

1 as

of

g on

ax-
 for

ory
rt test.

aries
rt can
al that
.

Max-FORTH V5.0L

This version of Max-Forth for the 68HC12 is modeled after Max-Forth V3.5E for the F68HC1
closely as possible. The architecture of 68HC12 has influenced this realization. The main
additions are making the fuzzy logic instructions available as Forth words and the addition
words to deal with flash memory much in the same way as the EEPROM words in V3.5.

Memory

Max-FORTH memory is a combination of internal and external RAMs and ROMs dependin
which board you are using and how it is configured. On the NMIS/L-0012 there is:
1. internal registers at 0x00-0xFF
2. 1K of internal RAM at 0x800-0xBFF
3. 768 bytes of internal byte writeable EEPROM at 0xD00 to 0xFFF
4. 28K of external RAM at 0x1000 to 0x7FFF
5. 32Kbytes of internal Flash EEPROM at 0x8000-0xFFFF

The internal RAM is used for system variables and arrays. The Flash EEPROM contains M
FORTH. The EEPROM and external RAM and the rest of the flash EEPROM are available
user programs. The high byte of a 16-bit value is in the low address of memory.

AutoStart

Autostart sequences can be placed at any $400 boundary starting at $400 if there are mem
devices to support it. At bootup, the internal RAM is at $800 and can be used for an autosta
The Max-FORTH autostart sequence is in high Flash followed by the kernel.

A simple test program to test autostart at $800:

 COLD
 : HI ." Hello world" ;
 HEX 800 AUTOSTART HI (set up autostart vector)
 A44A 800 ! (change it to a one shot)

Reset and you should get:
 Hello world
 Max-FORTH V5.0L

Using the control-g-reset sequence will skip the autostart.

There is also a check for an autostart in EEPROM which precedes the checks at the 400
boundaries. This is done because EEPROM has no locations at any of the autostart bound
and it is consistant with the way the HC11 works. EEPROM starts at $D00 and an autosta
be placed there with the EE access words. Just like the HC11, the sequence A44A will sign
the autostart vector will run only once while A55A will signal that it is to be run continuously

CTL),
 turned

andle

hen an

egister
s not
o

oblem.
 needs

his is

from
e
mbler
Quick Start (before autostart)

When the kernel first boots up, and before any write-once registers are written (such as COP
a quick start sequence is checked for at EEPROM location FFE. This allows the COP to be
on as a default. If it is not turned on, then the kernel turns it off.

A simple quick start routine which turns on COP (make sure there is an interrupt routine to h
it!!!!):

 COLD
 HEX
 : COP-ON 7 16 C! ; EEWORD
 A55A FFE EE!
 ' COP-ON CFA FFC EE!

Assembler and Indirect Threaded Code

The code threader uses two registers:

 IP - instruction pointer; points within a list of word pointers
 WP - word pointer; points to the current word to be executed

To thread, the word that IP points to is moved into the WP register and IP is incremented. T
indirect jump through the word pointer starts executing the word's execution algorithm. The
word's execution algorithm finishes by threading again.

IP is maintained in the D register unless it is being used to get a new WP. WP sits in the X r
except for when it is first obtained it is in the D register. WP is only temporary and once it i
needed, then it can be used. It is used right at the beginning of the execution algorithm. T
convert it to an IP it needs to be incremented from the cfa to the pfa.

In assembler, if X is needed as a temporary register, once WP has been used, it is not a pr
When the code word ends, then it must jump to the indirect code threader. If the code word
D but not X then it transfers D to X and at the end, it jumps into a differen point within the
indirect code threader. If both D and X are needed then D is pushed to the return stack. T
also used to nest threads.

FLASH and Kernel Reloading

The easiest way to download a new kernel is to type:
 FLASH

and then erase and program. This avoids playing with jumpers. Just keep a jumper on J7
GND to SHDN all the time to enable the erase voltage. The kernel is an S-Record. With th
proper tools, code can be embedded within the kernel S-Record. This includes Forth, Asse
and C code. For more details, refer to our C-Inside product.

 Flash
. This

 a new

ng with
lly put

e

n

am.
Flash and Program Storage:

Words can be stored into Flash just like the EEPROM on the 6811 with the restriction that a
location can only be used once. Unlike the EEPROM, the Flash can only be erased in bulk
means that if you are storing code into Flash and then doing a COLD to remove it from the
dictionary, unless you bulk erase the Flash and redownload the kernel, you'll have to choose
location for your Flash code.

