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IsoMax™ Documentation 
 

Introduction 
 
IsoMax™ is a programming language designed for special problems requiring 
Isostructure. Most embedded and real time applications require Isostructure. These 
problems cannot be easily implemented in other non-Isostructured languages. The 
Isostructured problems have previously been solved only with extensive reliance upon 
multitasking. Compilers, parsers, communications controllers and user interfaces are also 
best done with isostructure techniques. 
 
The creation of Isostructure concepts is a significant advance in programming 
technology, particularly to the field of Computer Science. Several previously difficult 
areas of endeavor are now trivially accomplished with Isostructure techniques. In 
particular, problems requiring concurrency are easily mastered.  
 
The word, Isostructure, has two roots: Iso, meaning equal or "on the same level," and 
structure, from the current usage of structure in the Computer Science field, derived from 
the important concept of "structured programming."  
 

Background 
 
Previously, the two concepts of program organization were separated into two arenas: 
programming language and operating system. The structure was chiefly localized in the 
"structured programming language." The control of entry into individual programming 
segments, corresponding to the Isolayer, was the domain of the operating system. While 
suitable for some data processing environments, this separation was a false dichotomy 
leading to sticky problems, particularly in real time programming.  
 
As a result there has been a unnecessary tension between Computer Science and 
Engineering. Engineers tried to create the Isolayer of Isostructured programming 
themselves. In their programs they used GOTO's in high level languages, or abandoned 
the restrictions of structured languages by using assembly language and direct control of 
interrupts. For the programmer from the Computer Science community, the code that 
resulted appeared to be horrifyingly unstructured, badly behaved and difficult to 
maintain. For the engineer, code written within the limitations of structured style was 
indeterminate, slow and wasteful of system resources, requiring large overheads for 
embedded operating systems. 
 
Fortunately, the creation of Isostructure brings the two communities happily together and 
benefits both. Isostructure removes one portion from conventional, structured-
programming style, and places an Isolayer on top of independent, structured threads. An 
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Isolayer is a layer of interconnection at equal level. The Isolayer connects the structured 
threads in a method similar to that previously done by the much-more-complex, 
multitasking Operating Systems. All repetitive entry into the independent threads is 
moved to the Isolayer. This alters the structured programming technique of looping, and 
removes the problem of Program Counter Capture experienced with that method. 
 
Program Counter Capture occurs when the processor's Program Counter is used to retain 
the state information of a program implicitly, rather than explicitly. When state 
information is held in the Program Counter, the Program Counter must be rigorously 
maintained intact. The thread cannot release control of the Program Counter, or the state 
information is lost. The only way to regain control of the Program Counter for use on 
other tasks or threads is to preempt the task and store the Program Counter and register 
states in stacking operations, performing a full context switch. This is why a multitasking 
operating systems are usually required.  
 
Unfortunately, conventional structured programming relies exclusively on Program 
Counter Capture to hold state information. Conventional structured programming offers 
no Isolayer, and few of the tools necessary to create it, so the only acceptable methods to 
create loops cause Program Counter Capture.  
 
Isostructuring separates Isolayer state information and conventional structure into distinct 
entities. State information is stored explicitly and does not depend on the Program 
Counter. Structure within the thread is still the domain of the Program Counter. Without 
Program-Counter-capturing looping structures, threads remain deterministic and well-
behaved segments. State information is the domain of the Isolayer. State information 
determines which threads are active and forces deterministic and regular activation of 
pending active threads. 
 

Prospects 
 
Isostructure techniques hold the keys to advancing through the previously closed doors of 
several highly desirable areas of technology.  
 
Fault tolerant technologies are more easily achieved if state information is not kept solely 
in the CPU's Program Counter Register. When state information is held explicitly, rather 
than exclusively (thereby elusively) in the Program Counter, the crash of the processor is 
not necessarily tantamount to system failure. The Isostructure can be re-entered and 
program flow will be directed to the threads needing service.  
 
Similarly, multiprocessing is possible. Active threads are known, and available 
processing power can be directed or "parceled out" to active threads as needed. It is even 
possible to have multiprocessing where the processors are non-similar. The different 
processors can coexist peacefully in a single system. Since state information is not in the 
domain of any single Program Counter, any processor with time available can service the 
threads, so long as they are compiled in non-processor-specific tokens. 
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Isostructure goes farther than any other language has ever done before. It is possible to 
compile some structures written with Isostructure techniques into hardware. Hence the 
line between software/firmware/hardware is significantly blurred. The same program can 
be written as software, moved to firmware, or extended into hardware.  
 
The technique of separating state information from the Program Counter also offers 
potential advances in the area of Artificial Intelligence and Expert Systems. The firing of 
inference engines are essentially the recognitions or expansions of state information. As 
such, untangling the processor's Program Counter from the state information can simplify 
understanding of context, the fundamental problem standing in the way of achievement in 
AI. 
 

Fundamentals 
 
The enforcement of structured programming techniques some twenty years ago made 
certain areas of programming difficult. Primary among them was the area of real time 
programming. It is difficult to find a good definition of real time programming in 
publication. Recognition of the problem is the first step toward solution. Therefore the 
following definition is offered. 
 
A real time program is one that waits. Any program that does not wait on something is 
not a real time program. Any program that waits on something, other than the program 
itself, is a real time program.  
 
Almost all embedded system programs are real time in nature, which is to be expected. 
Surprisingly, large programs which are seldom suspected of having any real time 
component, often do contain small embedded real time programs in them. For instance, a 
word processor is seldom classified as a real time program. Yet, it waits on the user's 
input before taking any action. The user interface of a word processor is, therefore, a real 
time program. The same is true for most user interfaces. They wait, therefore they are 
real time. Understanding the effects of waits on programming is the first key to 
understanding Isostructure. 
 
