
IsoPod™ Users Manual

1. Warranty

New Micros, Inc. warrants its products against defects in materials and workmanship for
a period of 90 days. If you discover a defect, New Micros, Inc. will, at its option, repair,
replace, or refund the purchase price. Simply call our sales department for an RMA
number, write it on the label and return the product with a description of the problem. We
will return your product, or its replacement, using the same shipping method used to ship
the product to New Micros, Inc. (for instance, if you ship your product via overnight
express, we will do the same). This warranty does not apply if the product has been
modified or damaged by accident, abuse, or misuse.

2. Copyrights and Trademarks

Copyright © 2002 by New Micros, Inc. All rights reserved. IsoPod™, IsoMax™ and
Virtually Parallel Machine Architecture™ are trademarks of New Micros, Inc. Windows
is a registered trademark of Microsoft Corporation. 1-wire is a registered trademark of
Dallas Semiconductor. Other brand and product names are trademarks or registered
trademarks of their respective holders.

3. Disclaimer of Liability

New Micros, Inc. is not responsible for special, incidental, or consequential damages
resulting from any breach of warranty, or under any legal theory, including lost profits,
downtime, goodwill, damage to or replacement of equipment or property, and any costs
of recovering, reprogramming, or reproducing any data stored in or used with New
Micros, Inc. products.

4. Internet Access

Web site: http://www.newmicros.com

This manual: http://www.newmicros.com/store/product_manual/isopod.zip

Email technical questions: nmitech@newmicros.com

Email sales questions: nmisales@newmicros.com

Also see “Manufacturer” information near the end of this manual.

5. Internet IsoPod™ Discussion List

We maintain the IsoPod™ discussion list on our web site. Members can have all questions and answers forwarded to
them. It’s a way to discuss IsoPod™ issues.

To subscribe to the IsoPod™ list, visit the Discussion section of the New Micros, Inc. website.

This manual is valid with the following software and firmware versions:
IsoPod V1.0

If you have any questions about what you need to upgrade your product, please contact New Micros, Inc.

6. GETTING STARTED

Thank you for buying the IsoPod™. We hope you will find the IsoPod™ to be the
incredibly useful small controller board we intended it to be, and easy to use as possible.

If you are new to the IsoPod™, we know you will be in a hurry to see it working.

That’s okay. We understand.

Let’s skip the features and the tour and discussion of Virtually Parallel Machine
Architecture™ (VPMA) and get right to the operation. Those points can come later. Once
we’ve got communications, then we can make some lights blink and know for sure we’re
in business. Let’s make this “pod” talk to us!

We’ll need PC running a terminal program. Then we’ll need a serial cable to connect
from the PC to the IsoPod™ (which, hopefully, you’ve already gotten from us). Then we
need power, such as from a 6VDC wall transformer (which, hopefully, you’ve already
gotten from us). (If not, you can build your own cable, and supply your own power
supply. Instructions are in the back of this manual in Connectors.) If we have those
connections correct, we will be able to talk to the IsoPod™ interactively.

These connections are all made on a few pins of J1, which is a female .1” dual row
connector. Download from http://www.newmicros.com/store/product_manual/isopod.zip the
manual and read the rest if you haven’t yet.

Generally, an intermediate double male header strip will be used to mate from J1 to the
Wall transformer single row female connector, and to the Serial Cable single row female
connector.

(There are other options we’ll discuss later. If you are using your IsoPod™ with our
Prototyping Board, these connections will be a little simpler. Follow directions in the
Prototyping Board Manual if you are using it.)

Your chief concern now, is not hooking the serial cable or power cable up on the wrong
connector; the wrong pins on the right connector; or backwards or rotated on the right
connector. Pay close attention how the connectors go on. There is no protection to
prevent plugging in on the .1” dual row headers the wrong way.

Once you have your serial cable and connectors, and wall transformer and connectors,
ready, follow these steps.

Start with the PC: Install and run the MaxTerm program, or, find and start Hyperterm. Set
the terminal program for communications channel (COMM1, COMM2, etc.) you wish to
use, and set communications settings to (9600 8N1). Operate the program to get past the
opening set ups and to the terminal screen, so it is ready to communicate. (If necessary,
visit the chapters on MaxTerm and Hyperterm if you have trouble understanding how to
accomplish any of this.)

Hook the computer end of the serial cable (usually a DB-9 connector, but may be a DB-
25, or other, on older PC’s) to the PC’s communication channel selected in the terminal
program.

Now hook the IsoPod™ end of the serial cable to the IsoPod™ with connections as
shown in the instructions. See the illustration here:

Plug the wall transformer into the wall, but do not plug it into the board yet.

Now, while watching the LED’s plug in the wall transformer connector to the power pins
on the IsoPod™ board. Be very careful not to get a misalignment here, because it will
likely kill the board. See the illustration here:

All three LED’s should come on. If the LED’s do not light, unplug the power to the
IsoPod™ quickly.

Now check the screen on the computer. When the power is applied, before any user
program installed, the PC terminal program should show “IsoMax™ V1.0” (or whatever
the version currently is, see upgrade policy later at the end of this chapter).

If the LED’s don’t light, and the screen doesn’t show the message, unplug the power to
the IsoPod™. Go back through the instructions again. Check the power connections,

particularly for polarity. (This is the most dangerous error to your board.) If the LED’s
come on but there is no communication, check the terminal program. Check the serial
connections, particularly for a reversal or rotation. Try once more. If you have no
success, see the trouble shooting section of this manual and then contact technical support
for help, before going further. Do not leave power on the board for more than a few
seconds if it does not appear to be operational.

Normally at this point you will see the prompt on the computer screen “IsoMax™ V1.0”.
Odds are you’re there. Congratulations! Now let’s do something interactive with the
IsoPod™.

In the terminal program on the PC, type in, “WORDS” (all in “caps” as the language is case
sensitive), and then hit “Enter”. A stream of words in the language should now scroll up
the screen. Good, we’re making progress. You are now talking interactively with the
language in the IsoPod™.

Now let’s blink the LED’s. Port lines control the LED’s. Type:

 REDLED OFF

To turn it back on type:

 REDLED ON

Now let’s use the Yellow and Green LED’s. Type:

 YELLED OFF GRNLED OFF

To turn it back on type:

 YELLED ON GRNLED ON

So. Now you should have a good feeling because you can tell your IsoPod™ is working.
It’s time for an overview of what your IsoPod™ has for features.

First though, a few comments on IsoMax™ revision level. The first port of IsoMax™ to
the IsoPod™ occurred on May 27, 2002. We called this version V0.1, but it never
shipped. While the core language was functional as it then was, we really wanted to add
many I/O support words. We added a small number of words to identify the port lines
and turn them on and off and shipped the first public release on June 3, 2002. This
version was V0.2. Currently V0.5 is being shipped, which has support words for many of
the built in hardware functions, and V0.6 is already planned which will add more I/O
functions. As we approach a more complete version, eventually we will release V1.0. We
want all our original customers to have the benefit of the extensions we add to the
language. Any IsoPod™ purchased prior to V1.0 release can be returned to the factory (at
customer’s expense for shipping) and we will upgrade the V0.x release to V1.0 without
charge.

7. INTRODUCTION

Okay. We should be running. Back to the basics.

What is neat about the IsoPod™? Several things. First it is a very good micro controller.
The IsoPod™ was intended to be as small as possible, while still being useable. A careful
balance between dense features, and access to connections is made here. Feature density
is very high. So secondly, having connectors you can actually “get at” is also a big plus.
What is the use of a neat little computer with lots of features, if you can conveniently
only use one of those features at a time?

The answer is very important. The neatest thing about the
IsoPod™ is software giving Virtually Parallel Machine
Architecture!

Virtually Parallel Machine Architecture (VPMA) is a new
programming paradigm. VPMA allows small, independent
machines to be constructed, then added seamlessly to the
system. All these installed machines run in a virtually parallel
fashion.

 In an ordinary high level language, such as C, Basic, Forth or Java, most anyone
can make a small computer do one thing well. Programs are written flowing
from top to bottom. Flow charts are the preferred diagramming tools for these
languages. Any time a program must wait on something, it simply loops in
place. Most conventional languages follow the structured procedural
programming paradigm. Structured programming enforces this style.

Getting two things done at the same time gets tricky. Add a few
more things concurrently competing for processor attention, and
most projects start running into serious trouble. Much beyond
that, and only the best programmers can weave a program
together running many tasks in one application.

Most of us have to resort to a multitasking system. (Windows and Linux are the most
obvious examples of multitasking systems.) For a dedicated processor, a multitasking
operating system adds a great amount of overhead for each task and an unpleasant
amount of program complexity.

The breakthrough in IsoMax™ is the language is inherently
“multitasking” without the overhead or complexity of a multitasking
operating system. There’s really been nothing quite like it before.
Anyone can write a few simple machines in IsoMax™ and string them
together so they work.

Old constrained ways of thinking must be left behind to get this new level of efficiency.
IsoMax™ is therefore not, and cannot be, like a conventional procedural language.
Likewise, conventional languages cannot become IsoMax™ like without losing a number
of key features which enforces Structured Programming at the expense of Isostructure.

In IsoMax™, all tasks are handled on the same level, each running like its own separate
little machine. (Tasks don’t come and go, like they do in multitasking, any more than
you’d want your leg to come and go while you’re running.) Each machine in the program
is like hardware component in a mechanical solution. Parts are installed in place, each
associated with their own place and function.

Programming means create a new processor task fashioned as a machine, and debug it
interactively in the foreground. When satisfied with performance, you install the new
machine in a chain of machines. The machine chain becomes a background feature of the
IsoPod™ until you remove it or replace it.

The combination of VPMA software and diverse hardware makes IsoPod™ very
versatile. It can be used right side up by J1 with a controller interface board providing an
area for prototyping circuitry. It can be used as a stand-alone computer board, deeply
embedded inside some project. Perhaps in a mobile robot mounted with double sided
sticky tape or tie wraps (although this would be less than a permanent or professional
approach to mounting). It can be the controller on a larger PCB board. It can be flipped
over and plugged into a carrier board to attach to all signals. A double male right angle
connector will convert J1 from a female to a male for such application (however the
LED’s may no longer be visible) and the mating force of the connectors can sufficiently
hold the board in place for most applications. Using a cable or adapter, it can be plugged
into a 24-pin socket of a “stamp-type” controller, to upgrade an existing application.

An IsoPod™ brings an amazing amount power to a very small space, at a very reasonable
cost. You’ll undoubtedly want to have a few IsoPod™ ‘s on hand for your future projects.

8. QUICK TOUR

Start by comparing your board to the diagram below. Most of the important features on
the top board are labeled.

The features most important to you will be the connectors. The following list gives a brief
description of each connector and the signals involved.

J1 Serial, Power, General Purpose I/O
J2 JTAG connector
J3 SPI
J4 RS-422/485 Serial Port
J5 CAN BUS Network Port
J6 Servo Motor Outputs x 12
J7 Motor Encoder x 2
J8 A/D Various

On the left is connector J1. Digital I/O, the power and serial connections are found here.
J1 is a female connector. To attach the power and serial connections we need either male
pins, or better yet, a male-to-male intermediate header.

All other connectors are dual or triple row male headers. Connection can be made with
female headers with crimped wire inserts, or IDC headers with soldered or cabled wires.

Signals were put on separate connectors where possible, such as with the SPI, RS-422,
the Can Bus, and PWM connectors. The male headers allow insertion of individually
hand-crimped wires in connectors where signals are combined. For instance, R/C Servo
motor headers often come in this size connection with a 3x1 header. These can plug
directly onto the board side by side on the PWM connector.

To the far left, the low voltage detect and the crystal are just to the right of J1.

The large chip next to them is the CPU.

Three LED’s, Red, Yellow and Green, are along the bottom of the CPU, and are
dedicated to user control.

Another row of chips between J2/3 and J4/5 are the CAN BUS and RS-422/483 drivers.

On the bottom of the board the largest components are the voltage regulators. If the total
current draw were smaller, we could make a smaller supply, but to be sure every user
could get enough power to run at full speed, these larger parts were necessary. A smaller
module, which will replace the regulators, is also planned.

A few smaller chips are also on the bottom side, the RS-232 transceiver and the LED
driver, and a handful of resistors and capacitors.

9. ISOSTRUCTURE

IsoMax™ is an interactive, real time control, computer language based on the concept of
the State Machine.

Consider this example. Let's say you must hire a night watchman at a dam. Now things
run pretty slowly at your dam, so there are four or five critical things which must be
monitored, and they need to be adjusted of within half an hour to 45 minutes of getting
out of whack, or they'll become critical. So what do you do? You train the night
watchman to make rounds every 15 minutes. As long as he gets to all the things that must
be checked and adjusted within the 15 minutes, everything is safe.

He's probably fast enough the round will only take a very short amount of the 15 minutes,
and he can go eat donuts and drink coffee with the rest of his time. As long as he gets out
there and checks everything, sees what conditions are out of whack, and takes corrective
action, then moves on, every 15 minutes, it's all fine.

But if the watchman sees one thing go out of whack, and adjusts it and waits there for it
to come back into range, (which could take as long to come back as it did to go out) what
happens to the other 4 things? Maybe nothing. Or maybe they go out of whack too, and
he doesn't get there for an hour because he's been focused on the one thing he first saw
was wrong.

If you've got single focus watchman, what do you have to do? You have to have multiple
watchman, each doing a single task. Or you have to get an executive who interrupts the
single-minded watchman and transports him from check point to check point.

Now while the need for the watchman to keep moving is a simple management issue, the
same obviousness is not obvious in software. Why? The structures in most languages
discourage anything but spinning on a condition until it clears. Like the watchman fixated

on the one problem and stopping his rounds, backwards branches in languages allow a
program to become stuck on some bit until it changes.

There are several choices.
1) Only do one thing and settle for that, hire one single-minded watchman for each
control (multiprocessing).
2) Hire one single-minded watchman, and hire an executive to interrupt him if he
becomes fixated, and move him along (multitasking).
3) Hire one watchman who isn't so single-minded and can never be allowed to stop
moving along on his rounds. (Isostructure)

10. ISOMAX PROGRAMMING

IsoMax is a programming language based on Finite State Machine (FSM) concepts
applied to software, with a procedural language (derived from Forth) underneath it. The
closest description to the FSM construction type is a “One-Hot” Mealy type of Timer
Augmented Finite State Machines. More on these concepts will come later.

11. QUICK OVERVIEW

What is IsoMax™? IsoMax™ is a real time operating system / language.

How do you program in IsoMax™? You create state machines that can run in a virtually
parallel architecture.

Step Programming Action Syntax
1 Name a state machine

MACHINE <name>

2 Select this machine

ON-MACHINE <name>

3 Name any states appended on the machine

APPEND-STATE <name>
APPEND-STATE <name>
…

4 Describe transitions from states to states

IN-STATE
 <state>
CONDITION
 <Boolean>
CAUSES
 <action>
THEN-STATE
 <state>
TO-HAPPEN

5 Test and Install {as required}

What do you have to write to make a state machine in IsoMax™? You give a machine a
name, and then tell the system that’s the name you want to work on. You append any
number of states to the machine. You describe any number of transitions between states.
Then you test the machine and when satisfied, install it into the machine chain.

What is a transition? A transition is how a state machine changes states. What’s in a
transition? A transition has four components; 1) which state it starts in, 2) the condition
necessary to leave, 3) the action to take when the condition comes true, and 4) the state to
go to next time. Why are transitions so verbose? The structure makes the transitions easy
to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are like the five brackets around a table of four things.

IN-STATE
\

CONDITION
/\

CAUSES
/\

THEN-STATE
/\

TO-HAPPEN
/

<from state> <Boolean> <action> <to state>

In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE
and TO-HAPPEN are always there (with some possible options to be set out later). The
“meat slices” between the “slices of bread” are the hearty stuffing of the description. You
will fill in those portions to your own needs and liking. The language provides “the
bread” (with only a few options to be discussed later).

So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states
appended. The transitions are laid out in a pattern, with certain words surrounding others.
Procedural parts are inserted in the transitions between the standard clauses.

The syntax is very loose compared to some languages. What is important is the order or
sequence these words come in. Whether they occur on one line or many lines, with one
space or many spaces between them doesn’t matter. Only the order is important.

12. THREE MACHINES

Now let’s take a first step at exploring IsoMax™ the language by looking at some very
simple examples. We’ll explore the language with what we’ve just tested earlier, the LED
words. We’ll add some machines that will use the LED’s as outputs, so we can visually
“see” how we’re coming along.

13. REDTRIGGER

First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s
presented first without detailed explanation, entered and tested. Then we will explain the
language to create the machine step by step

(THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.
(IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE

HEX

: OFF?
 1 =
 IF
 2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
 2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
 1 + @ AND 0=
 ELSE
 SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=
 THEN
;
DECIMAL

MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

There you have it, a complete real time program in two lines of IsoMax™, and one
additional line to install it. A useful virtual machine is made here with one state and one
transition.

This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the
occurrence of an input signal. The timed output response may begin on either the leading
edge or the trailing edge of the input signal. The preset time (in this case: infinity) is
independent of the duration of the input signal.) For an example of a hardware non-
retriggerable one-shot, see http://www.philipslogic.com/products/hc/pdf/74hc221.pdf.

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes.
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is attached.
So attaching push button from PA7 to ground, or even hooking a jumper test lead to
ground and pushing the other end into contact with the wire lead in PA7, will cause PA7
to go “off” or “low”, and the REDLED will come on.

(In these examples, any port line that can be an input could be used. PA7 here, PB7 and
PB6 later, were chosen because they are at the bottom of J1 and the easiest for you to
access.)

Now if you want, type these lines shown above in. (If you are reading this manual
electronically, you should be able to highlight the text on screen and copy the text to the
clipboard with Cntl-C. Then you may be able to paste into your terminal program. On
MaxTerm, the command to down load the clipboard is Alt-V. On other windows
programs it might be Cntl-V.)

Odds are your red LED is already on. When the IsoPod™ powers up, it’s designed to
have the LED’s on, unless programmed otherwise by the user. So to be useful we must
reset this one-shot. Enter:

REDLED OFF

Now install the REDTRIGGER by installing it in the (now empty) machine chain.

RT SET-STATE (INSTALL REDTRIGGER
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove
the ground or release the push button. The red LED does not go back off. The program is
still running, even though all visible changes end at that point. To see that, we’ll need to
manually reset the LED off so we can see something happen again. Enter.

REDLED OFF

If we ground PA7 again, the red LED will come back on, so even though we are still fully
interactive with the IsoPod™ able to type commands like REDLED OFF in manually, the
REDTRIGGER machine is running in the background.

Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll take
the time explain the concepts of this new language we skipped over previously.

Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the
elements of the program relate to a state machine diagram. Usually you start to learn a
language by learning the syntax, or how and where elements of the program must be
placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on
any line with any amount of white space between them as long as the sequence remains
the same. So in the pretty printing, most things are put on a separate line and have spaces
in front of them just to make the relationships easy to see. Beyond the basic language
syntax, a few words have a further syntax associated to them. They must have new names
on the same line as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE
require a name following. You will see that they do. More on syntax will come later.

In this example, the first program line, we tell IsoMax™ we’re making a new virtual
machine, named REDTRIGGER. (Any group of characters without a space or a backspace
or return will do for a name. You can be very creative. Use up to 32 characters. Here the
syntax is MACHINE followed by the chosen name.)

MACHINE REDTRIGGER

That’s it. We now have a new machine. This particular new machine is named
REDTRIGGER. It doesn’t do anything yet, but it is part of the language, a piece of our
program.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE REDTRIGGER

 ON-MACHINE REDTRIGGER
 APPEND-STATE RT

IN-STATE
 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-STATE
 RT
TO-HAPPEN

1. RT

REDLED ON

PA7 OFF?
2. ADD A

STATE

3. ADD A
TRANSITION

4. MAKE A
MACHINE

5. ACTION

6. BOOLEAN

7. FROM STATE 8. TO STATE

For our second program line, we’ll identify REDTRIGGER as the machine we want to
append things to. The syntax to do this is to say ON-MACHINE and the name of the
machine we want to work on, which we named REDTRIGGER so the second program line
looks like this:

 ON-MACHINE REDTRIGGER

(Right now, we only have one machine installed. We could have skipped this second line.
Since there could be several machines already in the IsoPod™ at the moment, it is good
policy to be explicit. Always use this line before appending states. When you have
several machines defined, and you want to add a state or transition to one of them, you
will need that line to pick the machine being appended to. Otherwise, the new state or
transition will be appended to the last machine worked on.)

All right. We add the machine to the language. We have told the language the name of
the machine to add states to. Now we’ll add a state with a name. The syntax to do this is
to say APPEND-STATE followed by another made-up name of our own. Here we add
one state RT like this:

 APPEND-STATE RT

States are the fundamental parts of our virtual machine. States help us factor our program
down into the important parts. A state is a place where the computer’s outputs are stable,
or static. Said another way, a state is place where the computer waits. Since all real time
programs have places where they wait, we can use the waits to allow other programs to
have other processes. There is really nothing for a computer to do while its outputs are
stable, except to check if it is time to change the outputs.

(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the
computer to waste time in a wait, no backwards branches allowed. It allows a check for
the need to leave the state once per scheduled time, per machine.)

To review, we’ve designed a machine and a sub component state. Now we can set up
something like a loop, or jump, where we go out from the static state when required to do
some processing and come back again to a static wait state.

The rules for changing states along with the actions to do if the rule is met are called
transitions. A transition contains the name of the state the rule applies to, the rules called
the condition, what to do called the action, and “where to go” to get into another state.
(We have only one state in this example, so the last part is easy. There is no choice. We
go back into the same state. In machines with more than one state, it is obviously
important to have this final piece.)

There’s really no point in have a state in a machine without a transition into or out of it. If
there is no transition into or out of a state, it is like designing a wait that cannot start,
cannot end, and cannot do anything else either.

On the other hand, a state that has no transition into it, but does have one out of it, might
be an “initial state” or a “beginning state”. A state that has a transition into it, but doesn’t
have one out of it, might be a “final state” or an “ending state”. However, most states will
have at least one (or more) transition entering the state and one (or more) transition
leaving the state. In our example, we have one transition that leaves the state, and one
that comes into the state. It just happens to be the same one.

Together a condition and action makes up a transition, and transitions go from one
specific state to another specific state. So there are four pieces necessary to describe a
transition; 1) The state the machine starts in. 2) the condition to leave that state 3) the
action taken between states and 4) the new state the machine goes to.

Looking at the text box with the graphic in it, we can see the transitions four elements
clearly labeled. In the text version, these four elements are printed in bold. In the
equivalent graphic they are labeled as “FROM STATE”, “BOOLEAN”, “ACTION” and
“TO STATE”.

The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT.

So to complete our state machine program, we must define the transition we need. The
syntax to make a transition, then, is to fill in the blanks between this form: IN-STATE
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN.

Whether the transition is written on one line as it was at first:

IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN

Or pretty printed on several lines as it was in the text box:

IN-STATE
 RT
CONDITION
 PA7 OFF?
CAUSES
 REDLED ON
THEN-STATE
 RT
TO-HAPPEN

The effect is the same. The five bordering words are there, and the four user supplied
states, condition and action are in the same order and either way do the same thing.

After the transition is added to the program, the program can be tested and installed as
shown above.

State machine diagrams (the graphic above being an example) are
nothing new. They are widely used to design hardware. They come
with a few minor style variations, mostly related to how the

outputs are done. But they are all very similar. The figure to the right is a hardware
Quadrature design with four states.

While FSM diagrams are also widely known in programming as an abstract
computational element, there are few instances where they are used to design software.
Usually, the tools for writing software in state machines are very hard to follow. The
programming style doesn’t seem to resemble the state machine design, and is often a
slow, table-driven “read, process all inputs, computation and output” scheme.

IsoMax™ technology has overcome this barrier, and gives you the ability to design
software that looks “like” hardware and runs “like” hardware (not quite as fast of course,
but in the style, or thought process, or “paradigm” of hardware) and is extremely
efficient. The Virtually Parallel Machine Architecture lets you design many little,
hardware-like, machines, rather than one megalith software program that lumbers through
layer after layer of if-then statements. (You might want to refer to the IsoMax Reference
Manual to understand the language and its origins.)

14. ANDGATE1

Let’s do another quick little machine and install both machines so you can see them
running concurrently.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3

HEX
: ON?
 1 =
 IF
 2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + !
 2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + !
 1 + @ AND
 ELSE
 SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT
 THEN
;
DECIMAL

MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE
X TO-HAPPEN

X SET-STATE (INSTALL ANDGATE1
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1

There you have it, another complete real time program in three lines of IsoMax™, and
one additional line to install it. A useful virtual machine is made here with one state and
one transition. This virtual machine acts (almost) like an AND gate made in hardware.
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf

Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this
little program could be used like an interlock system detecting “cover closed”.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE1

 ON-MACHINE ANDGATE1
 APPEND-STATE X

IN-STATE
 X
CONDITION
 YELLED OFF
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

X

YELLED ON

YELLED OFF
PA7 ON?

PB7 ON? AND 9. ADD A
STATE

10. ADD A
TRANSITION

11. MAKE A
MACHINE

(Now it is worth mentioning, the example is a bit contrived. When you try to make a state
machine too simple, you wind up stretching things you shouldn’t. This example could
have acted exactly like an AND gate if two transitions were used, rather than just one.
Instead, a “trick” was used to turn the LED off every time in the condition, then turn it on
only when the condition was true. So a noise spike is generated a real “and” gate doesn’t
have. The trick made the machine simpler, it has half the transitions, but it is less
functional. Later we’ll revisit this machine in detail to improve it.)

Notice both machines share an input, but are using the opposite sense on that input.
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down.

Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet
the two machines coexist peacefully on the same processor, even sharing the same inputs
in different ways.

To see these machines running enter the new code, if you are still running REDTRIGGER,
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or cycle
power) and download the whole of both programs.

Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect for
the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the yellow
LED back on, but the red LED remains on.
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no
effect on the red LED, but turns off the yellow LED while grounded. Grounding both
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED if
not yet set.

Notice how the tightly the two machines are intertwined. Perhaps you can imagine how
very simple machines with combinatory logic and sharing inputs and feeding back
outputs can quickly start showing some complex behaviors. Let’s add some more
complexity with another machine sharing the PA7 input.

15. BOUNCELESS

We have another quick example of a little more complex machine, one with one state and
two transitions.

MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN

Y SET-STATE (INSTALL BOUNCELESS

MACHINE-CHAIN 3EASY
REDTRIGGER
ANDGATE
BOUNCELESS
END-MACHINE-CHAIN

EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY

There you have yet another complete design, initialization and installation of a virtual
machine in four lines of IsoMax™ code.

Another name for the machine in this program is “a bounceless switch”.

Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge
output signals. They do this by toggling state when an input first becomes active, and
remaining in that state. If you are familiar with hardware, you might recognize the two
gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input
is grounded, and will not flip back until the other input is grounded.

By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button
acts as a reset switch, and the PB6 acts as a set switch.

You can see here, in IsoMax™, you can simulate hardware machines and circuits, with
just a few lines of code. Here we created one machine, gave it one state, and appended
two transitions to that state. Then we installed the finished machine along with the two
previous machines. All run in the background, freeing us to program more virtual
machines that can also run in parallel, or interactively monitor existing machines from the
foreground.

Notice all three virtual hardware circuits are installed at the same time, they operate
virtually in parallel, and the IsoPod™ is still not visibly taxed by having these machines
run in parallel. Further, all three machines share one input, so their behavior is strongly
linked.

16. SYNTAX AND FORMATTING

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS

 ON-MACHINE BOUNCELESS
 APPEND-STATE Y

IN-STATE
 Y
CONDITION
 PA7 OFF?
CAUSES
 GRNLED OFF
THEN-STATE
 Y
TO-HAPPEN

IN-STATE
 Y
CONDITION
 PB6 OFF?
CAUSES
 GRNLED ON
THEN-STATE
 Y
TO-HAPPEN

12. ADD A
STATE

Y

GRNLED OFF

PA7 OFF?

PB6 OFF?

GRNLED ON

13. ADD A
TRANSITION

14. ADD A
TRANSITION

15. MAKE A
MACHINE

Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax
again, you’ll need to remember the following. Everything in IsoMax™ is a word or a
number. Words and numbers are separated by spaces (or returns).

Some words have a little syntax of their own. The most common cases for such words are
those that require a name to follow them. When you add a new name, you can use any
combinations of characters or letters except (obviously) spaces and backspaces, and
carriage returns. So, when it comes to pretty formatting, you can put as much on one line
as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long
as you keep your words whole. However, some words will require a name to follow
them, so those names will have to be on the same line.

In the examples you will see white space (blanks) used to add some formatting to the
source text. MACHINE starts at the left, and is followed by the name of the new machine
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-STATE
X is indented two additional spaces. This is the suggested, but not mandatory, offset to
achieve pretty formatting. Use two spaces to indent for levels. The transitions are
similarly laid out, where the required words are positioned at the left, and the user
programming is stepped in two spaces.

17. MULTIPLE STATES/MULTIPLE TRANSITIONS

Before we leave the previous “Three Machines”, let’s review the AND machine again,
since it had a little trick in it to keep it simple, just one state and one transition. The trick
does simplify things, but goes too far, and causes a glitch in the output. To make an AND
gate which is just like the hardware AND we need at least two transitions. The previous
example, BOUNCELESS was the first state machine with more than one transition. We’ll
follow this precedent and redo ANDGATE2 with two transitions.

18. ANDGATE2

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM

MACHINE ANDGATE2
 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE
 X
CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

X SET-STATE (INSTALL ANDGATE2
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Notice
there is an “action” included in the ANDGATE1 condition clause. See the YELLED OFF
statement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further notice the
same phrase YELLED OFF appears in the second transition of ANDGATE2 as the object
action of that transition.

19. TRANSITION COMPARISON

ANDGATE1

ANDGATE2
IN-STATE IN-STATE IN-STATE

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE2

 ON-MACHINE ANDGATE2
 APPEND-STATE X

IN-STATE
 X
CONDITION
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

IN-STATE
 X
CONDITION
 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

16. X

YELLED ON

PA7 ON? PB7 ON? AND

17. ADD A
TRANSITION

18. MAKE A
MACHINE

19. APPEND STATE

PA7 OFF? PB7 OFF? OR

YELLED OFF

20. ADD A
TRANSITION

 X
CONDITION
 YELLED OFF
 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

 X
CONDITION

 PA7 ON?
 PB7 ON? AND
CAUSES
 YELLED ON
THEN-STATE
 X
TO-HAPPEN

 X
CONDITION

 PA7 OFF?
 PB7 OFF? OR
CAUSES
 YELLED OFF
THEN-STATE
 X
TO-HAPPEN

The way this trick worked was by using an action in the condition clause, every time the
scheduler ran the chain of machines, it would execute the conditions clauses of all
transitions on any active state. Only if the condition was true, did any action of a
transition get executed. Consequently, the trick used in ANDGATE1 caused the action of the
second transition to happen when conditionals (only) should be running. This meant it
was as if the second transition of ANDGATE2 happened every time. Then if the condition
found the action to be a “wrong” output in the conditional, the action of ANDGATE1 ran
and corrected the situation. The brief time the processor took to correct the wrong output
was the “glitch” in ANDGATE1’s output.

Now this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as most
modern versions of AND gates implemented in random logic on silicon. The latency of
the outputs of ANDGATE2 are determined by how many times ANDGATE2 runs per second.
The programmer determines the rate, so has control of the latency, to the limits of the
CPU’s processing power.

The original ANDGATE1 serves as an example of what not to do, yet also just how flexible
you can be with the language model. Using an action between the CONDITION and CAUSES
phrase is not prohibited, but is considered not appropriate in the paradigm of Isostructure.

An algorithm flowing to determine a single Boolean value should be the only thing in the
condition clause of a transition. Any other action there slows the machine down, being
executed every time the machine chain runs.

Most of the time, states wait. A state is meant to take no action, and have no output. They
run the condition only to check if it is time to stop the wait, time to take an action in a
transition.

The actions we have taken in these simple machines if very short. More complex
machines can have very complex actions, which should only be run when it is absolutely
necessary. Putting actions in the conditional lengthens the time it takes to operate waiting
machines, and steals time from other transitions.

Why was it necessary to have two transitions to do a proper AND gate? To find the
answer look at the output of an AND gate. There are two possible mutually exclusive
outputs, a “1” or a “0”. One action cannot set an output high or low. One output can set a

bit high. It takes a different output to set a bit low. Hence, two separate outputs are
required.

20. ANDOUT

Couldn’t we just slip an action into the condition spot and do away with both transitions?
Couldn’t we just make a “thread” to do the work periodically? Yes, perhaps, but that
would break the paradigm. Let’s make a non-machine definition. The output of our
conditional is in fact a Boolean itself. Why not define:

: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ;

Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine
chain instead? There are no backwards branches in this code. It has no Program Counter
Capture (PCC) Loops. It runs straight through to termination. It would work.

This, however, is another trick you should avoid. Again, why? This code does one of two
actions every time the scheduler runs. The actions take longer than the Boolean test and
transfer to another thread. The system will run slower, because the same outputs are
being generated time after time, whether they have changed or not. While the speed
penalty in this example is exceedingly small, it could be considerable for larger state
machines with more detailed actions.

A deeper reason exists that reveals a great truth about state machines. Notice we have
used a state machine to simulate a hardware gate. What the AND gate outputs next is
completely dependent on what the inputs are next. An AND gate has an output which has
no feedback. An AND gate has no memory. State machines can have memory. Their
future outputs depend on more than the inputs present. A state machine’s outputs can also
depend on the history of previous states. To appreciate this great difference between state
machines and simple gates, we must first look a bit further at some examples with
multiple states and multiple transitions.

21. ANDGATE3

We are going to do another AND gate version, ANDGATE3, to illustrate this point about
state machines having multiple states. This version will have two transitions and two
states. Up until now, our machines have had a single state. Machines with a single state in
general are not very versatile or interesting. You need to start thinking in terms of
machines with many states. This is a gentle introduction starting with a familiar problem.
Another change is in effect here. We have previously first written the code so as to make
the program small in terms of lines. We used this style to emphasize small program
length. From now on, we are going to pretty print it so it reads as easily as possible,
instead.

(THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3
(ASSUME ON? ALREADY DEFINED

MACHINE ANDGATE3
 ON-MACHINE ANDGATE3
 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
THEN-STATE
 X1
TO-HAPPEN

IN-STATE
 X1
CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES
 YELLED OFF
 PB0 OFF
THEN-STATE
 X0
TO-HAPPEN

X0 SET-STATE (INSTALL ANDGATE3
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE ANDGATE3

 ON-MACHINE ANDGATE3
 APPEND-STATE X0
 APPEND-STATE X1

IN-STATE
 X0
CONDITION
 PA7 ON? PB7 ON? AND
CAUSES
 YELLED ON
 PB0 ON
THEN-STATE
 X1
TO-HAPPEN

IN-STATE
 X1
CONDITION
 PA7 OFF? PB7 OFF? OR
CAUSES
 YELLED OFF
 PB0 OFF
THEN-STATE
 X0
TO-HAPPEN

21. X0

YELLED ON
PB0 ON

PA7 ON? PB7 ON? AND

22. ADD A
TRANSITION

23. MAKE A
MACHINE

24.

25. X1

PA7 OFF? PB7 OFF? OR

YELLED OFF
PB0 OFF

26. ADD A
TRANSITION

Notice how similar this version of an AND gate, ANDGATE3, is to the previous version,
ANDGATE2. The major difference is that there are two states instead of one. We also added
some “spice” to the action clauses, doing another output on PB0, to show how actions
can be more complicated.

22. INTER-MACHINE COMMUNICATIONS

Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem.
Now let’s say another machine needs to know if both PA7 and PB7 are both high? If we
had only one state, it would have to recalculate the AND phrase, or read back what
ANDGATE3 had written as outputs. Rereading written outputs is sometimes dangerous,
because there are hardware outputs which cannot be read back. If we use different states
for each different output, the state information itself stores which state is active. All an
additional machine has to do to discover the status of PA7 and PB7 AND’ed together is
check the stored state information of ANDGATE3. To accomplish this, simply query the
state this way.

X0 IS-STATE?

A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This
Boolean can be part of a condition in another state. On the other hand:

X1 IS-STATE?

will return a TRUE value only if PA7 and PB7 are both high.

23. STATE MEMORY

So you see, a state machine’s current state is as much as an output as the outputs PB0 ON
and YELLOW LED ON are, less likely to have read back problems, and faster to check. The
current state contains more information than other outputs. It can also contain history.
The current state is so versatile, in fact, it can store all the pertinent history necessary to
make any decision on past inputs and transitions. This is the deep truth about state
machines we sought.

No similar solution is possible with short code threads. While variables can indeed be
used in threads, and threads can again reference those variable, using threads and
variables leads to deeply nested IF ELSE THEN structures and dreaded spaghetti code which
often invades and complicates real time programs.

24. BOUNCELESS+

To put the application of state history to the test, let’s revisit our previous version of the
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.

STATE Y

IN-STATE
 Y
CONDITION
 PA7 OFF?
CAUSES
 GRNLED OFF
THEN-STATE
 Y
TO-HAPPEN

IN-STATE
 Y
CONDITION
 PB6 OFF?
CAUSES
 GRNLED ON
THEN-STATE
 Y
TO-HAPPEN

This code worked fine, as long as PA7 and PB6 were pressed one at a time. The green
LED would go on and off without noise or bounces between states. Notice however, PA7
and PB6 being low at the same time is not excluded from the code. If both lines go low at
the same time, the output of our machine is not well determined. One state output will
take precedence over the other, but which it will be cannot be determined from just
looking at the program. Whichever transition gets first service will win.

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION

The behavior of a finite-state machine is described as a sequence of events
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a
machine M has been receiving inputs signals and has been responding by
producing output signals. If now, at time t, we were to apply an input
signal x(t) to M, its response z(t) would depend on x(t), as well as the past
inputs to M.

From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI

Now consider how BOUNCELESS+ can be improved if the state machines history is
integrated into the problem. In order to have state history of any significance, however,
we must have multiple states. As we did with our ANDGATE3 let’s add one more state. The
new states are WAITON and WAITOFF and run our two transitions between the two states.
At first blush, the new machine looks more complicated, probably slower, but not
significantly different from the previous version. This is not true however. When the
scheduler calls a machine, only the active state and its transitions are considered. So in
the previous version each time Y was executed, two conditionals on two transitions were
tested (assuming no true condition). In this machine, two conditionals on only one
transition are tested. As a result this machine runs slightly faster.

Further, the new BOUNCELESS+ machine is better behaved. (In fact, it is better behaved
than the original hardware circuit shown!) It is truly bounceless, even if both switches are
pressed at once. The first input detected down either takes us to its state or inhibits the
release of its state. The other input can dance all it wants, as long as the one first down
remains down. Only when the original input is released can a new input cause a change
of state. In the rare case where both signals occur at once, it is the history, the existing
state, which determines the status of the machine.

STATE WAITOFF

STATE WAITON

IN-STATE
 WAITOFF
CONDITION

IN-STATE
 WAITON
CONDITION

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BOUNCELESS+

 ON-MACHINE BOUNCELESS+
 APPEND-STATE WAITOFF
 APPEND-STATE WAITON

IN-STATE
 WAITOFF
CONDITION
 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON
TO-HAPPEN

IN-STATE
 WAITON
CONDITION
 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

WAITOFF

GRNLED ON

PA7 OFF? PB7 ON? AND

WAITON

 PB7 OFF? PA7 ON? AND

GRNLED OFF

 PA7 OFF? PB7 ON? AND
CAUSES
 GRNLED ON
THEN-STATE
 WAITON
TO-HAPPEN

 PB7 OFF? PA7 ON? AND
CAUSES
 GRNLED OFF
THEN-STATE
 WAITOFF
TO-HAPPEN

25. DELAYS

Let’s say we want to make a steady blinker out of the green LED. In a conventional
procedural language, like BASIC, C, FORTH, or Java, etc., you’d probably program a
loop blinking the LED on then off. Between each loop would be a delay of some kind,
perhaps a subroutine you call which also spins in a loop wasting time.

Assembler BASIC C JAVA FORTH
LOOP1 LDX # 0 FOR I=1 TO N While (1) BEGIN
LOOP2 DEX
 BNE LOOP2

GOSUB DELAY { delay(x); DELAY

 LDAA #1
 STAA PORTA
 LDX # 0

LET PB=TRUE out(1,portA1); LED-ON

LOOP3 DEX
 BNE LOOP3

GOSUB DELAY delay(x); DELAY

 LDAA #N
 STAA PORTA

Let PB=FALSE out(0,portA1); LED-OFF

 JMP LOOP1 NEXT } AGAIN

Here’s where IsoMax™ will start to look different from any other language you’re likely
to have ever seen before. The idea behind Virtually Parallel Machine Architecture is
constructing virtual machines, each a little “state machine” in its own right. But this
IsoStructure requires a limitation on the machine, themselves. In IsoMax™, there are no
program loops, there are no backwards branches, there are no calls to time wasting delays
allowed. Instead we design machines with states. If we want a loop, we can make a state,
then write a transition from that state that returns to that state, and accomplish roughly the
same thing. Also in IsoMax™, there are no delay loops.

The whole point of having a state is to allow “being in the state” to be “the delay”.

Breaking this restriction will break the functionality of IsoStructure, and the parallel
machines will stop running in parallel. If you’ve ever programmed in any other language,
your hardest habit to break will be to get away from the idea of looping in your program,
and using the states and transitions to do the equivalent of looping for you.

A valid condition to leave a state might be a count down of passes through the state until
a 0 count reached. Given the periodicity of the scheduler calling the machine chain, and
the initial value in the counter, this would make a delay that didn’t “wait” in the
conventional sense of backwards branching.

26. BLINKGRN

Now for an example of a delay using the count down to zero, we make a machine
BLINKGRN. Reset your IsoPod™ so it is clean and clear of any programs, and then begin.

MACHINE BLINKGRN
 ON-MACHINE BLINKGRN
 APPEND-STATE BG1
 APPEND-STATE BG2

The action taken when we leave the state will be to turn the LED off and reinitialize the
counter. The other half of the problem in the other state we go to is just the reversed. We
delay for a count, then turn the LED back on.

Since we’re going to count, we need two variables to work with. One contains the count,
the other the initial value we count down from. Let’s add a place for those variables now,
and initialize them

: -LOOPVAR <BUILDS HERE P, 1- DUP , , DOES>
 P@ DUP @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;
100 -LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

Above, the two transitions are “pretty printed” to make the four components of a
transition stand out. As discussed previously, as long as the structure is in this order it
could just as well been run together on a single line (or so) per transition, like this

IN-STATE BG1 CONDITION CNT CAUSES GRNLED OFF THEN-STATE BG2 TO-HAPPEN

IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN

Finally, the new machine must be installed and tested

BG1 SET-STATE (INSTALL BLINKGRN
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN

The result of this program is that the green LED blinks on and off. Every time the
scheduler runs the machine chain, control is passed to whichever state BG1 or BG2 is
active. The -LOOPVAR created word CNT is decremented and tested. When the CNT reaches
zero, it is reinitialized back to the originally set value, and passes a Boolean on to be
tested by the transition. If the Boolean is TRUE, the action is initiated.

