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GETTING STARTED 
 
Thank you for buying the IsoPod™. We hope you will find the IsoPod™ to be the 
incredibly useful small controller board we intended it to be, and easy to use as possible. 
 

 
 
If you are new to the IsoPod™, we know you will be in a hurry to see it working.  
 
That’s okay. We understand. 
 
Let’s skip the features and the tour and discussion of Virtually Parallel Machine 
Architecture™ (VPMA) and get right to the operation. Those points can come later. Once 
we’ve got communications, then we can make some lights blink and know for sure we’re 
in business. Let’s make this “pod” talk to us! 
 
We’ll need PC running a terminal program. Then we’ll need a serial cable to connect 
from the PC to the IsoPod™ (which, hopefully, you’ve already gotten from us). Then we 
need power, such as from a 6VDC wall transformer (which, hopefully, you’ve already 
gotten from us). (If not, you can build your own cable, and supply your own power 
supply. Instructions are in the back of this manual in Connectors.) If we have those 
connections correct, we will be able to talk to the IsoPod™ interactively. 
 

 
 

These connections are all made on a few pins of J1, which is a female .1” dual row 
connector. Download from http://www.newmicros.com/store/product_manual/isopod.zip the 
manual and read the rest if you haven’t yet. 
 
 

http://www.newmicros.com/store/product_manual/isopod.zip


Generally, an intermediate double male header strip will be used to mate from J1 to the 
Wall transformer single row female connector, and to the Serial Cable single row female 
connector.  
 

 
 
(There are other options we’ll discuss later. If you are using your IsoPod™ with our 
Prototyping Board, these connections will be a little simpler. Follow directions in the 
Prototyping Board Manual if you are using it.) 
 
Your chief concern now, is not hooking the serial cable or power cable up on the wrong 
connector; the wrong pins on the right connector; or backwards or rotated on the right 
connector. Pay close attention how the connectors go on. There is no protection to 
prevent plugging in on the .1” dual row headers the wrong way. 
 

 
 

Once you have your serial cable and connectors, and wall transformer and connectors, 
ready, follow these steps. 
 



Start with the PC: Install and run the MaxTerm program, or, find and start Hyperterm. Set 
the terminal program for communications channel (COMM1, COMM2, etc.) you wish to 
use, and set communications settings to (9600 8N1). Operate the program to get past the 
opening set ups and to the terminal screen, so it is ready to communicate. (If necessary, 
visit the chapters on MaxTerm and Hyperterm if you have trouble understanding how to 
accomplish any of this.) 
 
Hook the computer end of the serial cable (usually a DB-9 connector, but may be a DB-
25, or other, on older PC’s) to the PC’s communication channel selected in the terminal 
program.  
 

 
 
Now hook the IsoPod™ end of the serial cable to the IsoPod™ with connections as 
shown in the instructions. See the illustration here: 
 

 
 
Plug the wall transformer into the wall, but do not plug it into the board yet. 
 



 
 
Now, while watching the LED’s plug in the wall transformer connector to the power pins 
on the IsoPod™ board. Be very careful not to get a misalignment here, because it will 
likely kill the board. See the illustration here: 
 

 
 
All three LED’s should come on. If the LED’s do not light, unplug the power to the 
IsoPod™ quickly.  
 

 
 
Now check the screen on the computer. When the power is applied, before any user 
program installed, the PC terminal program should show “IsoMax™ V1.0” (or whatever 
the version currently is, see upgrade policy later at the end of this chapter).  
 
If the LED’s don’t light, and the screen doesn’t show the message, unplug the power to 
the IsoPod™. Go back through the instructions again. Check the power connections, 



particularly for polarity. (This is the most dangerous error to your board.) If the LED’s 
come on but there is no communication, check the terminal program. Check the serial 
connections, particularly for a reversal or rotation. Try once more. If you have no 
success, see the trouble shooting section of this manual and then contact technical support 
for help, before going further. Do not leave power on the board for more than a few 
seconds if it does not appear to be operational. 
 
Normally at this point you will see the prompt on the computer screen “IsoMax™ V1.0”. 
Odds are you’re there. Congratulations!  Now let’s do something interactive with the 
IsoPod™.  
 
In the terminal program on the PC, type in, “WORDS” (all in “caps” as the language is case 
sensitive), and then hit “Enter”. A stream of words in the language should now scroll up 
the screen. Good, we’re making progress. You are now talking interactively with the 
language in the IsoPod™. 
 
Now let’s blink the LED’s. Port lines control the LED’s. Type: 
 
 REDLED OFF 
 

 
 
To turn it back on type: 
 
 REDLED ON 
 

 

 
 
Now let’s use the Yellow and Green LED’s. Type: 
 
 YELLED OFF GRNLED OFF 
 



 
 
 
To turn it back on type: 
 
 YELLED ON GRNLED ON 
 

 
 
So. Now you should have a good feeling because you can tell your IsoPod™ is working. 
It’s time for an overview of what your IsoPod™ has for features. 
 
First though, a few comments on IsoMax™ revision level. The first port of IsoMax™ to 
the IsoPod™ occurred on May 27, 2002. We called this version V0.1, but it never 
shipped. While the core language was functional as it then was, we really wanted to add 
many I/O support words. We added a small number of words to identify the port lines 
and turn them on and off and shipped the first public release on June 3, 2002. This 
version was V0.2. Currently V0.3 is under development which will have support words 
for many of the built in hardware functions, and V0.4 is already planned which will had 
emulation of hardware features on the port lines. As we approach a more complete 
version, eventually we will release V1.0. We want all our original customers to have the 
benefit of the extensions we add to the language. Any IsoPod™ purchased prior to V1.0 
release can be returned to the factory (at customer’s expense for shipping) and we will 
upgrade the V0.x release to V1.0 without charge.  
 



INTRODUCTION 
 
Okay. We should be running. Back to the basics. 
 
What is neat about the IsoPod™? Several things. First it is a very good micro controller. 
The IsoPod™ was intended to be as small as possible, while still being useable. A careful 
balance between dense features, and access to connections is made here. Feature density 
is very high. So secondly, having connectors you can actually “get at” is also a big plus. 
What is the use of a neat little computer with lots of features, if y
only use one of those features at a time?  

ou can conveniently 

nyone 

 
The answer is very important. The neatest thing about the 
IsoPod™ is software giving Virtually Parallel Machine 
Architecture! 
 
Virtually Parallel Machine Architecture (VPMA) is a new 
programming paradigm. VPMA allows small, independent 
machines to be constructed, then added seamlessly to the 
system. All these installed machines run in a virtually parallel 
fashion.  
 

 In an ordinary high level language, such as C, Basic, Forth or Java, most a
can make a small computer do one thing well. Programs are written flowing 
from top to bottom. Flow charts are the preferred diagramming tools for these 
languages. Any time a program must wait on something, it simply loops in 
place. Most conventional languages follow the structured procedural 
programming paradigm. Structured programming enforces this style.  

 
Getting two things done at the same time gets tricky. Add a few 
more things concurrently competing for processor attention, and 
most projects start running into serious trouble. Much beyond 
that, and only the best programmers can weave a program 
together running many tasks in one application.  
 
Most of us have to resort to a multitasking system. (Windows and Linux are the most 
obvious examples of multitasking systems.) For a dedicated processor, a multitasking 
operating system adds a great amount of overhead for each task and an unpleasant 
amount of program complexity.  

 
The breakthrough in IsoMax™ is the language is inherently 
“multitasking” without the overhead or complexity of a multitasking 
operating system. There’s really been nothing quite like it before. 
Anyone can write a few simple machines in IsoMax™ and string them 
together so they work.  
 



 
 
Old constrained ways of thinking must be left behind to get this new level of efficiency. 
IsoMax™ is therefore not, and cannot be, like a conventional procedural language. 
Likewise, conventional languages cannot become IsoMax™ like without loosing a 
number of key features which enforces Structured Programming at the expense of 
Isostructure. 
 

 
 
In IsoMax™, all tasks are handled on the same level, each running like its own separate 
little machine. (Tasks don’t come and go, like they do in multitasking, any more than 
you’d want your leg to come and go while you’re running.) Each machine in the program 
is like hardware component in a mechanical solution. Parts are installed in place, each 
associated with their own place and function. 
 
Programming means create a new processor task fashioned as a machine, and debug it 
interactively in the foreground. When satisfied with performance, you install the new 
machine in a chain of machines. The machine chain becomes a background feature of the 
IsoPod™ until you remove it or replace it. 
 
The combination of VPMA software and diverse hardware makes IsoPod™ very 
versatile. It can be used right side up by J1 with a controller interface board providing an 
area for prototyping circuitry. It can be used as a stand-alone computer board, deeply 
embedded inside some project. Perhaps in a mobile robot mounted with double sided 
sticky tape or tie wraps (although this would be less than a permanent or professional 
approach to mounting). It can be the controller on a larger PCB board. It can be flipped 
over and plugged into a carrier board to attach to all signals. A double male right angle 
connector will convert J1 from a female to a male for such application (however the 
LED’s may no longer be visible) and the mating force of the connectors can sufficiently 
hold the board in place for most applications. Using a cabled or adapter, it can be plugged 
into a 24-pin socket of a “stamp-type” controller, to upgrade an existing application.  
 
An IsoPod™ brings an amazing amount power to a very small space, at a very reasonable 
cost. You’ll undoubtedly want to have a few IsoPod™ ‘s on hand for your future projects.  
 
 
 
 
 
 
 
 
 



QUIK TOUR 
 
Start by comparing your board to the diagram below. Most of the important features on 
the top board are labeled. 
 

 
 
The features most important to you will be the connectors. The following list gives a brief 
description of each connector and the signals involved. 
 

J1 Serial, Power, General Purpose I/O 
J2 JTAG connector 
J3 SPI 
J4 RS-422/485 Serial Port 
J5 CAN BUS Network Port 
J6 Servo Motor Outputs x 12  
J7 Motor Encoder x 2 
J8 A/D Various 

 
On the left is connector J1. Digital I/O, the power and serial connections are found here. 
J1 is a female connector. To attach the power and serial connections we need either male 
pins, or better yet, a male-to-male intermediate header. 
 
All other connectors are dual or triple row male headers. Connection can be made with 
female headers with crimped wire inserts, or IDC headers with soldered or cabled wires.  
 
Signals were put on separate connectors where possible, such as with the SPI, RS-422, 
the Can Bus, and PWM connectors. The male headers allow insertion of individually 
hand-crimped wires in connectors where signals are combined. For instance, R/C Servo 
motor headers often come in this size connection with a 3x1 header. These can plug 
directly onto the board side by side on the PWM connector. 
 
To the far left, the low voltage detect and the crystal are just to the right of J1. 
 
The large chip next to them is the CPU.  



 
Three LED’s, Red, Yellow and Green, are along the bottom of the CPU, and are 
dedicated to user control.  
 
Another row of chips between J2/3 and J4/5 are the CAN BUS and RS-422/483 drivers. 
 
On the bottom of the board the largest components are the voltage regulators. If the total 
current draw were smaller, we could make a smaller supply, but to be sure every user 
could get enough power to run at full speed, these larger parts were necessary. A smaller 
module, which will replace the regulators, is also planned. 
 
A few smaller chips are also on the bottom side, the RS-232 transceiver and the LED 
driver, and a handful of resistors and capacitors.  
 
 



PROGRAMMING 
 
Under construction… 
 
IsoMax is a programming language based on Finite State Machine (FSM) concepts 
applied to software, with a procedural language (derived from Forth) underneath it. The 
closest description to the FSM construction type is a “One-Hot” Mealy type of Timer 
Augmented Finite State Machines. More on these concepts will come later.  
 

QUICK OVERVIEW  
 
What is IsoMax™? IsoMax™ is a real time operating system / language.  
 
How do you program in IsoMax™? You create state machines that can run in a virtually 
parallel architecture.  
 

Step Programming Action Syntax 
1 Name a state machine 

 

 
 

MACHINE <name> 

2 Select this state 
 

ON-MACHINE <name> 

3 Name any states appended on the machine 
 

 
 

APPEND-STATE <name> 
APPEND-STATE <name> 
… 

4 Describe transitions from states to states 
 

 

IN-STATE  
  <state> 
CONDITION 
  <Boolean> 
CAUSES 
  <action> 
THEN-STATE 
  <state> 
TO-HAPPEN 

5 Test and Install {as required} 
 
What do you have to write to make a state machine in IsoMax™? You give a machine a 
name, and then tell the system that’s the name you want to work on. You append any 



number of states to the machine. You describe any number of transitions between states. 
Then you test the machine and when satisfied, install it into the machine chain.  
 
What is a transition? A transition is how a state machine changes states. What’s in a 
transition? A transition has four components; 1) which state it starts in, 2) the condition 
necessary to leave, 3) the action to take when the condition comes true, and 4) the state to 
go to next time. Why are transitions so verbose? The structure makes the transitions easy 
to read in human language. The constructs IN-STATE, CONDITION, CAUSES, THEN-
STATE and TO-HAPPEN are like the five brackets around a table of four things.  
 
 

IN-STATE 
\ 

CONDITION 
/\ 

CAUSES 
/\ 

THEN-STATE 
/\ 

TO-HAPPEN 
/ 

<from state> <Boolean> <action> <to state> 
 
In a transition description the constructs IN-STATE, CONDITION, CAUSES, THEN-STATE 
and TO-HAPPEN are always there (with some possible options to be set out later). The 
“meat slices” between the “slices of bread” are the hearty stuffing of the description. You 
will fill in those portions to your own needs and liking. The language provides “the 
bread” (with only a few options to be discussed later). 
 
So here you have learned a bit of the syntax of IsoMax™. Machines are defined, states 
appended. The transitions are laid out in a pattern, with certain words surrounding others. 
Procedural parts are inserted in the transitions between the standard clauses.  
 
The syntax is very loose compared to some languages. What is important is the order or 
sequence these words come in. Whether they occur on one line or many lines, with one 
space or many spaces between them doesn’t matter. Only the order is important.  
 

THREE MACHINES 
 
Now let’s take a first step at exploring IsoMax™ the language by looking at some very 
simple examples. We’ll explore the language with what we’ve just tested earlier, the LED 
words. We’ll add some machines that will use the LED’s as outputs, so we can visually 
“see” how we’re coming along.  
 

REDTRIGGER  
 
First let’s make a very simple machine. Since it is so short, at least in V0.3 and later, it’s 
presented first without detailed explanation, entered and tested. Then we will explain the 
language to create the machine step by step  
 
 
( THESE GRAY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 



( IF YOU”VE GOT V0.2 JUST ENTER GRAY’D VERBATUM.  
( IF YOU’VE GOT V0.3, IGNORE, ALREADY IN THE LANGUAGE 
 
HEX 
: OFF?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 0= 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0=  
  THEN 
; 
DECIMAL 
 
MACHINE REDTRIGGER ON-MACHINE REDTRIGGER APPEND-STATE RT 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 
 
There you have it, a complete real time program in two lines of IsoMax™, and one 
additional line to install it. A useful virtual machine is made here with one state and one 
transition.  
 
This virtual machine acts like a non-retriggerable one-shot made in hardware. (NON-
RETRIGGERABLE ONE-SHOT TIMER: Produces a preset timed output signal on the 
occurrence of an input signal. The timed output response may begin on either the leading 
edge or the trailing edge of the input signal. The preset time (in this case: infinity) is 
independent of the duration of the input signal.) For an example of a hardware non-
retriggerable one-shot, see http://www.philipslogic.com/products/hc/pdf/74hc221.pdf. 
 

 
 

If PA7 goes low briefly, the red LED turns on and stays on even if PA7 then changes. 
PA7 normally has a pull up resistor that will keep it “on”, or “high” if nothing is attached. 

http://www.philipslogic.com/products/hc/pdf/74hc221.pdf


So attaching push button from PA7 to ground, or even hooking a jumper test lead to 
ground and pushing the other end into contact with the wire lead in PA7, will cause PA7 
to go “off” or “low”, and the REDLED will come on.  
 

 
(In these examples, any port line that can be an input could be used. PA7 here, PB7 and 
PB6 later, were chosen because they are at the bottom of J1 and the easiest for you to 
access.) 
 
Now if you want, type these lines shown above in. (If you are reading this manual 
electronically, you should be able to highlight the text on screen and copy the text to the 
clipboard with Cntl-C. Then you may be able to paste into your terminal program. On 
MaxTerm, the command to down load the clipboard is Alt-V. On other windows 
programs it might be Cntl-V.) 
 
Odds are your red LED is already on. When the IsoPod™ powers up, it’s designed to 
have the LED’s on, unless programmed otherwise by the user. So to be useful we must 
reset this one-shot. Enter:  
 
REDLED OFF  
 
Now install the REDTRIGGER by installing it in the (now empty) machine chain. 
 
RT SET-STATE ( INSTALL REDTRIGGER 
EVERY 50000 CYCLES SCHEDULE-RUNS REDTRIGGER 
 

 
 

Ground PA7 with a wire or press the push button, and see the red LED come on. Remove 
the ground or release the push button. The red LED does not go back off. The program is 



still running, even though all visible changes end at that point. To see that, we’ll need to 
manually reset the LED off so we can see something happen again. Enter. 
 
REDLED OFF  
 
If we ground PA7 again, the red LED will come back on, so even though we are still fully 
interactive with the IsoPod™ able to type commands like REDLED OFF in manually, the 
REDTRIGGER machine is running in the background. 
 