A good word processor not only waits for a user's first input, it also checks often to see if 
there is new input, even when it is already actively processing the previous input. A word 
processor that makes the user wait, while repaginating for instance, does not have the feel 
of a user friendly system. So all tasks the wordprocessor does, that may take more than 
an imperceptible amount of time, must be written in a way that allows multiple threads of 
concurrent operation to be processed. This means all wordprocessors must create 
Isostructure and support real time programming, whether done intentionally or not. The 
same is true for most user interfaces. Understanding the need not-to-be-trapped by waits 
is the second key to understanding Isostructure. 
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Once multiple "threads which do not wait" are allowed to be active, a system must be 
configured to cause entry and re-entry of these threads as necessary. Transitions from one 
waiting state to another require more sophistication than conventional structured 
programming methods or bifurcation offer. Both these instances call for more 
fundamental capability than simple IF-ELSE-THEN structures provide. CASE statements 
are often employed here, although they seldom produce anything more than program-
managed bifurcations. This is not surprising, since structured program advocates have 
held a prejudice against any structure containing more than a single bifurcation. A 
multiplicity of possible branch transitions must be accommodated to create true 
Isostructures. Understanding the need for polyfurcation in programming is the third key 
to understanding Isostructure. 
 
To fit these three keys into practice, it will be helpful to examine the current 
programming paradigm further. 
 

Problem 
 
The limitations of conventional structured programming can be seen in the following 
example, illustrating the three keys: wait states, the need to avoid Program Counter 
Capture, and polyfurcation.  
 
Imagine one of the easiest embedded programming examples, a thermostat. One analog 
input is read. One output is manipulated. When a the analog signal is too low, the output 
is turned on. When it is too high, the output is turned off. A flowchart illustrating one 
approach for programming the task is shown here: 
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turn on heater

too cold?

too hot? no

no

turn off heater

start

 
 
While the conditional test of temperature is not "too cold" the Program Counter is 
captured in a backwards loop, waiting on a change. Sometimes this is called "spinning on 
a bit" or in this case "spinning on a (analog) conditional." While the Program Counter is 
captured in this loop, no output is generated. When the conditional test "too cold" is first 
true, the Program Counter Capture loop is terminated. Next, an action is taken. The 
heater is turned on. The Program Counter is then allowed to advance. The next Program 
Counter Capture loop is entered. While the conditional test of temperature is not "too 
hot" the Program Counter is captured in a backwards loop, waiting on a change. When 
the heater has done its job, and the temperature is finally high enough, the Program 
Counter Capture loop is terminated. An action is taken; the heater is turned off. The 
Program Counter is then allowed to advance. The program flow takes the Program 
Counter back to the original Program Counter Capture loop. This continues in an endless 
loop. 
 
As shown, the thermostat is a very easy program to write, and indeed, if the one 
thermostat is the only problem to be addressed by the processor, can be written just that 
simply. Conventional structured programming tools masterfully fit the need, up to this 
point. In pseudocode the program might look like this: 
 
 start: 
 begin 
  begin 
   not_too_cold? 
  until 
  turn_on_heater 
  begin 
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   not_too_hot? 
  until 
  turn_off_heater 
 again 
 
No GOTO's are needed. No polyfurcations are required. Only well structured 
programming techniques are used. Both engineers and computer scientists see the 
program as well written and well behaved. In practice, the generated code would perform 
well, although the problem is a bit oversimplified. A breif explanation follows. 
 
From a Control Science perspective, this situation is very minimally specified. The dead 
band is not specified. The amount of "hunt", undershoot and overshoot are not 
determined. Still, even if there is no dead band, that is, if the "too cold" temperature is the 
same as the "too hot" temperature, the thermostat will still operate. The heater will short 
cycle according to the resolution of the temperature sensor. So while it is "too cold" the 
heater is on. While it is "too hot" which is functionally equal to "not too cold" the heater 
is off. Spreading a positive difference between "too cold" and "too hot" conditions makes 
a dead band, which reduces heater cycling. However, only when the dead band becomes 
negative does the algorithm have bad characteristics, short cycling (turning on and off) 
the heater as fast as the program can run. 
 
So, for a single task, there is no problem with conventional methods. The problem starts 
when the task is only slightly more complicated. To bring this situation to light, imagine 
one processor controlling the temperature in two rooms. Essentially, the same algorithm 
can be used twice if a multitasker is employed. 
 

turn on
heater a

room a
too cold?

room a
too hot?

no

no

turn off
heater a

start a

turn on
heater b

room b
too cold?

room b
too hot?

no

no

turn of
heater b

start b
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The length of the program is very small, perhaps a few hundred bytes. A multitasker, by 
comparison, is one or maybe even many orders of magnitude larger. To the engineer, 
adding thousands of bytes to the short program to achieve preemptive multitasking seems 
an overhead that should be designed out. Here is where the trouble starts. As a first 
approach the engineer may try to string the two programs together to create one. 
 

turn on
heater a

room a
too cold?

room a
too hot?

no

no

turn off
heater a

start

turn on
heater b

room b
too cold?

room b
too hot?

no

no

turn of
heater b

 
 