PROGRAM TEXT EQUIVALENT GRAPHIC

MACHINE BLINKGRN

 ON-MACHINE BLINKGRN
 APPEND-STATE BG1
 APPEND-STATE BG2

100 0 LOOPVAR CNT

IN-STATE
 BG1
CONDITION
 CNT
CAUSES
 GRNLED OFF
THEN-STATE
 BG2
TO-HAPPEN

IN-STATE
 BG2
CONDITION
 CNT
CAUSES
 GRNLED ON
THEN-STATE
 BG1
TO-HAPPEN

BG1

GRNLED OFF

CNT

BG2

 CNT

GRNLED ON

The GRNLED is turned ON of OFF (as programmed in the active state) and the other state is
set to happen the next control returns to this machine.

27. SPEED

You’ve seen how to write a machine that delays based on a counter. Let’s now try a
slightly less useful machine just to illustrate how fast the IsoPod™ can change state. First
reset your machine to get rid of the existing machines.

28. ZIPGRN

MACHINE ZIPGRN

 ON-MACHINE ZIPGRN
 APPEND-STATE ZIPON
 APPEND-STATE ZIPOFF

IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF
TO-HAPPEN

IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON
TO-HAPPEN

ZIPON SET-STATE

Now rather than install our new machine we’re going to test it by running it “by hand”
interactively. Type in:

ZIPON SET-STATE
ZIPGRN

ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can to
termination, through one state transition, and stops. Run it again. Type:

ZIPGRN

Once again, the green LED should change. This time the machine starts in the state with
the LED off. The always TRUE condition makes the transition’s action happen and the
next state is set to again, back to the original state. As many times as you run it, the
machine will change the green LED back and forth.

Now with the machine program and tested, we’re ready to install the machine into the
machine chain. The phrase to install a machine is :

 EVERY n CYCLES SCHEDULE-RUNS word

So for our single machine we’d say:

 ZIPON SET-STATE
 EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN

Now if you look at your green LED, you’ll see it is slightly dimmed.

That’s because it is being turned off half the time, and is on half the time. But it is
happening so fast you can’t even see it.

29. REDYEL

Let’s do another of the same kind. This time lets do the red and yellow LED, and have
them toggle, only one on at a time. Here we go:

MACHINE REDYEL

 ON-MACHINE REDYEL
 APPEND-STATE REDON
 APPEND-STATE YELON

IN-STATE REDON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE
YELON TO-HAPPEN

IN-STATE YELON CONDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE
REDON TO-HAPPEN

Notice we have more things happening in the action this time. One LED is turned on and
one off in the action. You can have multiple instructions in an action.

Test it. Type:

REDON SET-STATE
REDYEL
REDYEL
REDYEL
REDYEL

See the red and yellow LED’s trade back and forth from on to off and vice versa.

All this time, the ZIPGRN machine has been running in the background, because it is in
the installed machine chain. Let’s replace the installed machine chain with another. So
we define a new machine chain with both our virtual machines in it, and install it.

MACHINE-CHAIN CHN2
 ZIPGRN
 REDYEL
END-MACHINE-CHAIN

REDON SET-STATE
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2

With the new machine chain installed, all three LED’s look slightly dimmed.

Again, they are being turned on and off a thousand times a second. But to your eye, you
can’t see the individual transitions. Both our virtual machines are running in virtual
parallel, and we still don’t see any slow down in the interactive nature of the IsoPod™.

So what was the point of making these two machines? Well, these two machines are
running faster than the previous ones. The previous ones were installed with 50,000
cycles between runs. That gave a scan-loop repetition of 100 times a second. Fine for
many mechanical issues, on the edge of being slow for electronic interfaces. These last
examples were installed with 5,000 cycles between runs. The scan-loop repetition was
1000 times a second. Fine for many electronic interfaces, that is fast enough. Now let’s
change the timing value. Redo the installation with the SCHEDULE-RUNS command.

The scan-loop repetition is 10,000 times a second.

EVERY 500 CYCLES SCHEDULE-RUNS CHN2

Let’s see if we can press our luck.

EVERY 100 CYCLES SCHEDULE-RUNS CHN2

Even running two machines 50,000 times a second in high-level language, there is still
time left over to run the foreground routine. This means, two separate tasks are being
started and running a series of high-level instructions 50,000 times a second. This shows
the IsoPod™ is running more than four hundred thousand high-level instructions per
second. The IsoPod™ performance is unparalleled in any small computer available today.

30. INPUT/OUTPUT TRINARIES

With the state machine structures already given, and a simple input and output words
many useful machines can be built. Almost all binary digital control applications can be
written with the trinary operators.

As an example, let’s consider a digital thermostat. The thermostat works on a digital
input with a temperature sensor that indicates the current temperature is either above or
below the current set point. The old style thermostats had a coil made of two dissimilar
metals, so as the temperature rose, the outside metal expanded more rapidly than the
interior one, causing a mercury capsule to tip over. The mercury moving to one end of the
capsule or the other made or broke the circuit. The additional weight of mercury caused a
slight feedback widening the set point. Most heater systems are digital in nature as well.
They are either on or off. They have no proportional range of heating settings, only
heating and not heating. So in the case of a thermostat, everything necessary can be
programmed with the machine format already known, and a digital input for temperature
and a digital output for the heater, which can be programmed with trinaries.

31. Input Trinaries

Input trinary operators need three parameters to operate. Using the trinary operation
mode of testing bits and masking unwanted bits out would be convenient. This mode
requires: 1) a mask telling which bits in to be checked for high or low settings, 2) a mask
telling which of the 1 possible bits are to be considered, and 3) the address of the I/O port
you are using. The keywords which separate the parameters are, in order: 1) TEST-
MASK, 2) DATA-MASK and 3) AT-ADDRESS. Finally, the keyword FOR-INPUT
finishes the defining process, identifying the trinary operator in effect.

DEFINE <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRESS <address> FOR-INPUT

Putting the keywords and parameters together produces the following lines of IsoMax™
code. Before entering hexadecimal numbers, the keyword HEX invokes the use of the
hexadecimal number system. This remains in effect until it is change by a later command.
The numbering system can be returned to decimal using the keyword DECIMAL:

HEX
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT
DEFINE TOO-HOT? TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT
DECIMAL

32. Set/Clear Output Trinaries

Output trinary operators also need three parameters. In this instance, using the trinary
operation mode of setting and clearing bits would be convenient. This mode requires: 1) a
mask telling which bits in the output port are to be set, 2) a mask telling which bits in the

output port are to be cleared, and 3) the address of the I/O port. The keywords which
proceed the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process, identifying
which trinary operator is in effect.

DEFINE <name> CLR-MASK <mask> SET-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT

A single output port line is needed to turn the heater on and off. The act of turning the
heater on is unique and different from turning the heater off, however. Two actions need
to be defined, therefore, even though only one I/O line is involved. PA1 was selected for
the heater control signal.

When PA1 is high, or set, the heater is turned on. To make PA1 high, requires PA1 to be
set, without changing any other bit of the port. Therefore, a set mask of 02 indicates the
next to least significant bit in the port, corresponding to PA1, is to be set. All other bits
are to be left alone without being set. A clear mask of 00 indicates no other bits of the
port are to be cleared.

When PA1 is low, or clear, the heater is turned off. To make PA1 low, requires PA1 to be
cleared, without changing any other bit of the port. Therefore, a set mask of 00 indicates
no other bits of the port are to be set. A clear mask of 02 indicates the next to least
significant bit in the port, corresponding to PA1, is to be cleared. All other bits are to be
left alone without being cleared.

Putting the keywords and parameters together produces the following lines of IsoMax™
code:

HEX
DEFINE HEATER-ON SET-MASK 02 CLR-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT
DECIMAL

33. And/Xor Output Trinaries

Sometimes, instead of setting and clearing bits, it’s more useful to replace or toggle bits.
In this case, using the trinary operation mode of AND and XOR would be convenient.
This mode requires: 1) a mask which is to be ANDed with the bits in the output port, 2) a
mask which is to be XORed with the bits in the output port, and 3) the address of the I/O
port. The keywords which proceed the parameters are, in order: 1) AND-MASK, 2) XOR-
MASK and 3) AT-ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining
process, identifying which trinary operator is in effect.

DEFINE <name> AND-MASK <mask> XOR-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT

The AND mask is applied before the XOR mask. This gives you four possibilities:
1) If a bit in the AND mask is 1, and the corresponding XOR bit is 1, that bit will be
toggled (inverted) in the output port.

2) If a bit in the AND mask is 1, and the corresponding XOR bit is 0, that bit will be left
unchanged in the output port.
3) If a bit in the AND mask is 0, and the corresponding XOR bit is 1, that bit will be set
in the output port (cleared by the AND mask, and then inverted by the XOR mask).
4) If a bit in the AND mask is 0, and the corresponding XOR bit is 0, that bit will be
cleared in the output port.

This is mainly useful when you want to toggle certain bits. But you can also use this to
give the same function as SET-MASK and CLR-MASK:

HEX
DEFINE HEATER-ON AND-MASK 0FD XOR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT
DEFINE HEATER-OFF AND-MASK 0FD XOR-MASK 00 AT-ADDRESS 0FB0 FOR-OUTPUT
DECIMAL

Note that 0FD is used for the AND mask. This is so that all of the bits other than PA1
remain unaffected. If the AND mask was set to 02, all the bits except PA1 would be
cleared.

The value 0FD will also clear the PA1 bit. This is fine for HEATER-OFF, but for
HEATER-ON we need to set that bit. So an XOR mask of 02 is applied to toggle the bit
after clearing it, thus setting the bit.

Only a handful of system words need to be covered to allow programming at a system
level, now.

34. FLASH AND AUTOSTARTING

35. Moving Your Application to Flash ROM

Up to now, all of the programs you have been downloading to the IsoPod™ have been
stored in RAM memory. This is easy and quick for testing, and if your program gets
stuck you can just reset the IsoPod™ or cycle its power, and you’re back to the command
processor. But eventually, you’re going to want to install your application in ROM.
Maybe you’ve run out of RAM space for your program: moving the tested part to ROM
will free RAM for other purposes. Or maybe you want to make your application program
permanent, so that it’s ready to run when you turn on the IsoPod™.

The IsoPod™ has about 10K words (20K bytes) of Flash ROM available to hold your
application. No special tools are required for this: you just need to add commands to
your program file to tell IsoMax to put your program into ROM. These commands are
SCRUB, EEWORD, and IN-EE, and are used at slightly different times, as we’ll see in a
moment.

1. Before you load your application, you should issue the SCRUB command. This will
erase the “application” area in the Flash ROM, and return it to its factory-new state.
This also erases any autostart information that may have been installed (we’ll talk
about this more below).

2. If you are using procedural code, each MaxForth word should be followed by the

command EEWORD in the program file. This applies to colon definitions, CODE and
CODE-SUB words, constants, variables, "defined" words (those created with
<BUILDS..DOES>), and objects (those created with OBJECT).

3. If IMMEDIATE is used, it must come before EEWORD. In other words, you must say

IMMEDIATE EEWORD and not EEWORD IMMEDIATE.

4. For IsoMax code the following rules apply:
 a. MACHINE <name> must be followed by EEWORD.
 b. APPEND-STATE <name> must be followed by EEWORD.
 c. IN-STATE ... TO-HAPPEN (or THIS-TIME or NEXT-TIME) must be

followed by IN-EE. This is the one time where you don’t use EEWORD. State
transitions must use IN-EE.

 d. MACHINE-CHAIN ... END-MACHINE-CHAIN must be followed by EEWORD.
 e. ON-MACHINE <name> is not followed by any EE command.
 f. Trinaries, such as DEFINE <name> ... FOR-INPUT and DEFINE <name>

... FOR-OUTPUT, must be followed by EEWORD. EEWORD is placed after the
end of the trinary definition.

When you use these words, the definitions you create are compiled into RAM and then
moved into ROM. So, every time you use EEWORD or IN-EE, you free the RAM space
that the latest definition was using. This keeps the maximum of RAM available.

Important: do not intermix RAM and ROM definitions. If you compile some definitions
into RAM, and then move some others into ROM, and then compile some more into
RAM, the program will run. But if you then reset the IsoPod™ or cycle its power, part of
your program will be missing! What’s worse, if you try to use the part that is in ROM, it
will probably try to use some of the missing code from RAM, and crash the IsoPod™.
The best approach is to test the first part of the program -- that is, the part that gets
downloaded first -- and when it’s working, move it all to ROM. Then download and test
the next part of the program, move it to ROM, and so on.

36. Saving the RAM Variables

If, after you move your application into Flash ROM, you cycle the power of the
IsoPod™, you’ll see a strange result: your application will appear to be missing! This is
because the IsoPod™ keeps some important information about your application in RAM
variables. IsoMax also keeps some state machine information in RAM variables. When
you cycle the power off and on, this information is lost.

Fortunately, there’s an easy way to preserve this information. After you’ve finished
loading your application program into ROM, simply type the command

SAVE-RAM

This will preserve a copy of all the important variables in the Data Flash ROM. The next
time you power up the IsoPod™, it will get this saved information and put it into RAM.
As a bonus, any of your variables will be saved also. You can use this as a convenient
way to initialize your application’s variables and RAM data structures.

Remember: you must use SAVE-RAM after loading your application into Flash ROM.

37. Setting Your Program to Autostart on Reset

If you’ve followed the steps so far, your application program is permanently installed in
Flash ROM, and will be visible when you first turn the IsoPod™ on. You can see this by
cycling power to the IsoPod™, and then typing the WORDS command. But your program
isn’t running at this point -- only the IsoMax command interpreter is running. You need
to start your program manually.

To start your program automatically, you need to install an autostart vector. This tells
IsoMax what program to execute when the IsoPod™ is reset -- either when it’s first
powered on, or when a hardware reset occurs. IsoMax looks for possible autostart
vectors only at certain addresses. These addresses are every 1K boundary in Program
memory, that is, every multiple of $400 in the address space.

The autostart vector must be written at a location which
 a) is a multiple of $400,
 b) is in Flash ROM ($0000-$7DFF),
 c) does not overlap the IsoMax kernel, and
 d) does not overlap your application.
The suitable addresses (in hex) are:

IsoMax v0.5 and earlier IsoMax v0.6 and later
5000
5400
5800
5C00
6000
6400
6800
6C00
7000
7400
7800
7C00

1800
1C00
2000
2400
2800
2C00
3000
3400
3800
3C00

Your application program will be loaded starting at the bottom of the available Flash
ROM and working upward. So, the safest address to use for an autostart vector is near
the end of the list. For IsoMax v0.5 and earlier, we recommend $7C00. For IsoMax v0.6
and later, we recommend $3C00.

Don’t worry if your program overwrites some of the earlier autostart vector locations. If
the location doesn’t contain a special autostart pattern, IsoMax will treat it as ordinary
program code and not an autostart vector. You don’t need to “skip” the unused autostart
locations.

Once you’ve chosen a location for your autostart vector, you need to tell IsoMax what
word to execute on a reset. You do this with the AUTOSTART command. Let’s suppose
that you are want to start a word called MAIN and you want to put the autostart vector at
$7C00. The command is:

HEX 7C00 AUTOSTART MAIN

(Note the use of the word HEX to let you type a hex number.)

If you’ve done all the previous steps correctly, the IsoPod™ will now go directly to your
application program (MAIN) when you reset or cycle the power.

38. Debugging Autostart Problems

If your autostart application doesn’t work, you need to see what the IsoPod™ displays on
the terminal. If you’ve disconnected your PC, re-connect its serial cable and run the
terminal program (as described in Section 2, Getting Started). Then reset the IsoPod™
and see what is displayed.

a) If the “IsoMax” prompt is displayed and the command interpreter echoes
characters that you type:

See if the IsoPod™ will accept a command. Try typing WORDS -- does it work? Do you
see your application (e.g., MAIN) in the list of words?

a.1) If commands aren’t recognized, you probably forgot to put all of your application
into Flash ROM. (I.e., you forgot an EEWORD or IN-EE command somewhere.) You’ll
need to bypass the autostart (see below) and SCRUB your IsoPod™, then start over.

a.2) If commands are recognized, but your application doesn’t appear in the list of words,
you probably forgot to do a SAVE-RAM. You can’t do SAVE-RAM now. You’ll have to
SCRUB the IsoPod and start over by reloading your application.

a.3) If your application does appear in the list of words, you probably forgot to install an
autostart vector, or you installed it at a bad location. A quick test is to examine the
autostart location with PDUMP. For example (with a vector at $7C00):
 HEX 7C00 8 PDUMP
The first location dumped should contain $A55A. If it contains $FFFF, you didn’t install
the autostart vector. If it contains any other value, this probably means that your program
is using this memory, and you’ve tried to install an autostart vector that overlaps the
program. You’ll need to SCRUB, reload, and use a different autostart location.

a.4) If your application appears in the list of words, and your autostart vector appears in
the dump, it’s possible that your application is terminating. To test this, try typing your
startup word as a command from the interpreter. For example,
 MAIN
If your program displays the “OK” prompt, that means it has finished running and has
returned control to the command interpreter. This is a problem in your program.

If your program runs correctly from the command interpreter, and doesn’t terminate, yet
won’t run from the autostart, it’s time to contact the factory for help.

b) If the IsoPod locks up, and either does not respond to commands or displays
continuous nonsense:

This could indicate a number of problems, including:

b.1) You didn’t put all of your application into ROM.
b.2) You forgot to do SAVE-RAM, or you did it too soon (you must do SAVE-RAM last,
after all of your application is compiled).
b.3) You installed the wrong word as the autostart vector, or your application program
overlaps the autostart vector.
b.4) There’s a problem with your application program.

The most common problem with application programs is forgetting to initialize
something. With the IsoMax command interpreter, it’s easy to issue commands which
initialize an interface or a data structure. Unless these commands are part of your
program, their effect will be lost when the IsoPod™ is reset. It’s best to always explicitly
initialize everything your program will use, at the beginning of your program.

An easy way to test for this is to compile your program into ROM, do SAVE-
RAM, but do not install the autostart vector. Cycle the power on the IsoPod™,
making sure that you switch off long enough for RAM to be lost (say, 15 seconds
or more). You should now be in the IsoMax command interpreter. Try to start
your program by typing its name (e.g., MAIN). If it doesn’t run, your
initialization or your program logic may be at fault, but you can reset the
IsoPod™ and use the command interpreter to explore the problem. We
recommend that you always test your program this way before committing it to
autostart.

Your program might also fail because of a design or logic error.

If your program runs correctly from the command interpreter after you’ve cycled the
power, but won’t autostart, call the factory for help.

Recovering from a locked IsoPod

Regardless of why the autostart failed, you need to restore the IsoMax command
interpreter before you can fix it. To do this you must bypass the autostart. You do this
by turning off the IsoPod™, installing a jumper from GND to PE4/SCLK, and then
turning the IsoPod™ back on. (On the V2 IsoPod™, these are adjacent pins 2 and 4 on
J5, and can be connected with a jumper block. On the V1 IsoPod™, these are adjacent
pins 2 and 4 on J3.)

When you turn the IsoPod™ back on, you will be in the IsoMax command interpreter.
Your application will still be in Flash ROM, but will not appear in the WORDS list. If
you’re an advanced programmer you may be able to glean some information by dumping
memory, but for most of us the best thing to do is an immediate SCRUB command.
SCRUB will erase your application, erase any autostart vectors, and restore the IsoPod™
to its factory default condition.

If this procedure does not restore the IsoMax command interpreter, your application has
probably corrupted part of the IsoMax kernel. (This is very difficult, but not impossible,
to do.) Contact the factory to have a new kernel programmed into your IsoPod™.

39. ISOMAX SYNTAX

40. State Machines Definition

STATE-MACHINE <name-of-machine>

ON-MACHINE <name-of-machine>

APPEND-STATE <name-of-new-state>
...

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-
ADDRESS <a> AS-TAG

The AT-ADDRESS/AS-TAG option is intended for state machine debugging, and
is not used in normal applications.

IN-STATE <parent-state-name>
CONDITION ...boolean computation...
CAUSES ...compound action...
THEN-STATE <next-state-name> TO-HAPPEN
IN-EE

The boolean computation must take nothing from the stack, and leave a true-or-
false value on the stack. The compound action must take nothing from and leave
nothing on the stack. If there is no action, you must still include the word
CAUSES.

Instead of TO-HAPPEN, you can also use NEXT-TIME (which is identical). You
can also use THIS-TIME to force the new state to be performed immediately.

The IN-EE command is optional. It will cause the condition phrase to be copied
to Flash ROM. This must be used when compiling the state machine to ROM.

41. State Machines Installation

<name-of-state> SET-STATE

SET-STATE makes the given state current in its parent state machine. This must
be done before the machine is activated with INSTALL or SCHEDULE-RUNS.
(In a machine chain, all the individual machines must have SET-STATE before
the chain is activated.)

MACHINE-CHAIN <name-of-chain>
 <name-of-machine>
 ...
 <name-of-machine>
END-MACHINE-CHAIN

INSTALL <name-of-machine>
INSTALL <name-of-chain>

INSTALL is the preferred method to activate state machines. You are limited to
16 INSTALLs. If you need to run more than 16 state machines, create a machine
chain (which can be any length) and then INSTALL the chain.

UNINSTALL

Removes the last INSTALLed machine. May be used repeatedly to remove
previously isntalled machines, last in, first out.

NO-MACHINES

Removes all INSTALLed machines.

42. State Machines Timing and Control

EVERY <n> CYCLES SCHEDULE-RUNS <name-of-chain>

This is the original method used in early IsoMax kernels to activate state
machines. It is retained for backward compatibility, but INSTALL is preferred. If
SCHEDULE-RUNS is used, it will override all INSTALLed machines. <n>
specifies the IsoMax processing cycle, and is in counts of a 5 MHz clock.

<n> PERIOD

Changes the IsoMax processing cycle. <n> is in counts of a 5 MHz clock.

<name-of-state> IS-STATE?

Returns true if the given state is the current state in its parent state machine.

ISOMAX-START

Starts IsoMax processing. The machine list is cleared (no machines are installed).
This also cancels the action of any previous SCHEDULE-RUNS command.

STOP-TIMER

Halts IsoMax processing. Note also that COLD and SCRUB will halt IsoMax,
clearing the machine list and cancelling any previous SCHEDULE-RUNS
command.

43. Input/Output Trinaries

DEFINE <word-name> TEST-MASK <n> DATA-MASK <n> AT-ADDRESS
<a> FOR-INPUT

DEFINE <word-name> SET-MASK <n> CLR-MASK <n> AT-ADDRESS <a>
FOR-OUTPUT

DEFINE <word-name> AND-MASK <n> XOR-MASK <n> AT-ADDRESS <a>
FOR-OUTPUT

DEFINE <word-name> PROC ...forth code... END-PROC

44. Performance Monitoring Variables

The following are variables which can be examined, and in some cases stored, by the
user.

TCFTICKS is incremented once per IsoMax processing cycle. If the previous state

machine processing had not completed -- an “overrun” condition -- TCFTICKS will
be incremented but the state machine will not be restarted.

TCFOVFLO contains a count of the number of overruns that have occurred. An

"overrun" occurs when the IsoMax service has not finished by the time of the next
clock interrupt. This indicates that the CYCLES parameter is too small.

TCFALARM contains an "alarm limit" for TCFOVFLO. If zero (the default state),

overruns are counted but otherwise ignored. If nonzero, when this many overruns
have occurred, the MaxForth word indicated by TCFALARMVECTOR is executed.

TCFALARMVECTOR contains the CFA of a MaxForth word which will be executed

when the overrun alarm limit is reached. It is the user's responsibility to reset the
TCFOVFLO counter, if desired. Note that this routine will be executed as an
interrupt, and on return, the IsoMax service routine will continue. If this variable
contains zero (the default), no service will be performed.

TCFOVFLO, TCFALARM, and TCFALARMVECTOR are reset to zero by
SCHEDULE-RUNS and ISOMAX-START.

The following variables measure CPU utilization. Each time the clock interrupt is
serviced, the scheduler measures the duration of the service, i.e., the number of timer
cycles used to process the state machine. Currently the timer counts at 5 MHz, so 5
cycles = 1 usec.

TCFMAX contains the maximum observed duration.
TCFMIN contains the minimum observed duration.
TCFAVG contains a running average duration.

These three variables are reset to zero by SCHEDULE-RUNS and ISOMAX-
START.

45. I/O PROGRAMMING

OK, so now you know how to make and run state machines using IsoMax. Your state
machines need to do something! This is where the rich assortment of inputs and outputs
on the IsoPod™ comes into play. You can use turn pins on and off, check logic levels,
send pulse streams, measure time, read analog voltages, send and receive serial data, and
control SPI (Serial Peripheral Interface) chips.

All of the input/output functions of the IsoPod™ follow a simple pattern: you specify the
IsoPod™ pin, and then the action you want to perform. If you’ve encountered object-
oriented programming before, this will be familiar to you. You specify an object (an I/O
pin), and then you perform a method (an input or output action).

Syntax note: an object and method are always a pair. Normally, they must appear
together in your program. We’ll explore some ways later to get around this limitation,
but for now, remember that you must always specify both.

46. Bit Output
You’ve already seen examples of the simplest kind of I/O: turning an output pin on or
off. We used this in Section 4 to turn LEDs on and off. The basic commands are

pin ON
pin OFF

where “pin” can be any one of the following:

 REDLED GRNLED YELLED
 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7
 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7
 PD0 PD1 PD2 PD3 PD4 PD5
 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7
 TA0 TA1 TA2 TA3
 TB0 TB1 TB2 TB3
 TC0 TC1
 TD0 TD1 TD2 TD3
 PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5
 PWMB0 PWMB1 PWMB2 PWMB3 PWMB4 PWMB5

That’s a lot of outputs! But don’t look for TA0-3 and TB0-3 on the connectors. These
are dual-function pins, and on the connector are labeled differently:

TA0 = PHASEA0 TB0 = PHASEA1
TA1 = PHASEB0 TB1 = PHASEB1
TA2 = INDEX0 TB2 = INDEX1
TA3 = HOME0 TB3 = HOME1

Also, on the V2 IsoPod, PD0, PD1, PD2 are the same as REDLED, YELLED, GRNLED
(these are the pins that control the LEDs). Pins PE0, PE1, PD6, PD7 are reserved for the
SCI channels, and not available for simple I/O. There are no pins TC2 and TC3.

So, you can turn the red LED on with
 REDLED ON
and turn it off with
 REDLED OFF

What if you want to set an output on or off, depending on the value of a variable? You
could write an IF..ELSE..THEN using ON and OFF. But a simpler solution is:

n pin SET Sets the output of the pin according to “n”. If n is zero,
turns the pin off. If n is nonzero, turns the pin on. (Zero
and nonzero correspond to logical false and true.)

So,

 1 REDLED SET will turn the LED on,
 0 REDLED SET will turn the LED off, and
33 REDLED SET (or any nonzero number) will turn the LED back on.

Perhaps you want to flip the state of the pin, but you don’t know whether it was
previously turned on or off:

pin TOGGLE will change the state of the pin. If it was on, this turns it
off. If it was off, this turns it on.

If you need to know whether a pin has been previously turned on or off, you can ask
with:

pin ?ON returns true if the pin has been turned on.
pin ?OFF returns true if the pin has been turned off.

We know, these are redundant, since ?OFF is the logical inverse of ?ON. We give you
both of them so you can use whatever makes your program most readable.

47. Bit Input
Many of the programmable output pins can be used instead as logic input pins:
 PA0 PA1 PA2 PA3 PA4 PA5 PA6 PA7
 PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7
 PD0 PD1 PD2 PD3 PD4 PD5
 PE0 PE1 PE2 PE3 PE4 PE5 PE6 PE7
 TA0 TA1 TA2 TA3
 TB0 TB1 TB2 TB3
 TC0 TC1
 TD0 TD1 TD2 TD3

Obviously the LEDs can’t be used as digital inputs. And the PWM pins on the IsoPod™
are permanently configured as output pins. The rest of the Pxx and Txx pins can be
used as inputs or outputs, under program control.

There are 14 new pins that can only be used as digital inputs:

 ISA0 ISA1 ISA2

FAULTA0 FAULTA1 FAULTA2 FAULTA3
ISB0 ISB1 ISB2
FALUTB0 FAULTB1 FAULTB2 FAULTB3

To read a digital input pin, you can use the commands

pin ON? returns true if the pin is at a logic high.
pin OFF? returns true if the pin is at a logic low.

Again, these are just two different ways of looking at the same input. Use whatever
makes your program more readable.

Note that these are not the same as the ?ON and ?OFF functions shown above. There
are two important differences:

a) ?ON ?OFF return the last value that was written to the pin. If the pin has been

configured as an input, or as an open-collector output, this may not be the actual logic
level! ON? OFF? return the actual logic level on the pin.

b) ON? OFF? will change the pin from an output to an input. ?ON ?OFF will not

change the pin’s configuration; if it was an output, it remains an output.

The rule is this: use ?ON ?OFF for output pins. Use ON? OFF? for input pins.

We haven’t talked about how to configure a pin as a digital output or a digital input.
That’s because you don’t have to – it’s automatic. If you use one of the output words like
ON or TOGGLE, IsoMax will automatically configure that pin as an output (if it hadn’t
already done so). Likewise, if you use ON? or OFF?, IsoMax will automatically
configure that pin as an input. (You can even switch a pin from output to input, or input
to output, in your program…but that’s an unusual application.)

48. Byte Input and Output
Port A and port B on the IsoPod™ are 8-bit parallel I/O ports that are entirely available
for you to use. You can use the individual pins of these ports for single-bit input and
output, as we’ve just described. (The pin names are PA0-PA7 for port A, and PB0-PB7
for port B.) Or, you can use either or both of these ports as 8-bit parallel ports.

To tell IsoMax that you want to treat all 8 pins as a single byte, you use the port names:

 PORTA PORTB

On port A, PA0 is the least-significant bit, and PA7 is the most-significant bit. Likewise
for port B.

There are only two actions that you can perform on an 8-bit parallel port:

port GETBYTE reads the 8-bit value from the (input) port

port PUTBYTE writes an 8-bit value to the (output) port

Again, the configuration is automatic. When you use GETBYTE, all of the pins of the
port are configured as inputs. When you use PUTBYTE, all eight pins are configured as
outputs.

To turn all of the port A bits off, except PA7 which is turned on, you could use:

 HEX 80 PORTA PUTBYTE

To test whether any of the low 4 bits of port B are on, you could use

 PORTB GETBYTE HEX 0F AND

which will return a nonzero value if any of the bits PB0-PB3 are high. Here’s a trivial
example of a program that makes the IsoPod™ into an eight-bit inverter:

 PORTA GETBYTE INVERT PORTB PUTBYTE

In this example, a byte is read from port A. It is then logically inverted, and written to
port B. (Of course, this will only happen once. To respond to changes in the port A
inputs, this bit of code would have to be written in a loop, or into an IsoMax state
machine, so that it is called repeatedly.)

49. Serial Communications Interface (SCI)
The IsoPod™ includes two full-duplex asynchronous serial ports. These are named

SCI0 SCI1

Note that you do not refer to the serial ports by their pin names, but by their port names.
SCI0 is the RS-232 port that is connected to your PC for software development (pins
SOUT and SIN on connector J1). SCI1 is the RS-232/RS-422 port, pins SOUT1 and
SIN1 on connector J4 (on the V1 IsoPod™, only RS-422 is available for this port).

The basic operations on the serial port are TX and RX:

 port TX transmit one byte on the serial output
 port RX receive one byte on the serial input

For example, to send the character “A” (hex 41) to the terminal (connected to the primary
RS-232 port), you could use the command

 HEX 41 SCI0 TX

To receive a character from the RS-422 port, and display its hex value, you could use

 SCI1 RX HEX .

But before you use SCI1, you must set its baud rate…

50. Setting the Baud Rate

When the IsoPod™ is reset, it sets the SCI0 port to operate at 9600 baud. You can
change this to some other value, say 38400, with the command

 DECIMAL 38400 SCI0 BAUD

(Baud rates are normally written as decimal numbers.) The moment you execute this
command, the baud rate will take effect, so you won’t see the usual “OK” response.
You’ll have to change the baud rate of MaxTerm or HyperTerminal (or whatever you are
using) to the new rate. Then you can press Enter and see the response at the new rate.

Before you use the SCI1 port, you must set its baud rate. For example,

 DECIMAL 9600 SCI1 BAUD

For the baud rate, you can specify any value between 300 and 57600. The “standard”
baud rates 300, 600, 1200, 2400, 4800, 9600, 19200, and 38400 will be accurately set.
For other values, the IsoPod™ will give the best approximation that it can, within the
limits of its baud rate generator.

(The baud rate is produced by dividing 2.5 MHz by an integer. Thus 9600 baud is
produced by dividing 2.5 MHz by 260, which gives an actual rate of 9615.4 baud, close
enough for serial communications. But the closest we can come to 57600 baud is
dividing by 43 to get 58140 baud.)

51. Polling the SCI Status

RX will wait for a character to be received, unless there’s already one waiting in the serial
data register. This may lead to “Program Counter Capture,” where the processor sits in a

loop waiting forever for an external event. You want to avoid this when you write
IsoMax programs!

The solution is to poll the SCI receiver. You do this with

port RX? check to see if a receive character is available

RX? will never wait. It will instantly return a true (non-zero) value if a character is
available, or a zero value if no character is waiting in the receiver. It does not fetch the
character from the receiver. If RX? returns true, you must follow it with RX to get the
character.

We’ll see an example of how to use this soon.

TX might also wait, if a previous character hadn’t finished transmitting. But at least this
wait won’t be indefinite: you know that the transmitter will send the character in a short
time, and so you’ll have to wait at most one character period. But this might also be a
problem in IsoMax code, so you can check to see if the transmitter can accept a character
with

port TX? check to see if transmitter is ready for a character

TX? will instantly return a true (non-zero) value if the transmitter can accept a character
now. It will return a zero value if the transmitter is busy, that is, if the transmitter is still
sending the last character and can’t accept a new one yet.

52. Serial Receive Buffering

What happens if receive characters arrive faster than you’re checking for them? With
most serial ports, if a second character arrives before you’ve read the first one, you get an
overrun condition and one of the two characters is lost. This is a problem!

Fortunately, the IsoPod™ has a built-in solution for this problem. If you wish, you can
define a receive buffer which will hold characters until you’re ready to process them.
This buffer can be as big as you like (limited of course by the amount of available RAM).

To activate receive buffering, you must first reserve some RAM for the buffer. An easy
way to do this is to define an IsoMax variable, and then immediately allocate some extra
RAM for it. To reserve a buffer of 20 (decimal) characters, you could type

 VARIABLE BUFFER1 DECIMAL 19 ALLOT

The reason we allot 19 instead of 20 characters is because VARIABLE will allocate room
for one character. So, one character in the VARIABLE plus an extra allotment of 19 will
give 20 characters of storage.

However, you should be aware that this buffer will actually hold only 16 serial
characters. The reason is that 4 characters’ worth of storage will be used for control
information. So, when you are sizing your buffer, remember to add 4 for this
“overhead.” IsoMax won’t let you use a buffer size smaller than 5.

Next you tell the IsoPod™ where that buffer is located, how big it is, and what port to use
it for.

 BUFFER1 20 SCI1 RXBUFFER

This says that BUFFER1, with a length of 20, is to be used as the receive buffer for port
SCI1. (Note that you use the real buffer length, 20, and not 19.)

That’s all there is to it! The buffer is now active and will begin storing received
characters. None of your other serial code has to change: RX? will tell you if there’s a
character waiting in the buffer, and RX will fetch the next character from the buffer.

53. Serial Transmit Buffering

Transmitted characters will never get lost (at least not by the IsoPod™), because the
IsoPod™ will always wait until it can send a character. But in a Virtually Parallel
application, that wait might prevent other tasks from being accomplished. For example,
if a particular state in a state machine needs to send a 16-character message at 9600 baud,
that can add a 16.7 millisecond delay – very noticeable when IsoMax is running state
machines every 10 milliseconds!

Again, there is a built-in solution. You you can define a transmit buffer which will hold a
block of characters and then dole them out automatically to the SCI transmitter. Again,
your buffer size is limited only by RAM.

Transmit buffering is activated the same as receive buffering. First reserve some RAM
for the buffer. Of course, we can’t use the same buffer at the same time for transmitting
and receiving, so we’ll define a new buffer for transmitting:

 VARIABLE BUFFER2 DECIMAL 19 ALLOT

Next tell the IsoPod™ where that buffer is located, how big it is, and what port to use it
for.

 BUFFER2 20 SCI1 TXBUFFER

This is just like the previous example except that we’re using BUFFER2, and we’re using
it as a TXBUFFER (transmit buffer).

That’s it! The buffer is now active and will store characters that you transmit. None of
your other serial code has to change: TX? will tell you if there’s room in the buffer, and
TX will transmit a character via the buffer.

54. Terminal I/O

IsoMax uses serial port SCI0 for its to connect to a serial terminal (or a terminal program
such as MaxTerm or HyperTerminal). The “customary” terminal input and output
operations still work in IsoMax, as follows:

 KEY performs the same function as SCI0 RX
 EMIT performs the same function as SCI0 TX
 ?TERMINAL performs the same function as SCI0 RX?
 ?KEY performs the same function as SCI0 RX?

(?TERMINAL and ?KEY are equivalent. ?TERMINAL is the older name for this
function, and is retained for backward compatibility.) You can freely intermix KEY and
SCI0 RX, or EMIT and SCI0 TX, with no confusion.

This also means that you can change the baud rate of the terminal with SCI0 BAUD.
And, if you specify a receive buffer with SCI0 RXBUFFER, that also will be used for
terminal input. This is especially useful when downloading files to the IsoPod .

55. A Serial I/O IsoMax Example

Here’s how you might use RX? in a state machine. This machine will listen on serial port
SCI1. When it sees an ASCII “1” character (hex 31), it will turn on the red LED. An
ASCII “0” (hex 30) will turn off the red LED. All other characters are ignored.

At first you might be tempted to write the state machine this way:

HEX
MACHINE WATCHSCI1
 ON-MACHINE WATCHSCI1
 APPEND-STATE WAITCHAR
 APPEND-STATE TESTCHAR

IN-STATE WAITCHAR CONDITION SCI1 RX? CAUSES (no action) THEN-STATE
 TESTCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION SCI1 RX 30 = CAUSES REDLED OFF THEN-STATE
 WAITCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION SCI1 RX 31 = CAUSES REDLED ON THEN-STATE
 WAITCHAR TO-HAPPEN

WAITCHAR SET-STATE INSTALL WATCHSCI1

The first state, WAITCHAR, is fine. The machine will stay in this state until a character is
received. But TESTCHAR won’t work, because it tries to read the SCI1 port twice. (Once
for each condition.) The first time it will get the character, but the second time it will try
to read another character…and of course, there isn’t a second character.

To solve this we need to use an auxiliary variable to hold the character. Then we can
read it only once, and test it several times.

VARIABLE CMDCHAR
HEX
MACHINE WATCHSCI1
 ON-MACHINE WATCHSCI1
 APPEND-STATE WAITCHAR
 APPEND-STATE TESTCHAR

IN-STATE WAITCHAR CONDITION SCI1 RX? CAUSES SCI1 RX CMDCHAR C! THEN-STATE
 TESTCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION CMDCHAR C@ 30 = CAUSES REDLED OFF THEN-STATE
 WAITCHAR TO-HAPPEN

IN-STATE TESTCHAR CONDITION CMDCHAR C@ 31 = CAUSES REDLED ON THEN-STATE
 WAITCHAR TO-HAPPEN

WAITCHAR SET-STATE INSTALL WATCHSCI1

There’s one more possible problem with this machine. What if we get a character that’s
neither 30 nor 31? We’ll see the character, and make the transition to TESTCHAR state.
But since no condition is satisfied, we never leave TESTCHAR state! Thus we never
return to WAITCHAR state and we never accept another character. This is a flaw in the
design of our state machine; fortunately, it’s easily fixed by adding another transition:

IN-STATE TESTCHAR CONDITION CMDCHAR C@ 30 < CMDCHAR C@ 31 > OR CAUSES
 (no action) THEN-STATE WAITCHAR TO-HAPPEN

Now, if the character is neither 30 nor 31, the machine will perform no output, but it will
return to wait for another character.

56. Serial Peripheral Interface

The IsoPod™ includes a Serial Peripheral Interface (SPI) for communication with
peripheral chips and other microprocessors. For consistency with other usage, and to
make provision for future expansion, the port is named

SPI0

The basic operations on the SPI port are TX and RX, TX? and RX?:

 port TX-SPI transmit one word on the SPI output

port RX-SPI receive one word on the SPI input
port TX-SPI? check to see if transmitter is ready for a word
port RX-SPI? check to see if a received word is available

However, an SPI port does not work like a normal serial port. In the SPI port, the
transmitter and receiver are linked. Whenever you transmit a word, you receive a word.
Also, the behavior of the port depends on whether you are operating as an SPI Master or
an SPI Slave:

 Master – You start an SPI transaction by writing a word to the SPI transmitter (with

TX-SPI). Every time you do this, a word will be loaded into the receive register.
So, after every TX-SPI, you should do an RX-SPI to read this received word and
make the register ready for a new word. (The receive register is loaded even if the
slave device doesn’t output a reply.)

 Slave – You wait for data to be sent you to by the SPI Master. When this happens,

RX-SPI? will return true, and you can get the word with RX-SPI. Any data that
you want to send to the Master must be preloaded into the transmit register with TX-
SPI, because it will be sent as you are receiving the word from the Master. Every
time you receive a word, the transmitter will be emptied. If you don’t load a new
word into the transmitter, it will keep sending the last word you loaded.

More differences are that the word size can range from 2 to 16 bits, and can be sent LSB-
first or MSB-first.

57. Setting the SPI Parameters

The Master and Slaves must agree on the SPI data format and rate. These options are
controlled by the following commands:

n port MBAUD Sets the baud rate to “n” Mbaud, where n is 1, 2, 5,
or 20. (The actual rates are 1.25, 2.5, 5, or 20
Mbaud, but the MBAUD command expects an integer
value.) The baud rate only needs to be set on the
Master; this will automatically control the Slaves.

n port BITS Specifies the number of bits “n” to be sent by TX-
SPI and read by RX-SPI. n may be 2 to 16.

port MSB-FIRST Specifies that words are to be sent and received
most-significant-bit first.

port LSB-FIRST Specifies that words are to be sent and received
least-significant-bit first.

Master and Slaves must also agree on clock phase and clock polarity. In the DSP56F80x
processors these are controlled by the CPHA and CPOL bits in the SPI Control Register.
In IsoMax they are controlled with these commands:

port LEADING-EDGE Receive data is captured by master & slave on the

first (leading) edge of the clock pulse. (CPHA=0)
port TRAILING-EDGE Receive data is captured by master & slave on the

second (trailing) edge of the clock pulse.
(CPHA=1)

port ACTIVE-HIGH Leading and Trailing edge refer to an active-high
pulse. (CPOL=0).

port ACTIVE-LOW Leading and Trailing edge refer to an active-low
pulse. (CPOL=1).

