

2 dup . .<CR>

The result is 2 2 , because dup duplicates the top number on the stack.

Another stack word, drop, drops, or pops, the top number from the stack.

Looping

Using the IBCL words you have already learned, you can explore more
complicated looping structures.

Enter the following three lines:

: eq4 dup 4 = ;<CR>
: ndec ." going " 1 - eq4 ;<CR>
: beg1 7 begin ndec until ." gone " drop ;<CR>

To execute your program, enter this line:

beg1<CR> going going going gone
ok

The word begin marks the start of a non-iterated loop. until checks the first
number on the stack, which is the result from ndec, and if it is FALSE loops
back to the begin statement–that is, it loops until ndec returns TRUE.

Chapter 1 Getting Started with IBCL

© National Instruments Corp. 1-7 GPIB-CT IBCL Reference Manual

ndec prints out the string going, then subtracts one from the top number on
the stack. It then calls eq4, which returns a TRUE/FALSE value indicating
whether the top number on the stack is equal to four. eq4 duplicates the top
number on the stack and compares it to four. The number must be
duplicated, because the top two numbers are popped off the stack when the
comparison to four is made. After the begin ... until, the number 4 was still
on the stack; the drop removes it.

Forgetting

If you have tried to redefine an existing word definition, you have seen the
IBCL warning message:

xxxx MSG # 4
ok

IBCL does not replace a previously defined word with a new one. It
remembers both, but uses the most recently defined word. To revert to the
previous definition of a word, use forget. forget removes the requested
word and all words that were defined since that word. Enter the following
sequence:

: ver ." version 1 " ;<CR>
ok
: ver ." version 2 " ;<CR> ver MSG # 4
ok
ver<CR> version 2
ok
forget ver<CR>
ok
ver<CR> version 1
ok
forget ver<CR>
ok
ver<CR>
ver? MSG # 0

In the previous example, the first line of input defines the new word, ver, to
print version 1 . The second line of input redefines ver to print version 2 .
MSG # 4 is a warning message stating that a dictionary word has been
redefined. The original definition is unchanged, but IBCL uses the most
recent definition of a word.

Getting Started with IBCL Chapter 1

GPIB-CT IBCL Reference Manual 1-8 © National Instruments Corp.

In the third line of input, when the word ver is executed, the most recent
definition is displayed. In the fourth line of input, the word forget removes
the most recent definition of ver. When ver is executed again in the fifth
line of input, the original definition is displayed. In the sixth line of input,
forget removed the original definition. After forgetting the original
definition, executing ver produces the unrecognized dictionary word
message (MSG # 0).

Using GPIB Functions

If you do not have access to a GPIB device, you can skip this section. To
use a GPIB device, you must first read the manual on the device to see how
it responds to GPIB commands.

For this example, assume you have a digitizer at GPIB address 5. To send a
device clear command to the digitizer, enter this line:

5 clr<CR>

All device functions require the address of the device as their first
argument. To write data to the digitizer, enter this line:

5 " cap13;25" wrt<CR>

The double quote character (") creates a buffer with the text cap 13;25 in it.
It leaves on the stack the address of the buffer and its count. These
arguments are in the correct order for the wrt function.

Exiting IBCL

To exit IBCL, type this word:

bye<CR>

This returns you to the GPIB-CT default operating system. Notice that any
changes that you have made in the IBCL operating system will now be in
effect in the GPIB-CT default operating system and vice versa. This
sharing of memory resources allows you to switch from one operating
system to the other at any time.

© National Instruments Corp. 2-1 GPIB-CT IBCL Reference Manual

Chapter 2
IBCL Reference

This chapter contains a formal description of the IBCL language.

Language Structure

An IBCL program is a list of numbers or one-word commands received
over the GPIB-CT serial port. A word is an unbroken string composed of
up to 31 characters. The IBCL standard word set includes the following
characters:

!"#$%&'()*+,-./0123456789:;<=
>?@abcdefghijklmnopqrstuvwxyz[\]

IBCL defines and recognizes words composed of any sequence of 8-bit
bytes. Space (), carriage return (<CR>), and linefeed (<LF>) characters
serve as word delimiters. The backspace character, ASCII 8, causes IBCL
to back over the last byte entered.

IBCL may use both upper and lower case characters; however, IBCL is
case-sensitive. Thus, the input sequence SAMPLE, sample and Sample will
be interpreted as three distinct words. Notice that all of the standard IBCL
words use lower case characters and must be typed in lower case in order to
be recognized.

Learning IBCL is similar to adding a few hundred words to your
vocabulary. The names of the words will often relate to English words that
you already know. The definitions of the IBCL words are detailed and
specific; they are neither ambiguous nor dependent on context.

IBCL uses postfix notation syntax. In postfix notation, you write the stack
numbers and then the operators. Numbers are pushed onto a stack and
taken from it. For example, examine this line:

7 2 12 3 / * -

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-2 © National Instruments Corp.

First 7, and then 2, 12, and 3 are pushed onto the stack. The next character,
the slash (/), is an operator which divides 12 by 3. The result, 4, is placed
on the top of the stack. Now 7, 2 and 4 comprise the stack. The next
operator is *, which multiplies 2 by 4. The result, 8, is placed on the top of
the stack, leaving 7 and 8 on the stack. The next operator is -, which
subtracts 8 from 7, which leaves -1 on the stack.

The definition of a new IBCL word is composed of a list of previously
defined IBCL words or machine code primitives. A machine code primitive
is the lowest-level routine, which is written in assembly language. A
machine code primitive does not call any other IBCL words.

An IBCL program is executed by executing a sequence of words. If a word
in the sequence is defined by a code primitive, that code is executed. When
a word is defined by a list of other IBCL words, execution of the original
list is suspended until the list from the definition is executed. When you run
an IBCL program, each word in the sequence composing the program
executes in turn.

This execution sequence is different from subroutine-oriented languages. In
a subroutine-oriented language, you may still define a higher-level
subroutine as a list of lower-level ones, but time is always wasted by
returning to the high-level routine before proceeding to the next routine in
the definition.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-3 GPIB-CT IBCL Reference Manual

Subroutine Compiler
Execution Sequence

Subroutine
A

Subroutine B

Subroutine C

Subroutine D

IBCL Execution Sequence

IBCL Word B

IBCL Word C

IBCL Word D

IBCL Word A

Figure 2-1. IBCL Versus the Subroutine Compiler

Stacks

IBCL uses two stacks–the parameter or data stack, and the return stack.
The parameter or data stack is used to pass information from one word to
the next. It is often referred to as "the stack." The IBCL interpreter uses the
return stack to find its way back up through nested sequences of words
being executed. It is always called "the return stack."

A stack can be compared to a deck of cards lying face up with each card
only partially covering the one below, as in some solitaire games. With
IBCL, you have the ability to create a copy of any card you see in the deck
and place it on top of the stack. You can also remove any card and place it
on top, but this takes much longer. The top three cards are most easily
copied or rearranged.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-4 © National Instruments Corp.

Using the card scenario, consider the following examples. A mathematical
or logical operator like max (maximum value) would take the top two cards
from the stack, place the higher valued one back, and discard the other.
Addition is defined as removing the top two cards, writing the sum of their
numbers on a blank card, and placing the new card on the stack.

IBCL keeps the data it is using on the parameter stack. IBCL words
generally take their input parameters from this stack and leave their results
on it. The most fundamental IBCL words are defined in machine code and
perform the following functions:

• Place an address on the stack

• Replace an address on the stack with the contents of that address

• Replace the top element(s) on the stack with the result of some
mathematical or logical operation using them

• Place a copy of some stack element on top of the stack

• Rearrange the top few elements of the stack

• Delete element(s) from the top of the stack

The parameter stack grows towards lower memory and is under direct user
control. The parameter stack pointer occupies the sp register. Any words
which refer to the state of the stack refer to the state that existed before the
word was executed.

Table 2-1. Parameter Stack Words

Word Functionality
-dup Duplicate top number on stack if it is non-zero

(useful for if constructs)
drop Drop top number from stack
dup Duplicate top number on stack
over Duplicate second from top word on stack
rot Remove third number from stack, leaving it on top
swap Remove second number from stack, leaving it on top
2dup Duplicate top double number on stack

(continues)

Chapter 2 IBCL Reference

© National Instruments Corp. 2-5 GPIB-CT IBCL Reference Manual

Table 2-1. Parameter Stack Words (continued)

Word Functionality
sp@ Return current address of stack pointer
sp! Initialize stack pointer to value in s0 (clears stack)
s0 Return the address of the user variable which holds

the initial value for the stack pointer. When the
stack pointer has this value, the stack is empty.

The return stack is used mainly for system needs and takes care of itself.
When a higher-level word is executed, each lower-level word in its
definition is executed. Each of these words may also be defined in terms of
yet
lower-level words, until the lowest-level words defined in machine code are
reached. As IBCL descends through each level of a definition, it leaves the
address of the next word at the current level on the return stack. When the
lower level is completed, this address is removed from the return stack and
execution proceeds from that point.

Occasionally the return stack is used within a word as temporary storage.
Any temporary items on the return stack must be removed before the word
completes execution. The return stack also holds the index and limit for do
loops within colon definition words. These are automatically removed
when the loop terminates.

The return stack grows towards the parameter stack. The return stack
pointer is stored in the memory location rp@.

The following words are used to manipulate the return stack state. They
should only be used within a word definition and should be used with
extreme caution since an unbalanced return stack will crash the system.

Table 2-2. Return Stack Words

Word Functionality
>r Transfer top number from data stack to return stack
r Copy top number from return stack to data stack
r> Transfer top number from return stack to data stack
rp@ Return current address of return stack pointer

(continues)

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-6 © National Instruments Corp.

Table 2-2. Return Stack Words (continued)

Word Functionality
rp! Initialize return stack pointer to value in r0 (clears return

stack)
r0 Return the address of the user variable which holds the initial

value for the return stack pointer. When the return stack
pointer has this value, the return stack is empty.

Numeric Operations

IBCL stores numeric information in consecutive 8-bit byte memory
locations and can represent character (8-bit), single precision (16-bit), or
double precision (32-bit) data. It is the responsibility of the programmer to
insure that the correct numeric operations are used with the proper data
types, as IBCL does not differentiate between the different data formats.

Both signed and unsigned single and double precision numbers can be
represented, but again, the programmer is responsible for insuring the
correct representation of data types. All signed numbers are stored in two's
complement form so that arithmetic operations can be handled without
special consideration.

A number is interpreted as a double number with the inclusion of a decimal
point anywhere within the number. A number is interpreted in its two's
complement form if a negative sign directly precedes the number.

All IBCL arithmetic operations deal with integer quantities. Integer
arithmetic is fast, requires very little memory and is not subject to round-off
error. Although floating point routines can be written in IBCL, the easiest
way to represent quantities that contain fractional parts is to scale the
number. For example, to represent a value given in dollars and cents as an
integer value, multiply the number by 100. This gives a value representing
a number of cents. This integer value can then be used by any arithmetic
function and the result can be reported back in the normalized format or can
be scaled back to represent a fractional value. In a sense, IBCL
automatically scales numbers which include decimal points since it converts
them to double length integers and reports the position of the decimal place.

The arithmetic and logic words find and remove all of their inputs on the
data stack and return their results on the data stack.

The ranges for the supported number types are given in Table 2-3.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-7 GPIB-CT IBCL Reference Manual

Table 2-3. Supported Number Types and Ranges

Integer Type Decimal Range Hexadecimal Range
signed single -32,768 32,767 -8000 7FFF
unsigned single 0 65,535 0 FFFF
signed double -2147483648 2147483647 -80000000 7FFFFFFF
unsigned double 0 4294967295 0 FFFFFFFF
logical 0 for FALSE; 1 (non-zero) for TRUE

When an arithmetic operation results in a number that is too large, positive
or negative, the high-order bits are truncated. The result returned is usually
very different from the desired result, and often does not even have the
correct sign. For example, adding one to 32767 gives -32768.

For division the remainder has the same sign as the dividend and the
quotient is rounded toward zero.

Unary Operators

These words alter the number on the top of the stack. Most operate on either
signed or unsigned integers. The few exceptions (0< and abs) must
obviously deal with signed quantities.

Table 2-4. Unary Operators

Word Functionality
1+ Add 1 to the number on the top of the stack.
2+ Add 2 to the number on the top of the stack.
0< Leaves a TRUE flag if the number on the top of the stack is

less than zero; otherwise leaves a FALSE flag.
0= Leaves a TRUE flag if the number on the top of the stack is

zero; otherwise leaves a FALSE flag.
abs Replace the top number on the stack with its absolute value.
s->d Convert signed single length number on the top of the stack to

a signed double word number on the top of the stack.
dabs Replace the double word number on the top of the stack with

its absolute value.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-8 © National Instruments Corp.

Binary and Ternary Operators

Binary integer operators remove the top two words from the stack and
replace them with the result of the operation, usually a single word.
Ternary integer operators remove the top three words from the stack and
replace them with one or two results.

Mixed word length operators have one operand that is a double word. For
double word length operators, both operands are double words. A double
length word occupies two words on the stack. The high order half is toward
the top of the stack with the low-order half under it. Mixed operators
generally begin with m, and double operators with d.

All input words are removed from the stack and the result becomes the new
top element on the stack.

Table 2-5. Signed or Unsigned Operands

Word Functionality
+ Add the top two numbers on the stack.
- Subtract the top number on the stack from the second number

on the stack.
= Leaves a TRUE flag if the top number on the stack is equal to

the second number on the stack; otherwise leave a FALSE
flag.

d+ Add the top two double numbers on the stack.
d+- Return the double number which was second on the stack with

the sign of the product of the double number and the top single
number.

Table 2-6. Signed Operands

Word Functionality
+- Return the top number on the stack with the sign of the

product of the first and second numbers on the stack.
* Multiply the top two numbers on the stack.
/ Divide the second number on the stack by the top number on

the stack leaving the quotient on the top of the stack.
/mod Like / but the remainder is returned as the second element on

the stack with the same sign as the dividend.

(continues)

Chapter 2 IBCL Reference

© National Instruments Corp. 2-9 GPIB-CT IBCL Reference Manual

Table 2-6. Signed Operands (continued)

Word Functionality
mod Return the remainder of / with the same sign as the dividend.
*/ Multiplies the first and second number, divides the result by

the third number, and leaves the quotient on the stack. The
quotient is rounded toward zero. The intermediary result
(after n1 * n2) is a double number, resulting in greater
precision than n1 n2 * n3 /.

*/mod Like */ but the remainder is returned as the second element on
the stack. The remainder has the same sign as the product of
n1 * n2.

< Leaves a TRUE flag if the first number is greater than the
second; otherwise leaves a FALSE flag.

> Leaves a TRUE flag if the second number is greater than the
first; otherwise leaves a FALSE flag.

max Return the greater of the top two numbers on the stack.
min Return the lesser of the top two numbers on the stack.

Table 2-7. Mixed Length Signed Operands

Word Functionality
m* Multiply the two numbers on the top of the stack and return

the signed double integer product.
m/ Divide the double integer by the number on the top of the

stack leaving the signed quotient on the top of the stack and
the remainder as the second element on the stack. The
remainder takes its sign from the dividend.

m/mod Like m/ but returns a double word unsigned quotient and an
unsigned remainder from an unsigned double dividend and an
unsigned single divisor.

Table 2-8. Unsigned Operands

Word Functionality
u* Multiplies two unsigned numbers and leaves the result as an

unsigned double number on the stack.
u< Leaves a TRUE flag if the first unsigned number is greater

than the second unsigned number; otherwise leaves a FALSE
flag.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-10 © National Instruments Corp.

Table 2-9. Logical, Sign Bit Not Significant

Word Functionality
and Leaves the bitwise AND of the top two numbers on the stack.
or Leaves the bitwise inclusive-OR of the top two numbers on

the stack.
xor Leaves the bitwise exclusive-OR of the top two numbers on

the stack.

Memory Access

These words allow a single byte, word, or double word to be stored or
returned from memory. An entire block of bytes may be cleared or filled
with any value or a contiguous block may be moved from one location to
another.

Constants, variables and arrays are structures used to reserve memory
locations in the IBCL system. They also provide user defined label
identification for easy recall.

Load and Store

These words store values into memory or retrieve them from memory using
an address on the top of the stack.

The root of these words is an at character (@) for load, and an exclamation
point (!) for store. A word with the root @ requires an address on the top of
the stack. A word with the root ! takes two parameters from the stack, an
address from the top of the stack and a number under the address. Double
word numbers store the most significant portion toward the top, just below
the address word or words.

A word with the root @ replaces the address on the stack with the value
stored at that address.

A word with the root ! stores the number from the stack under the address
into the location at that address.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-11 GPIB-CT IBCL Reference Manual

Table 2-10. Load and Store Words

Syntax Word Functionality
nnnn c@ Returns the character from memory

location nnnn.
nnnn @ Returns the single number from the

memory location nnnn.
nnnn 2@ Returns the double number from

memory location nnnn.
nn.nn lc@ Returns the character from the long

double length memory location nn.nn .
nn.nn l@ Returns the single number from the

long double length memory location
nn.nn .

character nnnn c! Stores character into memory location
byte nnnn.

number nnnn ! Stores number at memory location
starting at nnnn.

double nnnn 2! Stores double number at memory
location starting at nnnn.

character nn.nn lc! Stores character into long double length
memory location nn.nn .

number nn.nn l! Stores number starting at the double
length memory location nn.nn .

number nnnn +! Resembles ! in use but instead of
replacing the single length number
located at memory address nnnn,
number is added into it.

Notice that there are four words (lc@, l@, lc! l!) which store and retrieve
data from long addresses. These words are only used if your unit has 256K
of RAM and you wish to use the extended memory space. For more
information, see Appendix D, Using Extended Memory.

Fill

These words fill a block of memory with copies of a single byte length
number. Nothing is returned on the stack.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-12 © National Instruments Corp.

Table 2-11. Memory Fill Words

Syntax Word Functionality
addr n byte fill Fill n consecutive memory bytes

beginning at addr with the byte .
addr n blanks This behaves like fill, but the byte

stored is hex 20 (blank).
addr n erase erase also behaves like fill, but the byte

stored is 0.

Move

To copy a block of memory to a new, possibly overlapping block, enter the
following line:

source-addr dest-addr n cmove

cmove moves a block of memory n bytes long beginning at the source
address to the block at the destination address. The lowest addressed bytes
are moved first.

The two blocks may overlap if the destination is lower in memory than the
source. If the two blocks overlap and the destination is higher in memory
than the source the copy will proceed smoothly until the source address
equals the original destination address. At that point, the original data has
been overwritten and the sequence of bytes copied to that point will repeat
throughout the remainder of the copy.

Constants, Variables and Arrays

The words in this section provide a basic set of data objects, which can be
extended to meet the user's specific needs.

A constant may be defined by typing the line:

nnnn constant name-of-new-constant

constant is the dictionary word you are executing. name-of-new-constant is
a new dictionary entry which is associated with the constant value.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-13 GPIB-CT IBCL Reference Manual

The top word on the stack provides the value for the new constant.
Whenever the new constant is executed, the number nnnn will be pushed
onto the top of the stack. The constant can be executed by entering its name
outside of a colon definition or executed immediately within a colon
definition by using the square bracket pair. It can also be executed when
any definition into which the constant has been compiled is executed.

A signed constant may range from -32768 through 32767 decimal. An
unsigned constant may range from 0 through 65535 decimal.

For example, examine the following lines:

5 constant five<CR>
ok
five . <CR>5
ok

A few small integers are used so frequently that they have been
implemented as IBCL constants. When the interpreter encounters them,
they are located in the dictionary rather than being parsed by number. More
importantly, when used in definitions, they result in compilation of a single
word rather than the lit and value pair of words produced by other integers.
The predefined IBCL constants are 0, 1, 2, and 3.

A variable is defined like a constant, except that whenever the new variable
is executed, its parameter field address is pushed onto the stack. Values
may then be stored and retrieved from this location.

A value may be defined by entering the following line:

nnnn variable name-of-new-variable

variable is the dictionary word you are executing. name-of-new-variable is
a new dictionary entry which will place the value nnnn on the top of the
stack.

A signed variable may range from -32768 through 32767 decimal. An
unsigned variable may range from 0 through 65535 decimal.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-14 © National Instruments Corp.

For example, examine the following lines:

1 variable jellybeans<CR>
ok
jellybeans @ . <CR>1
ok
3 jellybeans +!<CR>
ok
jellybeans @ . <CR>4
ok

User variables are a special type of variable that permit multi-tasking and
multi-user applications. They are generally system variables that can vary
for different tasks and users. They are assigned sequentially beginning at
address 22a hex. If multiple copies of this array are needed, the user must
create another array, copy the old user array to it, and place the appropriate
address in user-base for each task.

The user-base is stored at memory location 226 hex. To use your new array
of user variables, you must put the address of the new array into the user-
base by entering the following line:

address-of-array 226 !

After you enter this line, IBCL uses your array of user variables. If you
want to restore the use of the system array, you must enter 22a hex for
address-of-array , or turn off the GPIB-CT. No IBCL word resets the array
for you.

The user variables at system initialization are listed in Table 2-12.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-15 GPIB-CT IBCL Reference Manual

Table 2-12. User Variables at Initialization

Location Variable Location Variable
22a reserved 24a context
22c reserved 24c current
22e reserved 24e state
230 S0 250 base
232 R0 252 dpl
234 tib 254 reserved
236 width 256 csp
238 warning 258 reserved
23a fence 25a hld
23c dp 25c unused
23e voc-link 25e unused
240 unused 260 unused
242 in 262 unused
244 out 264 unused
246 reserved 266 unused
248 reserved 268 unused

If more user variables are required, you can create a new user variable by
typing this line:

hex 52 user my-var

When executed, my-var would push the sum of the address contained in
user-base and the offset 52 onto the stack. The original user variable array
starts at address 22a hex and is 40 hex bytes long.

Arrays can be created by first defining an array name by using variable,
then reserving extra storage space by adjusting the dictionary pointer by
using allot. allot takes a number off the top of the stack and reserves that
number of bytes in the dictionary space. For example, to create an array
many_items with 1000 bytes of storage, enter the following line:

0 variable many_items FFE allot

FFE is used during the allot since two bytes were already reserved by
variable. The first element in the array will be 0. Any array element can be
designated by its relative location within the array structure.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-16 © National Instruments Corp.

Input/Output

IBCL has provisions to send and receive both numeric and character data as
well as binary arrays of data to and from the serial port. Numeric values
will be converted to the corresponding base that is in effect.

IBCL Input

IBCL provides several words that receive information from the serial port.
These words may be placed in one of two categories–ASCII-type input
words and binary-type input words. This discussion documents IBCL's
collection of input words.

ASCII-Type Input

?terminal is an IBCL input word which returns a TRUE flag if there is a
character received by the serial port. This is useful to break from a routine.

All IBCL input routines use the core word key which waits for the next
character to be received from the serial port and then returns its value on the
stack.

Whenever IBCL exhausts its ASCII input stream, it executes the word
expect. This word takes an address and count from the stack and waits for
more input from the serial port. For example, the following IBCL fragment
will create a buffer and fill it with ASCII data from the serial port:

0 variable string-buffer 3E allot
string-buffer 40 expect

The IBCL phrase 0 variable string-buffer allocates memory for a two-byte
IBCL integer variable. The phrase 3E allot adds an additional hex 3E bytes
to the two already allocated, increasing the size of the buffer to hex 40
bytes. When later executed, the word string-buffer will leave the address of
the 40 byte buffer on the stack.

The execution of string-buffer on the second line leaves the buffer address
on the stack, execution of 40 leaves the count of desired bytes on the stack,
and execution of expect waits until either a <CR> or hex 40 bytes are
received from the serial port. These bytes are placed in string-buffer.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-17 GPIB-CT IBCL Reference Manual

IBCL executes expect not only when the user explicitly uses it interactively
or in a program, but also when the IBCL interpreter itself needs more ASCII
input.

Binary-Type Input

The IBCL word dlm, for down load memory, allows the host serial device
to transmit large arrays of binary data directly to GPIB-CT memory. This
word expects a count on top of the stack and a buffer address under that.
The IBCL word dlm causes the GPIB-CT to wait for the serial device to
send the specified number of bytes over the serial bus and places the data at
the specified address. Unlike the other IBCL input words, dlm does not
echo the received characters back to the serial port. The following BASIC
example illustrates operation of this word:

OPEN "COM1:9600,N,8,1" AS #1
OPEN "SENDFILE" FOR INPUT AS #2
PRINT #1,"0 variable buffer FFE allot"
PRINT #1, "buffer 1000 dlm"
FOR COUNT = 1 + 0 &H1000
BYTE$ = INPUT$ (1, #2);
PRINT #1, BYTE$;
NEXT

IBCL Output

IBCL provides several words that send information out the serial port.
These words may be placed in one of two categories–ASCII-type output
words and binary-type output words. This section documents IBCL's
collection of output words.

ASCII-Type Output Words

Many different ASCII output words exist, but all of them work by calling
the IBCL word emit one or more times. This word outputs a single ASCII
character to the serial port. emit also increments the value stored in the user
variable out which is used as on offset pointer to the last character output.