While properly structured from a programming view point, this program is not 
functional. The two rooms do not function independently. While Room A is not too cold, 
the first Program Counter Capture loop prevents any other conditions from being tested. 
So, Room B will go unattended if Room A is still not too cold. Room B can be too cold 
for a long time. When Room A is finally too cold, heater A is turned on. Room B is still 
left unattended until Room A is finally too hot. Then Room B is serviced. While Room B 
is heating from its long state of being too cold, Room A is unattended. Even if Room A 
cools off to the point it is too cold, it will not be serviced again until Room B is too hot. 
This algorithm is not workable. The pseudocode shows the shortcoming as well. 
 
 start: 
 begin 
  begin 
   room_a not_too_cold? 
  until 
  turn_on_heater_a 
  begin 
   room_a not_too_hot? 
  until 
  turn_off_heater_a 
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  begin 
   room_b not_too_cold? 
  until 
  turn_on_heater_b 
  begin 
   room_b not_too_hot? 
  until 
  turn_off_heater_b 
 again 
 
For the second attempt the engineer may abandon the first algorithm in preference for 
one that has a different structure. To move toward this end, the original program may be 
rewritten with opposite senses for each branch.  
 

turn on
heater a

room a
too cold?

room a
too hot?

yes

yes

turn off
heater a

start

turn on
heater b

room b
too cold?

room b
too hot?

yes

yes

turn off
heater b

 
 
This algorithm is no more functional than the previous implementation, and in some 
ways is less so. It has all the bad habits of the former. It has an additional bad habit of 
turning the heater on when it is already on. If the heater is simply controlled by a binary 
output, such as a port line connected to a Solid State Relay driving an electrical heater, 
there is no harm in repeatedly turning on the output. If the heater is a gas heater with an 
ignition sequence, and there is more complexity in turn_on_heater_b, this algorithm is 
unacceptable. The pseudocode follows. 
 
 start: 
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 begin 
  begin 
   room_a too_cold? 
  while 
   turn_on_heater_a 
  repeat 
  begin 
   room_a too_hot? 
  while 
   turn_off_heater_a 
  repeat 
  begin 
   room_b too_cold? 
  while 
   turn_on_heater_b 
  repeat 
  begin 
   room_b too_hot? 
  while 
   turn_off_heater_b 
  repeat 
 again 
 
The one advantage of looking at the problem this way, however, is that the conditionals 
"string" together and suggest the sense of a bifurcation tree (or in advanced programming 
models, a case statement). At this point the clever engineer recognizes the backwards 
branches as the source of the program's problem. Recognition of the problem as Program 
Counter Capture is the first step toward solution. The clever engineer may attempt to 
create a scan loop. A scan loop is a programming technique using software polling. 
Conditions are checked in a round-robin fashion and only those conditions needing 
service are executed.  
 
To create the scan loop, the first approximation requires elimination of the backwards 
branches which create Program Counter Capture. The following flowchart has been 
changed from the previous implementation only by redirecting the backwards branches 
"forward" to allow the program counter to freely run around the scan loop without being 
captured in any particular place waiting, or spinning on a condition. 
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turn on
heater a

room a
too cold?

room a
too hot?

yes

yes

turn off
heater a

start

turn on
heater b

room b
too cold?

room b
too hot?

yes

yes

turn off
heater b

 
 
While there are some bad habits inherent in this implementation, it performs better than 
the previous designs in one important aspect. If either room becomes too cold, service for 
that room begins immediately.  
 
The bad habit of turning the heater on when it is already on, is still present in this design. 
Also, the system is more sensitive to dead band limitations. If there is no dead band, that 
is, if the "too cold" temperature is the same as the "too hot" temperature, the thermostat 
will not operate satisfactorily. The heater will short cycle as fast as the program can run. 
The problem is the same as if there were a negative dead band. The heater is slammed on 
and off as fast as the possible. If careful restraints are not put on the operator, an equal or 
negative spread between too_cold? and too_hot? conditionals can accidentally put the 
system into a mode that violently chatters the heater's power. The pseudocode for this 
implementation follows. 
 
 start: 
 begin 
  if room_a too_cold? then 
 turn_on_heater_a 
  if room_a too_hot? then turn_off_heater_a 
  if room_b too_cold? then turn_on_heater_b 
  if room_b too_hot? then turn_off_heater_b 
 again 
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The bad habits turning on a heater that is already on, can be cured by adding a test to the 
conditional to see if it is off. If it is already turned on, it is not turned on again.  
 

turn on
heater a

room a
too cold & heater

a off?

room a
too hot & heater

a on?

yes

yes

turn off
heater a

start

turn on
heater b

room b
too cold & heater

b off?

room b
too hot & heater

b off?

yes

yes

turn off
heater b

 
 
The pseudocode for this implementation follows. 
 
 start: 
 begin 
  if room_a too_cold? and heater_a_off? 
  then  turn_on_heater_a 
  if room_a too_hot? and heater_a_on? 
  then turn_off_heater_a 
  if room_b too_cold? and heater_b_off? 
  then turn_on_heater_b 
  if room_b too_hot? and heater_b_on? 
  then turn_off_heater_b 
 again 
 
This is the first time state information has entered the programming example since the 
Program Counter Capture loops were eliminated. Previously, the loops with backwards 
branches captured the Program Counter. While the processor was limited to only 
executing instructions in the loop, the state information about the process under control 
was keep implicitly in the processor's Program Counter. Since the backward branches 
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were eliminated, there was no obvious state information kept by the program. If the 
output state of a heater can be "read back" this state information can be used in program 
control.  
 
The bad habit of turning on the heater when it is already on can be overcome if the 
heater's state information is retained. Testing the state information to see if the heater is 
already off before turning it on, and testing to see if it is on before turning it off, makes 
for a better behaved program. The operation of a program designed in this manner is 
closer to the first example of a single thermostat.  
 