Once the communication parameters have been set, the SPI port should be enabled as
either a Master or a Slave:

port MASTER Enables the port as an SPI Master. MOSI is output,
MISO is input, and SS has no assigned function.
(The SS pin may be used as GPIO output bit PE7.)

port SLAVE Enables the port as an SPI Slave. MOSI is input,
MISO is output, and SS is the Slave Select input.
SS must be low for the SPI port to receive and
transmit data.

Remember that the SPI port is not activated until you use MASTER or SLAVE.

58. Serial Receive Buffering (version 0.6)

Like the SCI ports, the SPI port may use a receive buffer. The format and requirements
are exactly the same as for the SCI port: the buffer must be at least 5 cells long, and is
installed with the command

 address length port RXBUFFER

This is particularly valuable on SPI Slaves, since data can be sent to them at any time
from the Master. If you don’t have a receive buffer on the Slave, you’d have to check the
receiver constantly for new data…because if the transmitter sent two words before you
checked, you’d lose one. But even at 20 Mbaud, the buffered receiver won’t lose data –
unless of course you overflow the buffer! (The receive buffer uses interrupts, which
means that the instant a full word has been received, the processor can store it in the
buffer.)

Buffering is less important on an SPI Master, because the Master always has complete
control over when data will be received. Data is received when data is sent! But if
you’re using a transmit buffer to send a block of SPI data without waiting, you should
have a receive buffer at least as big, since every word send will cause a word to be
received.

When the receive buffer is active, RX-SPI and RX-SPI? work exactly as before.

Specifying any address with a length of zero will disable the receive buffer and return to
“unbuffered” operation. For this, you can even use an address of zero, e.g.,

 0 0 SPI0 RXBUFFER

59. Serial Transmit Buffering (version 0.6)

The SPI port may also use a transmit buffer. Again, the buffer must be at least 5 cells
long, and is installed with the command

 address length port TXBUFFER

This is valuable for Slaves, because the Slave doesn’t know when the Master will ask for
a word of data. (When the Master sends a word, it expects the Slave to return one.)
When the transmit buffer is active in a Slave, the first word sent will be preloaded into
the SPI transmitter. Additional words will be held in the transmit buffer. Each time the
Master transfers a word over the SPI port, the Slave’s transmitter will be automatically
loaded with the next word to be sent.

You should be aware that some SPI applications can’t benefit from preloaded data in the
buffer. Sometimes, the slave must receive a command word from the Master, and then
generate a reply based on that command. In this case, we don’t know what to load into
the transmitter until the received word has been processed, so we can’t “preload” a reply
into the transmit buffer.

Many SPI applications involve this kind of exchange, so often there is no advantage to
transmit buffering on the Master. The Master always has complete control over the data
flow, so there’s no danger of its transmitter running out of data. But if you are using the
SPI transmitter to send a block of data, and you don’t want stop other Virtually Parallel
processing, you could load the entire block into a transmit buffer.

As before, specifying any address with a length of zero will disable the receive buffer and
return to “unbuffered” operation. For example,

 0 0 SPI0 TXBUFFER

60. An SPI Master-Slave Example

Here’s a simple procedural program that configures an IsoPod as an SPI Slave device.
It awaits a 16-bit value on the SPI port. When it receives a 16-bit value, it treats that

value as an address, fetches that location in Program memory, and then returns that 16-bit
value the next time the Slave receives a word.

DECIMAL
VARIABLE TBUF 16 ALLOT
VARIABLE RBUF 16 ALLOT

: SLAVE-MAIN
 16 SPI0 BITS SPI0 MSB-FIRST SPI0 TRAILING-EDGE
 SPI0 ACTIVE-LOW SPI0 SLAVE
 TBUF 16 SPI0 TXBUFFER
 RBUF 16 SPI0 RXBUFFER

 \ simple SPI slave P-memory dump
 \ 0000 = null command, discarded, no reply
 \ nnnn = address. On next xmit, send memory contents.
 BEGIN ?KEY 0= WHILE
 SPI0 RX-SPI? IF
 SPI0 RX-SPI ?DUP IF
 P@ SPI0 TX-SPI
 THEN
 THEN
 REPEAT ;

The outer loop of the program checks for a keypress on the RS-232 terminal input. If a
key is detected, the slave program terminates. Otherwise, it checks to see if a word has
been received on the SPI port with SPI0 RX-SPI? If a word has arrived, it is obtained
with RX-SPI. If it is nonzero (tested with ?DUP), it is used as the address for P@ (fetch
from Program memory), and the resulting data is sent to the transmitter with TX-SPI.
The loop then continues.

Observe that we don’t send anything in response to a 0000 command code. This
primitive SPI protocol depends on the Master and Slave staying in perfect
synchronization. Every word received generates one word of reply; and that reply word
will be expected on the next transmission from the Master. Should the Slave ever get
“ahead” or “behind” the Master – say, by losing a word -- it will stay ahead or behind,
indefinitely. All but the very simplest SPI protocols must be designed to handle this
problem, and recover automatically. In this example, the Master can send 0000 codes to
read out the Slave’s transmit buffer without refilling it with new data. (A more
sophisticated protocol might require a very specific message format with “command” and
“data” bytes, checksums, and so forth.)

Here’s the companion program which runs on a second IsoPod as an SPI Master.

: SEND (x -- x')
 PE7 OFF SPI0 TX-SPI SPI0 RX-SPI PE7 ON ;

DECIMAL
: SLAVE@ (a -- n)
 SEND DROP (send address, discard reply)
 250 0 DO LOOP (give slave time to respond)
 0 SEND (send null to fetch queued value)
;

: RDUMP (a n --)
 16 SPI0 BITS SPI0 MSB-FIRST SPI0 TRAILING-EDGE
 SPI0 ACTIVE-LOW 1 SPI0 MBAUD SPI0 MASTER
 \ Remote slave P-memory dump
 OVER + SWAP DO
 CR I 5 U.R 2 SPACES
 I 8 + I DO
 I SLAVE@ 5 U.R
 LOOP
 8 +LOOP
;

The key word in this program is SEND. Given a value on the stack, SEND will pull the
Slave Select line low (active), transmit the value over the SPI port, receive the value
which is returned from the slave, and then pull the Slave Select line high (inactive). This
assumes that the SPI ports of the Master and Slave IsoPods are connected directly
together, as follows:

 Slave Master
 GND ↔ GND
 PE4/SCLK ↔ PE4/SCLK
 PE5/MOSI ↔ PE5/MOSI
 PE6/MISO ↔ PE6/MISO
 PE7/SS ↔ PE7/SS

Note that on the Slave, the PE7 pin is used as SS (Slave Select), and must be pulled low
before the Slave will accept or send SPI data. But on the Master, PE7 is just a general-
purpose output pin. What we’re really doing is connecting the Slave’s SS input to the
Master’s PE7 output….they just happen to use the same pin on the I/O connector.

Remember also that every time the Master sends a word over the SPI, it will receive a
word back. This is handled by SEND which waits for the received word (with RX-SPI)
after every transmission. This performs another subtle but important function: you can’t
pull Slave Select high until the SPI transmission is finished. TX-SPI won’t wait for the
16 bits to be transmitted; it will return as soon as they’re loaded into the transmit buffer.
It will take over 12 microseconds (at 1.25 Mbaud) to send those bits! But RX-SPI won’t
have a result until 16 bits have been sent, and 16 bits received in reply. So waiting for
RX-SPI ensures that the transmission is complete. For this application, it’s best that the
Master not use transmit and receive buffers.

SEND or something like it will probably be a key word in any SPI Master application.
With it, we can construct SLAVE@ (“slave fetch”). Given an address on the stack,
SLAVE@ sends that to the Slave, and discards whatever the slave sends back (the reply is
meaningless, since the Slave doesn’t have an address yet). Then the Master must wait for
a short delay, because the Slave has to have time to see that it has received a command,
process the command, and put the reply in its transmit buffer. Finally the Master sends a
0000 command code. The very action of sending this 0000 value will cause the data in
the Slave’s transmit buffer to be sent back to the Master. This is the reply we desire from
the slave, so SLAVE@ returns with this on the stack.

RDUMP (“remote dump”) is a command very much like DUMP, but it uses SLAVE@ to
dump memory from the Slave via the SPI port. Given an address ‘a’ and length ‘n’, the
outer DO loop steps through the addresses 8 at a time. The inner DO loop steps through
each block of 8 addresses one at a time, fetches the data from the Slave, and prints that
data.

Incidentally, note that we set the baud rate on the Master, but not on the Slave. The Slave
always follows the Master’s baud rate. But MSB-FIRST, TRAILING-EDGE, and
ACTIVE-LOW must be set independently on Master and Slave (and they must match).

This program can be modified to return any kind of data from the Slave. For example,
the Master could send an ADC channel number, and the Slave could read that channel
and send the result.

61. PWM Output

The IsoPod can generate pulse-width-modulated (PWM) square waves on 25 different
output pins. These pins are

 TA0 TA1 TA2 TA3
 TB0 TB1 TB2 TB3
 TC0 TC1
 TD0 TD1 TD21
 PWMA0 PWMA1 PWMA2 PWMA3 PWMA4 PWMA5
 PWMB0 PWMB1 PWMB2 PWMB3 PWMB4 PWMB5

You’ve already seen these pins; they can be used as simple digital outputs with the
commands ON and OFF. But these pins also have the ability to generate continuous
PWM signals.

You must specify two parameters for a PWM output: frequency, and duty cycle. These
are done with the commands

1 At the present time, pin TD3 cannot be used for PWM operations. It may be used for bit I/O.

n pin PWM-PERIOD
n pin PWM-OUT

PWM-PERIOD controls the frequency of the PWM signal. (Actually, you’re controlling
the period, which is the reciprocal of the frequency.) This expects a value ‘n’ which
represents ticks of a 2.5 MHz clock. You can compute the frequency of the output signal
with the formula

 frequency (Hz) = 2,500,000 / N

Thus a value of 2500 would give a frequency of 1 kHz. A value of 25,000 would give a
frequency of 100 Hz. Alternatively, you can compute the period of the PWM signal with
the formula

 microseconds = N * 0.4

GOTCHA #1. For the timer output pins, TA0 through TD3, you can specify a period up
to 65535 decimal. This gives a frequency of about 38 Hz. But for the PWM output pins,
PWMA0 through PWMB5, you can only specify a period up to 32767 decimal, for a
frequency of 76 Hz. This may be too fast for some PWM devices (such as RC servos).
We’ll see shortly how to get around this limitation.

GOTCHA #2. When you specify the period for one of the PWM output pins, you
change the period for all six pins in that group (PWMA or PWMB). In other words, if
you set PWM-PERIOD for PWMA0, you are also setting it for PWMA1 through PWMA5.
This is ordinarily not a problem, but you should be aware of it.

Also, you’re not allowed to set the PWM-PERIOD to a value smaller than 256. In other
words, the maximum PWM frequency is about 9766 Hz. This is to ensure that you have
adequate PWM resolution when controlling the duty cycle.

PWM-OUT controls the duty cycle of the PWM signal, and activates the PWM output. It
expects a value ‘n’ which is an unsigned integer in the range of 0 to 65535 (0 to FFFF
hex). This corresponds to a duty cycle from 0% to 100%. So,

 0 PWMB3 PWM-OUT sets the duty cycle to 0% (always off),
 HEX FFFF PWMB3 PWM-OUT sets the duty cycle to 100% (always on),
 HEX 8000 PWMB3 PWM-OUT sets the duty cycle to 50% on, and
 HEX 4000 PWMB3 PWM-OUT sets the duty cycle to 25% on.

This is independent of the PWM frequency. A PWM-OUT value of HEX 8000 will
always give a 50% duty cycle, regardless of what you’ve specified for PWM-PERIOD.

You can turn off a PWM output by setting its duty cycle to zero, or by using the OFF
command, e.g.,

 PWMB3 OFF

62. Half Speed Operation

What if you need to control a bunch of RC servos with the PWMA and PWMB output
pins, and they require a PWM frequency of 50 Hz? Normally, these pins can’t produce
anything less than 76 Hz. But there’s one way to produce a slower output, and that is to
slow the entire IsoPod to half speed.

The command HALFSPEEDCPU turns the IsoPod’s master clock to half its normal 40
MHz speed. This slows everything in the IsoPod down to half speed. Instructions will
run half as fast. If you specify 9600 BAUD for the serial port, you’ll actually get 4800
baud. And what’s most important, if you specify 100 Hz as the PWM output frequency,
you’ll actually get 50 Hz.

To specify 100 Hz PWM frequency, use the command

DECIMAL 25000 pin PWM-PERIOD

If you then type HALFSPEEDCPU you will see an output frequency of 50 Hz. (You can
specify HALFSPEEDCPU before or after PWM-PERIOD, it doesn’t matter. Just
remember that it will also require you to change your terminal’s baud rate.)

If for any reason you need to return to normal “full speed” operation, the command is
FULLSPEEDCPU.

63. Output Polarity

For the timer output pins TA0 through TD3 only, you can control the polarity of the
output signal.

 pin ACTIVE-HIGH makes the pin “active high” (the normal case).

Specifying a duty cycle of 25% (hex 4000) will
make the pin on for 25% of the time.

 pin ACTIVE-LOW makes the pin “active low.” Specifying a duty cycle

of 25% (hex 4000) will make the pin off for 25% of
the time.

You can’t do ACTIVE-HIGH or ACTIVE-LOW for the PWMxx output pins, but you
don’t need to. To invert the sense of the output, all you need is to do a one’s complement
(INVERT) of the value you’re specifying for PWM-OUT. For example,

HEX 4000 PWMB3 PWM-OUT sets the duty cycle to 25% on, but

HEX 4000 INVERT PWMB3 PWM-OUT sets the duty cycle to 75% on, which is

the same as setting it to 25% off.

So, you might ask, why bother? ACTIVE-HIGH and ACTIVE-LOW are really intended
for PWM input, which will be described in the next section.

64. PWM Input

The IsoPod can also measure pulse-width-modulated (PWM) square waves on the 13
timer pins:

 TA0 TA1 TA2 TA3
 TB0 TB1 TB2 TB3
 TC0 TC1
 TD0 TD1 TD22

The commands to measure a PWM pulse width are

pin SET-PWM-IN to start measurement, and
pin CHK-PWM-IN to get the result.

SET-PWM-IN makes the specified timer pin an input, and puts it into the pulse-width-
measurement mode. It will do nothing until it sees a rising edge on the input. Then, it
will measure the time that the input is high. The falling edge after a rising edge ends the
time measurement.

CHK-PWM-IN gets the result of the time measurement. If the rising edge has not yet
been seen, or if the “high” width is still being measured (i.e., the falling edge hasn’t been
seen), CHK-PWM-IN will return a value of zero. After a complete pulse has been
received (rising edge, then falling edge), the first use of CHK-PWM-IN will return the
width of that pulse, which will be nonzero.

BEWARE: if you then use CHK-PWM-IN again, without resetting the timer, you will get
an unpredictable nonzero value. Only the first nonzero value returned by CHK-PWM-IN
is valid. After you receive that value, you must reset the timer with SET-PWM-IN.

2 At the present time, pin TD3 cannot be used for PWM operations. It may be used for bit I/O.

The value returned by CHK-PWM-IN is an unsigned integer, representing ticks of a 2.5
MHz clock. This is the same timebase used for PWM output. Each tick of this clock
takes 0.4 microseconds. So, the measured pulse time can be computed with the formula

 microseconds = N * 0.4

If you measure a pulse input of 25000 decimal, you know that this is 10 milliseconds.

The PWM measurement has been divided into two actions (“set” and “check”) to avoid
the problem of Program Counter Capture. We don’t want our IsoMax program to sit
waiting for a pulse to be measured -- especially if the pulse never arrives! Instead we
have two commands, SET-PWM-IN and CHK-PWM-IN, which are guaranteed to always
execute immediately. You can test CHK-PWM-IN to cause a state transition when the
pulse has been received.

65. Input Polarity

SET-PWM-IN and CHK-PWM-IN measure the time that the input pin is high. What if
you need to measure the time that the input pin is low? This is where you need to change
the polarity of the pin:

 pin ACTIVE-HIGH makes the pin “active high” (the normal case). The

PWM-IN commands will measure the high duration
of a pulse.

 pin ACTIVE-LOW makes the pin “active low.” The PWM-IN

commands will measure the low duration of a pulse.

So, actually, SET-PWM-IN and CHK-PWM-IN measure the time that the input pin is
“active.” ACTIVE-HIGH and ACTIVE-LOW define whether “active” is a high level or a
low level.

Incidentally, note that these words aren’t limited to measuring the “active” time (duty
cycle) of a PWM signal. Really they measure pulse width. So they can be used to
measure the width of a single pulse, too.

66. Example

Here’s a simple procedural program that starts, and waits for, a PWM measurement on
pin TA0:

: MEASURE-PWM (-- n)
 TA0 SET-PWM-IN
 BEGIN TA0 CHK-PWM-IN ?DUP UNTIL ;

The key to this program is the phrase ?DUP UNTIL. If TA0 CHK-PWM-IN returns a
zero value, UNTIL will see this and continue looping. But when TA0 CHK-PWM-IN
returns a nonzero value, ?DUP will make an extra copy, and UNTIL will terminate the
loop. Then the extra copy of this value is left on the stack. This way, CHK-PWM-IN is
only called once with a nonzero result.

67. Analog-to-Digital Conversion

Eight pins on the IsoPod can be used to input analog voltages:

 ADC0 ADC1 ADC2 ADC3 ADC4 ADC5 ADC6 ADC7

The command to read an analog value (that is, to perform an A/D conversion) is
ANALOGIN.

 pin ANALOGIN Reads the given A/D input and returns its value.

ANALOGIN will return a result in the range 0-7FF8 hex, or 0-32760. This is actually a
12-bit A/D result that has been left-shifted 3 places, to use the full range of signed
integers (0 to +32767).

A value of 32760 corresponds to an input of Vref (normally 3.3 volts). 0 corresponds to
an input of 0 volts. So, the actual voltage read on the pin can be computed with the
formula

 Vin = 3.3 * N / 32760

68. PROCEDURAL PROGRAMMING

The Finite State Machine portions of IsoMax™ are now covered. What remains to be
discussed is the procedural portions of the conditions and actions.

The IsoMax procedural language is very similar to the programming language Forth.
There are some significant changes because of the Finite State Machine functions, the
Object-Oriented functions, and the architecture of the IsoPod processor (which has
separate data and program memories, and can’t address memory as bytes). But if you are
familiar with Forth, and particularly Max-Forth, you can skip most of this section.

69. The Dictionary

All of the commands and operations known to IsoMax are kept in a “dictionary.” You
will frequently hear these commands and operations called “words,” because they are the
words in the IsoMax language. In fact, you can print out a list of all the words known to
IsoMax with the command

 WORDS

This just prints a list of the words. Their definitions are much longer! You can find short
definitions for all these words in section 18 of this manual (IsoMax Glossary).

Possible point of confusion: Don’t confuse a “word” in the language, with a “word” of
memory. A memory word (on the IsoPod) is 16 bits of storage. A word of the
language can be any symbol made of non-blank characters. When there is risk of
confusion, we will generally refer to 16 bits of storage as a “cell” of memory.

70. The Stacks

Numbers, addresses, and data which is being operated upon are normally held on stacks.
Like the name implies, when you put something on a stack, it becomes the topmost item
on the stack, and everything that was already on the stack is effectively “pushed down”
one deeper. Likewise, when you take something off the top of the stack, the stuff
underneath it “pops up” one position, and what was the second item on the stack becomes
the new top item on the stack.

For the most part, the operation of stacks is invisible and automatic. One visible effect
(which will be familiar to owners of Hewlett-Packard calculators) is that arithmetic
operations require you to place the two operands on the stack first, and then specify the
operation to be performed. In other words, instead of saying

 2 + 3

in IsoMax you would say

 2 3 +

We’ll see more examples of this shortly.

There is one stack for fixed-point data (including integers, characters, and addresses), and
a second stack for floating-point numbers. You don’t need to specify this – each
operation automatically uses the correct stack. But you might need to be aware of the
two different stacks, if you’re moving values to and from them.

71. Stack Notation
Whenever you type a number, IsoMax puts it on the stack. (Integers on the integer stack,
floating-point numbers on the floating-point stack.) If you type a second number, it gets
put on the stack and the previous number gets pushed down. So, for instance, if you type

 1 2 3

the “3” will be the topmost item on the stack, “2” will be under it, and “1” will be on the
bottom. You can see this with the command .S (“print stack”). Try typing the command

 1 2 3 .S

and you will see how the numbers are “stacked” (with the “3” on the top).

When we are describing parameters to be put on the stack, or values which are placed on
the stack, we will use this left-to-right notation. The rightmost item in the description
corresponds to the topmost item on the stack. So when you see parameters

 a b c

you know it really means

 c
 b
 a

with “c” on the top of the stack.

72. Arithmetic Operations

Most of the time you’ll be using 16-bit integers. These can be treated as unsigned
numbers, in the range 0..65535, or as signed numbers, in the range –32768..+32767. The
four basic arithmetic operators are add, subtract, multiply, and divide:

 10 2 + adds 10 and 2, giving 12

 10 2 - subtracts 10-2, giving 8
 10 2 * multiplies 10 by 2, giving 20 (signed numbers)
 10 2 / divides 10 by 2, giving 5 (signed numbers)

Notice the order of the operands for subtract and divide. This is easy to remember,
because it’s the same left-to-right order you would use if you were writing these as
algebraic equations. That is,

 10 2 - performs the computation 10 – 2
 10 2 / performs the computation 10 / 2

If you want to see the result of these computations, you can use the .S command. Or,
you can use the . command (just a period character), which prints the topmost stack item
and removes it from the stack. For example, try

 10 3 / .

and you should see the result 3. Why 3 and not 3.33333? We’re using integer math, so
we get “3 with a remainder of 1,” not 3.33333. To see the remainder. use the MOD
command:

 10 3 MOD .

When the IsoPod starts running, it expects decimal (base 10) numbers. But you can
change this at any time. If you type the command HEX, all numbers from that point on
will be entered and printed in hexadecimal (base 16). To change back to base 10, type
the command DECIMAL. You can use this with the . (print) command to perform simple
base conversions. For example:

 HEX A0 DECIMAL .

will print 160, the decimal equivalent of A0 hex.

You can type negative numbers, like –12 or even –FFF (in hexadecimal base). If you
want to negate the result of a computation, you can use the command NEGATE. For
example,

 -12 3 * NEGATE .

will print 36, because –12 times 3 is –36, and the negative of –36 is 36.

73. Floating-Point Operations
To type a floating-point number into IsoMax, you must include an exponent, in the form
Enn, as the suffix of the number. For example, all of these represent a floating-point
value of 2.0:

 2.0E0
 2.000E0
 2E0
 0.2E1
 .2E01
 20.E-1

The “E” followed by a (positive or negative) number is required. The following will not
work:

 2.0
 2.
 002
 2.000

Also, you must be in DECIMAL base to type a floating point number. This is because
“E” is a valid hexadecimal digit. So,

 DECIMAL 2E0 gives the floating-point value 2.0, but
 HEX 2E0 gives the integer 2E0 hex (736 decimal)

You can use the command F.S to display the contents of the floating-point stack. The
command F. will print (and remove) the topmost item on the floating-point stack in a
“fixed point” notation, and the command E. will print (and remove) the topmost item in
an “exponential” notation. To see this, try

 DECIMAL 1.E1 2.E1 3.E1
 F.S
 F.
 E.
 E.

Floating-point arithmetic operations are similar to the integer operations, but have the
prefix “F”. Here are add, subtract, multiply, and divide:

 10.E0 3.E0 F+ adds 10.0 and 3.0, giving 13.0
 10.E0 3.E0 F- subtracts 10.0-3.0, giving 7.0
 10.E0 3.E0 F* multiplies 10.0 by 3.0, giving 30.0
 10.E0 3.E0 F/ divides 10.0 by 3.0, giving 3.3333

Other floating-point operations include trigonometric and transcendental functions. The
complete list can be found in the glossary, Section 18.4.

74. Variables
Because IsoMax carries out computations on its stacks, you very rarely need to use
“variables” such as X or Y or VELOCITY or VOLTAGE. But sometimes you do need to
store a value between computations. So, IsoMax allows you to have named variables.

You must define a variable before you use it. This is done with the command
VARIABLE (integer) or FVARIABLE (floating-point):

 Integer Floating-point

 VARIABLE name FVARIABLE name

In either case, “name” is a name you choose for the variable. This can be any
combination of up to 31 non-blank characters. Even special characters and punctuation
may be freely used. For example, the following are all valid variable names:

 X Y1 Velocity $PROFIT $ 4TH_SPEED %#@!

Names can begin with numbers, and can be entirely non-alphabetic characters. Two
restrictions, though. First, don’t use a name that’s already in use by IsoMax (as you can
see with WORDS) . This will cause confusion. IsoMax will allow it, but will warn you by
telling you that your name is “not unique.”

Second, don’t use a name that’s all numbers. IsoMax will allow that, and won’t warn
you, and then when you type that number, you’ll get the variable instead of the number.
As you can imagine, this will lead to no end of confusion. Be sure that all your names
have one non-numeric character (and remember that A through F are digits in hex)!

You can use upper or lower case in your names, but remember that IsoMax is case-
sensitive. VELOCITY, VELocity, and Velocity are all different names.

When you have defined a variable, you can store a value into that variable with the ! or F!
commands. You can fetch the stored value with the @ and F@ commands.

 Integer Floating-point

 name ! name F! stores a value in variable “name”
 name @ name F@ fetches a value from variable “name”

This is not like other languages, which let you use just the name of a variable in place of
a number in an equation. To get the value of a variable, you must use @ (for integer

variables) or F@ (for floating-point variables). So, if you want to multiply (floating-
point) Principal by Interest to compute a payment, you’d have to type

 Principal F@ Interest F@ F* F.

Of course, before you could do this you would have had to define the variables

 FVARIABLE Principal
 FVARIABLE Interest

and you would have had to store some values into these variables, e.g.,

 10000.E0 Principal F!
 0.05E0 Interest F!

75. Accessing Memory and I/O
When you define a VARIABLE, what you’re really doing is reserving a memory location
and giving that memory location a name. The operators @ and ! fetch from a memory
location, and store to a memory location, respectively.

You can use @ and ! with any memory locations, not just variables. Suppose that you
know a value is stored at memory address $6A2. You can get that value with

 HEX 6A2 @

Suppose you want to store a value of $1234 into that location. You can use

 HEX 1234 6A2 !

When might this be useful? Most of the time, you’ll want to use named VARIABLEs,
because a variable will always be placed in an unused part of memory. If you try to
choose memory addresses yourself, you might choose an address that’s being used by
IsoMax for something else.

But there is one situation when you might want to read or write a known memory
location. The input and output of the IsoPod’s DSP56F805 CPU is memory-mapped.
This means that, instead of accessing the peripherals with IN and OUT instructions, you
use normal memory fetch and store instructions. So, @ and ! give you access to the
complete I/O capability of the IsoPod processor!

For example, the Port A Data Register is located at address $0FB1. The Port A Data
Direction Register (DDR) is located at address $0FB2, and the Peripheral Enable
Register (PER) is at $0FB3. Writing zero to both the DDR and PER will make Port A an
input port, and you can then read the Data Register to read the eight input pins.

 HEX
0 0FB2 !

 0 0FB3 !
 0FB1 @

This is not for the inexperienced user. There are no restrictions on @ and !, so it’s
quite possible for you to lock up the IsoPod completely by writing the wrong value to the
wrong location. You should refer to Motorola’s DSP56F801/803/805/807 16-Bit Digital
Signal Processor User’s Manual for a complete description of the on-chip I/O of the
DSP56F805 processor, and its memory addresses.

Besides, isn’t this easier?

 PORTA GETBYTE

ServoPod owners note: The ServoPod uses the DSP56F807 processor, which has
different I/O addresses from the IsoPod’s DSP56F805.

76. Logical Operations
IsoMax also lets you perform logical operations on 16-bit values. The four basic
arithmetic operators are AND, OR, XOR, and INVERT:

 HEX 3A 0F AND bitwise logical AND, giving 0A
 HEX 3A 0F OR bitwise logical OR, giving 3F
 HEX 3A 0F XOR bitwise exclusive OR, giving 35
 HEX 3A INVERT bitwise inversion, giving FFC5

Notice that INVERT takes only one parameter. Also, all of the logical operations act on
16 bit values. If you try to print the result with the . operator, you may be surprised:

 HEX 3A INVERT . prints -3B

This is because FFC5 is a negative number in two’s complement notation, and . prints
signed numbers. To print unsigned numbers, use the U. (“unsigned print”) operator:

 HEX 3A INVERT U. prints FFC5

The logical operations are is especially useful when you’re working with I/O, when you
need to act on specific bits. For example, suppose you need to read the low 4 bits of port
A as a hex number from 0 to F. You could read the four bits individually, and write some
code to merge them into a 4-bit value. But it’s much easier to say

 PORTA GETBYTE HEX 0F AND

which reads all 8 bits of the port, and then “masks off” the unwanted bits.

What if you need the high 4 bits of the port? It’s only an 8-bit port, so the “mask” should
be F0 instead of 0F. You then need to shift the bits “down” four places:

 PORTA GETBYTE HEX F0 AND 2/ 2/ 2/ 2/

The 2/ operator (“two-divide”) gives a one-bit right shift. For integers, this is equivalent
to dividing by two, hence the name. Applying it four times gives a total of four shifts to
the right.

The corresponding left-shift operator is 2* (“two-times”).

77. Adding New Definitions
Much of the time you will be using the IsoMax operations interactively -- as we have
seen above -- or in the CONDITION or CAUSES phrases of an IsoMax state machine.
What you have learned so far is sufficient for these uses, although you’ll probably want
to look at the IsoMax Glossary in Section 18 to see the full range of operations which are
available to you.

But there may come a time when you want to create a procedural subroutine. This might
be because

• There’s a complex function you perform frequently, and you’re tired of typing it
all the time, or

• You want to write a computer program (in the traditional sense) and commit it to

the IsoPod’s memory.

In either case, you do this by adding a new word to the IsoMax dictionary. This new
word will contain your complex function or your application program.

Just like with an English dictionary, you add a new word by first giving the name of the
new word, and then defining that word using only words which are already known.
IsoMax marks the start and end of a new definition with : and ; as follows:

 : name-of-new-word ...definition... ;

The spaces after : and before ; are required. The name of the new word can be any
combination of up to 31 non-blank characters, just like VARIABLE names.

Let’s go back to our recent example, and assume that a 4-bit DIP switch is connected to
the high 4 bits of Port A. We know how to read this port, mask the bits, and shift them to
the low 4 bits. But we’re going to be doing this a lot, and we don’t want to type that long
phrase every time. Also, to make the code more readable (and more maintainable), we’d
like to call it something meaningful like GET-DIP-SWITCH. Here’s how you can do it:

HEX
: GET-DIP-SWITCH PORTA GETBYTE F0 AND
 2/ 2/ 2/ 2/ ;

Here we are telling IsoMax to add a new word, GET-DIP-SWITCH, to the dictionary.
The “definition” of this new word is PORTA GETBYTE HEX F0 AND 2/ 2/ 2/
2/. What this means in practice is that, whenever IsoMax sees GET-DIP-SWITCH, it
will perform the action PORTA GETBYTE HEX F0 AND 2/ 2/ 2/ 2/. (Strictly
speaking, we’ve created a subroutine containing those IsoMax instructions.)

Remember that IsoMax is free-format so you can split the definition across multiple lines,
and use spaces to indent. TAKE NOTE: if you’re going to use numbers inside the
definition, you must specify the number base outside the definition. In this example, we
put HEX before we started the definition.3

GET-DIP-SWITCH will have exactly the same stack effect as its definition. Since
PORTA GETBYTE HEX F0 AND 2/ 2/ 2/ 2/. leaves a single value on the stack,
GET-DIP-SWITCH will leave a single value on the stack.

Of course, we could also have written something which takes values from the stack.
Maybe we need a four-bit right shift frequently:

 : RIGHT-SHIFT-4 2/ 2/ 2/ 2/ ;

This will take a value on the stack, shift it right four times, and then leave the result on
the stack. So you see, the stack is how we pass values to a function, and how we get
results from a function. These are the input parameters and output parameters of the
function.

Well, once we’ve told IsoMax what RIGHT-SHIFT-4 means, why can’t we use that to
define GET-DIP-SWITCH? We can:

 : RIGHT-SHIFT-4 2/ 2/ 2/ 2/ ;
 HEX
 : GET-DIP-SWITCH PORTA GETBYTE F0 AND RIGHT-SHIFT-4 ;

78. Removing definitions
If you’ve been typing this example in, you’ve probably seen the warning GET-DIP-
SWITCH NOT UNIQUE. This is IsoMax telling you that you’ve defined a word twice in
its dictionary. This won’t break IsoMax, but it will cause you some confusion, since you
won’t necessarily know what definition is being used at any given time.

3 If you put HEX inside the definition, that number base won’t take effect until later, when you execute
GET-DIP-SWITCH. This is sometimes useful, but usually is not what you want.

It’s better for all concerned if you tell IsoMax to forget your previous definition of the
word. You do this with the command

 FORGET GET-DIP-SWITCH

This gets rid of the old definition, and leaves you free to start a new one. (Strictly
speaking, FORGET gets rid of the most recent definition of the word. If you’ve defined
the word twice, you’ll need to use FORGET twice to get rid of both definitions.)

TAKE NOTE: FORGET will not just forget the word you specify, it will forget all words
you have defined since that word. In the last example, if you had typed FORGET
RIGHT-SHIFT-4, you would also lose the definition of GET-DIP-SWITCH. This can
be useful: if you’ve written a few dozen words, and you want to forget them all (so you
can start over), you don’t need to type a few dozen FORGET commands. Just forget the
first word, and all the following words will go too.

79. Program Control
We’ve seen how to write subroutines (as new word definitions), how to do arithmetic and
logical functions, how to store data in memory variables, and how to do I/O. There’s still
one thing missing before we can write any computer program: how do we perform
actions conditionally? That is, how do we change the flow of control of the program,
based upon an input or the result of a calculation?

IsoMax offers six different constructs for program control. These correspond to the basic
control structures from the discipline of structured programming.

IF ...some action... THEN

This performs an action if some condition is true. The
condition is given by a value on the stack when IF is
encountered. A zero value is “false”, and any nonzero value
will be considered “true.” A true value causes the code
between IF and THEN to be performed. A false value causes
that code to be skipped.

IF

THEN

...action...

 true
false

IF ..true action.. ELSE ..false action.. THEN

This is similar to IF..THEN, except that it performs one action if
the condition is true (nonzero), and a different action if the
condition is false (zero). Remember that, unlike some other
languages, THEN terminates the control structure. The code
following then is always executed.

BEGIN ...some action... UNTIL

This performs an action repeatedly until some condition is
true. The condition is given by a value on the stack when
UNTIL is encountered. A zero (false) value means “do the
action again,” and will cause a loop from the UNTIL back to
the BEGIN. A nonzero (true) value means “terminate the
loop,” and will cause execution to continue on to the code
after the UNTIL. Note that it is the action inside the loop
that produces the true/false value for UNTIL! Whatever else
is done, this action must include code which leaves this
“exit/loop” value on the stack. Note also that the action
inside the loop will always be performed at least once!

BEGIN ...condition... WHILE ...some action... REPEAT

This performs an action repeatedly while some condition is true.
This is similar to BEGIN..UNTIL with the following
differences:

• The code that produces the “exit/loop” value is placed
before the WHILE, and the action to be taken is after the
WHILE.

• A zero (false) value means “terminate the loop”; a nonzero
(true) value means “do the action and keep looping.”

• It’s possible for the action to be performed zero times.

Another way to look at this: a false value at the WHILE will cause
the program to immediately jump to the code after the REPEAT
(thus exiting the loop). A true value at the WHILE will cause the
code immediately following the WHILE to be executed, and then

REPEAT will loop back to BEGIN.

IF

ELSE

..trueaction..

 true
false

..false action..

THEN

BEGIN

UNTIL

...action...

 true
false

BEGIN

WHILE

...condition...

 true

false

...action...

REPEAT

end start DO ...some action... LOOP

This performs an action repeatedly for a given number of
times. This loops over values from “start” to “end-1”. The
“end” and “start” values are given on the stack when DO is
encountered, with the “start” value on the top of stack, and
the “end” value second on the stack. These values can be
determined from a computation, but often will just be
numeric constants. For example

 10 0 DO I . LOOP

will perform the action I . ten times, with the loop index going from 0 to 9
(inclusive). The operator I will always return the value of the current loop
index. (Unlike other languages, you don’t need to use a variable for this.) So in
this example, the action I . will print the loop index on each pass through the
loop.

end start DO ...some action... n +LOOP

This is similar to DO..LOOP except that the loop index is incremented by “n”
instead of 1. “n” is the value on top of the stack when +LOOP is encountered; it is
usually a constant, but could be the result of a computation. It may be positive or
negative. If the increment is negative, “end” must be less than “start,” and the
loop will proceed all the way to the end value (not end-1).

IMPORTANT LIMITATION: All of these control structures can be used inside a word
definition, and inside a CONDITION or CAUSES phrase in an IsoMax state machine.
But they can not be used interactively from the command line.

80. DO Loop Example
It’s instructive to write some simple definitions which show how DO loops work:

 DECIMAL
 : TEST#1 10 0 DO I . LOOP ;
 TEST#1

This will just print the value of the loop index as it goes from 0 to 9.

 : TEST#2 DO I . LOOP ;
 10 0 TEST#2
 30 20 TEST#2

DO

LOOP

...action...

 >= end
< end

This has the same action as TEST#1, but instead of “hard coding” the loop limits inside
the definition, we are passing them as parameters on the stack. So we can try the loop
with a number of different start and end parameters.

 : TEST#3 DO I . 3 +LOOP ;
 10 0 TEST#3

This illustrates an increment greater than 1. You can try different end values -- say, 11,
12, and 13 -- and you’ll see that the loop always stops short of the end value.

 : TEST#4 DO I . -2 +LOOP ;
 0 10 TEST#4

This illustrates a negative increment. You’ll see that the loop will include the end value
if it can, but it will not go past it. (Try end values of 1 and -1 instead of 0.)

Remember: The most common mistake made with DO loops is to get the order of the
start and end values backwards. The “start” value is the last thing put on the stack.

81. Comparisons
Now that you have the ability to change the flow of your program based on a condition,
you need some operators to create those true or false flags. IsoMax has four operators
which will let you compare two numbers:

 a b = returns true if a=b
 a b > returns true if a>b (signed numbers)
 a b < returns true if a<b (signed numbers)
 a b U< returns true if a<b (unsigned numbers)

Here “a” and “b” refer to any two numbers on the stack. “b” is on top of the stack,
exactly as though you had typed the numbers “a b” at the keyboard.

You’ll note that there isn’t a U> operator. We’ll see in the next section how to construct
one. There also isn’t a U= operator, since = works for both signed and unsigned
numbers.

IsoMax also has three operators which let you examine a single number:

 a 0= returns true if a is zero
 a 0> returns true if a is greater than zero
 a 0< returns true if a is less than zero (negative)

Finally, there is an operator which will turn true to false, and false to true:

 a NOT logical inverse of a

Do not confuse NOT with INVERT. INVERT is a bitwise operator, which individually
inverts all 16 bits of a value on the stack. NOT is a logical operator, which returns true (a
nonzero value, actually $FFFF) if the value on the stack is false (zero), and returns false
(zero) if the value on the stack is true (any nonzero value). INVERT is for bits. NOT is
for true/false values.

Of course, these comparisons are also useful in IsoMax state machines. The phrase
between CONDITION and CAUSES must leave a true/false value on the stack. How this
value is produced is up to you; it might come from testing an input bit, or it might come
from comparing two numeric values.

82. Stack Operations
For most short pieces of code, like IsoMax CONDITION and CAUSES phrases, you’ll
only have one or two things on the stack, and they’ll be in the right place at the right
time. But sometimes values get put on the stack in the wrong order, or you have an extra
value that you don’t need, or maybe you need a value twice. To handle these little
details, IsoMax provides an assortment of stack operators.

Another word about stack notation: recall that we use the notation

 a b c

to signify that there are three values on the stack, with “a” on the bottom, “b” in the
middle, and “c” on the top. (This is how they’d be on the stack if you typed three
numbers on the command line, in the same left to right order.) Since the stack operators
rearrange the values on the stack, we need “before” and “after” pictures to illustrate their
operation. The common notation for this is

 a b c --- x y z

where “a b c” is the stack data before the operation, and “x y z” is the stack data after the
operation. We’ll see how this works in a moment.

First, let’s look at words that get rid of items on the stack:

 Word Stack effect (before --- after)

 DROP a ---
 2DROP a b ---

DROP simply takes whatever is on top of the stack, and gets rid of it. 2DROP gets rid of
the top two items on the stack. Anything else that may be deeper on the stack is

unaffected, so it’s not shown in the stack notation. So, if you have 1 2 3 on the stack and
you do a DROP, you’ll wind up with 1 2 on the stack...only the 3 is DROPped.

There are also words to duplicate items on the stack:

 DUP a --- a a
 OVER a b --- a b a

DUP just takes whatever is on top of the stack, and makes a second copy of it on the stack
(so then you have two of them). You might want to do this if you need to test if a value
is zero or nonzero, and then if it’s nonzero, perform some computation with it.

OVER is trickier: it makes a copy of the second item on the stack, and pushes that copy
onto the top of the stack (pushing everything else down). If that sounds confusing, just
remember that OVER takes “a b” and gives you “a b a”.

To rearrange the values on the stack, you can use:

 SWAP a b --- b a
 ROT a b c --- b c a

SWAP just “swaps” the top two stack items (the second becomes first, and the first
becomes second). ROT is short for “rotate”; it rotates the top three items on the stack,
such that the deepest item becomes the topmost item. If you do three rotates -- that is,
ROT ROT ROT -- you‘ll get right back to where you started.

IsoMax has many more stack operators, and you’re encouraged to look at the IsoMax
Glossary in Section 18 to learn about more of them. But these six will handle the most
of the manipulations you’ll need to perform.

83. Example
Remember that we don’t have a U> operator? It ought to look like this:

 a b U> should return true if a>b (unsigned numbers)

Well, if a>b, then it follows that b<a. And we do have an operator for unsigned-less-than
(U<). So all we need to do is reverse the order of a and b, and then use U<:

 a b SWAP U< returns true if b<a, and thus if a>b

We can take this one step further, and use our ability to make definitions to add this as a
new part of the IsoMax language!

 : U> SWAP U< ;

This defines a new word named U> which does the same thing as SWAP U<. Presto!
What’s nice is that this new word becomes a part of the language, just like all the words
originally “known” to IsoMax. Any place you could use the built-in word U<, you can
use your new word U>. There is no distinction between “built-in operators” and “user
functions”; you can add new comparison, arithmetic, and logical operators as you please.
For this reason, IsoMax is called an extensible language -- you can add new language
elements at any time.