The system constant c/1, an abbreviation for characters/line, determines the
maximum number of ASCII characters per display line (default 64
decimal).

The remainder of this section describes the ASCII-type output words.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-18 © National Instruments Corp.

 Character-Based Words . space will emit one blank space. spaces will take
the top number on the stack and emit that number of spaces. cr will emit a
carriage return followed by a line feed. bl will leave the ASCII code for a
space on the stack. type uses the top number on the stack as a character
count and the next number as a source address. Consecutive characters
beginning at the source address are emitted until the count is satisfied. If the
count is zero, no action takes place and the address and count are removed
from the stack.

Two words are often used before type. count assumes the top number on
the stack is the address of the count field of a string. It increments the
address by one and returns it and then the count byte on the stack.
-trailing expects the count byte on the stack with the address of the first
character under it, in the form returned by count. Both address and count
are returned on the stack, after the count has been reduced to discard any
trailing blanks.

 Numeric-Based Words . The representation of a number depends on the
base being used. For example, the number of states in the United States is
50 if the base is decimal, but if the base is hexadecimal, there are 32 states.
The actual number of states is the same, but the representation is different.
A jigsaw puzzle of the United States could be divided into five piles of ten
states each with none left over (50 in decimal), or it could be divided into
three piles of sixteen states each with two left over (32 in hexadecimal).

In IBCL, the representation base is stored in the user variable base. base
contains ten when in decimal mode and sixteen when in hexadecimal mode,
but may be set to other values. decimal stores ten in base and hex stores
sixteen in base. Octal could be set by entering the following line:

8 base !

The words in Table 2-13 output a number from the stack as a character
string. The top stack word contains a field width for some of them. The
individual digits are output by emit.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-19 GPIB-CT IBCL Reference Manual

Table 2-13. Numeric Output Words

Syntax Word Functionality
number . Display number with a single trailing

blank and, if required, a leading
negative sign.

double d. Like . except for double word length
number, double. The high-order word
is on top of the stack with the low-order
word under it.

number u. Like . but number is unsigned and the
magnitude may therefore range from 0
through 65535 (decimal) or 0 through
FFFF (hexadecimal)

number #char .r Display number right aligned in field
#char characters wide. The sign is
included only if it is negative. If #char
is too small, no leading blank appears
but the field is expanded to include all
digits and sign.

double #char d.r Like .r but for double word length
number, double.

source-address ? Print the number stored at source-
address. (@ .)

The only punctuation included in the above numbers is the leading minus
sign. If more specific formatting is required, words are available to convert
numbers one digit at a time.

The following example will output the negative decimal single word
number -12345 and insert a decimal point between the 3 and 4:

decimal -12345 dup s->d dabs
<# # # 46 hold #s rot sign #> type

In the previous example, decimal changes the base to decimal and
-12345 places -12345 on the stack. dup places two copies of -12345 on the
stack. s->d sign extends the top copy to double length. dabs takes the
absolute value of the double number. <# initializes for output conversion.
The next # places the lowest order digit (5) in the buffer. The next # places
the second lowest order digit in the buffer. 46 is the ASCII code for a
decimal point.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-20 © National Instruments Corp.

hold places the ASCII character represented by the top value on the stack
into the buffer. #s places the remaining digits into the buffer. rot rotates the
original signed number to the top of the stack. sign places the sign of the
top number on the stack into the buffer. #> terminates the output
conversion and leaves the buffer address below number string length on
stack. type types the number -123.45.

The <# ... #> construct converts an unsigned double length number to a
string. The string is built rightmost character first and grows downward
from the buffer address returned by pad. pad points to a text buffer which
serves as a scratchpad area where output strings may be constructed. The
opening <# stores this address in the user variable hld, which thereafter
holds the address of the character most recently added to the string.

Each instance of # extracts the next higher order digit from the double
number on the stack and adds it to the downward growing string. The
unsigned double number is divided by the base. The double word quotient
is left on the stack, eventually becoming zero. The remainder is converted
to its ASCII code and added to the string. If # is used after all digits have
been converted, leading zeroes will be added to the string.

#s will convert all remaining digits but stop before generating any leading
zeroes.

Any character may be inserted anywhere in the string by placing its ASCII
code on the stack and using hold. hold can be used to insert decimal points,
commas, hyphens, slashes, and so on.

The following lines are examples of strings containing such characters:

$1,234,567.89

4-15-89

4/15/89

2:37:15

Table 2-14 lists the ASCII codes in decimal of some useful ASCII
characters.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-21 GPIB-CT IBCL Reference Manual

Table 2-14. ASCII Characters

Decimal ASCII Decimal ASCII Decimal ASCII
32 blank 43 + 47 /
35 # 44 , 58 :
36 $ 45 - 59 ;
37 % 46 .

If a sign is required, the IBCL word sign can be used as long as a number
with the correct sign is available on the stack. The double word number on
the stack cannot be used, since it must be converted to its absolute value. In
the example, the signed number was kept on the stack under the double
word unsigned number. This location is convenient but not necessary. The
sign is usually added after all of the digits are converted, and placed in the
number string's first character position. The sign could just as easily be
added to the string before any digits are converted, thus placing it at the end
of the number string as required by some financial formats (123.45-).

The #> drops the double number from the stack. At this point, it should
have been zero. The address of the first character in the string (from the
user variable hld) is returned on the stack under the number of characters
included in the string. This address and count are the arguments expected
by type, which is used to output the string.

Binary-Type Output

IBCL's binary output word is ulm, for up load memory. This word expects
a count on top of the stack and a buffer address just below that. As soon as
the serial device requests an ulm, the GPIB-CT sends the specified number
of bytes over the serial port, starting at the specified address.

Proper handling of binary output involves cooperative action by the
GPIB-CT and the serial device, as the following example shows.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-22 © National Instruments Corp.

BASIC Program Example:

OPEN "COM1: 9600, N, 8, 1" AS #1
OPEN "RECVFILE" FOR OUTPUT AS #2
PRINT #1, "0 variable data_buffer ffe allot"
PRINT #1, "data_buffer 1000 fill_up"
PRINT #1, "data_buffer 1000 ulm"
FOR COUNT = 1 to &H1000 ulm

BYTE$ = INPUT$ (1, #1);
PRINT # 2, BYTE$;

NEXT

ulm is most useful when you want to program a custom EPROM with user-
defined words and/or an autoboot routine. For more information, see
Appendix C, Creating Permanent IBCL Words in EPROM.

Defining New Words

This section describes the heart of IBCL. By defining new words
interactively with minimal overhead costs, IBCL surpasses both interpreted
and compiled high-level languages. Since word definitions can be kept
short without excessive overhead, they can be easier to write than the longer
subroutines usually written in higher-level languages.

IBCL can define several kinds of words, and can even define words that
define new types of words. At the simplest level, it can provide direct
language support for almost any data type or structure imaginable.

For example, the dot product of order n vectors can easily be reduced to this
line:

a-vector b-vector dot

This is both simpler and more efficient than BASIC, which requires the
following code:

result=0
for i = 1 to n
result=result+a(i)*b(i)
next i

Even high-level languages with decent subroutine syntax quickly fill with
distracting calls and parentheses that have nothing to do with your
algorithm or your problem.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-23 GPIB-CT IBCL Reference Manual

The primary word used to define all new words is create, as in:

create new-name

This enters new-name in the context vocabulary with a memory word
initialized to point to the next available dictionary location. You can then
place machine language opcodes directly into this and later dictionary space
by using c,. This allows you to write your own machine language
primitives for speed-sensitive applications. create is used by all system-
defining words.

create will truncate names longer than the value contained in the user
variable width. The initial value, also the maximum value, is decimal 31
characters. If truncation occurs, the system remembers only the shortened
length.

Colon Definitions

These are the most pervasive definitions in IBCL. They resemble the
subroutines or functions of other high-level languages such as Pascal or
Fortran, but have some important differences.

The syntax is not cluttered with parentheses and parameter lists. This
enables IBCL words to be used more nearly like the words in a human
language. IBCL syntax is admittedly more like German than English, since
the action is specified after any values or addresses required.

Values and addresses are passed either on the data stack or through
locations specified within the definition. Use of the data stack aids in the
creation of more generally useful words.

The other crucial difference is that the definition is compiled when it is
entered. No distracting or time consuming compile and link sequence is
required.

In a very small way, BASIC shares this convenient lack of extra steps.
IBCL may be used calculator style like BASIC, or it may be used to define
the equivalent of a single IBCL word with the name RUN. In IBCL, you
could type this line:

: run IBCL equivalent of BASIC program ;

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-24 © National Instruments Corp.

In IBCL, of course, run could be named anything and you could have
hundreds of programs at your fingertips simultaneously. No need for
BASIC's incomprehensible tangle, single program limits, or incomparable
slowness.

The basic format of the colon definition is:

: name-of-new-word words-comprising-definition ;

The colon and name must be on the first line, but the remainder of the
definition may occupy as many lines as required. Each word or number
must be complete on a single line.

After : has initialized the definition and set compilation mode, the following
words are compiled into the definition for execution when the defined word
is executed. When a word is compiled, the address of its code field is
appended to the list being created for the word being defined. If a number
is encountered, the word lit is compiled into the definition followed by the
number. Later execution of lit will cause the number to be placed on the
stack and the interpreter will skip the location that held the number. The ;
terminates the definition by compiling a ;s at its end and setting execution
mode. ;s will unwind the interpreter nesting one level, returning control to
the word after the instance of the one that finished execution.

The following example will print the number followed by a % sign when
the word's name is entered: (37 is ASCII code for %)

decimal<CR>
ok
: fifteen-percent 15 . 37 emit ;<CR>
ok
fifteen-percent <CR>15%
ok
hex<CR>
ok
fifteen-percent <CR>F%
ok

Numbers are interpreted using the current base. In the example, the
previous base was discarded in favor of hexadecimal. Changing the base to
hex changes the output representation of the number, but not the ASCII
character. The output of an ASCII character requires no numeric
conversion.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-25 GPIB-CT IBCL Reference Manual

Notice that the following definition would not have changed the base until
the definition executed:

: fifteen-percent decimal 15 . 37 emit ;

The 15 and 37 would be interpreted according to the previous base, and
typing fifteen-percent would always change the base to decimal.

The words . and emit perform no action when used in a definition. Instead,
their code field addresses are stored in the definition and will be executed
only when the defined word is executed. All non-immediate words follow
this pattern.

Another type of word is immediate. Immediate words execute even when
used within a colon definition. The word may, but need not, alter or add to
the definition. Primary examples include the flow control words, definition
terminator words, and embedded string words.

To create an immediate word, use immediate after defining the new word:

: name definition ; immediate

Every definition needs at least one immediate word–the word that signals its
end. ; provides this service in the previous example and for all simple high-
level colon definitions.

Another immediate word often used in definitions is the apostrophe
character ('), which is often called a "tick" in this context. This word places
the parameter field address of the next word in the input stream on the
stack. Assuming that we have a code field address on the stack, we could
determine whether it was a variable with the following word:

: ?var @ [' memory cfa @] literal =
if ." variable" else ." not variable" then ;

Note: memory is an IBCL variable.

The ." immediate word is used to include a message in a definition. If ." is
in an active path, the message prints when the word is executed.

Sometimes it is necessary to cause compilation of an immediate word as if
it were a non-immediate one. This is accomplished by preceding the
immediate word with [compile].

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-26 © National Instruments Corp.

A word to print the parameter field address of another word could be
defined as follows:

: .address [compile] ' cr ." address is " . ;
.address some-word
address is nnnn

This is basically a means for reusing the function of an immediate word
within another word which is itself often immediate.

Occasionally it is necessary to cause execution of non-immediate words
while creating a colon definition. This is accomplished by a pair of words,
the opening square bracket ([) which switches the user variable state from
compile to execute mode, and the closing square bracket (]), which switches
state from execute to compile mode. The [word leaves the definition open.
The most common use for this pair would be the calculation of some offset,
address, or constant. This pair is frequently used with the literal word,
which takes the top value on the stack and enters it into the current
definition. Refer to the example on the previous page that begins with :
?var for an example of the correct usage of [and]. A similar word, dliteral,
is available for compiling double length values from the stack into the
definition.

The following lines are examples of equivalent ways to define a word
returning the address of the fifth line of a block given its base address on the
stack. Notice that the first is inefficient, since the operations are performed
every time the word is executed:

: line-5 64 4 * + ;

64 4 * : line-5 literal + ;

: line-5 [64 4 *] literal + ;

The second format could lead to ambiguity in a real program, and might not
be usable if the stack was busy with control parameters for loops.

Sometimes the word we are defining will be used to build part of the
definition of other words. In this case, our definition may contain words
that we do not want to execute even when the word executes. Instead we
want the word to be copied to the definition being created.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-27 GPIB-CT IBCL Reference Manual

compile is used within immediate words to allow the word following
compile to be compiled into the dictionary entries of other words that
contain the immediate word. Because compile takes the next word from the
definition list, the word following compile should never be immediate.

Table 2-15 compares the behavior of an example word, called a-word,
defined as non-immediate or immediate.

Table 2-15. Comparison of Non-Immediate and
Immediate Characteristics

Non-Immediate Immediate
a-word executed executed
: q [a-word] ; executed executed *
: q a-word ; compiled executed
: q [compile] a-word ; compiled * compiled
: q compile a-word ; immediate compiled ** error

* These forms are not really used since they are redundant.
** This q must be used in a definition and a-word will be compiled into

that definition.

Comments may be inserted within the definition by enclosing them in
parentheses. The opening parenthesis (() must be preceded and followed by
a space to be interpreted as an IBCL word. The terminating parenthesis ())
is a delimiter and needs no preceding space. For example:

: name some words (comments) more words ;

Dictionary

IBCL recalls word definitions using a data structure called the dictionary.
When you define a new word, IBCL adds a dictionary entry for that word.
The only words IBCL understands which are not in the dictionary are
numbers.

The actual definition of an IBCL word consists of four parts–the name field,
the link field, the code field, and the parameter field. The name field
contains the ASCII codes of characters making up the word's name,
preceded by a length byte which specifies the number of characters in the
name and certain attributes of the definition.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-28 © National Instruments Corp.

The link field immediately follows the name field. The link field holds a
pointer to the name field of the next most recent word in the same
vocabulary. These two fields allow for an easy comparison of input words
to dictionary entries by using a linked list technique.

The code field contains an address pointer to the word's execution
procedure, which is executable machine code. The parameter field
immediately follows the code field. The purpose of the parameter field
varies from word to word. For example, the code field of a constant holds a
pointer to an execution procedure that causes a single precision constant
value to be copied from the constant's parameter field to the stack whenever
the name of that constant is entered. Likewise, the code field of a variable
contains a pointer to an execution procedure which causes the address of a
variable's parameter field (rather than the single precision value stored
there) to be placed on the stack when the variable name is executed.

The parameter field of a colon-defined word contains one or more address
pointers designating the code field of a component word.

Vocabularies

IBCL allows separate vocabularies that separate definitions into well-
organized groups, much like you would place related C functions in a single
file. IBCL can find words faster when it only has to search a couple of
vocabularies instead of the entire dictionary.

The two vocabularies, context and current, are always singled out for
special treatment. The context vocabulary is searched first for words
encountered in the input stream. If the word is not found, the root
vocabulary, named ibcl, is searched. The current vocabulary is the
vocabulary to which new definitions are added. The variables context and
current contain pointers to these two vocabularies.

An IBCL system initially contains a single vocabulary named ibcl. New
words are added to this vocabulary as they are defined. It is possible to
create additional vocabularies and to limit the scope of word searches to one
of the additional vocabularies followed by the IBCL vocabulary.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-29 GPIB-CT IBCL Reference Manual

A new vocabulary may be created by typing this command:

vocabulary new-vocabulary-name immediate

where the term new-vocabulary-name would be replaced by the name you
want to give the new vocabulary. For example:

vocabulary assembler immediate

will create a new vocabulary titled assembler.

To cause the assembler vocabulary to be searched before the IBCL
vocabulary, type the vocabulary name:

assembler

At this point, no words will be found in the assembler vocabulary, but the
user variable context will contain a pointer to the assembler vocabulary
rather than to the IBCL vocabulary. New definitions would still be assigned
to the IBCL vocabulary.

To cause new definitions to be assigned to the context vocabulary, type this
line:

definitions

Now the user variable current points to the assembler vocabulary instead of
the IBCL vocabulary. current governs which vocabulary receives new
definitions. If you want to enter new definitions in the vocabulary my-
words, but limit interpreter searches to the IBCL vocabulary, type this line:

vocabulary my-words immediate my-words definitions
assembler

This would have reset context to point to assembler.

Note: Entering a colon definition sets context to current.

In the course of defining new words, you may discover that you have made
a mistake. Words can be forgotten and dictionary space can be recovered
by typing this line:

forget word-to-forget-through

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-30 © National Instruments Corp.

This type of forget may only be used in the newest vocabulary. If that
vocabulary is still the IBCL vocabulary, the user variable fence contains a
pointer to a word below which forgetting is disabled, to protect you from
forgetting the system.

You can move fence by entering this line:

new-fence-limit fence !

This raises the fence beyond which forgetting is not allowed, and prevents
accidental forgetting of newly-defined function words.

Control

IBCL contains high-level control structures similar to those found in
BASIC and Pascal. These perform conditional execution and repeated
execution of word blocks. They also eliminate the need for any program
position labels such as BASIC's line numbers.

Words that control the flow of program execution are used only within
colon definitions. They are immediate words which execute when the colon
definition is first compiled. Most cause branches or conditional branches to
be compiled into the definition list of the word being compiled, but a few
merely save an address and identifier on the stack for use by a later control
word.

The branch compiled into the definition list may be a conditional 0branch or
an unconditional branch. The 0branch is ignored if the top word on the
stack is nonzero. In either case, the branch fills two words in the definition
list. The first, as with any compiled word, is a pointer to the code field
address of the word, in this case branch or 0branch. The second word is the
byte offset of the destination relative to the second word. The conditional
branch always uses and drops the top stack word.

Conditional Execution

The if true-phrase else false-phrase then construct is used within colon
definitions to enable a number on the stack to control whether or not groups
of words within the definition are executed. A phrase is any list of words
normally allowed in a colon definition. If conditional or loop constructs are
included, they must be completed within the phrase. Nesting is limited only
by stack size; overlapping is forbidden.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-31 GPIB-CT IBCL Reference Manual

The following example will display a game score along with one of two
messages (the new score is on the stack):

0 variable high-score
: .score dup high-score @ >

if dup high-score ! ." new high score!!!" .
else ." your score is " .
." high score is " high-score @ . then ;

When .score is executed, your latest score should be at the top of the stack.
It is duplicated and compared with the old high score. The comparison sets
the top number on the stack to 0 (FALSE) if your score is not greater than
the old high score. It sets the top number to a nonzero (TRUE) value
otherwise. If the number is 0, execution will branch to the words after the
else. If it is nonzero, execution will continue after the if, then skip the
words between else and then. The true part sets the new high score, then
displays new high score!!! and the new score. The false part displays your
score is nnnn high score is nnnnn .

else and the words between it and then may be omitted, in which case no
action is taken if the condition is false.

The if compiles a 0branch and puts the address of its destination field on the
stack. It then places an identifier on the stack to signal its presence to else
or then. The else checks for an if identifier and issues an error message if it
isn't found. else next compiles an unconditional branch . It calculates the
offset from the address on the stack to the word after the branch and stores
that offset into the original 0branch. The address of the destination field of
the branch is placed on the stack, followed by another copy of the identifier.
The then aborts with an error message if the identifier isn't found, but does
not need to know whether it follows an if or an else . It calculates the offset
from the address on the stack to the next free word and stores it into the
previous branch.

Loops

Loop constructing words are similar to the conditional execution words in
that they compile branches and leave addresses on the stack. As described
in the previous discussion, a phrase may be any list of words normally
allowed in a colon definition. If conditional or loop constructs are included,
they must be completed within the phrase. Nesting is limited only by stack
size; overlapping is forbidden.

IBCL Reference Chapter 2

GPIB-CT IBCL Reference Manual 2-32 © National Instruments Corp.

There are three types of conditional loops–begin-again, begin-until, and
begin-while-repeat.

The loop begin phrase again, is really an unconditional infinite loop since it
has no exit. The only legal exit would be an abort within the phrase or
within a word in the phrase.

In the conditional loop, begin phrase until, until functions like if except that
it compiles a backward branch to the beginning of the phrase. The phrase
executes repeatedly until the top word on the stack is TRUE (nonzero). The
phrase always executes at least once.

In begin test-phrase while phrase repeat, after the test phrase is executed,
the top word on the stack is examined. If it is TRUE (nonzero), the phrase
is executed and control branches back to the test-phrase. If it is FALSE
(zero), the loop is exited and execution continues after the repeat. The
second phrase will not execute even once if the initial test-phrase is false.

There are two types of do loops–do-loop and do-+loop.

In the loop limit start do phrase loop, the do loop starts execution with an
index set to start and increments that index by one for every encounter of
loop. The phrase is executed repeatedly until the index equals or exceeds
the limit using a signed comparison. The limit and start values are taken
from the data stack at execution time. While executing the loop, the index
is on top of the return stack with the limit under it. You may use the return
stack within the phrase, but its condition at the end of the phrase should be
the same as at the beginning. The data stack is not used other than on entry.

The limit start do phrase number +loop is similar to the first do loop, but
the +loop takes a signed number from the data stack and adds this to the
index instead of incrementing the index by one. If the increment is positive,
termination is the same as for loop. If the increment is negative, execution
repeats until the index is less than the limit.

Chapter 2 IBCL Reference

© National Instruments Corp. 2-33 GPIB-CT IBCL Reference Manual

In addition to the loop control words just mentioned, there are a few words
that are designed to help loop processing:

• i is used within a loop to place the current loop index onto the top
of the stack. For example, the following definition:

: display 10 0 do i c@ u. loop ;

outputs to the serial port the bytes in memory locations 0 to 9.

• leave is used within a loop to set the index equal to the limit, thus
causing an exit of the loop after the current loop finishes. This is
useful if a certain condition became TRUE during execution of a
loop.

© National Instruments Corp. 3-1 GPIB-CT IBCL Reference Manual

Chapter 3
GPIB Extensions

This chapter describes the IBCL extensions you can use to directly operate
and control the GPIB. These functions are in alphabetical order and are
formatted so that you can easily reference them.

The following discussion of the GPIB-related extensions contains
references to the constants ibcnt , iberr , and ibsta . These constants
refer to memory locations within the IBCL operating system which contain
information pertaining to GPIB actions.

ibcnt stores the number of bytes transferred from or received by the
GPIB-CT during brd , rd , bwrt , wrt , or cmd . iberr stores flags to
indicate certain error conditions that may have occurred. ibsta stores
information about the current state of the GPIB system to which the GPIB-
CT is attached. For more information about what each bit represents in
ibsta and what each value represents in iberr , refer to the stat
function description later in this section.

To aid in the use of these variables, you can define IBCL constants in your
dictionary by typing the following lines:

4 constant ibcnt
2 constant iberr
0 constant ibsta

When you need to use the information in these locations, type the following
lines:

ibcnt @
iberr c@
ibsta @

This puts the information stored at these locations onto the stack. Notice
that iberr is an 8-bit value, and ibcnt and ibsta are 16-bit values.

Another way to obtain the information stored in ibsta and ibcnt is to
use the IBCL command stat , which puts these two values on the stack for
you.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-2 © National Instruments Corp.

brd

brd: Read Data from GPIB

Syntax: buf cnt brd

Remarks: buf is the address of the buffer to use.

cnt specifies the number of bytes to read from the GPIB.

brd attempts to read cnt bytes of data from a GPIB device
that is assumed to already be properly initialized and
addressed.

If the GPIB-CT GPIB port is CIC, cmd must be called prior to
brd to address a device to talk and the GPIB-CT GPIB port to
listen. If the GPIB-CT GPIB port is not CIC, the device on
the GPIB that is the CIC must perform the addressing.

If the GPIB-CT GPIB port is Active Controller, the GPIB-CT
GPIB port is first placed in Standby Controller state with ATN
off and remains there after the read operation is completed.

An EADR error results if the GPIB-CT GPIB port is CIC but
has not been addressed to listen with cmd . An EABO error
results if the GPIB-CT GPIB port is not CIC and is not
addressed to listen within the time limit. An EABO error also
results if the device that is to talk is not addressed and/or the
operation does not complete for whatever reason within the
time limit.

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-3 GPIB-CT IBCL Reference Manual

brd terminates on any of the following events:

• When cnt bytes have been read

• Error is detected

• Time limit is exceeded

• END message is detected

• eos character is detected (if this option is enabled)

• Device Clear (DCL) or Selected Device Clear (SDC)
command is received from another device which is
CIC

When brd returns, ibcnt contains the actual number of data
bytes read from the device. A short count can occur on any of
the previous events but the first.

See Also: cmd , eos .