The equivelant words for Flashing code are:

 FLC! FL! FLMOVE FLWORD

If you are making extensive use of Flash then you can automate the free ROM area searchi
the following tools. These tools automatically detect unused Flash memory and automatica
all definitions in Flash. The tools would typically be put at the start of a source file:

 COLD
 HEX
 : Find-empty-space-in-Flash-ROM (-- a)
 F800 (default) F800 8000 (limits)
 DO FF I 10 OVER + SWAP DO I C@ AND LOOP FF = IF DROP I LEAVE THEN
 100 +LOOP DUP F800 = IF CR ." Flash is full." CR ELSE DUP U. THEN ;

 Find-empty-space-in-Flash-ROM FDP !
 FORGET Find-empty-space-in-Flash-ROM

 (==== ROM it all with auto-rom words ====)
 : ; [COMPILE] ; FLWORD ; IMMEDIATE FLWORD
 : CONSTANT CONSTANT FLWORD ;
 : CREATE HERE CONSTANT ;
 : VARIABLE CREATE 2 ALLOT ;

The redefinition of ;, CONSTANT, CREATE and VARIABLE means that you don't have to
sprinkle FLWORD throughout your code and all your code is automatically ROMed while th
data space in RAM is managed as well.

EXRAM

On boards with external RAM available, like the NMIS/L-0012, the word EXRAM must be
executed to make it visible. This word is only called automatically if there is already code i
external RAM and a reset occurs.

RANDOM

A random number generator has been added to the kernel. The variable “seed ” contains the
value used to calculate the next random number and can be set at the beginning of a progr
RANDOM returns a random number between 0 and RAND_MAX.

ssors,
he

th the
script
r which

bre

the

-
or
y one

te and

EF. At
MP and

t
gh
at
F. If
Floating Point

As the kernel is maintained in high level source code for portability amongst different proce
the extensions are also in high level source code as well. Whereas the kernel is in Forth, t
floating point is in C.

The floating point source code is linked with the kernel source code by compiling the two wi
C compiler and producing an S-record output. The Forth source is compiled with a Timbre
to produce an assembler file. There is also a low level source file specific to each processo
defines the virtual machine.

Headers for the C words are defined in a separate file and translated to assembler by a Tim
script.

 Headers ============ Timbre script (Assembler) ===>||
 MaxForth (Forth) === Timbre script (Assembler) ===>||
 virtual machine (Assembler) ======================>||
 floating point (C) ===============================>||
 \/ C compiler
 S-Record

Fuzzy Logic Support

The fuzzy logic words give direct access and utilization in Forth to the fuzzy logic built into
processor. See the appendix in the CPU12 Reference Manual from Motorola for a good
explanation of the fuzzy logic instructions.

What’s Missing

There are a few items in Max-FORTH V3.5 which weren’t, or haven’t been, included in Max
FORTH V5.0. Most of the words missing are from the block word set. The support words f
separated heads aren’t included but the structure of the dictionary supports it. There is onl
set of user variables and they are referred to as system variables.

FAQ

Q: My colleague has been helping me set up an HC12 to use an output compare to genera
handle an interrupt, but we do not know where the interrupt is vectored to. We read in the
Motorola literature that an interrupt on Timer Channel 0 has a vector address of $FFEE-$FF
this address is stored $FC65. This address is not writeable. At what address do I insert a J
address to my interrupt handler?

A: There is a serial boot loader occupying the top 2K of memory which is locked agains
writing. All the interrupt vectors go through a routine which does an indirect jump throu
the same addresses but 2K lower. All you need to do is store your interrupt vector at th
address, no jump instruction is required. For the timer channel 0, it will be at F7EE-F7E
you are programming this in Forth, you can do:

 HEX <address of interrupt routine> F7EE FL!

tine at

gram
 JMP
errupt

d by

utine
utine,

hat
ning

pt
 HC11

mply a
s not
If you are programming in assembler or C, then just put the address of the interrupt rou
F7EE and download the S-record.