84. Word list
The complete word list is found in the IsoMax Glossary (Section 18) at the end of this
manual.

85. ADVANCED PROGRAMMING

86. IsoMax v0.3 Memory Map

peripherals

0000
04E6

04E7
07FF

Data RAM
(Kernel)

Data RAM
(User)

0800
0BFF

0C00
0FFF

DATA MEMORY

1000
1BFF

0000
31FF

Program
Flash

(Kernel)

PROGRAM MEMORY

Data Flash
(Kernel)

1C00
1FFF

Data Flash
(User)

3200
7DFF

Program
Flash
(User)

7E00
7FDF

Program RAM
(User)

7FE0
7FFF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise available
for the user.

reserved

87. IsoMax v0.6 Memory Map

peripherals

0000
0245

0246
07FF

Data RAM
(Kernel)

Data RAM
(User)

0800
0BFF

0C00
0FFF

DATA MEMORY

1000
17FF

0000
13FF

Program
Flash
(Core)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

1800
1FFF

Data Flash
(User)

4000
7DFF

Program
Flash

(Kernel)

7E00
7FDF

Program RAM
(User)

7FE0
7FFF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise availab le
for the user.

reserved

Program
Flash
(User)

 ‘803 and
‘805 only

2000
3FFF

Program
Flash
(User)

1400
1FFF

88. IsoMax v0.6 Memory Map – DSP56807

reserved

0000
0245

0246
0FFF

Data RAM
(Kernel)

Data RAM
(User)

1000
17FF

1800
1FFF

DATA MEMORY

2000
2FFF

0000
13FF

Program
Flash
(Core)

PROGRAM MEMORY

Data Flash
(SAVE-
RAM)

3000
3FFF

Data Flash
(User)

4000
7DFF

Program
Flash

(Kernel)

F000
F7DF

Program RAM
(User)

F7E0
F7FF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines. This
space is otherwise availab le
for the user.

peripherals

Program
Flash
(User)

1400
3FFF

Program
Flash
(User)

8000
EFFF

89. Starting IsoMax State Machines
When the IsoPod is reset, it disables all running state machines. You must explicitly start
your state machines as part of your application -- usually, in your autostart code. There
are two ways to do this: with INSTALL, or with SCHEDULE-RUNS.

90. Using INSTALL to start a State Machine
From IsoMax version 0.36 onward, the preferred method of starting state machines is
with INSTALL. After you have defined a state machine, you can start it by typing

state-name SET-STATE
INSTALL machine-name

Note that you must use SET-STATE to specify the starting state of the machine first.
This is because INSTALL will start the machine immediately. To start more machines,
simply INSTALL them one at a time:

state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3
etc.

Normally,4 the state machine will start running immediately at the default rate of 100 Hz.
SET-STATE and INSTALL can be used even while other state machines are running,
that is, INSTALL will add a state machine to an already-running list of state machines.

At present, up to 16 state machines can be INSTALLed. Attempting to INSTALL more
than 16 machines will result in the message "Too many machines." To install more
machines, you can use UNINSTALL or define a MACHINE-CHAIN (both described
below).

SET-STATE and INSTALL can be used interactively from the command interpreter, or
as part of a word definition.

91. Removing a State Machine
INSTALL builds a list of state machines which are run by IsoMax. UNINSTALL will
remove the last-added machine from this list. You can use UNINSTALL repeatedly to
remove more machines from the list, in a last-in first-out order. For example:

4 The commands COLD, SCRUB, and STOP-TIMER will halt IsoMax. The command SCHEDULE-RUNS
will override the INSTALLed state machines and dedicate IsoMax to running a particular machine chain.

INSTALL machine-name-1 (SET-STATE commands have been omitted
for clarity)
INSTALL machine-name-2
INSTALL machine-name-3
 . . .
UNINSTALL ...removes machine-name-3
UNINSTALL ...removes machine-name-2
UNINSTALL ...removes machine-name-1
UNINSTALL ...removes nothing

If there are no state machines running, UNINSTALL will simply print the message "No
machines."

To remove all the INSTALLed state machines with a single command, use NO-
MACHINES.

92. Changing the IsoMax Speed
When the IsoPod is reset, IsoMax returns to its default rate of 100 Hz -- that is, all the
state machines are performed once every 10 milliseconds. You can change this rate with
PERIOD. The command

 n PERIOD

will set the IsoMax period to "n" cycles of a 5 MHz clock. Thus,

 DECIMAL 5000 PERIOD ...will execute state machines once per millisecond

 DECIMAL 1000 PERIOD ...will execute state machines every 200
microseconds

...and so on. You can specify a period from 10 to 65535.5 (Be sure to specify the
DECIMAL base when entering large numbers, or you may get the wrong value.) The
default period is 50000.

93. Stopping and Restarting IsoMax
Certain commands will halt IsoMax processing:

the COLD command
the SCRUB command

This is necessary because either COLD or SCRUB can remove state machines from the
IsoPod memory.6 You can also halt IsoMax manually with the command STOP-TIMER.

5 Note, however, that very few state machines will be able to run in 2 microseconds (corresponding to 10
PERIOD). If you specify too small a PERIOD, no harm will be done, but IsoMax will "skip" periods as
needed to process the state machines.

In all these cases, the timer that runs IsoMax is halted. So, even if you INSTALL new
state machines, they won't run. To restart IsoMax you should use the command
ISOMAX-START. This command will

a) Remove all installed state machines, and
b) Start IsoMax at the default rate of 100 Hz.

Since ISOMAX-START removes all installed state machines, you must use it before you
use INSTALL. For example:

STOP-TIMER
 . . .
ISOMAX-START
state-name-1 SET-STATE
INSTALL machine-name-1
state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

Resetting the IsoPod does the same as ISOMAX-START: it will remove all installed state
machines, and reset the timer to the default rate of 100 Hz.

94. Running More Than 16 Machines
INSTALL can install both state machines and machine chains. A "machine chain" is a
group of state machines that is executed together. Machine chains, like state machines,
are compiled as part of the program:

MACHINE-CHAIN chain-name
 machine-name-1
 machine-name-2
 machine-name-3
END-MACHINE-CHAIN

This example defines a chain with the given name, and includes the three specified state
machines (which must already have been defined). A machine chain can include any
number of state machines.

You must still set the starting state for each of the state machines in a machine chain,
before you install the chain. So, you could start this example chain with:

state-name-1 SET-STATE ...a state in machine-name-1
state-name-2 SET-STATE ...a state in machine-name-2
state-name-3 SET-STATE ...a state in machine-name-3

6 The command FORGET can also remove state machines from memory. Be very careful when using
FORGET that you don't remove an active state machine; or use STOP-TIMER to halt IsoMax first.

INSTALL chain-name

You can of course UNINSTALL a machine chain, which will stop all of its state
machines.

95. Using SCHEDULE-RUNS
Prior to IsoMax version 0.36, the preferred method of starting state machines was with
SCHEDULE-RUNS.7 SCHEDULE-RUNS worked only with machine chains, and required
you to specify the IsoMax period when you started the machines:

EVERY n CYCLES SCHEDULE-RUNS chain-name

SCHEDULE-RUNS is still available in IsoMax, to allow older IsoMax programs to be
compiled. However, you should be aware that using SCHEDULE-RUNS will disable any
machines started with INSTALL. SCHEDULE-RUNS replaces any previously running
state machines -- including any previous use of SCHEDULE-RUNS -- and there is no
"uninstall" function for it. After using SCHEDULE-RUNS, the only ways to "reactivate"
the INSTALL function are

a) use the ISOMAX-START command, or
b) reset the IsoPod

ISOMAX-START will disable any machine chain started by SCHEDULE-RUNS, and will
re-initialize IsoMax. You can then INSTALL state machines as described above.

You can use the PERIOD command to change the speed of a machine chain started with
SCHEDULE-RUNS.

96. Autostarting State Machines
When the IsoPod is reset, all state machines are halted. (Strictly speaking, the IsoMax
timer is running, but the list of installed state machines is empty.) To automatically start
your state machines after a reset, you must write an autostart routine, which uses SET-
STATE and INSTALL to start your machines. For example:

: MAIN
state-name-1 SET-STATE
INSTALL machine-name-1
state-name-2 SET-STATE
INSTALL machine-name-2
state-name-3 SET-STATE
INSTALL machine-name-3

7 Some versions of IsoMax prior to version 0.36 have a different implementation of INSTALL. That
implementation does not work as described here, so for those versions of IsoMax we recommend you use
SCHEDULE-RUNS.

. . . more startup code . . .

. . . application code . . .

; EEWORD

SAVE-RAM
HEX 7C00 AUTOSTART MAIN

In this example, the word MAIN is executed when the IsoPod is reset. The first thing it
does is to install three state machines. Note that these machines will begin running
immediately. If you need to do some initialization before starting these machines, that
code should appear before the first INSTALL command.

Refer to "Autostarting an IsoMax Application" for details about using SAVE-RAM and
AUTOSTART.

97. IsoMax State Machine Language Reference
This illustrates the different options for defining state machines, states, and state
transitions.

98. Defining State Machines
A state machine is defined by name:

 MACHINE <name-of-machine>

If the machine will be moved to Flash ROM, the MACHINE declaration must be
immediately followed by EEWORD:

 MACHINE <name-of-machine> EEWORD

99. Defining States
Once a state machine has been defined, all of the states which will be part of that machine
must be named:

 ON-MACHINE <name-of-machine>

APPEND-STATE <name-of-new-state>
APPEND-STATE <name-of-new-state>
...

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> AS-TAG

The last example above illustrates a debugging option which is available for states. If
WITH-VALUE ... AT-ADDRESS are specified, the value ‘n’ will be stored at address ‘a’
when a transition is made to this state.8

If the state machine will be moved to Flash ROM, each state declaration must be
immediately followed by EEWORD, thus:

 ON-MACHINE <name-of-machine>
APPEND-STATE <name-of-new-state> EEWORD
APPEND-STATE <name-of-new-state> EEWORD
...

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> AS-TAG
 EEWORD

100. Defining States
After the states have been named, the transitions between the states can be defined:

 IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> TO-HAPPEN

8 This value is actually stored by either TO-HAPPEN, THIS-TIME, or NEXT-TIME, when they are used
by another state to select this as the new state. The tag value is not stored when SET-STATE is used.

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> THIS-TIME

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> NEXT-TIME

<boolean computation> must be a fragment of procedural (Forth) code which leaves a
true/false (nonzero/zero) condition on the stack. If the result of this computation is true,
the actions following CAUSES (a compound action and a new state) will be performed.

<compound action> is an optional fragment of procedural (Forth) code which is
performed when the transition condition is satisfied, and before the state transition
actually takes place. This must be stack-neutral (the completed action must take nothing
from, and leave nothing on, the stack).

Usually when a transition is made to a new state, that state will be evaluated -- that is, all
of its CONDITION clauses will be examined -- on the next IsoMax cycle. This is the
safest approach, and ensures that all state machines receive adequate service. This is
what happens when you specify the next state TO-HAPPEN or NEXT-TIME. (TO-
HAPPEN is a synonym for NEXT-TIME).

There may be very special cases when it is important to evaluate the new state
immediately upon a transition to that state. To achieve this you specify the next-state-
name THIS-TIME. This is a hazardous practice, however, since it’s very easy to
construct a loop of states that will never terminate. THIS-TIME is strongly discouraged,
and should only be used when absolutely necessary, and with great care.

If the state machine will be moved to Flash ROM, each transition definition must be
immediately followed by IN-EE (not EEWORD), thus:

 IN-STATE <parent-state-name>
CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> TO-HAPPEN IN-EE

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> THIS-TIME IN-EE

 IN-STATE <parent-state-name>

CONDITION <boolean computation>
CAUSES <compound action> THEN-STATE <next-state-name> NEXT-TIME IN-EE

101. Defining Input Conditions
Often the boolean condition in a state transition will simply involve testing an input pin,
an I/O register, or a memory location for a bit to be set or cleared. To make this
programming easier, you can define an input trinary:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT

The trinary must be given a name. This name acts like a subroutine: when it is used, the
trinary tests the value at the specified address, and returns a true/false result. To be
precise: the value at address “a” is fetched, and logically ANDed with the TEST-MASK.
This result is logically XORed with the DATA-MASK. If the result is nonzero, a true flag
is left on the stack; if the result is zero, a false flag is left.

You should think of this as follows: the TEST-MASK specifies which bit is of interest.
DATA-MASK specifies an optional inversion. Although these will usually act on a single
bit, you can certainly have masks with multiple bits. Just remember that if any bit in the
AND/XOR result is nonzero, the result will be logically “true.”

TEST-MASK, DATA-MASK, and AT-ADDRESS can be specified in any order. So, the
following are equivalent:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT
DEFINE <name> AT-ADDRESS <a> TEST-MASK <n> DATA-MASK <m> FOR-INPUT
DEFINE <name> DATA-MASK <m> TEST-MASK <n> AT-ADDRESS <a> FOR-INPUT

Input trinaries can be used in state transitions and in procedural (Forth) code. You are
not required to use trinaries for the boolean computation in a state transition. They
are merely provided as a convenience.

An input trinary can be moved to Flash ROM with EEWORD:

DEFINE <name> TEST-MASK <n> DATA-MASK <m> AT-ADDRESS <a> FOR-INPUT
EEWORD

102. Defining Output Actions
Many actions involve setting or clearing a bit in an I/O register or a memory location. To
make this programming easier, you can define an output trinary in one of two forms:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
DEFINE <name> AND-MASK <n> XOR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT

The trinary must be given a name. This name acts like a subroutine: when it is used, the
trinary sets and clears bits at the specified address.

The most commonly used output action is SET/CLR. When performed, any “1” bits in
the SET-MASK will be set at address a. Any “1” bits in the CLR-MASK will be cleared
at address a. You can think of this as lists of bits to be set and bits to be cleared in the
register (or memory location). If you need to only set or only clear bits, the unneeeded
mask should be zero. For example, to set the LSB at address $F00, you would use

DEFINE <name> SET-MASK 1 CLR-MASK 0 AT-ADDRESS HEX 0F00 FOR-OUTPUT

Avoid having the same bit in both the SET-MASK and the CLR-MASK; the result will be
indeterminate.9

An alternative action is AND/XOR. This can be used to change the state of bits,
depending on their current value. When performed, the AND-MASK is applied to the
value at address a. Then the XOR-MASK is applied to this result. The final result is
stored back to address a. You can thus set, clear, and toggle bits in one operation:

AND-MASK bit XOR-MASK bit function
 0 0 clears the bit
 0 1 sets the bit
 1 0 leaves the bit unchanged
 1 1 toggles (inverts) the bit

Remember that the AND is always applied before the XOR. Use this form with care: it is
very easy to clear bits inadvertently with a badly chosen AND-MASK.

SET-MASK, CLR-MASK, and AT-ADDRESS can be specified in any order. The
following are equivalent:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
DEFINE <name> AT-ADDRESS <a> SET-MASK <n> CLR-MASK <m> FOR-OUTPUT
DEFINE <name> CLR-MASK <m> SET-MASK <n> AT-ADDRESS <a> FOR-OUTPUT

Likewise, AND-MASK, XOR-MASK, and AT-ADDRESS can be specified in any order.
But you cannot mix SET/CLR masks with AND/XOR masks.

Output trinaries can be used in state transitions and in procedural (Forth) code. You are
not required to use trinaries for the compound action in a state transition. They are
merely provided as a convenience.

An output trinary can be moved to Flash ROM with EEWORD:

DEFINE <name> SET-MASK <n> CLR-MASK <m> AT-ADDRESS <a> FOR-OUTPUT
EEWORD

103. Defining Procedural Actions
For either test conditions or output actions, you may wish to specify procedural code.
There is a form of the trinary declaraction that allows this:

DEFINE <name> PROC ...procedural code... END-PROC

9 Currently, on the DSP5680x family, these operations are performed by reading memory, applying the
logical operations, and then writing the result back to memory. But there is no guarantee that future
versions of IsoMax, or versions for other processors, will be implemented in precisely the same way.

When used to specify a test condition, the procedural (Forth) code should leave a
true/false value on the stack. When used to specify an output action, the code should
expect nothing from the stack, and when finished, leave nothing on the stack.

PROCs can be used within state transitions and in procedural (Forth) code. You are not
required to use PROCs; they are provided as a convenience.10

These also can be moved to Flash ROM with EEWORD:

DEFINE <name> PROC ...procedural code... END-PROC EEWORD

104. Activating State Machines

10 DEFINE ... PROC ... END-PROC simply creates a normal Forth high-level (“colon”) definition.

Refer to Application Note: Starting IsoMax State Machines for documentation
on SET-STATE, INSTALL, MACHINE-CHAIN, and SCHEDULE-RUNS.

105. IsoMax Performance Monitoring
The IsoMax system is designed to execute user-defined state machines at a regular
interval. This interval can be adjusted by the user with the PERIOD command. But how
quickly can the state machine be executed? IsoMax provides tools to measure this, and
also to handle the occasions when the state machine takes “too long” to process.

106. An Example State Machine
For the purposes of illustration, we’ll use a state machine that blinks the green LED:11

LOOPINDEX CYCLE-COUNTER
DECIMAL 100 CYCLE-COUNTER END
1 CYCLE-COUNTER START

MACHINE SLOW_GRN

ON-MACHINE SLOW_GRN
 APPEND-STATE SG_ON
 APPEND-STATE SG_OFF

IN-STATE SG_ON
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED OFF
 THEN-STATE SG_OFF
 TO-HAPPEN

IN-STATE SG_OFF
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED ON
 THEN-STATE SG_ON
 TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW_GRN

This machine will execute at the default rate of DECIMAL 50000 PERIOD, or 100 Hz
(since the clock rate is 5 MHz).

107. IsoMax Processing Time
Every time IsoMax processes your state machines, it measures the total number number
of clock cycles required. This is available to you in three variables:

11 This example uses LOOPINDEX and INSTALL, and therefore requires IsoMax v0.36 or later.

TCFAVG This is a moving average of the measured processing time.12 It is reported
as a number of 5 MHz clock cycles.

TCFMIN This is the minimum measured processing time (in 5 MHz cycles). Note
that this is not automatically reset when you install new state machines.
Therefore, after installing new state machines, store a large value in
TCFMIN to remove the old (false) minimum.

TCFMAX This is the maximum measured processing time (in 5 MHz cycles). This
is not automatically reset when you change state machines. Therefore,
after changing state machines, store a zero in TCFMAX to remove the old
(false) maximum.

To see this, enter the following commands while the SLOW_GRN state machine is
running:

DECIMAL 50000 TCFMIN !
0 TCFMAX !
TCFAVG ?
TCFMIN ?
TCFMAX ?

You may see an AVG and MIN time of about 630 cycles, and a MAX time near 1175
cycles.13 With a 5 MHz clock, this corresponds to a processing time of about 126 usec
(average) and 235 usec (maximum). The average is near the minimum because most of
the time, the state machine is performing no action. Only once every 100 iterations does
the CYCLE-COUNTER expire and force a change of LED state.

TCFAVG, TCFMIN, and TCFMAX return results in the same units used by PERIOD
(counts of a 5 MHz clock). This means you can use TCFMAX to determine the safe lower
bound of PERIOD. In this case, you could set PERIOD as low as 1175 decimal, and
IsoMax would always have time to process the state machine.

108. Exceeding the Allotted Time
What if, in this example, PERIOD had been set to 1000 decimal? Most of the time, the
state machine would be processed in less time, but once per second the LED transition
would require more time than was allotted.

IsoMax will handle this gracefully by “skipping” clock interrupts as long as the state
machine is still processing. With PERIOD set to 1000, an interrupt occurs every 200
usec. When the LED transition occurs, one interrupt will be skipped, and so there will be
400 usec (2000 cycles) between iterations of the state machine.

12 To be precise, TCFAVG is computed as the arithmetic mean of the latest measurement and the previous
average, i.e., Tavg[n+1] = (Tmeasured + Tavg[n]) / 2.
13 These times were measured on an IsoPod running the v0.37 kernel. With no state machines
INSTALLed, the same kernel shows a TCFAVG of 88 cycles (17.6 usec). This represents the overhead to
respond to a timer interrupt, service it, and perform an empty INSTALL list.

If this happens only rarely, it may not be of concern. But if it happens frequently, you
may have a problem with your state machine, or you may have set PERIOD too low. To
let you know when this is happening, IsoMax maintains an “overflow” counter:

TCFOVFLO A variable, reset to zero when IsoMax is started, and incremented every
time a clock interrupt occurs before IsoMax has completed state
processing. (In other words, this tells you the number of “skipped” clock
interrupts.)

You can see this in action by typing the following commands while the SLOW_GRN
state machine is still running:

TCFOVFLO ?
DECIMAL 1000 PERIOD
TCFOVFLO ?
TCFOVFLO ?
TCFOVFLO ?
50000 PERIOD
TCFOVFLO ?
TCFOVFLO ?

Be sure to type these commands, and don’t just upload them -- you need some time to
elapse between commands so that you can see the overflow counter increase. After you
change PERIOD back to 50000, the overflow counter will stop increasing.

109. Automatic Overflow Processing
If IsoMax overflows happen too frequently, you may wish your application to take some
corrective action. You could write a program to monitor the value of TCFOVFLO. But
IsoMax does this for you, and allows you to set an “alarm” value and an action to be
performed:

TCFALARM A variable, set to zero when IsoMax is started. If set to a nonzero value,
IsoMax will declare an “alarm” condition when the number of timer
overflows (TCFOVFLO) reaches this value. If set to zero, timer overflows
will be counted but otherwise ignored.

TCFALARMVECTOR A variable, set to zero when IsoMax is started. If set to a nonzero
value, IsoMax will assume that this is the CFA of a Forth word to be
executed when an “alarm” condition is declared. This Forth word should
be stack-neutral, that is, it should consume no values from the stack, and
should leave no values on the stack.
If set to zero, timer overflows will be counted but otherwise ignored.

Note that both of these values must be nonzero in order for alarm processing to take
place. Be particularly careful that TCFALARMVECTOR is set to a valid address; if it is set
to an invalid address it is likely to halt the IsoPod.

To continue with the previous example:

REDLED OFF
: TOO-FAST REDLED ON 50000 PERIOD ;
' TOO-FAST CFA TCFALARMVECTOR !
100 TCFALARM !
0 TCFOVFLO !

This defines a word TOO-FAST which is to be performed if too many overflows occur.
TOO-FAST will turn on the red LED, and will also change the IsoMax period to a large
(and presumably safe) value. The phrase ' TOO-FAST CFA returns the Forth CFA
of the TOO-FAST word; this can be stored as the TCFALARMVECTOR. Finally, the
alarm threshold is set to 100 overflows, and the overflow counter is reset.14

Now watch the LEDs after you type the command

1000 PERIOD

The slow blinking of the green LED will change to a rapid flicker for a few seconds.
Then the red LED will come on and the green LED will return to a slow blink. This was
caused by TOO-FAST being executed automatically when TCFOVFLO reached 100.

110. Counting IsoMax Iterations
It may be necessary for you to know how many times IsoMax has processed the state
machine. IsoMax provides another variable to help you determine this:

TCFTICKS A variable, set to zero when IsoMax is started, and incremented on every
IsoMax clock interrupt.

The frequency of the IsoMax clock interrupt is set by PERIOD; the default value is 100
Hz (50000 cycles of a 5 MHz clock). With this knowledge, you can use TCFTICKS for
time measurement. With DECIMAL 50000 PERIOD, the variable TCFTICKS will be
incremented 100 times per second.

Note that TCFTICKS is incremented whether or not an IsoMax overflow occurs. That is,
it counts the number of IsoMax clock interrupts, not the number of times the state
machine was processed. To compute the actual number of executions of the state
machine, you must subtract the number of “skipped” clock interrupts, thus:

TCFTICKS @ TCFOVFLO @ -

14 The test is for equality (TCFOVFLO=TCFALARM), not “greater than,” to ensure that the alarm condition
only happens once. The previous exercise left a large value in TCFOVFLO; if this is not reset to zero, the
alarm won’t occur until TCFOVFLO reaches 65535, “wraps around” back to zero, and then counts to 100.

111. Loop Indexes
A LOOPINDEX is an object that counts from a start value to an end value. Its name
comes from the fact that it resembles the I index of a DO loop. However,
LOOPINDEXes can be used anywhere, not just in DO loops. In particular, they can be
used in IsoMax state machines to perform a counting function.

112. Defining a Loop Index
You define a LOOPINDEX just like you define a variable:

 LOOPINDEX name

...where you choose the "name." For example,

 LOOPINDEX CYCLE-COUNTER

Once you have defined a LOOPINDEX, you can specify a starting value, an ending
value, and an optional step (increment) for the counter. For example, to specify that the
counter is to go from 0 to 100 in steps of 2, you would type:

 0 CYCLE-COUNTER START
 100 CYCLE-COUNTER END
 2 CYCLE-COUNTER STEP

You can specify these in any order. If you don't explicitly specify START, END, or
STEP, the default values will be used. The default for a new counter is to count from 0
to 1 with a step of 1. So, if you want to define a counter that goes from 0 to 200 with a
step of 1, all you have to change is the END value:

 LOOPINDEX BLINK-COUNTER
 200 BLINK-COUNTER END

If you use a negative STEP, the counter will count backwards. In this case the END value
must be less than the START value!

You can change the START, END, and STEP values at any time, even when the counter is
running.

113. Counting
The loopindex is incremented when you use the statement

 name COUNT

For example,

 CYCLE-COUNTER COUNT

COUNT will always return a truth value which indicates if the loopindex has passed its
limit. If it has not, COUNT will return false (zero). If it has, COUNT will return true
(nonzero), and it will also reset the loopindex value to the START value.

This truth value allows you to take some action when the limit is reached. This can be
used in an IF..THEN statement:

 CYCLE-COUNTER COUNT IF GRNLED OFF THEN

It can also be used as an IsoMax condition:

 CONDITION CYCLE-COUNTER COUNT CAUSES GRNLED OFF ...

In this latter example, the loopindex will be incremented every time this condition is
tested, but the CAUSES clause will be performed only when the loopindex reaches its
limit.

Note that the limit test depends on whether STEP is positive or negative. If positive, the
loopindex "passes" its limit when the count value + STEP value is greater than the END
value. If negative, the loopindex passes its limit when the count value + STEP value is
less than the END value.

In both cases, signed integer comparisons are used. Be careful that your loopindex limits
don't result in an infinite loop! If you specify an END value of HEX 7FFF, and a STEP
of 1, the loopindex will never exceed its limit, because in two's complement arithmetic,
adding 1 to 7FFF gives -8000 hex -- a negative number, which is clearly less than 7FFF.

Also, be careful that you always use or discard the truth value left by COUNT. If you just
want to increment the loopindex, without checking if it has passed its limit, you should
use the phrase

 CYCLE-COUNTER COUNT DROP

114. Using the Loopindex Value
Sometimes you need to know the value of the index while it is counting. This can be
obtained with the statement

 name VALUE

For example,

 CYCLE-COUNTER VALUE

Sometimes you need to manually reset the count to its starting value, before it reaches the
end of count. The statement

 name RESET

will reset the index to its START value. For example,

 CYCLE-COUNTER RESET

Remember that you don't need to explicitly RESET the loopindex when it reaches the end
of count. This is done for you automatically. The loopindex "wraps around" to the
START value, when the END value is passed.

115. A "DO loop"Example
This illustrates how a loopindex can be used to replace a DO loop in a program. This
also illustrates the use of VALUE to get the current value of the loopindex.

LOOPINDEX BLINK-COUNTER
DECIMAL 20 BLINK-COUNTER END
2 BLINK-COUNTER STEP
: TEST BEGIN BLINK-COUNTER VALUE . BLINK-COUNTER COUNT
UNTIL ;

If you now type TEST, you will see the even numbers from 0 (the default START value)
to 20 (the END value).15 This is useful to show how the loopindex behaves with negative
steps:

-2 BLINK-COUNTER STEP
40 BLINK-COUNTER START
BLINK-COUNTER RESET
TEST

This counts backwards by twos from 40 to 20. Note that, because we changed the
START value of BLINK-COUNTER, we had to manually RESET it. Otherwise TEST
would have started with the index value left by the previous TEST (zero), and it would
have immediately terminated the loop (because it's less than the END value of 20).

116. An IsoMax Example
This example shows how a loopindex can be used within an IsoMax state machine, and
also illustrates one technique to "slow down" the state transitions. Here we wish to blink
the green LED at a rate 1/100 of the normal state processing speed. (Recall that IsoMax
normally operates at 100 Hz; if we were to blink the LED at this rate, it would not be
visible!)

LOOPINDEX CYCLE-COUNTER
DECIMAL 100 CYCLE-COUNTER END
1 CYCLE-COUNTER START

MACHINE SLOW_GRN

15 Forth programmers should note that the LOOPINDEX continues up to and including the END value,
whereas a comparable DO loop continues only up to (but not including) its limit value.

ON-MACHINE SLOW_GRN
 APPEND-STATE SG_ON
 APPEND-STATE SG_OFF

IN-STATE SG_ON
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED OFF
 THEN-STATE SG_OFF
 TO-HAPPEN

IN-STATE SG_OFF
 CONDITION CYCLE-COUNTER COUNT
 CAUSES GRNLED ON
 THEN-STATE SG_ON
 TO-HAPPEN

SG_ON SET-STATE
INSTALL SLOW_GRN

Here the loopindex CYCLE-COUNTER counts from 1 to 100 in steps of 1. It counts in
either state, and only when the count reaches its limit do we change to the other state (and
change the LED). That is, the end-of-count CAUSES the LED action and the change of
state. Since the counter is automatically reset after the end-of-count, we don't need to
explicitly reset it in the IsoMax code.

117. Summary of Loopindex Operations

LOOPINDEX
name

Defines a "loop index" variable with the given name. For example,
 LOOPINDEX COUNTER1

START
END
STEP

These words set the start value, the end value, or the step value
(increment) for the given loop index. All of these expect an integer
argument and the name of a loopindex variable. Examples:
 1 COUNTER1 START
 100 COUNTER1 END
 3 COUNTER1 STEP
These can be specified in any order. If any of them is not specified,
the default values will be used (START=0, END=1, STEP=1).

COUNT This causes the given loop index to increment by the STEP value,
and returns a true or false value: true (-1) if the end of count was
reached, false (0) otherwise. For example:
 COUNTER1 COUNT
End of count is determined after the loop index is incremented, as
follows: If STEP is positive, "end of count" is when the index is
greater than the END value. If STEP is negative, "end of count" is
when the index is less than the END value. Signed integer
comparisons are used. In either case, when the end of count is
reached, the loop index is reset to its START value.

RESET This word manually resets the given loop index to its START value.
Example:
 COUNTER1 RESET

VALUE This returns the current index value (counter value) of the given loop
index. It will return a signed integer in the range -32768..+32767.
For example:
 COUNTER1 VALUEprints the loop index
COUNTER1

118. Autostarting an IsoMax Application

119. The Autostart Search
When the IsoPod is reset, it searches the Program Flash ROM for an autostart pattern.
This is a special pattern in memory which identifies an autostart routine. It consists of
the value $A55A, followed by the address of the routine to be executed.

 xx00: $A55A
 xx01: address of routine

It must reside on an address within Program ROM which is a multiple of $400, i.e.,
$0400, $0800, $0C00, ... $7400, $7800, $7C00.

The search proceeds from $0400 to $7C00, and terminates when the first autostart pattern
is found. This routine is then executed. If the routine exits, the IsoMax interpreter will
then be started.

120. Writing an Application to be Autostarted
Any defined word can be installed as an autostart routine. For embedded applications,
this routine will probably be an endless loop that never returns.

Here's a simple routine that reads characters from terminal input, and outputs their hex
equivalent:

 : MAIN HEX BEGIN KEY . AGAIN ; EEWORD

Note the use of EEWORD to put this routine into Flash ROM. An autostart routine must
reside in Flash ROM, because when the IsoPod is powered off, the contents of RAM will
be lost. If you install a routine in Program RAM as the autostart routine, the IsoPod will
crash when you power it on. (To recover from such a crash, see "Bypassing the
Autostart" below.)

Because this definition of MAIN uses a BEGIN...AGAIN loop, it will run forever. You
can define this word from the keyboard and then type MAIN to try it out (but you'll have
to reset the IsoPod to get back to the command interpreter). This is how you would write
an application that is to run forever when the IsoPod is reset.

You can also write an autostart routine that exits after performing some action. One
common example is a routine that starts some IsoMax state machines. For this
discussion, we'll use a version of MAIN that returns when an escape character is input:

 HEX
: MAIN2 HEX BEGIN KEY DUP . 1B = UNTIL ; EEWORD

In this example the loop will run continuously until the ESC character is received, then it
exits normally. If this is installed as the autostart routine, when it exits, the IsoPod will
proceed to start the IsoMax command interpreter.

121. Installing an Autostart Application
One the autostart routine is written, it can be installed into Flash ROM with the command

 address AUTOSTART routine-name

This will build the autostart pattern in ROM. The address is the location in Flash ROM
to use for the pattern, and must be a multiple of $400. Often the address $7C00 is used.
This leaves the largest amount of Flash ROM for the application program, and leaves the
option of later programming a new autostart pattern at a lower address. (Remember, the
autostart search starts low and works up until the first pattern found, so an autostart at
$7800 will override an autostart at $7C00.) So, for example, you could use

 HEX 7C00 AUTOSTART MAIN2

to cause the word MAIN2 to be autostarted. (Note the use of the word HEX to input a hex
number.)

Try this now, and then reset the IsoPod. You'll see that no "IsoMax" prompt is displayed.
If you start typing characters at the terminal, you'll see the hex equivalents displayed.
This will continue forever until you hit the ESC key, at which point the "IsoMax" prompt
is displayed and the IsoPod will accept commands.

122. Saving the RAM data for Autostart
Power the IsoPod off, and back on, and observe that the autostart routine still works.
Then press the ESC key to exit to the IsoMax command interpreter. Now try typing
MAIN2. IsoMax doesn't recognize the word, even though you programmed it into Flash
ROM! If you type WORDS you won't see MAIN2 in the listing. Why?

The reason is that some information about the words you have defined is kept in RAM16.
If you just reset the board from MaxTerm, the RAM contents will be preserved. But if
you power the board off and back on, the RAM contents will be lost, and IsoMax will
reset RAM to known defaults. If you type WORDS after a power cycle, all you will see
are the standard IsoMax words: all of your user-defined words are lost.

To prevent this from happening, you must save the RAM data to be restored on reset.
This is done with the word SAVE-RAM:

 SAVE-RAM

16 To be specific, what is lost is the LATEST pointer, which always points to the last-defined word in the
dictionary linked list. The power-up default for this is the last-defined word in the IsoMax kernel.

This can be done either just before, or just after, you use AUTOSTART. SAVE-RAM
takes a "snapshot" of the RAM contents, and stores it in Data Flash ROM. Then, the next
time you power-cycle the board, those preserved contents will be reloaded into RAM.
This includes both the IsoMax system variables, and any variables or data structures you
have defined.

Note: a simple reset will not reload the RAM. When the IsoPod is reset, it first checks to
see if it has lost its RAM data. Only if the RAM has been corrupted -- as it is by a power
loss -- will the IsoPod attempt to load the SAVE-RAM snapshot. (And only if there is no
SAVE-RAM snapshot will it restore the factory defaults.) If you use MaxTerm to reset
the IsoPod, the RAM contents will be preserved.

123. Removing an Autostart Application
Don't try to reprogram MAIN2 just yet. Even though the RAM has been reset to factory
defaults, MAIN2 is still programmed into Flash ROM, and IsoMax doesn't know about it.
In fact, if you try to redefine MAIN2 at this point, you might crash the IsoPod, as it
attempts to re-use Flash ROM which hasn't been erased. (To recover from this, see
"Bypassing the Autostart," below.)

To completely remove all traces of your previous work, use the word SCRUB:

 SCRUB

This will erase all of your definitions from Program Flash ROM -- including any
AUTOSTART patterns which have been stored -- and will also erase any SAVE-RAM
snapshot from Data Flash ROM. Basically, the word SCRUB restores the IsoPod to its
factory-fresh state.

124. Bypassing the Autostart
What if your autostart routine locks up? If you can't get access to the IsoMax command
interpreter, how do you SCRUB the application and restore the IsoPod to usability?

You can bypass the autostart search, and go directly to the IsoMax interpreter, by
jumpering together pins 2 and 4 on connector J3, and then resetting the IsoPod. You can
do this with a common jumper block:

CPU

J3 1

J2 1

PIN 2 (GND)
PIN 4 (SCLK)

IsoPod V1

CPU

J5 1

J4
1

PIN 2 (GND)
PIN 4 (SCLK)

IsoPod V2

This connects the SCLK/PE4 pin to ground. When the IsoPod detects this condition on
reset, it does not perform the autostart search.

Note that this does not erase your autostart application or your SAVE-RAM snapshot from
Flash ROM. These are still available for your inspection17. If you remove the jumper
block and reset the IsoPod, it will again try to run your autostart application. (This can be
a useful field diagnostic tool.)

To remove your application and start over, you'll need to use the SCRUB command. The
steps are as follows:

17 The IsoPod RAM will be reset to factory defaults instead of to the saved values, but you can still
examine the SAVE-RAM snapshot in Flash ROM.

1. Connect a terminal (or MaxTerm) to the RS-232 port.

2. Jumper pins 2 and 4 on J3.

3. Reset the IsoPod. You will see the "IsoMax" prompt.

4. Type the command SCRUB .

5. You can now remove the jumper from J3.

125. Summary
Use EEWORD to ensure that all of your application routines are in Flash ROM.

When your application is completely loaded, use SAVE-RAM to preserve your RAM data
in Flash ROM.

Use address AUTOSTART routine-name to install your routine for
autostarting. "address" must be a multiple of $0400 in empty Flash ROM; HEX 7C00 is
commonly used.

To clear your application and remove the autostart, use SCRUB. This restores the IsoPod
to its factory-new state.

If the autostart application locks up, jumper together pins 2 and 4 of J3, and reset the
IsoPod. This will give you access to the IsoMax command interpreter.

126. SAVE-RAM
The IsoPod contains 4K words of nonvolatile “Flash” data storage. This can be used to
save system variables and your application variables so that they are automatically
initialized when the IsoPod is powered up. This is done with the word SAVE-RAM.

127. Data Memory Map
The internal RAM of the IsoPod is divided into three regions: kernel buffers, User
Variables, and application variables.

Kernel buffers include the stacks, working “registers,” and other scratch data that are
used by the IsoMax interpreter. These are considered “volatile” and are always cleared
when the IsoPod is powered up. These are also private to IsoMax and not available to
you.

“User Variables” are IsoMax working variables which you may need to examine or
change. These include such values as the current number base (BASE), the current ROM

04B0*

0550*

0000

07FF

Data RAM

kernel
variables,
buffers,
stacks

application
variables
and data

structures

User Variables

1FFF

1CB0*

1000

1C00*
erased

Data Flash ROM

RAM image

1800

available
for

application

*typical addresses; may vary
depending on IsoMax version

and RAM allocation pointers, and the Terminal Input Buffer. This region also includes
RAM for the IsoMax state machine and the predefined IsoPod I/O objects.

Application data is whatever variables, objects, and buffers you define in your application
program. This can extend up to the end of RAM (address 07FF hex in the IsoPod).

128. Saving the RAM image
The word SAVE-RAM copies the User Variables and application data to the end of Data
Flash ROM. All of internal RAM, starting at the first User Variable (currently C/L) and
continuing to the end of RAM, is copied to corresponding addresses in the Flash ROM.

Note that this will copy all VARIABLEs and the RAM contents of all objects, but it will
not copy the stacks.

Normally you will use SAVE-RAM to take a “snapshot”of your RAM data when all your
variables are initialized and your application is ready to run.

129. Flash erasure
Because the SAVE-RAM uses Flash memory, it must erase the Flash ROM before it can
copy to it. This is automatically done by SAVE-RAM, and you need not perform any
explicit erase function. However, you should be aware that SAVE-RAM will erase more
Flash ROM than is needed for the RAM image.

Flash ROM is erased in “pages” of 256 words each. To ensure that all of the RAM image
is erased, SAVE-RAM must erase starting at the next lower page boundary. A page
boundary address is always of the form $XX00 (the low eight bits are zero). So, in the
illustrated example, Flash ROM is erased starting at address $1C00.

If you use Data Flash ROM directly in your application, you can be sure that your data
will be safe if you restrict your usage to addresses $1000-$17FF. Some of the space
above $1800 is currently unused, but this is not guaranteed for future IsoMax releases.

130. Restoring the RAM image
The IsoPod will automatically copy the saved RAM image from Flash ROM back to
RAM when it is first powered up. This will occur before your application program is
started. So, you can use SAVE-RAM to create an “initial RAM state” for your
application.

If the IsoPod is reset and the RAM contents appear to be valid, the saved RAM image
will not be used. This may happen if the IsoPod receives a hardware reset signal while
power is maintained. Usually this is the desired behavior.

131. Restoring the RAM image manually
You can force RAM to be copied from the saved image by using RESTORE-RAM. This
does exactly the reverse of SAVE-RAM: it copies the contents of Data Flash ROM to Data
RAM. The address range copied is the same as used by SAVE-RAM.

So, if your application needs RAM to be initialized on every hardware reset (and not just
on a power failure), you can put RESTORE-RAM at the beginning of your autostart
routine.

Note: do not use RESTORE-RAM if SAVE-RAM has not been performed. This will cause
invalid data to be written to the User Variables (and to your application variables as
well), which will almost certainly crash the IsoPod. For most applications it is sufficient,
and safer, to use the default RAM restore which is built into the IsoPod kernel.

132. IsoPod™ Reset Sequence
The IsoPod employs a flexible initialization that gives you many options for starting and
running application programs. Sophisticated applications can elect to run with or without
IsoMax, and with the default or custom processor initialization. This requires some
knowledge of the steps that the IsoPod takes upon a processor reset:

1. Perform basic CPU initialization. This includes the PLL clock generator and the
RS232 serial port.

2. Do the QUICK-START routine. If a QUICK-START vector is present in RAM,
execute the corresponding routine. QUICK-START is designed to be used before any
other startup code, normally just to provide some additional initialization. In particular,
this is performed before RAM is re-initialized. This gives you the opportunity to save
any RAM status, for example on the occurrence of a watchdog reset. Note that a power
failure which clears the RAM will also clear the QUICK-START vector.

3. Stop IsoMax. This is in case of a "software reset" that would otherwise leave the
timer running.

4. Check for "autostart bypass." Configure the SCLK/PE4 pin as an input with pullup
resistor. If the SCLK/PE4 pin then reads a continuous "0" (ground level) for 1
millisecond, skip the autostart sequence and "coldstart" the IsoPod. This will initialize
RAM to factory defaults and start the IsoMax interpreter.

This is intended to recover from a situation where an autostart application locks up
the IsoPod. Simply jumper the SCLK/PE4 pin to ground, and reset the IsoPod. This
will reset the RAM and start the interpreter, but please note that it will not erase any
Flash ROM. Flash ROM can be erased with the SCRUB command from the IsoMax
interpreter.
This behavior should be kept in mind when designing hardware around the IsoPod. If
the IsoPod is installed as an SPI master, or if the SCLK/PE4 pin is used as a
programmed output, there will be no problem. If the IsoPod is installed as an SPI
slave, the presence of SPI clock pulses will not cause a coldstart, but a coldstart will
happen if SCLK is held low in the "idle" state and a CPU reset occurs. For this
reason, if the IsoPod is an SPI slave, we recommend configuring the SPI devices with
CPOL=1, so the "idle" state of SCLK is high. If the SCLK/PE4 pin is used as a
programmed input, avoid applications where this pin might be held low when a CPU
reset occurs.