While the read back of the output is one way to retain or, more correctly as described in 
this case, recapture state information, it is less direct than simply saving the state 
information in memory explicitly. The actual details of the storage, whether variable, 
vector, table index or whatever, are less important than the conceptual achievement of 
recognizing the need for such explicit storage. 
 
State information is the essence of the class of programs examined here. It represents the 
history of the program's execution. It holds the context against which decisions are made. 
All the information needed to take future actions based on previously occurring 
conditions are part of the state information. State information is absolutely necessary and 
vital to a control or real time program. Recognizing it and applying it correctly produces 
Isostructure. 
 
The remaining bad habit of short-cycling the heater can be reduced by using state 
information to create Isostructure. At the same time, the overall performance of the 
program can be improved. Once Isostructure techniques are applied, all the positive 
aspects of the original, simple thermostat programs will be recovered. 
 
Applying Isostructure will be best understood if taken in two steps. The following 
example closely resembles the previous example, except the state information becomes 
the primary test. Since the prevailing style of programming has been to hide the state 
information in the Program Counter, it not surprising that the state information might not 
be considered the primary information to process on every scan. It is, however, more 
important than other conditionals. The reason will become obvious momentarily. First 
examine the example with the state information as the primary conditional: 
 



13 
 

turn on
heater a

room a
too cold?

room a
too hot?

yes

yes

turn off
heater a

start

turn on
heater b

room b
too cold?

room b
too hot?

yes

yes

turn off
heater b

heater
a off?

heater
a on?

yes

yes

heater
b off?

heater
b off?

yes

yes

 
 
The pseudocode for this implementation follows. 
 
 start: 
 begin 
  if heater_a_off? 
  then if room_a too_cold? 
   then  turn_on_heater_a 
  if heater_a_on? 
  then if room_a too_hot? 
   then turn_off_heater_a 
  if heater_b_off? 
  then if room_b too_cold? 
   then turn_on_heater_b 
  if heater_b_on? 
  then if room_b too_hot? 
   then turn_off_heater_b 
 again 
 
The structure can obviously be simplified. Separate "if's" are used for complementary 
conditions. Simplifying the structure would make the program faster and more efficient. 
However, this first step was taken to make easy visualization of  the one-to-one 
correspondence of conditionals with the previous example. It turns out, the key to 
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correcting the dead band behavior also lies in the path of simplifying the structure. 
Isostructure techniques must be applied to overcome the dead band behavior. 
 
The following example uses Isostructure. Bifurcation, the simplest instance of 
polyfurcation, occurs based on the state information for each thermostat. This example 
closely resembles the previous example. The duplicity of state conditionals have been 
replaced with a single instance. The structure has been simplified, thereby. The return 
paths of conditionals are gathered differently as well, since there is no need to do all 
conditionals under all conditions. The same state information was tested twice in the 
previous example. In this example a single test of state information replaces the two 
separate tests. The program flow is bifurcated to the following conditions, according to 
which one is of  interest in the active state. Following the bifurcation of program flow, 
only one of the two possible temperature conditionals is evaluated. (For later reference, 
notice: based on that test, another bifurcation occurs.) 
 

turn on
heater a

room a
too cold?

room a
too hot?

yes

yes

turn off
heater a

start

turn on
heater b

room b
too cold?

room b
too hot?

yes

yes

turn off
heater b

heater
a off?

yes

heater
b off?

yes

 
 
The pseudocode for this implementation follows. 
 
 start: 
 begin 
  if heater_a_off? 
  then if room_a too_cold? 
   then  turn_on_heater_a 
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  else if room_a too_hot? 
   then turn_off_heater_a 
  if heater_b_off? 
  then if room_b too_cold? 
   then turn_on_heater_b 
  else if room_b too_hot? 
   then turn_off_heater_b 
 again 
 
All of the undesirable habits of the intermediate versions have been overcome by this 
implementation. The scan loop immediately serves either room needing heating turned 
on, or heating turned off. The heaters are turned on only if they are already off and need 
to be turned on. The heaters are turned off only if they are already on and need to be 
turned off. The deadband is the same as the original single thermostat program. Finally, 
the two-thermostat program has been restructured into a workable structured model 
without using multitasking.  
 
Below, a single thermostat's portion of the previous example is extracted and placed side 
by side with the original thermostat flowchart. Notice the Program Counter Capture loops 
are gone. State information directs the program flow to the appropriate test condition. 
There are two branches of program flow on each pass through the program. The two 
flows are represented in the illustration by gray, curved pointers. 
 
If there is no heating being done, the conditional test for "heating needed" is evaluated. 
When it is true, heating begins. No more testing of "heating needed" will be attempted. 
As much as can be done to achieve heating is already underway and there is no need to 
check the corresponding condition. 
 
If there is heating being done, the conditional test for "no more heating" is evaluated. 
When it is true, heating is stopped. Then, no more testing of "no more heating" will be 
attempted. As much as can be done to stop heating has already happened and there is no 
need to check the corresponding condition. 
 
In the original thermostat flowchart, there are also two "branches" of program flow. 
These two flows are represented in the illustration by gray, curved pointers, as well. In 
the original, these follow the Program Counter Capture loops, as enforced by 
conventional structured programming techniques. The program is prevented from 
evaluating both sets of conditionals, but not by explicit state information. Instead, the 
program execution is not allowed to reach the inappropriate conditional by capture of the 
Program Counter in a backwards loop constantly reevaluating the active conditional. 
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In the Isostructured version, the Program Counter is not captured. Program flow falls 
directly through the structure on each pass. As a result, the program is deterministic, and 
has known characteristics and delays for each path. It can be grouped with other 
Isostructured problems in a scan loop. Each problem is entered on the same level, at the 
Isolayer. The result is manageable multitasking without a multitasker. 
 