Q: I want to have my interrupt handler address located in EEPROM, so I redirect (again) pro
execution from, say F7EC (timer channel 1) to 0FE2 (EEPROM). Then in EEPROM I put a
hh ll to the interrupt handler, where hh ll are the high and low bytes of the address of the int
handler. For a simple test case, I have the following handler which doesn’t work:

(a simple interrupt routine that writes "A" -ASCII 41- to $4100)
HEX
CODE-SUB SIMPLEIRQ
86 C, 41 C, (86 41 LDAA #$41)
7A C, 41 C, 00 C, (7A 4100 STAA $4100)
0B C, (0B RTI)
END-CODE

the vector contents are:

location contents

F7EC-F7ED 0F E2
0FE2-OFE4 06 17 CC (17CC is the CFA of SIMPLEIRQ)

A: It should be the PFA, not the CFA. You can obtain this by:
 ' SIMPLEIRQ @

The CFA is just a pointer to a code routine. If you jump to it, then the pointer is execute
the processor as an instruction! The results are not predictable as you probably know.

Q+: We tried 17CC EXECUTE and 41 got written to $4100 as it should, although it hangs
unless RTI is replaced with RTS.

 A: This makes sense since it is declared as a CODE-SUB it must executed as a subro
and the terminating instruction must be RTS. But when you execute it as an interrupt ro
you must use RTI as the return stack has different components on it (all the registers). W
you would need to be able to execute it from Forth and from an interrupt would be a defi
word called CODE-RTI which used a different inner interpreter.

Q+: The interrupt is generated by clearing the timer flags (FF TFLG1 C!), setting the interru
mask (02 TMSK1 C!), clearing the I bit using a code routine analagous to that used on the
and then inputting a pulse to the PT1 pin.

However, the above test did not work (processor hangs), so we simplified the scheme to si
RTI at location OFE2. This failed to. We know that the interrupt is being generated, but it doe
appear that execution gets to 0FE2. Have we missed something obvious?

 do

12 to

 not
wnload
 the

peed

* if

 and

t

 A: When you generate an interrupt you must turn off the source of the interrupt. If you
not, then you will forever be interrupted. This is the situation in your case.

Q: When I down-load a Forth program to the HC12 any duplicate definitions causes the HC
reply with the name of the variable and " NOT UNIQUE". Is there a way to _not_ put this
message on a new line? This is so that the download, which is waiting for a new-line, does
resume while the message is printing, thus causing the HC12 to miss characters and the do
to crash. I seem to remember that duplicate names did not produce the same problems on
HC11.

 A: I ran into that problem on the HC11. So I used this code to turn it off and actually s
up downloading. It also works on the HC12.

 : NEW: LATEST PFAPTR LFA DUP >R @ 0 R@ ! >R : R> R> ! ;
 NEW: : NEW: ; (no more messages, not even for :)

Q: Are all the math routines in MAXforth reentrant, allowing them to be used in interrupt
routines? If not, I will need to write some of my own. I don't really want to rewrite UM* and
there's no need. I think I can assume that + , - , etc. are OK.

A: Here's the source for *, /MOD UM/MOD, UM*, + and -. Since they only use registers
not memory locations, they are interruptable. All the math operations are like this. The
floating point is different, however. It uses two floating point locations in memory withou
saving the previous contents. So F* would not be reentrant and couldn’t be used in an
interrupt routine and a foreground routine unless it was redefined as:

 : F* -INT F* +INT ;.

star:: .dw .+2 ; code word
 pshd ; save ip
 ldd 2,y+ ; pop top stack item
 ldx 0,y ; get next stack item
 exg x,y ; setup for multiply
 emuls ; signed multiply
 tfr x,y ; return stack pointer
 std 0,y ; store answer to stack
 jmp return ; thread to next word

slash_mod::
 .dw .+2 ; code word
 pshd ; save ip
 ldd 2,y ; get numerator
 ldx 0,y ; get denominator
 idivs ; signed 16/16 bit division
 stx 0,y ; store quotient to top stack item
 std 2,y ; store remainder as second stack item
 jmp return ; thread to next word

um_slash_mod:: ; (d \ m -- r \ q)
 .dw .+2 ; code word
 pshd ; save ip

 the

 were
e kept
ter and
X
ded in
ing to
er off
ent is
 ldx 2,y+ ; get denominator
 pshy ; save stack pointer
 ldd 2,y ; get lower numerator
 ldy 0,y ; get upper numerator
 ediv ; unsigned 32/16 bit division
 tfr y,x ; move quotient to x register
 puly ; restore stack pointer
 stx 0,y ; store quotient to top stack item
 std 2,y ; store remainder as second stack item
 jmp return ; thread to next word

um_star::
 .dw .+2 ; code word
 pshd ; save ip
 ldd 0,y ; get top stack item
 ldx 2,y ; get next stack item
 exg x,y ; setup for multiply
 emul ; unsigned 16,16,32 multiply
 exg x,y ; move upper to x register
 stx 0,y ; store upper to stack
 std 2,y ; store lower to stack
 jmp return ; thread to next word