If SCLK/PE4 is not grounded, proceed with the autostart sequence.

5. Check the contents of RAM and initialize as required.

a. If the RAM contents are valid18, use them. This will normally be the case if the
CPU is reset with no power cycle, e.g., reset by MaxTerm, a watchdog, or an external
reset signal.

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash
ROM. If this RAM image is valid, use it. This gives you a convenient method to
initialize your application RAM.
c. If the Flash ROM contents are invalid, then reinitialize RAM to factory defaults.
Note that this will reset the dictionary pointer but will not erase any Flash ROM.

6. Look for a "boot first" routine. Search for an $A44A pattern in Program Flash
ROM. The search looks at 1K ($400) boundaries, starting at Program address $400 and
proceeding to $7C00. If found, execute the corresponding "boot first" routine. IsoMax is
not running at this point.

a. If the "boot first" routine never exits, only it will be run.

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the
autostart sequence.

7. Start IsoMax with an "empty" list of state machines. After this, you can begin
INSTALLing state machines. Any state machines INSTALLed before this point will be
disabled.

8. Look for an "autostart" routine. Search for an $A55A pattern in Program Flash
ROM. The search looks at 1K ($400) boundaries, starting at Program address $400 and
proceeding to $7C00. If found, execute the corresponding "autostart" routine.

a. If the "autostart" routine never exits, only it will be run. (Of course, any IsoMax
state machines INSTALLed by this routine will also run.)

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax
interpreter.

133. In summary:
Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip
initialization which must occur immediately.

Use an $A44A "boot first" vector for initialization which must precede IsoMax
activation, but which needs initialized RAM.

Use an $A55A "autostart" vector to install IsoMax state machines, and for your main
application program.

To bypass the autostart sequence, jumper SCLK/PE4 to ground.

18 RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234.

134. Object Oriented Extensions
These words provide a fast and compact object-oriented capability to MaxForth. It
defines Forth words as "methods" which are associated only with objects of a specific
class.

135. Action of an Object
An object is very much like a <BUILDS DOES> defined word. It has a user-defined data
structure which may involve both Program ROM and Data RAM. When it is executed, it
makes the address of that structure available (though not on the stack...more on this in a
moment).

What makes an object different is that there is a "hidden" list of Forth words which can
only be used by that object (and by other objects of the same class). These are the
"methods," and they are stored in a private wordlist. Note that this is not the same as a
Forth "vocabulary." Vocabularies are not used, and the programmer never has to worry
about word lists.

Each method will typically make several references to an object, and may call other
methods for that object. If the object's address were kept on the stack, this would place a
large burden of stack management on the programmer. To make object programming
simpler and faster, the address of the current object is stored in a variable, OBJREF. The
contents of this variable (the address of the current object) can always be obtained with
the word SELF.

When executed (interpreted), an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Store the object's address into OBJREF.
After this, the private methods of the object can be executed. (These will remain
available until an object of a different class is executed.)

When compiled, an object does the following:
1. Make the "hidden" word list of the object available for searching.
2. Compile code into the current definition which will store the object's address into

OBJREF.
After this, the private methods of the object can be compiled. (These will remain
available until an object of a different class is compiled.) Note that both the object
address and the method are resolved at compile time. This is "early binding" and results
in code that is as fast as normal Forth code.

In either case, the syntax is identical:
 object method
For example:
 REDLED TOGGLE

136. Defining a new class

BEGIN-CLASS name

Words defined here will only be visible to objects of this class.
These will normally be the "methods" which act upon objects of this class.

PUBLIC

Words defined here will be visible at all times.
These will normally be the "objects" which are used in the main program.

END-CLASS name

137. Defining an object

OBJECT name This defines a Forth word "name" which will be an object of the

current class. The object will initially be "empty", that is, it will have no
ROM or RAM allocated to it. The programmer can add data structure to
the object using P, , PALLOT and ALLOT, in the same manner as for
<BUILDS DOES> words. Like <BUILDS DOES>, the action of an
object is to leave its Program memory address.

138. Referencing an object

SELF This will return the address of the object last executed. Note that this is an

address in Program memory. If the object will use Data RAM, it is the
responsibility of the programmer to store a pointer to that RAM space.
See the example below.

139. Object Structure
An object may have associated data in both Program and Data spaces. This allows ROM
parameters which specify the object (e.g., port numbers for an I/O object); and private
variables ("instance variables") which are associated with the object. By default, objects
return their Program (ROM) address. If there are RAM variables associated with the
object, a pointer to those variables must be included in the ROM data.

Program space Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

Note that also OBJECT creates a pointer to Program space, it does not reserve any
Program or Data memory. That is the responsibility of the programmer. This is done in
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or
PALLOT to add cells to Program space and , or ALLOT to add cells to Data space. The
programmer can use OBJECT to build a custom defining word for each class. See the
example below.

140. Example using ROM and RAM
This is an example of an object which has both ROM data (a port address) and RAM data
(a timebase value).

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;
PUBLIC
 0D00 TIMER TA0
 0D08 TIMER TA1
END-CLASS TIMERS

The word TIMER expects a port address on the stack. It builds a new (empty) OBJECT.
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that
RAM (HERE) into Program memory (P,). This builds the RAM pointer as shown above.
Finally, it stores the I/O port address "a" into the second cell of Program memory (the
second P,). Each object built with TIMER will have its own copy of this data structure.

After the object is executed, SELF will return the address of the Program data for that
object. Because we've stored a RAM pointer as the first Program cell, the phrase SELF
P@ will return the address of the RAM data for the object. It is not required that the first
Program cell be the RAM pointer, but this is strongly recommended as a programming
convention for all objects using RAM storage.

Likewise, SELF CELL+ P@ will return the I/O port address associated with this object
(since that was stored in the second cell of Program memory by TIMER).

We can simplify programming by making these phrases into Forth words. We can also
build them into other Forth words. All of this will normally go in the "private" class
dictionary:

BEGIN-CLASS TIMERS
 : TIMER (a --) OBJECT HERE 1 ALLOT P, P, ;

 : TMR_PERIOD (-- a) SELF P@ ; (RAM variable for
this timer)
 : BASEADDR (-- a) SELF CELL+ P@ ; (I/O addr for
this timer)
 : TMR_SCR (-- a) BASEADDR 7 + ; (Control
register)

 : SET-PERIOD (n --) TMR_PERIOD ! ;
 : ACTIVE-HIGH (--) 0202 TMR_SCR CLEAR-BITS ;
PUBLIC
 0D00 TIMER TA0 (Timer with I/O address 0D00)
 0D08 TIMER TA1 (Timer with I/O address 0D08)
END-CLASS TIMERS

After this, the phrase 100 TA0 SET-PERIOD will store the RAM variable for timer
object TA0, and 200 TA1 SET-PERIOD will store the RAM variable for timer object
TA1. TA0 ACTIVE-HIGH will clear bits in timer A0 (at port address 0D07), and TA1
ACTIVE-HIGH will clear bits in timer A1 (at port address 0D0F).

In a WORDS listing, only TA0 and TA1 will be visible. But after executing TA0 or TA1,
all of the words in the TIMERS class will be found in a dictionary search.

Because the "methods" are stored in private word lists, you can re-use method names in
different classes. For example, it is possible to have an ON method for timers, a different
ON method for GPIO pins, a third ON method for PWM pins, and so on. When the object
is named, it will automatically select the correct set of methods to be used! Also, if a
particular method has not been defined for a given object, you will get an error message
if you attempt to use that method with that object. (One caution: if there is word in the
Forth dictionary with the same name, and there is no method of that name, the Forth word
will be found instead. An example of this is TOGGLE. If you have a TOGGLE method,
that will be compiled. But if you use an object that doesn't have a TOGGLE method,
Forth's TOGGLE will be compiled. For this reason, methods should not use the same
names as "ordinary" Forth words.)

Because the "objects" are in the main Forth dictionary, they must all have unique names.
For example, you can't have a Timer named A0 and a GPIO pin named A0. You must
give them unique names like TA0 and PA0.

141. Machine Code Programming
IsoMax allows individual words to be written in machine code as well as “high-level”
language code. Such words are indistinguishable in function from high-level words, and
may be used freely in application programs and state machines.

142. Assembler Programming
The IsoPod uses the Motorola DSP56F805 microprocessor. The machine language of
this processor is described in Motorola's DSP56800 16-Bit Digital Signal Processor
Family Manual, available at

<http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf>.

IsoMax does not include a symbolic assembler for this processor. You must use an
external assembler to convert your program to the equivalent hexadecimal machine code,
and then insert these numeric opcodes and operands into your IsoMax source code.19 For
an example, let's use an assembler routine to stop Timer C2:

 ; Timer/Counter
 ; -------------
 ; Timer control register
 ; 000x xxxx xxxx xxxx = no count
 andc #$1FFF,X:$0D56 ; TMRC2_CTRL

 ; Timer status & control register
 ; Clear TCF flag, clear interrupt enable flag
 bfclr #$8000,X:$0D57 ; TMRC2_SCR clear TCF
 bfclr #$4000,X:$0D57 ; TMRC2_SCR clear TCFIE

Translated to machine code, this is:

80F4 andc #$1FFF,X:$0D56
0D56
E000
80F4 bfclr #$8000,X:$0D57
0D57
8000
80F4 bfclr #$4000,X:$0D57
0D57
4000

19 If you wish to translate your programs manually to machine code, a summary chart of
DSP56800 instruction encoding is given at the end of this application note.

To compile this manually into an IsoMax word, you must append each hexadecimal value
to the dictionary with the P, operator. (The “P” refers to Program space,where all
machine code must reside.) You can put more than one value per line:

80F4 P, 0D56 P, E000 P,
80F4 P, 0D57 P, 8000 P,
80F4 P, 0D57 P, 4000 P,

All that remains is to add this as a word to the IsoMax dictionary, and to return from the
assembler code to IsoMax. There are three ways to do this: with CODE, CODE-SUB, and
CODE-INT.

143. CODE functions
The special word CODE defines a machine language word as follows:

CODE word-name

 (machine language for your word)

 (machine language for JMP NEXT)

END-CODE

Machine code words that are created with CODE must return to IsoMax by performing a
jump to the special address NEXT. In IsoMax versions 0.52 and higher, this is address
$0080. Earlier versions of IsoMax do not support NEXT and you must use CODE-SUB,
described below, to write machine code words.

An absolute jump instruction is $E984. Thus a JMP NEXT translates to $E984 $0080,
and our example STOP-TIMERC2 word could be written as follows:

HEX
CODE STOP-TIMERC2
 80F4 P, 0D56 P, E000 P,
 80F4 P, 0D57 P, 8000 P,
 80F4 P, 0D57 P, 4000 P,
 E984 P, 0080 P, (JMP NEXT)
END-CODE

Remember, this example will only work on recent versions of IsoMax (0.52 or later).

144. CODE-SUB functions
The special word CODE-SUB is just like CODE, except that the machine code returns to
IsoMax with an ordinary RTS instruction. This can be useful if you need to write a
machine code routine that can be called both from IsoMax and from other machine code

routines. It's also useful if the NEXT address is not available (as in IsoMax versions prior
to 0.52). The syntax is similar to CODE:

CODE-SUB word-name

 (machine language for your word)

 (machine language for RTS)

END-CODE

An RTS instruction is $EDD8, so STOP-TIMERC2 could be written with CODE-SUB as
follows:

HEX
CODE-SUB STOP-TIMERC2
 80F4 P, 0D56 P, E000 P,
 80F4 P, 0D57 P, 8000 P,
 80F4 P, 0D57 P, 4000 P,
 EDD8 P, (RTS)
END-CODE

This example will work in all versions of IsoMax.

145. CODE-INT functions
CODE-INT is just like CODE-SUB, except that the machine code returns to IsoMax with
an RTI (Return from Interrupt) instruction, $EDD9. This is useful if you need to write a
machine code interrupt handler that can also be called directly from IsoMax. CODE-INT
is only available on IsoMax versions 0.52 and later.

HEX
CODE-INT STOP-TIMERC2
 80F4 P, 0D56 P, E000 P,
 80F4 P, 0D57 P, 8000 P,
 80F4 P, 0D57 P, 4000 P,
 EDD9 P, (RTI)
END-CODE

To obtain the address of the machine code after it is compiled, use the phrase

 ' word-name CFA 2+

Note: if you are using EEWORD to put this new word into Flash ROM, use EEWORD
before trying to obtain the address of the machine code. EEWORD will change this
address.

146. Register Usage
In the current version of IsoMax software, all DSP56800 address and data registers may
be used in your CODE and CODE-SUB words. You need not preserve R0-R3, X0, Y0,
Y1, A, B, or N. Do not change the “mode” registers M01 or OMR, and do not change the
stack pointer SP.

Future versions of IsoMax may add more restrictions on register use. If you are
concerned about compatibility with future kernels, you should save and restore all
registers that your machine code will use.

CODE-INT words are expected to be called from interrupts, and so they should save any
registers that they use.

147. Calling High-Level Words from Machine Code
You can call a high-level IsoMax word from within a machine-code subroutine. This is
done by calling the special subroutine ATO4 with the address of the word you want to
execute.20 This address must be a Code Field Address (CFA) and is obtained with the
phrase

 ' word-name CFA

This address must be passed in register R0. You can load a value into R0 with the
machine instruction $87D0, $xxxx (where xxxx is the value to be loaded).

The address of the ATO4 routine can be obtained from a constant named ATO4. You can
use this constant directly when building machine code. The opcode for a JSR instruction
is $E9C8, $aaaa where aaaa is an absolute address. So, to write a CODE-SUB routine
that calls the IsoMax word DUP, you could write:

HEX
CODE-SUB NEWDUP
 87D0 P, ' DUP CFA P, (move DUP CFA to R0)
 E9C8 P, ATO4 P, (JSR ATO4)
 EDD8 P, (RTS)
END-CODE

Observe that the phrases ' DUP CFA and ATO4 are used within the CODE-SUB to
generate the proper addresses where required.

20The name ATO4 comes from “Assembler to Forth” and refers to the Forth underpinnings of IsoMax.

148. Using CPU Interrupts in the IsoPod
This applies to IsoPod kernel v0.38 and later.

149. Interrupt Vectors in Flash ROM
The DSP56F805 processor used in the IsoPod supports 64 interrupt vectors, in the first
128 locations of Flash ROM. Each vector is a two-word machine instruction, normally a
JMP instruction to the corresponding interrupt routine. When an interrupt occurs, the
CPU jumps directly to the appropriate address ($00-$7E) in the vector table.

Since this vector table is part of the IsoPod kernel, it cannot be altered by the user. Also,
some interrupts are required for the proper functioning of the IsoPod, and these vectors
must never be changed. So the IsoPod includes a “user” vector table at the high end of
Flash ROM (addresses $7D80-7DFE). This is exactly the same as the “kernel” vector
table, except that certain “reserved for IsoPod” interrupts have been excluded. The user
vector table can be programmed, erased, and reprogrammed freely by the user, as long as
suitable precautions are taken.

150. Writing Interrupt Service Routines
Interrupt service routines must be written in DSP56F805 machine language, and must
end with an RTI (Return from Interrupt) instruction. Some peripherals will have
additional requirements; for example, many interrupt sources need to be explicitly cleared
by the interrupt service routine. For more information about interrupt service routines,
refer to the Motorola DSP56800 16-Bit Digital Signal Processor Family Manual (Chapter
7), and the Motorola DSP56F801/803/805/807 16-Bit Digital Signal Processor User’s
Manual.

You should be aware that the IsoPod uses certain channels in the Interrupt Priority
controller:

 The IsoMax Timer (Timer D3) is assigned to Interrupt Priority Channel 3.
 SCI#0 (RS-232) serial I/O is assigned to Interrupt Priority Channel 4.
 The I/O Scheduling Timer21 is assigned to Interrupt Priority Channel 5.

These channels may be shared by other peripherals. However, it is important to
remember that these channels are enabled by the IsoMax kernel after a reset, and must
never be disabled. You should not use the corresponding bits in the Interrupt Priority
Register as interrupt enable/disable bits.

Interrupt channels 0, 1, 2, and 6 are reserved for your use. The IsoMax kernel does not
use them, and you may assign, enable, or disable them freely. Channel 0 has the lowest
priority, and 6 the highest.22

21 This will be a feature of future IsoMax kernels. Interrupt channel 5 is reserved for this use.

151. The User Interrupt Vector Table
The user vector table is identical to the kernel (CPU) vector table, except that it starts at
address $7D80 instead of address $0. Each interrupt vector is two words in this table,
sufficient for a machine language jump instruction. For all interrupts which are not
reserved by IsoMax, the kernel vector table simply jumps to the corresponding location in
the user vector table. (Remember that this adds the overhead of one absolute jump
instruction -- 6 machine clock cycles -- to the interrupt service.)

Note: IsoPod kernels version 0.37 and earlier do not support a user vector table.

Note: This table is subject to change. Future versions of the IsoPod software may
reserve more of these interrupts for internal use, as more I/O functions are added to
the IsoPod kernel.

Interrupt
Number

User
Vector

Address

Kernel
Vector

Address

Description

0 $00 reset - reserved for IsoPod
1 $7D82 $02 COP Watchdog reset
2 $7D84 $04 reserved by Motorola
3 $06 illegal instruction - reserved for IsoPod
4 $7D88 $08 Software interrupt
5 $7D8A $0A hardware stack overflow
6 $7D8C $0C OnCE Trap
7 $7D8E $0E reserved by Motorola
8 $7D90 $10 external interrupt A
9 $7D92 $12 external interrupt B

10 $7D94 $14 reserved by Motorola
11 $7D96 $16 boot flash interface
12 $7D98 $18 program flash interface
13 $7D9A $1A data flash interface
14 $7D9C $1C MSCAN transmitter ready
15 $7D9E $1E MSCAN receiver full
16 $7DA0 $20 MSCAN error
17 $7DA2 $22 MSCAN wakeup
18 $7DA4 $24 reserved by Motorola
19 $7DA6 $26 GPIO E
20 $7DA8 $28 GPIO D
21 $7DAA $2A reserved by Motorola
22 $7DAC $2C GPIO B
23 $7DAE $2E GPIO A
24 $7DB0 $30 SPI transmitter empty
25 $7DB2 $32 SPI receiver full/error
26 $7DB4 $34 Quad decoder #1 home
27 $7DB6 $36 Quad decoder #1 index pulse
28 $7DB8 $38 Quad decoder #0 home
29 $7DBA $3A Quad decoder #0 index pulse

22 Use channel 6 only for critically-urgent interrupts, since it will take priority over channels 4 and 5, both
of which require prompt service.

Interrupt
Number

User
Vector

Address

Kernel
Vector

Address

Description

30 $7DBC $3C Timer D Channel 0
31 $7DBE $3E Timer D Channel 1
32 $7DC0 $40 Timer D Channel 2
33 $42 Timer D Channel 3 - reserved for IsoPod
34 $7DC4 $44 Timer C Channel 0
35 $7DC6 $46 Timer C Channel 1
36 $7DC8 $48 Timer C Channel 2
37 $7DCA $4A Timer C Channel 3
38 $7DCC $4C Timer B Channel 0
39 $7DCE $4E Timer B Channel 1
40 $7DD0 $50 Timer B Channel 2
41 $7DD2 $52 Timer B Channel 3
42 $7DD4 $54 Timer A Channel 0
43 $7DD6 $56 Timer A Channel 1
44 $7DD8 $58 Timer A Channel 2
45 $7DDA $5A Timer A Channel 3
46 $7DDC $5C SCI #1 Transmit complete
47 $7DDE $5E SCI #1 transmitter ready
48 $7DE0 $60 SCI #1 receiver error
49 $7DE2 $62 SCI #1 receiver full
50 $7DE4 $64 SCI #0 Transmit complete
51 $66 SCI #0 transmitter ready - reserved for IsoPod
52 $7DE8 $68 SCI #0 receiver error
53 $6A SCI #0 receiver full - reserved for IsoPod
54 $7DEC $6C reserved by Motorola
55 $7DEE $6E ADC A Conversion complete
56 $7DF0 $70 reserved by Motorola
57 $7DF2 $72 ADC A zero crossing/error
58 $7DF4 $74 Reload PWM B
59 $7DF6 $76 Reload PWM A
60 $7DF8 $78 PWM B Fault
61 $7DFA $7A PWM A Fault
62 $7DFC $7C PLL loss of lock
63 $7DFE $7E low voltage detector

152. Clearing the User Vector Table
Since the user vector table is at the high end of Flash ROM, it will be erased by the
SCRUB command (which erases all of the user-programmable Flash ROM).

If you wish to erase only the user vector table, you should use the command

 HEX 7D00 PFERASE

This will erase 256 words of Program Flash ROM, starting at address 7D00. In other
words, this will erase locations 7D00-7DFF, which includes the user vector table.
Because of the limitations of Flash ROM, you cannot erase a smaller segment -- you must
erase 256 words. However, this is at the high end of Flash ROM and is unlikely to affect
your application program, which is built upward from low memory.

When Flash ROM is erased, all locations read as $FFFF. This is an illegal CPU
instruction. So it is very important that you install an interrupt vector before you enable
the corresponding interrupt! If you enable a peripheral interrupt when no vector has
installed, you will cause an Illegal Instruction trap and the IsoPod will reset.23

153. Installing an Interrupt Vector
Once the Flash ROM has been erased, you can write data to it with the PF! operator.
Each location can be written only once, and must be erased before being written with a
different value.24

For example, this will program the low-voltage-detect interrupt to jump to address zero.
(This will restart the IsoPod, since address zero is the reset address.)

 HEX E984 7DFE PF! 0 7DFF PF!

E984 is the machine language opcode for an absolute jump; this is written into the first
word of the vector. The destination address, 0, is written into the second word. Because
these addresses are in Flash ROM, you must use the PF! operator. An ordinary !
operator will not work.

154. Precautions when using Interrupts
1. An unprogrammed interrupt vector will contain an FFFF instruction, which is an
illegal instruction on the DSP56F805. Don’t enable an interrupt until after you have
installed its interrupt vector.

2. Remember that most interrupts must be cleared at the source before your service
routine Returns from Interrupt (with an RTI instruction). If you forget to clear the
interrupt, you may end in an infinite loop.

3. Remember that SCRUB will erase all vectors in the user table. Be sure to disable all of
the interrupts that you have enabled, before you use SCRUB.

4. You cannot erase a single vector in the user table. You must use HEX 7D00
PFERASE to erase the entire table. As with SCRUB, be sure to disable all of your
interrupt sources first.

5. Do not use the global interrupt enable (bits I1 and I0 in the Status Register) to disable
your peripheral interrupts. This will also shut off the interrupts that are used by IsoMax,
and the IsoPod will likely halt.

6. It is permissible to disable interrupts globally for extremely brief periods -- on the
order of a few machine instructions -- in order to perform operations that mustn’t be

23 This is why the “illegal instruction” interrupt is reserved for IsoMax. If it were vectored to the user table,
and you did not install a vector for it, the attempt to service an illegal instruction would cause yet another
illegal instruction, and the CPU would lock up.
24 Strictly speaking, you can write a Flash ROM location more than once, but you can only change “1” bits
to “0.” Once a bit has been written as “0”, you need to erase the ROM page to return it to a “1” state.

interrupted. But this may affect critical timing within IsoMax, and is generally
discouraged.

7. You can perform the action of an IsoPod reset by jumping to absolute address zero.
But note that, unlike a true hardware reset, this will not disable any interrupt sources that
you may have enabled.

155. Interrupt Handlers in High-Level Code
Interrupt handlers must be written in machine code. However, you can write a machine
code “wrapper” that will call a high-level IsoMax word to service an interrupt. This
application note describes how. You may find it useful to refer to the application notes
Machine Code Programming and Using CPU Interrupts in the IsoPod.

156. How it Works
The machine code routine below works by saving all the registers used by IsoMax, and
then calling the ATO4 routine to run a high-level IsoMax word. The high-level word
returns to the machine code, which restores registers and returns from the interrupt.

HEX 0041 CONSTANT WP

CODE-SUB INT-SERVICE
DE0B P, \ LEA (SP)+
D00B P, \ MOVE X0,X:(SP)+
D10B P, \ MOVE Y0,X:(SP)+
D30B P, \ MOVE Y1,X:(SP)+
D08B P, \ MOVE A0,X:(SP)+
D60B P, \ MOVE A1,X:(SP)+
D28B P, \ MOVE A2,X:(SP)+
D18B P, \ MOVE B0,X:(SP)+
D70B P, \ MOVE B1,X:(SP)+
D38B P, \ MOVE B2,X:(SP)+
D80B P, \ MOVE R0,X:(SP)+
D90B P, \ MOVE R1,X:(SP)+
DA0B P, \ MOVE R2,X:(SP)+
DB0B P, \ MOVE R3,X:(SP)+
DD0B P, \ MOVE N,X:(SP)+
DE8B P, \ MOVE LC,X:(SP)+
DF8B P, \ MOVE LA,X:(SP)+
F854 P, OBJREF P, \ MOVE X:OBJREF,R0
FA54 P, WP P, \ MOVE X:WP,R2
D80B P, \ MOVE R0,X:(SP)+
DA1F P, \ MOVE R2,X:(SP) ; Note no increment on
last push!
87D0 P, xxxx P, \ MOVE #$XXXX,R0 ; This is the CFA of
the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X:(SP)-,R2 ; restore the saved wp
F81B P, \ MOVE X:(SP)-,R0 ; restore the saved
objref
FF9B P, \ MOVE X:(SP)-,LA
DA54 P, WP P, \ MOVE R2,X:FWP
D854 P, OBJREF P, \ MOVE R0,X:OBJREF
FE9B P, \ MOVE X:(SP)-,LC
FD1B P, \ MOVE X:(SP)-,N

FB1B P, \ MOVE X:(SP)-,R3
FA1B P, \ MOVE X:(SP)-,R2
F91B P, \ MOVE X:(SP)-,R1
F81B P, \ MOVE X:(SP)-,R0
F39B P, \ MOVE X:(SP)-,B2
F71B P, \ MOVE X:(SP)-,B1
F19B P, \ MOVE X:(SP)-,B0
F29B P, \ MOVE X:(SP)-,A2
F61B P, \ MOVE X:(SP)-,A1
F09B P, \ MOVE X:(SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1
F11B P, \ MOVE X:(SP)-,Y0
F01B P, \ MOVE X:(SP)-,X0
EDD9 P, \ RTI
END-CODE

The only registers that are saved automatically by the processor are PC and SR. All other
registers that will be used must be saved manually. To allow a high-level routine to
execute, we must save R0-R3, X0, Y0, Y1, A, B, N, LC, and LA. Two registers that
need not be saved are M01 and OMR, because these registers are never used or changed
by IsoMax. We must also save the two variables WP and OBJREF, which are used by the
IsoMax interpreter and object processor.

Since the DSP56F805 processor does not have a “pre-increment” address mode, the first
push must be preceded by a stack pointer increment, LEA (SP)+, and the last push must
not increment SP.

The instruction ordering may seem peculiar; this is because a MOVE to an address
reigster (Rn) has a one-instruction delay. So we always interleave another unrelated
instruction after a MOVE x, Rn. Note also the use of the symbols ATO4 and OBJREF to
obtain addresses. The variable WP is located at hex address 0041 in current IsoMax
kernels, and this is defined as a constant for readability.

The value shown as “xxxx” in the listing above is where you must put the Code Field
Address (CFA) of the desired high-level word. You can obtain this address with the
phrase

 ' word-name CFA

157. Use of Stacks
The interrupt routine will use the same Data and Return stacks as the IsoMax command
interpreter, that is, the “main” program.25 Normally this is not a problem, because
pushing new data onto a stack does not affect the data which is already there. However,
you must take care that your interrupt handler leaves the stacks as it found them – that is,
does not leave any extra items on the stack, or consume any items that were already there.
A stack imbalance in an interrupt handler is a very quick way to crash the IsoPod.

25The IsoMax state machine uses an independent set of stacks.

158. Use of Variables
Some high-level words use temporary variables and buffers which are not saved when an
interrupt occus. One example is the numeric output functions (. D. F. and the like).
You should not use these words within your interrupt routine, since this will corrupt the
variables that might be used by the main program.

159. Re-Entrancy
To avoid re-entrancy problems, it is best to not re-enable interrupts within your high-level
interrupt routine. Interrupts will be re-enabled automatically by the RTI instruction,
when your routine has finished its processing.

You must of course be sure to clear the interrupt source in your high-level service
routine. If you fail to do so, when the RTI instruction is executed, a new interrupt will
instantly occur, and your program will be stuck in an infinite loop of interrupts.

160. Example: Millisecond Timer
This example uses Timer C2 to increment a variable at a rate of once per millisecond.
After loading the entire example, you can use START-TMRC2 to initialize the timer, set
up the interrupt controller for that timer, and enable the interrupt. From that point on, the
variable TICKS will be incremented on every interrupt. You can fetch the TICKS
variable in your main program (or from the command interpreter).

The high-level interrupt service routine is INT-SERVICE. It does only two things. First
it clears the interrupt source, by clearing the TCF bit in the Timer C2 Status and Control
Register. Then it increments the variable TICKS. As a rule, interrupt service routines
should be as short and simple as possible. Remember, no other processing takes place
while the interrupt is being serviced.

You can stop the timer interrupt with STOP-TMRC2.

\ 1 MILLISECOND INTERRUPT EXAMPLE

\ Count for 1 msec at 5 MHz timer clock
DECIMAL 5000 CONSTANT TMRC2_COUNT
HEX

\ Timer C2 registers
0D50 CONSTANT TMRC2_CMP1
0D53 CONSTANT TMRC2_LOAD
0D56 CONSTANT TMRC2_CTRL
0D57 CONSTANT TMRC2_SCR

\ GPIO interrupt control register
FFFB CONSTANT GPIO_IPR
2000 CONSTANT GPIO_IPL_2 \ bit which enables Channel 2
IPL

\ Interrupt vector & control.
\ Timer C channel 2 is vector 36, IRQ table address $48
0048 7D80 + CONSTANT TMRC2_VECTOR

\ Timer C channel 2 is controlled by Group Priority Register
GPR9, bits 2:0
\ Timer will use interrupt priority channel 2
0E69 CONSTANT TMRC2_GPR
0007 CONSTANT TMRC2_PLR_MASK
0003 CONSTANT TMRC2_PLR_PRIORITY \ priority channel 2 in
bits 2:0

\ Initialize Timer C2
: START-TMRC2

 \ Set compare 1 register to desired # of cycles
 TMRC2_COUNT TMRC2_CMP1 !

 \ Set reload register to zero
 0 TMRC2_LOAD !

 \ Timer control register
 \ 001 = normal count mode
 \ 1 011 = IPbus clock / 8 = 5 MHz timer clock
 \ 0 0 = secondary count source n/a
 \ 0 = count repeatedly
 \ 1 = count until compare, then reinit
 \ 0 = count up
 \ 0 = no co-channel init
 \ 000 = OFLAG n/a
 \ 0011 0110 0010 0000 = $3620
 3620 TMRC2_CTRL !

 \ Timer status & control register

 \ Clear TCF flag, set interrupt enable flag
 8000 TMRC2_SCR CLEAR-BITS
 4000 TMRC2_SCR SET-BITS

 \ Interrupt Controller
 \ set the interrupt channel = 3 for Timer D3
 TMRC2_PLR_MASK TMRC2_GPR CLEAR-BITS
 TMRC2_PLR_PRIORITY TMRC2_GPR SET-BITS

 \ enable that interrupt channel in processor status
register
 GPIO_IPL_2 GPIO_IPR SET-BITS
;

\ Stop Timer C2
: STOP-TMRC2
 \ Timer control register
 \ 000x xxxx xxxx xxxx = no count
 E000 TMRC2_CTRL CLEAR-BITS

 \ Timer status & control register
 \ Clear TCF flag, clear interrupt enable flag
 C000 TMRC2_SCR CLEAR-BITS
;

VARIABLE TICKS

\ High level word to handle the timer C2 interrupt
: TMRC2-IRPT
 \ clear the TCF flag to clear the interrupt
 8000 TMRC2_SCR CLEAR-BITS
 \ increment the ticks counter
 1 TICKS +!
;

HEX 0041 CONSTANT WP

CODE-SUB INT-SERVICE
DE0B P, \ LEA (SP)+
D00B P, \ MOVE X0,X:(SP)+
D10B P, \ MOVE Y0,X:(SP)+
D30B P, \ MOVE Y1,X:(SP)+
D08B P, \ MOVE A0,X:(SP)+
D60B P, \ MOVE A1,X:(SP)+
D28B P, \ MOVE A2,X:(SP)+
D18B P, \ MOVE B0,X:(SP)+
D70B P, \ MOVE B1,X:(SP)+
D38B P, \ MOVE B2,X:(SP)+
D80B P, \ MOVE R0,X:(SP)+

D90B P, \ MOVE R1,X:(SP)+
DA0B P, \ MOVE R2,X:(SP)+
DB0B P, \ MOVE R3,X:(SP)+
DD0B P, \ MOVE N,X:(SP)+
DE8B P, \ MOVE LC,X:(SP)+
DF8B P, \ MOVE LA,X:(SP)+
F854 P, OBJREF P, \ MOVE X:OBJREF,R0
FA54 P, WP P, \ MOVE X:WP,R2
D80B P, \ MOVE R0,X:(SP)+
DA1F P, \ MOVE R2,X:(SP) ; Note no increment on
last push!
87D0 P, ' TMRC2-IRPT CFA P, \ MOVE #$XXXX,R0 ; CFA of
the word to execute
E9C8 P, ATO4 P, \ JSR ATO4 ; do that Forth word
FA1B P, \ MOVE X:(SP)-,R2 ; restore the saved wp
F81B P, \ MOVE X:(SP)-,R0 ; restore the saved
objref
FF9B P, \ MOVE X:(SP)-,LA
DA54 P, WP P, \ MOVE R2,X:WP
D854 P, OBJREF P, \ MOVE R0,X:OBJREF
FE9B P, \ MOVE X:(SP)-,LC
FD1B P, \ MOVE X:(SP)-,N
FB1B P, \ MOVE X:(SP)-,R3
FA1B P, \ MOVE X:(SP)-,R2
F91B P, \ MOVE X:(SP)-,R1
F81B P, \ MOVE X:(SP)-,R0
F39B P, \ MOVE X:(SP)-,B2
F71B P, \ MOVE X:(SP)-,B1
F19B P, \ MOVE X:(SP)-,B0
F29B P, \ MOVE X:(SP)-,A2
F61B P, \ MOVE X:(SP)-,A1
F09B P, \ MOVE X:(SP)-,A0
F31B P, \ MOVE X:(SP)-,Y1
F11B P, \ MOVE X:(SP)-,Y0
F01B P, \ MOVE X:(SP)-,X0
EDD9 P, \ RTI
END-CODE

\ Install the interrupt vector in Program Flash ROM
E984 TMRC2_VECTOR PF! \ JMP
instruction
' INT-SERVICE CFA 2+ TMRC2_VECTOR 1+ PF! \ target
address

To install this interrupt you must have an IsoMax kernel version 0.5 or greater. This has
a table of two-cell interrupt vectors starting at $7D80. The first cell (at $7D80+$48 for
Timer C2) must be a machine-code jump instruction, $E984; the second cell is the
address of the interrupt service routine. This address is obtained with the phrase '
INT-SERVICE CFA 2+ because the first two locations of a CODE-SUB or CODE-

INT are “overhead.” The interrupt vector is not installed with EEWORD; instead, it is
programmed directly into Program Flash ROM with the PF! operator.

Observe also the use of ' TMRC2-IRPT CFA to obtain the address “xxxx” of the high-
level interrupt service routine.

This example is shown running out of Program RAM; that is, none of the words have
been committed to Flash ROM with EEWORD. This is acceptable for testing, but for a
real application you would want your interrupt handler to reside in ROM so that it
survives a reset or a memory crash.

161. Harvard Memory Model

The IsoPod Processor uses a "Harvard" memory model, which means that it has separate
memories for Program and Data storage. Each of these memory spaces uses a 16-bit
address, so there can be 64K 16-bit words of Program ("P") memory, and 64K 16-bit
words of Data ("X") memory.

162. MEMORY OPERATORS

Most applications need to manipulate data, so the memory operators use Data space.
These include

@ ! C@ C! +! HERE ALLOT , C,

Occasionally you will need to manipulate Program memory. This is accomplished
through a separate set of memory operators having a "P" prefix:

P@ P! PC@ PC! PHERE PALLOT P, PC,

Note that on the IsoPod™, the smallest addressable unit of memory is one 16-bit word.
This is the unpacked character size. This is also the "cell" size used for arithmetic and
addressing. Therefore, @ and C@ are equivalent, and ! and C! are equivalent.

163. WORD STRUCTURE

The executable "body" of a IsoMax™ word is kept in Program space. This includes the
Code Field of the word, and the threaded definition of high-level words or the machine
code definition of CODE words.

The "header" of a IsoMax™ word is kept in Data space. This includes the Name Field,
the Link Field, and the PFA Pointer.

Program Space

 .
.
.

CFA Code Field
PFA Threaded code

(high level words)

or

Machine code
(CODE words)

 .
.
.

Data Space

 .
.
.

NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

164. VARIABLES

Since the Program space is normally ROM, and variables must reside in RAM and in
Data space, the "body" of a VARIABLE definition does not contain the data. Instead, it
holds a pointer to a RAM location where the data is stored.

Program Space

 .
.
.

CFA Code Field
PFA RAM Pointer

 .
.
.

Data Space

 .
.
.

NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 data
 .

.

.

165. <BUILDS DOES>

"Defining words" created with <BUILDS and DOES> may have a variety of purposes.
Sometimes they are used to build Data objects in RAM, and sometimes they are used to
build objects in ROM (i.e., in Program space). In the <BUILDS code you can allocate
either space by using the appropriate memory operators.

Program Space

 .
.
.

CFA Code Field
PFA DOES> Action Pointer

 Allocate with
PHERE PALLOT

P, PC,
 .

.

.

Data Space

 .
.
.

NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 Allocate with

HERE ALLOT
, C,

 .
.
.

For maximum flexibility, DOES> will leave on the stack the address in Program
space of the user-allocated data. If you need to allocate data in Data space, you must
also store (in Program space) a pointer to that data. For example, here is how you might
define VARIABLE using <BUILDS and DOES>.

: VARIABLE

 <BUILDS Defines a new Forth word, header and empty body;
 HERE gets the address in Data space (HERE) and appends that to Program space;
 0 , appends a zero cell to Data space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (a pointer to Data) and return that.
;

This constructs the following:

Program Space

 .
.
.

CFA Code Field
PFA DOES> Action Pointer

 RAM pointer
 .

.

.

Data Space

 .
.
.

NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 0 (data)
 .

.

.

Words with constant data, on the other hand, can be allocated entirely in Program space.
Here's how you might define CONSTANT:

: CONSTANT (n --)

 <BUILDS Defines a new Forth word, header and empty body;
 P, appends the constant value (n) to Program space.
 DOES> The "run-time" action will start with the Program address on the stack;
 P@ fetch the cell stored at that address (the constant) and return that.
;

This constructs the following:

Program Space

 .
.
.

CFA Code Field
PFA DOES> Action Pointer

 N (constant value)
 .

.

.

Data Space

 .
.
.

NFA Name Length

Name

 Link to previous Name
 PFA Pointer
 .

.

.

166. Object Oriented Internals
For this illustration we will use the BYTEIO
class from the file Gpioobj.4th (appended below).

167. Dictionary Hiding
BEGIN-CLASS marks the start of definitions
that will be "hidden." Once they are hidden, they
will only be visible to members of this class.
BEGIN-CLASS just marks a dictionary position;
it doesn't compile anything.

PUBLIC marks the end of the hidden definitions.
It does two things. First, it puts a pointer to the
last-defined word (i.e., the last hidden word) in
the context-last variable. This means these words
will still be found when the CONTEXT list is
searched. Second, it relinks the main dictionary
list around the hidden words, by resetting the last
variable.

At this point, the hidden words are still
searchable, and can still be used to write Forth
definitions. New definitions will be "public" and
will be part of the main dictionary list, not the
hidden list.

END-CLASS hides the private definitions, by
clearing CONTEXT. It also creates a class-name
word (in this example, BYTEIO) which will
make the private word list visible again, by
putting its dictionary link back into the context-
last variable.

168. Object Action
A word created with OBJECT has both a
compile-time action and a run-time action. At
compile-time (or when interpreted), it makes its
hidden word list visible, by putting the dictionary
link into the context-last variable. Thus, after an
object is named, its private "methods" can be
compiled or interpreted.

BASEADDR

IS-INPUT

IS-OUTPUT

PUTBYTE

GETBYTE

I/O

previous word

PORTA

later word

PORTB

BYTEIO

previous word

context-last

last

CURRENT

CONTEXT

PUBLIC

BEGIN-CLASS

END-CLASS

later word

Code
Field
(DII)

DOES>
code

pointer

namelength link pfaptr

hidden
words
pointer

Parameters
(supplied by
programmer)

Program space

Data space

CFA PFA PFA+1 PFA+2

At run-time, an object puts the address of its parameters (PFA+2) into the OBJREF
variable. This is essentially the same as DOES>, except that the address is stored into a
variable instead of being left on the stack. The "methods" which follow the object all
expect to find this address in OBJREF. (The word SELF returns this address.)

Note: when an object is used in a Forth definition, what actually gets compiled is a literal
(in-line constant) with the address PFA+2. Thus the phrase PORTA GETBYTE is
compiled as

CFA of OBJLIT
PFA+2

of PORTA
object

CFA of GETBYTE
definition from
PORTA's class

Code
Field
(DII)

NFA of
I/O

(link)

DOES>
code

pointer
0xFB0PORTA definition

in Program space

.

The special word OBJLIT takes the in-line value which follows, and stores it in the
OBJREF variable. This is exactly the same as the Forth primitive LIT, except that the
value is stored in a variable instead of being left on the stack.

In this example, the PORTA definition has one user-supplied parameter: the value
0xFB0, which is the I/O address of the desired port. The object is created, and this extra
parameter is appended, by the word I/O (see below).