Now let’s go back through the code, step-by-step. We’ll take it nice and easy. We’ll take 
the time explain the concepts of this new language we skipped over previously.  
 
Here in this box, the code for REDTRIGGER “pretty printed” so you can see how the 
elements of the program relate to a state machine diagram. Usually you start to learn a 
language by learning the syntax, or how and where elements of the program must be 
placed. The syntax of the IsoMax™ language is very loose. Almost anything can go on 
any line with any amount of white space between them as long as the sequence remains 
the same. So in the pretty printing, most things are put on a separate line and have spaces 
in front of them just to make the relationships easy to see. Beyond the basic language 
syntax, a few words have a further syntax associated to them. They must have new names 
on the same line as them. In this example, MACHINE, ON-MACHINE and APPEND-STATE 
require a name following. You will see that they do. More on syntax will come later. 
 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE REDTRIGGER  
 
  ON-MACHINE REDTRIGGER  
    APPEND-STATE RT 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-S
  RT  

TATE  

TO-HAPPEN 
 
 

RT 

REDLED ON 

PA7 OFF? 
ADD A STATE 

ADD A TRANSITION 

MAKE A MACHINE 

ACTION 

BOOLEAN 

FROM STATE TO STATE 

In this example, the first program line, we tell IsoMax™ we’re making a new virtual 
machine, named REDTRIGGER. (Any group of characters without a space or a backspace 
or return will do for a name. You can be very creative. Use up to 32 characters. Here the 
syntax is MACHINE followed by the chosen name.) 
 
MACHINE REDTRIGGER 
 



That’s it. We now have a new machine. This particular new machine is named 
REDTRIGGER. It doesn’t do anything yet, but it is part of the language, a piece of our 
program. 
 
For our second program line, we’ll identify REDTRIGGER as the machine we want to 
append things to. The syntax to do this is to say ON-MACHINE and the name of the 
machine we want to work on, which we named REDTRIGGER so the second program line 
looks like this: 
 
  ON-MACHINE REDTRIGGER 
  
(Right now, we only have one machine installed. We could have skipped this second line. 
Since there could be several machines already in the IsoPod™ at the moment, it is good 
policy to be explicit. Always use this line before appending states. When you have 
several machines defined, and you want to add a state or transition to one of them, you 
will need that line to pick the machine being appended to. Otherwise, the new state or 
transition will be appended to the last machine worked on.) 
 
All right. We add the machine to the language. We have told the language the name of 
the machine to add states to. Now we’ll add a state with a name. The syntax to do this is 
to say APPEND-STATE followed by another made-up name of our own. Here we add 
one state RT like this: 
 
    APPEND-STATE RT 
 
States are the fundamental parts of our virtual machine. States help us factor our program 
down into the important parts. A state is a place where the computer’s outputs are stable, 
or static. Said another way, a state is place where the computer waits. Since all real time 
programs have places where they wait, we can use the waits to allow other programs to 
have other processes. There is really nothing for a computer to do while its outputs are 
stable, except to check if it is time to change the outputs.  
 
(One of the reasons IsoMax™ can do virtually parallel processing, is it never allows the 
computer to waste time in a wait, no backwards branches allowed. It allows a check for 
the need to leave the state once per scheduled time, per machine.) 
 
To review, we’ve designed a machine and a sub component state. Now we can set up 
something like a loop, or jump, where we go out from the static state when required to do 
some processing and come back again to a static wait state.  
 
The rules for changing states along with the actions to do if the rule is met are called 
transitions. A transition contains the name of the state the rule applies to, the rules called 
the condition, what to do called the action, and “where to go” to get into another state. 
(We have only one state in this example, so the last part is easy. There is no choice. We 
go back into the same state. In machines with more than one state, it is obviously 
important to have this final piece.) 
 



There’s really no point in have a state in a machine without a transition into or out of it. If 
there is no transition into or out of a state, it is like designing a wait that cannot start, 
cannot end, and cannot do anything else either.  
 
On the other hand, a state that has no transition into it, but does have one out of it, might 
be an “initial state” or a “beginning state”. A state that has a transition into it, but doesn’t 
have one out of it, might be a “final state” or an “ending state”. However, most states will 
have at least one (or more) transition entering the state and one (or more) transition 
leaving the state. In our example, we have one transition that leaves the state, and one 
that comes into the state. It just happens to be the same one. 
 
Together a condition and action makes up a transition, and transitions go from one 
specific state to another specific state. So there are four pieces necessary to describe a 
transition; 1) The state the machine starts in. 2) the condition to leave that state 3) the 
action taken between states and 4) the new state the machine goes to.  
 
Looking at the text box with the graphic in it, we can see the transitions four elements 
clearly labeled. In the text version, these four elements are printed in bold. In the 
equivalent graphic they are labeled as “FROM STATE”, “BOOLEAN”, “ACTION” and 
“TO STATE”.  
 
The “FROM STATE” is RT. The “BOOLEAN” is a simple phrase checking I/O PA7 
OFF?. The “ACTION” is REDLED ON. The “TO STATE” is again RT. 
 

So to complete our state machine program, we must define the transition we need. The 
syntax to make a transition, then, is to fill in the blanks between this form: IN-STATE 
<name> CONDITION <Boolean> CAUSES <action> THEN-STATE <name> TO-HAPPEN. 
 
Whether the transition is written on one line as it was at first: 
 
IN-STATE RT CONDITION PA7 OFF? CAUSES REDLED ON THEN-STATE RT TO-HAPPEN 

  
Or pretty printed on several lines as it was in the text box: 
 
IN-STATE 
  RT 
CONDITION 
  PA7 OFF? 
CAUSES  
  REDLED ON  
THEN-STATE  
  RT  
TO-HAPPEN 
 
The effect is the same. The five bordering words are there, and the four user supplied 
states, condition and action are in the same order and either way do the same thing. 
 
After the transition is added to the program, the program can be tested and installed as 
shown above. 



 
State machine diagrams (the graphic above being an example) are 
nothing new. They are widely used to design hardware. They come 
with a few minor style variations, mostly related to how the 
outputs are done. But they are all very similar. The figure to the 
right is a hardware Quadrature design with four states. 
 
While FSM diagrams are also widely known in programming as an abstract 
computational element, there are few instances where they are used to design software. 
Usually, the tools for writing software in state machines are very hard to follow. The 
programming style doesn’t seem to resemble the state machine design, and is often a 
slow, table-driven “read, process all inputs, computation and output” scheme. 
 
IsoMax™ technology has overcome this barrier, and gives you the ability to design 
software that looks “like” hardware and runs “like” hardware (not quite as fast of course, 
but in the style, or thought process, or “paradigm” of hardware) and is extremely 
efficient. The Virtually Parallel Machine Architecture lets you design many little, 
hardware-like, machines, rather than one megalith software program that lumbers through 
layer after layer of if-then statements. (You might want to refer to the IsoMax Reference 
Manual to understand the language and its origins.) 
 

ANDGATE1 
 
Let’s do another quick little machine and install both machines so you can see them 
running concurrently. 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
 
HEX 
: ON?  
  1 =  
  IF 
    2DUP 3 + @ SWAP FFFF XOR AND OVER 3 + ! 
    2DUP 2 + @ SWAP FFFF XOR AND OVER 2 + ! 
    1 + @ AND 
  ELSE 
    SWAP DROP DUP @ FCFE AND OVER ! @ FF7F AND 0= NOT 
  THEN 
; 
DECIMAL 
 
MACHINE ANDGATE1 ON-MACHINE ANDGATE1 APPEND-STATE X 
IN-STATE X CONDITION YELLED OFF PA7 ON? PB7 ON? AND CAUSES YELLED ON THEN-STATE 
X TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE1 
MACHINE-CHAIN CHN1 REDTRIGGER ANDGATE1 END-MACHINE-CHAIN 
EVERY 50000 CYCLES SCHEDULE-RUNS CHN1 
 



There you have it, another complete real time program in three lines of IsoMax™, and 
one additional line to install it. A useful virtual machine is made here with one state and 
one transition. This virtual machine acts (almost) like an AND gate made in hardware.  
For example: http://www.philipslogic.com/products/hc/pdf/74hc08.pdf 
 

  
 
Both PA7 and PB7 must be on, or high, to allow the yellow LED to remain on (most of 
the time). So by attaching push buttons to PA7 and PB7 simulating micro switches this 
little program could be used like an interlock system detecting “cover closed”. 

http://www.philipslogic.com/products/hc/pdf/74hc08.pdf


 

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE1  
 
  ON-MACHINE ANDGATE1  
    APPEND-STATE X 
 
IN-STATE 
  X 
CONDITION 

FF   YELLED O
  PA7 ON? 
  PB7 ON? AND  
CAUSES  
  YELLED ON  
THEN-
  X  

STATE  

TO-HAPPEN 

X 

YELLED ON 

YELLED OFF 
PA7 ON? 

PB7 ON? AND ADD A STATE 

ADD A TRANSITION 

MAKE A MACHINE 

 
(Now it is worth mentioning, the example is a bit contrived. When you try to make a state 
machine too simple, you wind up stretching things you shouldn’t. This example could 
have acted exactly like an AND gate if two transitions were used, rather than just one. 
Instead, a “trick” was used to turn the LED off every time in the condition, then turn it on 
only when the condition was true. So a noise spike is generated a real “and” gate doesn’t 
have. The trick made the machine simpler, it has half the transitions, but it is less 
functional. Later we’ll revisit this machine in detail to improve it.) 
 
Notice both machines share an input, but are using the opposite sense on that input. 
ANDGATE1 looks for PA7 to be ON, or HIGH. The internal pull up will normally make 
PA7 high, as long as it is programmed for a pull up and nothing external pulls it down. 
 
Grounding PA7 enables REDTRIGGER’s condition, and inhibits ANDGATE1’s condition. Yet 
the two machines coexist peacefully on the same processor, even sharing the same inputs 
in different ways. 
 
To see these machines running enter the new code, if you are still running REDTRIGGER, 
reset (toggle the DTR line on the terminal, for instance, Alt-T twice in MaxTerm or cycle 
power) and download the whole of both programs. 
 
Initialize REDTRIGGER for action by turning REDLED OFF as before. Grounding PA7 now 
causes the same result for REDTRIGGER, the red LED goes on, but the opposite effect for 
the yellow LED, which goes off while PA7 is grounded. Releasing PA7 turns the yellow 
LED back on, but the red LED remains on.  
Again, initialize REDTRIGGER by turning REDLED OFF. Now ground PB7. This has no 
effect on the red LED, but turns off the yellow LED while grounded. Grounding both 
PA7 and PB7 at the same time also turns off the yellow LED, and turns on the red LED if 
not yet set. 
 



 

 
 
Notice how the tightly the two machines are intertwined. Perhaps you can imagine how 
very simple machines with combinatory logic and sharing inputs and feeding back 
outputs can quickly start showing some complex behaviors. Let’s add some more 
complexity with another machine sharing the PA7 input. 
 

BOUNCELESS 
 
We have another quick example of a little more complex machine, one with one state and 
two transitions. 
 
MACHINE BOUNCELESS ON-MACHINE BOUNCELESS APPEND-STATE Y 
IN-STATE Y CONDITION PA7 OFF? CAUSES GRNLED OFF THEN-STATE Y TO-HAPPEN 
IN-STATE Y CONDITION PB6 OFF? CAUSES GRNLED ON THEN-STATE Y TO-HAPPEN 
 
Y SET-STATE ( INSTALL BOUNCELESS 

 
MACHINE-CHAIN 3EASY 
REDTRIGGER 
ANDGATE 
BOUNCELESS 
END-MACHINE-CHAIN 
 
EVERY 50000 CYCLES SCHEDULE-RUNS 3EASY 
 
There you have yet another complete design, initialization and installation of a virtual 
machine in four lines of IsoMax™ code.  
 
Another name for the machine in this program is “a bounceless switch”. 
 

 

 
 



Bounceless switches filter out any noise on their input buttons, and give crisp, one-edge 
output signals. They do this by toggling state when an input first becomes active, and 
remaining in that state. If you are familiar with hardware, you might recognize the two 
gates feed back on each other as a very elementary flip-flop. The flip-flop is a bistable 
on/off circuit is the basis for a memory cell. The bounceless switch flips when one input 
is grounded, and will not flip back until the other input is grounded. 
 
By attaching push buttons to PA7 and PB6 the green LED can be toggled from on to off 
with the press of the PA7 button, or off to on with the press of the PB6. The PA7 button 
acts as a reset switch, and the PB6 acts as a set switch.  

 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE BOUNCELESS  
 
  ON-MACHINE BOUNCELESS  
    APPEND-STATE Y 
 
IN-STATE 
  Y 
CONDITION 
  PA7 OFF?  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 
 
IN-STATE 
  Y 
CONDITION 
  PB6 OFF?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-HAPPEN

ADD A STATE 

Y 

GRNLED OFF 

PA7 OFF? 

PB6 OFF? 

GRNLED ON 

ADD A TRANSITION 

ADD A TRANSITION 

MAKE A MACHINE 

You can see here, in IsoMax™, you can simulate hardware machines and circuits, with 
just a few lines of code. Here we created one machine, gave it one state, and appended 
two transitions to that state. Then we installed the finished machine along with the two 
previous machines. All run in the background, freeing us to program more virtual 
machines that can also run in parallel, or interactively monitor existing machines from the 
foreground. 
 



 
 
Notice all three virtual hardware circuits are installed at the same time, they operate 
virtually in parallel, and the IsoPod™ is still not visibly taxed by having these machines 
run in parallel. Further, all three machines share one input, so their behavior is strongly 
linked. 
 

SYNTAX AND FORMATTING 
 
Let’s talk a second about pretty printing, or pretty formatting. To go a bit into syntax 
again, you’ll need to remember the following. Everything in IsoMax™ is a word or a 
number. Words and numbers are separated spaces (or returns).  
 
Some words have a little syntax of their own. The most common cases for such words are 
those that require a name to follow them. When you add a new name, you can use any 
combinations of characters or letters except (obviously) spaces and backspaces, and 
carriage returns. So, when it comes to pretty formatting, you can put as much on one line 
as will fit (up to 80 characters). Or you can put as little on one line as you wish, as long 
as you keep your words whole. However, some words will require a name to follow 
them, so those names will have to be on the same line. 
 
In the examples you will see white space (blanks) used to add some formatting to the 
source text. MACHINE starts at the left, and is followed by the name of the new machine 
being added to the language. ON-MACHNE is indented right by two spaces. APPEND-STATE 
X is indented two additional spaces. This is the suggested, but not mandatory, offset to 
achieve pretty formatting. Use two spaces to indent for levels. The transitions are 
similarly laid out, where the required words are positioned at the left, and the user 
programming is stepped in two spaces. 
 
 

MULTIPLE STATES/MULTIPLE TRANSITIONS 
 
Before we leave the previous “Three Machines”, let’s review the AND machine again, 
since it had a little trick in it to keep it simple, just one state and one transition. The trick 
does simplify things, but goes too far, and causes a glitch in the output. To make an AND 
gate which is just like the hardware AND we need at least two transitions. The previous 



example, BOUNCELESS was the first state machine with more than one transition. We’ll 
follow this precedent and redo ANDGATE2 with two transitions.  
 

ANDGATE2 
 
( THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 
( ASSUME ON? ALREADY DEFINED AS IN OTHER PROGRAM  

 
MACHINE ANDGATE2 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
 
IN-STATE  
  X 
CONDITION 
  PA7 ON? 
  PB7 ON? AND 
CAUSES 
  YELLED ON 
THEN-STATE 
  X 
TO-HAPPEN 
 
IN-STATE  
  X 
CONDITION 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 
  YELLED OFF 
THEN-STATE 
  X 
TO-HAPPEN 
 
X SET-STATE ( INSTALL ANDGATE2 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE2 



 

PROGRAM TEXT         EQUIVALENT GRAPHIC 
 
MACHINE ANDGATE2  
 
  ON-MACHINE ANDGATE2 
    APPEND-STATE X 
 

PA7 ON? PB7 ON? AND 

MAKE A MACHINE 

APPEND STATE 

 
 

Compare the transitions in the two ANDGATE’s to understand the trick in ANDGATE1. Noti
there is an “action” included in the ANDGATE1 condition clause. See the YELLED OFF 
statement (highlighted in bold) in ANDGATE1, not present in ANDGATE2? Further notice th
same phrase YELLED OFF appears in the second transition of ANDGATE2 as the object 
action of that transition.  