; add top two values on the data stack
plus:: .dw .+2 ; code word
 tfr d,x ; save ip into X
 ldd 2,y+ ; pop top value from data stack into D
 addd 0,y ; add the next item to it
 std 0,y ; store result on stack
 jmp next ; thread to next word

; subtract top from the next data stack item
minus:: .dw .+2 ; code word
 tfr d,x ; save ip into X
 ldd 2,y ; get second stack item
 subd 2,y+ ; subtract top item and drop
 std 0,y ; store to stack
 jmp next ; thread to next word

Q+: I thought D was a free register; why save it? This is a push without a pop. "return" does
pop?

A: It has to do with the threading model on the 68HC12. On the 68CH11, two locations
used in memory for storing IP and WP during threading. On the HC12, those values ar
in registers. This has two advantages: speed and reentrancy. WP is kept in the X regis
is only sometimes used at the beginning of a word (like a variable or constant). So the
register is available. IP is kept in the D register. This means that if the D register is nee
the word (typically math routines) and the X register is also needed, then the simplest th
do is to push the D register. The jmp return takes it through code that pops the D regist
the stack before threading on. In some cases the D register is not used and no adjustm

required anyway. In a third category of assembler words, the D is needed and the X is
available so then the D register is transferred to the X register.

For a more complete story, here's an excert from the kernel:

; Indirect threaded code machine
; The code threader uses two registers:
; IP - instruction pointer; points within a list of word pointers
; WP - word pointer; points to the current word to be executed
; To thread, the word that IP points to is moved into the WP register
; and IP is incremented. Then an indirect jump through the word
; pointer starts executing the word's execution algorithm. The
; word's execution algorithm finishes by threading again.
;
; IP is maintained in the D register unless it is being used to get
; a new WP. WP sits in the X register except for when it is first
; obtained it is in the D register. WP is only temporary and once
; it is not needed, then it can be used. It is used right at the
; beginning of the execution algorithm. To convert it to an IP it
; needs to be incremented from the cfa to the pfa.
;
; In assembler, if X is needed as a temporary register, once WP has been
; used, it is not a problem. When the code word ends, then it must jump
; to the indirect code threader. If the code word needs D but not X
; then it transfers D to X and at the end, it jumps into a different
; point within the indirect code threader. If both D and X are needed
; then D is pushed to the return stack. This is also used to nest
; threads.
;

; execute the word pointed to on the stack
execute::
 .dw .+2 ; code word
 ldx 2,y+ ; get cfa off of stack
 jmp [0,x] ; thread to inner interpreter

; inner interpreter for macros built with : and ;
colon_ii::
 pshd ; save current IP onto the return stack
 leax 2,x ; change WP into new IP
copy1_of_next:: ; copied here for speed
 ldd 2,x+ ; get WP in D and increment IP
 exg d,x ; d is ip, x is wp, set for inner interpreters
 jmp [0,x] ; thread to an inner interpreter

; unthreader for : macros
exit:: .dw .+2 ; code word
return::
 pulx ; pull previous IP off the return stack
next:: ldd 2,x+ ; get WP in D and increment IP
 exg d,x ; d is ip, x is wp, set for inner interpreters
 jmp [0,x] ; thread to an inner interpreter

acros.

code
 are

ome
; restore IP and then thread for code words
itc:: tfr d,x ; get instruction pointer back into X
copy2_of_next: ; copied here for speed
 ldd 2,x+ ; get WP in D and increment IP
 exg d,x ; d is ip, x is wp, set for inner interpreters
 jmp [0,x] ; thread to an inner interpreter

; inner interpreter for constant
cii:: movw 2,+x,2,-y ; push constant value onto data stack
 bra itc ; thread to next word