Example:

1. To read 56 bytes of data from a device at talk address 0x4C (ASCII L)
and then unaddress it (the GPIB-CT GPIB port is at listen address 0x20
or ASCII blank):

" ?L " cmd (address talker and listener)
buf 56 brd (read data)
" _?" cmd (unaddress talker)

(and listener)

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-4 © National Instruments Corp.

bwrt

bwrt: Write Data to GPIB

Syntax: buf cnt bwrt

Remarks: buf is the address of the buffer to use.

cnt specifies the number of bytes to be sent over the GPIB.

bwrt attempts to write cnt bytes of data to a GPIB device
that is assumed to already be properly initialized and
addressed.

If the GPIB-CT GPIB port is CIC, cmd must be called prior to
bwrt to address the device to listen and the GPIB-CT GPIB
port to talk. Otherwise, the device on the GPIB that is the CIC
must perform the addressing.

If the GPIB-CT GPIB port is Active Controller, the GPIB-CT
GPIB port is first placed in Standby Controller state with ATN
off and remains there after the write operation is completed.

An EADR error results if the GPIB-CT GPIB port is CIC but
has not been addressed to talk with cmd . An EABO error
results if the GPIB-CT GPIB port is not CIC and is not
addressed to talk within the time limit. An EABO error also
results if the operation does not complete for whatever reason
within the time limit.

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-5 GPIB-CT IBCL Reference Manual

bwrt terminates on any of the following events:

• When cnt bytes have been written

• Error is detected

• Time limit is exceeded

• When no listeners are detected after the operation
begins (the GPIB-CT reports ENOL in this case)

• Device Clear (DCL) or Selected Device Clear (SDC)
command is received from another device which is
CIC

When bwrt returns, ibcnt contains the actual number of
data bytes written. A short count can occur on any of the
previous events but the first.

See Also: cmd , eos .

Example:

1. To write 10 instruction bytes to a device at listen address 0x35 (ASCII
5) and then unaddress it (the talk address of the GPIB-CT GPIB port is
0x40 or ASCII @):

" ?@5" cmd (UNL MTA MLA)
" F3R1X5P2G0" bwrt (send instruction bytes)
" _?" cmd (unaddress talker)

(and listener)

NOTE: The double quote (") places text in memory up to the closing
quote or decimal 65 characters. " also leaves the address and string
length on the stack and is thus ideal for use with bwrt . For instance,
" abc" leaves the address of the string and a count of 3 on the stack.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-6 © National Instruments Corp.

cac

cac: Become Active Controller

Syntax: v cac

Remarks: If v is non-zero, the GPIB-CT takes control synchronously
with respect to data transfer operations; otherwise, the GPIB-
CT takes control immediately (and possibly asynchronously).

It is generally not necessary to use the cac word. Words such
as cmd and rpp , which require that the GPIB-CT take
control, do so automatically.

To take control synchronously, the GPIB-CT waits before
asserting the ATN signal so that data being transferred on the
GPIB will not be corrupted. If a data handshake is in
progress, the take control action is postponed until the
handshake is complete; if a handshake is not in progress, the
take control action is done immediately. Synchronous take
control is not guaranteed if a rd or wrt operation completed
with a timeout or error.

Asynchronous take control should be used in situations where
it appears to be impossible to gain control synchronously (e.g.,
after a timeout error).

The ECIC error results if the GPIB-CT is not CIC.

See Also: gts , sic .

Examples:

1. To take control immediately without regard to any data handshake in
progress:

0 cac

2. To take control synchronously and assert ATN:

1 cac

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-7 GPIB-CT IBCL Reference Manual

caddr

caddr: Change GPIB Address of GPIB-CT

Syntax: addr caddr

Remarks: addr is a valid GPIB address.

caddr is used to change the GPIB address of the GPIB-CT.
The new address will remain in effect until caddr is called
again or the GPIB-CT is turned off.

The power-on default is zero with secondary addressing
disabled.

Examples:

1. To change the GPIB address of the GPIB-CT to 5 with secondary
addressing disabled:

5 caddr

2. To change the GPIB address of the GPIB-CT to 7 with a secondary
address of 8:

7 8 hex 100 * + 8000 + caddr

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-8 © National Instruments Corp.

clr

clr: Send Selected Device Clear (SDC)

Syntax: addr clr

Remarks: addr is a valid GPIB address.

clr sends the selected device clear (SDC) message. SDC
reinitializes all device functions. clr sends the following
commands:

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device if applicable

• Selected Device Clear (SDC)

• Unlisten (UNL)

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

Example:

1. To clear the device at GPIB address 5:

5 clr

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-9 GPIB-CT IBCL Reference Manual

cmd

cmd: Send Command Message to GPIB

Syntax: buf cnt cmd

Remarks: buf is the address of a buffer containing the commands to be
sent over the GPIB.

cnt specifies the number of bytes to be sent over the GPIB.

cmd is used to transmit interface messages (commands) over
the GPIB. These commands include device talk and listen
addresses, secondary addresses, serial and parallel poll
configuration messages, and device clear and trigger
instructions.

cmd is not used to transmit programming instructions to
devices; programming instructions and other device dependent
information are transmitted with brd , bwrt , rd , and wrt .

cmd terminates on any of the following events:

• All commands are successfully transferred

• Error is detected

• Time limit is exceeded

• Take Control (TCT) command is sent

• Interface Clear (IFC) message is received from the
System Controller (not GPIB-CT)

When cmd returns, ibcnt contains the actual number of
command bytes sent.

An ECIC error results if the GPIB-CT GPIB port is not CIC.
If the GPIB-CT GPIB port is not Active Controller, it asserts
ATN prior to sending the command bytes. The GPIB-CT
GPIB port remains Active Controller afterward.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-10 © National Instruments Corp.

Examples:

In the following examples, GPIB commands and addresses are coded as
printable ASCII characters. When the hex values to be sent over the GPIB
correspond to printable ASCII characters, this is the simplest means of
specifying the values. Appendix A contains conversions of hex values to
ASCII characters.

1. To unaddress all Listeners with the Unlisten command (ASCII ?) and
address a Talker at 0x46 (ASCII F) and a Listener at 0x31 (ASCII 1):

" ?F1" cmd

NOTE: The double quote (") places text in memory up to the closing
quote or decimal 65 characters. " also leaves the address and string
length on the stack and is thus ideal for use with cmd . For instance,
" abc" leaves the address of the string and a count of 3 on the stack.

2. Same as Example 1 except the Listener has a secondary address of
0x6E (ASCII n):

" ?F1n" cmd

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-11 GPIB-CT IBCL Reference Manual

eos

eos: Change/Disable GPIB EOS Termination Mode

Syntax: val eos

Remarks: val specifies the eos character and the data transfer
termination method according to Table 3-1.

The assignment made by this function remains in effect until
eos is called again or the GPIB-CT is turned off. By default,
no eos modes are enabled.

Table 3-1. Data Transfer Termination Method

Method Value of val *
Byte 1 Byte 0

A. Terminate read when eos is detected REOS eos
(brd and rd) 04 hex

B. Send END when eos is written XEOS eos
(bwrt and wrt) 08 hex

C. Compare all 8 bits of eos byte rather BIN eos
than low 7 bits (all reads and writes) 10 hex

* Byte 0 is the least significant byte.

Methods A and C determine how read operations terminate. If
Method A alone is chosen, reads terminate when the low 7 bits
of the byte that is read match the low 7 bits of the eos
character. If Methods A and C are chosen, a full 8-bit
comparison is used.

Methods B and C together determine when write operations
send the END message. If Method B alone is chosen, the
END message is sent automatically when the low 7 bits of any
byte match the low 7 bits of the eos character. If Methods B
and C are chosen, a full 8-bit comparison is used. The eos
character should always be the last byte sent.

See Also: eot .

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-12 © National Instruments Corp.

Examples:

1. To send END when the linefeed character is written for operations
involving device dvm :

80A eos
31 buf c! (data bytes to be written)
32 buf 1+ c! (are placed in buffer with)
33 buf 2+ c! (EOS character as last byte)
0A buf 3 + c!
dvm buf 4 wrt

2. To program device dev1 to terminate a read on detection of the
linefeed character that is expected to be received within 512 bytes:

40A eos
dev1 buf 512 rd
(The END bit in status word is set if the)
(read terminated on the eos character with)
(the actual number of bytes received)
(contained in ibcnt.)

3. To disable EOS termination:

0 eos

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-13 GPIB-CT IBCL Reference Manual

eot

eot: End of Transfer Mode

Syntax: v eot

Remarks: If v is non-zero, the GPIB-CT automatically sends the END
message with the last byte of each wrt . If v is zero, END is
not sent. The power-on default is 1.

eot is used to change how the GPIB-CT terminates GPIB
writes. Using eot , you tell the GPIB-CT to automatically
send or not send the GPIB END message with the last byte
written to the GPIB.

The assignment made by eot remains in effect until eot is
called again or the GPIB-CT is turned off.

The GPIB-CT sends the END message by asserting the GPIB
EOI signal during the last byte of a data transfer.

Examples:

1. To disable END termination:

0 eot

2. To enable END termination:

1 eot

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-14 © National Instruments Corp.

gts

gts: Go from Active Controller to Standby

Syntax: v gts

Remarks: v is the type of go-to-standby.

gts causes the GPIB-CT to go to the Controller Standby state
and to unassert the ATN signal if it is the Active Controller.
gts permits GPIB devices to transfer data without the
GPIB-CT being a party to the transfer.

It is generally not necessary to use gts . Functions such as rd
and wrt , which require that the GPIB-CT go to standby, do so
automatically.

If v is non-zero, GPIB-CT shadows data transfer handshakes
as an Acceptor and when the END message is detected,
GPIB-CT enters a Not Ready For Data (NRFD) handshake
holdoff state on the GPIB. If v is zero, no shadow handshake
or holdoff is done.

If the shadow handshake option is activated, the GPIB-CT
participates in data handshake as an Acceptor without actually
reading the data. It monitors the transfers for the END
message and holds off subsequent transfers. This mechanism
allows the GPIB-CT to take control synchronously on a
subsequent operation such as cmd or rpp .

The ECIC error results if the GPIB-CT is not CIC.

See Also: cac , cmd , wait .

Example:

1. To turn the ATN line off:

0 gts

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-15 GPIB-CT IBCL Reference Manual

ist

ist: Set or Clear Individual STatus Bit (IST)

Syntax: v ist

Remarks: v is the sense of the IST bit. If v is non-zero, the individual
status bit is set. If v is zero, the bit is cleared. The power-on
default is that the individual status bit is cleared.

ist is used when the GPIB-CT participates in a parallel poll
that is conducted by another device that is the Active
Controller. The Active Controller conducts a parallel poll by
asserting the EOI and ATN signals which send the Identify
(IDY) message. While this message is active, each device that
has been configured to participate in the poll responds by
asserting a predetermined GPIB data line either true or false,
depending on the value of its local IST bit. The GPIB-CT, for
example, can be assigned to drive the DIO3 data line true if
IST=1 and false if IST=0; conversely, it can be assigned to
drive DIO3 true if IST=0 and false if IST=1.

The relationship between the value of IST, the line that is
driven, and the sense at which the line is driven is determined
by the Parallel Poll Enable (PPE) message in effect for each
device. The GPIB-CT receives this message via a command
from the Active Controller. Once the PPE message is
executed, ist changes the sense at which the line is driven
during the parallel poll, and in this fashion the GPIB-CT can
convey a 1-bit, device dependent message to the Controller.

See Also: ppc , rpp .

Examples:

1. To set the individual status bit:

1 ist

2. To clear the individual status bit:

0 ist

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-16 © National Instruments Corp.

loc

loc: Go to Local Mode

Syntax: addr loc

Remarks: addr is a valid GPIB address.

loc is used to move devices temporarily from a remote
program mode to a local mode. A device enters remote mode
when the REN line is asserted and the device detects its listen
address.

loc places the indicated device in local mode by sending the
command sequence:

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device if applicable

• Go To Local (GTL)

• Unlisten (UNL)

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

Examples:

1. To return device plotter to local state:

plotter loc

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-17 GPIB-CT IBCL Reference Manual

onl

onl: Place Device Online or Offline

Syntax: v onl

Remarks: v is a true/false value indicating online/offline.

onl is used to disable communications between the GPIB-CT
and the GPIB.

NOTE: Unlike the onl in the GPIB-CT default operating
system, IBCL onl does not restore the GPIB-CT operating
parameters. To reset your GPIB-CT to its default
characteristics, you must exit to the GPIB-CT default
operating system and call the onl function. Refer to your
GPIB-CT User Manual for a description of the GPIB-CT onl
function and the default characteristics.

If v is non-zero, the GPIB-CT places itself online; if zero, the
GPIB-CT places itself offline. By default, the GPIB-CT starts
up online, is in the Idle Controller state, and configures itself
to be the System Controller.

Placing the GPIB-CT offline may be thought of as
disconnecting its GPIB cable from the other GPIB devices.

Placing the GPIB-CT online allows the GPIB-CT to
communicate over the GPIB.

Examples:

1. To put the GPIB-CT online:

1 onl

2. To put the GPIB-CT offline to prevent it from communicating on the
GPIB:

0 onl

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-18 © National Instruments Corp.

pct

pct: Pass Control

Syntax: addr pct

Remarks: addr is a valid GPIB address.

pct passes CIC authority to the specified device. The
GPIB-CT GPIB port automatically goes to an idle state. The
function assumes that the device has Controller capability.

pct sends the following commands:

• Talk address of the device

• Secondary address of the device, if applicable

• Take Control (TCT)

If pct is called and the GPIB-CT is not CIC, the ECIC error
is posted.

Example:

1. To pass control to the device at GPIB address 3:

3 pct

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-19 GPIB-CT IBCL Reference Manual

ppc

ppc: Parallel Poll Configure

Syntax: addr v ppc

Remarks: addr is a valid GPIB address.

v is a valid parallel poll enable/disable command.

ppc enables or disables the device from responding to parallel
polls.

ppc sends the following commands:

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Parallel Poll Configure (PPC)

• Parallel Poll Enable (PPE) or Disable (PPD)

• Unlisten (UNL)

Each of the 16 PPE messages specifies the GPIB data line
(DIO1 through DIO8) and sense (one or zero) that the device
must use when responding to the Identify (IDY) message
during a parallel poll. The assigned message is interpreted by
the device along with the current value of the individual status
(IST) bit to determine if the selected line is driven true or
false. For example, if PPE=0x64, DIO5 is driven true if IST=0
and false if IST=1. And if PPE=0x68, DIO1 is driven true if
IST=1 and false if IST=0. Any PPD message cancels the PPE
message in effect.

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-20 © National Instruments Corp.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

Which PPE and PPD messages are sent and the meaning of a
particular parallel poll response are all system dependent
protocol matters to be determined by the user.

The 16 valid PPE messages and the 16 valid PPD messages
are listed in Appendix A.

See Also: rpp , ist .

Example:

1. To configure device dvm to respond to a parallel poll by sending data
line DIO3 true if IST=0:

dvm 62 ppc

2. To configure device dvm to respond to a parallel poll by sending data
line DIO1 true if IST=1:

dvm 68 ppc

3. To cancel the parallel poll configuration of device dvm :

dvm 70 ppc

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-21 GPIB-CT IBCL Reference Manual

rd

rd: Read Data from GPIB

Syntax: addr buf cnt rd

Remarks: addr is a valid GPIB address.

buf is the address of the buffer to use (buf might have been
created using allot).

cnt specifies the number of bytes to read from the GPIB.

rd attempts to read cnt bytes of data from a GPIB device.
The following steps are performed:

1. UNL is sent.

2. The device is addressed to talk and the GPIB-CT
GPIB port to listen, if not already addressed to do so.

3. The GPIB-CT reads the data from the device.

An EABO error results if the operation does not complete for
whatever reason within the time limits.

rd operation terminates on any of the following events:

• When cnt bytes have been read

• Error is detected

• Time limit is exceeded

• END message is detected

• eos character is detected (if this option is enabled)

• Device Clear (DCL) or Selected Device Clear (SDC)
command is received from another device which is
CIC

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-22 © National Instruments Corp.

When rd returns, ibcnt contains the actual number of data
bytes read from the device. A short count can occur on any of
the previous events but the first.

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

Example:

1. To read hex 56 bytes of data from device tape:

tape buf 56 rd

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-23 GPIB-CT IBCL Reference Manual

rpp

rpp: Conduct a Parallel Poll

Syntax: rpp

Remarks: rpp conducts a parallel poll of previously configured devices
by sending the IDY message (ATN and EOI both asserted).

When done, the parallel poll response byte is passed back as
the top element on the stack. The program should also check
iberr to determine if the response byte is valid.

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

See Also: ist , ppc , ppu .

Example:

1. To remotely configure a device at listen address 0x23 to respond
positively on DIO3 if its individual status bit is 1, and then parallel poll
all configured devices:

3 6a ppc (configure device at)
(listen address 3)

rpp (parallel poll all)
(configured devices)
(response passed back on)
(stack)

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-24 © National Instruments Corp.

rsc

rsc: Request or Release System Control (SC)

Syntax: v rsc

Remarks: v specifies request or release system control.

If v is non-zero, functions requiring System Controller
capability are subsequently allowed. If v is zero, functions
requiring System Controller capability are disallowed.

rsc is used to enable or disable the capability of the GPIB-
CT to send the Interface Clear (IFC) and Remote Enable
(REN) messages to GPIB devices using the sic and sre
functions. The GPIB-CT GPIB port must not be System
Controller to respond to Interface Clear sent by another
Controller.

In most applications, the GPIB-CT will always be the System
Controller. In other applications, the GPIB-CT will never be
the System Controller. In either case, rsc is used only if the
GPIB-CT is not going to be System Controller for the
duration of the program execution. While the IEEE 488
standard does not specifically allow schemes in which System
Control can be passed dynamically from one device to
another, rsc would be used in such a scheme.

Example:

1. To request to be System Controller if the GPIB-CT GPIB port is not
currently so designated:

1 rsc

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-25 GPIB-CT IBCL Reference Manual

rsp

rsp: Conduct a Serial Poll

Syntax: addr rsp

Remarks: addr is a valid GPIB address.

rsp is used to serially poll one device and obtain its status
byte. If the 0x40 bit of the response is set, the status response
is positive, i.e., the device is requesting service. Before rsp
completes, all devices are unaddressed.

Upon completion, the serial poll response is returned in the
low-order 8 bits of the word on the top of the stack. If the
device did not respond within the allotted time a -1 will be
returned on the top of the stack.

The interpretation of the response, other than the RQS bit, is
device-specific. For example, the polled device might set a
particular bit in the response byte to indicate that it has data to
transfer, and another bit to indicate a need for reprogramming.
Consult the manufacturer's documentation for the device for
interpretation of the response byte.

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-26 © National Instruments Corp.

rsp sends the following commands:

• UNL (Unlisten)

• SPE (Serial Poll Enable)

• GPIB-CT listen address

• Talk address of the device

• Read in response byte

• SPD (Serial Poll Disable)

• UNL (Unlisten)

• UNT (Untalk)

ATN and REN remain asserted after the function call.

Example:

1. To obtain the Serial Poll response byte from device tape:

tape rsp

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-27 GPIB-CT IBCL Reference Manual

rsv

rsv: Request Service and/or Set Serial Poll Status Byte

Syntax: val rsv

Remarks: val specifies the serial poll response byte.

If the 0x40 bit is set in val , the GPIB-CT additionally
requests service from the Controller by asserting the GPIB
SRQ line.

rsv is used to request service from the Controller using the
Service Request (SRQ) signal and to provide a system
dependent status byte when the Controller serially polls the
GPIB-CT.

It is not an error to call rsv when the GPIB-CT is CIC,
although this usage makes sense only if control will be passed
later to another device. In this case, the call updates the status
byte, but the SRQ signal is asserted only if the 0x40 bit is set
and only when control is passed.

See Also: rsp .

Examples:

1. To set the Serial Poll status byte to 0x41, which simultaneously
requests service from an external CIC:

41 rsv

2. To stop requesting service (unassert SRQ):

0 rsv

3. To change the status byte to 1 without requesting service:

1 rsv

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-28 © National Instruments Corp.

sic

sic: Send Interface Clear (IFC)

Syntax: sic

Remarks: sic causes the GPIB-CT to assert the IFC signal for at least
100 µsec, provided the GPIB-CT has System Controller
authority. This action initializes the GPIB and makes the
GPIB-CT GPIB port CIC. sic is generally used when you
want to become CIC or clear a bus fault condition.

The IFC signal resets only the GPIB interface functions of bus
devices and is not intended to reset internal device functions.
Device functions are reset with the Device Clear (DCL) and
Selected Device Clear (SDC) commands. To determine the
effect of these messages, consult the device documentation.

The GPIB-CT records the ESAC error if you have disabled its
System Controller capability with the rsc function.

See Also: rsc .

Example:

1. To initialize the GPIB and become CIC at the beginning of a program:

sic

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-29 GPIB-CT IBCL Reference Manual

sre

sre: Set or Clear Remote Enable (REN)

Syntax: v sre

Remarks: v specifies set or clear.

sre turns the REN signal on and off. If v is non-zero, the
Remote Enable (REN) signal is asserted. If v is zero, the
signal is unasserted. REN is used by devices to select between
local and remote modes of operation. REN enables the remote
mode. A device does not actually enter remote mode until it
receives its listen address.

The ESAC error occurs if the GPIB-CT is not System
Controller.

See Also: cmd , loc , rsc , sic .

Examples:

1. To place a device at listen address 0x23 (ASCII #) into remote mode:

1 sre (set REN to true)
" #" cmd (MLA)

2. To exclude the local ability of the device, send the Local Lockout
command (0x11), or include it in the command string in Example 1:

11 buf c! (send LLO)
buf 1 cmd

or

1 sre (REN true)
23 buf c! (MLA LLO)
11 buf 1+ c!
buf 2 cmd

3. To return all devices to local mode:

0 sre (set REN to false)

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-30 © National Instruments Corp.

stat

stat: Return GPIB-CT status

Syntax: stat

Remarks: stat is used to obtain the status of the GPIB-CT to see if
certain conditions are currently present. Use stat most often
to verify if the previous operation resulted in an error.

Use stat frequently in the early stages of program development
when your device's responses are likely to be unpredictable.

Status represents a combination of GPIB-CT conditions.
Internally in the GPIB-CT, status is stored as a 16-bit integer.
Each bit in the integer represents a single condition. A bit
value of 1 indicates that the corresponding condition is in
effect; a bit value of zero indicates that the condition is not in
effect. Since more than one GPIB-CT condition may exist at
one time, more than one bit may be set in status. The highest
order bit of status, also called the sign bit, is set when the
GPIB-CT detects a GPIB error. Consequently, when status is
negative, an error condition exists, and when status is positive,
no error condition exists. Table 3-2 lists the indication of each
bit in the status.

The status is returned on the stack as two words. The top
number represents the 16-bit status of the GPIB-CT. The
second number is the count of bytes last transferred using
brd , bwrt , rd and wrt .

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-31 GPIB-CT IBCL Reference Manual

Table 3-2. GPIB Status Conditions

Numeric Symbolic
Value (n) Value (s) Description Bit
-32768 ERR Error detected 15
16384 TIMO Timeout 14
8192 END EOI or EOS detected 13
4096 SRQI SRQ detected while CIC 12
2048 - Reserved 11
1024 - Reserved 10
512 - Reserved 9
256 CMPL Operation completed 8
128 LOK Lockout state 7
64 REM Remote state 6
32 CIC Controller-In-Charge 5
16 ATN Attention asserted 4
8 TACS Talker active 3
4 LACS Listener active 2
2 DTAS Device trigger state 1
1 DCAS Device clear state 0

See Also: Appendix B in your GPIB-CT User Manual for a detailed
description of the conditions under which each bit in status is set or cleared.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-32 © National Instruments Corp.

tmo

tmo: Change or Disable Timeout Limit

Syntax: val tmo

Remarks: val specifies the timeout limit, as shown in Table 3-3.

Table 3-3. Timeout Limit Values

Mnemonic val Minimum Timeout
TNONE 0 disabled
T10us 1 10 µsec
T30us 2 30 µsec
T100us 3 100 µsec
T300us 4 300 µsec
T1ms 5 1 msec
T3ms 6 3 msec
T10ms 7 10 msec
T30ms 8 30 msec
T100ms 9 100 msec
T300ms 10 300 msec
T1s 11 1 sec
T3s 12 3 sec
T10s 13 10 sec
T30s 14 30 sec
T100s 15 100 sec
T300s 16 300 sec
T1000s 17 1000 sec

Notice that if the field value is zero, no limit is in effect.

The time limit is an escape mechanism used to exit gracefully
from a hung bus condition. Since the GPIB is an
asynchronous bus, read and write operations can be held up
indefinitely.

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-33 GPIB-CT IBCL Reference Manual

Examples:

1. To change the time limit for device level I/O operations to 300 µsec:

4 tmo

2. To perform I/O operations with no timeout in effect:

0 tmo

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-34 © National Instruments Corp.

trg

trg: Send Device Trigger

Syntax: addr trg

Remarks: addr is a valid GPIB address.

trg addresses and triggers the specified device, then
unaddresses all devices on the GPIB.

trg sends the following commands:

• Unlisten (UNL)

• Listen address of the device

• Secondary address of the device, if applicable

• Group Execute Trigger (GET)

• Unlisten (UNL)

If this is the first function you call that requires GPIB
controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

The response to a trigger is device dependent.