  X 
TO-HAPPEN 

IN-STATE 
  X  
CONDITION  
  PA7 ON? 
  PB7 ON? AND 
CAUSES  
  YELLED ON
THEN-STATE 
  X 
TO-HAPPEN 
 
IN-STATE 
  X 
CONDITION 
  PA7 OFF? 
  PB7 OFF? 
CAUSES 
  YELLED OF
THEN-STATE 

YELLED ON  

AD NSITION 

7  

AD N   

OR 

F  

   X 

D A TRA

PA OFF? PB7 OFF? OR

YELLED OFF 

D A TRANSITIO

ce 

e 

 
 

TRANSITION COMPARISON 
 

ANDGATE1 
 

ANDGATE2 
IN-STATE 
  X 

IN-STATE IN-STATE 

CONDITION 

  YELLED ON  

  X  
CONDITION 

  YELLED ON  

N 

  X 
CONDITION 

  YELLED OFF  

TO-HAPPEN 

  YELLED OFF 
  PA7 ON? 
  PB7 ON? AND  
CAUSES  

 
  PA7 ON? 
  PB7 ON? AND 
CAUSES  

 
  PA7 OFF? 
  PB7 OFF? OR 
CAUSES 

THEN-STATE  
  X  
TO-HAPPEN 

THEN-STATE 
  X 
TO-HAPPE

THEN-STATE 
  X 

 

The way this trick worked was by using an action in the condition clause, every time the 
scheduler ran the chain of machines, it would execute the conditions clauses of all 



transitions on any active state. Only if the condition was true, did any action of a 
transition get executed. Consequently, the trick used in ANDGATE1 caused the action of t
second trans

he 
ition to happen when conditionals (only) should be running. This meant it 

as as if the second transition of ANDGATE2 happened every time. Then if the condition 
 ran 

ow this AND gate, ANDGATE2, is just like the hardware AND, except not as fast as most 
 of 

. 

he original ANDGATE1 serves as an example of what not to do, yet also just how flexible 
ith the language model. Using an action between the CONDITION and CAUSES 
prohibited, but is considered not appropriate in the paradigm of Isostructure.  

 

ost of the time, states wait. A state is meant to take no action, and have no output. They 
 in a 

ansition.  

 absolutely 
ecessary. Putting actions in the conditional lengthens the time it takes to operate waiting 

 
set 

 set a bit low. Hence, two separate outputs are 
equired.  

 
hy not define: 

: ANDOUT PA7 ON? PB7 ON? AND IF YELLED ON ELSE YELLED OFF THEN ; 

w
found the action to be a “wrong” output in the conditional, the action of ANDGATE1
and corrected the situation. The brief time the processor took to correct the wrong output 
was the “glitch” in ANDGATE1’s output. 
 
N
modern versions of AND gates implemented in random logic on silicon. The latency
the outputs of ANDGATE2 are determined by how many times ANDGATE2 runs per second
The programmer determines the rate, so has control of the latency, to the limits of the 
CPU’s processing power. 
 
T
you can be w
phrase is not 
 
An algorithm flowing to determine a single Boolean value should be the only thing in the 
condition clause of a transition. Any other action there slows the machine down, being
executed every time the machine chain runs.  
 
M
run the condition only to check if it is time to stop the wait, time to take an action
tr
 
The actions we have taken in these simple machines if very short. More complex 
machines can have very complex actions, which should only be run when it is
n
machines, and steals time from other transitions.  
 
Why was it necessary to have two transitions to do a proper AND gate? To find the 
answer look at the output of an AND gate. There are two possible mutually exclusive
outputs, a “1” or a “0”. Once action cannot set an output high or low. One output can 
a bit high. It takes a different output to
r
 

ANDOUT 
 
Couldn’t we just slip an action into the condition spot and do away with both transitions? 
Couldn’t we just make a “thread” to do the work periodically? Yes, perhaps, but that 
would break the paradigm. Let’s make a non-machine definition. The output of our

nditional is in fact a Boolean itself. Wco
 



 
Why not forget the entire “machine and state” stuff, and stick ANDOUT in the machine 

r 

of two 

 
 with more detailed actions. 

 deeper reason exists that reveals a great truth about state machines. Notice we have 
outputs next is 

 inputs are next. An AND gate has an output which has 
D gate has no memory. State machines can have memory. Their 

more than the inputs present. A state machine’s outputs can also 
f previous states. To appreciate this great difference between state 

ates, we must first look a bit further at some examples with 
tes and multiple transitions. 

 to do another AND gate version, ANDGATE3, to illustrate this point about 
achines having multiple states. This version will have two transitions and two 

ntil now, our machines have had a single state. Machines with a single state in 
not very versatile or interesting. You need to start thinking in terms of 

nes with many states. This is a gentle introduction starting with a familiar problem. 
t here. We have previously first written the code so as to make 

e used this style to emphasize small program 
w on, we are going to pretty print it so it reads as easily as possible, 

THESE GREY’D TEXT LINES ARE PATCHES FOR V0.2 UPDATE TO V0.3 

MACHINE ANDGATE3 
  ON-MACHINE ANDGATE3 
    APPEND-STATE X0 
    APPEND-STATE X1 
 
IN-STATE  
  X0 
CONDITION 
  PA7 ON? PB7 ON? AND 
CAUSES 
  YELLED ON 
  PB0 ON 
THEN-STATE 

chain instead? There are no backwards branches in this code. It has no Program Counte
Capture (PCC) Loops. It runs straight through to termination. It would work. 
 
This, however, is another trick you should avoid. Again, why? This code does one 
actions every time the scheduler runs. The actions take longer than the Boolean test and 
transfer to another thread. The system will run slower, because the same outputs are 
being generated time after time, whether they have changed or not. While the speed 
penalty in this example is exceedingly small, it could be considerable for larger state
machines
 
A
used a state machine to simulate a hardware gate. What the AND gate 
completely dependent on what the
no feedback. An AN
future outputs depend on 
depend on the history o
machines and simple g
multiple sta
 

ANDGATE3 
 
We are going
state m
states. Up u
general are 
machi
Another change is in effec

ram small in terms of lines. Wthe prog
length. From no
instead.  
 
 
( 
( ASSUME ON? ALREADY DEFINED  

 



  X1 
TO-HAPPEN 
 
IN-STATE  
 
C
 
C
 
 
THEN-STATE 
 
T
 
X NDGATE3 
EVERY 50000 CYCLES SCHEDULE-RUNS ANDGATE3 
 

ded 

 X1 
DITION ON

 PA7 OFF? PB7 OFF? OR 
AUSES 
 YELLED OFF 
B0 OFF  P

 X0 
N O-HAPPE

0 SET-STATE ( INSTALL A

PROGRAM TEX
 
MACHINE AND
 
ON-MACH

    APPEND-
    APPEND-STATE X1 
 

IN-STATE 
X0    

ON  CONDITI
  PA7 O  P
CAUSES  

 
Notice how similar this version of an AND gate, ANDGATE3, is to the previous version, 
ANDGATE2. The major difference is that there are two states instead of one. We also ad
some “spice” to the action clauses, doing another output on PB0, to show how actions 
can be more complicated. 
 
 

TO-HAPPEN 

T         EQUIVALENT GRAPHIC 

GATE3  

INE ANDGATE3 
STATE X0 

 

N? B7 ON? AND 

  YELLED ON  
  PB0 ON 

CONDITION 
  PA7 OFF? PB7 OFF? OR 
CAUSES 

THEN-STATE 
   X0  

X0 

YELLED ON  
PB0 ON 

PA7 ON? PB7 ON? AND ADD STATES 

X1 

YELLED OFF 
PB0 OFF  

  

THEN-STATE 
  X1  
TO-HAPPEN 
 
IN-STATE 
  X1 

PA7 OFF? PB7 OFF? OR ADD A TRANSITION 

  YELLED OFF 
  PB0 OFF ADD A TRANSITION 

MAKE A MACHINE 



INTER-MACHINE COMMUNICATIONS 
 
Now imagine ANDGATE3 is not an end unto itself, but just a piece of a larger problem. 

ow let’s sa  another machine needs to know if both PA7 and PB7 are both high? If we 
se, or read back what 

NDGATE3 had written as outputs. Rereading written outputs is sometimes dangerous, 
ecause there are hardware outputs which is cannot be read back. If we use different 

utput, the state information itself stores which state is active. All 
s to do to discover the status of PA7 and PB7 AND’ed together 

 check the stored state information of . To accomplish this, simply query the 

 a condition in another state. On the other hand: 

1 IS-STATE?  
 
will r
 

STA
 
So yo puts PB0 ON 
and Y k. The 
current state contains more information than other outputs. It can also contain history. 
The current state is so versatile, in fact, it can store all the pertinent history necessary to 
make any decision on past inputs and transitions. This is the deep truth about state 

achines we sought.  

 
No similar solution is possib de e variables can indeed be 
used in threads, and threads can again reference those variable, using threads and 

N y
had only one state, it would have to recalculate the AND phra
A
b
states for each different o
an additional machine ha
is ANDGATE3
state this way. 
 
X0 IS-STATE?  
 
A Boolean value will be returned that is TRUE if either PA7 and PB7 are low. This 
Boolean can be part of
 
X

eturn a TRUE value only if PA7 and PB7 are both high.  

TE MEMORY 

u see, a state machine’s current state is as much as an output as the out
ELLOW LED ON are, less likely to have read back problems, and faster to chec

m
 
 

9-2 THE FINITE-STATE MODEL -- BASIC DEFINITION 
 
The behavior of a finite-state machine is described as a sequence of events 
that occur at discrete instants, designated t = 1, 2, 3, etc. Suppose that a 
machine M has been receiving inputs signals and has been responding by 
producing output signals. If now, at time t, we were to apply an input 
signal x(t) to M, its response z(t) would depend on x(t), as well as the past 
inputs to M.  
 
From: SWITCHING AND FINITE AUTOMATA THEORY, KOHAVI 

le with short co  threads. Whil



variables leads to deeply nes EN structures and dreaded spaghetti code which 
often invades and complicate rogr

ted  ELSE THIF
s real time p ams. 

BOUNCELESS+ 
 
To put the application of state history to the test, let’s revisit our previous version of the 
machine BOUNCELESS. Refer back to the code for transitions we used in BOUNCELESS.  
 

 
STATE Y 

IN-STATE 
  Y 

  
CAUSES 
  GRNLED OFF 
THEN-STATE 
  Y 
TO-HAPPEN 

IN-STATE 
  Y 

  ?  
CAUSES 
  GRNLED ON  
THEN-STATE 
  Y 
TO-

CONDITION 
PA7 OFF?  

CONDITION 
PB6 OFF

 
This code worked fine, as long as PA7 and P  were pressed one at a time. The green 

o on and off without noise or bounces between states. Notice however, PA7 
ame time is not excluded from the code. If both lines go low at 
f our m

 over the other, but w  cannot be determ
 program. Wh

XT

B6
LED would g
and PB6 being low at the s

time, the output othe same 
take precedence
looking at the
 

PROGRAM TE
 
MACHINE BOUNCELESS+  
 
  ON-MACHINE BOUNCELESS+ 
    APPEND-STATE WAITOFF 
    APPEND-STATE WAITON 
 

HAPPEN 

achine is not well determ
hi be

ichever transition gets first service will win. 

ined. One state output will 
ined from just ch it will 

         EQUIVALENT GRAPHIC 

 
IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  
  GRNLED ON  
THEN-STATE 
  WAITON  

WAITOFF 

TO-HAPPEN 
 
IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 
  GRNLED OFF 

  PB7 

 PA7 OFF? PB7 ON? AND 

THEN-STATE 
  WAITOFF  
TO-HAPPEN 
GRNLED ON 
WAITON 

OFF? PA7 ON? AND 
GRNLED OFF  



 
Now consider how BOUNCELESS+ can be improved if the state machines history is 
integrated into the problem. In order to have state history of any significance, however,
we must have multiple states. As we did with our ANDGATE3 let’s add one more state. Th
new states are WAITON and WAITOFF and run our two transitions between the two states.  
At first blush, the new machine looks more complicated, probably slower, but not 
significantly different from the previous version. T

 
e 

his is not true however. When the 
heduler calls a machine, only the active state and its transitions are considered. So in 

the previous version ea ecuted, two  two transitions were 
tested (assuming no true condition). In this m only one 
transition are tested. As a result this machine runs slightly faster. 
 
Further, the new B t etter behaved 
than the original hardware circuit shown!) It is truly bounceless, even if both switches are 
pressed at once. The first input detected down either takes us to its state or inhibits the 
release of its state. The other input can dance all it wants, as long as the one first down 

mains down. Only when the original input is released can a new input cause a change 
f state. In the rare case where both signals occur at once, it is the history, the existing 

state, which determines the status of the machine. 

 
STATE WAITOFF 

 
STATE WAITON 

sc
ch time Y was ex  conditionals on

achine, two conditionals on 

OUNCELESS+ machine is be ter behaved. (In fact, it is b

re
o

 

IN-STATE 
  WAITOFF  
CONDITION  
  PA7 OFF? PB7 ON? AND 
CAUSES  

IN-STATE 
  WAITON 
CONDITION 
  PB7 OFF? PA7 ON? AND 
CAUSES 

  GRNLED ON  
EN-STATE
WAITON  

PPEN 

  GRNLED OFF 
TH
  
TO

TH
  

 

TO-HA

EN-STATE 
WAITOFF  
-HAPPEN 

 
 

DEL
 
Let’s e a t o c
procedural language, like BASIC, C, FORTH, o a
loop  th Between eac op would be a delay  kind, 

erhaps a subroutine you call which also spins in a loop wasting time.  

AYS 

 say we want to mak  steady blinker ou f the green LED. In a 
r Java, etc., you’d prob

onventional 
bly program a 

blinking the LED on en off. h lo  of some
p
 

Assembler  BASIC  C  JAVA FORTH  
LOOP1 LDX # 0 FOR I=1 TO N While ( 1 ) BEGIN 
LOOP2 DEX 
      BNE LOOP2 

GOSUB DELAY { delay(x);   DELAY 

      LDAA #1 
      STAA PORTA 
      LDX # 0 

LET PB=TRUE   out(1,portA1);   LED-ON 

LOOP3 DEX GOSUB DELAY   delay(
      BNE LOOP3 

x);   DELAY 



      LDAA #N Let PB=FALSE   out(0,portA1);   LED-OFF 
      STAA PORTA 
      JMP LOOP1 NEXT } AGAIN 

 
Here’s where IsoMax™ will start to look different from any other language you’re likely 
to have ever seen before. The idea behind Virtually Parallel Machine Architecture is 
onstructing virtual machines, each a little “state machine” in its own right. c But this 

 
 

ghly the 
lay loops.  

t of having a state is to allow “being in the state” to be “the delay”.  

reaking this restriction will break the functionality of IsoStructure, and the parallel 
guage, 

d transitions to do the equivalent of looping for you. 

 state might be a count down of passes through the state until 
e periodicity of the scheduler calling the machine chain, and 

e initial value in the counter, this would make a delay that didn’t “wait” in the 

LINKGRN 

ur IsoPod™ so it is clean and clear of any programs, and then begin. 

G1 
   APPEND-STATE BG2 

aken when we leave the state will be to turn the LED off and reinitialize the 
ther half of the problem in the other state we go to is just the reversed. We 

 a count, then turn the LED back on.  

o count, we need two variables to work with. One contains the count, 
itial value we count down from. Let’s add a place for those variables now, 

 them 

 <BUILDS HERE P, 1- DUP , , DOES> 
 @ 0= IF DUP 1 + @ SWAP ! TRUE ELSE 1-! FALSE THEN ;  

R CNT 

IsoStructure requires a limitation on the machine, themselves. In IsoMax™, there are no 
program loops, there are no backwards branches, there are no calls to time wasting delays
allowed. Instead we design machines with states. If we want a loop, we can make a state,
then write a transition from that state that returns to that state, and accomplish rou
ame thing. Also in IsoMax™, there are no des

 
The whole poin
 
B
machines will stop running in parallel. If you’ve ever programmed in any other lan
your hardest habit to break will be to get away from the idea of looping in your program, 
and using the states an
 

aA valid condition to leave 
a 0 count reached. Given th
th
conventional sense of backwards branching.  
 

B
 
Now for an example of a delay using the count down to zero, we make a machine 
LINKGRN. Reset yoB

 
MACHINE BLINKGRN 

KGRN   ON-MACHINE BLIN
   APPEND-STATE B 
 
 
The action t
counter. The o
delay for
 
Since we’re going t
the other the in
and initialize
 
: -LOOPVAR
  P@ DUP
100 -LOOPVA
 



 
IN-STATE 
   BG1  
CONDITION  

USES  
   GRNLED OFF  

 ON  
E 

N 

it 

ATE BG2 TO-HAPPEN 

   CNT 
CA

THEN-STATE 
 BG2    

TO-HAPPEN 
 
IN-STATE 
   BG2 
CONDITION 
   CNT 
USES CA

   GRNLED
ATTHEN-ST

   BG1  
TO-HAPPE
 

PROGRAM TEXT
 
MACHINE BLINKGRN  
 
  ON-MACHINE BLINKGRN 
    A PEND-P STATE BG1 
    APPEND-STATE BG2 
 
100 0 LOOPVAR CNT   
 
IN-STATE 
  BG1  
CONDITION  

         EQUIVALENT GRAPHIC 

 CNT 

  CNT  
CAUSES  
  GRNLED OFF  
THEN-STATE 
  BG2  

  CNT TO-HAPPEN 
 
IN-STATE 
  BG2 
CONDITION 

   CNT
CAUSES 
  GRNLED ON  
THEN-STATE 
  BG1  
TO-HAPPEN 

 

BG1 

GRNLED OFF 

BG2 

GRNLED ON  

Above, the two transitions are “pretty printed” to make the four components of a 
transition stand out. As discussed previously, as long as the structure is in this order 
could just as well been run together on a single line (or so) per transition, like this 
 
IN-STATE BG1 CONDITION CNT CAUSES GRNLED OFF THEN-ST



 
IN-STATE BG2 CONDITION CNT CAUSES GRNLED ON THEN-STATE BG1 TO-HAPPEN 
 
Finally, the new machine must be installed and tested 
 
BG1 SET-STATE ( INSTALL BLINKGRN 
EVERY 50000 CYCLES SCHEDULE-RUNS BLINKGRN 
 
The result of this program is that the green LED blinks on and off. Every time the 
scheduler runs the machine chain, control is passed to whichever state BG1 or BG2 is 
active. The -LOOPVAR created word CNT is decremented and tested. When the CNT reaches 
zero, it is reinitialize back to the originally set value, and passes a Boolean on to be tested 

y the transition. If the Boolean is , the action is initiated.  b TRUE

 

 

e  is turned ON of OFF (as programmed in the active state) and the other state is 
xt control returns to this machine. 

ightly less useful machine just to illustrate how fast the IsoPod™ can change state. First 

 
Th GRNLED

t to happen the nese
 

SPEED 
 

 how to write a machine that delays based on a counter. Let’s now try a You’ve seen
sl
reset your machine to get rid of the existing machines. 
 