; inner interpreter for variable
vii:: leax 2,x ; get address of the variable
 stx 2,-y ; push it onto the stack
 bra itc ; thread to next word

; inner interpreter for subroutines
sii:: pshd ; save current IP onto the return stack
 jsr 2,x ; call the appended subroutine
 bra return ; thread to next word

; inner interpreter for does children
dii:: pshd ; save current IP
 leax 2,x ; increment WP
 ldd 2,x+ ; get parent IP and increment WP
 stx 2,-y ; push WP onto the data stack
 bra itc ; and thread

; innerinterpreter for C void functions(void)
fii:: sty _dsp ; save and publish stack pointer
 ldy 2,+x ; put C function pointer into y
 tfr d,x ; get ip into X
 jsr 0,y ; call C function
 ldy _dsp ; restore data stackpointer
 jmp next ; thread to next word

Q+: This isn't a machine instruction (nor are emul, idivs, or ediv below. I assume they are m
Are they reentrant too?
 ldd 2,y+ ; pop top stack item
 ldx 0,y ; get next stack item
 exg x,y ; setup for multiply
 emuls ; signed multiply

A: On the 68HC12, emuls is an assembler instruction which takes two bytes for the op
and 3 cycles to execute. So are the other math instructions. This also means that they
reentrant.

Q: I need to know the exact formula used by the max-forth about the floating-point stack. S
parameters will come by an external processor (intel) and i have to be sure that the
communication protocol will transfer the exact term.

e

d a 23

the

 as in

hange

A: It is different on the HC11 and the HC12. For floating point on the HC11, 6 bytes ar
used. On the HC12, 4 bytes are used and it is the standard IEEE 32 bit single precision
format. This'll be the same as used in C and consists of one sign bit, 8 bit exponent an
bit mantissa.

Q: Can you tell me how to convert a number into a floating point value.

A: The best way (and most portable way) of dealing with floating point values is to use
provided translators:

 D>F (d --)(F: -- r)
 r is the floating-point equivalent of d.

 F>D (F:r --)(-- d)
 Convert r to d.

 S>F (n--)(F: -- r)
 r is the floating-point equivalent of n.

 SF! (addr --)(F:r --)
 Store the floating point number r as a 32 bit IEEE single precision number at addr.

 SF@ (addr --) (F: -- r)
 Fetch the 32-bit IEEE single precision number stored at addr to the floating-point stack
the internal representation.

 Using these words you should be able to manipulate the values you require.

Appendix 1. Memory Map

This is the memory map for version 5.0L. The addresses with a star (*) beside them can c
between releases.

 0000 --------------------------
 | system registers |
 0100 --------------------------
 | no man's land |
 0800 --------------------------
 | autostart flag |
 0802 --------------------------
 | autostart vector |
 0804 --------------------------
 | kernel storage |
 0A0C*--------------------------
 | free RAM (HERE) |
 0C00 --------------------------
 | no man's land |
 0D00 --------------------------
 | EEPROM |

ectors

se are

 1000 --------------------------
 | free RAM for NMIS/L |
 8000 --------------------------
 | empty Flash |
 B800*--------------------------
 | kernel in Flash |
 F600 --------------------------
 | empty Flash |
 F7F0 --------------------------
 | 2nd interrupt vectors |
 F800 --------------------------
 | serial boot loader |
 FFF0 --------------------------
 | main vectors |
 FFFF --------------------------

Since the serial boot loader sits in high Flash ROM and it is write protected, the exception v
which are at those locations have been replaced by a set of vectors at F7F0.

APPENDIX 2: System Variables

The system variables in release V5.0L are in this order and at these locations. Most of the
available from Forth. The location and order might change in future releases.
 0976 r_0pfa
 0978 s_0pfa
 097A fsp_0pfa
 097C dppfa
 097E lastpfa
 0980 currentpfa
 0982 outpfa
 0984 fldpfa
 0986 basepfa
 0998 number_placespfa
 099A tibpfa
 09EE to_inpfa
 09F0 blkpfa
 09F2 number_tibpfa
 09F4 spanpfa
 09F6 statepfa
 09F8 csppfa
 09FA warningpfa
 09FC uabortpfa
 09FE dplpfa
 0A00 fencepfa
 0A02 seedpfa
 0A04 edppfa
 0A06 edelaypfa
 0A08 system_initializedpfa
 0A0A fdppfa

 and
by

Appendix 3: WORDS

This is a listing of all the words in the dictionary that are displayed when WORDS is typed in
executed. The listing can be stopped at any time by pressing any key and then continued
hitting the space bar or the escape key to quit. This listing is from Max-FORTH V5.0L.