\ ---
\ GPIO PARALLEL PORTS - BYTE I/O
\ ---
BEGIN-CLASS BYTEIO

\ BYTEIO methods expect SELF to point to: baseaddr in ROM
: BASEADDR (-- a) SELF P@ ;

: IS-INPUT (makes pin an input
 0FF BASEADDR 3 + CLEAR-BITS (PER=0, GPIO

 0FF BASEADDR 2+ CLEAR-BITS (data dir=in
;

: IS-OUTPUT (makes pin an output
 0FF BASEADDR 3 + CLEAR-BITS (PER=0, GPIO
 0FF BASEADDR 2+ SET-BITS (data dir=out
;

: PUTBYTE (c --) IS-OUTPUT BASEADDR 1+ C! ;
: GETBYTE (-- c) IS-INPUT BASEADDR 1+ C@ ;

\ define an I/O port
: I/O (baseaddr --) OBJECT P, ;

PUBLIC

FB0 I/O PORTA
FC0 I/O PORTB

END-CLASS BYTEIO

169. CPU Registers

Under construction…

 (BASE REGISTERS)
0C00 SIM
0C40 PFIU2
0D00 TMRA
0D20 TMRB
0D40 TMRC
0D60 TMRD
0D80 CAN
0E00 PWMA
0E20 PWMB
0E40 DEC0
0E50 DEC1
0E60 ITCN
0E80 ADCA
0EC0 ADCB
0F00 SCI0
0F10 SCI1
0F20 SPI
0F30 COP
0F40 PFIU
0F60 DFIU
0F80 BFIU
0FA0 CLKGEN
0FB0 GPIOA
0FC0 GPIOB
0FE0 GPIOD
0FF0 GPIOE

(TIMER REGISTERS. OFFSET IS CHANNEL * 8)

0 CMP1
1 CMP2
2 CAP
3 LOAD
4 HOLD
5 CNTR
6 CTRL
7 SCR

(GPIO)

0 PUR
1 DR
2 DDR
3 PER
4 IAR
5 IENR
6 IPOLR
7 IPR
8 IESR

 (A/D CONVERTER)

0 ADCR1
1 ADCR2
2 ADZCC
3 ADLST1
4 ADLST2
5 ADSDIS
6 ADSTAT
7 ADLSTAT
8 ADZCSTAT
9 ADRSLT0
A ADRSLT1
B ADRSLT2
C ADRSLT3
D ADRSLT4
E ADRSLT5
F ADRSLT6
10 ADRSLT7
11 ADLLMT0
12 ADLLMT1
13 ADLLMT2
14 ADLLMT3
15 ADLLMT4
16 ADLLMT5
17 ADLLMT6
18 ADLLMT7
19 ADHLMT0
1A ADHLMT1
1B ADHLMT2
1C ADHLMT3
1D ADHLMT4
1E ADHLMT5
1F ADHLMT6

20 ADHLMT7
21 ADOFS0
22 ADOFS1
23 ADOFS2
24 ADOFS3
25 ADOFS4
26 ADOFS5
27 ADOFS6
28 ADOFS7

(PWM)

0 PMCTL
1 PMFCTL
2 PMFSA
3 PMOUT
4 PMCNT
5 PWMCM
6 PWMVAL0
7 PWMVAL1
8 PWMVAL2
9 PWMVAL3
A PWMVAL4
B PWMVAL5
C PMDEADTM
D PMDISMAP1
E PMDISMAP2
F PMCFG
10 PMCCR
11 PMPORT

(QUAD)

0 DECCR
1 FIR
2 WTR
3 POSD
4 POSDH
5 REV
6 REVH
7 UPOS
8 LPOS
9 UPOSH
A LPOSH
B UIR
C LIR

D IMR
E TSTREG

(SCI)

0 SCIBR
1 SCICR
2 SCISR
3 SCIDR

(SPI)

0 SPSCR
1 SPDSR
2 SPDRR
3 SPDTR

170. IsoPod™ HARDWARE FEATURES

. Three On Board LED’s
Red, Yellow, Green

. 16 GPIO lines
Programmable Edge sensitive interrupts

. Serial Communication Interface (SCI) full-duplex serial channel
One RS-232
One RS422/485
Programmable Baud Rates, 38,400, 19,200, 9600, 4800, 1200

. Serial Peripheral Interface (SPI)
Full-duplex synchronous operation on four-wire interface
Master or Slave

. 8-ch 12-bit AD
Continuous Conversions @ 1.2us (6 ADC cycles)
Single ended or differential inputs

. 12-channel PWM module
15-bit counter with programmable resolutions down to 25ns
Twelve independent outputs,
 or Six complementary pairs of outputs, or combinations

. Eight Timers
16-bit timers
Count up/down, Cascadable

. Two Quadrature Decoder
32-bit position counter
16-bit position difference register
16-bit revolution counter
40MHz count frequency (up to)

. CAN 2.0 A/B module for networking
Programmable bit rate up to 1Mbit: Multiple boards can be networked (MSCAN)
Ideal for harsh or noisy environments, like automotive applications

. JTAG port for CPU debugging
Examine registers, memory, peripherals
Set breakpoints
Step or trace instructions

. WatchDog Timer/COP module, Low Voltage Detector for Reset

. Low Voltage, Stop and Wait Modes

. On Board level translation for RS232, RS422, CAN

. On Board Voltage Regulation

171. CIRCUIT DESCRIPTION

Under construction…

The processor chip contains the vast majority of the circuitry. The remaining support
circuitry is described here. The power for the system can be handled several different
way, but as the board comes, power will normally be supplied from the VIN pin on J1.

172. RS-232 Levels Translation

The MAX3221/6/7 converts the 3.3V supply to the voltages necessary to drive the RS-
232 interface. Since a typical RS-232 line requires 10 mA of outputs at 10V or more, the
MAX3221/6/7 uses about 30 mA from the 3.3V supply. A shutdown is provided,
controlled by TD0.

The RS-232 interface allows the processor to be reset by the host computer through
manipulation of the ATN line. When the ATN line is low (a logical “1” in RS-232 terms)
the processor runs normally. When the ATN line is high (a logical “0” in RS-232 terms)
the processor is held in reset.

http://pdfserv.maxim-ic.com/arpdf/MAX3221-MAX3243.pdf

(V2 http://pdfserv.maxim-ic.com/arpdf/MAX3222-MAX3241.pdf)

173. RS-422/485 Levels Translation

Two MAX3483 buffer the digital signals to RS-422/485 levels. One, U3, always
transmits. The other can receive, or transmit. It will normally be used for the receiver in
RS-422 double twisted pair communications applications, and the transceiver in RS-485
single twisted pair communications applications. TD1 controls the turn around on U4
allowing RS-485 communications.

http://pdfserv.maxim-ic.com/arpdf/MAX3483-MAX3491.pdf

174. CAN BUS Levels Translation

A TJA1050 buffers the CAN BUS signal.
http://my.semiconductors.com/acrobat/datasheets/TJA1050_3.pdf

175. LED’s

A 74AC05 drives the on-board LED’s. Each LED has a current limiting resistor to the
+3.3V supply.
http://www.fairchildsemi.com/ds/74/74AC05.pdf

176. RESET

A S80728HN Low Voltage Detector asserts reset when the voltage is below operating
levels. This prevents brown out runaway, and a power-on-reset function.

http://www.seiko-instruments.de/documents/ic_documents/power_e/s807_e.pdf

177. POWER SUPPLY

A LM2937 reduces the VIN DC to a regulated 5V. In early versions a 7805C was used.
The LM2937 was rated a bit less for current (500 mA Max), but had reverse voltage
protection and a low drop out which was more favorable. A drops the 5V to the 3.3V
needed for the processor. At full current, 200 mA, these two regulators will get hot. They
can provide current to external circuits if care is taken to keep them cool. Each are rated
at 1A but will have to have heat sinking added to run there.

http://www.national.com/ds/LM/LM2937.pdf
http://www.national.com/ds/LM/LM3940.pdf

178. TROUBLE SHOOTING

There are no user serviceable parts on the IsoPod™. If connections are made correctly,
operation should follow, or there are serious problems on the board. As always, the first
thing to check in case of trouble is checking power and ground are present. Measuring
these with a voltmeter can save hours of head scratching from overlooking the obvious.
After power and ground, signal connections should be checked next. If the serial cable
comes loose, on either end, using your PC to debug your program just won’t help. Also,
if your terminal program has locked up, you can experience some very “quiet” results.
Don’t overlook these sources of frustrating delays when looking for a problem. They are
easy to check, and will make a monkey of you more times than not, if you ignore them.

One of the great advantages of having an interactive language embedded in a processor,
is if communications can be established, then program tools can be built to test
operations. If the RS-232 channel is not in use in your application, or if it can be
optionally assigned to debugging, talking to the board through the language will provide
a wealth of debugging information.

The LED’s can be wonderful windows to show operation. This takes some planning in
design of the program. A clever user will make good use of these little light. Even if the
RS-232 channel is in use in your application and not available for debugging, don’t
overlook the LED’s as a way to follow program execution looking for problems.

The IsoPod™ is designed so no soldering to the board should be required, and the
practice of soldering to the board is not recommended. Instead, all signals are brought to
connectors. That’s one of the reasons it is called a “Pod”, it can be plugged in and pulled
out as a module.

So, the best trouble shooting technique would be to unplug the IsoPod™ and try to
operate it separately with a known good serial cable on power supply.

If the original connections have been tested to assure no out-of-range voltages are
present, a second IsoPod™ can then be programmed and plugged into the circuit in
question. But don’t be too anxious to take this step. If the first IsoPod™ should be burned
out, you really want to be sure you know what caused it, before sacrificing another one in
the same circuit.

Finally, for advanced users, the JTAG connection can give trace, single step and memory
examination information with the use of special debugging hardware. This level of access
is beyond the expected average user of the IsoPod™ and will not be addressed in this
manual.

179. REFERENCE

180. IsoPod™ website:
http://www.isopod.net

181. MaxFORTH™ Glossary Reference Page
http://www.ee.ualberta.ca/~rchapman/MFwebsite/V50/Alphabetical/Brief/index.htm
l

This has explanations for the definitions for the procedural language "under" the
IsoMax(TM) Finite State Machine language.

182. Motorola DSP56F805 Users Manual
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56F801-7UM.pdf

183. Motorola DSP56F800 Processor Reference Manual
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf

184. Appendix: DSP56F805 Instruction Encoding
 DSP56800 OPCODE ENCODING

(1) 00Wk kHHH Fjjj xmRR (14) P1DALU jjj,F X:<ea_m>,HHH

(2) 010y y0yy y*pp pppp (11-*) ADD/SUB/CMP/INC/DEC X:<aa>[,fff]
(3) 010y y0yy y+aa aaaa (11-*) ADD/SUB/CMP/INC/DEC X:(SP-xx)[,fff]
(4) 010y y1yy y00B BBBB (10) ADD/SUB/CMP #<0-31>,fff
(5a) 010y y1yy y10- ---- (5-2) ADD/SUB/CMP #xxxx,fff
(5b) 010y y1yy yw11 -1-- (6-2) ADD/SUB/CMP/INC/DEC X:xxxx[,fff]

(7) 011u u0v1 Fvjj xm-v (10) P2DALU jj,F X:<ea_m>,reg X:<ea_v>,X0
(8a) 011L L1L- FQQQ 10FF (9) DALU3OP QQQ,FFF
(8b) 011I I1II FQQQ 11FF (10) DALU3OP2 QQQ,FFF
(8c) 011K K1K- F000 0h00 (4) DALU2OPF ~F,F (KKK = KK0) (h=1: Tcc)
(8d) 011K K1K- F000 0h00 (4) DALU2OPY Y,F (KKK = KK1) (h=1 used)
(8e) 011K K1K- F000 0hF1 (5) DALU2OPB1 B1,FF (h=1: Tcc)
(8f) 011K K1K- F010 0hF1 (5) DALU2OPA1 A1,FF (h=1: Tcc)
(8g) 011K K1K- F0qq 0h00 (6) DALU1OPF F (qq != 00) (h=1 used)
(8h) 011K K1K- F0q1 0hF1 (6) DALU1OPFF FF (h=1: LSL,LSR)
(8i) 011K K1K- F1JJ 0hFF (8) DALU2OPJJ JJ,FFF (h=1: DIV,Tcc)
(8j) 0110 11CC FJJJ 01CZ (8) Tcc JJJ,F [R0->R1] (h=1: Tcc)

(9) 10W1 HHHH 0Ppp pppp (12) MOVE X:<Ppp>,REG
(10a) 10W1 HHHH 1*AA AAAA (11) MOVE X:(R2+xx),REG
(10b) 10W1 HHHH 1+aa aaaa (11) MOVE X:(SP-xx),REG
(11) 11W1 DDDD D0-M RMRR (12) MOVE X:<ea_MM>,DDDDD
(12) 11W1 DDDD D1-0 R1RR (10) MOVE X:(Rn+N),DDDDD
(13) 11W1 DDDD D1-0 R0RR (10-2) MOVE X:(Rn+xxxx),DDDDD
(14) 11W1 DDDD D1-1 -1-- (7-2) MOVE X:<abs_adr>,DDDDD

(15) 1000 DDDD D00d dddd (10) MOVE ddddd,DDDDD
(16) 1000 1110 *011 00RR (2) TSTW (Rn)-
(17) 1000 UUU+ 110d dddd (8-2) BITFIELD DDDDD; MOVE #xxxx,DDDDD
(18) 1000 UUU0 111+ -+-- (3-3) BITFIELD X:xxxx; MOVE #xxxx,X:xxxx
(19a) 1010 UUU0 1+aa aaaa (9-2) BITFIELD X:(SP-xx); MOVE #xxxx,X:(SP-xx)
(19b) 1010 UUU0 1*AA AAAA (9-2) BITFIELD X:(R2+xx); MOVE #xxxx,X:(R2+xx)
(20) 1010 UUU1 1Ppp pppp (10-2) BITFIELD X:<Ppp>; MOVE #xxxx,X:<Ppp>
(21) 1010 CCCC 0Aaa aaaa (11) Bcc <aa>, BRA

(22) 1100 HHHH *BBB BBBB (11) MOVE #xx,HHHH
(23) 1100 11E0 1*BB BBBB (7-*) DO/REP #xx
(24) 1100 11E0 11-d dddd (6-*) DO/REP ddddd
(25a) 1110 CCCC 10A- -1AA (7-2) Jcc, JMP xxxxx
(25b) 1110 1001 11A0 10AA (*-2) JSR xxxxx
(26) 1110 1101 11-1 10-0 (0) RTS
(27) 1110 1101 11-1 10-1 (0) RTI
(29) 1110 HHHH *0W* *mRR (8) MOVE P:<ea_m>,HHHH

(30) 1110 ---- -1-- 0000 (0) NOP
(31) 1110 ---- -1-- 0001 (0) DEBUG
(--) 1110 ---- -1-- 0010 (0) ($E042 -reserved for "ADD <reg>,<mem>")
(32) 1110 ---- -1-- 01tt (2) STOP, WAIT, SWI, ILLEGAL

(--) 1100 ---- 111- ---- (9) <Available Hole>
(--) 1110 ---- 111- ---- (9) <Available Hole>
(--) 1110 ---- 01-- ---- (10) <Available Hole>

Understanding entries in the above encoding:
--
A typical entry in the encoding files looks like this:

(8b) 011I I1II FQQQ 11FF (10) DALU3OP2 QQQ,FFF

 ^ \ / ^ ^
 | ---------v---------- | |
 | | | |
 | | | +---- (see #1 below)
 | | +------------- (see #2 below)
 | +---------------------------- (see #3 below)
 +--- (see #4 below)

 #1: This field gives the name of the instruction or of a class of
 instructions which are encoded with the bit pattern specified in #3.

 An example of where this field contains an instruction is for the
 "TSTW (Rn)-" instruction. In this case, only the operands of the
 instruction are encoded with the bits in #3 below.

 An example of where this field contains a class of instructions
 is given in the example above "DALU3OP2 QQQ,FFF". In this case,
 the entry DALU3OP2 represents a class of instructions, and the
 instruction selected within this class is selected by the IIII field
 within the encoding specified in #2.

 Instruction classes such as "DALU3OP2" can be seen by searching
 in this file for the following field - "DALU3OP2:", where the field
 is located in the very first character of the line.

 #2: The number here indicates how many bits are required to encode
 this instruction. For the example shown above, 10 bits are
 required to hold the following bits - IIIIFQQQFF. The information
 in this particular field is useful to the design group.

 If the number in this field is followed by a "-2" or "-3", the "-2"
 is used to indicate a two word instruction, and the "-3" is used
 to indicate a three word instruction.

 For the case of the "ADD/SUB/CMP/INC/DEC X:<aa>[,fff]" instruction
 which uses "(11-*)", this indicates that this class of instructions
 can vary in number of instruction words. For this particular example,
 this can be seen more clearly in the section entitled "Unusual
 Instruction Encodings" located within this document.

 #3: This portion represents the 16 opcode bits of the instruction.
 For single word instructions, it contains the entire one word
 16-bit opcode. For multiword instructions, it contains the
 first word for the instruction.

 The example above contains the following fields within the instruction:
 IIII, FFF, QQQ
 Note that although there are four I bits to form the "IIII" field, these
 bits are not necessarily all next to each other. This is also the case
 for the three bits comprising the "FFF" field.

 #4: The number here gives a unique number to this particular instruction
 or class of instructions. This is used simply for identification
 purposes.

Notes for Above Encoding:

 1. Where a "*" is present in a bit in the encoding, this means the PLAs
 often use this bit to line up in a field, but that the assembler should
 always see this as a "0". Where a "+" is present, it is similar, but
 assembles as a "1". A "-" is ignored by the PLAs and assembled as a "0".

 2. It is important to note that several instructions are not found
 on the first page of the encoding, which summarizes the entire
 instruction set. These instructions are instead found in the
 section entitled "Unusual Instruction Encodings" located within
 this document. Instructions in this section include:
 - ADD fff,X:<aa>:

 - ADD fff,X:(SP-xx):
 - ADD fff,X:xxxx:
 - LEA
 - TSTW
 - POP
 - CLR (although CLR is also encoded in the Data ALU section)
 - ENDDO

 See this section to see how these instructions are encoded.

 3. The use of the bit pattern labelled
 "($E042 -reserved for "ADD <reg>,<mem>")"
 is explained in more detail in the "Unusual Instruction Encodings"
 section. It is not an instruction in itself, but rather enables
 an encoding trick discussed for the ADD instruction in that section.

 Understanding the 2 and 1 Operand Data ALU Encodings

The Data ALU operations were encoded in a manner which is not straightforward.
The three operand instructions were relatively straightforward, but the
encoding of the two and one operand instructions was more difficult.

More information is presented at the field definitions for "KKK" and "JJJ".
This is the best place to clearly understand the Data ALU encodings.

(Also see the encoding information located at the "KKK" field.)

Data ALU Source and Destination Register Field Definitions:
===

F: F Destination Accumulator
 - -----------------------
 0 A
 1 B

~F:
 "~F" is a unique notation used in some cases to signify the source
 register in a DALU operation. It's exact definition is as follows:
 If "F" is the "A" accumulator, Then "~F" is the "B" accumulator.
 If "F" is the "B" accumulator, Then "~F" is the "A" accumulator.

FF: FF Destination Register
 --- --------------------
 00 X0 (NOTE: not all DALU instrs can have this as a destination)
 10 (reserved)
 01 Y0 (NOTE: not all DALU instrs can have this as a destination)
 11 Y1 (NOTE: not all DALU instrs can have this as a destination)

FFF: FFF Destination Register
 --- --------------------
 000 A
 100 B

 001 X0 (NOTE: not all DALU instrs can have this as a destination)
 101 (reserved)
 011 Y0 (NOTE: not all DALU instrs can have this as a destination)
 111 Y1 (NOTE: not all DALU instrs can have this as a destination)

 NOTE: The MPY, MAC, MPYR, and MACR instructions allow x0, y0,
 or y1 as a destination. FFF=FF1 IS allowed for the case
 of a negated product: -y0,x0,FFF for example is allowed.
 Also, MPYsu, MACsu, IMPY16, LSRR, ASRR, and ASLL allow
 FFF as a destination, but the ASRAC & LSRAC instructions
 only allow F, and LSLL only allows DD as destinations.

 Although the LSLL only allows 16-bit destinations, there is
 the ASLL instruction which performs exactly the same operation
 and allows an accumulator as well as a destination.

fff: fff Destination Register
 --- --------------------
 000 A (ADD/SUB/CMP only)
 001 B (ADD/SUB/CMP only)

 100 X0 (ADD/SUB/CMP only)
 101 (reserved for X1)
 110 Y0 (ADD/SUB/CMP only)
 111 Y1 (ADD/SUB/CMP only)

 --

QQQ: (6-4)
 This field specifies two input registers for instructions in the
 DALU3OP, DALU3OP2, and P1DALU instruction classes. There are some
 instructions where the ordering of the two source operands is important
 and some where the ordering is unimportant.

 Three different cases are presented below for instructions using the
 QQQ field. Some examples are also included for clarification.
 Note that the bottom 4 entries are designed to overlay the "QQ" field.

 1. "QQQ" definition for: ASRR, ASLL, LSRR, LSLL, ASRAC, & LSRAC instrs

 QQQ Shifter inputs (must be in this order)
 --- -----------------
 000 (reserved for X1,Y1)
 001 B1,Y1
 010 Y0,Y0
 011 A1,Y0
 100 Y0,X0
 101 Y1,X0
 110 (reserved for X1,Y0)
 111 Y1,Y0

 For Multi-bit shift instructions:
 - 1st reg specified is value to be shifted
 - 2nd reg specified is shift count (uses 4 LSBs)

 Examples of valid Multi-bit shift instructions:
 asll b1,y1,a ; b1 is value to be shifted, y1 is shift amount
 asrr y1,x0,b ; y1 is value to be shifted, x0 is shift amount

 Examples of INVALID Multi-bit shift instructions:
 asll y1,b1,a ; Not allowed - b1 must be first for QQQ=001
 asrr x0,y1,b ; Not allowed - y1 must be first for QQQ=101

 2. "QQQ" definition for: MPYsu and MACsu instrs

 QQQ Multiplier inputs (must be in this order)
 --- -----------------
 000 (reserved for Y1,X1)
 001 Y1,B1
 010 Y0,Y0
 011 Y0,A1
 100 X0,Y0
 101 X0,Y1
 110 (reserved for Y0,X1)
 111 Y0,Y1

 For MPYsu or MACsu instructions:
 - 1st reg specified in QQQ above is "signed" value
 - 2nd reg specified in QQQ above is "unsigned" value

 Examples of valid MPYsu and MACsu instructions:
 mpysu y1,b1,a ; y1 is signed, b1 unsigned, QQQ = 001
 macsu x0,y1,b ; x0 is signed, y1 unsigned, QQQ = 101

 Examples of INVALID MPYsu and MACsu instructions:
 mpysu b1,y1,a ; Not allowed - y1 must be signed for QQQ=001
 macsu y1,x0,b ; Not allowed - x0 must be signed for QQQ=101

 The Multi-bit shift instructions include:
 ASRR, ASLL, LSRR, LSLL, ASRAC, and LSRAC

 3. "QQQ" definition for: All other instructions using "QQQ"

 QQQ Multiplier inputs Also Accepted by Assembler
 --- ----------------- --------------------------
 000 (reserved for Y1,X1) (reserved for X1,Y1)
 001 Y1,B1 B1,Y1
 010 Y0,Y0 Y0,Y0
 011 Y0,A1 A1,Y0
 100 X0,Y0 Y0,X0
 101 X0,Y1 Y1,X0
 110 (reserved for Y0,X1) (reserved for X1,Y0)
 111 Y0,Y1 Y1,Y0

 For all other of these instructions:
 - operands can be specified in either order

 Examples of valid MPY and MAC instructions:
 mpy y1,b1,a ; Operands are: y1 and b1 (ordering unimpt)
 mpy b1,y1,a ; Operands are: y1 and b1 (ordering unimpt)
 mac x0,y1,b ; Operands are: y1 and x0 (ordering unimpt)
 mac y1,x0,b ; Operands are: y1 and x0 (ordering unimpt)

 NOTE: If the source operand ordering is incorrect, then the assembler
 must flag this as an error.

Data-Alu Opcode Field Definitions:
==================================

q: used to specify "non-multiply" one operand DALU/P1DALU instructions.
 See the "KKK" field definition below.

qq: used to specify "non-multiply" one operand DALU/P1DALU instructions.
 See the "KKK" field definition below.

DALU3OP:

LLL: LLL Multiplication Operation
 --- ------------------------
 000 MPY + (neither operand inverted)
 001 MPY - (one operand inverted)
 010 MAC + (neither operand inverted)
 011 MAC - (one operand inverted)
 100 MPYR + (neither operand inverted)
 101 MPYR - (one operand inverted)
 110 MACR + (neither operand inverted)
 111 MACR - (one operand inverted)

h: (2)
 The "h" bit, when set to a "1" is used to encode the following
 non-multiply DALU instructions:
 - ADC, SBC
 - NORM R0
 - LSL, LSR
 - DIV

 For exact details on this, see the "KKK" field definition below.

DALU2OPF:
DALU2OPY:
DALU2OPB1:

DALU2OPA1:
DALU1OPF:
DALU1OPFF:
DALU2OPJJ:

KKK: ()

 The KKK fields cannot be uniquely decoded without looking at the
 values in some other bits of the opcode. In the below charts, the
 KKK field holds many different encodings depending on the values
 in bits 6-4, what was previously called the JJJ field, and bit 2,
 which was previously labelled as "h". The JJJ and h fields have
 now been removed and this chart now contains the information
 previously held by these bits.

 Four different charts are presented below, where the four charts
 correspond to different values "00, 01, 10, and 11" in bits 2 and 0
 of the opcode.

 Note that the KKK entries are numbered in an ascending order
 from 0 to 7. This also differs from the numbering in the original
 encoding file (encode8) so the entries in the chart will now appear
 to be in a different order.

 Notation for the below charts:
 <<NA>> - Indicates field is not available for any instruction
 <<Tc>> - Indicates space is not available because it is occupied
 by the Tcc instruction.
 ~F - Indicates source is the accumulator not used as the dest
 --- - Indicates field is unused

Chart 1 - Basic Data ALU, Destination is "F"
--

 This chart is used to encode MOST non-multiply Data ALU instructions
 where the result of the operation is stored in one of the accumulators,
 A or B, i.e. is of the form "NONMPY_DALUOP <src>,F".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "F" bit.

 +-------------+-----++---+
bbb b b			KKK	
iii i i			---	
ttt t t				
... . .				
654 2 0				
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK JJJ h F	SRC		000	001
+=============+=====++======+======+======+======+======+======+======+======+				
KK0 000 0 0	~F		ADD	<<NA>>
+-------------+-----++------+------+------+------+------+------+------+------+				
KK1 000 0 0	Y		<<NA>>	ADD
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 001 0 0	F		DECW	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 010 0 0	F		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 011 0 0	F		INCW	--
+=============+=====++======+======+======+======+======+======+======+======+				
KKK 100 0 0	X0		ADD	OR
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 101 0 0	Y0		ADD	OR
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 110 0 0	--		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 111 0 0	Y1		ADD	OR
 +-------------+-----++------+------+------+------+------+------+------+------+

 Note that there are nine rows above. This is because the entry for
 "JJJ" = 000 is broken into two different rows - one where the LSB
 of "KKK" is "0" (source is "~F") and one row where the LSB is "1"
 (source is "Y") .

Chart 2 - Basic Data ALU, Destination is "DD"

 This chart is used to encode MOST non-multiply Data ALU instructions
 where the result of the operation is stored in one of the data regs,
 X0, Y0 or Y1, i.e. is of the form "NONMPY_DALUOP <src>,DD".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "FF" bits.

 +-------------+-----++---+
bbb b b			KKK	
iii i i			---	
ttt t t				
... . .				
654 2 0				
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK JJJ h F	SRC		000	001
+=============+=====++======+======+======+======+======+======+======+======+				
KKK 000 0 1	B1		ADD	OR
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 001 0 1	F		DECW	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 010 0 1	A1		ADD	OR
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 011 0 1	F		INCW	--
+=============+=====++======+======+======+======+======+======+======+======+				
KKK 100 0 1	X0		ADD	OR
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 101 0 1	Y0		ADD	OR
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 110 0 1	--		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 111 0 1	Y1		ADD	OR
 +-------------+-----++------+------+------+------+------+------+------+------+

 * For 16-bit destinations, "asl" is identical to "lsl". Thus, if a user
 has "asl x0" in his program, it should instead assemble into "lsl x0".
 Always disassembles as "lsl x0".

Chart 3 - Supplemental Data ALU, Destination is "F"

 This chart is used to encode A FEW non-multiply Data ALU instructions
 where the result of the operation is stored in one of the accumulators,
 A or B, i.e. is of the form "NONMPY_DALUOP <src>,F".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "F" bit.

 +-------------+-----++---+
bbb b b			KKK	
iii i i			---	
ttt t t				
... . .				
654 2 0				
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK JJJ h F	SRC		000	001
+=============+=====++======+======+======+======+======+======+======+======+				
KK0 000 1 0	~F		--	<<NA>>
+-------------+-----++------+------+------+------+------+------+------+------+				
KK1 000 1 0	Y		<<NA>>	ADC

 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 001 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 010 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 011 1 0 | F || -- | -- |<<Tc>>|<<Tc>>| -- | LSL | NORM | LSR |
 +=============+=====++======+======+======+======+======+======+======+======+
 | KKK 100 1 0 | X0 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 101 1 0 | Y0 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 110 1 0 | -- || -- | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+
 | KKK 111 1 0 | Y1 || DIV | -- |<<Tc>>|<<Tc>>| -- | -- | -- | -- |
 +-------------+-----++------+------+------+------+------+------+------+------+

 Note that there are nine rows above. This is because the entry for
 "JJJ" = 000 is broken into two different rows - one where the LSB
 of "KKK" is "0" (source is "~F") and one row where the LSB is "1"
 (source is "Y") .

 Tcc instructions that occupy space on this chart are Tcc instructions
 where the "Z" bit is a "0". This corresponds to Tcc instructions
 of the form "tcc <reg>,F", i.e., without an AGU register transfer.

Chart 4 - Supplemental Data ALU, Destination is "DD"
--

 This chart is used to encode A FEW non-multiply Data ALU instructions
 where the result of the operation is stored in one of the data regs,
 X0, Y0 or Y1, i.e. is of the form "NONMPY_DALUOP <src>,DD".

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "FF" bits.

 +-------------+-----++---+
bbb b b			KKK	
iii i i			---	
ttt t t				
... . .				
654 2 0				
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK JJJ h F	SRC		000	001
+=============+=====++======+======+======+======+======+======+======+======+				
KK0 000 1 1	B1		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 001 1 1	DD		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 010 1 1	A1		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 011 1 1	DD		--	--
+=============+=====++======+======+======+======+======+======+======+======+				
KKK 100 1 1	X0		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 101 1 1	Y0		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 110 1 1	--		--	--
+-------------+-----++------+------+------+------+------+------+------+------+				
KKK 111 1 1	Y1		--	--
 +-------------+-----++------+------+------+------+------+------+------+------+

 Tcc instructions that occupy space on this chart are Tcc instructions
 where the "Z" bit is a "1". This corresponds to Tcc instructions
 of the form "tcc <reg>,F r0,r1", i.e., with an AGU register transfer.

yyyyy:
 The "yyyyy" field is used to determine the operand encoding and destination
 operand definitions for data ALU instructions where one source operand

 is not a Data ALU register. It is described as "010" type instructions
 because all instructions in this class begin with "010" in bits 15-13.

 For instructions of this type, the destination is always specified with
 the "fff" field.

 yyyyy Operation
 ----- ------------
 00fff ADD <src>,fff
 10fff SUB <src>,fff
 11fff CMP <src>,fff
 01100 DEC <dst> NOTE: src and dst is a memory location, not a reg
 01101 INC <dst> NOTE: src and dst is a memory location, not a reg
 0111x <Available>

 DALU3OP2 - Shifting and Multiplication Encoding Information
 --

DALU3OP2:

IIII: ()
 Specifies Integer Multiplication, Signed*Uns, and Shifting Instructions

 IIII Operation
 ---- ---------
 1000 MPYsu
 1100 MACsu
 0010 IMPY16
 1001 LSRR (multibit logical right shift)
 1101 LSRAC (used for shifting 32-bit values)
 0001 ASRR (multibit arithm right shift)
 0101 ASRAC (multibit arithm right shift w/ acc)
 0011 ASLL or LSLL (multibit arithm left shift)

 ^^^^
 ||||
 |||+--- Indicates no shifting or shifting
 ||+---- Shift shift dirn and whether LSP goes to DXB1
 |+----- Selects mpy vs mac operation
 +------ Selects signed*signed vs signed*unsigned

 Note: no inversion of multiplier result or rounding is allowed.

 NOTE: All of the above allow FFF as a destination EXCEPT
 LSRAC and ASRAC which only allow F as a destination,
 and LSLL which only allows X0, Y0, and Y1 as destinations.

 Although the LSLL only allows 16-bit destinations, there is
 the ASLL instruction which performs exactly the same operation
 and allows an accumulator as well as a destination.

Single Parallel Move Encodings:
===============================

P1DALU:

x:
kk:
jjj:
 P1DALU operation and source register encodings (xkkjjj)
 x kk jjj
 - -- ---
 0 KK JJJ - KK specifies the arithm operation for non-multiply instrs
 - JJJ specifies one source operand for non-multiply instrs
 (kk becomes KK when x=0)
 (jjj becomes JJJ when x=0)
 1 LL QQQ - LL specifies the arithm operation for multiply instrs
 - QQQ specifies one source operand for multiply instrs

 (kk becomes LL when x=1)
 (jjj becomes QQQ when x=1)

JJJ:
 Specifies the source registers for the "non-multiply" P1DALU class
 of instructions as well as the Tcc instruction.

 JJJ Source register
 --- ---------------
 000 ~F
 001 F (not used by the Tcc instruction)
 01x F (not used by the Tcc instruction)
 01x F (not used by the Tcc instruction)
 100 X0
 101 Y0
 110 (reserved for X1)
 111 Y1

KK: ()

Chart 5 - Single Parallel Move Data ALU, Destination is "F"

 This chart is used to encode all of the non-multiply arithmetic
 operations with a SINGLE PARALLEL MOVE, where the result of the
 operation is stored in one of the accumulators, A or B. In this
 case, the instruction is of the following form
 "NONMPY_DALUOP <src>,F <single_pll_mov>"

 This chart encodes both the arithmetic operation and source register
 for the operation. The destination is encoded with the "F" bit.

 +--------+-----++---------------------------+
 | bbb | || |
 | iii | || KK |
 | ttt | || -- |
 | ... | || |
 | 654 | || |
 +--------+-----++------+------+------+------+
 | KK JJJ | SRC || 00 | 01 | 10 | 11 |
 +========+=====++======+======+======+======+
 | KK 000 | ~F || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+
 | KK 001 | F || DECW | NEG | RND | TST |
 +--------+-----++------+------+------+------+
 | KK 010 | F || -- | ABS | -- | -- |
 +--------+-----++------+------+------+------+
 | KK 011 | F || INCW | CLR | ASL | ASR |
 +========+=====++======+======+======+======+
 | KK 100 | X0 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+
 | KK 101 | Y0 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+
 | KK 110 | -- || -- | -- | -- | -- |
 +--------+-----++------+------+------+------+
 | KK 111 | Y1 || ADD | TFR | SUB | CMP |
 +--------+-----++------+------+------+------+

 Note that this chart is simply extraced from the above chart where
 bit_2 == 0 and bit_0 == 0. In this case, only the even values
 within the "KKK" field are retained.

Dual Parallel Read Encodings:
=============================

P2DALU:

x: ()

uu: ()
jj: ()
 P2DALU operation and source register encodings (xuujj)
 x uu jj
 - -- --
 0 UU GG - UU specifies the arithm operation for non-multiply instrs
 - GG specifies one source operand for non-multiply instrs
 (uu becomes UU when x=0)
 (jj becomes GG when x=0)
 1 LL QQ - LL specifies the arithm operation for multiply instrs
 - QQ specifies one source operand for multiply instrs
 (uu becomes LL when x=1)
 (jj becomes QQ when x=1)

GG: ()
UU: ()
 Specifies "non-multiply" P2DALU instructions and operands.
 x UU GG Non-Multiply Operation DALU Source Register
 - -- -- ---------------------- --------------------
 0 00 JJ ADD JJ
 0 10 JJ SUB JJ

 0 01 -- MOVE <none>

 0 11 -- (reserved) <none>

JJ: ()
 Specifies the source registers for the "non-multiply" P2DALU instructions.
 JJ source register
 -- ---------------
 00 X0
 01 Y0
 10 (reserved for X1)
 11 Y1

LL: ()
 LL Multiplication Operation
 -- ------------------------
 00 MPY + (neither operand inverted)
 01 MAC + (neither operand inverted)
 10 MPYR + (neither operand inverted)
 11 MACR + (neither operand inverted)

QQ: ()
 Input registers for the "multiply" P2DALU instructions.
 QQ Multiplier inputs
 -- -----------------
 00 Y0,X0
 01 Y1,X0
 10 (reserved for X1,Y0)
 11 Y1,Y0

vvv: (9,6,0)
 Specifies the destination registers for the dual X memory
 parallel read instruction WITH arithmetic operation.

 vvv 1st read 2nd access
 --- -------- ----------
 000 X:(R0),Y0 X:(R3)+,X0 -
 010 X:(R0),Y0 X:(R3)-,X0 -
 100 X:(R0),Y1 X:(R3)+,X0 -
 110 X:(R0),Y1 X:(R3)-,X0 -

 001 X:(R1),Y0 X:(R3)+,X0 -
 011 X:(R1),Y0 X:(R3)-,X0 -
 101 X:(R1),Y1 X:(R3)+,X0 -
 111 X:(R1),Y1 X:(R3)-,X0 -

 ^^^
 |||
 ||+--- (effectively an "r" bit for 1st read - R0 vs R1)
 |+---- (effectively an "m" bit for 2nd read - (R3)+ vs (R3)-)
 +----- (effectively a "V" bit for 1st read - Y0 vs Y1)

 NOTE: Above table does not show any addressing mode information
 for the 1st read. See the "m" field for this information.
 The above table does contain addressing mode info for the
 second access as seen above.

Move Register Field Definitions:
================================

HHH: destination registers for the "P1DALU X:<ea_m>,HHH" instruction.
 HHH register
 --- --------
 000 X0
 001 Y0
 010 (reserved for X1)
 011 Y1
 100 A
 101 B
 110 A1
 111 B1

RRR: ()
 RRR register
 --- --------
 000 R0
 001 R1
 010 R2
 011 R3
 111 SP

HHHH: destination registers for the "#xx,HHHH" instruction.
 HHHH register
 ---- --------
 0HHH X0, Y0, (reserved for X1), Y1, A, B, A1, B1
 10RR R0, R1, R2, R3
 11NN ND (dst only), N, NOREG (src and dst), (reserved)

DDDDD: - specifies destination registers for "ddddd,DDDDD"
 - specifies source/destination registers for other DDDDD moves
 - NOTE that ordering is different than "ddddd"

 DDDD D register
 ---- - --------
 0HHH 0 X0, Y0, (reserved for X1), Y1, A, B, A1, B1
 10RR 0 R0, R1, R2, R3
 11xx 0 ND (dst only), N, NOREG, (reserved)
 00xx 1 A0, B0, A2, B2
 01xx 1 M01, (res), (res), SP
 1xxx 1 OMR, PINC/PAMAS, (res), HWS, (res, used as LC), SR, LC, LA

ddddd: - specifies source registers for the move ddddd,DDDDD instruction.
 - specifies source registers for the DO/REP ddddd instruction.
 - specifies source/destination registers for bitfield instructions
 - NOTE that ordering is different than "DDDDD"

 ddddd register
 ----- --------
 00HHH X0, Y0, (reserved for X1), Y1, A, B, A1, B1
 100RR R0, R1, R2, R3
 101xx (res-ND), N, (res-NOREG), (res)
 010xx A0, B0, A2, B2
 011xx M01, (res), (res), SP
 11xxx OMR, PINC/PAMAS, (res), HWS, (res, used as LC), SR, LC, LA

Special registers which need to be detected:
 1110 0 NOREG - Prevents external bus cycle, or perhaps any
 memory cycle from occurring. Required because
 the chip may not own the bus. Forces access
 internal, or perhaps even disables prxrd/prxwr.
 Occurs on read from reg only. Note there is
 no register actually present. It applies to
 reads from the register because this is true
 during an LEA where no memory cycle is desired,
 but this is not true for a TSTW instruction,
 which must actually perform a memory cycle
 and move the data onto the cgdb.
 1100 0 ND - Accesses "N" register but also asserts pmnop.
 Occurs on write to reg only.
 1100 0 ND - Prevents interrupts, force adr onto eab,
 regardless of whether it's on-chip or not.
 Note there is no actual register. Asserts
 a new ctrl signal, pmdram. Occurs on reads
 from reg only. Used to be the DRAM register.
 Must disable xmem writes, similar to reads
 from NOREG. Force the access internal.
 1011 1 HWS - Any reads of this register must "pop" the
 HWS and HWSP. Any writes to this register
 must "push" the HWS and HWSP.

RR: RR register
 -- --------
 00 R0
 01 R1
 10 R2
 11 R3

AGU (Address Generation Unit) Instruction Field Definitions:
==

MM: specifies addressing modes for the "X:<ea_MM>,DDDDD" instruction.
 MM addressing mode
 -- ---------------
 00 (Rn)+ or (SP)+
 01 (Rn)+N or (SP)+N
 10 (Rn)- or (SP)-
 11 (Rn) or (SP) (LEA cannot use this combination)

m: specifies addressing modes of "P1DALU" and "P2DALU"
 m addressing mode
 - ---------------
 0 (Rn)+
 1 (Rn)+N

W:
 W move direction for memory moves
 - -------------------------------
 0 register -> memory
 1 memory -> register

w: w DALU result
 - -----------
 0 written back to memory (not allowed for CMP or SUB instrs)
 1 remains in register

Immediates and Absolute Address Instruction Field Definitions:
==

AAA:
 Upper 3 address bits for JMP, Jcc, and JSR instructions.

BBBBBBB:

 7-bit signed integer. For #xx,HHHH and DALU #xx,F instructions.

BBBBBB:
 6-bit unsigned integer. For DO/REP #xx instruction.

AAAAAA:
 6-bit positive offset for X:(R2+xx) addressing mode.
 Allows positive offsets: 0 to 63

aaaaaa:
 6-bit negative offset for X:(SP-xx) addressing mode.
 Allows negative offsets: -1 to -64

Aaaaaaa:
 7-bit offset for MOVE, DALU & Bitfield using X:(SP-#xx), X:(R2+#xx)
 and Bcc <aa> instructions:
 A = 0 => X:(R2+#xx) allows positive offsets: 0 to 63
 A = 1 => X:(SP-#xx) allows negative offsets: -1 to -64

 For Bcc, "A" specifies the sign-extension.
 RESTRICTION: Aaaaaaa must never be all zeros for the Bcc instruction.

Ppppppp:
 7-bit absolute address for MOVE, DALU, & Bitfield on X:<pp> instr
 It is sign-extended to allow access to both the peripherals and
 the 1st 64 locations in X-memory.

Other Instruction Field Definitions:
====================================

Z: specifies the parallel moves of the address pointers in a Tcc instruction.
 Z move
 - ----
 0 R0->R0 (i.e., no transfer occurs in the AGU unit)
 1 R0->R1 (AGU transfers R0 register to R1 if condition true)

 For the case where Z=0, the assembler will not look for a field
 such as "teq x0,a r0,r0". Instead, the AGU register transfer
 will be suppressed, such as in ""teq x0,a".