ZIPGRN 
 
MACHINE ZIPGRN 
 
  ON-MACHINE ZIPGRN 

 ZIPON 
ND-STATE ZIPOFF 

IN-STATE ZIPON CONDITION TRUE CAUSES GRNLED OFF THEN-STATE ZIPOFF  
TO-HAPPEN 
 
IN-STATE ZIPOFF CONDITION TRUE CAUSES GRNLED ON THEN-STATE ZIPON  
TO-HAPPEN 

    APPEND-STATE
    APPE
 



 
ZIPON SET-STATE  
 
Now rather than install our new machine we’re going to test it by running it “by hand” 
interactively. Type in: 
 
ZPON SET-STATE 
ZIPGRN 
 

 
 

ZIPGRN should cause a change in the green LED. The machine runs as quickly as it can to 
termination, through one state transition, and stops. Run it again. Type:  
 
ZIPGRN 
                                            
 
 

 
 
Once again, the green LED should change. This time the machine starts in the state with 

ion makes the transition’s action happen and the 
xt state is set to again, back to the original state. As many times as you run it, the 

 green LED back and forth.  

ow with the machine program and tested, we’re ready to install the machine into the 

   EVERY n CYCLES SCHEDULE-RUNS word 
 
So for our single machine we’d say: 
 
   ZIPON SET-STATE 
   EVERY 5000 CYCLES SCHEDULE-RUNS ZIPGRN 
 

ow if you look at your green LED, you’ll see it is slightly dimmed.

the LED off. The always TRUE condit
ne
machine will change the
 
N
machine chain. The phrase to install a machine is : 
 

N
 

  



 
 
That’s because it is being turned off half the time, and is on half the time. But it is 

ou can’t even see it. 

e on at a time. Here we go: 

ON CONDITION TRUE CAUSES REDLED OFF YELLED ON THEN-STATE  
ELON TO-HAPPEN 

NDITION TRUE CAUSES REDLED ON YELLED OFF THEN-STATE  
-HAPPEN 

e have more things happening in the action this time. One LED is turned on and 
 the action. You can have multiple instructions in an action. 

est it. Type: 

REDON SET-STATE 
REDYEL 
REDYEL 
REDYEL 
REDYEL 
 
See the red and yellow LED’s trade back and forth from on to off and vice versa.  
 
 

happening so fast y
 

REDYEL 
 
Let’s do another of the same kind. This time lets do the red and yellow LED, and have 
them toggle, only on
 
MACHINE REDYEL 
 
  ON-MACHINE REDYEL 
    APPEND-STATE REDON 
    APPEND-STATE YELON 
 
IN-STATE RED
Y
 

E YELON COIN-STAT
REDON TO
 
Notice w

ne off ino
 
T
 



 
 
All this time, the ZIPGRN machine has been running in the background, because it is in 
the installed machine chain. Let’s replace the installed machine chain with another. So 
we define a new machine chain with both our virtual machines in it, and install it. 
 
 
ACHINE-CHAIN CHN2 

EDON SET-STATE 

M
  ZIPGRN 
  REDYEL 
END-MACHINE-CHAIN  
 
R
EVERY 5000 CYCLES SCHEDULE-RUNS CHN2 
 
With the new machine chain installed, all three LED’s look slightly dimmed.  
 

 
 
Again, they are being turned on and off a thousand times a second. But to your eye, you 

 Both our virtual machines are running in virtual 
 in the interactive nature of the IsoPod™. 

t 

000 times a second. Fine for many electronic interfaces, that is fast enough. Now let’s 
change the timing value. Redo the installation with the SCHEDULE-RUNS command. 

etition is 10,000 times a second.  

EVERY 500 CYCLES SCHEDULE-RUNS CHN2 

can’t see the individual transitions.
parallel, and we still don’t see any slow down
 
So what was the point of making these two machines? Well, these two machines are 
running faster than the previous ones. The previous ones were installed with 50,000 
cycles between runs. That gave a scan-loop repetition of 100 times a second. Fine for 
many mechanical issues, on the edge of being slow for electronic interfaces. These las
examples were installed with 5,000 cycles between runs. The scan-loop repetition was 
1

 
he scan-loop repT

 



 
Let’s see if we can press our luck. 
 
EVERY 100 CYCLES SCHEDULE-RUNS CHN2 

 

t words 
any useful machines can be built. Almost all binary digital control applications can be 

o one end of the 
al weight of mercury caused a 

ight feedback widening the set point. Most heater systems are digital in nature as well. 

eating and not heating. So in the case of a thermostat, everything necessary can be 

n 
ode of testing bits and masking unwanted bits out would be convenient. This mode 

res: 1) a mask telling which bits in to be checked for high or low settings, 2) a mask 
the I/O port 
ET-MASK, 

) CLR-MASK and 3) AT-ADDRESS. Finally, the keyword FOR-INPUT finishes the 

T 

HEX
emains in effect until it is change by a later command. 

EX 

 
Even running two machines 50,000 times a second in high-level language, there is still 
time left over to run the foreground routine. This means, two separate tasks are being 
started and running a series of high-level instructions 50,000 times a second. This shows
the IsoPod™ is running more than four hundred thousand high-level instructions per 
second. The IsoPod™ performance is unparalleled in any small computer available today. 
 

TRINARIES 
 
With the state machine structures already given, and a simple input and outpu
m
written with the trinary operators.  
 
As an example, let’s consider a digital thermostat. The thermostat works on a digital 
input with a temperature sensor that indicates the current temperature is either above or 
below the current set point. The old style thermostats had a coil made of two dissimilar 
metals, so as the temperature rose, the outside metal expanded more rapidly than the 
interior one, causing a mercury capsule to tip over. The mercury moving t
apsule or the other made or broke the circuit. The additionc

sl
They are either on or off. They have no proportional range of heating settings, only 
h
programmed with the machine format already known, and a digital input for temperature 
and a digital output for the heater, which can be programmed with trinaries. 
 
Input trinary operators need three parameters to operate. Using the trinary operatio
m
requi
telling which of the 1 possible bits are to be considered, and 3) the address of 
you are using. The keywords which separate the parameters are, in order: 1) S
2
defining process, identifying the trinary operator in effect. 
 
 
DEFINE <name> TEST-MASK <mask> DATA-MASK <mask> AT-ADDRESS <address> FOR-INPU

 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code. Before entering hexadecimal numbers, the keyword  invokes the use of the 

exadecimal number system. This rh
The numbering system can be returned to decimal using the keyword DECIMAL: 
 
H



DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS 0FB1 FOR-INPUT 
DEFINE TOO-HOT?  TEST-MASK 01 DATA-MASK 00 AT-ADDRESS 0FB1 FOR-INPUT 
DECIMAL 
 
Output trinary operators also need three parameters. In this instance, using the trinary 

peration mode of setting and clearing bits would be convenient. This mode requires: 1) a 

ng 
s in effect. 

om turning the heater off, however. Two actions need 
 be defined, therefore, even though only one I/O line is involved. PA1 was selected for 

hen PA1 is high, or set, the heater is turned on. To make PA1 high, requires PA1 to be 
ithout changing any other bit of the port. Therefore, a set mask of 02 indicates the 

ther bits 
s of the 

ort are to be cleared.  

s low, or clear, the heater is turned off. To make PA1 low, requires PA1 to be 
leared, without changing any other bit of the port. Therefore, a set mask of 00 indicates 

no other bits of the port are to be set. A clear mask of 02 indicates the next to least 
 PA1, is to be cleared. All other bits are to be 

ft alone without being cleared.  

and parameters together produces the following lines of IsoMax™ 
ode: 

 FOR-OUTPUT 
EFINE HEATER-OFF SET-MASK 00 CLR-MASK 02 AT-ADDRESS 0FB0 FOR-OUTPUT 

stem 

ion to Flash and to autostart it.  Here, 

o
mask telling which bits in the output port are to be set, 2) a mask telling which bits in the 
output port are to be cleared, and 3) the address of the I/O port. The keywords which 
proceed the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process, identifyi

hich trinary operator iw
 
DEFINE <name> AND-MASK <mask> XOR-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT 
DEFINE <name> CLR-MASK <mask> SET-MASK <mask> AT-ADDRESS <address> FOR-OUTPUT 

 
A single output port line is needed to turn the heater on and off. The act of turning the 
heater on is unique and different fr
to
the heater control signal.  
 
W
set, w
next to least significant bit in the port, corresponding to PA1, is to be set. All o

left alone without being set. A clear mask of 00 indicates no other bitare to be 
p
 
When PA1 i
c

significant bit in the port, corresponding to
le
 
Putting the keywords 
c
 
HEX 
DEFINE HEATER-ON  SET-MASK 02 CLR-MASK 00 AT-ADDRESS 0FB0
D
DECIMAL 
 
Only a handful of system words need to be covered to allow programming at a sy
level, now. 
 

FLASH AND AUTOSTARTING 
 
Here’s everything you need to copy an applicat
briefly, are the steps: 



 
1. You should start with a clean IsoPod, by doing SCRUB.  This will erase 
the Program Flash and remove any previous autostart patterns. 

D.  This 

ILDS..DOES>), and objects 
hose created with OBJECT).   

u must do 
E EEWORD and *not* EEWORD IMMEDIATE). 

ust be followed by 

E-CHAIN must be followed by EEWORD. 
llowed by any EE command. 

ote that we can make EEWORD and IN-EE automatic, if you want all state 

. When the application is complete, you must use SAVE-RAM to preserve the 
state machine variables in Data Flash.  (This does *not* save kernel 

sed Program Flash, thus 
fter the end of the application program.  (Right now 4700-7DFF is 
vailable for applications.)  I often use 7C00, near the end of Flash. 
hen type 

UTOSTART MAIN 

d should now reset into the application program. 

URAL PROGRAMMING 

M portions of IsoMax™ are now covered. What remains to be discussed is the 
rtions of the conditions and actions.  

E-CHAIN                     
AIN 

 
2. In the program file, each Forth word should be followed by EEWOR
applies to colon definitions, CODE and CODE-SUB words, constants, 
variables, "defined" words (those created with <BU
(t
 
3. If IMMEDIATE is used, it must come *before* EEWORD (i.e., yo
IMMEDIAT
 
4. For IsoMax code the following rules apply: 
  a. MACHINE <name>  must be followed by EEWORD. 
  b. APPEND-STATE <name>  must be followed by EEWORD. 
  c. IN-STATE ... TO-HAPPEN (or THIS-TIME or NEXT-TIME) m
IN-EE. 
  d. MACHINE-CHAIN ... END-MACHIN
  e. ON-MACHINE <name>  is *not* fo
[N
machines to be built in Flash and never in RAM.] 
 
5

variables.) 
 
6. Finally you can set the autostart vector in Program Flash.  You need to 
provide an address on a 400h boundary, within unu
a
a
T
  <address> AUTOSTART <wordname> 
E.g., HEX 7C00 A
 
The boar
 
 

PROCED
 
The FS
procedural po
 
 
 
END-MACHIN
MACHINE-CH



SCHEDULE-RUNS 

 

D-MASK 
TA-MASK 

SK 
DR 

? 
-STATE 

N 
IME 

 
STATE 

ON 
 

ACHINE 
D-STATE 

E 

 

NE 

E 

SE 
 
T 

T 
 

CYCLES 
EVERY 
DINT 
EINT 
STOP-TIMER 
TCFOVFLO 
TCFTICKS 
END-PROC 
PROC 
AS-TAG 
FOR-INPUT 
FOR-OUTPUT
WITH-VALUE 
SET-MASK 
CLR-MASK 
XOR-MASK 
AN
DA
TEST-MA
AT-AD
IS-STATE
SET
TO-HAPPE
NEXT-T
THIS-TIME
THEN-
CAUSES 
CONDITI
IN-STATE
ON-M
APPEN
MACHINE 
CURSTAT
 
 
ALLOC
RAM 
DEFI
\ 
PFMOV
PFDP 
PFERASE 
PF! 
EEERA
PTYPE
PCOUN
P, 
PC, 
PALLO
PHERE
PDP 
PC! 
PC@ 
P@ 
P! 
TD3 



TD2 
RS422XCV 

XMT 

0 
 
 

 

LED 
LED 
LED 
 

SE 
E 

 
 
P 

 
R 

RS232
PD0 
PD1 
PD2 
PD3 
PB0 
PB1 
PB2 
PB3 
PB4 
PB5 
PB6 
PB7 
PA
PA1
PA2
PA3 
PA4
PA5 
PA6 
PA7 
GRN
YEL
RED
I/O
OFF 
ON 
IS 
FAL
TRU
 
( 
@ 
C@ 
! 
C! 
2@ 
2! 
: 
; 
+ 
- 
1-! 
1+! 
+! 
* 
/ 
>< 
SWAP
2OVER
2SWA
DUP 
2DUP
OVE
ROT 



2ROT 
 
L 
 
 
 

 

T 

 

 

 
MINAL 
 

 

H 

 

PICK
ROL
-ROLL
DROP
2DROP
>R 
R> 
= 
NOT 
0= 
D0= 
0> 
0< 
U< 
< 
DU< 
D< 
D= 
> 
AND
OR 
XOR 
IF 
THEN 
ELSE 
BEGIN 
UNTIL 
REPEA
WHILE 
AGAIN
END 
DO 
LOOP 
+LOOP 
K 
J 
I 
R@ 
LEAVE 
EXIT
KEY 
EMIT
?TER
S->D
ABS 
DABS
MIN 
DMIN 
MAX 
DMAX 
SPACES 
DEPT
CR 
TYPE 
COUNT 
-TRAILING



1+ 
2+ 
1- 
2- 
2/ 

D 
E 
TE 

ABLE 
STANT 
BLE 

 

BER 

 
 

LY 
 
 
D 

S 
T+ 
TS 
IABLE 

2* 
D+ 
D- 
D2/ 
/MOD 
MOD 
*/MOD 
*/ 
UM* 
UM/MO
NEGAT
DNEGA
CONSTANT 
VARI
2CON
2VARIA
 
SF! 
SF@ 
FTAN 
FCOS 
FSIN 
FATAN2
FATAN 
F? 
FSQRT 
F2/ 
F2* 
F.S 
FNUM
E. 
F. 
(E.) 
(F.) 
F** 
FALOG 
FEXP
2**X
FLN 
FLOG 
LOG2 
ODD-PO
POLY
FLOOR
FROUN
FLITERAL 
PI 
E 
PLACE
FLOA
FLOA
FVAR



FCONSTANT 

= 

LE 

 

AL 

ROR 
P 
C 
RS 

K 

E 

E> 
VE 

B 
 

E 

F, 
F! 
F@ 
FABS 
FMIN 
FMAX 
F< 
F0< 
F0
FNEGATE 
F>D 
S>F 
D>F 
F/ 
F* 
F- 
F+ 
FDROP 
FSWAP 
FOVER 
FDUP 
FNIP 
FDEPTH 
FSP 
FSP0 
 
TOGG
SP! 
RP@ 
RP! 
UABORT 
WARNING
R0 
SMUDGE 
DLITER
MESSAGE 
ERROR 
?ER
?COM
?EXE
?PAI
?CSP 
?STAC
@! 
@@ 
EXECUT
SP@ 
CMOV
CMO
;S 
CODE-SU
CODE
END-COD
USER 
. 
.R 



D. 
U. 
U.R 
D.R 
#S 
# 
SIGN 
#> 
<# 
? 
EXPECT 

TE 
RRENT 
EXT 

E 

 
T 

E 

D 

RT 

QUERY 
BL 
STA
CU
CONT
BLK 
DP 
FLD 
DPL 
>IN 
BAS
S0 
TIB 
#TIB 
SPAN 
C/L 
PAD 
HERE
ALLO
, 
 
C, 
SPACE 
?DUP 
TRAVERSE 
LATEST 
COMPIL
[ 
] 
HEX 
DECIMAL 
;CODE 
<BUILDS 
DOES> 
." 
.( 
FILL 
ERASE 
BLANK 
HOL
WORD 
CONVE
NUMBER 
FIND 
ID. 
CREATE 



[COMPILE] 

RET 
E 

E 
K 

VE 
 

 
 
TART 

QUIT 
ABORT" 
ABORT 
COLD 
BRANCH 
?BRANCH 
ATO4 
EEWORD 
EEMOVE 
EEC! 
EE! 
EDP 
EDELAY 
FLASH 
EXRAM 
Seed 
FORTH-83  

LITERAL 
INTERP
IMMEDIAT
RECURS
>MAR
<MARK 
>RESOL
<RESOLVE
:CASE 
' 
['] 
LFA 
>BODY 
CFA 
NFA 
PFAPTR
B/BUF
AUTOS
UNDO 
FORGET 
DUMP 
.S 
WORDS 



SOFTWARE 
 
IsoMax™ is an interactive, real time control, computer language based on the concept of 
the State Machine. 
 