Comparing the two flow diagrams, it should be clear that the original approach is the 
most common way of approaching such a problem. The Isostructured approach is 
certainly readable in this specific example, but the need for the Isostructure is not 
intuitively obvious. From the perspective of years of work done with structured 
programming tools and limitations, something about the look of the Isostructured 
approach "feels" odd. 
 
If a simple problem looks "odd" a complex one must seem absolutely "foriegn." It is 
fortunate there were only two states in the thermostat problem. More complex 
multitasking problem cannot easily be diagrammed with conventional structured 
programming tools. The Isostructure techniques required in this implementation were 
limited. Only bifurcation was used. Problems with more than two wait states require 
polyfurcation. While polyfurcation can usually be represented with nested bifurcations, 
readability is quickly lost. The resulting diagram is difficult to follow and the intent of 
the program is exceedingly obscure. 
 
When larger problems are written with conventional structured programming tools using 
Isostructure techniques, the bifurcations compound, splitting into finer and finer 
branches. The program begins to resemble a period doubling chart from Chaos theory. 
The greater the level of bifurcation, the closer the flow chart looks to a chaotic system.  
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(As a side light, there are interesting speculations which can be imagined concerning 
chaos in real time systems. A real timer program can be "chaotically" programmed using 
accidental Isostrucutre techniques as has been previously common, or run chatoically 
with "randomly" interrupted Program Counter Capture loops which has been the other 
popular approach. One method puts the chaos in the compile time, the other, in the run 
time. A better method would be to avoid the chaos from the beginning. Polyfurcation 
replaces nested bifurcations.) 
 
Clearly a better diagramming tool is necessary, and a better paradigm is in order. Just 
such a better tool exists in state diagrams as will now be explained. 
 

Description 
 
Based on the previous two section, it should now be obvious that Isostructure has two 
easily identifiable features: States, which represent programmed-waits explicitly, and 
polyfurcation, which allows multiple transition paths into and from the waits. 
Diagrammatically, states can be portrayed as objects and transitions as the relation 
between objects. (Isostructure, therefore, implements the equivalent of hardware State 
Machine Diagrams in software programming. An approximation of the parallelism of 
hardware is achieved in software using Isostructure.) 

state

 
 
When in a state, as its Latin roots {status and stare: to stand} imply static condition, no 
outputs or actions are taken. The only activity occurring in a wait state is the periodic 
checking of conditions which are antecedent and necessary to cause termination of the 
waiting state. (This parallels the synchronous clock in hardware state machines, which 
causes conditions to initiate transitions.) A state can be identified by its quiescence. In a 
state, no outputs are changed. If outputs need to be changed, the wait state is no longer 
valid. If no outputs need to be changed, the wait state is valid. States in the new paradigm 
stand in place of Program Counter Capture loops in the previous paradigm. 
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state_a state_b

action

condition?

transition  
 
Transitions in the new paradigm stand in place of processing boxes between Program 
Counter Capture loops in the previous. All processing actions take place during a 
transition from one state to another. Transitions have four components. The first 
component is the state with which they are associated. The second is the condition under 
which they cause transition. If the condition is met, the current wait is no longer valid. 
The transition becomes selected. The third part of a transition is the action. (This is the 
Mealy state machine model.) Once a condition is valid, actions must be performed. Often 
this requires processing and output manipulation. This action has no waiting component. 
If there are any waits built in it, it is improperly fashioned. The transition's action is done 
as fast as the available hardware can be made to run. The final component of a transition 
is the vector, or destination of the transition. As soon as possible, all processing will be 
accomplished. Re-entry to a condition of real time waiting follows. Therefore, a 
transition always ends in another wait state. 
 
By assigning all computing to its component levels as waits or transition, the entire 
Isostructure of a problem can be laid out. By doing so, all Isostructure components will 
be separated from the processing portion of threads. Threads can then be programmed 
with conventional structured programming techniques. Program Counter Capturing loops 
and waits will be removed. Therefore properly defined Isostructured programs will have 
well-behaved threads. 
 

Diagramming 
 
Using state machine diagrams to define real time problems is quite easy. The first step is 
to identify and define all unique waits. The states can be drawn as circles. States should 
be uniquely named. The name of this state is written inside the circle. 
 
In the case of the single thermostat problem, two wait states are required. First the two 
wait states must be named. A newcomer might assert, "One state is 'heater_on'. The other 
state is 'heater_off'." This is not a good start. These definitions refer to the states in terms 
of the actions associated with the (previous) transition which put the machine into this 
wait state. For a second attempt, the beginner might suggest, "One is 'too_cold?' and the 
other is 'too_hot?'." This is only slightly better. These definitions refer to the states in 
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terms of the conditions associated with the (next) transition which take the machine into 
the another wait state. The experienced programmer recognizes a wait state is not 
necessarily defined by the actions which cause entry or the conditions which cause exit. 
It is the nature of the wait itself which should be named. The programmer experienced in 
Isostructure and state machines might suggest names such as these, "One state is 
'wait_on_low_temperature' and the other is 'wait_on_high_temperature'." 
 

wait_on
low_temp

wait_on
high_temp

 
 
In the case of the thermostat, each state has only one entry and one exit. Consequently, 
these suggested state names resemble the conditions of exit. However, in cases where 
there can be multiple exit transitions, it is not likely this resemblance will be so obvious. 
For instance, a wait_for_key state might do different things if the key were a numeral, 
versus a "enter" key, versus a "delete" key, versus a "backspace" key, etc. State names 
should describe the nature of the wait as best possible. For the sake of the underlying 
computer language, the names must be unique. 
 