Example:

1. To trigger device analyzer :

analyzer trg

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-35 GPIB-CT IBCL Reference Manual

wait

wait: Wait for Selected Events

Syntax: mask wait

Remarks: The mask bit is set to wait for the corresponding event to
occur.

wait is used to monitor the events selected in mask and to
delay processing until any of them occur. These events and
bit assignments are shown in Table 3-4.

Table 3-4. Wait Mask Layout

Decimal Mnemonic Description Hex Bit
Value Value

- - Reserved - 15
16384 TIMO Timeout 4000 14
8192 END EOI or EDS detected 2000 13
4096 SRQI SRQ detected while CIC 1000 12
- - Reserved - 11
- - Reserved - 10
- - Reserved - 9
- - Reserved - 8
128 LOK Lockout state 80 7
64 REM Remote state 40 6
32 CIC Controller-In-Charge 20 5
16 ATN Attention asserted 10 4
8 TACS Talker active 8 3
4 LACS Listener active 4 2
2 DTAS Device trigger state 2 1
1 DCAS Device clear state 1 0

If mask = 0 , the function returns immediately. This is used
to report the current device or GPIB-CT GPIB port state.

If the TIMO bit is 0 or the time limit is set to 0, timeouts are
disabled. Disabling timeouts should be done only when it is
certain the selected event will occur; otherwise the GPIB-CT
waits indefinitely for the event to occur.

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-36 © National Instruments Corp.

All activity on the GPIB-CT GPIB port is suspended until the
event occurs.

See Also: stat , tmo .

Examples:

1. To wait for a service request or a timeout:

5000 wait

2. To update the status:

0 wait

3. To wait indefinitely until control is passed from another CIC:

20 wait

4. To wait indefinitely until addressed to talk or listen by another CIC:

C wait

Chapter 3 GPIB Extensions

© National Instruments Corp. 3-37 GPIB-CT IBCL Reference Manual

wrt

wrt: Write Data to GPIB

Syntax: addr buf cnt wrt

Remarks: addr is a valid GPIB address.

buf is the address of the buffer that contains the data to be
sent over the GPIB.

cnt specifies the number of bytes to be sent over the GPIB.

wrt attempts to write cnt bytes of data to the specified GPIB
device. The following steps are performed:

1. UNL is sent.

2. The device is addressed to listen and the GPIB-CT
GPIB port to talk, if not already addressed to do so.

3. The GPIB-CT writes the data to the device.

An EABO error results if the operation does not complete
within the time limit.

wrt terminates on any of the following events:

• When cnt bytes have been written

• Error is detected

• Time limit is exceeded

• When no listeners are detected after the operation
begins (the GPIB-CT reports ENOL in this case)

• Device Clear (DCL) or Selected Device Clear (SDC)
command is received from another device which is
CIC

GPIB Extensions Chapter 3

GPIB-CT IBCL Reference Manual 3-38 © National Instruments Corp.

When wrt returns, ibcnt contains the actual number of data
bytes written. A short count can occur on any of the previous
events but the first.

If this is the first function you call that requires GPIB
Controller capability, and you have not disabled System
Controller capability with rsc , the GPIB-CT sends Interface
Clear (IFC) to make itself CIC. It also asserts Remote Enable.

If you passed control to some other GPIB device, control must
be passed back to you or you must send IFC to make yourself
CIC before making this call. Otherwise, the ECIC error will
be posted.

Example:

1. To write 10 bytes of instructions to device dvm :

dvm " F3R1X5P2G0" wrt

NOTE: The double quote (") places text in memory up to the closing
quote or decimal 65 characters. " also leaves the address and string
length on the stack and is thus ideal for use with wrt . For instance, "
abc" leaves the address of the string and a count of 3 on the stack.

© National Instruments Corp. 4-1 GPIB-CT IBCL Reference Manual

Chapter 4
Programming Examples

This contains sample applications written in IBCL Some examples are
standalone; others have software that communicates with ongoing IBCL
code from an external computer. These examples are simplified so that you
can enhance them to meet your own programming needs.

Microsoft BASIC IBCL Compiler Programming
Example

Example 1 demonstrates how you can use a high-level language that has
access to the system's serial port to download a file of IBCL source code,
macros, or data to IBCL.

Example 1

10 CLS
20 INPUT "Enter the filename of the source code using a

correct pathname: ";file$
30 OPEN file$ FOR INPUT AS #1

' Opens the disk file for
' input

40 OPEN "COM1:9600,N,8,1" AS #2
' Opens the RS-232 com-
' munications port

50 LINENUM = 1 : Locate 2,1 : PRINT "Compiling line # ";
LINENUM ' Initialize a line count

' variable
60 CMDSTR$ = "ibcl"+CHR$(13) ' Command to enter IBCL from

' the GPIB-CT default
' operating system.

70 PRINT #2,CMDSTR$ ' Send the string to RS-232
' port

80 LINE INPUT #2,STAT$ ' Ensure ok message given
90 STAT$ = RIGHT$ (STAT$,2)
100 IF STAT$ <> "ok" THEN 500

' Check if successfully
' entered IBCL

110 while (not EOF(1)) ' Keep reading until disk
' file is depleted of words,
' macros, and commands.

Programming Examples Chapter 4

GPIB-CT IBCL Reference Manual 4-2 © National Instruments Corp.

120 LINE INPUT #1,CMDSTR$ ' Get command from disk file
130 PRINT #2,CMDSTR$ ' Send command to IBCL
140 LINE INPUT #2,COPY$ ' Read in echo of CMDSTR$

' from IBCL
150 LINE INPUT #2,STAT$ ' Get status of last command
160 STAT$ = RIGHT$ (STAT$,2)
170 IF STAT$<> "ok" THEN 500 ' Some error occurred. Stop!
180 LINECNT = LINECNT + 1 ' Increment count of lines

' sent
190 WEND ' Repeat the loop
200 PRINT : PRINT LINECNT;" lines were successfully

transmitted."
210 END

500 REM ' This error routine could be any action you
510 REM ' take when an error occurs in a transfer.
520 PRINT : PRINT "Transmission interrupted due to an

error."
530 PRINT "Value of CMDSTR$ which created an error is

";CMDSTR$
540 PRINT "Value of STAT$ after the error is ";STAT$
550 END

Modem Programming Examples

Example 2 is an IBCL program that loops twenty decimal times reading the
settings from an oscilloscope located at GPIB address 1. When all the
readings are obtained, IBCL will use a modem and dial the number of a
modem attached to another computer executing Example 3.

Example 3 is a Microsoft BASIC program that dials a modem connected to
a distant GPIB-CT, downloads a file (the program from Example 2), and
then waits for IBCL to call back with the results of its operation.

Example 2

0 variable buff (Create a buffer named "buff")
1000 allot (Allocate 1000 hex bytes for)

(the buffer)
: analyze (Define a word "analyze")

buff (Or iginal buffer address onto)
(the stack)

14 0 do (Loop 20 decimal times)
dup dup (Duplicate the moving buffer)

(address twice)
c tmo (Set up a 3 sec timeout)

Chapter 4 Programming Examples

© National Instruments Corp. 4-3 GPIB-CT IBCL Reference Manual

4000 wait (Wait 3 sec between data)
(acquisitions)

d tmo (Reset default 10 sec timeout)
1 " set?" wrt (Request the instrument state)

(of the Tektronix 2230)
(oscilloscope located at GPIB)
(address 1)

1 swap 1000 rd (Read data from instrument at)
(GPIB address 1 into the)
(buffer whose address is on)
(the stack)

d swap (Put a <CR> on the stack and)
(swap its value with the)
(remaining buffer address)

stat drop + (Get actual count of chars.)
(read and add this value to)
(the buffer address)

c! (Store the <CR> into the)
(buffer)

stat drop 1+ + (Get new buffer address by)
(adding count of chars. read)
(plus 1 for <CR>)

loop (Loop and do again)
." ATDT9,3358570" (Send command to modem serial)

(port to dial)
cr (Send a <CR><LF>--." does not)

(automatically)
4000 wait (Wait 10 sec to insure)

(Carrier Detect)
buff - buff swap (Get starting address of)

(buffer and count of chars.)
(to send to the host)

ulm (Upload the data to the)
(serial port)

;

Example 3
10 CLS : KEY OFF
20 DIM RESULT$(20) ' Create an array for results
30 ON COM(1) GOSUB 520 ' Trap routine for incoming

' serial data
40 INPUT "filename"; FILE$ ' Disk file of IBCL data,

' program, etc.
50 OPEN FILE$ FOR INPUT AS #1 ' Ope n IBCL command file
60 OPEN "com1:1200,n,8,1" AS #2
70 PRINT #2,"ATs2=42" ' Local modem escape character

' is the asterisk (*)
80 LFCR$=INPUT$(2,2) ' Get leading CR and LF

Programming Examples Chapter 4

GPIB-CT IBCL Reference Manual 4-4 © National Instruments Corp.

90 LINE INPUT #2,ESCSTAT$ ' Status from modem
100 LF$=INPUT$(1,2) ' Get trailing LF
110 PRINT #2,"ATDT9,335857O" ' Dial IBCL modem
120 LFCR$=INPUT$(2,2) ' Get leading CR and LF
130 LINE INPUT #2,DLSTAT$ ' Status from modem
140 LF$ = INPUT$(1,2) ' Get trailing LF
150 IF INSTR(DLSTAT$,"CONNECT") = 0 THEN PRINT
 "No carrier detected" : END

' Check if CONNECT message
' received

160 FOR PAUSE = 1 TO 3000 : NEXT PAUSE
' Wait to ensure Carrier
' Detect

170 PRINT #2,"task" ' An IBCL do-nothing word -
' insures that IBCL
' is ready for commands

180 LINE INPUT #2,COPY$ ' Echo of IBCL command
190 LINE INPUT #2,STAT$ ' Status after IBCL processes

' command
200 LF$=INPUT$(1,2) ' Get trailing LF
210 PRINT #2,"cold" ' OPTIONAL--IBCL will be in a

' known state after execution
' of this command

220 LINE INPUT #2,COPY$ ' Echo of IBCL command
230 LINE INPUT #2,STAT$ ' Status after IBCL processes

' command
240 LF$=INPUT$(1,2) ' Get trailing LF
250 IF INSTR(STAT$,"ok") = 0 THEN PRINT "IBCL is not
 responding. Program terminated" : END

' Check if status was an ok
' message

260 LINENUM = 1 : LOCATE 2,1 : PRINT "Compiling line
 # ";LINENUM
270 IF EOF(1) THEN PRINT "downloaded file" : GOTO 400
280 LINE INPUT #1,CMDSTR$ ' Get next IBCL command from

' file
290 PRINT #2,CMDSTR$ ' Send IBCL command to GPIB-CT

' to be compiled
300 LINE INPUT #2,COPY$ ' Receive echoed command line -

' disregard
310 LF$ = INPUT$(1,2) ' Get trailing LF
320 LINE INPUT #2,STAT$ ' receive status line (ok or

' error message)
330 LF$ = INPUT$(1,2) ' Disregard line feed character
340 IF STAT$ <> "ok" THEN GOTO 380

' if not ok then go to error
' routine

350 LINENUM = LINENUM + 1 ' increment line number

Chapter 4 Programming Examples

© National Instruments Corp. 4-5 GPIB-CT IBCL Reference Manual

360 LOCATE 2,18 : PRINT LINENUM
370 GOTO 270
380 PRINT : PRINT "Compile error on line number " ; LINENUM ' error routine
390 PRINT CMDSTR$: PRINT STAT$: END
400 PRINT #2, "analyze" ' Name of the program just

' downloaded--'analyze' in our
' example

410 FOR PAUSE = 1 TO 5000 : NEXT PAUSE
' Modem guard time for esc.
' sequence

420 PRINT #2,"***"; ' Enter modem escape mode
430 FOR PAUSE = 1 TO 5000 : NEXT PAUSE

' Modem guard time for esc.
' sequence

440 RESP$=INPUT$(LOC(2),2) ' Get any characters in comm.
' buffer-disregard these

450 PRINT #2,"ATH0" ' Modem command to hang up
' phone

460 LFCR$=INPUT$(2,2) ' Get CR and LF
470 LINE INPUT #2,STATUS$ ' Get hang-up status string
480 LF$=INPUT$(1,2) ' Get trailing LF
490 REM The following section of code is the trap routine for
 incoming serial data.
500 COM(1) ON ' Enable communications

' trapping
510 GOTO 510 ' No meaningful work to be

' done, so wait for results
520 COM(1) OFF ' Stop communications trapping
530 CLS:PRINT "Now getting ring and connect status"
540 CRLF$=INPUT$(2,2) ' Get leading CR and LF
550 LINE INPUT #2,RING$ ' Get ring status string (RING)
560 LF$=INPUT$(1,2) ' Get trai ling LF
570 WHILE RING$="RING" ' Keep getting ring status

' string until not = to RING
580 CRLF$=INPUT$(2,2)
590 LINE INPUT #2,RING$
600 LF$=INPUT$(1,2)
610 WEND
620 FOR PAUSE = 1 TO 3000 : NEXT PAUSE

' Wait to insure Carrier Detect
630 IF INSTR(RING$,"CONNECT") = 0 THEN PRINT "No carrier
 detected" : END ' Stop program if no Carrier

' Detected
640 ON COM(1) GOSUB 670 ' New trap address
650 COM(1) ON ' Enable communications

' trapping
660 GOTO 660 ' No meaningful work, so wait
670 COM(1) OFF ' Disable communications

Programming Examples Chapter 4

GPIB-CT IBCL Reference Manual 4-6 © National Instruments Corp.

' trapping
680 CLS:PRINT "Now waiting for the results"
690 FOR RESULT = 1 TO 20
700 LINE INPUT #2,RESULT$(RESULT)

' Get a result string
' from the communications
' buffer

710 PRINT : PRINT RESULT$(RESULT)
720 NEXT RESULT
730 FOR PAUSE = 1 TO 5000 : NEXT PAUSE

' Modem escape guard time
740 PRINT #2,"***"; ' Local modem escape sequence
750 FOR PAUSE = 1 TO 5000 : NEXT PAUSE

' Modem escape guard time
760 IF LOC(2) <> 0 THEN RESP$=INPUT$(LOC(2),2)

' Insure comm. buffer empty
770 PRINT #2,"ATH0" ' Command for modem to hang-up
780 CRLF$=INPUT$(2,2) ' Get leading CR and LF
790 LINE INPUT #2,STAT$ ' Get modem status
800 CLOSE #2 ' Close the communications port
810 CLOSE #1 ' Close the disk file
820 END

Macro Programming Example

Example 4 is an IBCL macro that will set your GPIB-CT to default values
different from those of the GPIB-CT default operating system. For this example,
assume you want the following default values for the GPIB-CT default operating
system that differ from those at startup or at ONL 1:

• Do not send EOI on the last byte of a GPIB write

• Send EOI with the carriage return (ASCII 13)

• Terminate GPIB reads upon receiving a carriage return

• Configure an IBM 7372 color plotter to participate in a parallel poll by
returning a positive response when its pen is down

• Set timeout limit at 3 sec

Chapter 4 Programming Examples

© National Instruments Corp. 4-7 GPIB-CT IBCL Reference Manual

In the GPIB-CT default operating system, you would have to type all of the
instructions each time that you wanted these changes to occur. However, with the
addition of the IBCL operating system, you have the ability to create a macro
called mydefault that will do these steps for you.

This solution still requires you to type in the macro definition at startup, but it will
be there whenever needed thereafter (for instance, after an ONL 1 is executed and
all startup defaults are reset). For an even more powerful macro ability, after
studying this example, refer to Appendix C, Creating Permanent IBCL Words in
EPROM , to learn how to make the macros permanent and avoid typing in each
macro definition after each startup. Notice that mydefault is defined the same way
as any other IBCL word. It is called a macro because its function resembles that
of a macro. There is no special defining technique required for defining macros.

Example 4

Follow these steps to create a macro named mydefault which sets the five
previously described defaults:

1. In the GPIB-CT default operating system, enter:

ibcl<CR>

2. If you are using a terminal emulator program, wait for an ok message
from IBCL. If you are in BASIC or some other language, read in the
status string and check for ok. The ok appears instantly if there is no
problem.

3. Now, create an IBCL word which will be the macro:

: mydefault (Macro name)
0 eot (Disable EOI sent with the)

(last byte of GPIB writes)
C0D eos (Enable EOI sent with <CR>)

(and GPIB reads to terminate)
(when a <CR> is received)

5 " im 223,0,1;" wrt
(Sends to 7372 plotter at)
(GPIB address 5 the command)
(to participate in a parallel)
(poll when it's pen is down)

c tmo (Change timeout limit to 3)
(sec)

bye (Inclusion of this command)
(will cause a return to the)

Programming Examples Chapter 4

GPIB-CT IBCL Reference Manual 4-8 © National Instruments Corp.

(GPIB-CT default operating)
(system)
(immediately upon completion)
(of the macro. Leaving this)
(statement out allows you to)
(remain in IBCL after)
(execution of the macro.)

; (End the macro definition)

This example demonstrates only a fraction of the power available to you with
IBCL and macros. After you have completed this example, you can type
mydefault if you are operating in IBCL, or ibcl<CR> mydefault<CR> if you are
in the GPIB-CT default operating system, to set these defaults.

Timed Applications Examples

Example 5

Within IBCL, you can access the on-board system timer to time activities.
To do this, you must convert the required time limit into a 4-byte value that
the timer can use and load those values into four specified memory
locations within IBCL.

To program any value, you may derive the values required for IBCL in the
following manner:

• The first number is the actual number of timer interrupts that will
occur before the routine completes. Valid values for this number
lie in the range of 1 to 65535.

• The second number is the length of time before a timer interrupt
will occur. Valid values for this number lie in the range of 3 to
65535. Each increment in the second number represents a time of
3.26 µsec (0.0000326 sec). Therefore, the minimum value of time
which can be generated is roughly 10 µsec (3, the minimum value
of the second number, times 3.26 µsec is roughly equal to 10 µsec).
Incrementing the second number by 1 produces a timer value of
roughly 13 µsec (4, the minimum value of the second number, + 1
* 3.26 µsec is roughly equal to 13 µsec).

A useful general formula is given here:

(VAL2 * 3.26 µsec) * VAL1 ≈ desired time value

Chapter 4 Programming Examples

© National Instruments Corp. 4-9 GPIB-CT IBCL Reference Manual

Example 6

Assume you have an application which requires servicing approximately
every 24 µsec Using the previous formula, VAL2 = 8 and VAL1 = 1
produce the proper values for this application ((8 * 3 µsec) * 1 ≈ 24 µsec).

Example 7

Assume you have an application requiring service at approximately 48 µsec
intervals. One way to produce this value is to let VAL1 = 2 ((8 * 3 µsec) *
2 ≈ 48 µsec). However, this is not the most efficient solution because the
timer interrupt has to be serviced more often than necessary. A more
efficient method of achieving the same time limit is to change VAL2
instead of VAL1 ((16 * 3 µsec) * 1 ≈ 48 µsec). Of course, when VAL2
becomes larger than 65535, VAL1 will have to be adjusted to accommodate
longer times.

After you have these numbers (VAL1 and VAL2 comprise the necessary 4
bytes for the timer), they have to be loaded into the memory locations
starting at 1C hex using the IBCL command ! (pronounced store). In this
example, the values used are from the 24 µsec given in Example 6.

First, store VAL1, the actual number of timer interrupts at memory location
1C hex by typing:

1 1c !

Next, store VAL2, the time interval between interrupts, at memory location
1E hex by typing:

8 1e !

Programming Examples Chapter 4

GPIB-CT IBCL Reference Manual 4-10 © National Instruments Corp.

Example 8

Suppose you have an application that takes measurements at 5 sec intervals.
You want to continuously read the data (guaranteed to be 2 bytes long) into
a buffer for a duration of 10 min. Follow these steps:

1. Set up a buffer in IBCL to accommodate the readings by typing the
following:

0 variable buff ee allot<CR>

This step creates a buffer named buff and allocates 240 (12
readings/min * 10 min * 2 bytes/reading) decimal bytes of space
for the readings.

2. Derive the values which should be stored at location 1c hex to
ensure proper timing using the following formula:

5 sec = 5,000,000 µsec/ 65500 (almost as large as possible) / 3
= VAL1 = number of times timer must interrupt = 19 hex and
65500 = ffdc hex = VAL2 = time before an interrupt occurs.

3. Create a word that will perform the specified application:

: analysis (Define a word to take)
(readings)

20 1c do (** See warning below-copies)
(old timer values)

 i c@ >r (Get byte and put onto)
(return stack)

loop
19 1c ! (Store the new timer values)
ffdc 1e !

buff dup (Put the address of buffer)
(on stack)

5 " put cmd here" wrt
(Issue command for the)
(device)
(at GPIB address 5 to start)
(taking measurements.)

120 0 do (Take the 120, 2 byte)
(readings)

Chapter 4 Programming Examples

© National Instruments Corp. 4-11 GPIB-CT IBCL Reference Manual

dup 2+ swap (Get next buffer location)
(and leave old buffer)
(location on top of stack)

5 swap 2 (Put the GPIB address of)
(device on the stack, swap)
(with old buffer location,)
(and put the number of)
(characters to read {2} on)
(top. This leaves the)
(parameters required for a)
(GPIB read on the stack--)
(addr{5} buffer{old buffer})
(and count {2})

4000 wait (Wait the required 5 sec)
rd (Execute a GPIB read of 2)

(chars into the buffer)
loop (Start the loop again)
4 0 do (Get old timer values from)

(return stack and put them)
r> (on the computation)

loop (stack)
20 1c do (Store the old values)

i c!
loop

;

6. Type the following to execute the program:

analysis<CR>

Warning: Using this method of setting timeout limits will work and will
remain in effect until changed again by this method or by the
tmo command. However, if the >r and r> blocks of code are
omitted from the previous example, the reporting of timeout
limits in the GPIB-CT default operating system will be
incorrect because the string holding the TMO value will not be
changed. So, although the string contains one value, the actual
value in the timer routine will be your last value stored. By
using the >r and r> blocks in the previous example, the string
reports the correct value as the values before you make any
changes will have been reset at the end of execution of the
code.

© National Instruments Corp. 5-1 GPIB-CT IBCL Reference Manual

Chapter 5
Technical Information

This chapter contains information for improving and customizing
performance from the GPIB-CT.

Loading Programs

There are several ways in which you can load IBCL source code. Since
IBCL treats incoming source code as normal text, any method you have of
sending data over the serial port is an effective way to download source
code into IBCL.

The easiest way to communicate with the GPIB-CT is through a terminal
emulation program. Using a terminal emulator is a preferred way of
creating and debugging an application as you can see everything sent and
received over the serial port at one time. If you are using a terminal
emulation program, downloading source code is as easy as sending a text
file of the code over the serial port.

Another way you could download source code is through a programming
language which has access to the system's serial port. An example using
this method is provided in Section Four, Programming Examples, Microsoft
BASIC IBCL Compiler Programming Example.

If you wish to make your code permanent in IBCL after downloading, see
Appendix C, Creating Permanent IBCL Words in EPROM, for instructions.

The IBCL Interpreters

IBCL has two interpreters–the inner interpreter, and the outer interpreter.
The inner interpreter does nothing except branch from one machine code
routine to the next. The nesting and unnesting routines supporting high-
level IBCL definitions are among the code routines through which
execution passes.

The outer interpreter accepts text from the host. It then attempts to parse
the text string as a sequence of IBCL words and numbers. In execute mode,
words are executed and numbers are placed on the stack. In compile mode,
words and numbers are entered into the definition of a new word.

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-2 © National Instruments Corp.

Inner Interpreter Sequence

If the definition list which the inner interpreter is interpreting consists of a
list of pointers to simple machine code primitive instructions, such as stack
and math words, execution proceeds from one word to the next in the list.
A few special machine code primitives alter this orderly flow.

One of these diverting primitives, :, is compiled by (docol) which is an
IBCL word to which users have no access. This primitive nests control to a
lower-level definition.

;s is the last pointer in a definition list. Its machine code primitive pops the
top element from the return stack and continues list interpretation at that
address. This is the word from which control was originally diverted.

There are several other words which alter the sequential interpretation of a
definition list. (.") and (abort) are compiled by the immediate words, ." and
abort. (.") controls display of the subsequent in-line string and causes
interpretation to skip to the word subsequent to that string, while (abort)
could cause execution of a user-supplied routine in the event of an error. lit
causes the next word value to be pushed onto the stack; interpretation
continues after that value.

execute causes a branch to the word pointed to by the top value on the stack,
just as if the pointer to that word's code field address had been in the list
instead of execute.