WORD SYNTAX 
 
STATE-MACHINE <name-of-machine> 
 
ON-MACHINE <name-of-machine>  

APPEND-STATE <name-of-new-state> 
... 

 APPEND-STATE <name-of-new-state> WITH-VALUE <n> AT-ADDRESS <a> 
AS-TAG 
 
IN-STATE <parent-state-name> CONDITION ...boolean computation... CAUSES 
<compound action> THEN-STATE <next-state-name> TO-HAPPEN 
 
DEFINE <word-name> TEST-MASK <n> DATA-MASK <n> AT-ADDRESS <a> 
FOR-INPUT 
 
DEFINE <word-name> SET-MASK <n> CLR-MASK <n> AT-ADDRESS <a> FOR-
OUTPUT 
 
DEFINE <word-name> PROC ...forth code... END-PROC 
 
DEFINE <word-name> COUNTDOWN-TIMER 
<n> TIMER-INIT <timer-name> 
 
EVERY <n> CYCLES SCHEDULE-RUNS ALL-TASKS 
 
 
 
Under construction… 
 
WITH-VALUE ( -- 7100 ) stacks the tag 7100. 
AT-ADDRESS  ( -- 7001 ) stacks the tag 7001.  This will be topmost after 
ORDER. 
AS-TAG ( tag n tag n -- ) 

Requires tags 7100,7001.  Requires the latest word to be a State word.  If it is, removes 
DUMMYTAG, 0 and replaces them with Address, Value. 

 
 
THIS-TIME ( spfa -- ) previously TO-HAPPEN ? 



Requires CSP=HERE.  Requires the given word to be a State word.  Then: 
Removes last compiled cell.  Compiles the CFA of the given State word.  Compiles PTHIST. 

 
NEXT-TIME ( spfa -- ) 

Requires CSP=HERE.  Requires the given word to be a State word.  Then: 
Removes last compiled cell.  Compiles the CFA of the given State word.  Compiles PNEXTT. 

 
SET-STATE ( spfa -- ) 

Given the pfa of a State word on the stack.  Requires the given word to be a State word.  Then: 
Fetches the thread pointer and RAM pointer from the State word, and stores the thread pointer in 
the RAM pointer. 
 

IS-STATE? ( spfa -- ) 
Given the pfa of a State word on the stack.  Requires the given word to be a State word.  Then: 
Fetches the thread pointer and RAM pointer from the State word.  Returns true if the current state 
of the machine is this state. 
 

IN-EE 

TIMING CONTROL 
EVERY  ( -- 6000 ) stacks the value 6000. 
CYCLES ( -- 9000 ) stacks the value 9000. 
 
SCHEDULE-RUNS not defined in source file 
ALL-TASKS  not defined in source file 
COUNTDOWN-TIMER not defined in source file 
TIMER-INIT  not defined in source file 
 

INPUT/OUTPUT TRINARIES 
DEFINE <word-name> ( -- 1111 ) 
 Creates a new word in the Forth dictionary (CREATE SMUDGE) and stacks the 
pair-tag 1111. 
 
PROC  not defined in source file 
END-PROC not defined in source file 
 
TEST-MASK  ( -- 7002 ) stacks the tag 7002. 
DATA-MASK ( -- 7004 ) stacks the tag 7004. 
 
FOR-INPUT ( 1111 tag n tag n tag n -- ) 

If tags 7001, 7002, 7004 are stacked, compiles Address, Test-Mask (byte), and Data-Mask (byte), 
then changes the code field of the latest word to XCPAT.  Requires pair-tag 1111. 

 
XCPAT 

Fetches the data byte from the stored Address, masks it with the Test-Mask, and xors it with the 
Data-Mask.  If the result is zero (equal), stacks TRUE, else stacks FALSE. 

 
AND-MASK ( -- 7008 ) stacks the tag 7008. 



XOR-MASK ( -- 7010 ) stacks the tag 7010. 
 
CLR-MASK ( -- 7020 ) stacks the tag 7020. 
SET-MASK ( -- 7040 ) stacks the tag 7040. 
 
FOR-OUTPUT ( 1111 tag n tag n tag n -- ) 

If tags 7001, 7008, 7010 are stacked, compiles Address, And-Mask (byte), and Xor-Mask (byte), 
then changes the code field of the latest word to AXOUT. 
If tags 7001, 7020, 7040 are stacked, compiles Address, Clr-Mask (byte), and Set-Mask (byte), 
then changes the code field of the latest word to SROUT. 
Requires pair-tag 1111. 

 



REGISTERS 
 
Under construction… 
 
 ( BASE REGISTERS)   
0C00 SIM 
0C40 PFIU2 
0D00 TMRA 
0D20 TMRB  
0D40 TMRC  
0D60 TMRD  
0D80 CAN  
0E00 PWMA  
0E20 PWMB  
0E40 DEC0  
0E50 DEC1  
0E60 ITCN  
0E80 ADCA  
0EC0 ADCB  
0F00 SCI0  
0F10 SCI1  
0F20 SPI  
0F30 COP  
0F40 PFIU  
0F60 DFIU  
0F80 BFIU  
0FA0 CLKGEN  
0FB0 GPIOA  
0FC0 GPIOB  
0FE0 GPIOD  
0FF0 GPIOE   
 
( TIMER REGISTERS. OFFSET IS CHANNEL  * 8 )     
   
 
0 CMP1 
1 CMP2 
2 CAP  
3 LOAD  
4 HOLD  
5 CNTR  
6 CTRL  
7 SCR  
 
( GPIO )   



 
0 PUR  
1 DR  
2 DDR  
3 PER  
4 IAR  
5 IENR  
6 IPOLR  
7 IPR  
8 IESR  
 
 ( A/D CONVERTER )   
 
0 ADCR1  
1 ADCR2  
2 ADZCC  
3 ADLST1  
4 ADLST2  
5 ADSDIS  
6 ADSTAT  
7 ADLSTAT  
8 ADZCSTAT  
9 ADRSLT0  
A ADRSLT1  
B ADRSLT2  
C ADRSLT3  
D ADRSLT4  
E ADRSLT5  
F ADRSLT6  
10 ADRSLT7  
11 ADLLMT0  
12 ADLLMT1  
13 ADLLMT2  
14 ADLLMT3  
15 ADLLMT4  
16 ADLLMT5  
17 ADLLMT6  
18 ADLLMT7  
19 ADHLMT0  
1A ADHLMT1  
1B ADHLMT2  
1C ADHLMT3  
1D ADHLMT4  
1E ADHLMT5  
1F ADHLMT6  
20 ADHLMT7  



21 ADOFS0  
22 ADOFS1  
23 ADOFS2  
24 ADOFS3  
25 ADOFS4  
26 ADOFS5  
27 ADOFS6  
28 ADOFS7  
 
( PWM )   
 
0 PMCTL  
1 PMFCTL  
2 PMFSA  
3 PMOUT  
4 PMCNT  
5 PWMCM  
6 PWMVAL0  
7 PWMVAL1  
8 PWMVAL2  
9 PWMVAL3  
A PWMVAL4  
B PWMVAL5  
C PMDEADTM  
D PMDISMAP1  
E PMDISMAP2  
F PMCFG  
10 PMCCR  
11 PMPORT  
   
( QUAD )   
   
0 DECCR  
1 FIR  
2 WTR  
3 POSD  
4 POSDH  
5 REV  
6 REVH  
7 UPOS  
8 LPOS  
9 UPOSH  
A LPOSH  
B UIR  
C LIR  
D IMR  



E TSTREG  
 
( SCI )   
 
0 SCIBR  
1 SCICR  
2 SCISR  
3 SCIDR  
   
( SPI )   
   
0 SPSCR  
1 SPDSR  
2 SPDRR  
3 SPDTR  
 



IsoPod™ MEMORY MAP 

peripherals

0000
04E6

04E7
07FF

Data RAM
(Kernel)

Data RAM
(User)

0800
0BFF

0C00
0FFF

DATA MEMORY

1000
1BFF

0000
31FF

Program
Flash

(Kernel)

PROGRAM MEMORY

Data Flash
(Kernel)

1C00
1FFF

Data Flash
(User)

3200
7DFF

Program
Flash
(User)

7E00
7FDF

Program RAM
(User)

7FE0
7FFF

Program RAM
(Kernel*)

* Program RAM is used by
the kernel only for the Flash
programming routines.  This
space is otherwise available
for the user.

reserved

 
 



HARVARD MEMORY MODEL 
 
The IsoPod Processor uses a "Harvard" memory model, which means that it has separate 
memories for Program and Data storage.  Each of these memory spaces uses a 16-bit 
address, so there can be 64K 16-bit words of Program ("P") memory, and 64K 16-bit 
words of Data ("X") memory. 
 

MEMORY OPERATORS 
 
Most applications need to manipulate data, so the memory operators use Data space.  
These include 
 

@   !   C@   C!   +!   HERE   ALLOT   ,   C, 
 
Occasionally you will need to manipulate Program memory.  This is accomplished 
through a separate set of memory operators having a "P" prefix: 
 

P@   P!   PC@   PC!   PHERE   PALLOT   P,   PC, 
 
Note that on the IsoPod™, the smallest addressable unit of memory is one 16-bit word.  
This is the unpacked character size.  This is also the "cell" size used for arithmetic and 
addressing.  Therefore, @ and C@ are equivalent, and ! and C! are equivalent. 
 

WORD STRUCTURE 
 
The executable "body" of a IsoMax™ word is kept in Program space.  This includes the 
Code Field of the word, and the threaded definition of high-level words or the machine 
code definition of CODE words. 
 
The "header" of a IsoMax™ word is kept in Data space.  This includes the Name Field, 
the Link Field, and the PFA Pointer. 
 



Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  Threaded code 

(high level words) 
 

or 
 

Machine code 
(CODE words) 

 . 
. 
. 

 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 . 

. 

. 
 
 

 

VARIABLES 
 
Since the Program space is normally ROM, and variables must reside in RAM and in 
Data space, the "body" of a VARIABLE definition does not contain the data.   Instead, it 
holds a pointer to a RAM location where the data is stored.   
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  RAM Pointer 

 . 
. 
. 

 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 data 
 . 

. 

. 
 
 

<BUILDS DOES> 
 
"Defining words" created with <BUILDS and DOES> may have a variety of purposes.  
Sometimes they are used to build Data objects in RAM, and sometimes they are used to 
build objects in ROM (i.e., in Program space).  In the <BUILDS code you can allocate 
either space by using the appropriate memory operators. 
 



Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  DOES> Action Pointer 

 Allocate with  
PHERE PALLOT 

P, PC, 
 . 

. 

. 
 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 Allocate with  

HERE ALLOT 
, C, 

 . 
. 
. 

 
 

 
For maximum flexibility, DOES> will leave on the stack the address in Program 
space of the user-allocated data.  If you need to allocate data in Data space, you must 
also store (in Program space) a pointer to that data.   For example, here is how you might 
define VARIABLE using <BUILDS and DOES>. 
 
: VARIABLE 
  <BUILDS Defines a new Forth word, header and empty body; 
    HERE gets the address in Data space (HERE) and appends that to Program space; 
    0  , appends a zero cell to Data space. 
  DOES> The "run-time" action will start with the Program address on the stack; 
    P@ fetch the cell stored at that address (a pointer to Data) and return that. 
; 
 
This constructs the following: 
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  DOES> Action Pointer 

 RAM pointer 
 . 

. 

. 
 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 0 (data) 
 . 

. 

. 
 
 

Words with constant data, on the other hand, can be allocated entirely in Program space.  
Here's how you might define CONSTANT: 



 
: CONSTANT  ( n -- ) 
  <BUILDS Defines a new Forth word, header and empty body; 
    P,  appends the constant value (n) to Program space. 
  DOES>  The "run-time" action will start with the Program address on the stack; 
    P@    fetch the cell stored at that address (the constant) and return that. 
; 
 
This constructs the following: 
 

Program Space 
 . 

. 

. 
CFA  Code Field 
PFA  DOES> Action Pointer 

 N (constant value) 
 . 

. 

. 
 

Data Space 
 . 

. 

. 
NFA  Name Length 

  
Name 

 
 Link to previous Name 
 PFA Pointer 
 . 

. 

. 

 

 



IsoPod™ Reset Sequence 
The IsoPod employs a flexible initialization that gives you many options for starting and running application programs.  
Sophisticated applications can elect to run with or without IsoMax, and with the default or custom processor 
initialization.  This requires some knowledge of the steps that the IsoPod takes upon a processor reset: 
1. Perform basic CPU initialization.  This includes the PLL clock generator and the RS232 serial port. 
2. Do the QUICK-START routine.  If a QUICK-START vector is present in RAM, execute the corresponding routine.  
QUICK-START is designed to be used before any other startup code, normally just to provide some additional 
initialization.  In particular, this is performed before RAM is re-initialized.  This gives you the opportunity to save any 
RAM status, for example on the occurrence of a watchdog reset.  Note that a power failure which clears the RAM will 
also clear the QUICK-START vector. 
3. Stop IsoMax.  This is in case of a "software reset" that would otherwise leave the timer running. 
4. Check for "autostart bypass."  Configure the SCLK/PE4 pin as an input with pullup resistor.  If the SCLK/PE4 pin 
then reads a continuous "0" (ground level) for 1 millisecond, skip the autostart sequence and "coldstart" the IsoPod.  
This will initialize RAM to factory defaults and start the IsoMax interpreter. 

This is intended to recover from a situation where an autostart application locks up the IsoPod.  Simply 
jumper the SCLK/PE4 pin to ground, and reset the IsoPod.  This will reset the RAM and start the 
interpreter, but please note that it will not erase any Flash ROM.  Flash ROM can be erased with the 
SCRUB command from the IsoMax interpreter.   

This behavior should be kept in mind when designing hardware around the IsoPod.  If the IsoPod is 
installed as an SPI master, or if the SCLK/PE4 pin is used as a programmed output, there will be no 
problem.  If the IsoPod is installed as an SPI slave, the presence of SPI clock pulses will not cause a 
coldstart, but a coldstart will happen if SCLK is held low in the "idle" state and a CPU reset occurs.  
For this reason, if the IsoPod is an SPI slave, we recommend configuring the SPI devices with 
CPOL=1, so the "idle" state of SCLK is high.  If the SCLK/PE4 pin is used as a programmed input, 
avoid applications where this pin might be held low when a CPU reset occurs. 

If SCLK/PE4 is not grounded, proceed with the autostart sequence. 
5. Check the contents of RAM and initialize as required. 

a. If the RAM contents are valid1, use them.  This will normally be the case if the CPU is reset with no 
power cycle, e.g., reset by MaxTerm, a watchdog, or an external reset signal. 

b. If the RAM contents are invalid, load the SAVE-RAM image from Data Flash ROM.  If this RAM 
image is valid, use it.  This gives you a convenient method to initialize your application RAM. 

c. If the Flash ROM contents are invalid, then reinitialize RAM to factory defaults.  Note that this will 
reset the dictionary pointer but will not erase any Flash ROM. 

6. Look for a "boot first" routine.  Search for an $A44A pattern in Program Flash ROM.  The search looks at 1K 
($400) boundaries, starting at Program address $400 and proceeding to $7C00.  If found, execute the corresponding 
"boot first" routine.  IsoMax is not running at this point.   

a. If the "boot first" routine never exits, only it will be run. 

b. If the "boot first" routine exits, or if no $A44A pattern is found, continue the autostart sequence. 

7. Start IsoMax with an "empty" list of state machines.  After this, you can begin INSTALLing state machines.  Any 
state machines INSTALLed before this point will be disabled.   
8. Look for an "autostart" routine.  Search for an $A55A pattern in Program Flash ROM.  The search looks at 1K 
($400) boundaries, starting at Program address $400 and proceeding to $7C00.   If found, execute the corresponding 
"autostart" routine.   

a. If the "autostart" routine never exits, only it will be run.  (Of course, any IsoMax state machines 
INSTALLed by this routine will also run.) 

b. If the "autostart" routine exits, or if no $A55A pattern is found, start the IsoMax interpreter.   

 

                                                 
1   RAM is considered "valid" if the program dictionary pointer is within the Program Flash ROM address 
space, the version number stored in RAM matches the kernel version number, and the SYSTEM-
INITIALIZED variable contains the value $1234. 



In summary: 
Use the QUICK-START vector if you need to examine uninitialized RAM, or for chip initialization which must occur 
immediately. 
Use an $A44A "boot first" vector for initialization which must precede IsoMax activation, but which needs initialized 
RAM. 
Use an $A55A "autostart" vector to install IsoMax state machines, and for your main application program. 
To bypass the autostart sequence, jumper SCLK/PE4 to ground. 



Object Oriented Extensions 
These words provide a fast and compact object-oriented capability to MaxForth.  It 
defines Forth words as "methods" which are associated only with objects of a specific 
class. 

Action of an Object  
An object is very much like a <BUILDS DOES> defined word.  It has a user-defined data 
structure which may involve both Program ROM and Data RAM.  When it is executed, it 
makes the address of that structure available (though not on the stack...more on this in a 
moment). 
 