Once the states are defined as objects, the relationship between the objects are specified 
in the form of transition. The thermostat has two transitions.  
 

wait_on
low_temp

wait_on
high_temp

hearter_on

too_cold?

hearter_off

too_warm?

 
 
Each of the four components of the transition must be specified. The originating state and 
the destination state are illustrated graphically. The condition and the action are entered 
as text written along the vector of the transition. The condition is normally placed above 
the transition line, and ends with a "?" to designate its conditional nature. The action is 
normally placed below the transition line, and is a statement of action. In the above 
diagram, the thermostat program is as well defined as it was in the flowcharts of the 
preceding sections. 
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In fact, there is a high degree of correlation between the two diagrams. (This should not 
be surprising. They represent the same problem, differing only in the nature of the 
paradigm.) The two diagrams are shown side-by-side below with the commonalities 
identified. 
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This comparison dramatically shows, all the components of the previous flowcharts are 
covered by the state diagram. The second thing the comparison shows, which comes 
through with startling impact, is how much simpler the data looks in the state diagram 
format. It is difficult to believe those few elements used to define the thermostat problem 
in the state diagram format contain all eight components found in the other examples. 
Even the diagram's added numbering seems to clutter and overpower the beautifly-simple 
underlying state diagram. The paradigm of the state diagram used to describe applicable 
Isostructure problems is remarkably comfortable, concise and easy to understand. 
 
The thermostat program represented graphically in this paradigm consists of two circles 
and two arrows, with some text annotations. The non-Isostructured flowchart has two 
conditional diamonds, two action boxes, over six flow path arrows, and text annotations 
(and a start box). The Isostructured flowchart has all that plus an additional conditional 
diamond and two more flow path arrows. Clearly the state machine paradigm has a more 
succinct "feel" about it. Further, it better describes the problem. It names the wait states, 
which were only implied with the Program Counter Capturing loop of the non-
Isostructured version of the flow chart, and further obscured by the Isostructured version.  
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The intellectual advantage of recognizing the wait state is a bit like the discovery of "0". 
In evaluating ancient cultures, their ability to recognize "0" as a numeral is considered a 
high water mark. Neither the Greeks nor the Romans understood the concept of "0". The 
Arabic and Mayan cultures were among the first to use it. By naming the condition where 
nothing exists, higher level math can be accomplished. In direct analogy, recognizing the 
wait state in a program as a place where "'0' computing" takes place, allows higher-level 
programming. In this sense "'0' computing" means no outputs or changes of state occur. 
Only the conditionals are tested during waits. While the conditionals are false, nothing 
else meaningful happens. "0" actions are taken. So specifying wait states in programming 
is like using "0" in math, very essential to advanced processes. To illustrate this point, 
two increasingly complex applications will be detailed, 1) a garage door opener and 2) an 
electronic keypad lock. 
 
In the simple example of the thermostat, the process was a simple sequencer. Sequencers 
are a subset of state machines. Each state in a sequencer has only one exit and one entry. 
The flow from state to state is circular (i.e. in sequence). It is relatively easy to program 
sequencers with conventional structured programming methods, using Program Counter 
Capture loops between the steps (states) of the sequence. Even a simple sequencer with 
more than two steps can become devilish to flow chart using Isostructure techniques. 
These problems need polyfurcation and structured techniques only offer bifurcation. 
 
A garage door opener is a good example of a four step sequencer. To pick a starting 
point, consider the situation with the door up. What is it waiting for? an input to tell it to 
go down. When the input comes, it starts the motor moving down and then waits. In this 
state it waits for another input. This can be the "already down" limit sensor, or the current 
sensor on the motor saying the system is blocked or jammed, or the operator's pressing 
the button again indicating a change of mind. When any of these conditions occur, the 
motor is stopped and the system waits for another signal to start up again. When that 
signal is received, the motor is started up and the system then waits for the "already up" 
limit signal, or the current sensor on the motor saying the system is blocked or jammed, 
or the operator's pressing the button again. At this point, the sequencer has gone full 
cycle. The process is ready to start over again. 
 
The state diagram for a garage door opener is shown here.  
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It is quite succinct. The information is terse. The problem is well represented. In short, 
the paradigm works well for representing sequencers. 
 
The flow chart (nonIsolstructured) for a garage door opener is shown here. 
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Certainly this flow chart is readable. However, many more graphical elements are 
required to represent the problem this way. Hence, the ratio of graphic element to 
problem illustration is bigger. The problem is, thereby, obscured by the flowcharting 
paradigm. For a single tasking problem, flowcharting obscures the problem only slightly. 
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Adding isostructure to the flowchart further obscures the problem. While the 
Isostructured flow chart for a garage door opener is not too complicated to be drawn, it is 
larger and therefore not conveniently shown here. Four additional nested conditionals 
would need to be added, to choose which state the garage door opener was in. These 
conditionals would in turn lead to the conditionals already shown in the non-
Isostructured version. Since the garage door opener example is a sequencer, rather than a 
more complicated state machine, the Isostructured flow chart would still be regular and 
perhaps readable, though less so than the non-Isostructured flow chart and certainly much 
less than the state diagram model, which is inherently Isostructured. 
 