The remaining control-flow altering words handle the high-level flow
control within a single definition list. branch causes control to skip forward
or backward the number of words contained in the subsequent location.
Obranch does so only if the top word on the data stack is zero. Otherwise
control continues with the word following the unneeded relative offset.

The do loop terminating words are similar in function and appearance to
Obranch. First, these words perform the additional task of updating an
index and comparing it to a limit. If the limit has exceeded bounds, control
is transferred as with branch. If the bound has not been exceeded,
interpretation continues after the relative offset.

Chapter 5 Technical Information

© National Instruments Corp. 5-3 GPIB-CT IBCL Reference Manual

Outer Interpreter Sequence

Text is accepted one line at a time from the host. A line can be up to 80
bytes long. The interpreter further breaks each line or block into individual
words and processes them sequentially. A word is a string of characters
preceded and followed by blank spaces or by a <CR>. A few words require
text strings as following arguments and use a special delimiter such as quote
to end the string. Within these strings, blanks are not interpreted as word
separators. These strings are processed by the preceding word rather than
by the interpreter.

One such special string is the comment which opens with an opening
parenthesis ((). The interpreter ignores input after the (word until the next
closing parenthesis ()) or until the end of the current line. The initial (is a
true IBCL word, but the closing) is only a delimiter and need not be
preceded by a blank.

Once a word is extracted, an attempt is made to locate it in the dictionary.
If it is found, its code field address is returned. In execution mode, the
definition beginning at this address is executed, but when compiling a
higher-level word, the address is appended to the definition being created
unless it is an immediate word. These execute immediately–even within a
colon definition.

If the word was not located, the interpreter assumes that it is a number and
attempts to convert it to binary form. The value stored in base identifies the
current numerical base. The number may begin with a minus sign. If it
contains a decimal point, it is converted as a double length number.
Otherwise, it must fit in a single byte-pair. When a single byte-pair number
is too large, high-order bits are lost. Double byte-pair numbers cannot
overflow, but the correct decimal point location must be determined from
the user variable dpl.

The decimal point in the double numbers identifies them as double numbers
but does not affect the binary value generated. The two numbers 123. and
1.23 produce the same binary value. The location of the decimal point is
available in the user variable dpl, which is 0 and 2 for the previous numbers.
dpl can be used by the application to scale numbers according to the
location of the decimal point.

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-4 © National Instruments Corp.

In execution mode, the binary value is placed on the stack. For single byte-
pair numbers in compilation mode, the code field address of lit (literal) is
appended to the definition followed by the binary value. For double byte-
pair numbers in compilation mode, the behavior is similar except that each
byte-pair will be compiled separately, along with pointers to lit.

If the string cannot be converted, the interpreter aborts with an error
message. The stacks are cleared and the rest of the line being interpreted is
ignored.

The interpreter uses -find to locate the potential word in the dictionary.
Since the source string for -find is the next word in the input stream, this
also advances the interpreter over the input text.

If the string is not a word, number is used to convert it to binary form.
number compiles (number) which does the conversion. (number) expects
the address of the source string's count byte on the stack. It replaces the
address with the double word binary value converted using the current base.
If conversion is not possible, (number) aborts with a ? MSG #0 error. The
user variable dpl will contain -1 if no decimal point was present in the
numeric string. In this case, the number was of single word length and the
top word on the stack may be dropped. The interpreter ignores dpl except
as a flag to drop the top word of single word entries.

When all words in the input stream have been executed, query is used to
obtain more input and the entire cycle repeats.

Errors

When an error is encountered during interpretation, an error message is
usually generated using abort. Execution of the run-time portion of this
word, (abort), clears the stacks and prints an error message. Control is then
returned to the terminal to await the next line of input. See the discussions
Defining New Words , Colon Definitions, and IBCL Input, in Chapter 2,
IBCL Function Reference .

Chapter 5 Technical Information

© National Instruments Corp. 5-5 GPIB-CT IBCL Reference Manual

Error-checking is performed by the following words:

• ?comp Error if not compiling

• ?csp Error if stack position is not that in csp

• ?pairs Error if top two stack elements unequal

• ?stack Error if stack out of bounds

Defining a new word increases the memory allocated in the dictionary. If
an error causes the definition to abort before completion, memory allocated
in the dictionary is reclaimed.

Advanced Defining Techniques

Two actions must be specified when defining words. The first is done when
the defining word is executed. The next is done when the word defined
using the defining word is executed. As an example, assume that the
system does not provide the word defining constants. One way to define
this defining word is given here:

: constant <builds , does> @ ;

does> is an immediate word. It executes when the definition is entered.
The @ is compiled as usual.

To define the constant five using this defining word, type this line:

5 constant five<CR>

The 5 is placed on the stack and momentarily ignored. Referring to the
definition of constant, the <builds requires a word from the input stream. It
takes the string five and adds it to the current vocabulary with a pointer to
the next free word in the definition list. This word is initialized with a
pointer to the code for constants, and the working end of the definition list
is incremented by two to point to the parameter field of the word being
defined, five. Next the comma (,) takes the top value on the stack, 5, and
stores it at the working end of the definition list, the parameter field of five,
and increments the end pointer by two.

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-6 © National Instruments Corp.

Next, the does> replaces the contents of the code field with a pointer to a
few bytes of code created by does> each time it is used. This code has two
functions. It nests the interpreter one level deeper, transferring control to
the word after does>, and it places the parameter field address of the word
being defined, five, on the stack. The code is executed only when five is
executed. Finally, the @ is compiled and the ; causes a routine to be
compiled that unnests the interpreter one level, and then terminates the
definition.

When five is executed, the code created by does> is executed. The address
of the parameter field of five is placed on the stack and the interpreter nests
down to the @ in the definition of constant. A 5 is waiting at the parameter
field address and is returned on the stack. The exit compiled by ; returns the
interpreter to the next higher level, with the 5 remaining on the stack. Or,
stated simply, executing five causes 5 to be left on the stack.

For a slightly more complex case, consider a double length constant:

: dconstant <builds swap , ,
does> dup @ swap 2+ @ ;

hex 1234.5678 dconstant longfellow

dconstant creates a double length constant named longfellow. When
longfellow executes, it leaves a double length number on the stack. First
5678 is pushed onto the stack, then 1234.

The complexity and utility of words that define words is unlimited.

Machine Code Primitives

This discussion provides a simple means of entering machine code
definitions for words which must execute rapidly or which require machine
resources not immediately available in high-level IBCL.

The GPIB-CT contains a Hitachi HD64180 microprocessor which has an
instruction set that is a superset of the Z-80 instruction set. You should be
familiar with the Z-80 instruction set before attempting machine code
primitives.

Chapter 5 Technical Information

© National Instruments Corp. 5-7 GPIB-CT IBCL Reference Manual

Three addresses very important to creating your own machine code
primitives are dpush, hpush, and next. There are no given system constants
for these addresses, although the fixed offsets from the origin are 6A hex for
dpush, 6B hex for hpush, and 6C hex for next. To get the true address of
these words, you can enter this line:

offset +origin u.

The 64180 has six general-purpose registers–B, C, D, E, F, G, H, and L.
You can combine these six into three general-purpose 16-bit registers (BC,
DE, and HL), an 8-bit accumulator, an 8-bit flag register (F), and two index
registers (IX and IY). Along with these registers, the 64180 has an alternate
register set (HL', BC', DE', and AF').

dpush is used to push onto the stack the value stored in the DE register pair,
and then push onto the stack the value stored in the HL register pair. hpush
is used when you wish to push onto the stack only the value stored in the
HL register pair. next is a routine which returns control to the IBCL
operating system after execution of the primitive. dpush and hpush
automatically execute next, but in all primitives which do not put anything
onto the stack with dpush or hpush, you will specifically need to jump to
next at the end of your primitive.

Warning: IBCL uses the value in register pair BC as its address
pointer; therefore, register pair BC should be used with
extreme caution to prevent a system crash.

The following example, fastadd, demonstrates these topics. Notice that this
is how the + word is defined, so this example will not execute faster than
the existing + operation.

Enter this sequence:

create fastadd (Makes a dictionary)
(entry for fastadd)

e1 c, (pop hl)
d1 c, (pop de)
19 c, (add hl, de)
c3 c, 6B c, 2 c, (jp hpush)
(see note about hpush following example)
smudge (Toggle the definition's)

(smudge kit to allow)
(fastadd to be found in)
(dictionary searches)

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-8 © National Instruments Corp.

Note : In the current version of the IBCL software, the code for hpush is
at 026Bhex. This code is not guaranteed to remain in that location
in future software revisions. Before doing this step, you should
find out the address of hpush as detailed earlier in this section in
the discussion of +origin.

In the previous example, create makes a dictionary entry for fastadd and
leaves the dictionary pointer at the code field of fastadd. c, then puts the
byte on the stack into the memory location pointed to by the dictionary
pointer and increments the dictionary pointer. This process places the
machine language sequence into the dictionary.

Vectored Execution

You cannot include a word in a definition if that word has not already been
defined. If the function you wish to perform cannot be defined before the
word in which it is used, you must first define a variable that will eventually
contain the code field address, or vector, of the word to be defined.

Consider the following example:

nnnn variable vector-name
(creates a variable called vector-name, initialized to)
(nnnn , although this value does not matter)

: some-word words vector-name @ execute words ;
(defines some-word, which needs to use a currently)
(undefined word)

: future-word words ;
(define the future word)

future-word cfa vector-name !
(put the code field of future-word into the vector)

some-word (execute the complete word)

The vector name used in some-word compiles like any variable. When
executed, it leaves its parameter field address on the stack and @ replaces
that address with the variable's contents. This variable was initialized on
the last line to contain the code field address of future-word. ' returns the
parameter field address of the next word in the input stream and cfa
converts the parameter field address to the code field address. execute
executes the word whose code field address is on the stack as if it had been
compiled into the definition.

Chapter 5 Technical Information

© National Instruments Corp. 5-9 GPIB-CT IBCL Reference Manual

Memory Organization

Figure 5-1 is a logical memory map of the IBCL operating system. IBCL
memory space is actually located from physical 40000H to 4FFFFH, but
IBCL recognizes only 16-bit addresses 0 through FFFFH.

GPIB-CT Operating
System Variables

0
00FFH
0100H

Reserved for System01FFH
0200H
022AH
026AH

Startup Literals

User Variables

Dictionary
(consists of core
definitions and

user-defined
definitions)

Word Buffer*

Text Buffer*

Computation
Stack

Terminal
Buffer

Return Stack
in

FFFFH

7FFFH
8000H

0 +origin

up

dp

pad

sp

s0
rp

r0

tib

**	(See WARNING
					following figure)

*			(See NOTE
					following figure)

(Floats up and down)

(Floats up and down)

(Floats up and down)

Figure 5-1. Logical Memory Map

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-10 © National Instruments Corp.

Note: These buffers float immediately above the dictionary at a fixed
offset from the dictionary pointer.

Warning: After expanding the IBCL dictionary past logical address
7FFFH, any definitions made are not guaranteed to
remain if you leave IBCL to the GPIB-CT default
operating system, because the GPIB-CT default operating
system uses addresses starting at 8000H as a serial port
input buffer.

The operating system variables at the top of IBCL space are shared between
the GPIB-CT default and IBCL operating systems. This sharing of
resources ensures that any changes made to the characteristics of the GPIB-
CT in either operating system are present in the other operating system as
well.

Logical space from 100H to lFFH is reserved for the system and should
never be changed.

Startup literals begin at the origin of IBCL, 200H. These values are
necessary for system initialization. Some literals specify values which are
copied to the user area of memory during initialization. Other literals
specify the starting address of the user area, the ASCII code of the
GPIB-CT's backspace character, and pointers to the top definition and the
end of the core dictionary.

The user variables section contains the user variables dp, fence, r0, s0, tib,
voc-link, warning, width, base, context, current, in, out, dpl, csp, hld, and
state. For more information on the user variables, refer to the discussion
Constants, Variables, and Arrays , in Chapter 2, IBCL Function Reference .

The dictionary is the largest and most essential element of IBCL. This area
contains the definitions of all core and user-created words. The dictionary
area expands in memory as new words are defined, and contracts when
word definitions are deleted. The user variable dp always contains the
address of the next available dictionary location and floats as the dictionary
grows and shrinks.

The word buffer floats immediately above the top of the dictionary,
beginning at the location stored in dp. The fixed length of the buffer is 68
characters. As the dictionary expands and contracts, the limits of the word
buffer move the same distance up or down in memory without retaining its
contents.

Chapter 5 Technical Information

© National Instruments Corp. 5-11 GPIB-CT IBCL Reference Manual

The text interpreter parses the input stream by obtaining individual words
from the terminal input buffer and placing them into the word buffer.

The text buffer lies immediately above the word buffer a fixed distance
above the dictionary. Like the word buffer, this area goes up or down in
memory in response to dictionary movements, without saving its contents
during relocation. This buffer serves as a scratchpad area where output text
strings may be constructed character by character, or the IBCL word quote
(") constructs the buffer for bwrt, wrt, or cmd. This buffer is the same
length as an output line that is stored in the system constant c/l and defaults
to 64 decimal bytes.

The terminal buffer and return stack share memory from address FFFFH to
FF60H. As IBCL calls other words in a definition, the return stack grows
towards low memory. As IBCL returns from each level of execution, the
return stack shrinks towards high memory.

The terminal buffer begins at the value stored in tib and grows toward high
memory. This buffer holds each line of input data from the serial port. As
soon as a line is entered and processed, the buffer is reset for the next line.

The computation stack is the stack where parameters are stored. It is based
in s0, and grows towards low memory and the dictionary. sp contains the
stack pointer at all times. The value in sp can be viewed and altered using
sp@ and sp!.

General Port I/O

IBCL provides two port input/output words, p! and p@, which change or
recall the internal parameters of the GPIB-CT. These words transfer data
between the top of the stack and any of the on-board GPIB-CT I/O ports. In
normal applications, these words should be used only in the following
circumstances:

• To read the states of the user defined switch (U20)

• To set up the DMA controller for GPIB reads and writes to
extended memory

All other port accesses should be done with extreme caution. Improper use
can cause the system to crash.

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-12 © National Instruments Corp.

p! outputs a byte to the I/O port address represented by the word on top of
the stack. The byte to be output is in the low-order position of the second
word on the stack. The high-order byte of the second word is ignored.

p@ inputs a byte from the I/O port address represented by the word on the
top of the stack. The byte input replaces the I/O address on the top of the
stack and the high-order bytes of the word is zero-filled.

Table 5-1 is an I/O system map of the ports supported on the GPIB-CT.
Only the port addresses noted should be used. Any access to any other
addresses could produce unexpected results.

Table 5-1. I/O System Map of Ports Supported on the GPIB-CT

Name Address
Asynchronous Serial Communication Interface (ASCI):

ASCI Control Register A, Channel 0 00H
ASCI Control Register A, Channel 1 01H
ASCI Control Register B, Channel 0 02H
ASCI Control Register B, Channel 1 03H
ASCI Status Register, Channel 0 04H
ASCI Status Register, Channel 1 05H
ASCI Transmit Data Register, Channel 0 06H
ASCI Transmit Data Register, Channel 1 07H
ASCI Receive Data Register, Channel 0 08H
ASCI Receive Data Register, Channel 1 09H

Programmable Reload Timer (PRT):
PRT Data Register, Channel 0L 0CH
PRT Data Register, Channel 0H 0DH
Reload Register, Channel 0L 0EH
Reload Register, Channel 0H 0FH
Timer Control Register 10H
PRT Data Register, Channel 1L 14H
PRT Data Register, Channel 1H 15H
Reload Register, Channel 1L 16H
Reload Register, Channel 1H 17H

(continues)

Chapter 5 Technical Information

© National Instruments Corp. 5-13 GPIB-CT IBCL Reference Manual

Table 5-1. I/O System Map of Ports Supported on the GPIB-CT
(continued)

Name Address
Direct Memory Access (DMA):

DMA Source Address Register, Channel 0L 20H
DMA Source Address Register, Channel 0H 21H
DMA Source Address Register, Channel 0B 22H
DMA Destination Address Register, Chan. 0L 23H
DMA Destination Address Register, Chan. 0H 24H
DMA Destination Address Register, Chan. 0B 25H
DMA Byte Count Register, Channel 0L 26H
DMA Byte Count Register, Channel 0H 27H
DMA Memory Address Register, Channel 1L 28H
DMA Memory Address Register, Channel 1H 29H
DMA Memory Address Register, Channel 1B 2AH
DMA I/O Address Register, Channel 1L 2BH
DMA I/O Address Register, Channel 1H 2CH
DMA Byte Count Register, Channel 1L 2EH
DMA Byte Count Register, Channel 1H 2FH
DMA Status Register 30H
DMA Mode Register 31H
DMA/WAIT Control Register 32H

Interrupts:
IL Register (Interrupt Vector Low Register) 33H
INT/TRAP Control Register 34H

Dynamic RAM Refresh:
Refresh Control Register 36H

Memory Management Unit (MMU):
MMU Common Base Register 38H
MMU Bank Base Register 39H
MMU Common/Bank Area Register 3AH
I/O Control Register 3FH

* See NOTE following table.
GPIB Controller Read Only I/O Address Registers:

Data In Register 40H
Interrupt Status Register 1 41H
Interrupt Status Register 2 42H
Serial Poll Status Register 43H
Address Status Register 44H

(continues)

Technical Information Chapter 5

GPIB-CT IBCL Reference Manual 5-14 © National Instruments Corp.

Table 5-1. I/O System Map of Ports Supported on the GPIB-CT
(continued)

Name Address
GPIB Controller Read Only I/O Address Registers (continued):

Command Pass Through Register 45H
Address Register 0 46H
Address Register 1 47H

GPIB Controller Write Only I/O Address Registers:
Command/Data Out Register 40H
Interrupt Mask Register 1 41H
Interrupt Mask Register 2 42H
Serial Poll Mode Register 43H
Address Mode Register 44H
Auxiliary Mode Register 45H
Address Register 0/1 46H
End of String Register 47H

* See NOTE following table.
GPIB Controller DMA Acknowledge Register:

DMA Acknowledge Register 48H
Board Registers:

Board Control Register (write only, 50H
controls front panel LEDs)

Switch 1 Register (read only, settings of 68H
DIP Switch U20; use this register
to set your own switch configurations)

Switch 2 Register (read only, settings of 70H
DIP Switch U22; this is used by the
GPIB-CT operating system)

Note: I/O addresses in the range of 00H to 3FH are internal to the
microprocessor (HD64180). For specific information about what
each bit represents in each I/O register, refer to the HD64180 8-Bit
High Integration CMOS Microprocessor User Manual, available
from Hitachi America, Ltd.

Chapter 5 Technical Information

© National Instruments Corp. 5-15 GPIB-CT IBCL Reference Manual

I/O addresses in the range of 40H-47H are internal to the GPIB Controller
chip used in the GPIB-CT. For specific information about what each bit
represents in each I/O register, refer to the section describing the µPD7210
intelligent GPIB controller chip in NEC Microcomputer Products , available
from NEC Electronics, Inc. This description is used for interface products
that contain the NAT4882 controller chip as well as interface products that
contain the µPD7210 controller chip.

© National Instruments Corp. A-1 GPIB-CT IBCL Reference Manual

Appendix A
Multiline Interface Messages

The following tables are multiline interface messages (sent and received
with ATN TRUE).

The subsequent pages contain an interface message reference list, which
describes the mnemonics and messages which correspond to the interface
functions.

Multiline Interface Messages Appendix A

GPIB-CT IBCL Reference Manual A-2 © National Instruments Corp.

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

00 000 0 NUL 20 040 32 SP MLA0
01 001 1 SOH GTL 21 041 33 ! MLA1
02 002 2 STX 22 042 34 " MLA2
03 003 3 ETX 23 043 35 # MLA3
04 004 4 EOT SDC 24 044 36 $ MLA4
05 005 5 ENQ PPC 25 045 37 % MLA5
06 006 6 ACK 26 046 38 & MLA6
07 007 7 BEL 27 047 39 ' MLA7

08 010 8 BS GET 28 050 40 (MLA8
09 011 9 HT TCT 29 051 41) MLA9
0A 012 10 LF 2A 052 42 * MLA10
0B 013 11 VT 2B 053 43 + MLA11
0C 014 12 FF 2C 054 44 , MLA12
0D 015 13 CR 2D 055 45 - MLA13
0E 016 14 SO 2E 056 46 . MLA14
0F 017 15 SI 2F 057 47 / MLA15

10 020 16 DLE 30 060 48 0 MLA16
11 021 17 DC1 LLO 31 061 49 1 MLA17
12 022 18 DC2 32 062 50 2 MLA18
13 023 19 DC3 33 063 51 3 MLA19
14 024 20 DC4 DCL 34 064 52 4 MLA20
15 025 21 NAK PPU 35 065 53 5 MLA21
16 026 22 SYN 36 066 54 6 MLA22
17 027 23 ETB 37 067 55 7 MLA23

18 030 24 CAN SPE 38 070 56 8 MLA24
19 031 25 EM SPD 39 071 57 9 MLA25
1A 032 26 SUB 3A 072 58 : MLA26
1B 033 27 ESC 3B 073 59 ; MLA27
1C 034 28 FS 3C 074 60 < MLA28
1D 035 29 GS 3D 075 61 = MLA29
1E 036 30 RS 3E 076 62 > MLA30
1F 037 31 US 3F 077 63 ? UNL

Appendix A Multiline Interface Messages

© National Instruments Corp. A-3 GPIB-CT IBCL Reference Manual

Multiline Interface Messages

 Hex Oct Dec ASCII Msg Hex Oct Dec ASCII Msg

40 100 64 @ MTA0 60 140 96 ` MSA0,PPE
41 101 65 A MTA1 61 141 97 a MSA1,PPE
42 102 66 B MTA2 62 142 98 b MSA2,PPE
43 103 67 C MTA3 63 143 99 c MSA3,PPE
44 104 68 D MTA4 64 144 100 d MSA4,PPE
45 105 69 E MTA5 65 145 101 e MSA5,PPE
46 106 70 F MTA6 66 146 102 f MSA6,PPE
47 107 71 G MTA7 67 147 103 g MSA7,PPE

48 110 72 H MTA8 68 150 104 h MSA8,PPE
49 111 73 I MTA9 69 151 105 i MSA9,PPE
4A 112 74 J MTA10 6A 152 106 j MSA10,PPE
4B 113 75 K MTA11 6B 153 107 k MSA11,PPE
4C 114 76 L MTA12 6C 154 108 l MSA12,PPE
4D 115 77 M MTA13 6D 155 109 m MSA13,PPE
4E 116 78 N MTA14 6E 156 110 n MSA14,PPE
4F 117 79 O MTA15 6F 157 111 o MSA15,PPE

50 120 80 P MTA16 70 160 112 p MSA16,PPD
51 121 81 Q MTA17 71 161 113 q MSA17,PPD
52 122 82 R MTA18 72 162 114 r MSA18,PPD
53 123 83 S MTA19 73 163 115 s MSA19,PPD
54 124 84 T MTA20 74 164 116 t MSA20,PPD
55 125 85 U MTA21 75 165 117 u MSA21,PPD
56 126 86 V MTA22 76 166 118 v MSA22,PPD
57 127 87 W MTA23 77 167 119 w MSA23,PPD

58 130 88 X MTA24 78 170 120 x MSA24,PPD
59 131 89 Y MTA25 79 171 121 y MSA25,PPD
5A 132 90 Z MTA26 7A 172 122 z MSA26,PPD
5B 133 91 [MTA27 7B 173 123 { MSA27,PPD
5C 134 92 \ MTA28 7C 174 124 | MSA28,PPD
5D 135 93] MTA29 7D 175 125 } MSA29,PPD
5E 136 94 ^ MTA30 7E 176 126 ~ MSA30,PPD
5F 137 95 _ UNT 7F 177 127 DEL

Multiline Interface Messages Appendix A

GPIB-CT IBCL Reference Manual A-4 © National Instruments Corp.