E: E instruction
 - -----------
 0 DO
 1 REP

tt: tt instruction
 - -----------
 00 STOP
 01 WAIT
 10 SWI
 11 ILLEGAL

BITFIELD:
UUU: specifies bitfield/branch-on-bit instructions
 UUU operations
 --- ----------
 000 BFCLR
 001 BFSET
 010 BFCHG
 011 MOVE (used by "move #iiii,<ea>")

 100 BFTSTL
 110 BFTSTH
 101 BRCLR (modifies carry bit)
 111 BRSET (modifies carry bit)

 0xx last word = iiiiiiiiiiiiiiii
 1x0 last word = iiiiiiiiiiiiiiii

 1x1 last word = iiiiiiiiUAaaaaaa

 (note: this is the 3rd word, not 2nd, for BF/BR #xxxx,X:xxxx)

 iiiiiiiiiiiiiiii = 16-bit immed mask
 iiiiiiii = 8-bit immed mask for upper or lower byte
 U = 1 selects upper byte
 U = 0 selects lower byte
 Aaaaaaa = 7-bit relative branch field

 Note: UAaaaaaa is not available to the BFTSTH, BFTSTL instrs

 The ANDC, ORC, EORC, and NOTC are instructions which fall directly
 onto the bitfield instructions. They are mapped as follows:

 ANDC is identical to a BFCLR with the mask inverted
 ORC is identical to a BFSET (mask not inverted)
 EORC is identical to a BFCHG (mask not inverted)
 NOTC is identical to a BFCHG with the mask set to $FFFF

CC-C: ()
 Specifies conditions for the Tcc instructions:
 (in this case, "CC" falls onto C10 of CCCC, "C" falls onto C2, C3 is "0")
 CC-C condition
 ---- ---------
 00 0 cc
 01 0 cs
 10 0 ne
 11 0 eq

 00 1 ge
 01 1 lt
 10 1 gt
 11 1 le

CCCC: ()
 Specifies conditions for the Jcc, JScc, and Bcc instructions

 CCCC condition - for encode7
 ---- ---------
 0000 cc (same as "hs", unsigned higher or same)
 0001 cs (same as "lo", unsigned lower)
 0010 ne
 0011 eq
 0100 ge
 0101 lt
 0110 gt
 0111 le

 10** ALWAYS TRUE condition (PLAs decode this)

 1001 ALWAYS - JMP, BRA, JSR (value used by assembler)
 1011 (reserved -could be used for delayed)
 1010 (reserved)
 1000 (reserved)
 1100 hi (unsigned higher)
 1101 ls (unsigned lower or same)
 1110 nn
 1111 nr

Unusual Instruction Encodings:
==============================
 Encoding of "ADD fff,X:<aa>" and "ADD fff,X:(sp-xx)":
 There is an unusual trick used to encode these two instructions.
 What is so unusual is that the first word of the two word
 "ADD/SUB/CMP fff,X:<aa>" instruction is identical to the one
 word encoding of the "ADD/SUB/CMP X:<aa>,fff" instruction.
 It is also true the first word of the two word

 "ADD/SUB/CMP fff,X:(sp-xx)" instruction is identical to the one
 word encoding of the "ADD/SUB/CMP X:(sp-xx),fff" instruction.

 What makes these instructions differ is the encoding of the instruction
 immediately following the first word. The rules are listed below.

 Encoding Rules:

 ADD X:<aa>,fff:
 - 1st word - Simply uses the one word encoding for ADD X:<aa>,fff
 - 2nd word - Any valid DSP56800 instruction, which by definition
 will not be the following reserved hex value: $E042.
 Note that this value is reserved in the DSP56800
 bit encoding map.

 ADD X:(SP-xx),fff:
 - 1st word - Simply uses the one word encoding for
 ADD X:(SP-xx),fff
 - 2nd word - Any valid DSP56800 instruction, which by definition
 will not be the following reserved hex value: $E042.
 Note that this value is reserved in the DSP56800
 bit encoding map.

 ADD X:xxxx,fff:
 - 1st word - 1st word of encoding uses ADD X:xxxx,fff
 with the "w" bit set to "1"
 - 2nd word - second word of encoding contains the 16-bit
 absolute address

 ADD fff,X:<aa>:
 - 1st word - 1st word of this instruction uses the one word
 encoding for the ADD X:<aa>,fff instruction.
 - 2nd word - 2nd word of this instruction is simply set to $E042.

 ADD fff,X:(SP-xx):
 - 1st word - 1st word of this instruction uses the one word
 encoding for the ADD X:(SP-xx),fff instruction.
 - 2nd word - 2nd word of this instruction is simply set to $E042.

 ADD fff,X:xxxx:
 - 1st word - 1st word of encoding uses ADD X:xxxx,fff
 with the "w" bit set to "0"
 - 2nd word - second word of the instruction contains the 16-bit
 absolute address

 Thus, the presence of the hex value $E042 in the instruction
 immediately after a "ADD X:<aa>,fff" or "ADD X:(sp-xx),fff"
 indicates that the instruction is really an "ADD fff,X:<aa>" or
 "ADD fff,X:(sp-xx)" instruction. These later two instructions
 encode as two word instructions using the technique described above.

 Note that this encoding (where the destination is a memory
 location) is NOT allowed for the SUB or CMP instructions.
 It is only allowed for the ADD instruction.

Encoding of LEA:
 There is a trick used for encoding the LEA instruction. The trick
 is used in several different places within the opcode map and is
 simply this - anytime a MOVE instruction uses "NOREG" (located in the
 HHHH or DDDDD field) as a source register, the instruction is no longer
 interpreted as a MOVE instruction. Instead it operates as an LEA
 instruction. Thus, the syntax for the instruction available to the
 user is "LEA", but the actual bit encoding uses the MOVE instruction
 where the source register is "NOREG":

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 LEA (Rn)+ => MOVE NOREG,X:(Rn)+

 LEA (Rn)- => MOVE NOREG,X:(Rn)-
 LEA (Rn)+N => MOVE NOREG,X:(Rn)+N
 LEA (R2+xx) => MOVE NOREG,X:(R2+xx)
 LEA (Rn+xxxx) => MOVE NOREG,X:(Rn+xxxx)

 LEA (SP)+ => MOVE NOREG,X:(SP)+
 LEA (SP)- => MOVE NOREG,X:(SP)-
 LEA (SP)+N => MOVE NOREG,X:(SP)+N
 LEA (SP-xx) => MOVE NOREG,X:(SP-xx)
 LEA (SP+xxxx) => MOVE NOREG,X:(SP+xxxx)

 CAREFUL: LEA must NOT write to a memory location!
 NOTE: LEA not allowed for (Rn) or (SP).

Encoding of TSTW:
 There is a trick used for encoding the TSTW instruction. The trick
 is used in several different places within the opcode map and is
 simply this - anytime a MOVE instruction uses "NOREG" (located in the
 HHHH or DDDDD field) as a dest register, the instruction is no longer
 interpreted as a MOVE instruction. Instead it operates as a TSTW
 instruction. Thus, the syntax for the instruction available to the
 user is "TSTW", but the actual bit encoding uses the MOVE instruction
 where the destination register is "NOREG":

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 TSTW X:<aa> => MOVE X:<aa>,NOREG
 TSTW X:<pp> => MOVE X:<pp>,NOREG
 TSTW X:xxxx => MOVE X:xxxx,NOREG
 TSTW X:(Rn) => MOVE X:(Rn),NOREG
 TSTW X:(Rn)+ => MOVE X:(Rn)+,NOREG
 TSTW X:(Rn)- => MOVE X:(Rn)-,NOREG
 TSTW X:(Rn)+N => MOVE X:(Rn)+N,NOREG
 TSTW X:(Rn+N) => MOVE X:(Rn+N),NOREG
 TSTW X:(Rn+xxxx) => MOVE X:(Rn+xxxx),NOREG
 TSTW X:(R2+xx) => MOVE X:(R2+xx),NOREG
 TSTW X:(SP) => MOVE X:(SP),NOREG
 TSTW X:(SP)+ => MOVE X:(SP)+,NOREG
 TSTW X:(SP)- => MOVE X:(SP)-,NOREG
 TSTW X:(SP)+N => MOVE X:(SP)+N,NOREG
 TSTW X:(SP+N) => MOVE X:(SP+N),NOREG
 TSTW X:(SP+xxxx) => MOVE X:(SP+xxxx),NOREG
 TSTW X:(SP-xx) => MOVE X:(SP-xx),NOREG
 TSTW <register> => MOVE ddddd,NOREG

 NOTE: TSTW (Rn)- is not encoded in this manner, but instead
 has its own encoding allocated to it.

 NOTE: TSTW HWS is NOT allowed. All other on-chip registers
 are allowed.

 IMPORTANT NOTE: TSTW can be done on any other instruction which
 allows a move to NOREG. Note this doesn't make sense for LEA.

 NOTE: TSTW F (operates on saturated 16 bits) differs
 from TST F (operates on full 36/32 bit accumulator)

 NOTE: TSTW P:() is NOT allowed.

Encoding of POP:
 The encoding of the POP follows the simple rules below.

 DSP56800 Instruction Encoded As:
 -------------------- -----------
 POP <reg> => MOVE X:(SP)-,<reg>
 POP => LEA (SP)-

 In the first case, a register is explicitely mentioned, whereas in

 the second case, no register is specified, i.e., just removing a value
 from the stack.

 NOTE: There is no PUSH instruction, but it is easy to write
 a simple two word macro for PUSH.

Encoding of CLR:
 The encoding for a CLR on anything other than A or B
 should encode into the following: "move #0,<reg>".
 Allows the following instructions to be recognized by the assembler:
 CLR DD (DD = x0,y0,y1)
 CLR F1 (F1 = a1,b1)
 CLR RR (DD = r0,r1,r2,r3)
 CLR N
 Note that no parallel move is allowed with these.
 Note also that CLR F sets the condition codes,
 whereas CLR on DD, F1, RR, or N does NOT set the condition codes.

Encoding of ENDDO:
 The ENDDO instruction will be encoded as "MOV HWS,NOREG".

Encoding of the Tcc Instruction:

The Tcc instruction is somewhat difficult to understand because it's encoding
overlays the encodings of some Data ALU instructions when Bit 2 of the opcode
is a "1". It is overlayed obviously so that for a particular bit pattern,
there is only one unique instruction present. Reference to this can be seen
with the "<<Tc>>" entry found within Charts 3 and 4 below. Use the definition

 "0110 11CC FJJJ 01CZ Tcc JJJ,F [R0->R1]"

to encode this instruction.

==
==

Restrictions:

 - The HWS register cannot be specified as the loop count for a DO or
 REP instruction. Likewise, no bitfield operations (BFTSTH, BFTSTL,
 BFSET, BFCLR, BFCHG, BRSET, BRCLR) can operate on the HWS register.
 Note, however, that all other instructions which access ddddd, including
 "move #xxxx,HWS" and TSTW, can operate on the HWS register.
 - The following registers cannot be specified as the loop count for a DO or
 REP instruction - HWS, M01, SR, OMR.
 - The "lea" instruction does NOT allow the (Rn) addressing mode, i.e.,
 it only allows (Rn)+, (Rn)-, (Rn)+N, (Rn+xxxx), (R2+xx), and (SP-xx)
 - Cannot do a bitfield set/clr/change on "ND" register, i.e., the bitfield
 instruction cannot be immediately followed by an instruction which uses
 the "N" register in an addressing mode.
 bfclr #$1234,n
 move x:(r0+n),x0 ; illegal - needs one NOP
 Special care is necessary in hardware loops, where the instruction at
 LA is followed by the instruction at the top of the loop as well as the
 instruction at LA+1.
 - Cannot move a long immediate value to the "ND" register. This is because
 the long immediate move is implemented similar to the bitfield instrs.
 move #$1234,n ; long immediate
 move x:(r0+n),x0 ; ILLEGAL - needs one NOP

 move #$4,n ; short immediate, uses ND register
 move x:(r0+n),x0 ; ALLOWED since uses short immediate
 - The value "0000000" is not allowed for Bcc.
 In addition, this same value is not allowed as the relative offset
 for a BRSET or BRCLR instruction.
 - The value "0" is not allowed for the DO #xx instruction.
 If this case is encountered by the assembler, it should not be accepted.
 - Jumps to LA and LA-1 of a hardware loop are not allowed. This also

 applies to the BRSET and BRCLR instructions.
 - A NORM instruction cannot be immediately followed by an instruction
 which uses the Address ALU register modified by the NORM instruction
 in an addressing mode.
 norm r0,a
 move x:(r0)+,x0 ; illegal - needs one NOP
 Special care is necessary in hardware loops, where the instruction at
 LA is followed by the instruction at the top of the loop as well as the
 instruction at LA+1.
 - Only positive values less than 8192 can be moved to the LC register.
 - Cannot REP on any multiword instruction or any instruction which
 performs a P:() memory move.
 - Cannot REP on any instruction not allowed on the DSP56100.
 - IF a MOVE or bitfield instruction changes the value in R0-R3 or SP,
 then the contents of the register are not available for use until the
 second following instruction, i.e., the immediately following instruction
 should not use the modified register to access X memory or update an
 address. This restriction does NOT apply to the N register or the
 (Rn+xxxx) addressing mode as discussed below.
 - For the case of nested looping, it is required that there are at least
 two instruction cycles after the pop of the LC and LA registers before
 the instruction at LA for the outer loop.
 - A hardware DO loop can never cross a 64K program memory boundary, i.e.,
 the DO instruction as well as the instruction at LA must both reside
 in the same 64K program memory page.
 - Jcc, JMP, Bcc, BRA, JSR, BRSET or BRCLR instructions are not allowed in
 the last two locations of a hardware do loop, i.e., at LA, and LA-1.
 This also means that a two word Jcc, JMP, or JSR instruction may not have
 its first word at LA-2, since its second word would then be at LA-1, which
 is not allowed.

Restrictions Removed:

 - The following instruction sequence is NOW ALLOWED:
 move <>,lc ; move anything to LC reg
 do lc,label ; immediately followed by DO
 This was not allowed on the 56100 family due to its internal pipeline.
 - An AALU pipeline NOP is not required in the following case:
 move <>,Rn ; same Rn as in following instr
 move X:(Rn+xxxx),<> ; OK, no NOP required!

 move <>,Rn ; same Rn as in following instr
 move <>,X:(Rn+xxxx) ; OK, no NOP required!

 In this case, there will NOT be an extra instruction cycle inserted
 because any move with the X:(Rn+xxxx) or X:(SP+xxxx) addressing mode
 is already a 3 Icyc instruction.
 - An AALU pipeline NOP is not required in the following case:
 move <>,Rn ; same Rn as in following instr
 lea (Rn+xxxx) ; OK, no NOP required!

 In this case, there will NOT be an extra instruction cycle inserted
 because any lea with the (Rn+xxxx) or (SP+xxxx) addressing mode
 is already a 2 Icyc instruction.
 - An AALU pipeline NOP is not required in the following case:
 move <>,N
 move X:(Rn+N),<> ; OK, no NOP required!

 move <>,N
 move <>,X:(Rn+N) ; OK, no NOP required!

 move <>,N
 move <>,X:(Rn)+N ; OK, no NOP required!

 move <>,N
 move X:(Rn)+N,<> ; OK, no NOP required!

 In this case, there WILL be an extra instruction cycle inserted

 and the assembler will use the ND register, not the N register.

185. APPENDIX: IsoPod™ V1 HARDWARE REFERENCE

186. CONNECTORS V1

The IsoPod™ V1 has 8 connectors. J1, J2, J3, J4, J5, J6, J7, J8 are shown below:

J1 Ser., Power, General Purpose I/O Serial, Power, Ports PA0 – PA7, PB0 – PB7
J2 JTAG connector CPU Port, for factory use only
J3 SPI SCLK, MISO, MOSI, SS, PD0, PD1, PD2, PD3
J4 RS-422/485 Serial Port -RCV, +RCV, -XMT, +XMT
J5 CAN BUS Network Port CANL, CANH
J6 Servo Motor Outputs x 12 PWM, V+, GND
J7 Motor Encoder x 2 Quadrature, Fault0, Fault1, Fault2, IS0, IS1, IS2
J8 A/D Various A/D0 – A/D7, Various

187. J1 GPIO

+VIN 24 1 SOUT
GND 23 2 SIN
RST’ 22 3 ATN’
+5V 21 4 GND
PA0 20 5 PB0
PA1 19 6 PB1
PA2 18 7 PB2
PA3 17 8 PB3
PA4 16 9 PB4
PA5 15 10 PB5
PA6 14 11 PB6
PA7 13 12 PB7

Note: In picture above, Pin 1 is at top left viewing CPU side, with J1 at left. When facing
J1 connector, looking straight in, with CPU side to your right, Pin 1 will be at the top
right.

This connector pin out and pin numbering scheme is unique to this one instance. Origin
of pin out and numbering is to match stamp-like connection pin outs.

Connectors in above “top view, J1-to-left” picture and on page below,
 have same oriented (pin 1 upper left).

188. J3 IO/SPI V1

+3V 1 2 GND
PD0 3 4 PE4/SCLK
PD1 5 6 PE5/MOSI
PD2 7 8 PE6/MISO
PD3 9 10 PE7SS’

189. J2 JTAG V1

+3V 1 2 GND
TDI 3 4 GND

TDO 5 6 TMS
TCK 7 8 DE

RESET’ 9 10 TRST

190. J5 CAN BUS V1

N.C. 1 2 N.C.
CANL 3 4 CANH

N.C. 5 6 GND
N.C. 7 8 N.C.
N.C. 9 10 N.C.

191. J4 RS-422/485 V1

N.C. 1 2 N.C.
+RCV 3 4 -RCV
GND 5 6 GND

-XMT 7 8 +XMT
N.C. 9 10 N.C.

Connectors in above “top view, J1-to-left” picture and on page below,
 have same oriented (pin 1 upper left).

192. J6 PWM SERVO OUTPUT V1

 Sig. +V GND
PWMB5 1 2 3
PWMB4 4 5 6
PWMB3 7 8 9
PWMB2 10 11 12
PWMB1 13 14 15
PWMB0 16 17 18
PWMA5 19 20 21
PWMA4 22 23 24
PWMA3 25 26 27
PWMA2 28 29 30
PWMA1 31 32 33
PWMA0 34 35 36

193. J7 Motor Encoder x 2 V1

+5V 1 2 FAULTA0
GND 3 4 FAULTA1

PH ASEA0 5 6 FAULTA2
PHASE B0 7 8 ISA0

INDEX0 9 10 ISA1
HOME0 11 12 ISA2

+5V 13 14 FAULTB0
GND 15 16 FAULTB1

PHASEA1 17 18 FAULTB2
PHASEB1 19 20 ISB0

INDEX1 21 22 ISB1
HOME1 23 24 ISB2

194. J8 Various V1

ANA0 1 2 +5V
ANA1 3 4 IRQA
ANA2 5 6 IRQB
ANA3 7 8 FAULTB3
ANA4 9 10 FAULTA3
ANA5 11 12 PD5
ANA6 13 14 TC0
ANA7 15 16 TC1
VSSA 17 18 CLKO
VREF 19 20 RSTO

VSS(GND) 21 22 RD'
V+ 22 24 WR'

195. JUMPERS V1

The IsoPod™ has no jumpers. This was a design goal realized. Jumper setting on such a
small board, are not very practical so have been avoided. A few sites exist where
termination resistors can be added. A few port lines are used to control programmable
options on the board.

Port line TD0 controls the RS-232 transmitter shutdown.

Port line TD1 controls the RS-485 transceiver turn-around.

196. BOARD MOUNTING V1

No mounting holes are provided on the IsoPod™ Board V1, but it may be mounted by:

197. J1 and supporting clip:

198. Double sided sticky tape:

199. Inversion and insertion:

into mating .1” connectors with or without a right angle double male connector on J1

200. Cable or adapter:

An IDC cable with an IDC male connector can, or an IDC female used with an
intermediate double male header, can be ribbon cabled to a similar IDC 24-pin socket
header and plugged into an existing stamp-type socket. NMI also manufactures a level,
and a right angle adapter for the same purpose.

201. APPENDIX: IsoPod™ V2 HARDWARE REFERENCE

202. CONNECTORS V2

The IsoPod™ V2 has 7 connectors. J1, J2, J3, J4, J5, J6, J7 are shown below:

J1 Ser., Power, GPI/O Serial, Power, Ports PA0 – PA7, PB0 – PB7
J2 JTAG connector CPU Port, for factory use only
J3 A/D
J4 RS-232/422/485 & CAN Bus -RCV, +RCV, -XMT, +XMT, CANL, CANH
J5 I/O & SPI SCLK, MISO, MOSI, SS, PD0, PD1, PD2, PD3
J6 PWM, Motor Encoder, Timers PWM, TMRA0-3, TMRB0-3, TMRC0,1 TMRD0-3
J7 Fault & Current Sense FAULTA0-3, ISA0-2, FAULTB0-3, ISB0-2

203. J1 GPIO V2

+VIN 24 1 SOUT
GND 23 2 SIN
RST’ 22 3 ATN’
+5V 21 4 GND
PA0 20 5 PB0
PA1 19 6 PB1
PA2 18 7 PB2
PA3 17 8 PB3
PA4 16 9 PB4
PA5 15 10 PB5
PA6 14 11 PB6
PA7 13 12 PB7

Note: In picture above, Pin 1 is at top left viewing CPU side, with J1 at left. When facing
J1 connector, looking straight in, with CPU side to your right, Pin 1 will be at the top
right.

This connector pin out and pin numbering scheme is unique to this one instance. Origin
of pin out and numbering is to match stamp-like connection pin outs.

Connectors in above “top view, J1-to-left” picture and on page below,
 have same oriented (pin 1 upper left).

204. J3 A/D V2

VREF 1 2 VSSA
ANA0 3 4 ANA1
ANA2 5 6 ANA3
ANA4 7 8 ANA4
ANA6 9 10 ANA7

205. J2 JTAG V2

+3V 1 2 GND
TDI 3 4 GND

TDO 5 6 TMS
TCK 7 8 DE

RESET’ 9 10 TRST

206. J5 IO/SPI V2

+5V 1 2 GND
+3V 3 4 PE4/SCLK

RST0’ 5 6 PE5/MOSI
PE2 7 8 PE6/MISO
PE3 9 10 PE7/SS’

207. J4 RS-232/422/485 CAN BUS
V2

+ XMT 1 2 +5V
- XMT 3 4 GND

GND GND 5 6 CANL
SIN1* - RCV 7 8 GND

SOUT1* + RCV 9 10 CANH

* SIN1, SOUT1 RS232 signals by default.
RS-422/485 is optional

Connectors in above “top view, J1-to-left” picture and on page below,
 have same oriented (pin 1 upper left).

208. J6 PWM, Motor Encoder, Timers V2

1 PWMA0 2 +5V 3 +3V
4 PWMA1 5 GND 6 GND
7 PWMA2 8 PHASEA0/TA0 9 TMRC0

10 PWMA3 11 PHASEB0/TA1 12 TMRC1
13 PWMA4 14 INDEX0/TA2 15 IRQA
16 PWMA5 17 HOME0/TA3 18 IRQB
19 PWMB0 20 +5V 21 +3V
22 PWMB1 23 GND 24 GND
25 PWMB2 26 PHASEA1/TB0 27 TMRD0
28 PWMB3 29 PHASEB1/TB1 30 TMRD1
31 PWMB4 32 INDEX1/TB2 33 TMRD2
34 PWMB5 35 HOME1 36 TMRD3

209. J7 Fault & Current Sense V2

FAULTA0 1 2 N.C.
FAULTA1 3 4 ISA0
FAULTA2 5 6 ISA1
FAULTA3 7 8 ISA2
FAULTB0 9 10 ISB0
FAULTB1 11 12 ISB1
FAULTB2 13 14 ISB2
FAULTB3 15 16 N.C.

210. Instructions for Wiring a Serial Cable V1 & V2

211. Transformer hook up

Black w/Striped
White +VIN

24 1 SOUT

Solid Black
GND

23 2 SIN

RST’ 22 3 ATN’
+5V 21 4 GND
PA0 20 5 PB0
PA1 19 6 PB1
PA2 18 7 PB2
PA3 17 8 PB3
PA4 16 9 PB4
PA5 15 10 PB5
PA6 14 11 PB6
PA7 13 12 PB7

212. Serial Cable hook up

+VIN 24 1 SOUT RED
GND 23 2 SIN ORANGE
RST’ 22 3 ATN’YELLOW
+5V 21 4 GND GREEN
PA0 20 5 PB0
PA1 19 6 PB1
PA2 18 7 PB2
PA3 17 8 PB3
PA4 16 9 PB4
PA5 15 10 PB5
PA6 14 11 PB6
PA7 13 12 PB7

J1 Pin Preferred Color DB-9 Pin DB-25 Pin
1 SOUT RED 2 RX 2 TX
2 SIN ORANGE 3 TX 3 RX
3 ATN YELLOW 4 DTR 20 DTR
4 GND GREEN 5 GND 7 GND

 6 DSR 6 DSR
 7 RTS 20 RTS

213. JUMPERS V2

The IsoPod™ has no jumpers. This was a design goal realized. Jumper setting on such a
small board, are not very practical so have been avoided. A few sites exist where
termination resistors can be added. A few port lines are used to control programmable
options on the board.

Port line PD5 controls the RS-232 transmitter shutdown. A pull up resistor normally
disenables shutdown, if the port line is inactive.

Port line PD4 controls the RS-232 receiver enable. A pull down resistor normally enables
the receivers, if the port line is inactive.

Port line PD3 controls the RS-485 transceiver turn-around. A pull down resistor normally
enables the receiver, if the port line is inactive.

Port line PD2 controls the RED LED. The built in pull up in the AC05 makes the LED
come on, if the port line is inactive.

Port line PD1 controls the YELLOW LED. The built in pull up in the AC05 makes the
LED come on, if the port line is inactive.

Port line PD0 controls the GREEN LED. The built in pull up in the AC05 makes the LED
come on, if the port line is inactive.

Port line PE2 controls the CAN transceiver mode, high-speed mode or silent mode. A
pull down resistor normally selects high-speed mode, if the port line is inactive. In the
silent mode, the transmitter is disabled. All other IC functions continue to operate. The
silent mode is selected by connecting pin S to VCC and can be used to prevent network
communication from being blocked, due to a CAN controller which is out of control.

214. BOARD MOUNTING V2

Two mounting holes are provided on the IsoPod™ Board V2:

215. J1 Wall Header and supporting standoffs:

216. V2 Switching Regulator (SR) option:

The Switching Regulator option reduces clearance of analog regulators under board, and
eases mounting requirements.

217. MANUFACTURER

New Micros, Inc.
1601 Chalk Hill Rd.
Dallas, TX 75212

Tel: (214) 339-2204
Fax: (214) 339-1585

Web site: http://www.newmicros.com

This manual: http://www.newmicros.com/store/product_manual/isopod.zip

Email technical questions: nmitech@newmicros.com

Email sales questions: nmisales@newmicros.com

218. MECHANICAL

Under construction…

Board size is 1.2” x 3”

J1 adds .3” to total board length.

A double male header inserted in J1 will also add length, but since it can be user
supplied, only an approximate estimate of .3” can be suggested.

219. ELECTRICAL

The total draw for the IsoPod™ under maximum speed is approximately 200 mA.

Sleeping or slowing the processor can substantially reduce current consumption.

The TD0 signal can shut down the RS-232 converter, saving about 30 mA, when not used
for transmission, if the receiving unit will not sense this as noise.

The TD1 signal can shut down the RS-485 transceiver, U4, saving about 10 mA, when
not used for transmission, if the other RS-485 receiving units will not sense this as noise.
The other RS-485 transceiver, U3, cannot be shut down, but can be left uninstalled by
arrangement with the factory.

Each digital pin is capable of sinking 4 mA and sourcing –4 mA. Each LED draws 1.2
mA when lit.

Absolute Maximum Ratings
Characteristic Symbol Min Max Unit
Supply voltage VDD VSS – 0.3 VSS + 4.0 V
All other input voltages, excluding Analog inputs VIN VSS – 0.3 VSS + 5.5V V
Analog Inputs ANAx, VREF VIN VSS – 0.3 VDDA + 0.3V V
Current drain per pin excluding VDD, VSS, PWM outputs,
TCS, VPP, VDDA, VSSA

I — 10 mA

Current drain per pin for PWM outputs I — 20 mA
Junction temperature TJ — 150 °C
Storage temperature range TSTG -55 150 °C

Recommended Operating Conditions
Characteristic Symbol Min Max Unit
Supply voltage VDD 3.0 3.6 V
Ambient operating temperature TA -40 85 °C

DC Electrical Characteristics
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL ≤ 50 pF, fop = 80
MHz
Characteristic Symbol Min Typ Max Unit
Input high voltage VIH 2.0 — 5.5 V
Input low voltage VIL -0.3 — 0.8 V
Input current low (pullups/pulldowns disabled) IIL -1 — 1 µA
Input current high (pullups/pulldowns disabled) IIH -1 — 1 µA
Typical pullup or pulldown resistance RPU, RPD — 30 — KΩ
Input/output tri-state current low IOZL -10 — 10 µA
Input/output tri-state current low IOZH -10 — 10 µA
Output High Voltage (at IOH) VOH VDD – 0.7 — — V
Output Low Voltage (at IOL) VOL — — 0.4 V
Output High Current IOH — — -4 mA
Output Low Current IOL — — 4 mA
Input capacitance CIN — 8 — pF
Output capacitance COUT — 12 — pF
PWM pin output source current 1 IOHP — — -10 mA

PWM pin output sink current 2 IOLP — — 16 mA
Total supply current IDDT 3
Run 4 — 126 162 mA
Wait 5 — 72 98 mA
Stop — 60 84 mA
Low Voltage Interrupt 6 VEI 2.4 2.7 2.9 V
Power on Reset 7 VPOR — 1.7 2.0 V

1. PWM pin output source current measured with 50% duty cycle.

2. PWM pin output sink current measured with 50% duty cycle.

3. IDDT = IDD + IDDA (Total supply current for VDD + VDDA)

4. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports
configured as inputs; measured with all modules enabled.

5. Wait IDD measured using external square wave clock source (fosc = 8 MHz) into XTAL; all inputs 0.2V from rail;
no DC loads; less than 50 pF on all outputs. CL = 20 pF on EXTAL; all ports configured as inputs; EXTAL capacitance
linearly affects wait IDD; measured with PLL enabled.

6. Low voltage interrupt monitors the VDDA supply. When VDDA drops below VEI value, an interrupt is generated.
For correct operation, set VDDA=VDD. Functionality of the device is guaranteed under transient conditions when
VDDA>VEI.

7. Power-on reset occurs whenever the internally regulated 2.5V digital supply drops below VPOR. While power is
ramping up, this signal remains active for as long as the internal 2.5V supply is below 1.5V no matter how long the
ramp up rate is. The internally regulated voltage is typically 100 mV less than VDD during ramp up until 2.5V is
reached, at which time it self regulates.

220. SUPPORTING SOFTWARE

221. NMITerm

Provided Windows terminal program from New Micros, Inc. Usually provided in a ZIP.
Un ZIP in a subdirectory, such as C:\NMITerm. To start the program: click, or double
click, the program icon.

NMITerm.LNK

NMITerm is a simple Windows-based communications package designed for program
development on serial port based embedded controllers. It runs under Windows.

NMITerm provides:

 1. Support for COM1 through COM16.
 2. Baud rates from 110 through 256000.
 3. Control over RTS and DTR lines.
 4. Capture files, which record all terminal activity to disk.
 5. Scroll-back buffer, editable and savable as a file.
 6. On-line Programmer's Editor.
 7. File downloader.
 8. Programmable function keys.

Quick start commands:

1. Baud: default 9600
2. DTR On/Off : ALT+T
3. Download: ALT+D

For further information use the F1 Help screen.

This program can be downloaded from:

http://www.newmicros.com/download/NMITerm.zip

MaxTerm

Provided DOS terminal program from New Micros, Inc. Usually provided in a ZIP. Un
ZIP in a subdirectory, such as C:\MAXTERM. To start the program: click, or double
click, the program icon.

Maxterm.ico

MaxTerm is a simple DOS-based communications package designed for program
development on serial port based embedded controllers. It can run under stand-alone
DOS or in a DOS session under Windows.

MaxTerm provides:

 1. Support for COM1 through COM4.
 2. Baud rates from 300 through 38400.
 3. Control over RTS and DTR lines.
 4. Capture files, which record all terminal activity to disk.
 5. 32K scroll-back buffer, editable and savable as a file.
 6. On-line Interactive Programmer's Editor (OPIE).
 7. File downloader.
 8. Programmable function keys.
 9. Received character monitor, which displays all data in HEX.

Quick start commands:

4. Set comport: ALT+1 or ALT+2 It does not support com3 & 4.
5. Baud: default 9600
6. DTR On/Off : ALT+T
7. Download: ALT+D
8. PACING: ALT+P (IsoMax default decimal 10)

For further information use the Help screen (ALT-H) or the program documentation.

 MAXTERM Help
 alt-B Change baud rate alt-M Character monitor mode
 alt-C Open (or close) capture file alt-O Toggle sounds
 alt-D Download a file (all text) alt-P Change line pace char
 alt-E Edit a file (Split screen) alt-R Toggle RTS
 alt-F Edit function keys alt-S Unsplit the screen
 alt-H Help alt-T Toggle DTR
 alt-I Program Information alt-U Change colors
 alt-K Toggle redefinition catcher alt-W Wipe the screen
 alt-L Open scrollback log alt-X Exit
 alt-1 (2 3 4) Select Com port alt-Z Download a file (no fat)
 f1-f10 Programmable function keys f12 Re-enter OPIE

Status line mode indicators: r = rts, d = dtr, L = log file, S =
sounds, K = redefinition, P = line pacing active

222. HyperTerminal

Usually provided in Programs/Accessories/Communications/HyperTerminal. If not
present, it can be loaded from the Windows installation disk. Use “Add/Remove
Software” feature in Settings/Control Panel, choose Windows Setup, choose
Communications, click on Hyperterm, then Okay and Okay. Follow any instructions to
add additional features to windows.

Hypertrm.exe

C:\Program Files\Accessories\HyperTerminal

Run HyperTerminal, select an icon that pleases you and give the new connection a name,
such as ISOPOD. Now in the “Connect To” dialog box, in the bottom “Connect Using”
line, select the communications port you wish to use, with Direct Comm1, Direct
Comm2, Direct Comm3, Direct Comm4 as appropriate, then Okay. In the COMMx
Dialog box which follows set up the port as follows: Bits per second: 9600 , Data bits: 8,
Parity: None, Flow Control: None, then Okay.

The ATN signal must be unconnected when using this program. There is no option to
remotely set and reset the board using the DTR line with this program.

223. REFERENCE

224. Decimal - Hex - ASCII Chart
DEC HEX Char Function
000 00 NUL Null

001 01 SOH Start of heading

002 02 STX Start of text

003 03 ETX End of text

004 04 EOT End of transmit

005 05 ENQ Enquiry

006 06 ACK Acknowledge

007 07 BEL Bell

008 08 BS Back Space

009 09 HT Horizontal Tab

010 0A LF Line Feed

011 0B VT Vertical Tab

012 0C FF Form Feed

013 0D CR Carriage Return

014 0E SO Shift Out

015 0F SI Shift In

016 10 DLE Data Line Escape

017 11 DC1 Device Control 1

018 12 DC2 Device Control 2

019 13 DC3 Device Control 3

020 14 DC4 Device Control 4

021 15 NAK Non Acknowledge

022 16 SYN Synchronous Idle

023 17 ETB End Transmit Block

024 18 CAN Cancel

025 19 EM End of Medium

026 1A SUB Substitute

027 1B ESC Escape

028 1C FS File Separator

029 1D GS Group Separator

030 1E RS Record Separator

031 1F US Unit Separator

032 20 Space
033 21 !
034 22 "
035 23 #
036 24 $
037 25 %
038 26 &
039 27 '
040 28 (
041 29)
042 2A *
043 2B +
044 2C ,
045 2D -
046 2E .
047 2F /
048 30 0
049 31 1
050 32 2
051 33 3
052 34 4
053 35 5
054 36 6
055 37 7

056 38 8
057 39 9
058 3A :
059 3B ;
060 3C <
061 3D =
062 3E >
063 3F ?
064 40 @
065 41 A
066 42 B
067 43 C
068 44 D
069 45 E
070 46 F
071 47 G
072 48 H
073 49 I
074 4A J
075 4B K
076 4C L
077 4D M
078 4E N
079 4F O

080 50 P
081 51 Q
082 52 R
083 53 S
084 54 T
085 55 U
086 56 V
087 57 W
088 58 X
089 59 Y
090 5A Z
091 5B [
092 5C \
093 5D]
094 5E ^
095 5F _
096 60 `
097 61 a
098 62 b
099 63 c
100 64 d
101 65 e
102 66 f
103 67 g

104 68 h
105 69 I
106 6A J
107 6B K
108 6C L
109 6D M
110 6E N
111 6F O
112 70 P
113 71 Q
114 72 R
115 73 S
116 74 T
117 75 U
118 76 V
119 77 W
120 78 X
121 79 Y
122 7A Z
123 7B {
124 7C |
125 7D }
126 7E ~
127 7F DEL

225. ASCII Chart
 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US
2 SP ! " # $ % & ' () * + , - . /
3 0 1 2 3 4 5 6 7 8 9 : ; < = > ?
4 @ A B C D E F G H I J K L M N O
5 P Q R S T U V W X Y Z [\] ^ _’
6 ` a b c d e f g h I j k l m n o
7 p q r s t u v w x y z { | } ~ DEL

More on ASCII on another web site: http://www.jimprice.com/jim-asc.htm

226. ISOMAX GLOSSARY
Stack comments use the following notation:

n a signed 16-bit value, -32768..+32767.
u an unsigned 16-bit value, 0..65535.
+n a signed, positive 16-bit value, 0..+32767.
w a generic16-bit value.
16b a generic 16-bit value.
addr an address (16 bits).

c a character. (Note: stored as 16 bits on the IsoPod)
8b a generic 8-bit value. (Note: stored as 16 bits on the IsoPod)

d a signed 32-bit value, -2,147,483,648..+2,147,483,647.
ud an unsigned 32-bit value, 0..4,294,967,295.
wd a generic 32-bit value.
32b a generic 32-bit value.

r a floating-point (real) value.
flag a logical flag, zero = false, -1 (all ones) = true.

Values on the stack before and after execution of a word are given as follows:

(before --- after) normal integer data stack
(F: before --- after) floating-point data stack
(C: before --- after) compile-time behavior of the integer data stack.

Stack comments in italics also refer to compile-time behavior.

227. Integer Arithmetic

Word Stack Effect Description
* (w1 w2 --- w3) Multiplies w2 by w1 and leaves the product w3 on

the stack.
*/ (n1 n2 n3 --- n4) Multiplies n2 by n1 and divides the product by n3.

The quotient, n4 is placed on the stack.
*/MOD (n1 n2 n3 -- n4 n5) n1 is multiplied by n2 producing a product which is

divided by n3. The remainder, n4 and the quotient,
n5 are then placed on the stack.

+ (w1 w2 --- w3) Adds w2 and w1 then leaves the sum, w3 on the
stack.

+! (w1 addr ---) Adds w1 to the value at addr then stores the sum at
addr replacing its previous value.

- (w1 w2 --- w3) Subtracts w2 from w1 and leaves the result, w3 on
the stack.

/ (n1 n2 --- n3) Divides n1 by n2 and leaves the quotient n3 on the
stack.

/MOD (n1 n2 --- n3 n4) Divides n1 by n2 then leaves on the stack the
remainder n3 and the quotient n4.

1+ (w1 --- w2) Adds 1 to w1 then leaves the sum, w2 on the stack.
1+! (addr ---) Adds one to the value at addr and stores the result at

addr.
1- (w1 --- w2) Subtract 1 from w1 then leaves the difference, w2 on

the stack.
1-! (addr ---) Subtracts one from the value at addr and stores the

result at addr.
2* (w1 --- w2) Multiplies w1 by 2 to give w2.
2+ (w1 --- w2) Adds two to w1 and leaves the sum, w2 on the stack.
2- (w1 --- w2) Subtracts two from w1 and leaves the result, w2 on

the stack.
2/ (n1 --- n2) Divides n1 by 2, giving n2 as the result.
>< (8b1/8b2 ---

8b2/8b1)
Swaps the upper and lower bytes of the value on the
stack.

ABS (n --- u) Leaves on the stack the absolute value, u of n.
MAX (n1 n2 --- n3) Leaves the greater of n1 and n2 as n3.
MIN (n1 n2 --- n3) Leaves the lesser of n1 and n2 as n3.
MOD (n1 n2 --- n3) Divides n1 by n2 and leaves the remainder n3.
NEGATE (n1 --- n2) Leaves the two's complement n2 of n1.
UM* (u1 u2 ---ud) Multiplies u1 and u2 returning the double length

product ud.
UM/MOD (ud u1 --- u2 u3) Divides the double length unsigned number ud by u1

and returns the single length remainder u2 and the
single length quotient u3.

228. Logical and Comparison

Word Stack Effect Description
0< (n --- flag) Leaves a true flag if n is less than zero.
0= (w --- flag) Leaves a true flag if w is equal to zero.
0> (n --- flag) Leaves a true flag if n is greater than zero.
< (n1 n2 --- flag) Leaves a true flag on stack if n1 is less than n2.
= (w1 w2 --- flag) Returns a true flag if w1 is equal to w2.
> (n1 n2 --- flag) Returns a true flag if n1 is greater than n2.
AND (16b1 16b2 ---

16b3)
Leaves the bitwise logical AND of 16b1 and
16b2 as 16b3.

CLEAR-BITS Clears bits at addr corresponding to 1s in mask b.
INVERT (16b1 --- 16b2) Leaves the one's complement 16b2 of 16b1.
NOT (flag1 --- flag2) Leaves the logical inverse flag2 of flag1. flag2

is false if flag1 was true, and vice versa.
OR (16b1 16b2 --- Leaves the inclusive-or 16b3 of 16b1 an 16b2.

16b3)
SET-BITS (b addr ---) Sets bits at addr corresponding to 1s in mask b.
TOGGLE-BITS (b addr ---) Toggles bits at addr corresponding to 1s in mask

b.
U< (u1 u2 ---flag) Returns a true flag if u1 is less then u2.
XOR (16b1 16b2 ---

16b3)
Performs a bit-by-bit exclusive or of 16b1 with
16b2 to give 16b3.

229. Double-Precision Operations

Word Stack Effect Description
2CONSTANT
<name>

(32b ---) Creates a double length constant for a <name>.
When <name> is executed, 32b is left on the stack.

2DROP (32b ---) Removes 32b from the stack.
2DUP (32b --- 32b

32b)
Duplicates 32b.

2OVER (32b1 32b2 ---
32b1 32b2 32b3
)

32b3 is a copy of 32b1

2ROT (32b1 32b2
32b3 --- 32b2
32b3 32b1)

Rotates 32b1 to the top of the stack.

2SWAP (32b1 32b2 ---
32b2 32b1)

Swaps 32b1 and 32b2 on the stack.

2VARIABLE
<name>

(---) Creates double-length variable for <name>. when
<name> is executed, its parameter field address is
placed on the stack.

D* (d1 d2 --- d3) Multiplies d1 by d2 and leaves the product d3 on the
stack.

D+ (wd1 wd2 ---
wd3)

Adds wd1 and wd2 and leaves the result, wd3 on
stack.

D- (wd1 wd2 ---
wd3)

Subtracts wd2 from wd1 and returns the dif- ference
wd3.