What makes an object different is that there is a "hidden" list of Forth words which can 
only be used by that object (and by other objects of the same class).  These are the 
"methods," and they are stored in a private wordlist.  Note that this is not the same as a 
Forth "vocabulary."  Vocabularies are not used, and the programmer never  has to worry 
about word lists. 
 
Each method will typically make several references to an object, and may call other 
methods for that object.  If the object's address were kept on the stack, this would place a 
large burden of stack management on the programmer.  To make object programming 
simpler and faster, the address of the current object is stored in a variable, OBJREF.  The 
contents of this variable (the address of the current object) can always be obtained with 
the word SELF. 
 
When executed (interpreted), an object does the following: 
1. Make the "hidden" word list of the object available for searching. 
2. Store the object's address into OBJREF. 
After this, the private methods of the object can be executed.  (These will remain 
available until an object of a different class is executed.) 
 
When compiled, an object does the following: 
1. Make the "hidden" word list of the object available for searching. 
2. Compile code into the current definition which will store the object's address into 

OBJREF. 
After this, the private methods of the object can be compiled.  (These will remain 
available until an object of a different class is compiled.)  Note that both the object 
address and the method are resolved at compile time.  This is "early binding" and results 
in code that is as fast as normal Forth code. 
 
In either case, the syntax is identical: 
 object method 
For example: 
 REDLED TOGGLE 
 



Defining a new class 
 
BEGIN-CLASS name 
 

Words defined here will only be visible to objects of this class. 
These will normally be the "methods" which act upon objects of this class. 

 
PUBLIC 
 

Words defined here will be visible at all times. 
These will  normally be the "objects" which are used in the main program. 

 
END-CLASS name 
 

Defining an object 
 
OBJECT name   This defines a Forth word "name" which will be an object of the 

current class.  The object will initially be "empty", that is, it will have no 
ROM or RAM allocated to it.  The programmer can add data structure to 
the object using P, , PALLOT and ALLOT, in the same manner as for 
<BUILDS DOES> words.  Like <BUILDS DOES>, the action of an 
object is to leave its Program memory address. 

Referencing an object 
 
SELF This will return the address of the object last executed.  Note that this is an 

address in Program memory.  If the object will use Data RAM, it is the 
responsibility of the programmer to store a pointer to that RAM space.  
See the example below. 

Object Structure 
An object may have associated data in both Program and Data spaces.  This allows ROM 
parameters which specify the object (e.g., port numbers for an I/O object); and private 
variables ("instance variables") which are associated with the object.  By default, objects 
return their Program (ROM) address.  If there are RAM variables associated with the 
object, a pointer to those variables must be included in the ROM data. 
 



Program space Data space

Address of object (optional)
RAM pointer

ROM data

ROM data

RAM data

RAM data

Object data structure

 
 
Note that also OBJECT creates a pointer to Program space, it does not reserve any 
Program or Data memory.  That is the responsibility of the programmer.  This is done in 
the same manner as the <BUILDS clause of a <BUILDS DOES> definition, using P, or 
PALLOT  to add cells to Program space and , or ALLOT to add cells to Data space.  The 
programmer can use OBJECT to build a custom defining word for each class.  See the 
example below. 

Example using ROM and RAM 
This is an example of an object which has both ROM data (a port address) and RAM data 
(a timebase value).   
 
BEGIN-CLASS TIMERS 
  : TIMER ( a -- )  OBJECT  HERE 1 ALLOT P,  P, ; 
PUBLIC 
  0D00 TIMER TA0       
  0D08 TIMER TA1 
END-CLASS TIMERS 
 
The word TIMER expects a port address on the stack.  It builds a new (empty) OBJECT.  
Then it reserves one cell of Data RAM (1 ALLOT) and stores the starting address of that 
RAM (HERE) into Program memory (P,).  This builds the RAM pointer as shown above.  
Finally, it stores the I/O port address "a" into the second cell of Program memory (the 
second P,).  Each object built with TIMER will have its own copy of this data structure. 
 
After the object is executed, SELF will return the address of the Program data for that 
object.  Because we've stored a RAM pointer as the first Program cell, the phrase SELF 
P@ will return the address of the RAM data for the object.  It is not required that the first 
Program cell be the RAM pointer, but this is strongly recommended as a programming 
convention for all objects using RAM storage. 
 
Likewise,  SELF CELL+ P@  will return the I/O port address associated with this object 
(since that was stored in the second cell of Program memory by TIMER). 
 



We can simplify programming by making these phrases into Forth words.  We can also 
build them into other Forth words.  All of this will normally go in the "private" class 
dictionary: 
 
BEGIN-CLASS TIMERS 
  : TIMER      ( a -- )  OBJECT  HERE 1 ALLOT P,  P, ; 
 
  : TMR_PERIOD ( -- a )  SELF P@ ;    ( RAM variable for 
this timer) 
  : BASEADDR   ( -- a )  SELF CELL+ P@ ;  ( I/O addr for 
this timer) 
  : TMR_SCR    ( -- a )  BASEADDR 7 + ;   ( Control 
register ) 
 
  : SET-PERIOD ( n -- )  TMR_PERIOD ! ; 
  : ACTIVE-HIGH ( -- )   0202 TMR_SCR CLEAR-BITS ; 
PUBLIC 
  0D00 TIMER TA0      ( Timer with I/O address 0D00 ) 
  0D08 TIMER TA1      ( Timer with I/O address 0D08 ) 
END-CLASS TIMERS 
 
After this, the phrase  100 TA0 SET-PERIOD  will store the RAM variable for timer 
object TA0, and 200 TA1 SET-PERIOD  will store the RAM variable for timer object 
TA1.  TA0 ACTIVE-HIGH will clear bits in timer A0 (at port address 0D07), and TA1 
ACTIVE-HIGH will clear bits in timer A1 (at port address 0D0F). 
 
In a WORDS listing, only TA0 and TA1 will be visible.  But after executing TA0 or TA1, 
all of the words in the TIMERS class will be found in a dictionary search.  
 
Because the "methods" are stored in private word lists, you can re-use method names in 
different classes.  For example, it is possible to have an ON method for timers, a different 
ON method for GPIO pins, a third ON method for PWM pins, and so on.  When the object 
is named, it will automatically select the correct set of methods to be used!  Also, if a 
particular method has not been defined for a given object, you will get an error message 
if you attempt to use that method with that object.  (One caution: if there is word in the 
Forth dictionary with the same name, and there is no method of that name, the Forth word 
will be found instead. An example of this is TOGGLE.  If you have a TOGGLE method, 
that will be compiled.  But if you use an object that doesn't have a TOGGLE method, 
Forth's TOGGLE will be compiled.  For this reason, methods should not use the same 
names as "ordinary" Forth words.) 
 
Because the "objects" are in the main Forth dictionary, they must all have unique names.  
For example, you can't have a Timer named A0 and a GPIO pin named A0.  You must 
give them unique names like TA0 and PA0.



 

GPIO Bit I/O Class 
These words support the GPIO I/O of the DSP56F80x.  The following GPIO pins are 
defined as objects: 
 
PA7   PA6   PA5   PA4   PA3   PA2   PA1   PA0    
PB7   PB6   PB5   PB4   PB3   PB2   PB1   PB0          
PD3   PD2   PD1   PD0      
REDLED  YELLED  GRNLED 
 
For each pin, the following methods can be performed: 
 
ON  Makes the pin an output, and outputs a '1' (high level). 
OFF  Makes the pin an output, and outputs a '0' (low level). 
TOGGLE Makes the pin an output, and inverts its level.   
n SET  Stores a T/F value to the pin, e.g., 1 PA0 SET.  Any nonzero 
value is "true." 
GETBIT Makes the pin an input, and returns pin value (as a bit mask). 
ON?  Makes the pin an input, and returns true if pin is '1' (high level). 
OFF?  Makes the pin an input, and returns true if pin is '0' (low level). 
IS-INPUT Makes pin an input (hi-Z). 
IS-OUTPUT Makes pin an output.  Pin will output the last programmed level. 
 
Examples of use: 
 
PA0 OFF ( output a low level on PA0 ) 
0 PA0 SET ( also outputs a low level on PA0 ) 
REDLED ON ( output a high level, turn the red LED on ) 
PD3 ON? ( check if PD3 is a logic '1' ) 

GPIO Byte I/O Class 
These words support the GPIO I/O of the DSP56F80x as bytes.  The following GPIO 
ports are defined as objects: 
 
PORTA   PORTB 
 
For each pin, the following methods can be performed: 
 
IS-INPUT Makes port an input (hi-Z). 
IS-OUTPUT Makes port an output.  Pin will output the last programmed level. 
PUTBYTE Makes port an output, and outputs the given byte (8 bits). 
GETBYTE Makes port an input, and reads it as a byte (8 bits). 
 
Examples of use: 



 
55 PORTA PUTBYTE ( output 55 to GPIO Port A ) 
PORTB GETBYTE . ( read GPIO Port B and type its numeric 
value ) 
 



Timer I/O Class 
These words support the Counter/Timers of the DSP56F80x.  The following timers are 
defined as objects: 
 
TA0   TA1   TA2   TA3  
TB0   TB1   TB2   TB3  
TC0   TC1   TC2   TC3  
TD0   TD1   TD2    
 
For each Counter/Timer, the following methods can be performed: 
 
ON  Makes the counter/timer pin an output, and outputs a '1' (high level). 
OFF  Makes the counter/timer pin an output, and outputs a '0' (low level). 
TOGGLE Makes the counter/timer pin an output, and inverts its level.   
n SET  Stores a T/F value to the pin, e.g., 1 TA0 SET.  Any nonzero 
value is "true." 
GETBIT Makes the counter/timer pin an input, and returns pin value (as a bit 
mask). 
ON?  Makes the counter/timer pin an input, and returns true if pin is '1' (high 
level). 
OFF?  Makes the counter/timer pin an input, and returns true if pin is '0' (low 
level). 
 
The following methods can be used to generate PWM signals and to measure pulse 
width: 
 
ACTIVE-HIGH  Makes the pin "active high" for PWM output or input.  For 

output, PWM-OUT will control the high pulse width.  For input, PWM-IN 
will measure the width of the high pulse.  The reset default is ACTIVE-
HIGH. 

ACTIVE-LOW Makes the pin "active low" for PWM output or input.  For output, 
PWM-OUT will control the low pulse width.  For input, PWM-IN will 
measure the width of the low pulse. 

n PWM-PERIOD  Specifies the period (frequency) of the PWM output.  Values from 
100 to FFFF hex are valid.  The counter frequency is 2.5 MHz; FFFF hex 
corresponds to a period of  26.214 msec (38 Hz).  PWM-PERIOD must be 
specified before using PWM-OUT. 

n PWM-OUT Makes the counter/timer pin an output, and outputs a continuous PWM 
signal with the given duty cycle.  Values from 0 to FFFF hex are valid.  0 
is a duty cycle of 0% (always off); FFFF is a duty cycle of 100% (always 
on).  8000 hex gives a duty cycle of 50%.  PWM-PERIOD must be 
specified before using PWM-OUT. 

PWM-IN Makes the counter/timer pin an input, and measures the width of one pulse 
on that input.  Returns a value from 1 to FFFF hex.  The counter rate is 2.5 



MHz, thus each count is 0.4 usec, and a returned value of  10000 decimal 
corresponds to 4 msec. 

  
Examples of use: 
 
TC0 ON ( output a high level on the TC0 pin ) 
TA3 ON? ( check if TA3 pin, HOME0, is a logic '1' ) 
 
DECIMAL 50000 TC1 PWM-PERIOD ( specify 20 msec period = 50 
Hz ) 
TC1 ACTIVE-HIGH   ( specify active-high output 
) 
HEX 4000 TC1 PWM-OUT  ( output 25% high, 75% low ) 
 



PWM I/O Class 
These words support the PWM generators of the DSP56F80x.  The following PWM 
outputs are defined as objects: 
 
PWMA0   PWMA1   PWMA2   PWMA3   PWMA4   PWMA5    
PWMB0   PWMB1   PWMB2   PWMB3   PWMB4   PWMB5    
 
For each PWM output, the following methods can be performed: 
 
ON  Outputs a '1' (high level). 
OFF  Outputs a '0' (low level). 
TOGGLE Inverts the output level.   
n SET  Stores a T/F value to the pin, e.g., 1 PWMA0 SET.  Any nonzero 
value is "true." 
 
The following methods can be used to generate PWM signals: 
 
n PWM-PERIOD  Initializes the PWM output, and specifies its period (frequency).  

Values from 100 to 7FFF hex are valid.  The effective counter frequency 
is 2.5 MHz; 7FFF hex corresponds to a period of 13.106 msec (76 Hz).  
PWM-PERIOD must be specified before using PWM-OUT.  Note: setting 
the period for any "A" PWM will affect all six "A" PWMs.  Setting the 
period for any "B" PWM will affect all six "B" PWMs. 

n PWM-OUT Outputs a continuous PWM signal with the given duty cycle.  Values from 
0 to FFFF hex are valid.  0 is a duty cycle of 0% (always off); FFFF is a 
duty cycle of 100% (always on).  8000 hex gives a duty cycle of 50%.  
PWM-PERIOD must be specified before using PWM-OUT. 

 
 
The following PWM inputs are defined as objects: 
 
FAULTA0   FAULTA1   FAULTA2   FAULTA3   ISA0      ISA1      
ISA2       
FAULTB0   FAULTB1   FAULTB2   FAULTB3   ISB0      ISB1      
ISB2       
 
For each PWM input, the following methods can be performed: 
 
GETBIT Returns pin value (as a bit mask). 
ON?  Returns true if pin is '1' (high level). 
OFF?  Returns true if pin is '0' (low level). 
 
Examples of use: 
 



PWMB0 ON ( output a high level on the PWMB0 pin ) 
ISA1 ON? ( check if ISA1 pin is a logic '1' ) 
 
DECIMAL 25000 PWMA1 PWM-PERIOD ( specify 10 msec period 
= 100 Hz ) 
HEX 4000 PWMA1 PWM-OUT  ( output 25% high, 75% low ) 
 
 



SPI I/O Class 
These words support the SPI port of the DSP56F80x.  Only one SPI port is present; it is 
referenced as object 
 
SPI0 
 
The following methods can be performed for the SPI port: 
 
MASTER Specifies that the DSP56F80x will act as an SPI Master. 
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.  

Values from 2 to 16 are valid. 
MSB-FIRST Specifies that words should be sent and received MSB first. 
LSB-FIRST Specifies that words should be sent and received LSB first. 
n MBAUD Specifies the bit rate to be used for the SPI port.  Four values can be 

specified: 20 (20 Mbits/sec), 5 (5 Mbits/sec), 2 (2.5 Mbits/sec), and 1 
(1.25 Mbits/sec).  All other values will be ignored and will leave the baud 
rate unchanged. 

n TX-SPI Transmits one word on the SPI port.  This will output 2 to 16 bits on the 
MOSI pin (Master mode) and generate 16 clocks on the SCLK pin.  This 
will simultaneously input 2 to 16 bits on the MISO pin (Master mode). 

RX-SPI Receives one word from the SPI port.  This word must already have been 
shifted into the receive shift register; if it has not, RX-SPI will wait for it 
to be shifted in.  In Master mode, data will only be shifted in when a word 
is transmitted by TX-SPI.  In this mode you should use RX-SPI 
immediately after TX-SPI to read the data that was received. 

 
It is acceptable to specify all the SPI parameters after selecting the SPI port.  Example of 
use: 
 
SPI0 MASTER 16 BITS MSB-FIRST 5 MBAUD 
SPI0 TX-SPI SPI0 RX-SPI 
 
The default polarity for the SPI port is CPHA=0, CPOL=1.  This means that the SCLK 
line will be high between words, and that the slave should clock data on the falling edge.  
(Refer to figure 13-4 in the Motorola DSP56F801-7 Users Manual.)   

ADC I/O Class 
These words support the A/D converter of the DSP56F80x.  The following ADC inputs 
are defined as objects: 
 
ADC0   ADC1   ADC2   ADC3   ADC4   ADC5   ADC6   ADC7    
 
Only one method can be used with A/D inputs: 
 



ANALOGIN Reads the A/D input and returns its value.  The result is in the range 0-
7FF8.  (The 12-bit A/D result is left-shifted 3 places.)  7FF8 corresponds 
to an input of Vref.  0 corresponds to an input of 0 volts. 

 
Example of use: 
 
ADC7 ANALOGIN  ( read A/D channel 7, pin AN7 ) 

 

LOOPINDEX Class 
These words support the Looping structure of IsoMax™.  The following are defined as 
objects: 
 
LOOPINDEX 

 
LOOPINDEX name          ...to define a loop variable. 
 
 
The following methods can be performed for LOOP INDEX: 
 
MASTER Specifies that the DSP56F80x will act as an SPI Master. 
n BITS Specifies the number of bits to be sent by TX-SPI and read by RX-SPI.  