CB31 TASK C4C0 (B8BF @ B8D7 C@
B8CA ! B8E5 C! C06D 2@ C065 2!
CCAF : CCC1 ; B8F4 + B901 -
BF49 1-! BF3F 1+! BCA0 +! BA2F *
BFAF / BDBF >< B88D SWAP C08D 2OVER
C081 2SWAP B899 DUP BC3D 2DUP BC23 OVER
BC51 ROT C099 2ROT C005 PICK C039 ROLL
C013 -ROLL B8A1 DROP BC4A 2DROP B8A7 >R
B8AF R> BCF0 = B956 NOT BCDE 0=
C0A7 D0= BF53 0> B9AD 0< BD0A U<
BCFA < BE03 DU< C077 D< C0AF D=
B9C2 > B929 AND B938 OR B947 XOR
CA8B IF CA9B THEN CAA7 ELSE CAC1 BEGIN
CB01 UNTIL CAED REPEAT CADD WHILE CACB AGAIN
CB13 END CA19 DO CA63 LOOP CA77 +LOOP
B9EB K B9E2 J B9D9 I B8B7 R@
CA2B LEAVE B841 EXIT BBCD KEY BB9B EMIT
C4C9 ?TERMINAL C05D S->D BD3F ABS C0C3 DABS
BD5E MIN C0D1 DMIN BD51 MAX C0E5 DMAX
C1D4 SPACES BFE1 DEPTH C1B0 CR C1EC TYPE
BD6B COUNT C8B5 -TRAILING B95F 1+ B97B 2+
B96D 1- B989 2- B90E 2/ B917 2*
BDF0 D+ BDDB D- BDCE D2/ BA41 /MOD
BFB9 MOD C10D */MOD C119 */ BA66 UM*
BA51 UM/MOD BC6F NEGATE C0B7 DNEGATE CCA1 CONSTANT
CCD3 VARIABLE CD0D 2CONSTANT CCDD 2VARIABLE D3EC SF!
D3E8 SF@ D3AC FTAN D3A4 FCOS D3A8 FSIN
C759 FATAN2 D3DC FATAN C2E4 F? D3D8 FSQRT
D3A0 F2/ D39C F2* CFBC F.S C6F4 FNUMBER
C3C4 E. C3BA F. C39C (E.) C373 (F.)
D38C F** D37C FALOG D3D0 FEXP D394 2**X
D3D4 FLN D390 FLOG D3E4 LOG2 C79F ODD-POLY
C77F POLY D3E0 FLOOR D378 FROUND C805 FLITERAL
D3C8 PI D3CC e C303 PLACES D3B8 FLOAT+
D380 FLOATS CCE7 FVARIABLE CD01 FCONSTANT CCF3 F,
D35C F! D360 F@ D358 FABS D3B4 FMIN
D3B0 FMAX D374 F< D398 F0< D388 F0=
D3BC FNEGATE D384 F>D D354 S>F D350 D>F
D34C F/ D348 F* D344 F- D340 F+
D36C FDROP D368 FSWAP D370 FOVER D364 FDUP
D3C0 FNIP BFF1 FDEPTH D33C FSP BFDD FSP0
BF01 TOGGLE BA87 SP! BA80 RP@ BA8F RP!
C50F UABORT C50B WARNING BFD5 R0 CBF2 SMUDGE
C821 DLITERAL C531 MESSAGE C579 ERROR C5B3 ?ERROR
C5C1 ?COMP C5D0 ?EXEC C5DD ?PAIRS C5E8 ?CSP
C603 ?STACK BF33 @! BC93 @@ B82E EXECUTE
BA79 SP@ BD93 CMOVE> BD7A CMOVE C4B8 ;S