Interface Message Reference List

Mnemonic Message Interface Function(s)

LOCAL MESSAGES RECEIVED (by interface functions)

gts go to standby C
ist individual status qualifier PP
lon listen only L, LE
[lpe] local poll enable PP
ltn listen L, LE
lun local unlisten L, LE
nba new byte available SH
pon power on SH, AH, T, TE, L, LE,

SR, RL, PP, C
rdy ready AH
rpp request parallel poll C
rsc request system control C
rsv request service SR
rtl return to local RL
sic send interface clear C
sre send remote enable C
tca take control asynchronously C
tcs take control synchronously AH, C
ton talk only T, TE

REMOTE MESSAGES RECEIVED

ATN attention SH, AH, T, TE, L, LE,
PP, C

DAB data byte (via L, LE)
DAC data accepted SH
DAV data valid AH
DCL device clear DC
END end (via L, LE)
GET group execute trigger DT
GTL go to local RL
IDY identify L, LE, PP
IFC interface clear T, TE, L, LE, C
LLO local lockout RL
MLA my listen address L, LE, RL
[MLA] my listen address T
MSA or [MSA] my secondary address TE, LE
MTA my talk address T, TE
[MTA] my talk address L
OSA other secondary address TE
OTA other talk address T, TE
PCG primary command group TE, LE, PP

Appendix A Multiline Interface Messages

© National Instruments Corp. A-5 GPIB-CT IBCL Reference Manual

Interface Message Reference List (continued)

Mnemonic Message Interface Function(s)

REMOTE MESSAGES RECEIVED (continued)

PPC parallel poll configure PP
[PPD] parallel poll disable PP
[PPE] parallel poll enable PP
PPRn parallel poll response n (via C)
PPU parallel poll unconfigure PP
REN remote enable RL
RFD ready for data SH
RQS request service (via L, LE)
[SDC] selected device clear DC
SPD serial poll disable T, TE
SPE serial poll enable T, TE
SRQ service request (via C)
STB status byte (via L, LE)
TCT or [TCT] take control C
UNL unlisten L, LE

REMOTE MESSAGES SENT

ATN attention C
DAB data byte
DAC data accepted AH
DAV data valid SH
DCL device clear (via C)
END end (via T)
GET group execute trigger (via C)
GTL go to local (via C)
IDY identify C
IFC interface clear C
LLO local lockout (via C)
MLA or [MLA] my listen address (via C)
MSA or [MSA] my secondary address (via C)
MTA or [MTA] my talk address (via C)
OSA other secondary address (via C)
OTA other talk address (via C)
PCG primary command group (via C)
PPC parallel poll configure (via C)
[PPD] parallel poll disable (via C)
[PPE] parallel poll enable (via C)
PPRn parallel poll response n PP
PPU parallel poll unconfigure (via C)
REN remote enable C
RFD ready for data AH

Multiline Interface Messages Appendix A

GPIB-CT IBCL Reference Manual A-6 © National Instruments Corp.

Interface Message Reference List (continued)

Mnemonic Message Interface Function(s)

REMOTE MESSAGES SENT (continued)

RQS request service T, TE
[SDC] selec ted device clear (via C)
SPD serial poll disable (via C)
SPE serial poll enable (via C)
SRQ service request SR
STB status byte (via T, TE)
TCT take control (via C)
UNL unlisten (via C)
UNT untalk (via C)

© National Instruments Corp. B-1 GPIB-CT IBCL Reference Manual

Appendix B
IBCL Status and Error Messages

This appendix contains a table of the IBCL status and error messages.

Table B-1 contains a list of the status and error messages returned by IBCL
and a description of each. Message numbers shown are in decimal.

Table B-1. IBCL Status and Error Messages

Message Number
(MSG #) Description

0 Unrecognized dictionary word
1 Empty stack
2 Dictionary full
3 Has incorrect address mode
4 Is not unique (dictionary word

redefined)
7 Full stack

17 Legal only within a colon definition
18 Not legal within a colon definition
19 Conditionals not paired (for example,

 IF but no THEN)
20 Definition not finished
21 In protected dictionary
24 Declare vocabulary

© National Instruments Corp. C-1 GPIB-CT IBCL Reference Manual

Appendix C
Creating Permanent IBCL Words in
EPROM

This appendix describes the procedure for permanently adding new words
and data to the IBCL operating system. It will also explain how to
automatically run a permanently-saved application when the GPIB-CT is
powered-on.

All newly defined IBCL words are compiled and stored into the dictionary
which is stored in the system's dynamic RAM. Since dynamic RAM is
volatile, its contents will be lost if power to the unit is removed.

Compiled words and data can be permanently added to the IBCL system by
including them in an unused section of the system's EPROM. Then, each
time the unit is powered on, the new IBCL system stored in the EPROM
will be copied to and run out of RAM.

To add additional code to the EPROM of the GPIB-CT you will need an
EPROM programmer and software as well as a blank 27256 or 27C256
EPROM with a maximum access time of 150 nsec. Do not reprogram the
EPROM provided with the system. The system EPROM is like a master
diskette–once it is copied it should be put aside for safekeeping. You may
only copy the GPIB-CT system EPROM to add code to its dictionary,
because the operating system within the EPROM is copyrighted.

Follow these steps to permanently save a new custom IBCL dictionary in
EPROM:

1. Enter IBCL and create your extended dictionary. This can be done
several ways. The most common method uses colon definitions to
compile new words into the dictionary, and uses constant ,
variable and allot to add data to the dictionary.

Make sure that your words are fully tested and debugged before
attempting to put them in EPROM. It is much easier to make changes
while you are running in RAM than to program another EPROM.

Creating Permanent IBCL Words in EPROM Appendix C

GPIB-CT IBCL Reference Manual C-2 © National Instruments Corp.

2. After you have compiled and debugged your code, you need to verify
that the extended dictionary will fit into the available EPROM space.
A 27256 EPROM has 32K (8000 hex) bytes of storage.
Approximately 11,520 (2D00 hex) bytes are taken up by the GPIB-CT
operating system. This leaves 21,248 (5300 hex) bytes available for
the IBCL system and your extended words.

The IBCL operating system starts at 200 hex. Thus, if you enter the
hex here 200 - u. command string and the value that is
returned is less than 5300, then the added code will fit into the 27256
EPROM. If the value returned is greater than 5300, then the extended
dictionary exceeds the capacity of the EPROM. This probably means
that you have allocated extremely large amounts of buffer space,
because compiled IBCL code is very compact.

Here are some tips for reducing the amount of storage space required
for the dictionary due to buffer space:

• Be realistic when allocating space for buffers. Do not allocate
1000 bytes of space if you only expect to use 100 bytes of the
buffer.

• If the buffer is uninitialized (there is no valid data in it prior to
your application being run), buffer space can be allocated within
RAM when your application is run rather than creating and storing
the buffer space in the EPROM. For instance, you could include a
word in your application that would allocate space for a buffer just
before the space was needed. In this way you would not be
increasing the dictionary size until your application has been
copied out of the EPROM and executed.

• If the buffer is uninitialized prior to your application, consider
defining the buffer space to be in extended RAM (see Appendix
D). This can be done by defining a constant which is a pointer to a
buffer area in extended RAM. Be careful not to allow buffers to
overwrite one another in extended space, as this space is free to be
used, and no protection mechanism is implemented.

Appendix C Creating Permanent IBCL Words in EPROM

© National Instruments Corp. C-3 GPIB-CT IBCL Reference Manual

3. It is now necessary to change the boot-up literals which IBCL uses on
start-up to determine the size and placement of the dictionary. These
new values of the literals can be determined and stored in the start-up
area by the following code:

here 1e +origin !
here 1c +origin !
latest c +origin !

The first line is used to store the location of the end of the dictionary.
Notice that only code and data added to the system through memory
location here will be saved. Any code or data stored outside the
dictionary will not be recognized and stored.

The second line is used to determine where the fence will be placed.
This is not absolutely necessary, but is highly recommended so that
words defined in the newly expanded dictionary will not be
inadvertently forgotten.

The third line stores the name field address of the last word defined in
your extended dictionary. This tells IBCL where to begin its
dictionary searches.

If you want to auto-boot, that is, to start an application on power-up,
you will also need to store the code field address of the word you want
to boot with in the boot-up area. This can be done by the following
code:

hex ' name-of-power-on-word cfa 258 !

When the GPIB-CT is power-on, it will look at location 258 hex. If it
finds the code field address of a word, it will execute that word. This
word will most likely consist of an infinite loop that will continuously
run an application, but it could consist of a word that will terminate.

Creating Permanent IBCL Words in EPROM Appendix C

GPIB-CT IBCL Reference Manual C-4 © National Instruments Corp.

4. You now have an exact image of the extended operating system in
RAM. This memory needs to be stored in the system EPROM so that
it will get loaded back into RAM at boot-up time.

The following example shows you how to upload the IBCL system
over the serial port using the ulm word. It assumes you are using an
IBM PC or compatible and are running BASICA, but other computers
and languages can be handled in a similar fashion. The program will
create a DOS file that is an exact binary image of the IBCL system.

NOTE: It will be necessary to start BASICA with the /c:num option
in order to allocate enough space for the BASIC communication
buffer to receive the entire IBCL system. num is the total number of
bytes in the IBCL system determined in Step 2 of this procedure.

10 open "ibcl.bin" for output as #1
20 open "com1:9600,n,8,1" as #2
30 cmd$ = "decimal 512 here 512 - dup . ulm"
40 print #2, cmd$
50 copy$ = input$(len(cmd$),2)
60 input #2, bytes
70 for iter = 1 to bytes + 1
80 print #1,input$(1,2);
90 next iter
100 end

Since you are uploading binary data, make sure that your program
opens up your communications port for 8-bit data and that the
configuration switches in your GPIB-CT are set accordingly. The
IBCL system starts at memory location 200 hex and extends through
memory location here . The number of bytes to upload is here -
512 . This value is returned to the program in line 60. Lines 70
through 90 input each byte of the IBCL system and store them in the
binary file.

5. To remove and copy the system EPROM and program a new custom
IBCL EPROM, follow these steps:

a. Disconnect power to the GPIB-CT and disconnect any cables that
may be connected to the GPIB-CT.

Appendix C Creating Permanent IBCL Words in EPROM

© National Instruments Corp. C-5 GPIB-CT IBCL Reference Manual

b. Unscrew the two screws on the opposite sides of the rear panel.

NOTE: Before attempting to change the system EPROM,
remember that the system's EPROM, as well as most of the
system's circuitry, uses CMOS technology and can be damaged by
static electricity. Avoid touching the legs of components, and take
any necessary CMOS handling precautions before opening the
unit.

c. Remove the rear panel bezel by pulling it straight away from the
rest of the unit. The board should slide out the back of the
enclosure.

d. Locate and remove the system EPROM (U19). This can be done
with an IC extractor tool, or by carefully prying up on each end of
the EPROM with a flat head screwdriver until it pops out of the
socket. Be careful not to bend any of the EPROM's legs while
removing it.

e. Place the EPROM into your EPROM programmer and read its
contents into a buffer file. You must read at least from 0 to 2CFF
hex, but you may read all of the contents.

f. Load the binary file ibcl.bin (created in Step 4 of this
procedure) into the EPROM programmer's buffer starting at
address 2D00 hex.

g. Place the blank EPROM in the programmer and program the
EPROM from address 0 to 7FFF hex.

6. Carefully insert the newly programmed EPROM back into the
GPIB-CT EPROM socket, insuring that pin 1 of the EPROM is aligned
with pin 1 of the socket. Also, make sure that all the EPROM legs are
firmly inserted into the socket and that none are bent underneath the
EPROM.

7. Close the unit and reinsert the rear panel screws removed in Part b. of
Step 5.

8. Reconnect the power cord and power on the unit. Your new extended
dictionary has now become a permanent part of IBCL.

© National Instruments Corp. D-1 GPIB-CT IBCL Reference Manual

Appendix D
Using Extended Memory

This appendix describes the extended memory of the GPIB-CT, and gives
guidelines for its use with IBCL.

About Extended Memory

The baseline GPIB-CT comes with 64K bytes of dynamic RAM. 32K bytes
are used to store the IBCL system. The remaining 32K bytes are used by
the GPIB-CT default operating system as a serial input buffer, and by the
IBCL operating system as stack space and free dictionary area.

If the GPIB-CT was ordered with 256K bytes of RAM, an additional 192K
bytes of memory is available for use by the IBCL system. This memory is
referred to as extended memory, and can be used to store data and compiled
IBCL code. Extended memory is for storage purposes only–IBCL cannot
run outside of its 64K bytes logical address range.

Extended memory lies hidden from IBCL and is only accessible by
reprogramming the onboard Memory Management Unit (MMU). The
actual programming of the MMU is rather complex, and is taken care of
automatically by the extended access words. The MMU is used to form the
upper address lines to map the logical 64K bytes address range of the GPIB-
CT into the 512K bytes physical address space. The physical memory map
of the GPIB-CT is shown in Figure D-1.

Notice that although the IBCL operating system appears to be operating in
memory ranging from location 0 to FFFFH, it is actually operating from
physical memory location 40000H to 4FFFFH. The MMU is loaded at
power-on with the values needed to form this offset. Extended RAM space
lies from physical locations 50000H to 7FFFFH.

Using Extended Memory Appendix D

GPIB-CT IBCL Reference Manual D-2 © National Instruments Corp.

Not Used

O.S.EPROM

RAM
(Corresponds to
the Logical
Memory Map)

Extended Memory
for users with
the 256K RAM
GPIB-CT**

This space is useful for data storage only.

NI610
Operating System

IBCL Operating System
and Core Dictionary*

Additional EPROM
Space Available
for User-Created
Extended Dictionary*

Copied into RAM at start-up.

 O.S. Variables

Reserved

IBCL Operating System
and Dictionary

Serial Input
Buffer for
NI610

IBCL Stacks

**

*

0
7FFFH

(32K)

3FFFFH

40000H
(256K)

4FFFFH
50000H
(320K)

7FFFFH
(512K)

2D00H

7FFFH

40000H
40100H
40200H

48000H

4FFFFH

Figure D-1. Physical Memory Map

Appendix D Using Extended Memory

© National Instruments Corp. D-3 GPIB-CT IBCL Reference Manual

There are four IBCL words that are used to move data between extended
memory and the data stack. These words are l@ (long at), lc@ (long
character at), l! (long store), and lc! (long character store). These words
program the MMU to allow access to any physical address space within the
system. They also restore the MMU to its default condition after the
memory access is complete, so that normal operation may continue.

All extended access words use a double number on the top of the stack to
represent the physical address of the memory address to be accessed. For
example, to print the byte at physical memory location 65848H, you would
enter this line:

hex 6.5848 lc@ .<CR>

The period between the 6 and the 5 forms a double number of the address
on the stack. Notice that only addresses through location 7FFFFH are
supported. If a larger double number is supplied the unused upper bits of
the specified address will be truncated.

Although you could write to and retrieve any physical memory location
using these long words, it is suggested that you use @, c@, !, and c! to
access memory in the physical range of the IBCL system (40000H to
4FFFFH). These words are slightly faster, as they do not require the
reprogramming of the MMU.

You can also use extended memory as a buffer area for GPIB read and write
operations. Both of these operations use the on-board DMA controller,
which bypasses the MMU. This allows you to directly specify a starting
address for a DMA transfer anywhere in physical memory.

The upper address register of the DMA controller supplies the upper four
address lines during a DMA transfer. This is why it is only necessary to
specify a 16-bit buffer address during GPIB read and write operations.
Normally this register is programmed at power-on by the operating system
to always DMA data within the IBCL address range (40000H to 4FFFFH).

The DMA upper address register can be changed at any time to allow DMA
transfers to take place within the extended memory space. This register can
be changed by writing the new value of the upper 4 address bits to I/O port
address 2AH.

Using Extended Memory Appendix D

GPIB-CT IBCL Reference Manual D-4 © National Instruments Corp.

For example, to read 8 bytes from GPIB device 3 to an extended memory
buffer starting at physical address 58000H, enter these lines:

5 2a p! (change DMA address range to 50000H thru 5FFFFH)
3 8000 8 rd (read 8 bytes from device 3 into offset 8000)
4 2a p! (restore DMA address range to IBCL space)

Notice that the last line restores the DMA controller upper address register
to its original default condition. This insures that any future DMA
operations will be performed in IBCL space. This step can be omitted if
your next DMA operation is scheduled to use the same page in extended
memory. The DMA upper address register as well as all data stored in
extended memory remain the same until the unit is powered-down or these
values are overwritten, even if you return to the GPIB-CT default operating
system and later come back to IBCL.

To print the 8 bytes received from GPIB device 3 in the previous example,
you can use the lc@ word as shown here:

: read_extended 8 0 do 5.8000 i s->d d+ lc@ . loop ;

© National Instruments Corp. E-1 GPIB-CT IBCL Reference Manual

Appendix E
Other Useful IBCL Words

This appendix contains descriptions of IBCL words that are application-
specific. The word description includes the purpose of the word, the kind of
parameters required for execution, and where the code expects any
incoming parameters. The fully commented programming examples that
follow the descriptions create dictionary words. Use these programming
examples to add these words to the IBCL dictionary.

dump

dump takes an address followed by a byte count as its arguments from the
stack and displays the bytes in memory locations beginning with the
memory address on the stack. Values are generated in hex and printable
ASCII characters are also generated. Characters that are not printable (0 to
19 hex and 7F to FF hex) are displayed as a period. The byte count that is
the second argument is rounded up to an even 10 hex.

Programming Example

: dump (Memory dump)
base @ rot rot (Store the current base)

(at bottom of stack)
0 do (Loop from 0 to the count)

(specified)
cr dup hex (Duplicate the address)

(and change output base)
(to hex)

0 (Zero fill upper 16 bits)
(of double word)

<# # # # # # > type
(Convert address and)
(display it)

." .." (Separate address from)
(contents with this)
(string.)

10 0 do (Go from address through)
(10 addresses)

Other Useful IBCL Words Appendix E

GPIB-CT IBCL Reference Manual E-2 © National Instruments Corp.

dup c@ dup (Get the byte at the)
(address)

0 (Zero fill upper 16 bits)
(of double word)

<# 20 hold # # #> type
(Display ASCII code)
(of byte)

r> r> rot >r >r >r
(Put copy of byte onto)
(return stack)

1+ (Increment address)
loop
10 0 do

r> r> r> rot rot >r >r
(Bring the bytes from the)
(return stack.)

loop
5 spaces (Insert 5 spaces into)

(output string)
10 0 do

dup (Duplicate byte)
20 < (Check if less than 20)

(hex-unprintable)
if

drop 2e (If unprintable, replace)
(with a period)

then
dup (Duplicate byte)
7e > (Check if greater than 7e)

(hex-unprintable)
if

drop 2e (If unprintable, replace)
(with a period)

then
emit (Display the byte)

loop
10 (Increment address by 10)

(hex)
+loop
drop cr (Drop what would have)

(been the address of the)
(next row of the dump)

base ! (Restore base)
;

Appendix E Other Useful IBCL Words

© National Instruments Corp. E-3 GPIB-CT IBCL Reference Manual

ud.

ud. removes the top double length number from the stack and displays it as
unsigned in the current base.

Programming Example

: ud. (Unsigned double print)
<# #s #> type (Convert to a string and)

(type it out)
space (Insert a space in output)

(string)
;

depth

depth counts the number of words on the stack (prior to execution of the
word) and leaves the count as the top value on the stack.

Programming Example

: depth (Count the depth of the)
(data stack)

s0 @ (Put stack's origin)
(address on stack)

sp@ (Put current stack)
(address on stack)

- (Get {depth + 2}*2)
2 - (Compensate for length)

(being on stack)
2 / (Depth is distance)

(between address / 2)
;

Other Useful IBCL Words Appendix E

GPIB-CT IBCL Reference Manual E-4 © National Instruments Corp.

not

not performs the logical NOT of the value on the stack. This is an example
of redefining an existing IBCL word with a more meaningful name (the
IBCL word 0= performs the logical NOT).

Programming Example

: not (Logical NOT function)
0= (0= provides the)

(logical NOT operation in)
(IBCL)

;

0>

0> checks if the word on the top of the stack has a value greater than zero.
If it does, a TRUE flag is left on the stack. If it is not, a FALSE is left on
the stack.

Programming Example

: 0> (Zero greater)
-dup 0= (Duplicate if not zero)

(the number to be checked)
(then compare it to zero)

if (If number tested was)
(zero, put false flag on)
(the stack)

0
else

0< (Determine whether number)
(is < 0)

not (Get the logical NOT of)
(the flag)

then
;

Appendix E Other Useful IBCL Words

© National Instruments Corp. E-5 GPIB-CT IBCL Reference Manual

binary

binary sets the I/O base to binary, in the same way that decimal and hex set
the I/O base to decimal and hexadecimal respectively.

Programming Example

: binary (Set I/O base to 2)
[decimal] 2 base !

(Store a 2 in the)
(base user variable)

;

octal

octal sets the I/O base to binary, in the same way that decimal and hex set
the I/O base to decimal and hexadecimal respectively.

Programming Example

: octal (Set I/O base to 8)
[decimal] 8 base !

(Store an 8 in the base)
(user variable)

;

msa

msa takes its arguments on the stack a primary address with a secondary
address on top. It formulates the single word necessary to use with any
GPIB word requiring a device address as a parameter. Use the word like
this:

23 (primary) 67 (secondary) msa caddr

or like this:

23 (primary) 67 (secondary) msa clr

Other Useful IBCL Words Appendix E

GPIB-CT IBCL Reference Manual E-6 © National Instruments Corp.

Programming Example

: msa (Make secondary address)
1f and (AND out unnecessary)

(bits in sec. addr)
(Only lower 5 bits make)
(up an address)

100 * (Shift the secondary)
(address into the low 5)
(bits of the high order)
(byte)

8000 or (Set the upper bit to)
(indicate the presence of)
(a secondary address)

or (Put in the primary)
(address)

;

.s

.s displays the contents of the stack non-destructively. In this example, the
program prints the contents as unsigned words. If you want the contents to
be displayed differently, change cr i @ u. accordingly (for example, cr i @ .
for a signed stack display).

Programming Example

: .s (Show the stack)
s0 @
sp@ - 2 - (Get number of words on)

(the stack)
-dup 0= (Duplicate the length if)

(not zero and check if)
(equal to zero)

if
cr ." EMPTY STACK"

(Tell user no data on the)
(stack)

else
2+ (Increment word count)

(by 2)

Appendix E Other Useful IBCL Words

© National Instruments Corp. E-7 GPIB-CT IBCL Reference Manual

sp@ + (Get do loop limit-this)
(is the highest stack)
(address plus 2)

sp@ 2+ do (Get beginning address)
cr
i (Get current address)
@ (Get what's at that)

(address)
u. (Display the value)
2

+loop (Loop again-loop index)
(now at next stack word)

then
;

pick

pick takes as its parameter the top word on the stack. This word is treated
as an index into the stack. pick copies the value at that index onto the top of
the stack. If the stack is not deep enough to have a corresponding value on
it, no error message is printed, nothing is put on the stack, and the word
aborts, causing the stack to be reset.

Programming Example

: pick (Pick the number from the)
(stack and duplicate it)
(on the top of the stack)

dup (Duplicate top number -)
(index into stack)

depth 2 - (Get depth of stack - 2)
(because of the extra)
(count on top)

> (Check if the requested)
(element exists on the)
(stack)

if
drop (Remove duplicate index)

(into stack)
abort (Stop executing)

else
2 * (Convert byte index to)

(word index)

Other Useful IBCL Words Appendix E

GPIB-CT IBCL Reference Manual E-8 © National Instruments Corp.

sp@ (Get current stack)
(location)

+ (Get address of desired)
(stack location)

@ (Get value stored there)
then

;

roll

roll takes as its parameter the top word on the stack. This word is treated as
an index into the stack. roll puts the value at that index onto the top of the
stack, removing it from its present location in the stack. If the stack is not
deep enough to have a corresponding value on it, no error message is
printed, nothing is put on the stack, and the word aborts, causing the stack
to be reset.

Programming Example

: roll (Put a value from the)
(stack on top of stack)

dup (Duplicate stack index)
(of element wanted)

depth 1 - (Get true depth-disregard)
(the extra index)

> (Check if stack is deep)
(enough)

if
drop (Remove the extra index)
abort (Stop executing the word)

else
dup dup >r >r (Duplicate index and)

(store on return stack)
(twice)

pick (Get a copy of the)
(desired value)

r> (Get one of the indexes)
(from the return stack)
(do loop limit)

0 do
r> r> (Bring the do loop cnt)

(and limit from the)
(return stack)

Appendix E Other Useful IBCL Words

© National Instruments Corp. E-9 GPIB-CT IBCL Reference Manual

rot (Put the value that was)
(top value on stack)
(before r> r> onto top)

r> (Bring over last index)
(from return stack)

swap (Swap it with the value)
(that was rotated up from)
(the data stack)

>r >r >r >r (Put all values on return)
(stack-value from stack,)
(index, do limit, do)
(count)

loop (Do this until we get to)
(where the value is on)
(the stack that we rolled)
(up)

drop (Remove that value)
r> 0 do (Get the index-do loop)

(limit)
r> r> r> (Bring over do limit, do)

(count and stack value)
rot (Put the do limit on top)
rot (Put the do count on top)
>r >r (Put these two back on)

(the return stack-leaving)
(the data value on the)
(data stack)

loop
then

;

Other Useful IBCL Words Appendix E

GPIB-CT IBCL Reference Manual E-10 © National Instruments Corp.

decom

decom decompiles a word which is composed of other IBCL words, such as
a word defined in a colon definition. It goes through the definition of the
word specified and prints each component word's name. Use this word in
this form:

decom <dname>

where dname is a defined word.

There are a few limitations to this word:

• It cannot decompile a machine code primitive

• If a word has a ." or " followed by ASCII data, this program
continues trying to decompile the ASCII data. This might cause
IBCL to crash. If IBCL does not crash, the output of this type of
operation will look strange.

Even with these restrictions, it is a useful word if you have forgotten
what you have previously entered as a word's definition.