Values from 2 to 16 are valid. 
 
name n START          ...set starting value (default 0) 
name n END            ...set ending value (default 1) 
name n STEP           ...set increment (default 1) 
name COUNT            ...count, and return a truth value  
name RESET            ...reset to starting value 
name VALUE            ...return the current loop index 
 
Here's the test code that I've used: 
 
\ TESTING CODE 
DECIMAL            
 
\ CYCLE expects an object to be named, e.g. FRED CYCLE 
LOOPINDEXES 
: CYCLE   RESET  BEGIN VALUE . COUNT UNTIL ; 
 
LOOPINDEX FRED   FRED 1 START 10 END 1 STEP 
LOOPINDEX WILMA  WILMA 10 START 1 END -1 STEP 
 



IsoPod™ HARDWARE FEATURES 
 
. Three On Board LED’s 

Red, Yellow, Green 
. 16 GPIO lines 

Programmable Edge sensitive interrupts 
. Serial Communication Interface (SCI) full-duplex serial channel 

One RS-232  
One RS422/485 
Programmable Baud Rates, 38,400, 19,200, 9600, 4800, 1200 

. Serial Peripheral Interface  (SPI) 
Full-duplex synchronous operation on four-wire interface 
Master or Slave  

. 8-ch 12-bit AD 
Continuous Conversions @ 1.2us (6 ADC cycles) 
Single ended or differential inputs 

. 12-channel PWM module  
15-bit counter with programmable resolutions down to 25ns 
Twelve independent outputs, 
  or Six complementary pairs of outputs, or combinations 

. Eight Timers 
16-bit timers 
Count up/down, Cascadable 

. Two Quadrature Decoder 
32-bit position counter 
16-bit position difference register 
16-bit revolution counter  
40MHz count frequency (up to)  

. CAN 2.0 A/B module for networking 
Programmable bit rate up to 1Mbit: Multiple boards can be networked (MSCAN) 
Ideal for harsh or noisy environments, like automotive applications 

. JTAG port for CPU debugging 
Examine registers, memory, peripherals 
Set breakpoints 
Step or trace instructions 

. WatchDog Timer/COP module, Low Voltage Detector for Reset 

. Low Voltage, Stop and Wait Modes 

. On Board level translation for RS232, RS422, CAN 

. On Board Voltage Regulation  



CIRCUIT DESCRIPTION 
 
Under construction… 
 
The processor chip contains the vast majority of the circuitry. The remaining support 
circuitry is described here. The power for the system can be handled several different 
way, but as the board comes, power will normally be supplied from the VIN pin on J1.  
 

RS-232 Levels Translation 
 
The MAX3221/6/7 converts the 3.3V supply to the voltages necessary to drive the RS-
232 interface. Since a typical RS-232 line requires 10 mA of outputs at 10V or more, the 
MAX3221/6/7 uses about 30 mA from the 3.3V supply. A shutdown is provided, 
controlled by TD0.  
 
The RS-232 interface allows the processor to be reset by the host computer through 
manipulation of the ATN line. When the ATN line is low (a logical “1” in RS-232 terms) 
the processor runs normally. When the ATN line is high (a logical “0” in RS-232 terms) 
the processor is held in reset.  
 
http://pdfserv.maxim-ic.com/arpdf/MAX3221-MAX3243.pdf 
 
(V2 http://pdfserv.maxim-ic.com/arpdf/MAX3222-MAX3241.pdf) 
 

RS-422/485 Levels Translation 
 
Two MAX3483 buffer the digital signals to RS-422/485 levels. One, U3, always 
transmits. The other can receive, or transmit. It will normally be used for the receiver in 
RS-422 double twisted pair communications applications, and the transceiver in RS-485 
single twisted pair communications applications. TD1 controls the turn around on U4 
allowing RS-485 communications. 
 
http://pdfserv.maxim-ic.com/arpdf/MAX3483-MAX3491.pdf 
 

CAN BUS Levels Translation 
 
A TJA1050 buffers the CAN BUS signal. 
http://my.semiconductors.com/acrobat/datasheets/TJA1050_3.pdf 
 
 

LED’s 
 

http://pdfserv.maxim-ic.com/arpdf/MAX3221-MAX3243.pdf
http://pdfserv.maxim-ic.com/arpdf/MAX3222-MAX3241.pdf
http://pdfserv.maxim-ic.com/arpdf/MAX3483-MAX3491.pdf
http://my.semiconductors.com/acrobat/datasheets/TJA1050_3.pdf


A 74AC05 drives the on-board LED’s. Each LED has a current limiting resistor to the 
+3.3V supply. 
http://www.fairchildsemi.com/ds/74/74AC05.pdf 
 

RESET 
 
A S80728HN Low Voltage Detector asserts reset when the voltage is below operating 
levels. This prevents brown out runaway, and a power-on-reset function. 
 
http://www.seiko-instruments.de/documents/ic_documents/power_e/s807_e.pdf 
 

POWER SUPPLY 
 
A LM2937 reduces the VIN DC to a regulated 5V. In early versions a 7805C was used. 
The LM2937 was rated a bit less for current (500 mA Max), but had reverse voltage 
protection and a low drop out which was more favorable. A  drops the 5V to the 3.3V 
needed for the processor. At full current, 200 mA, these two regulators will get hot. They 
can provide current to external circuits if care is taken to keep them cool. Each are rated 
at 1A but will have to have heat sinking added to run there. 
 
http://www.national.com/ds/LM/LM2937.pdf 
http://www.national.com/ds/LM/LM3940.pdf 

http://www.fairchildsemi.com/ds/74/74AC05.pdf
http://www.seiko-instruments.de/documents/ic_documents/power_e/s807_e.pdf
http://www.national.com/ds/LM/LM2937.pdf
http://www.national.com/ds/LM/LM3940.pdf


TROUBLE SHOOTING 
 
There are no user serviceable parts on the IsoPod™. If connections are made correctly, 
operation should follow, or there are serious problems on the board. As always, the first 
thing to check in case of trouble is checking power and ground are present. Measuring 
these with a voltmeter can save hours of head scratching from overlooking the obvious. 
After power and ground, signal connections should be checked next. If the serial cable 
comes loose, on either end, using your PC to debug your program just won’t help. Also, 
if your terminal program has locked up, you can experience some very “quiet” results. 
Don’t overlook these sources of frustrating delays when looking for a problem. They are 
easy to check, and will make a monkey of you more times than not, if you ignore them. 
  
One of the great advantages of having an interactive language embedded in a processor, 
is if communications can be established, then program tools can be built to test 
operations. If the RS-232 channel is not in use in your application, or if it can be 
optionally assigned to debugging, talking to the board through the language will provide 
a wealth of debugging information. 
 
The LED’s can be wonderful windows to show operation. This takes some planning in 
design of the program. A clever user will make good use of these little light. Even if the 
RS-232 channel is in use in your application and not available for debugging, don’t 
overlook the LED’s as a way to follow program execution looking for problems. 
 
The IsoPod™ is designed so no soldering to the board should be required, and the 
practice of soldering to the board is not recommended. Instead, all signals are brought to 
connectors. That’s one of the reasons it is called a “Pod”, it can be plugged in and pulled 
out as a module.  
 
So, the best trouble shooting technique would be to unplug the IsoPod™ and try to 
operate it separately with a known good serial cable on power supply.  
 
If the original connections have been tested to assure no out-of-range voltages are 
present, a second IsoPod™ can then be programmed and plugged into the circuit in 
question. But don’t be too anxious to take this step. If the first IsoPod™ should be burned 
out, you really want to be sure you know what caused it, before sacrificing another one in 
the same circuit. 
 
Finally, for advanced users, the JTAG connection can give trace, single step and memory 
examination information with the use of special debugging hardware. This level of access 
is beyond the expected average user of the IsoPod™ and will not be addressed in this 
manual. 
 
 
 



IsoPod™ website: http://www.isopod.net 

 

MaxFORTH™ Glossary Reference Page 
http://www.ee.ualberta.ca/~rchapman/MFwebsite/V50/Alphabetical/Brief/index.html 
 
This has explanations for the definitions for the procedural language "under" the 
IsoMax(TM) Finite State Machine language. 

 

Motorola DSP56F805 Users Manual  
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56F801-7UM.pdf 

 

Motorola DSP56F800 Processor Reference Manual 
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56800FM.pdf    

http://www.isopod.net/
http://www.ee.ualberta.ca/~rchapman/MFwebsite/V50/Alphabetical/Brief/index.html
http://e-www.motorola.com/brdata/PDFDB/docs/DSP56F801-7UM.pdf


CONNECTORS V1 
 
The IsoPod™ V1 has 8 connectors. J1, J2, J3, J4, J5, J6, J7, J8 are shown below: 
 

J1 Ser., Power, General Purpose I/O Serial, Power, Ports PA0 – PA7, PB0 – PB7 
J2 JTAG connector CPU Port, for factory use only 
J3 SPI SCLK, MISO, MOSI, SS, PD0, PD1, PD2, PD3 
J4 RS-422/485 Serial Port -RCV, +RCV, -XMT, +XMT 
J5 CAN BUS Network Port CANL, CANH 
J6 Servo Motor Outputs x 12  PWM, V+, GND 
J7 Motor Encoder x 2 Quadrature, Fault0, Fault1, Fault2, IS0, IS1, IS2 
J8 A/D Various A/D0 – A/D7, Various  

 

 
 

J1 GPIO 
 

+VIN 24 1 SOUT 
GND 23 2 SIN 
RST’ 22 3 ATN’ 
+5V 21 4 GND 
PA0 20 5 PB0 
PA1 19 6 PB1 
PA2 18 7 PB2 
PA3 17 8 PB3 
PA4 16 9 PB4 
PA5 15 10 PB5 
PA6 14 11 PB6 
PA7 13 12 PB7 

 
Note: In picture above, Pin 1 is at top left viewing CPU side, with J1 at left. When facing 
J1 connector, looking straight in, with CPU side to your right, Pin 1 will be at the top 
right.  
 
This connector pin out and pin numbering scheme is unique to this one instance. Origin 
of pin out and numbering is to match stamp-like connection pin outs. 
 
 



 

 
 

Connectors in above “top view, J1-to-left” picture and on page below, 
 have same oriented (pin 1 upper left).

 

J3 SPI V1 
 

+3V 1 2 GND 
PD0 3 4 SCLK 
PD1 5 6 MOSI 
PD2 7 8 MISO 
PD3 9 10 SS’ 

 

J2 JTAG V1 
 

+3V 1 2 GND 
TDI 3 4 GND 

TDO 5 6 TMS 
TCK 7 8 DE 

RESET’ 9 10 TRST 

 

J5 CAN BUS V1 
 

N.C. 1 2 N.C. 
CANL 3 4 CANH 

N.C. 5 6 GND 
N.C. 7 8 N.C. 
N.C. 9 10 N.C. 

 

J4 RS-422/485 V1 
 

N.C. 1 2 N.C. 
+RCV 3 4 -RCV 
GND 5 6 GND 

-XMT 7 8 +XMT 
N.C. 9 10 N.C. 

 



 
Connectors in above “top view, J1-to-left” picture and on page below, 

 have same oriented (pin 1 upper left).

 

J6 PWM SERVO OUTPUT V1 
 

 Sig. +V GND 
PWMB5 1 2 3 
PWMB4 4 5 6 
PWMB3 7 8 9 
PWMB2 10 11 12 
PWMB1 13 14 15 
PWMB0 16 17 18 
PWMA5 19 20 21 
PWMA4 22 23 24 
PWMA3 25 26 27 
PWMA2 28 29 30 
PWMA1 31 32 33 
PWMA0 34 35 36 

 

J7 Motor Encoder x 2 V1 
 
 

+5V 1 2 FAULTA0 
GND 3 4 FAULTA1 

PH A 0 5 6 FAULTA2 
PH B 0 7 8 ISA0 
IND 0 9 10 ISA1 
HM 0 11 12 ISA2 

+5V 13 14 FAULTB0 
GND 15 16 FAULTB1 

PH A 1 17 18 FAULTB2 
PH B 1 19 20 ISB0 
IND 1 21 22 ISB1 
HM 1 23 24 ISB2 

J8 Various V1 
 

ANA0 1 2 +5V 
ANA1 3 4 IRQA 
ANA2 5 6 IRQB 
ANA3 7 8 FAULTB3 
ANA4 9 10 FAULTA3 
ANA5 11 12 PD5 
ANA6 13 14 TC0 
ANA7 15 16 TC1 
VSSA 17 18 CLKO 
VREF 19 20 RSTO  

VSS(GND) 21 22 RD' 
V+ 22 24 WR' 



CONNECTORS V2 
 
The IsoPod™ V2 has 7 connectors. J1, J2, J3, J4, J5, J6, J7 are shown below: 
 
J1 Ser., Power, GPI/O Serial, Power, Ports PA0 – PA7, PB0 – PB7 
J2 JTAG connector CPU Port, for factory use only 
J3 A/D   
J4 RS-232/422/485 CAN Bus -RCV, +RCV, -XMT, +XMT, CANL, CANH 
J5 I/O SPI SCLK, MISO, MOSI, SS, PD0, PD1, PD2, PD3 
J6 PWM, Motor Encoder, Timers PWM, TMRA0-3, TMRB0-3, TMRC0,1 TMRD0-3 
J7 Fault & Current Sense FAULTA0-3, ISA0-2, FAULTB0-3, ISB0-2 

 

 
 

J1 GPIO 
 

+VIN 24 1 SOUT 
GND 23 2 SIN 
RST’ 22 3 ATN’ 
+5V 21 4 GND 
PA0 20 5 PB0 
PA1 19 6 PB1 
PA2 18 7 PB2 
PA3 17 8 PB3 
PA4 16 9 PB4 
PA5 15 10 PB5 
PA6 14 11 PB6 
PA7 13 12 PB7 

 
Note: In picture above, Pin 1 is at top left viewing CPU side, with J1 at left. When facing 
J1 connector, looking straight in, with CPU side to your right, Pin 1 will be at the top 
right.  
 
This connector pin out and pin numbering scheme is unique to this one instance. Origin 
of pin out and numbering is to match stamp-like connection pin outs. 
 



 

 
 

Connectors in above “top view, J1-to-left” picture and on page below, 
 have same oriented (pin 1 upper left).

 

J3 A/D V2 
 

VREF 1 2 VSSA 
ANA0 3 4 ANA4 
ANA1 5 6 ANA5 
ANA2 7 8 ANA6 
ANA3 9 10 ANA7 

 

J2 JTAG V2 
 

+3V 1 2 GND 
TDI 3 4 GND 

TDO 5 6 TMS 
TCK 7 8 DE 

RESET’ 9 10 TRST 

 

J5 IO/SPI V2 
 

+5V 1 2 GND 
+3V 3 4 SCLK 

RST0’ 5 6 MOSI 
PE2 7 8 MISO 
PE3 9 10 SS’ 

 

J4 RS-232/422/485 CAN BUS V2 
 

 + XMT 1 2 +5V 
 - XMT 3 4 GND 

GND GND 5 6 CANL 
SIN1* - RCV 7 8 GND 

SOUT1* + RCV 9 10 CANH 
 
* SIN1, SOUT1 RS232 signals 
 
 



 
Connectors in above “top view, J1-to-left” picture and on page below, 

 have same oriented (pin 1 upper left).

 

J6 PWM, Motor Encoder, Timers V2 
 

1 PWMA0 2 +5V 3 +3V 
4 PWMA1 5 GND 6 GND 
7 PWMA2 8 PH A 0 9 TMRC0 
10 PWMA3 11 PH B 0 12 TMRC1 
13 PWMA4 14 IND 0 15 IRQA 
16 PWMA5 17 HM 0 18 IRQB 
19 PWMB0 20 +5V 21 +3V 
22 PWMB1 23 GND 24 GND 
25 PWMB2 26 PH A 1 27 TMRD0 
28 PWMB3 29 PH B 1 30 TMRD1 
31 PWMB4 32 IND 1 33 TMRD2 
34 PWMB5 35 HM 1 36 TMRD3 

 

J7 Fault & Current Sense V2 
 

FAULTA0 1 2 N.C. 
FAULTA1 3 4 ISA0 
FAULTA2 5 6 ISA1 
FAULTA3 7 8 ISA2 
FAULTB0 9 10 ISB0 
FAULTB1 11 12 ISB1 
FAULTB2 13 14 ISB2 
FAULTB3 15 16 N.C. 



Instructions for Wiring a Serial Cable V1 & V2 
 

Transformer hook up 
 

Black w/Striped 
White    +VIN 

24 1 SOUT 

Solid Black 
GND 

23 2 SIN 

RST’ 22 3 ATN’ 
+5V 21 4 GND 
PA0 20 5 PB0 
PA1 19 6 PB1 
PA2 18 7 PB2 
PA3 17 8 PB3 
PA4 16 9 PB4 
PA5 15 10 PB5 
PA6 14 11 PB6 
PA7 13 12 PB7 

 

Serial Cable hook up 
 

+VIN 24 1 SOUT RED 
GND 23 2 SIN ORANGE 
RST’ 22 3 ATN’YELLOW 
+5V 21 4 GND GREEN 
PA0 20 5 PB0 
PA1 19 6 PB1 
PA2 18 7 PB2 
PA3 17 8 PB3 
PA4 16 9 PB4 
PA5 15 10 PB5 
PA6 14 11 PB6 
PA7 13 12 PB7 

 
 
 

 
 
 

J1 Pin Preferred Color DB-9 Pin DB-25 Pin 
1 SOUT RED 2 RX 2 TX 
2 SIN ORANGE 3 TX 3 RX  
3 ATN YELLOW 4 DTR 20 DTR 
4 GND GREEN 5 GND 7 GND 

  6 DSR 6 DSR 
  7  RTS 20  RTS 

 



JUMPERS V1 
 
The IsoPod™ has no jumpers. This was a design goal realized. Jumper setting on such a 
small board, are not very practical so have been avoided. A few sites exist where 
termination resistors can be added. A few port lines are used to control programmable 
options on the board.  
 