The second example, an electronic keypad lock, is not so easily represented with 
conventional structured techniques. The electronic keypad lock is a state machine, rather 
than a simpler, sub-class sequencer. The state machine diagram for a three digit entry 
lock is shown below.  
 
_ 
 
In this example a 10-key keypad controls an electric lock. To open the lock three keys 
must be entered in the correct sequence. Hence, there are four unique wait states.  
 
One wait state waits for the 1st key to be entered. Upon a correct key entry, a transition 
will beep and take the machine to the second state. The second wait state waits for the 
2nd key to be entered.  Upon a correct key entry, a transition will beep and take the 
machine to the third state. The third wait state waits for the 3rd key to be entered.  Upon 
a correct key entry, a transition will buzz, open the lock and take the machine to the 
fourth state. The fourth wait state waits for a key to be entered. Upon any key entry, a 
transition will buzz, again close the lock and take the machine back to the first state.  
 
While the basic structure is quite similar to the previous problem, the four state garage 
door opener, there are three more transitions in this problem, not yet described. These 
transitions occur when a wrong key is entered in a particular wait state. The wrong key 
presses all return the state machine to the first state. This is the first instance where wait 
states have (in some instances) more than one entrance, and (in some instances) more 
than one exit. The second and third state have one entry and two exits. The first state has 
four entries and two exits. 
 
One other new concept is shown in this example. A transition can originate in one state 
and return to anystate, including the originating one. When in the first state, entering a 
wrong key must cause an action, the beep. The destination state for every transition 
occassioned by a wrong key is the first state. The fact the first state is both the origin and 
the destination does not cause a problem for the state machine model. 
 
The flow chart required to describe this problem is formidable even without accounting 
for Isostructure. The purpose of the algorithm is no longer obvious in this paradigm. It 
was no longer possible to present the whole program as a flow in a single column, so it 
was broken into two columns, each less than a page in length. 
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At this point, it is easy to see the old paradigm of flowcharting has failed to easily 
transmit the purpose of the algorythm to the viewer "in a glance," but rather requires 
significant study before the essence of the program becomes apparent. In short, the 
paradigm is more cumbersome than the problem, even without adding the additional 
requirement of Isostructure. 
 
So, the graphical paradigm using state machine diagramming is the correct methodology 
to represent Isostructured problems. It has the advantages of explicit naming of wait 
states, which leads to the explicit creation of state information, and a terse syntax. It 
allows easier visualization of complex problems. The paradigm more closely resembles 
the problem and encourages Isostructure creation without representing flow based 
processing in Program Counter Capturing looping structures.  
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The next step toward Isostructured programming is a methodology to represent such 
programs in a human readable and writeable text language. IsoMax™ is that language. 
 

Components 
 
IsoMax™ is a text-based language allowing representation of Isostructure. The basic 
IsoMax™ words allow identification and definition of states and transitions. First, the 
key-words which define states will be covered. 
 
STATE-MACHINE 
ON-MACHINE 
APPEND-STATE 
 
States belong to a state machine. To gain concurrency, multiple state machines can be 
defined and run independently. In cases where machines are interrelated, 
communications between the machines allows interdependency as desired. So the highest 
level construct in IsoMax™ is the state machine. A state machine can be defined by 
using the key-word STATE-MACHINE followed by a name for the new state machine. It 
is used in the form STATE-MACHINE <name of machine> 
 
Once a machine is defined, states may be appended to it. The key-words used in 
IsoMax™ to accomplish this are ON-MACHINE and APPEND-STATE. They are used in 
the form ON-MACHINE <name of parent machine> APPEND-STATE 
<name of new state>.  
 
Now, the key-words which define transitions will be explained. 
 
IN-STATE 
CONDITION 
CAUSES 
THEN-STATE 
TO-HAPPEN 
 
Transitions connect related states in the state machine. To fully define a transition it is 
necessary to identify which state the transition will leave when valid, what condition is 
necessary to cause a valid transition, what action will be caused by the transition and 
which state will be entered after the action. These four components are sandwiched 
between the keywords IN-STATE, CONDITION, CAUSES, THEN-STATE and 
TO-HAPPEN to create a transition. They are used in the form: IN-STATE <parent 
state name> CONDITION <boolean computation> CAUSES <compound 
action> THEN-STATE <next state> TO-HAPPEN. 
 
The state drawings made in the state machine paradigm can be directly translated into 
this ASCII paradigm. The previously used examples will be shown here (at the level of 
detail possible with the words so-far given). First the thermostat diagram will be shown 
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and then the code describing it listed. Numbers, similar to those used to show the 
corresponding elements between flow charts and state machine diagrams have been 
added to help give a visual correlation between graphical and textual elements: 
 

wait_on
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hearter_on

too_cold?
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STATE-MACHINE THERMOSTAT_A 
 
 ON-MACHINE THERMOSTAT_A 
  APPEND-STATE WAIT_ON_LOW_TEMP 
  APPEND-STATE WAIT_ON_HIGH_TEMP 
 
IN-STATE WAIT_ON_LOW_TEMP             ( 7 ) 
 CONDITION TOO_COLD?              ( 1 ) 
 CAUSES HEATER_ON                 ( 2 ) 
 THEN-STATE WAIT_ON_HIGH_TEMP     ( 3 ) 
 TO-HAPPEN 
 
IN-STATE WAIT_ON_HIGH_TEMP            ( 8 ) 
 CONDITION TOO_WARM?              ( 4 ) 
 CAUSES HEATER_OFF                ( 5 ) 
 THEN-STATE WAIT_ON_LOW_TEMP      ( 6 ) 
 TO-HAPPEN 
 
Except for the meaning of the conditional TOO_HOT? and TOO_COLD? and the actions 
HEATER_ON and HEATER_OFF, the entire programming for the thermostat is shown 
above.  
 