Programming Example

: decom (Decompile an IBCL word)
[compile] ' cr (Get the pfa of the)

(requested word)
dup cfa @ (Get the address of the)

(first word composing its)
(definition)

[' task cfa @] literal
(Compile into the)
(definition the value of)
(a known non-machine)
(coded IBCL word)

 = (Check to see if the word)
(asked for is a machine)
(coded word, variable,)
(constant, or a colon)
(definition)

if

Appendix E Other Useful IBCL Words

© National Instruments Corp. E-11 GPIB-CT IBCL Reference Manual

begin (The word is composed of)
(other IBCL words-NOT)
(machine coded)

dup 2+ swap (Get address of next)
(component word and store)
(at bottom of the stack)

@ (Get the cfa of component)
(word)

dup 2+ (Convert to pfa of)
(component word)

nfa (Convert to nfa of)
(component word)

id. cr (Display the name of the)
(word whose nfa is on the)
(stack)

' ;s cfa (Get the cfa of the word)
(that has to complete a)
(colon definition)

= until (Keep decompiling until)
(this word is reached)

drop (Remove the address which)
(was the next component)
(word)
(in the requested word's)
(pfa list)

else
cr. "Machine Code Primitive"

(Display message)
then

;

cls

cls clears the screen on many terminals by emitting an ASCII 1A hex
(decimal 26), or <CTRL-z>, which clears many terminal screens.

Other Useful IBCL Words Appendix E

GPIB-CT IBCL Reference Manual E-12 © National Instruments Corp.

Programming Example

: cls (Clear the terminal)
(screen)

1a emit (Ctrl-z character)
;

Redefining the Basic IBCL Mathematical
Operators to Use Infix Notation

These five examples show how you can redefine the basic IBCL
mathematical operators to use infix notation. These examples are very
simple. They work on only 2 operands, must have an = entered after each
expression (for example, 3 + 4 = + 5 = . instead of 3 + 4 + 5 = .), and
execute from left to right. Precedence rules are obeyed only if you enter the
expression in the correct order.

Programming Examples

Redefining =

: = (Redefinition of IBCL =)
rot execute (Leaves on the stack the)

(result from the)
(operation whose cfa is)
(under the 2 operands)

;

Redefining +

: + (Redefinition of IBCL +)
[' + cfa] literal swap

(Puts the cfa of the IBCL)
(+ on the stack and swaps)
(it with the first)
(operand)

;

Appendix E Other Useful IBCL Words

© National Instruments Corp. E-13 GPIB-CT IBCL Reference Manual

Redefining -

: - (Redefinition of IBCL -)
[' - cfa] literal swap

(Puts the cfa of the IBCL)
(- on the stack and swaps)
(it with the first)
(operand)

;

Redefining *

: * (Redefinition of IBCL *)
[' * cfa] literal swap

(Puts the cfa of the IBCL)
(* on the stack and swaps)
(it with the first)
(operand)

;

Redefining /

: / (Redefinition of IBCL /)
[' / cfa] literal swap

(Puts the cfa of the IBCL)
(/ on the stack and swaps)
(it with the first)
(operand)

;

© National Instruments Corp. F-1 GPIB-CT IBCL Reference Manual

Appendix F
Glossary of IBCL Functions

This appendix contains a list of commonly used IBCL words and a
description of each. The definitions are divided into two parts–GPIB
Glossary, which contains GPIB-related IBCL functions, and Standard
Glossary, which contains all other IBCL words.

Glossary Conventions

Table F-1 contains the conventions that are used throughout this glossary.

Table F-1. Glossary Conventions

Abbreviation Meaning
addr a value representing a memory address
b a value representing an 8-bit byte
c a value representing an 7-bit ASCII code
d a 32-bit signed double number
f a Boolean value (0=FALSE, not 0 = TRUE)
gaddr a value representing a GPIB device address
n a 16-bit signed integer
ud a 32-bit unsigned double number
un a 16-bit unsigned integer

GPIB Glossary

Table F-2 contains a listing of the IBCL GPIB extensions. For a detailed
description of each word in the GPIB glossary, refer to Chapter 3, GPIB
Extensions.

Table F-2. GPIB Glossary

Word Stack
brd addr un —>
bwrt addr un —>
cac f —>

(continues)

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-2 © National Instruments Corp.

Table F-2. GPIB Glossary (continued)

Word Stack
caddr gaddr —>
clr gaddr —>
cmd addr un —>
eos un —>
eot f —>
gts f —>
ist f —>
loc gaddr
onl f —>
pct gaddr —>
ppc gaddr b —>
rd gaddr addr un —>
rpp —> b
rsc f —>
rsp gaddr —> n
rsv b —>
sic
sre f —>
stat —> un n
tmo b —>
trg gaddr —>
wait un —>
wrt gaddr addr un —>

Standard Glossary

All IBCL words other than the IBCL GPIB extensions are listed here.
Because IBCL words can contain non-alphanumeric characters, the words
in this glossary are arranged in the order that the characters appear in the
ASCII chart of Appendix A, Multiline Interface Messages :

!"#$%&'()*+,-./0123456789:;<=
>?@abcdefghijklmnopqrstuvwxyz[\]

Word: !
Stack: n addr —>
Description: Store value n at address addr . Called "store."

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-3 GPIB-CT IBCL Reference Manual

Word: !csp
Description: Save the stack position in csp . Used as part of the

compiler security.

Word: "
Description: Used in the form "cccc" where cccc is data to be

written over the GPIB or to be sent as commands over the
GPIB. " compiles an in-line string cccc (delimited by
the trailing ") with an execution procedure that places the
addr and n on the stack that is required for wrt or cmd .
If executed outside a definition, " immediately places the
addr and n on the stack.

Word: #
Stack: d1 —> d2
Description: Generate from a double number d1 the next ASCII

character which is placed in an output string. Result, d2 ,
is the quotient after division by base , and is maintained
for further processing. Used between <# and #> . See
#s .

Word: #>
Stack: d —> addr count
Description: Terminates numeric output conversion by dropping d ,

leaving the text address and character count suitable for
type .

Word: #s
Stack: d1 —> d2
Description: Generates ASCII text in the text output buffer, by the use

of the #, until a zero double number d2 results. Used
between <# and #> .

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-4 © National Instruments Corp.

Word: '
Stack: —>
Description: Used in the form:

' nnnn

Leaves the parameter field address of dictionary word
nnnn . As a compiler directive, executes in a colon-
definition to compile the address as a literal. If the word
is not found after a search of context and current ,
an appropriate error message is given. Called "tick."

Word: (
Description: Used in the form:

(cccc)

Ignore a comment that will be delimited by a close
parenthesis on the same line. May occur during execution
or in a colon-definition. A blank after the leading
parenthesis is required.

Word: (.")
Description: The run-time procedure, compiled by ." , which transmits

the subsequent in-line text to the serial port. See ." .

Word: (+loop)
Stack: n —>
Description: The run-time procedure compiled by +loop , which

increments the loop index by n and tests for loop
completion. See +loop .

Word: (abort)
Description: Executes after an error when warning is -1. This word

normally executes abort , but may be changed (with
care) to a user's alternative procedure.

Word: (do)
Description: The run-time procedure compiled by do which moves the

loop control parameters to the return stack. See do .

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-5 GPIB-CT IBCL Reference Manual

Word: (dq)
Stack: —>
Description: The run-time procedure compiled by " which puts the

addr and n on the stack as required for bwrt , wrt and
cmd . See ".

Word: (find)
Stack: addr1 addr2 —> pfa b t f (ok)

addr1 addr2 —> f (bad)
Description: Searches the dictionary starting at the name field address

addr2 , matching to the text at addr1 . Returns
parameter field address, length byte of name field, and
boolean TRUE for a good match. If no match is found,
only a boolean FALSE is left.

Word: (loop)
Description: The run-time procedure compiled by loop which

increments the loop index and tests for loop completion.
See loop .

Word: (number)
Stack: d1 addr1 —> d2 addr2
Description: Convert the ASCII text beginning at addr1+1 with

regard to base . The new value is accumulated into
double number d1 , being left as d2 . addr2 is the
address of the first unconvertible digit. Used by number .

Word: *
Stack: n1 n2 —> n3
Description: Leave the signed product, n3 , of two signed numbers.

Word: */
Stack: n1 n2 n3 —> n4
Description: Leave the ratio n4 = n1*n2/n3 where all are signed

numbers. Retention of an intermediate 31 bit product
permits greater accuracy than would be available with the
sequence:

n1 n2 * n3 /

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-6 © National Instruments Corp.

Word: */mod
Stack: n1 n2 n3 —> n4 n5
Description: Leave the quotient n5 and remainder n4 of the operation

n1*n2/n3 . A 31 bit intermediate is used as for */ .

Word: +
Stack: n1 n2 —> n3
Description: Leave the sum n3 of n1+n2.

Word: +!
Stack: n addr —>
Description: Add n to the value at the address. Called "plus-store."

Word: +-
Stack: n1 n2 —> n3
Description: Leave n3 , with magnitude of n1 and sign of n1*n2 .

Word: +loop
Stack: n1 —> (run)

addr n2 —> (compile)
Description: Used in a colon-definition in the form:

 do ... n1 +loop

At run-time, +loop selectively controls branching back
to the corresponding do based on n1 , the loop index and
the loop limit. The signed increment n1 is added to the
index and the total compared to the limit. The branch
back to do occurs until the new index is equal to or
greater than the limit (n1>0), or until the new index is
equal to or less than the limit (n1<0). Upon exiting the
loop, the parameters are discarded and execution
continues ahead.

At compile time, +loop compiles the run-time word
(+loop) and the branch offset computed from here to
the address left on the stack by do . n2 is used for
compile time error-checking.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-7 GPIB-CT IBCL Reference Manual

Word: +origin
Stack: n —> addr
Description: Leave the memory address with a relative offset of n to

the origin parameter area. n is the byte number; that is, to
access the fourth word in the origin area, you would
specify n to be 6. This definition is used to access or
modify the boot-up parameters at the origin area.

Word: ,
Stack: n —>
Description: Store n into the next available dictionary memory cell,

advancing the dictionary pointer. Called "comma."

Word: -
Stack: n1 n2 —> n3
Description: Leave the difference of n1-n2 as n3 .

Word: -dup
Stack: n1 —> n1 (if zero)

n1 —> n1 n1 (non-zero)
Description: Reproduce n1 only if it is non-zero. This is usually used

to copy a value just before if , to eliminate the need for
an else to drop it.

Word: -find
Stack: —> pfa b f (found)

—> f (not found)
Description: Accepts the next text word (delimited by blanks) in the

input stream to here , and searches the context and
then current vocabularies for a matching entry. If
found, the dictionary entry's parameter field address, its
length byte, and a boolean TRUE is left. Otherwise, only
a boolean FALSE is left.

Word: -trailing
Stack: addr n1 —> addr n2
Description: Adjusts the character count n1 of a text string beginning

at address addr to suppress the output of trailing blanks.
For example, the characters at addr+n1 to addr+n2
are blanks.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-8 © National Instruments Corp.

Word: .
Stack: n —>
Description: Print a number from a signed 16-bit two's complement

value, converted according to the numeric base . A
trailing blank follows. Called "dot."

Word: ."
Description: Used in the form:

." cccc"

Compiles an in-line string cccc (delimited by the trailing
") with an execution procedure to transmit the text to the
serial port. If executed outside a definition, ." will
immediately print the text until the final " . See (.") .

Word: .r
Stack: n1 n2 —>
Description: Print the number n1 right aligned in a field whose width

is n2 . No following blank is printed.

Word: /
Stack: n1 n2 —> n3
Description: Leave the signed quotient of n1/n2 as n3 .

Word: /mod
Stack: n1 n2 —> n3 n4
Description: Leave the remainder n3 and signed quotient n4 of

n1/n2 . The remainder has the sign of the dividend.

Word: 0 1 2 3
Stack: —> n
Description: These small numbers are used so often that it is helpful to

define them by name in the dictionary as constants.

Word: 0<
Stack: n —> f
Description: Leave a TRUE flag if the number is less than zero

(negative), otherwise leave a FALSE flag.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-9 GPIB-CT IBCL Reference Manual

Word: 0=
Stack: n —> f
Description: Leave a TRUE flag if the number is equal to zero,

otherwise leave a FALSE flag.

Word: 0branch
Stack: f —>
Description: The run-time procedure to conditionally branch. If f is

FALSE (zero), the following in-line parameter is added to
the interpretive pointer to branch ahead or back.
Compiled by if , until , and while .

Word: 1+
Stack: n1 —> n2
Description: Increment n1 by 1.

Word: 2!
Stack: d addr —>
Description: Store the double number d beginning at addr .

Word: 2+
Stack: n1 —> n2
Description: Increment n1 by 2.

Word: 2@
Stack: addr —> d
Description: Leave the 32-bit contents of address addr on the stack.

Word: 2dup
Stack: d —> d d
Description: Duplicate the top double number on the stack.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-10 © National Instruments Corp.

Word: :
Description: Used in the form called a colon-definition:

: cccc ... ;

Creates a dictionary entry defining cccc as equivalent to
the following sequence of IBCL word definitions '...'
until the next ';' .

The compiling process is done by the text interpreter as
long as state is non-zero. Other details are that the
context vocabulary is set to the current vocabulary
and that words with the precedence bit set (see
immediate) are executed rather than being compiled.

Word: ;
Description: Terminate a colon-definition and stop further compilation.

Compiles the run-time word ;s .

Word: ;s
Description: ;s is the run-time word compiled at the end of a colon-

definition which returns execution to the calling
procedure.

Word: <
Stack: n1 n2 —> f
Description: Leave a TRUE flag if n1 is less than n2 ; otherwise leave

a FALSE flag.

Word: <#
Description: Setup for pictured numeric output formatting using the

words:

<# # #s sign #>

The conversion is done on a double number producing
text at pad .

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-11 GPIB-CT IBCL Reference Manual

Word: <builds
Description: Used within a colon-definition:

: cccc <builds ...
 does> ... ;

Each time cccc is executed, <builds defines a new
word with a high-level execution procedure.

Executing cccc in the form:

cccc nnnn

uses <builds to create a dictionary entry for nnnn with
a call to the does> part for nnnn .

When nnnn is later executed, it has the address of its
parameter area on the stack and executes the words after
does> in cccc .

Word: =
Stack: n1 n2 —> f
Description: Leave a TRUE flag if n1=n2 ; otherwise leave a FALSE

flag.

Word: >
Stack: n1 n2 —> f
Description: Leave a TRUE flag if n1 is greater than n2 ; otherwise

leave a FALSE flag.

Word: >r
Stack: n —>
Description: Removes a number from the computation stack and places

it as the most accessible on the return stack. Use should
be balanced with r> in the same definition. Called "to-
R." Also see r> and r.

Word: ?
Stack: addr —>
Description: Print the value contained at the address in free format

according to the current base.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-12 © National Instruments Corp.

Word: ?comp
Description: Issue error message if not compiling.

Word: ?csp
Description: Issue error message if stack position differs from value

saved in csp .

Word: ?error
Stack: f n —>
Description: Issue an error message number n , if the boolean flag is

TRUE.

Word: ?exec
Description: Issue an error message if not executing.

Word: ?pairs
Stack: n1 n2 —>
Description: Issue an error message if n1 does not equal n2 . The

message indicates that compiled conditionals do not
match.

Word: ?stack
Description: Issue an error message if the stack is out of bounds.

Word: ?terminal
Stack: —> f
Description: Perform a test of the serial port to see if a character has

been sent. A TRUE flag indicates that a character has
been sent.

Word: @
Stack: addr —> n
Description: Leave the 16-bit contents of address addr on the stack.

Word: abort
Description: Clear both the computation stack and the return stack.

Return control to the operators terminal.

Word: abs
Stack: n —> u
Description: Leave the absolute value of n as u.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-13 GPIB-CT IBCL Reference Manual

Word: again
Stack: addr n —> (compiling)
Description: Used in a colon-definition in the form:

begin ... again

At run-time, again forces execution to return to the
corresponding begin . There is no effect on the stack.
Notice that this is an infinite loop structure and execution
cannot leave this loop (unless r> drop is executed one
level below).

At compile time, again compiles branch with an
offset from here to addr . n is used for compile-time
error-checking.

Word: allot
Stack: n —>
Description: Add the signed number to the dictionary pointer dp . May

be used to reserve dictionary space or re-origin memory.

Word: and
Stack: n1 n2 —> n3
Description: Leave the bitwise logical AND of n1 and n2 as n3 .

Word: back
Stack: addr —>
Description: Calculate the backward branch offset from here to

addr and compile into the next available dictionary
memory address.

Word: base
Stack: —> addr
Description: A user variable containing the current number base used

for input and output numerical conversion.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-14 © National Instruments Corp.

Word: begin
Stack: —> addr n (compiling)
Description: Occurs in a colon-definition in the form:

begin ... until
begin ... again
begin ... while ... repeat

At run-time, begin marks the start of a sequence that
may be repetitively executed. It serves as a return point
from the corresponding until , again , or repeat .
When executing until , a return to begin will occur if
the top of the stack is FALSE. For again and repeat ,
a return to begin always occurs.

At compile time begin leaves its return address and n
for compiler error-checking.

Word: bl
Stack: —> c
Description: A constant that leaves the ASCII value for "blank."

Word: blanks
Stack: addr n —>
Description: Fill an area of memory beginning at addr with blanks for

n bytes.

Word: branch
Description: The run-time procedure to unconditionally branch. An in-

line offset is added to the interpretive pointer to branch
ahead or back. branch is compiled by else , again ,
repeat .

Word: bye
Description: Exit IBCL to the GPIB-CT default operating system.

Word: c!
Stack: b addr —>
Description: Store 8 bits at addr .

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-15 GPIB-CT IBCL Reference Manual

Word: c,
Stack: b —>
Description: Store 8 bits of b into the next available dictionary byte,

advancing the dictionary pointer.

Word: c/l
Stack: —> n
Description: A constant leaving the number of characters per source

code screen line.

Word: c@
Stack: addr —> b
Description: Leave the 8-bit contents of addr .

Word: cfa
Stack: addr1 —> addr2
Description: Convert the parameter field address addr1 of a word to

its code field address addr2 .

Word: cmove
Stack: addr1 addr2 n —>
Description: Move n bytes beginning at address addr1 to address

addr2 . The contents of addr1 is moved first and
proceeds toward high memory.

Word: cold
Description: The cold start procedure to adjust the dictionary pointer to

the minimum standard and restart via abort . May be
called to remove application programs and restart.

Word: compile
Description: When the word containing compile executes, the

execution address of the word following compile is
copied (compiled) into the dictionary. This allows
specific compilation situations to be handled in addition
to simply compiling an execution address (which the
interpreter already does).

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-16 © National Instruments Corp.

Word: constant
Stack: n —>
Description: A defining word used in the form:

n constant cccc

to create word cccc , with its parameter field containing
n. When cccc is later executed, it will push the value of
n onto the stack.

Word: context
Stack: —> addr
Description: A user variable containing a pointer to the vocabulary

within which dictionary searches will first begin.

Word: count
Stack: addr1 —> addr2 n
Description: Leave the address addr2 and byte count n of text

beginning at address addr1 . It is presumed that the first
byte at addr1 contains the text byte count and the actual
text starts with the second byte. Typically count is
followed by type .

Word: cr
Description: Transmit a carriage return and linefeed to the serial port.

Word: create
Description: A defining word used in the form:

create cccc

to create a dictionary header for an IBCL definition. The
code field contains the address of the word's parameter
field. The new word is created in the current
vocabulary.

Word: csp
Stack: —> addr
Description: A user variable temporarily storing the stack pointer

position, for compilation error-checking.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-17 GPIB-CT IBCL Reference Manual

Word: current
Stack: —> addr
Description: A user variable containing a pointer to the vocabulary

within which new dictionary words will be entered.

Word: d+
Stack: d1 d2 —> d3
Description: Leave the double number sum d3 of two double numbers

d1 + d2 .

Word: d+-
Stack: d1 n —> d2
Description: Leave d2 , with magnitude of d1 and sign of n*d1 .

Word: d.
Stack: d —>
Description: Print a signed double number from a 32-bit two's

complement value. The high-order 16 bits are most
accessible on the stack. Conversion is performed
according to the current base . A blank follows. Called
"D-dot."

Word: d.r
Stack: d n —>
Description: Print a signed double number d right aligned in a field n

characters wide.

Word: dabs
Stack: d —> ud
Description: Leave the absolute value ud of a double number d .

Word: decimal
Description: Set the numeric conversion base for decimal input-

output.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-18 © National Instruments Corp.

Word: definitions
Description: Used in the form:

cccc definitions

Set the current vocabulary to the context
vocabulary. In the example, executing vocabulary name
cccc made it the context vocabulary and executing
definitions made both specify vocabulary cccc .

Word: digit
Stack: c n1 —> n2 f (ok)

c n1 —> f (bad)
Description: Converts the ASCII character c (using base n1) to its

binary equivalent n2 , accompanied by a TRUE flag. If
the conversion is invalid, leaves only a FALSE flag.

Word: dliteral
Stack: d —> d (executing)

d —> (compiling)
Description: If compiling, compile a stack double number into a literal.

Later execution of the definition containing the literal will
push it to the stack. If executing, the number will remain
on the stack.

Word: dlm
Stack: addr un —>
Description: dlm is a binary input word. dlm downloads from the

host directly to the GPIB-CT memory un bytes starting at
addr .

Word: dminus
Stack: d1 —> d2
Description: Convert d1 to its double number two's complement.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-19 GPIB-CT IBCL Reference Manual

Word: do
Stack: n1 n2 --- (execute)

addr n --- (compile)
Description: Occurs in a colon-definition in the form:

do ... loop
do ... +loop

At run-time, do begins a sequence with repetitive
execution controlled by a loop limit n1 and an index with
initial value n2 . do removes these from the stack. Upon
reaching loop , the index is incremented by one. Until
the new index equals or exceeds the limit, execution loops
back to just after do ; otherwise the loop parameters are
discarded and execution continues ahead. Both n1 and
n2 are determined at run-time and may be the result of
other operations. Within a loop i will copy the current
value of the index to the stack. Also see i , loop ,
+loop , leave .

When compiling within the colon-definition, do compiles
(do) , which leaves the following address addr and n
for later error-checking.

Word: does>
Description: A word which defines the run-time action within a high-

level defining word. does> alters the code field and first
parameter of the new word to execute the sequence of
compiled word addresses following does> . Used in
combination with <builds . When the does> part
executes, it begins with the address of the first parameter
of the new word on the stack. This allows interpretation
using this area or its contents. Typical uses include multi-
dimensional arrays, and compiler generation.

Word: dp
Stack: —> addr
Description: A user variable, the dictionary pointer, which contains the

address of the next free memory above the dictionary.
The value may be read by here and altered by allot .

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-20 © National Instruments Corp.

Word: dpl
Stack: —> addr
Description: A user variable containing the number of digits to the

right of the decimal on double integer input. It may also
be used to hold output column location of a decimal point
in user generated formatting. The default value on single
number input is -1.

Word: drop
Stack: n —>
Description: Drop the top number from the stack.

Word: dup
Stack: n —> n n
Description: Duplicate the top value on the stack.

Word: else
Stack: addr1 n1 —> addr2 n2 (compiling)
Description: Occurs within a colon-definition in the form:

if ... else ... endif

At run-time, else executes after the TRUE part
following if . else forces execution to skip over the
following FALSE part and resumes execution after the
endif . It has no stack effect.

At compile-time, else compiles branch reserving a
branch offset and leaves the address addr2 and n2 for
error-checking. else also resolves the pending forward
branch from if by calculating the offset from addr1 to
here and storing at addr1 .

Word: emit
Stack: c —>
Description: Transmit the ASCII character c to the serial port. out is

incremented for each character output.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-21 GPIB-CT IBCL Reference Manual

Word: enclose
Stack: addr1 c —> addr1 n1 n2 n3
Description: The text scanning primitive used by word . From the text

address addr1 and an ASCII delimiting character c, is
determined the byte offset to the first non-delimiter
character n1 , the offset to the first delimiter after the text
n2 , and the offset to the first character not included. This
procedure will not process past an ASCII null, treating it
as an unconditional delimiter.

Word: end
Description: This is a duplicate definition for until .

Word: endif
Stack: addr n —> (compile)
Description: Occurs in a colon-definition in the form:

if ... endif
if ... else ... endif

At run-time, endif serves only as the destination of a
forward branch from if or else . It marks the
conclusion of the conditional structure. then is another
name for endif . See also if and else .

At compile-time, endif computes the forward branch
offset from addr to here and stores it at addr . n is
used for error-checking.

Word: erase
Stack: addr n —>
Description: Clear a region of memory to zero from address addr

over n addresses.

Word: error
Stack: n —>
Description: Execute error notifications and restart of system.

warning is first examined. If warning is a 0 or 1, n is
printed as a message number. If warning is a -1, the
definition (abort) is executed, which executes the
system abort . The user may cautiously modify this
execution by altering (abort) . Final action is
execution of quit .

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-22 © National Instruments Corp.

Word: execute
Stack: addr —>
Description: Execute the definition whose code field address is on the

stack. The code field address is also called the
compilation address.