D/ (d1 d2 --- d3) Divides d1 by d2 and leaves the quotient d3 on the
stack.

D0= (wd --- flag) Returns a true flag if wd is equal to zero.
D2/ (d1 --- d2) Divides d1 by 2 and gives quotient d2.
D< (d1 d2 --- flag) Leaves a true flag if d1 is less than d2; otherwise

leaves a false flag.
D= (wd1 wd2 ---

flag)
Returns a true flag if wd1 is equal to wd2.

DABS (d --- ud) Returns the absolute value of d as ud.
DCONSTANT
<name>

(32b ---) Creates a double length constant for a <name>.
When <name> is executed, 32b is left on the stack.
Same as 2CONSTANT.

DDROP (32b ---) Removes 32b from the stack. Same as 2DROP.
DDUP (32b --- 32b

32b)
Duplicates 32b. Same as 2DUP.

DMAX (d1 d2 --- d3) Returns d3 as the greater of d1 or d2.
DMIN (d1 d2 --- d3) Returns d3 as the lesser of d1 or d2.
DMOD (d1 d2 --- d3) Divides d1 by d2 and leaves the remainder d3.
DNEGATE (d1 --- d2) Leaves the two's complement d2 of d1.
DOVER (32b1 32b2 ---

32b1 32b2 32b3
)

32b3 is a copy of 32b1. Same as 2OVER.

DROT (32b1 32b2
32b3 --- 32b2
32b3 32b1)

Rotates 32b1 to the top of the stack. Same as 2ROT.

DSWAP (32b1 32b2 ---
32b2 32b1)

Swaps 32b1 and 32b2 on the stack. Same as
2SWAP.

DU< (ud1 ud2 ---
flag)

Returns a true flag if ud1 is less than ud2.

DVARIABLE
<name>

(---) Creates double-length variable for <name>. when
<name> is executed, its parameter field address is
placed on the stack. Same as 2VARIABLE.

S->D (n --- d) Sign extend single number to double number.

230. Floating-point Operations

Word Stack Effect Description
2**X (F: r1 -- r2) Raise 2 to the r1 power giving r2.
D>F (d --) (F: -- r) R is the floating-point equivalent of d.
e (F: -- r1) Put natural value e (=2.718282) on the floating-

point stack as r1.
F! (addr --) (F:r --) Store r at addr.
F* (F:r1 r2 -- r3) Multiply r1 by r2 giving r3.
F** (F:r1 r2 -- r3) Raise r1 to the r2 power giving r3.
F+ (F:r1 r2 -- r3) Add r1 to r2, giving r3.
F, (F:r --) Store r as a floating-point number in the next

available dictionary location.
F- (F:r1 r2 -- r3) Subtract r2 from r1, giving r3.
F/ (F:r1 r2 -- r3) Divide r1 by r2, giving r3.
F0< (F:r --) (-- flag) flag is true if r is less than zero.
F0= (F:r --) (-- flag) flag is true if r is equal to zero.
F2* (F:r1 -- r2) Multiply r1 by 2 giving r2.
F2/ (F:r1 -- r2) Divide r1 by 2 giving r2.
F< (F:r1 r2 --)(--

flag)
flag is true if r1 is less than r2.

F>D (F:r --)(-- d) Convert r to d.
F@ (addr --)(F: -- r) r is the value stored at addr.

FABS (F:r1 -- r2) R2 is the absolute value of r1.
FALOG (F:r1 -- r2) Raise 10 to the power r1, giving r2.
FATAN (F:r1 -- r2) R2 is the principal radian whose tangent is r1.
FATAN2 (F:r1 r2 -- r3) R3 is the radian angle whose tangent is r1/r2.
FCONSTANT
<name>

(F:r --) Define a constant <name> with value r.

FCOS (F:r1 -- r2) r2 is the cosine of the radian angle r1.
FDEPTH (-- +n) +n is the number of values contained on separate

floating point stack.
FDROP (F:r--) Remove r from the floating-point stack.
FDUP (F:r -- r r) Duplicate r.
FEXP (F:r1 -- r2) Raise e to the power r1, giving r2.
FLN (F:r1 -- r2) R2 is the natural logarithm of r1.
FLOAT+ (addr1 -- addr2) Add the size of a floating-point value to addr1.
FLOATS (n1 -- n2) n2 is the size, in bytes, of n1 floating-point

numbers.
FLOG (F:r1 -- r2) R2 is the base 10 logarithm of r1.
FLOOR (F:r1 -- r2) Round r1 using the "round to negative infinity"

rule, giving r2.
FMAX (F:r1 r2 -- r3) r3 is the maximum of r1 and r2.
FMIN (F:r1 r2 -- r3) r3 is the minimum of r2 and r3.
FNEGATE (F:r1 -- r2) r2 is the negation of r1.
FNIP (F:r1 r2 -- r2) Remove second number down from floating-point

stack.
FOVER (F:r1 r2 -- r1 r2

r1)
Place a copy of r1 on top of the floating-point
stack.

FROUND (F:r1 -- r2) Round r1 using the ";round to even"; rule, giving
r2.

FSIN (F:r1 -- r2) R2 is the sine of the radian angle r1.
FSQRT (F:r1 -- r2) R2 is the square root of r1.
FSWAP (F:r1 r2 -- r2 r1) Exchange the top two floating-point stack items.
FTAN (F:r1 -- r2) R2 is the tangent of the radian angle r1.
FVARIABLE
<name>

(--) Create a floating-point variable <name>. Reserve
data memory in the dictionary sufficient to hold a
floating-point value.

LOG2 (F:r1 -- r2) R2 is the base 2 logarithm of r1.
ODD-POLY (F: -- r1)(addr --) Evaluate odd-polynomial giving r1.
PI (F: -- r1) Put the numerical value of pi on the floating- point

stack as r1.
POLY (F: -- r1)(addr --) Evaluate polynomial giving r1.
S>F (n--)(F: -- r) R is the floating-point equivalent of n.
SF! (addr --)(F:r --) Store the floating point number r as a 32 bit IEEE

single precision number at addr.
SF@ (addr --)(F: -- r) Fetch the 32-bit IEEE single precision number

stored at addr to the floating-point stack as r in the
internal representation.

231. Stack Operations

Word Stack Effect Description
-ROLL (n ---) Removes the value on the top of stack and inserts it

into the nth place from the top of stack.
>R (16b ---) Removes 16b from user stack and place it onto

return stack.
?DUP (16b --- 16b 16b),

(0 --- 0)
Duplicates 16b if it is a non-zero.

DEPTH (--- +n) Returns count +n of numbers on the data stack.
DROP (16b ---) Removes 16b from the data stack.
DUP (16b --- 16b 16b) Duplicates 16b.
OVER (16b1 16b2 ---

16b1 16b2 16b3)
16b3 is a copy of 16b1.

PICK (+n --- 16b) Copies the data stack's +nth item onto the top.
R> (--- 16b) 16b is removed from the return stack and placed

onto the data stack.
R@ (--- 16b) 16b is a copy of the top of the return stack.
ROLL (+n ---) Removes the stack's nth item and places it onto the

top of stack.
ROT (16b1 16b2 16b3 --

- 16b2 16b3 16b1)
Rotates 16b1 to the top of the stack.

RP! (--) Initializes the bottom of the return stack.
RP@ (-- addr) addr is the address of the top of the return stack just

before RP@ was executed.
SP! (--) Initializes the bottom of the parameter stack.
SP@ (--- addr) addr is the address of the top of the parameter stack

just before SP@ was executed.
SWAP (16b1 16b2 ---

16b2 16b1)
Exchanges positions of the top two items of the
stack.

232. String Operations

Word Stack Effect Description
-TRAILING (addr +n1 ---

addr +n2)
Counts +n1 characters starting at addr and subtracts
1 from the count when a blank is encountered.
Leaves on the stack the final string count, n2 and
addr.

." (---) Displays the characters following it up to the
delimiter " .

.((---) Displays string following .(delimited by) .
COUNT (addr1 --- addr2

+n)
Leaves the address, addr2 and the character count +n
of text beginning at addr1.

PCOUNT (addr1 --- addr2
+n)

Leaves the address, addr2 and the character count +n
of text beginning at addr1 in Program memory.

233. Terminal I/O

Word Stack Effect Description
?KEY (--- flag) True if any key is depressed.
?TERMINAL (--- flag) True if any key is depressed. Same as ?KEY.
CR (---) Generates a carriage return and line feed.
EMIT (16b ---) Displays the ASCII equivalent of 16b onto the

screen.
EXPECT (addr +n ---) Stores up to +n characters into memory beginning at

addr.
KEY (--- 16b) Pauses to wait for a key to be pressed and then

places the ASCII value of the key (n) on the stack.
PTYPE (addr +n ---) Displays a string of +n characters from Program

memory, starting with the character at addr.
SPACE (---) Sends a space (blank) to the current output device.
SPACES (+n ---) Sends +n spaces (blanks) to the current output

device.
TYPE (addr +n ---) Displays a string of +n characters starting with the

character at addr.

234. Numeric Output
Word Stack Effect Description
(+d1 --- +d2) +d1 is divided by BASE and the quotient is placed

onto the stack. The remainder is converted to an
ASCII character and appended to the output string
toward lower memory addresses.

#> (32b --- addr +n) Terminates formatted (or pictured) output string
(ready for TYPE).

#S (+d --- 0 0) Converts all digits of an entire number into string.
(E.) (F:r --)(-- addr +n) Convert the top number on the floating-point stack

to its character string representation using the
scientific notation. Addr is the address of the
location where the character string representation of
r is stored, and +n is the number of bytes.

(F.) (F:r --)(-- addr +n) Convert the top number on the floating-point stack
to its character string representation using the fixed-
point notation. Addr is the address of the location
where the character string representation of r is
stored, and +n is the number of bytes.

. (n ---) Removes n from the top of stack and displays it.

.R (n +n ---) Displays the value n right justified in a field +n

characters wide according to the value of BASE.
<# (---) Starts a formatted (pictured) numeric output.

Terminated by #> .
? (addr ---) Displays the contents of addr.
BASE (--- addr) Leaves the address of the user variable containing

the numeric numeric conversion radix.
D. (d ---) Displays the value of d.
D.R (d +n ---) Displays the value of d right justified in a field +n

characters wide.
DECIMAL (---) Sets the input-output numeric conversion base to ten.
E. (--)(F:r --) Convert the top number on the floating-point stack

to its character string representation using the
scientific notation.

F. (F:r --)(--) Print the top number on the floating-point stack on
the screen using fixed-point notation.

F? (addr --) Display the floating-point contents stored at addr.
HEX (---) Sets the numeric input-output conversion base to

sixteen.
HOLD (char ---) Inserts character into a pictured numeric out- put

string.
PLACES (n ---) Set the number of decimal places (digits to the right

of the radix point) displayed by E. and F.
SIGN (n ---) Appends an ASCII "; - "; (minus sign) to the start of

a pictured numeric output string if n is negative.
U. (u ---) Displays the unsigned value of u followed by a

space.
U.R (u +n ---) Displays the value of u right justified in a field +n

characters wide according to the value of BASE.

235. Numeric Input

Word Stack Effect Description
CONVERT (+d1 addr1 ---

+d2 addr2)
Converts an input string into a number.

FNUMBER (+d1 addr1 -- +d2
addr2)

Converts an input string into a number.

NUMBER (addr --- d) Converts the counted string at addr to d according to
the value of BASE .

236. Memory Operations

Word Stack Effect Description
! (16b addr ---) Stores 16b at addr.
2! (32b addr ---) Stores 32b at addr.

2@ (addr --- 32b) Returns 32b from addr.
@ (addr --- 16b) Replaces addr with its 16b contents on top of the

stack.
@! (16b addr ---) Stores 16 at address pointed to by addr.
@@ (addr --- 16b) Replaces addr with 16b, 16b is contents of address

pointed to by addr.
BLANK (addr u ---) Sets u bytes of memory beginning at addr to the

ASCII code for space (decimal 32).
C! (c addr ---) Stores the character c into addr.
C@ (addr --- c) Fetches the character c contents from addr.
CMOVE (addr1 addr2 u ---) Moves towards high memory the u bytes at ad-

dresses addr1 and addr2.
CMOVE> (addr1 addr2 u ---) Moves u bytes beginning at addr1 to addr2.
D! (32b addr ---) Stores 32b at addr. Same as 2!
D@ (addr --- 32b) Returns 32b from addr. Same as 2@
EE! (16b addr ---) Stores 16b into addr in EEPROM.
EEC! (16b addr ---) Stores the least significant byte of 16b into addr in

EEPROM.
EEMOVE (addr1 addr2 u ---) Moves towards high memory the u bytes at

addresses addr1 and addr2. addr2 should be in
EEPROM.

EEERASE (addr ---) Erase one page of Data Flash memory at addr.
ERASE (addr u ---) Sets u bytes of memory to zero, beginning at addr.
EXCHANGE (w1 addr --- w2) Fetches contents w2 from addr, then stores w1 at

addr. (Exchanges w1 for w2 at addr.)
FILL (addr u c ---) Fills u bytes, beginning at addr, with byte pattern

c.
P! (16b addr ---) Stores 16b into Program memory at at addr.
P@ (addr --- 16b) Fetches the 16b contents from Program memory at

addr.
PC! (c addr ---) Stores the character c into Program memory at

addr.
PC@ (addr --- c) Fetches the character c contents from Program

memory at addr.
PF! (16b addr ---) Stores 16b into addr in Program Flash ROM.
PFERASE (addr ---) Erase one page of Program Flash memory at addr.
PFMOVE (addr1 addr2 u ---) Moves the u locations from Program RAM at

addr1, to Program Flash at addr2.
TOGGLE (addr b --) Toggles setting of bits with mask b at addr.

237. Memory Allocation

Word Stack Effect Description
, (16b ---) Stores 16b into a word at the next available

dictionary location.

?AVAIL (---) Prints an error message if insufficient RAM or Flash
memory space is available.

ALLOT (w ---) Reserves w bytes of dictionary space.
AVAIL (--- n) Returns number of locations remaining in Data

RAM memory.
C, (c ---) Stores the character c into a byte at the next

available dictionary location.
CELL+ (addr1 --- addr2) Add the size of one cell to addr1, giving addr2.
EEAVAIL (--- n) Returns number of locations remaining in EEPROM

(Data Flash) memory.
EXRAM (---) Enable external RAM. (for future use)
FLOAT+ (addr1 --- addr2) Add the size of one floating-point number to addr1,

giving addr2.
FLOATS (n1 --- n2) Returns the number of memory locations n2 used by

n1 floating-point numbers.
HERE (--- addr) Leaves the address of the next available dictionary

location.
P, (w ---) Stores 16b into a word at the next available location

in Program memory.
PALLOT (n ---) Reserves n bytes of dictionary space in Program

memory.
PAVAIL (--- n) Returns number of locations remaining in Program

RAM memory.
PC, (c ---) Stores the character c into a byte at the next

available location in Program memory.
PF, (n ---) Stores 16b into a word at the next available location

in Program Flash ROM.
PFAVAIL (--- n) Returns number of locations remaining in Program

Flash memory.
PHERE (--- addr) Leaves the address of the next available dictionary

location in Program memory.

238. Program Control

Word Stack Effect Description
+LOOP (n ---)

(C: sys ---)
Increments the DO LOOP index by n.

AGAIN (---)
(C: sys ---)

Affect an unconditional jump back to the start of a
BEGIN-AGAIN loop.

BEGIN (---)
(C: --- sys)

Marks the start of a loop.

DO (w1 w2 ---)
(C: --- sys)

Repeats execution of words between DO LOOPs
and DO +LOOPs, the number of times is specified
by the limit from w2 to w1.

ELSE (---) Allows execution of words between IF and ELSE if

(C: sys1 --- sys2) the flag is true, otherwise, it forces execu- tion of
words after ELSE.

END (flag ---)
(C: sys ---)

Performs the same function as UNTIL . See UNTIL .

EXECUTE (addr ---) Executes the definition found at addr.
EXIT (---) Causes execution to leave the current word and go

back to where the word was called from.
I (--- w) Places the loop index onto the stack.
IF (flag ---)

(C: --- sys)
Allows a program to branch on condition.

J (--- w) Returns the index of the next outer loop.
K (--- w) Returns the index of the second outer loop in nested

do loops.
LEAVE (---) Forces termination of a DO LOOP.
LOOP (---)

(C: sys ---)
Defines the end point of a do-loop.

REPEAT (---)
(C: sys ---)

Terminates a BEGIN...WHILE...REPEAT loop.

THEN (---)
(C: sys ---)

Marks the end of a conditional branch or marks
where execution will continue relative to a cor-
responding IF or ELSE .

UNTIL (flag ---)
(C: sys ---)

Marks the end of an indefinite loop.

WHILE (flag ---)
(C: sys1 --- sys2)

Decides the continuation or termination of a
BEGIN...WHILE...REPEAT loop.

239. Compiler

‘ <name> (--- addr) Returns <name>'s compilation address, addr.
((---) Starts a comment input. Comment is ended by a) .
: <name> (--- sys) Starts the definition of a word <name>. Definition is

terminated by a ; .
:CASE (n ---)

(C: --- sys)
Creates a dictionary entry for <name> and sets the
compile mode.

; (sys ---) Terminates a colon-definiton.
;CODE (---)

(C: sys1 ---
sys2)

Terminates a defining-word. May only be used in
compilation mode.

AUTOSTART
<name>

(addr ---) Prepare autostart vector at addr which will cause
<name> to be executed upon reset. Note: addr must
be on a 1K address boundary.

CODE (--- sys) Creates an assembler definition.
CODE-INT (--- sys) Creates an assembler definition interrupt routine.
CODE-SUB (--- sys) Creates an assembler definition subroutine.
COMPILE (---) Copies the compilation address of the next non-

immediate word following COMPILE.
CONSTANT
<name>

(16b ---) Creates a dictionary entry for <name>.

DOES> (--- addr)
(C: ---)

Marks the termination of the defining part of the
defining word <name> and begins the definition of
the run-time action for words that will later be
defined by <name>.

EEWORD (---) Moves code of last defined word from the Program
RAM memory to the Program Flash memory.

END-CODE (sys ---) Terminates an assembler definition.
FORGET
<name>

(---) Deletes <name> from the dictionary.

IMMEDIATE (---) Marks the most recently created dictionary entry as a
word that will be executed immediately even if
FORTH is in compile mode.

IS <name> (16b ---) Creates a dictionary entry <name> for the constant
value 16b. Same as CONSTANT.

RECURSE (---) Compile the compilation address of definition
currently being defined.

UNDO (---) Forget the latest definition regardless of smudge
condition.

USER <name> (n ---) Create a user variable.
VARIABLE
<name>

(---) Creates a single length variable.

\ (---) Starts a comment that continues to end-of-line.

240. Compiler Internals

Word Stack Effect Description
;S (---) Stop interpretation.
<BUILDS (---) Creates a new dictionary entry for <name> which is

parsed from the input stream.
<MARK (--- addr) Leaves current dictionary location to be resolved by

<RESOLVE .
<RESOLVE (addr ---) Compiles branch offset to location previously left by

<MARK .
>BODY (addr1 ---

addr2)
Leaves on the stack the parameter field address,
addr2 of a given field address, addr1.

>MARK (--- addr) Compiles zero in place of forward branch offset and
marks it for future resolve.

>RESOLVE (addr ---) Corrects branch offset previously compiled by
>mark to current dictionary location.

?BRANCH (flag ---) Compiles a conditional branch operation.
?COMP (--) Checks for compilation mode, gives error if not.
?CSP (--) Checks for stack integrity through defining process,

gives error if not.
?ERROR (flag n --) If flag is true, error n is initiated.
?EXEC (--) Checks for interpretation mode, gives error if not.
?PAIRS (n1 n2 --) Checks for matched structure pairs, gives error if

not.
?STACK (---) Checks to see if stack is within limits, gives error if

not
[(---) Places the system into interpret state to execute non-

immediate word/s during compilation.
['] (--- addr)

(C: ---)
Returns and compiles the code field address of a
word in a colon-definition.

[COMPILE] (---) Causes an immediate word to be compiled.
] (---) Places the system into compilation state.] places a

non-zero value into the user variable STATE.
ATO4 (--- n) Returns address of subroutine call to high level word

as indicated in R0 register.
BRANCH (---) Compiles an unconditional branch operation.
CFA (pfa --- cfa) Alter parameter field pointer address to code field

address.
CREATE
<name>

(---) Creates a dictionary entry for <name>.

DLITERAL (32b ---) Compile a system dependent operation so that when
later executed, 32b will be left on the stack.

FIND (addr1 ---
addr2 n)

Obtains an address of counted strings, addr1 from
the stack. Searches the dictionary for the string.

FLITERAL (F:r --) Compile r as a floating point literal.
INTERPRET (---) Begins text interpretation at the character indexed by

the contents of >IN relative to the block number
contained in BLK, continuing until the input stream
is exhausted.

LATEST (--- nfa) Leaves name field address (nfa) of top word in
CURRENT.

LFA (pfaptr --- lfa) Alter parameter field pointer address to link field
address.

LITERAL (16b ---) Compile a system dependent operation so that when
later executed, 16b will be left on the stack.

NFA (pfaptr - nfa) Alter parameter field pointer address to name field
address.

PFAPTR (nfa --- pfaptr) Alter name field address to parameter field pointer
address.

QUERY (---) Stores input characters into text input buffer.
SMUDGE (---) Toggles visibility bit in head, enabling definitions to

be found.
TASK (---) A dictionary marker null word.
TRAVERSE (addr n --- addr

)
Adjust addr positively or negatively until contents of
addr is greater then $7F.

WORD (char --- addr) Generates a counted string until an ASCII code, char
is encountered or the input stream is exhausted.
Returns addr which is the beginning address of
where the counted string are stored.

241. Error Processing

Word Stack Effect Description
ABORT (---) Clears the data stack and performs the function of

QUIT .
ABORT” (flag ---) (C: ---) If flag is true, message that follows "; is dis- played

and the ABORT function is performed. If flag is
false, the flag is dropped and execu- tion continues.

COLD (---) Cold starts FORTH.
ERROR (--) Begins error processing.
MESSAGE (n --) Prints error message # n.
QUIT (---) Clears the return stack, stops compilation and returns

control to current input device.

242. System Variables

Word Stack Effect Description
#TIB (--- addr) Returns the address of the user variable that holds

the number of characters input.
>IN (--- addr) Leaves the address of the user variable >IN which

contains the number of bytes from the beginning of
the input stream at any particular moment during
interpretation.

BLK (--- addr) Leaves the address of the user variable contain- ing
the the number of block that is currently being
interpreted.

CONTEXT (--- addr) Returns the address of a user variable that
determines the vocabulary to be searched first in the
dictionary.

CURRENT (--- addr) Returns the address of the user variable specifying
the vocabulary into which new word definitions will
be entered.

DP (--- addr) Put Dictionary Pointer address on stack.
DPL (--- addr) Returns the address of the user variable con- taining

the number of places after the frac- tional point for
input conversion.

EDELAY (--- addr) Put EEPROM programming delay variable onto the
stack.

EDP (--- addr) Put EEPROM memory pointer onto the stack.

FENCE (--- addr) System variable which specifies the highest address
from which words may be compiled.

FLD (--- addr) Returns the address of the user variable which
contains the value of the field length reserved for a
number during output conversion.

FSP (-- addr) User variable holds floating-point stack pointer.
FSP0 (-- addr) User variable holds initial value of floating- point

stack pointer.
PAD (--- addr) Puts onto stack the starting address in memory of

scratchpad.
PDP (--- addr) System variable which holds the address of the next

available Program memory location.
PFDP (--- addr) System variable which holds the address of the next

available Program Flash memory location.
R0 (-- addr) Returns the address of the variable containing the

initial value of the bottom of the return stack.
S0 (--- addr) Returns the address of the variable containing the

initial value of the bottom of the stack.
seed (--- addr) Place the variable on the stack.
SPAN (--- addr) Returns the address of the user variable that contains

the count of characters received and stored by the
most recent execution of EXPECT .

STATE (--- addr) Returns the address of the user variable that contains
a value defining the compilation state.

TIB (--- addr) Returns the address of the start of the text- input
buffer.

UABORT (-- addr) User variable points to ABORT routine.
WARNING (--) User variable controls error handling.

243. System Constants

Word Stack Effect Description
B/BUF (--- n) Number of characters in a block storage buffer (not

used).
BL (--- 32) Puts the ASCII code for a space (decimal 32) on the

stack.
C/L (--- n) Maximum number of characters per line.
FALSE (--- flag) Returns a false flag (zero).
ISOMAX (--- n) Returns the current IsoMax version number.
TRUE (--- flag) Returns a true flag (all bits ‘1’).

244. IsoPod Control

Word Stack Effect Description
DINT (---) Disable CPU interrupts. Warning: disables

IsoMax and may disable serial I/O.
EINT (---) Enable CPU interrupts.
HALFSPEEDCPU (---) Switch IsoPod CPU to 20 MHz clock. All timing

functions (baud rate, PWM output, etc.) operate at
half speed.

FULLSPEEDCPU (---) Switch IsoPod CPU to normal 40 MHz clock.
RESTORE-RAM (---) Restores system and user RAM variables from

Data Flash.
SAVE-RAM (---) Copies system and user RAM variables to Data

Flash.
SCRUB (---) Erases Data Flash and user’s Program Flash,

empties the dictionary, and restores system
variables to their default values.

245. Debugging

Word Stack Effect Description
.S (---) Display stack contents without modifying the stack.
DUMP (addr u ---) Displays u bytes of data memory starting at addr.
F.S (--) Display the contents of the floating-point stack

without modifying the stack.
FLASH (---) Launch the Flash memory programmer. (unused)
ID. (nfa ---) Print <name> given name field address (NFA).
PDUMP (addr u ---) Displays u bytes of Program memory starting at

addr.
WORDS (---) Lists all the words in the CURRENT vocabulary.

246. Object Oriented Programming

Word Stack Effect Description
.CLASSES (---) Display all defined objects and classes. Same as

WORDS.
BEGIN-CLASS
<name>

(--- sys1) Defines a class <name>, and begins the “private”
definitions of the class.

END-CLASS
<name>

(sys2 ---) Ends the definition of class <name>.

NO-CONTEXT (---) Clears the object context, and hides all private
methods.

OBJECT
<name>

 Defines an object <name> which is a member of
the currently active class.

OBJREF (--- addr) System variable holding the address of the
currently active object.

PUBLIC (sys1 --- sys2) Ends the “private” and starts the “public”
definitions of the class.

SELF (--- addr) Returns the address of the currently active object.

247. IsoMax State Machines

Word Stack Effect Description
WITH-VALUE n (--- sys) Specifies ‘n’ to be used as tag value to be stored

for this state.
AS-TAG (sys ---) Ends a tag definition for a state.
END-MACHINE-
CHAIN

(sys ---) Ends definition of a machine chain.

MACHINE-CHAIN
<name>

(--- sys) Starts definition of a machine chain <name>.

.MACHINES (---) Prints a list of all INSTALLed machines.
PERIOD (n ---) Changes the running IsoMax period to ‘n’

cycles.
ISOMAX-START (---) Initializes and starts IsoMax. Clears the machine

list and starts the timer interrupt at the default
rate of 50000 cycles.

NO-MACHINES (---) Clears the IsoMax machine list.
ALL-MACHINES (---) Execute, once, all machines on the IsoMax

machine list.
UNINSTALL (---) Removes the last-added machine from the list of

running IsoMax machines.
INSTALL <name> (---) Adds machine <name> to the list of running

IsoMax machines.
MACHINE-LIST (--- addr) System variable pointing to the head of the

IsoMax installed-machine list.
SCHEDULE-RUNS
<name>

(sys ---) Specifies that machine chain <name> is to be
performed by IsoMax. This overrides the
INSTALL machine list.

CYCLES (--- sys) Specifies period for SCHEDULE-RUNS; e.g.,
EVERY n CYCLES SCHEDULE-RUNS name.

EVERY (--- sys) Specifies period for SCHEDULE-RUNS; see
CYCLES.

STOP-TIMER (---) Halts IsoMax by stopping the timer interrupt.
TCFAVG (--- addr) System variable holding the average IsoMax

processing time.
TCFMIN (--- addr) System variable holding the minimum IsoMax

processing time.
TCFMAX (--- addr) System variable holding the maximum IsoMax

processing time.

TCFALARMVECT
OR

(--- addr) System variable holding the CFA of a word to be
performed when TCFALARM is reached. Zero
means “no action.”

TCFALARM (--- addr) System variable holding an “alarm limit” for
TCFOVFLO. Zero means “no alarm.”

TCFOVFLO (--- addr) System variable holding a count of the number
of times state processing overran the allotted
time.

TCFTICKS (--- addr) System variable holding a running count of
IsoMax timer interrupts.

IS-STATE? (addr --- f) Given state address “addr”, returns true if that is
the current state in the associated state machine.

SET-STATE (addr ---) Makes the given state “addr” the current state in
its associated state machine.

IN-EE (---) Moves code of last defined CONDITION clause
from the Program RAM memory to the Program
Flash memory.

TO-HAPPEN (addr ---) Makes given state “addr” execute on the next
iteration of the IsoMax machine. Same as
NEXT-TIME.

NEXT-TIME (addr ---) Makes given state “addr” execute on the next
iteration of the IsoMax machine.

THIS-TIME (addr ---) Makes given state “addr” execute on this
iteration of the IsoMax machine, i.e.,
immediately.

THEN-STATE (sys3 ---) Ends the CAUSES clause.
CAUSES (sys2 --- sys3

)
Specifies actions to be taken when the
CONDITION clause is satisfied.

CONDITION (sys1 --- sys2
)

Specifies the logical condition to be tested for a
state transition.

IN-STATE (--- sys1) Specifies the state to which the following
condition clause will apply.

ON-MACHINE
<name>

(---) Specifies the machine to which new states and
condition clauses will be added.

APPEND-STATE
<name>

(---) Adds a new state “name” to the currently
selected machine.

MACHINE <name> (---) Defines a new state machine “name”.
CURSTATE (--- addr) System variable used by the IsoMax compiler.
ALLOC (n --- addr) Allocate “n” locations of state data and return its

address “addr”.
RAM (--- addr) System variable which holds an optional address

for IsoMax state data allocation. If zero, IsoMax
state data will use the dictionary for state data.

248. I/O Trinaries

Word Stack Effect Description
AND-MASK n (--- sys) Specifies ‘n’ to be used as the AND mask for output.
AT-ADDR
addr

(--- sys) Specifies the address ‘addr’ to be used for input or
output.

CLR-MASK n (--- sys) Specifies ‘n’ to be used as the Clear mask for output.
DATA-MASK
n

(--- sys) Specifies ‘n’ to be used as the Data mask for input.

DEFINE
<name>

(--- sys1) Begin the definition of an I/O or procedural trinary.

END-PROC (sys2 ---) Ends a PROC definition.
FOR-INPUT (sys ---) Ends an input trinary definition.
FOR-OUTPUT (sys ---) Ends an output trinary definition.
PROC (sys1 --- sys2) Defines an I/O trinary using procedural code.
SET-MASK n (--- sys) Specifies ‘n’ to be used as the Set mask for output.
TEST-MASK
n

(--- sys) Specifies ‘n’ to be used as the Test mask for input.

XOR-MASK n (--- sys) Specifies ‘n’ to be used as the XOR mask for output.

249. Loop Indexes

Word Stack Effect Description
LOOPINDEX
<name>

(---) Define a loop-index variable <name>. <name> will
then be used to select the variable for one of the
following index operations.

START (n ---) Set the starting value of the given loop-index
variable.

END (n ---) Set the ending value of the given loop-index
variable.

STEP (n ---) Set the increment to be used for the given loop-index
variable.

RESET (---) Reset the given loop-index variable to its starting
value.

COUNT (--- flag) Increment the loop-index variable by its STEP value.
If it passes the END value, reset the variable and
return a true flag. Otherwise return a false flag.

VALUE (--- n) Return the current value of the given loop-index
variable.

LOOPINDEXES (---) Select LOOPINDEXES methods for compilation.

250. Bit I/O

Word Stack Effect Description
PE0 PE1 PE2 PE3
PE4 PE5 PE6 PE7
PD0 PD1 PD2 PD3
PD4 PD5 PB0 PB1
PB2 PB3 PB4 PB5
PB6 PB7 PA0 PA1
PA2 PA3 PA4 PA5
PA6 PA7 GRNLED
YELLED REDLED

(---) Select the given pin or LED for the following
I/O operation.

OFF (---) Make the given pin an output and turn it off.
ON (---) Make the given pin an output and turn it on.
TOGGLE (---) Make the given pin an output and invert its state.
SET (flag ---) Make the given pin an output and set it on or off

as determined by flag.
GETBIT (--- 16b) Make the given pin an input and return its bit

value.
ON? (--- flag) Make the given pin an input and return true if it

is on.
OFF? (--- flag) Make the given pin an input and return true if it

is off.
?ON (--- flag) Return true if the pin is on; do not change its

direction (works with input or output pins).
?OFF (--- flag) Return true if the pin is off; do not change its

direction (works with input or output pins).
IS-OUTPUT (---) Make the given pin an output.
IS-INPUT (---) Make the given pin an input. (Hi-Z)
I/O <name> (16b addr ---

)
Define a GPIO pin <name> using bit mask 16b
at addr.

GPIO (---) Select GPIO methods for compilation.

251. Byte I/O

Word Stack Effect Description
PORTB
PORTA

(---) Select the given port for the following I/O operation.

GETBYTE (--- 8b) Make the given port an input and return its 8-bit
contents as 8b.

PUTBYTE (8b ---) Make the given port an output and write the value 8b
to the port.

IS-OUTPUT (---) Make the given port an output.
IS-INPUT (---) Make the given port an input. (Hi-Z)
I/O <name> (addr ---) Define a GPIO port <name> at addr.

BYTEIO (---) Select BYTEIO methods for compilation.

252. Serial Communications Interface

Word Stack Effect Description
SCI1 SCI0 (---) Select the given port for the following I/O operation.
BAUD (u ---) Set the serial port to “u” baud. If HALFSPEEDCPU

is selected, the baud rate will be u/2.
RX? (--- u) Return nonzero if a character is waiting in the

receiver. If buffered, return the number of characters
waiting.

RX (--- char) Get a received character. If no character available,
this will wait.

TX? (--- u) Return nonzero if the transmitter can accept a
character. If buffered, return the number of
characters the buffer can accept.

TX (char ---) Send a character.
RXBUFFER (addr u ---) Specify a buffer at addr with length u is to be used

for receiving. u must be at least 5. If u=0, disables
receive buffering.

TXBUFFER (addr u ---) Specify a buffer at addr with length u is to be used
for transmitting. u must be at least 5. If u=0,
disables transmit buffering.

SCIS (---) Select SCIS methods for compilation.

253. Serial Peripheral Interface

Word Stack

Effect
Description

SPI0 (---) Select the given port for the following I/O operation.
MBAUD (n ---) Set the SPI port to n Mbaud. n must be 1, 2, 5, or

20, corresponding to actual rates of 1.25, 2.5, 5, or
20 Mbaud. All other values of n will be ignored and
will leave the baud rate unchanged.

LEADING-EDGE (---) Receive data is captured by master & slave on the
first (leading) edge of the clock pulse. (CPHA=0)

TRAILING-EDGE (---) Receive data is captured by master & slave on the
second (trailing) edge of the clock pulse. (CPHA=1)

ACTIVE-HIGH (---) Leading and Trailing edge refer to an active-high
pulse. (CPOL=0).

ACTIVE-LOW (---) Leading and Trailing edge refer to an active-low
pulse. (CPOL=1).

LSB-FIRST (---) Cause data to be sent and received LSB first.
MSB-FIRST (---) Cause data to be sent and received MSB first.

BITS (n ---) Specify the word length to be transmitted/received.
n may be 2 to 16.

SLAVE (---) Enable the port as an SPI slave.
MASTER (---) Enable the port as an SPI master.
RX-SPI? (--- u) Return nonzero if a word is waiting in the receiver.

If buffered, return the number of words waiting.
RX-SPI (--- 16b) Get a received word. If no word is available in the

receive buffer, this will wait. In MASTER mode, data
will only be shifted in when a word is transmitted by
TX-SPI. In this mode you should use RX-SPI
immediately after TX-SPI to read the data that was
received.

TX-SPI? (--- u) Return nonzero if the transmitter can accept a word.
If buffered, return the number of words the buffer
can accept.

TX-SPI (16b ---) Send a word on the SPI port. In MASTER mode, this
will output 2 to 16 bits on the MOSI, generate 2 to
16 clocks on the SCLK pin, and simultaneously
input 2 to 16 bits on the MISO pin.

RXBUFFER (addr u ---) Specify a buffer at addr with length u is to be used
for receiving. u must be at least 5. If u=0, disables
receive buffering.

TXBUFFER (addr u ---) Specify a buffer at addr with length u is to be used
for transmitting. u must be at least 5. If u=0,
disables transmit buffering.

SPI (---) Select SPI methods for compilation.

254. Timers

Word Stack Effect Description
TD2 TD1 TD0
TC3 TC2 TC1
TC0 TB3 TB2
TB1 TB0 TA3
TA2 TA1 TA0

(---) Select the given timer for the following I/O
operation.

ACTIVE-HIGH (---) Change output & input to normal polarity, 1=on.
For output, PWM-OUT will control the high pulse
width. For input, CHK-PWM-IN will measure the
width of the high pulse. The reset default is
ACTIVE-HIGH.

ACTIVE-LOW (---) Change output & input to inverse polarity, 0=on.
For output, PWM-OUT will control the low pulse
width. For input, CHK-PWM-IN will measure the
width of the low pulse.

ON (---) Make the given pin a digital output and turn it on.

OFF (---) Make the given pin a digital output and turn it off.
TOGGLE (---) Make the given pin a digital output and invert its

state.
SET (flag ---) Make the given pin a digital output and set it on or

off as determined by flag.
ON? (--- flag) Make the given pin a digital input and return true if

it is on.
OFF? (--- flag) Make the given pin a digital input and return true if

it is on.
GETBIT (--- 16b) Make the given pin a digital input and return its bit

value.
?ON (--- flag) Return true if the timer input pin is on; do not

change its mode.
?OFF (--- flag) Return true if the timer input pin is off; do not

change its mode.
SET-PWM-IN (---) Start time measurement of an input pulse. The

duration of the next high pulse will be measured (or
low pulse if ACTIVE-LOW).

CHK-PWM-IN (--- u) Returns the measured duration of the pulse, in cycles
of a 2.5 MHz clock, or zero if not yet detected. Only
the first non-zero result is valid; successive checks
will give indeterminate results.

PWM-PERIOD (u ---) Set PWM period to u cycles of a 2.5 MHz clock. u
may be 100-FFFF hex.

PWM-OUT (u ---) Outputs a PWM signal with a given duty cycle u, 0-
FFFF hex, where FFFF is 100%. PWM-PERIOD
must be specified before using PWM-OUT.

TIMER <name> (addr ---) Define a timer <name> at addr.
TIMERS (---) Select TIMERS methods for compilation.

255. PWM Output Pins

Word Stack Effect Description
PWMB5 PWMB4
PWMB3 PWMB2
PWMB1 PWMB0
PWMA5 PWMA4
PWMA3 PWMA2
PWMA1 PWMA0

(---) Select the given pin for the following I/O
operation.

PWM-PERIOD (+n ---) Set PWM period to +n cycles of a 2.5 MHz clock.
n may be 100-7FFF hex. This will affect all PWM
outputs in the group (A or B).

PWM-OUT (u ---) Outputs a PWM signal with a given duty cycle u,
0-FFFF hex, where FFFF is 100%. PWM-PERIOD
must be specified before using PWM-OUT.

ON (---) Make the given pin a digital output and turn it on.
OFF (---) Make the given pin a digital output and turn it off.
TOGGLE (---) Make the given pin a digital output and invert its

state.
SET (flag ---) Make the given pin a digital output and set it on or

off as determined by flag.
?OFF (--- flag) Return true if the pin is on.
?ON (--- flag) Return true if the pin is off.
PWM <name> (16b1 16b2 n

addr ---)
Define a PWM output pin <name> using
configuration pattern 16b1, bit pattern 16b2, and
channel n, at addr.

PWMOUT (---) Select PWMOUT methods for compilation.

256. PWM Input Pins

Word Stack Effect Description
ISB2 ISB1 ISB0
FAULTB3 FAULTB2
FAULTB1 FAULTB0
ISA2 ISA1 ISA0
FAULTA3 FAULTA2
FAULTA1 FAULTA0

 Select the given pin for the following I/O
operation.

ON? (--- flag) Return true if the given pin is on.
OFF? (--- flag) Return true if the given pin is off.
?ON (--- flag) Return true if the given pin is on. Same as

ON?
?OFF (--- flag) Return true if the given pin is off. Same as

OFF?
GETBIT (--- 8b) Return the bit value of the given pin.
PWM <name> (16b addr ---

)
Define a PWM input pin <name> using bit
mask 16b at addr.

PWMIN (---) Select PWMIN methods for compilation.

257. Analog-to-Digital Converter

Word Stack Effect Description
ADC7 ADC6
ADC5 ADC4
ADC3 ADC2
ADC1 ADC0

(---) Select the given pin for the following I/O operation.

ANALOGIN (--- +n) Perform an A/D conversion on the selected pin, and
return the result +n. The result is in the range 0-
7FF8. (The 12-bit A/D result is left-shifted 3
places.) 7FF8 corresponds to an input of Vref. 0

corresponds to an input of 0 volts.
ADC-INPUT
<name>

(n addr ---) Define an analog input pin <name> for channel n at
addr.

ADCS (---) Select ADCS methods for compilation.

258. GLOSSARY OF TERMS

Under construction…

.1” double and triple row connectors
24-pin socket
74AC05
9600 8N1
A/D
adapter
ASCII
CAN BUS
Caps
carrier board
computer “pod”
computing and control function
communications channel
communications settings
COMM2
COMM3
COMM4
controller
controller interface board
dedicated computer
deeply embedded
double male right angle connector
double sided sticky tape
embedded
embedded tasks
female
hand-crimped wires
headers
high-density connectors
High-Level-Language
HyperTerminal
IDC headers and ribbon cable
interactive
IsoMax™
IsoPod™
language
Levels Translation
LED
LM3940
LM78L05
Low Voltage Detector

male
MaxTerm
mating force of the connectors

Mealy, G. H. State machine pioneer, wrote “A Method for Synthesizing Sequential
Circuits,” Bell System Tech. J. vol 34, pp. 1045 –1079, September 1955

mobile robot

Moore, E. F. State machine pioneer, wrote “Gedanken-experiments on Sequential
Machines,” pp 129 – 153, Automata Studies, Annals of Mathematical Studies, no. 34,
Princeton University Press, Princeton, N. J., 1956

Multitasking
PCB board
PWM
PWM connectors
Power Supply
Programming environment
prototyping
RS-232
RS-422
RS-485
R/C Servo motor
real time applications.
real time control
registers
RESET
Resistor
S80728HN
SCI
SPI
serial cable
 “stamp-type” controller
stand-alone computer board
TJA1050
terminal program
upgrade an existing application.
Virtually Parallel Machine Architecture™ (VPMA)
wall transformer