Port line TD0 controls the RS-232 transmitter shutdown. 
 
Port line TD1 controls the RS-485 transceiver turn-around. 
 

JUMPERS V2 
 
The IsoPod™ has no jumpers. This was a design goal realized. Jumper setting on such a 
small board, are not very practical so have been avoided. A few sites exist where 
termination resistors can be added. A few port lines are used to control programmable 
options on the board.  
 
Port line PD5 controls the RS-232 transmitter shutdown. A pull up resistor normally 
disenables shutdown, if the port line is inactive. 
 
Port line PD4 controls the RS-232 receiver enable. A pull down resistor normally enables 
the receivers, if the port line is inactive.  
 
Port line PD3 controls the RS-485 transceiver turn-around. A pull down resistor normally 
enables the receiver, if the port line is inactive.  
 
Port line PD2 controls the RED LED. The built in pull up in the AC05 makes the LED 
come on, if the port line is inactive.  
 
Port line PD1 controls the YELLOW LED. The built in pull up in the AC05 makes the 
LED come on, if the port line is inactive.  
 
Port line PD0 controls the GREEN LED. The built in pull up in the AC05 makes the LED 
come on, if the port line is inactive.  
 
 
Port line PE2 controls the CAN transceiver mode, high-speed mode or silent mode. A 
pull down resistor normally selects high-speed mode, if the port line is inactive.  In the 
silent mode, the transmitter is disabled. All other IC functions continue to operate. The 
silent mode is selected by connecting pin S to VCC and can be used to prevent network 
communication from being blocked, due to a CAN controller which is out of control. 
 
 



BOARD MOUNTING V1 
 
No mounting holes are provided on the IsoPod™ Board V1, but it may be mounted by: 
 

J1 and supporting clip: 
 

 
 

Double sided sticky tape: 
 

 
 

Inversion and insertion: 
 
into mating .1” connectors with or without a right angle double male connector on J1 
 

 
 

Cable or adapter:  
 
An IDC cable with an IDC male connector can, or an IDC female used with an 
intermediate double male header, can be ribbon cabled to a similar IDC 24-pin socket 
header and plugged into an existing stamp-type socket. NMI also manufactures a level, 
and a right angle adapter for the same purpose. 



BOARD MOUNTING V2 
 
Two mounting holes are provided on the IsoPod™ Board V2: 
 

J1 Wall Header and supporting standoffs: 

 

 
 
V2 Switching Regulator (SR) option: 
 

 
 
The Switching Regulator option reduces clearance of analog regulators under board, and 
eases mounting requirements. 



MANUFACTURER 
 
New Micros, Inc. 
1601 Chalk Hill Rd. 
Dallas, TX 75212 
 
Tel: (214) 339-2204 
Fax: (214) 339-1585 
 
Web site: http://www.newmicros.com 
 
This manual: http://www.newmicros.com/store/product_manual/isopod.zip 
 
Email technical questions: nmitech@newmicros.com 
 
Email sales questions: nmisales@newmicros.com 
 

MECHANICAL 
 
Under construction… 
 
Board size is 1.2” x 3”  
 
J1 adds .3” to total board length. 
 
A double male header inserted in J1 will also add length, but since it can be user 
supplied, only an approximate estimate of .3” can be suggested. 

ELECTRICAL 
 
The total draw for the IsoPod™ under maximum speed is approximately 200 mA.  
 
Sleeping or slowing the processor can substantially reduce current consumption. 
 
The TD0 signal can shut down the RS-232 converter, saving about 30 mA, when not used 
for transmission, if the receiving unit will not sense this as noise. 
 
The TD1 signal can shut down the RS-485 transceiver, U4, saving about 10 mA, when 
not used for transmission, if the other RS-485 receiving units will not sense this as noise. 
The other RS-485 transceiver, U3, cannot be shut down, but can be left uninstalled by 
arrangement with the factory. 
 

http://www.newmicros.com/
http://www.newmicros.com/store/product_manual/isopod.zip
mailto:nmitech@newmicros.com
mailto:nmisales@newmicros.com


Each digital pin is capable of sinking 4 mA and sourcing –4 mA. Each LED draws 1.2 
mA when lit. 
  
Absolute Maximum Ratings 
Characteristic  Symbol Min Max Unit 
Supply voltage  VDD VSS – 0.3 VSS + 4.0  V 
All other input voltages, excluding Analog inputs  VIN VSS – 0.3 VSS + 5.5V V 
Analog Inputs ANAx, VREF VIN VSS – 0.3 VDDA + 0.3V V 
Current drain per pin excluding VDD, VSS, PWM outputs, 
TCS, VPP, VDDA, VSSA 

I — 10 mA 

Current drain per pin for PWM outputs  I — 20 mA 
Junction temperature  TJ — 150 °C 
Storage temperature range  TSTG -55 150 °C 

 
Recommended Operating Conditions 
Characteristic  Symbol Min Max Unit 
Supply voltage  VDD 3.0 3.6 V 
Ambient operating temperature  TA -40 85 °C 
 
DC Electrical Characteristics 
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6 V, TA = –40° to +85°C, CL ≤ 50 pF, fop = 80 
MHz 
Characteristic  Symbol Min Typ Max Unit 
Input high voltage  VIH 2.0 — 5.5 V 
Input low voltage  VIL -0.3 — 0.8 V 
Input current low (pullups/pulldowns disabled)  IIL -1 — 1 µA 
Input current high (pullups/pulldowns disabled)  IIH -1 — 1 µA 
Typical pullup or pulldown resistance  RPU, RPD — 30 — KΩ 
Input/output tri-state current  low IOZL -10 — 10 µA 
Input/output tri-state current  low IOZH -10 — 10 µA 
Output High Voltage (at IOH)  VOH VDD – 0.7 — — V 
Output Low Voltage (at IOL)  VOL — — 0.4 V 
Output High Current  IOH — — -4 mA 
Output Low Current  IOL — — 4 mA 
Input capacitance  CIN — 8 — pF 
Output capacitance  COUT — 12 — pF 
PWM pin output source current 1  IOHP — — -10 mA 
PWM pin output sink current 2  IOLP — — 16  mA 
Total supply current  IDDT 3     
Run 4   — 126 162 mA 
Wait 5   — 72 98 mA 
Stop   — 60 84 mA 
Low Voltage Interrupt 6  VEI 2.4 2.7 2.9 V 
Power on Reset 7  VPOR — 1.7 2.0 V 
 
1. PWM pin output source current measured with 50% duty cycle. 
 
2. PWM pin output sink current measured with 50% duty cycle. 
 
3. IDDT = IDD + IDDA (Total supply current for VDD + VDDA) 
 
4. Run (operating) IDD measured using 8MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports  
configured as inputs; measured with all modules enabled. 
 
5. Wait IDD measured using external square wave clock source (fosc = 8 MHz) into XTAL; all inputs 0.2V from rail;  
no DC loads; less than 50 pF on all outputs. CL = 20 pF on EXTAL; all ports configured as inputs; EXTAL capacitance 
linearly affects wait IDD; measured with PLL enabled. 



 
6. Low voltage interrupt monitors the VDDA supply. When VDDA drops below VEI value, an interrupt is generated. 
For correct operation, set VDDA=VDD. Functionality of the device is guaranteed under transient conditions when 
VDDA>VEI. 
 
7. Power-on reset occurs whenever the internally regulated 2.5V digital supply drops below VPOR. While power is 
ramping up, this signal remains active for as long as the internal 2.5V supply is below 1.5V no matter how long the 
ramp up rate is. The internally regulated voltage is typically 100 mV less than VDD during ramp up until 2.5V is 
reached, at which time it self regulates. 



NMITerm 
 
Provided Windows terminal program from New Micros, Inc. Usually provided in a ZIP. 
Un ZIP in a subdirectory, such as C:\NMITerm. To start the program: click, or double 
click, the program icon. 
 

NMITerm.LNK

 
 
NMITerm is a simple Windows-based communications package designed for program 
development on serial port based embedded controllers. It runs under Windows. 
 
NMITerm provides: 
 
        1. Support for COM1 through COM16. 
        2. Baud rates from 110 through 256000. 
        3. Control over RTS and DTR lines. 
        4. Capture files, which record all terminal activity to disk. 
        5. Scroll-back buffer, editable and savable as a file. 
        6. On-line Programmer's Editor. 
        7. File downloader. 
        8. Programmable function keys. 
 
Quick start commands: 
 

1. Baud: default 9600 
2. DTR On/Off : ALT+T 
3. Download: ALT+D 

 
For further information use the F1 Help screen.  

 
This program can be downloaded from:  

http://www.newmicros.com/download/NMITerm.zip



MaxTerm 
 
Provided DOS terminal program from New Micros, Inc. Usually provided in a ZIP. Un 
ZIP in a subdirectory, such as C:\MAXTERM. To start the program: click, or double 
click, the program icon. 
 

Maxterm.ico

 
 
MaxTerm is a simple DOS-based communications package designed for program 
development on serial port based embedded controllers. It can run under stand-alone 
DOS or in a DOS session under Windows. 
 
MaxTerm provides: 
 
        1. Support for COM1 through COM4. 
        2. Baud rates from 300 through 38400. 
        3. Control over RTS and DTR lines. 
        4. Capture files, which record all terminal activity to disk. 
        5. 32K scroll-back buffer, editable and savable as a file. 
        6. On-line Interactive Programmer's Editor (OPIE). 
        7. File downloader. 
        8. Programmable function keys. 
        9. Received character monitor, which displays all data in HEX. 
 
Quick start commands: 
 

4. Set comport: ALT+1 or ALT+2 It does not support com3 & 4. 
5. Baud: default 9600 
6. DTR On/Off : ALT+T 
7. Download: ALT+D 
8. PACING: ALT+P (IsoMax default decimal 10) 

 
For further information use the Help screen (ALT-H) or the program documentation.  
 
                  MAXTERM Help                
   alt-B Change baud rate               alt-M Character monitor mode      
   alt-C Open (or close) capture file   alt-O Toggle sounds               
   alt-D Download a file (all text)     alt-P Change line pace char       
   alt-E Edit a file (Split screen)     alt-R Toggle RTS                  
   alt-F Edit function keys             alt-S Unsplit the screen          
   alt-H Help                           alt-T Toggle DTR                  
   alt-I Program Information            alt-U Change colors               
   alt-K Toggle redefinition catcher    alt-W Wipe the screen             
   alt-L Open scrollback log            alt-X Exit                        
   alt-1 (2 3 4) Select Com port        alt-Z Download a file (no fat)    
   f1-f10 Programmable function keys    f12   Re-enter OPIE  
 
Status line mode indicators: r = rts, d = dtr, L = log file, S = 
sounds, K = redefinition, P = line pacing active  
 



HyperTerminal 
 
Usually provided in Programs/Accessories/Communications/HyperTerminal. If not 
present, it can be loaded from the Windows installation disk. Use “Add/Remove 
Software” feature in Settings/Control Panel, choose Windows Setup, choose 
Communications, click on Hyperterm, then Okay and Okay. Follow any instructions to 
add additional features to windows. 
 

Hypertrm.exe

 
 
C:\Program Files\Accessories\HyperTerminal 
 
Run HyperTerminal, select an icon that pleases you and give the new connection a name, 
such as ISOPOD. Now in the “Connect To” dialog box, in the bottom “Connect Using” 
line, select the communications port you wish to use, with Direct Comm1, Direct 
Comm2, Direct Comm3, Direct Comm4 as appropriate, then Okay. In the COMMx 
Dialog box which follows set up the port as follows: Bits per second: 9600 ,  Data bits: 8, 
Parity: None, Flow Control: None, then Okay. 
 
The ATN signal must be unconnected when using this program. There is no option to 
remotely set and reset the board using the DTR line with this program. 



REFERENCE 

Decimal - Hex - ASCII Chart 
DEC HEX Char Function 
000 00 NUL Null 
001 01 SOH Start of heading 
002 02 STX Start of text 
003 03 ETX End of text 
004 04 EOT End of transmit 
005 05 ENQ Enquiry 
006 06 ACK Acknowledge 
007 07 BEL Bell 
008 08 BS Back Space 
009 09 HT Horizontal Tab 
010 0A LF Line Feed 
011 0B VT Vertical Tab 
012 0C FF Form Feed 
013 0D CR Carriage Return 
014 0E SO Shift Out 
015 0F SI Shift In 

 
016 10 DLE Data Line Escape 
017 11 DC1 Device Control 1 
018 12 DC2 Device Control 2 
019 13 DC3 Device Control 3 
020 14 DC4 Device Control 4 
021 15 NAK Non Acknowledge 
022 16 SYN Synchronous Idle 
023 17 ETB End Transmit Block 
024 18 CAN Cancel 
025 19 EM End of Medium 
026 1A SUB Substitute 
027 1B ESC Escape 
028 1C FS File Separator 
029 1D GS Group Separator 
030 1E RS Record Separator 
031 1F US Unit Separator 

 
 
032 20 Space 
033 21 ! 
034 22 " 
035 23 # 
036 24 $ 
037 25 % 
038 26 & 
039 27 ' 
040 28 ( 
041 29 ) 
042 2A * 
043 2B + 
044 2C , 
045 2D - 
046 2E . 
047 2F / 
048 30 0 
049 31 1 
050 32 2 
051 33 3 
052 34 4 
053 35 5 
054 36 6 
055 37 7 

056 38 8 
057 39 9 
058 3A : 
059 3B ; 
060 3C < 
061 3D = 
062 3E > 
063 3F ? 
064 40 @ 
065 41 A 
066 42 B 
067 43 C 
068 44 D 
069 45 E 
070 46 F 
071 47 G 
072 48 H 
073 49 I 
074 4A J 
075 4B K 
076 4C L 
077 4D M 
078 4E N 
079 4F O 

080 50 P 
081 51 Q 
082 52 R 
083 53 S 
084 54 T 
085 55 U 
086 56 V 
087 57 W 
088 58 X 
089 59 Y 
090 5A Z 
091 5B [ 
092 5C \ 
093 5D ] 
094 5E ^ 
095 5F _ 
096 60 ` 
097 61 a 
098 62 b 
099 63 c 
100 64 d 
101 65 e 
102 66 f 
103 67 g 

104 68 h 
105 69 I 
106 6A J 
107 6B K 
108 6C L 
109 6D M 
110 6E N 
111 6F O 
112 70 P 
113 71 Q 
114 72 R 
115 73 S 
116 74 T 
117 75 U 
118 76 V 
119 77 W 
120 78 X 
121 79 Y 
122 7A Z 
123 7B { 
124 7C | 
125 7D } 
126 7E ~ 
127 7F DEL 

 
 
 
 



ASCII Chart 
   0  1  2  3  4  5  6  7  8  9  A  B  C  D  E  F 
0 NUL SOH STX ETX EOT ENQ ACK BEL BS HT LF VT FF CR SO SI 
1 DLE DC1 DC2 DC3 DC4 NAK SYN ETB CAN EM SUB ESC FS GS RS US 
2  SP !  "  #  $  %  &  '  (  )  *  + ,   -  .  / 
3  0  1  2  3  4  5  6  7  8  9  :  ;  <  =  >  ? 
4  @  A  B  C  D  E  F  G  H  I  J  K  L  M  N  O 
5  P  Q  R  S  T  U  V  W  X  Y  Z  [  \  ]  ^  _’ 
6  `  a  b  c  d  e  f  g  h  I  j  k  l  m  n  o 
7  p  q  r  s  t  u  v  w  x  y  z  {  |  }  ~ DEL 

 
More on ASCII on another web site: http://www.jimprice.com/jim-asc.htm 

 



GLOSSARY 
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.1” double and triple row connectors  
24-pin socket 
74AC05 
9600 8N1 
A/D 
adapter 
ASCII 
CAN BUS  
Caps 
carrier board 
computer “pod” 
computing and control function 
communications channel  
communications settings 
COMM2  
COMM3  
COMM4  
controller 
controller interface board 
dedicated computer 
deeply embedded 
double male right angle connector 
double sided sticky tape 
embedded 
embedded tasks 
female  
hand-crimped wires 
headers  
high-density connectors 
High-Level-Language  
HyperTerminal 
IDC headers and ribbon cable 
interactive 
IsoMax™ 
IsoPod™  
language 
Levels Translation 
LED 
LM3940 
LM78L05 



Low Voltage Detector 
male  
MaxTerm 
mating force of the connectors 
 
Mealy, G. H.  State machine pioneer, wrote “A Method for Synthesizing Sequential 
Circuits,” Bell System Tech. J. vol 34, pp. 1045 –1079, September 1955  
 
mobile robot 
 
Moore, E. F. State machine pioneer, wrote “Gedanken-experiments on Sequential 
Machines,” pp 129 – 153, Automata Studies, Annals of Mathematical Studies, no. 34, 
Princeton University Press, Princeton, N. J., 1956 
 
Multitasking 
PCB board 
PWM  
PWM connectors 
Power Supply 
Programming environment 
prototyping  
RS-232 
RS-422 
RS-485 
R/C Servo motor 
real time applications.  
real time control 
registers 
RESET 
Resistor 
S80728HN  
SCI 
SPI  
serial cable  
 “stamp-type” controller 
stand-alone computer board 
TJA1050 
terminal program 
upgrade an existing application.  
Virtually Parallel Machine Architecture™ (VPMA)  
wall transformer 
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