A/D
bler

CD2B CODE-SUB CD1B CODE CD3B END-CODE CD5B USER
C2CC . C2B6 .R C2AC D. C2D4 U.
C2C2 U.R C290 D.R C282 #S C25F #
C24E SIGN C23E #> C234 <# C2DC ?
C8E1 EXPECT C958 QUERY BFC1 BL C4ED STATE
C151 CURRENT C155 CONTEXT C3D6 BLK C121 DP
C204 FLD C632 DPL C3D2 >IN C208 BASE
BFD9 S0 C3CE TIB C3DA #TIB C3DE SPAN
C3E2 C/L C20C PAD C125 HERE C12D ALLOT
C141 , C135 C, C1CC SPACE BC62 ?DUP
C15B TRAVERSE C1A4 LATEST C9CF COMPILE C4FD [
C4F1] C210 HEX C21B DECIMAL CD67 ;CODE
CC73 <BUILDS CC87 DOES> C621 ." CF6D .(
BDAC FILL BFC5 ERASE BFCD BLANK C226 HOLD
C4A2 WORD C670 CONVERT C749 NUMBER CB35 FIND
CC13 ID. CC95 CREATE C9DD [COMPILE] C7F1 LITERAL
C851 INTERPRET CBFD IMMEDIATE C9E5 RECURSE CA01 >MARK
C9F1 <MARK CA0B >RESOLVE C9F7 <RESOLVE CD43 :CASE
C9C9 ' C9B9 ['] C175 LFA C19E >BODY
C17B CFA C183 NFA C18F PFAPTR CDE9 .LINE
D185 AUTOSTART CB4D UNDO CB6B FORGET CE7C DUMP
CF7A .S CEF1 WORDS C989 QUIT CB19 ABORT"
C51D ABORT D17D COLD BC0F BRANCH B997 ?BRANCH
BEFD ATO4 D0F7 EEWORD D0CD EEMOVE D037 EEC!
D0B7 EE! D01B EDP BEA3 FUZZIFY
BEB9 EVALUATE-RULES BEE5 DEFUZZIFY BECB EVALUATE-WRULES D01F EDELAY
D2F0 FLWORD D2C6 FLMOVE D27A FLC! D2B2 FL!
D25C FDP BB28 FLASH D143 EXRAM CFF9 seed
CFFD RANDOM CFF5 RAND_MAX CB2D FORTH-83 OK

Appendix 4: Example Interrupt routine

This is an interrupt routine written in assembler used to increment a variable and read two
channels. It’s compiled into the kernel using the C-Inside compiler. I've included an assem
listing. It could be easily modified to compile from Forth.

(==== Real time interrupt ====)
 VARIABLE ticks (incremented by RTI interrupt)

CODE SIR-RTI (real time interrupt: initiate a sensor reading
 BCLR _rtiflg,$7F ; clear RTIF
 JSR read0123 ; read two A/D channels
 LDX tickspfa ; get timer contents
 INX ; increment it
 STX tickspfa ; store it back
 RTI ; return from interrupt

; interrupt vectors
.area exceptions(abs)
 .org $F7F0
 .dw sir_rti
.text
END-CODE

 Generated assembler listing for the above code:

 D447 sir_rti::

 D447 1D00157F BCLR _rtiflg,$7F ; clear RTIF
 D44B 16D4BA JSR read01 ; read two A/D channels
 D44E FE0A0C LDX tickspfa ; get timer contents
 D451 08 INX ; increment it
 D452 7E0A0C STX tickspfa ; store it back
 D455 0B RTI ; return from interrupt
 ; interrupt vectors
 .area exceptions(abs)
 .org $F7F0
 F7F0 D447 .dw sir_rti

This is the code used to initialize it in Forth:

: INIT-A/D (--) -INT (disable interrupts)
 83 RTICTL C! (enable real time interrupt at 4ms)
 +INT ; (enable interrupts)

Where +INT and -INT are used to enable and disable interrupts:

CODE +INT
 .dw .+2 ; make callable
 cli ; enable interrupts
 jmp itc ; thread on
END-CODE

CODE -INT
 .dw .+2 ; make callable
 sei ; disable interrupts
 jmp itc ; thread on
END-CODE

	Max-FORTH V5.0L
	Memory
	AutoStart
	Quick Start (before autostart)
	Assembler and Indirect Threaded Code
	FLASH and Kernel Reloading
	Flash and Program Storage:
	EXRAM
	RANDOM
	Floating Point
	Fuzzy Logic Support
	What’s Missing
	FAQ
	Appendix 1. Memory Map
	APPENDIX 2: System Variables
	Appendix 3: WORDS
	Appendix 4: Example Interrupt routine