Word: expect
Stack: addr n —>
Description: Transfer characters from the serial port to address addr

until a return or the count of n characters have been
received. One or more nulls are added at the end of the
text.

Word: fence
Stack: —> addr
Description: A user variable containing an address addr below which

forget ting is trapped. To forget below this point, the
user must alter the contents of fence .

Word: fill
Stack: addr n b —>
Description: Fill memory at the address addr with the specified

quantity, n, of bytes b .

Word: forget
Description: Executed in the form:

forget cccc

Deletes definition named cccc from the dictionary with
all entries physically following it. An error message will
occur if the current and context vocabularies are
not currently the same.

Word: here
Stack: —> addr
Description: Leave the address of the next available dictionary

location.

Word: hex
Description: Set the numeric conversion base to sixteen (hexadecimal).

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-23 GPIB-CT IBCL Reference Manual

Word: hld
Stack: —> addr
Description: A user variable that holds the address of the latest

character of text during numeric output conversion.

Word: hold
Stack: c —>
Description: Used between <# and #> to insert an ASCII character

into a pictured numeric output string. For example, 2E
hold will place a decimal point.

Word: i
Stack: —> n
Description: Used within a do-loop to copy the loop index to the

stack. Also see r.

Word: ibcl
Description: The name of the primary vocabulary. Execution makes

ibcl the context vocabulary. Until additional user
vocabularies are defined, new user definitions become a
part of ibcl . ibcl is immediate, so it will execute
during the creation of a colon-definition to select this
vocabulary at compile time.

Word: id.
Stack: addr —>
Description: Print a definition's name from its name field address.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-24 © National Instruments Corp.

Word: if
Stack: f —> (run-time)

—> addr n (compile)
Description: Occurs in a colon-definition in the form:

if (true part) ... endif
if (true part) ... else (false part) ... endif

At run-time, if selects execution based on a boolean flag.
If f is TRUE (non-zero), execution continues ahead
through the TRUE condition. If f is FALSE (zero),
execution skips until just after else to execute the
FALSE condition. After either condition, execution
resumes after endif . else and its FALSE condition
are optional; if missing, FALSE execution skips to just
after endif .

At compile-time if compiles 0branch and reserves
space for an offset at addr . addr and n are used later
for resolution of the offset and error-checking.

Word: immediate
Description: Mark the most recently created definition so that when

encountered at compile time, it will be executed rather
than being compiled. In other words, the precedence bit
in its header is set. This method allows definitions to
handle unusual compiling situations, rather than build
them into the fundamental compiler. The user may force
compilation of an immediate definition by preceding it
with [compile] .

Word: in
Stack: —> addr
Description: A user variable containing the byte offset within the

current input text buffer from which the next text will be
accepted. word uses and moves the value of in .

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-25 GPIB-CT IBCL Reference Manual

Word: interpret
Description: The outer text interpreter which sequentially executes or

compiles text from the serial port depending on state .
If the word name cannot be found after a search of the
context and then the current vocabulary, it is
converted to a number according to the current base. That
also failing, an error message echoing the name with a
" ?" will be given. Text input will be taken according to
the convention for word . If a decimal point is found as
part of a number, a double number value will be left. The
decimal point has no other purpose than to force this
action. Also see number .

Word: key
Stack: —> c
Description: Leave the ASCII value of the next serial character

received.

Word: l!
Stack: n d —>
Description: Stores value n at address specified by the double d .

Word: l@
Stack: d —> n
Description: Leave the 16-bit contents of the memory addressed by d

on the stack.

Word: latest
Stack: —> addr
Description: Leave the name field address of the topmost word in the

current vocabulary.

Word: lc!
Stack: b d —>
Description: Store 8 bits of b at address specified by the double d .

Word: lc@
Stack: d —> b
Description: Leave the 8-bit contents of the memory addressed by d on

the stack.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-26 © National Instruments Corp.

Word: leave
Description: Force termination of a do-loop at the next opportunity

by setting the loop limit equal to the current value of the
index. The index itself remains unchanged, and execution
proceeds normally until loop or +loop is encountered.

Word: lfa
Stack: pfa —> lfa
Description: Convert the parameter field address of a dictionary

definition to its link field address.

Word: limit
Stack: —> u
Description: A constant leaving the address of the highest system

memory available.

Word: lit
Stack: —> n
Description: Within a colon-definition, lit is automatically compiled

before each 16-bit literal number encountered in input
text. Later execution of lit causes the contents of the
next dictionary address to be pushed to the stack.

Word: literal
Stack: n —>
Description: If compiling, then compile the stack value n as a 16-bit

literal. This definition is immediate so that it will execute
during a colon-definition. The intended use is:

: xxx [calculate] literal ;

Compilation is suspended for the compile time calculation
of a value. Compilation is resumed and literal
compiles this value.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-27 GPIB-CT IBCL Reference Manual

Word: loop
Stack: addr n —> (compiling)
Description: Occurs in a colon-definition in the form:

do ... loop

At run-time, loop selectively controls branching back to
the corresponding do based on the loop index and limit.
The loop index is incremented by one and compared to
the limit. The branch back to do occurs until the index
equals or exceeds the limit; at that time, the parameters
are discarded and execution continues ahead.

At compile-time, loop compiles (loop) and uses
addr to calculate an offset to do . n is used for error-
checking.

Word: m*
Stack: n1 n2 —> d
Description: A mixed magnitude math operation which leaves the

signed double number product of two numbers.

Word: m/
Stack: d n1 —> n2 n3
Description: A mixed magnitude math operator which leaves the

signed remainder n2 and signed quotient n3 from a
double number dividend d and divisor n1 . The
remainder takes its sign from the dividend.

Word: m/mod
Stack: ud1 u2 —> u3 ud4
Description: An unsigned mixed magnitude math operation which

leaves a double quotient ud4 and remainder u3 from a
double dividend ud1 and single divisor u2 .

Word: max
Stack: n1 n2 —> n3
Description: Leave the greater of two numbers.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-28 © National Instruments Corp.

Word: message
Stack: n —>
Description: Prints MSG# n . n may be positive or negative.

message could be used to alert a user of a condition,
provided the user knows what each message number
represents.

Word: min
Stack: n1 n2 —> n3
Description: Leave the smaller of two numbers.

Word: minus
Stack: n1 —> n2
Description: Leave the two's complement of a number.

Word: mod
Stack: n1 n2 —> n3
Description: Leave the remainder of n1/n2 , with the same sign as n1 .

Word: nfa
Stack: pfa —> nfa
Description: Convert the parameter field address of a word to its name

field address.

Word: number
Stack: addr —> d
Description: Convert a character string left at addr to a signed double

number using the current numeric base. The string
consists of the characters for conversions preceded by a 1-
byte count of characters to convert followed by a blank
(hex 20). If a decimal point is encountered in the text, its
position will be given in dp1 , with no other effect. If a
numeric conversion is not possible, error message 0 will
be given.

Word: or
Stack: n1 n2 —> n3
Description: Leave the bit-wise logical inclusive-OR of two 16-bit

values.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-29 GPIB-CT IBCL Reference Manual

Word: out
Stack: —>addr
Description: A user variable that contains a value incremented by

emit . The user may alter and examine out to control
display formatting.

Word: over
Stack: n1 n2 —> n1 n2 n1
Description: Duplicates the second element on the stack.

Word: p!
Stack: b addr —>
Description: p! place b into I/O addr . Pronounced "P-store."

Word: p@
Stack: addr —> b
Description: p@ reads b from I/O address addr . Pronounced "P-at."

Word: pad
Stack: —> addr
Description: Leave the address of the text output buffer, which floats at

a fixed offset above here .

Word: pfa
Stack: nfa —> pfa
Description: Convert the name field address of a word to its parameter

field address.

Word: query
Description: Input 80 characters of text (or until a return) from the

serial port. Text is positioned at the address contained in
tib with in set to zero.

Word: quit
Description: Clear the return stack, stop compilation, and return

control to the operator's terminal. No ok message is sent.

Word: r
Stack: —> n
Description: Copy the top of the return stack to the computation stack.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-30 © National Instruments Corp.

Word: r>
Stack: —> n
Description: Pops the top value from the return stack and pushes it

onto the computation stack. Called "R-from." Also see
>r and r.

Word: r0
Stack: —> addr
Description: A user variable containing the initial location of the return

stack. Called "R-zero." Also see rp!

Word: repeat
Stack: addr n —> (compiling)
Description: Used within a colon-definition in the form:

begin ... while ... repeat

At run-time, repeat forces an unconditional branch
back to just after the corresponding begin .

At compile-time, repeat compiles branch and the
offset from here to addr . n is used for error-checking.

Word: rot
Stack: n1 n2 n3 —> n2 n3 n1
Description: Rotate the top three values on the stack, bringing the third

to the top.

Word: rp!
Description: A procedure to initialize the return stack pointer from user

variable r0 . Extreme caution should be used with this
word.

Word: rp@
Stack: —> addr
Description: A procedure that places the return stack pointer address

onto the stack.

Word: s->d
Stack: n —> d
Description: Sign extend a single number to form a double number.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-31 GPIB-CT IBCL Reference Manual

Word: s0
Stack: —> addr
Description: A user variable that contains the initial value for the stack

pointer. Called "S-zero." Also see sp!

Word: sign
Stack: n d —> d
Description: Stores an ASCII hyphen (-) just before a converted

numeric output string in the text output buffer when n is
negative. n is discarded, but double number d is
maintained. Must be used between <# and #> .

Word: smudge
Description: Used during word definition to toggle the "smudge bit" in

a word's name field. This prevents an uncompleted
definition from being found during dictionary searches
until compiling is completed without error.

Word: sp!
Description: A procedure to initialize the stack pointer from s0 .

Word: sp@
Stack: —> addr
Description: A procedure to return the address of the stack position to

the top of the stack, as it was before sp@ was executed.
For example, the line 1 2 sp@ @ . . .
would type 2 2 1).

Word: space
Description: Transmit an ASCII blank to the serial port.

Word: spaces
Stack: n —>
Description: Transmit n ASCII blanks to the serial port.

Word: state
Stack: —> addr
Description: A user variable containing the compilation state. A non-

zero value indicates compilation state. A zero value
indicates execution state.

Word: swap
Stack: n1 n2 —> n2 n1
Description: Exchange the top two values on the stack.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-32 © National Instruments Corp.

Word: task
Description: A no-operation word which can mark the boundary

between user definitions and the ibcl default dictionary.

Word: then
Description: An alias for endif .

Word: tib
Stack: —> addr
Description: A user variable containing the address of the terminal

input buffer.

Word: toggle
Stack: addr b —>
Description: Complement the contents of addr by the bit pattern b .

Word: traverse
Stack: addr1 n —> addr2
Description: Move across the name field of a variable length IBCL

name field. addr1 is the address of either the length
byte or the last letter. If n=1 , the motion is toward high
memory; if n=-1 , the motion is toward low memory.
The addr2 resulting is the address of the other end of the
name.

Word: type
Stack: addr n —>
Description: Transmit n characters from address addr to the serial

port.

Word: u
Stack: un —>
Description: Print a number from an unsigned 16-bit value, converted

according to the numeric base . A trailing blank follows.
Pronounced "U-dot."

Word: u*
Stack: u1 u2 —> ud
Description: Leave the unsigned double number product of two

unsigned numbers.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-33 GPIB-CT IBCL Reference Manual

Word: u<
Stack: u1 u2 —> f
Description: Leave a TRUE flag if u1 is less than u2 ; otherwise leave

a FALSE flag.

Word: u/
Stack: ud u1 —> u2 u3
Description: Leave the unsigned remainder u2 and unsigned quotient

u3 from the unsigned double dividend ud and unsigned
divisor u1 .

Word: ulm
Stack: addr un —>
Description: ulm is a binary output word. ulm uploads from the

GPIB-CT to the host un bytes starting at addr .

Word: until
Stack: f —> (run-time)

addr n —> (compile)
Description: Occurs within a colon-definition in the form:

begin ... until

At run-time, until controls the conditional branch back
to the corresponding begin . If f is FALSE, execution
returns to just after begin ; if TRUE, execution continues
ahead.

At compile-time, until compiles (0branch) and an
offset from here to addr . n is used for error-checking.

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-34 © National Instruments Corp.

Word: user
Stack: n —>
Description: A defining word used in the form:

n user cccc

which creates a user variable cccc . The parameter field
of cccc contains n as a fixed offset relative to the user
pointer register user-base for this user variable. When
cccc is later executed, it places the sum of its offset and
the user area base address on the stack as the storage
address of that particular variable.

Word: variable
Description: A defining word used in the form:

n variable cccc

When variable is executed, it creates the definition
cccc with its parameter field initialized to n. When
cccc is later executed, the address of its parameter field
(containing n) is left on the stack, so that a fetch or store
may access this location.

Word: voc-link
Stack: —> addr
Description: A user variable containing the address of a field in the

definition of the most recently created vocabulary. All
vocabulary names are linked by these fields to allow
control for forget ting through multiple vocabularies.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-35 GPIB-CT IBCL Reference Manual

Word: vocabulary
Stack: —>
Description: A defining word used in the form:

vocabulary cccc immediate

to create a vocabulary definition cccc . Subsequent use
of cccc will make it the context vocabulary which is
searched first by interpret . The sequence cccc
definitions will also make cccc the current
vocabulary into which new definitions are placed.

cccc will be so chained as to include all definitions of
the vocabulary in which cccc is itself defined. All
vocabularies ultimately chain to ibcl . By convention
vocabulary names are to be declared immediate . Also
see voc-link .

Word: vlist
Stack: ->
Description: List the names of the definitions in the context

vocabulary. Any serial character received will terminate
the listing.

Word: warm
Description: Similar to cold , except that the dictionary is not cleared.

Word: warning
Stack: —> addr
Description: A user variable containing a value controlling messages.

If warning is 0 or 1, messages are displayed by number.
If warning is -1, execute (abort) for a user-specified
procedure. See message , error .

Glossary of IBCL Words Appendix F

GPIB-CT IBCL Reference Manual F-36 © National Instruments Corp.

Word: while
Stack: f --- (run-time)

addr1 n1 --- addr1 n1 addr2 n2
Description: Occurs in a colon-definition in the form:

begin ... while (true part) ... repeat

At run-time, while selects conditional execution based
on boolean flag f. If f is TRUE (non-zero), while
continues execution of the TRUE part through to
repeat , which then branches back to begin . If f is
FALSE (zero), execution skips to just after repeat ,
exiting the structure.

At compile-time, while emplaces (0branch) and
leaves addr2 of the reserved offset. The stack values
will be resolved by repeat .

Word: width
Stack: —> addr
Description: A user variable containing the maximum number of

characters saved in the compilation of a definition's name.
It must be 1 through 31, with a default value of 31. The
name character count and its natural characters are saved,
up to the value in width . The value may be changed at
any time within the above limits.

Word: word
Stack: c —>
Description: Read the next text characters from the input stream being

interpreted until a delimiter c is found, storing the packed
character string beginning at the dictionary buffer here .
word leaves the character count in the first byte, the
characters, and ends with two or more blanks. Leading
occurrences of c are ignored.

Word: xor
Stack: n1 n2 —> n3
Description: Leave the bitwise logical exclusive-OR of two values.

Appendix F Glossary of IBCL Words

© National Instruments Corp. F-37 GPIB-CT IBCL Reference Manual

Word: [
Description: Used in a colon-definition in the form:

: xxx [words] more words ;

Suspend compilation. The words after [are executed, not
compiled. This allows calculation or compilation
exceptions before resuming compilation with]. Also see
literal and].

Word: [compile]
Description: Used in a colon-definition in the form:

: xxx [compile] cccc ;

[compile] will force the compilation of the immediate
word cccc that would otherwise execute during
compilation.

Word:]
Description: Resume compilation, to the completion of a colon-

definition. Also see [.

© National Instruments Corp. G-1 GPIB-CT IBCL Reference Manual

Appendix G
Customer Communication

For your convenience, this appendix contains forms to help you gather the
information necessary to help us solve technical problems you might have
as well as a form you can use to comment on the product documentation.
Filling out a copy of the Technical Support Form before contacting
National Instruments helps us help you better and faster.

National Instruments provides comprehensive technical assistance around
the world. In the U.S. and Canada, applications engineers are available
Monday through Friday from 8:00 a.m. to 6:00 p.m. (central time). In other
countries, contact the nearest branch office. You may fax questions to us at
any time.

Corporate Headquarters
(512) 795-8248
Technical Support fax: (512) 794-5678

Branch Offices Phone Number Fax Number
Australia 03 879 9422 03 879 9179
Austria 0662 435986 0662 437010 19
Belgium 02 757 00 20 02 757 03 11
Denmark 45 76 26 00 45 76 71 11
Finland 90 527 2321 90 502 2930
France 1 48 65 33 00 1 48 65 19 07
Germany 089 7 14 50 93 089 7 14 60 35
Italy 02 48301892 02 48301915
Japan 03 3788 1921 03 3788 1923
Netherlands 01720 45761 01720 42140
Norway 03 846866 03 846860
Spain 91 640 0085 91 640 0533
Sweden 08 730 49 70 08 730 43 70
Switzerland 056 27 00 20 056 27 00 25
U.K. 0635 523545 0635 523154

or 0800 289877 (in U.K. only)

Technical Support Form

Photocopy this form and update it each time you make changes to your
software or hardware, and use the completed copy of this form as a
reference for your current configuration. Completing this form accurately
before contacting National Instruments for technical support helps our
applications engineers answer your questions more efficiently.

If you are using any National Instruments hardware or software products
related to this problem, include the configuration forms from their user
manuals. Include additional pages if necessary.

Name

Company

Address

Fax () Phone ()

Computer brand

Model Processor

Operating system

Speed MHz RAM M

Display adapter

Mouse yes no

Other adapters installed

Hard disk capacity M Brand

Instruments used

National Instruments hardware product model

Revision

Configuration

(continues)

National Instruments software product

Version

Configuration

The problem is

List any error messages

The following steps will reproduce the problem

Documentation Comment Form

National Instruments encourages you to comment on the documentation
supplied with our products. This information helps us provide quality
products to meet your needs.

Title: GPIB-CT IBCL Reference Manual

Edition Date: December 1993

Part Number: 320132-01

Please comment on the completeness, clarity, and organization of the
manual.

(continues)

If you find errors in the manual, please record the page numbers and
describe the errors.

Thank you for your help.

Name

Title

Company

Address

Phone ()

Mail to: Technical Publications
National Instruments Corporation
6504 Bridge Point Parkway, MS 53-02
Austin, TX 78730-5039

Fax to: Technical Publications
National Instruments Corporation
MS 53-02
(512) 794-5678

© National Instruments Corp. Glossary-1 GPIB-CT IBCL Reference Manual

Glossary

Prefix Meaning Value

m-
µ-
n-

milli-
micro-
nano-

10-3

10-6

10-9

EPROM erasable programmable read-only memory

hex hexadecimal

in. inches

K 1,024 bytes (of memory)

M megabytes of memory

sec seconds

	GPIB-CT IBCL Reference Manual
	Limited Warranty
	Important Notice
	Copyright
	Trademarks
	Warning Regarding Medical and Clinical Use of National Instruments Products

	Contents
	About This Manual
	Assumption of Previous Knowledge
	Organization of the Manual
	Conventions Used in This Manual
	Related Documentation
	Customer Communication

	Chapter 1 Getting Started with IBCL
	Using IBCL
	Starting IBCL
	Pushing and Popping Numbers from the Stack
	Adding Numbers on the Stack
	Defining New Words
	Using Loops and Conditionals
	Using Conditionals
	Manipulating the Stack
	Looping
	Forgetting
	Using GPIB Functions
	Exiting IBCL

	Chapter 2 IBCL Reference
	Language Structure
	Stacks
	Numeric Operations
	Unary Operators
	Binary and Ternary Operators
	Memory Access
	Load and Store
	Fill
	Move
	Constants, Variables and Arrays
	Input/Output
	IBCL Input
	ASCII-Type Input
	Binary-Type Input
	IBCL Output
	ASCII-Type Output Words
	Character-Based Words
	Numeric-Based Words
	Binary-Type Output
	BASIC Program Example
	Defining New Words
	Colon Definitions
	Dictionary
	Vocabularies
	Control
	Conditional Execution
	Loops

	Chapter 3 GPIB Extensions
	brd
	bwrt
	cac
	caddr
	clr
	cmd
	eos
	eot
	gts
	ist
	loc
	onl
	pct
	ppc
	rd
	rpp
	rsc
	rsp
	rsv
	sic
	sre
	stat
	tmo
	trg
	wait
	wrt

	Chapter 4 Programming Examples
	Microsoft BASIC IBCL Compiler Programming Example
	Example 1
	Modem Programming Examples
	Example 2
	Example 3
	Macro Programming Example
	Example 4
	Timed Applications Examples
	Example 5
	Example 6
	Example 7
	Example 8

	Chapter 5 Technical Information
	Loading Programs
	The IBCL Interpreters
	Inner Interpreter Sequence
	Outer Interpreter Sequence
	Errors
	Advanced Defining Techniques
	Machine Code Primitives
	Vectored Execution
	Memory Organization
	General Port I/O

	Appendix A Multiline Interface Messages
	Appendix B IBCL Status and Error Messages
	Appendix C Creating Permanent IBCL Words in EPROM
	Appendix D Using Extended Memory
	About Extended Memory

	Appendix E Other Useful IBCL Words
	dump
	ud.
	depth
	not
	0>
	binary
	octal
	msa
	.s
	pick
	roll
	decom
	cls
	Redefining the Basic IBCL Mathematical Operators to Use Infix Notation
	Programming Examples
	Redefining =
	Redefining +
	Redefining -
	Redefining *
	Redefining /

	Appendix F Glossary of IBCL Functions
	Glossary Conventions
	GPIB Glossary
	Standard Glossary
	!
	!csp
	"
	#
	#>
	#s
	'
	(
	(.")
	(+loop)
	(abort)
	(do)
	(dq)
	(find)
	(loop)
	(number)
	*
	*/
	*/mod
	+
	+!
	+-
	+loop
	+origin
	,
	-
	-dup
	-find
	-trailing
	.
	."
	.r
	/
	/mod
	0 1 2 3
	0<
	0=
	0branch
	1+
	2!
	2+
	2@
	2dup
	:
	;
	;s
	<
	<#
	<builds
	=
	>
	>r
	?
	?comp
	?csp
	?error
	?exec
	?pairs
	?stack
	?terminal
	@
	abort
	abs
	again
	allot
	and
	back
	base
	begin
	bl
	blanks
	branch
	bye
	c!
	c,
	c/l
	c@
	cfa
	cmove
	cold
	compile
	constant
	context
	count
	cr
	create
	csp
	current
	d+
	d+-
	d.
	d.r
	dabs
	decimal
	definitions
	digit
	dliteral
	dlm
	dminus
	do
	does>
	dp
	dpl
	drop
	dup
	else
	emit
	enclose
	end
	endif
	erase
	error
	execute
	expect
	fence
	fill
	forget
	here
	hex
	hld
	hold
	i
	ibcl
	id.
	if
	immediate
	in
	interpret
	key
	l!
	l@
	latest
	lc!
	lc@
	leave
	lfa
	limit
	lit
	literal
	loop
	m*
	m/
	m/mod
	max
	message
	min
	minus
	mod
	nfa
	number
	or
	out
	over
	p!
	p@
	pad
	pfa
	query
	quit
	r
	r>
	r0
	repeat
	rot
	rp!
	rp@
	s->d
	s0
	sign
	smudge
	sp!
	sp@
	space
	spaces
	state
	swap
	task
	then
	tib
	toggle
	traverse
	type
	u
	u*
	u<
	u/
	ulm
	until
	user
	variable
	voc-link
	vocabulary
	vlist
	warm
	warning
	while
	width
	word
	xor
	[
	[compile]
]

	Appendix G Customer Communication
	Glossary
	Figures
	Figure 2-1. IBCL Versus the Subroutine Compiler
	Figure 5-1. Logical Memory Map
	Figure D-1. Physical Memory Map

	Tables
	Table 2-1. Parameter Stack Words
	Table 2-2. Return Stack Words
	Table 2-3. Supported Number Types and Ranges
	Table 2-4. Unary Operators
	Table 2-5. Signed or Unsigned Operands
	Table 2-6. Signed Operands
	Table 2-7. Mixed Length Signed Operands
	Table 2-8. Unsigned Operands
	Table 2-9. Logical, Sign Bit Not Significant
	Table 2-10. Load and Store Words
	Table 2-11. Memory Fill Words
	Table 2-12. User Variables at Initialization
	Table 2-13. Numeric Output Words
	Table 2-14. ASCII Characters
	Table 2-15. Comparison of Non-Immediate and Immediate Characteristics
	Table 3-1. Data Transfer Termination Method
	Table 3-2. GPIB Status Conditions
	Table 3-3. Timeout Limit Values
	Table 3-4. Wait Mask Layout
	Table 5-1. I/O System Map of Ports Supported on the GPIB-CT
	Table B-1. IBCL Status and Error Messages
	Table F-1. Glossary Conventions
	Table F-2. GPIB Glossary