The first line, STATE-MACHINE THERMOSTAT_A, gives the new state machine a 
unique name. The second line, ON-MACHINE THERMOSTAT_A, identifies the selected 
state machine for addition of named states. (It is possible to define multiple state 
machines at the beginning of the program, then add their states to them later. Therefore, 
this line identifies which of the defined state machines is selected to receive new states.) 
The two lines APPEND-STATE WAIT_ON_LOW_TEMP and APPEND-STATE 
WAIT_ON_HIGH_TEMP give unique names to states appended to the selected state 
machine. The remaining two paragraphs describe the transitions. 
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These transition descriptions follow the form described in the previous section. Details of 
the transition are inserted between the keywords IN-STATE, CONDITION, 
CAUSES, THEN-STATE and TO-HAPPEN. The first transition described corresponds 
to the upper transition in the state machine diagram. It defines what is to happen in the 
state WAIT_ON_LOW_TEMP when the condition TOO_COLD? is in effect. In that case, 
the state machine causes HEATER_ON action to occur, followed by a change of state to 
the WAIT_ON_HIGH_TEMP state to happen. Look at the code written in the paragraph 
again. Once an understanding of the purpose is attained, the text reads like well written 
english: 
 
IN-STATE WAIT_ON_LOW_TEMP  
 CONDITION TOO_COLD?  
 CAUSES HEATER_ON 
 THEN-STATE WAIT_ON_HIGH_TEMP 
 TO-HAPPEN 
 
Written in linear form with the capitalization redone to resemble a more normal spoken 
sentence, the paragraph reads as: In-state WAIT_ON_LOW_TEMP condition TOO_COLD? 
causes HEATER_ON then-state WAIT_ON_HIGH_TEMP to-happen. 
 
The last paragraph in the program follows the same format. It describes the lower 
transition on the graphic model. Applying the same modifications for the sake of 
illustration, it reads as: In-state WAIT_ON_HIGH_TEMP condition TOO_HOT? causes 
HEATER_OFF then-state WAIT_ON_LOW_TEMP to-happen.  
 
The four yet undefined words: TOO_HOT?, TOO_COLD?, HEATER_ON and 
HEATER_OFF, are application specific, dealing with the actual hardware. They too must 
be defined. (Because of the method of single pass compilation, they must be defined 
before they are referenced.) However, since they are application specific and purely 
procedureal, without structure, they will be dealt with later. First the aspects of the 
language dealing with structure must be understood. Then we will return to detail the 
remaining "linear" portions of the programming elements (i.e. threads). 
 
The rules of syntax in IsoMax™ are quite simple. The names of state machines and states 
may be composed of up to 31 non-whitespace characters. Transition clauses are not 
named. Names and keywords are separated by at least one space or a return and new line. 
The keywords STATE-MACHINE, ON-MACHINE, APPEND-STATE and IN-
STATE are followed by names, which must be on the same line as the keyword. Other 
than these few rules, IsoMax™ is relatively syntax free. The example is repeated here 
with the minimum amount of "pretty" formatting: 
 
STATE-MACHINE THERMOSTAT_A ON-MACHINE THERMOSTAT_A  
APPEND-STATE WAIT_ON_LOW_TEMP APPEND-STATE WAIT_ON_HIGH_TEMP 
IN-STATE WAIT_ON_LOW_TEMP CONDITION TOO_COLD?  
CAUSES HEATER_ON THEN-STATE WAIT_ON_HIGH_TEMP TO-HAPPEN 
IN-STATE WAIT_ON_HIGH_TEMP CONDITION TOO_WARM?  
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CAUSES HEATER_OFF THEN-STATE WAIT_ON_LOW_TEMP TO-HAPPEN 
 
These above two listings are the same program and compiles the same code. Only the 
formatting has change. 
 
Now that an example of the simplest useful state machine, one with two states and two 
transitions has been shown, a more complex example is in order. The garage door opener 
program follows as a further example: 
 
_ 
 
STATE-MACHINE GARAGE_DOOR 
 
 ON-MACHINE GARAGE_DOOR 
  APPEND-STATE WAIT_TO_GO_DOWN 
  APPEND-STATE WAIT_TO_STOP_DOWN 
  APPEND-STATE WAIT_TO_GO_UP 
  APPEND-STATE WAIT_TO_STOP_UP 
 
IN-STATE WAIT_TO_GO_DOWN  
 CONDITION OPERATOR_INPUT?  
 CAUSES START_MOTOR_DOWN 
 THEN-STATE WAIT_TO_STOP_DOWN 
 TO-HAPPEN 
 
IN-STATE WAIT_TO_STOP_DOWN  
 CONDITION INPUT,LIMIT,OR_OVERCURRENT? 
 CAUSES STOP_MOTOR 
 THEN-STATE WAIT_TO_GO_UP 
 TO-HAPPEN 
 
IN-STATE WAIT_TO_GO_UP 
 CONDITION OPERATOR_INPUT?  
 CAUSES START_MOTOR_UP 
 THEN-STATE WAIT_TO_STOP_UP 
 TO-HAPPEN 
 
IN-STATE WAIT_TO_STOP_UP  
 CONDITION INPUT,LIMIT,OR_OVERCURRENT? 
 CAUSES STOP_MOTOR 
 THEN-STATE WAIT_TO_GO_DOWN 
 TO-HAPPEN 
 
Except for the meaning of the conditional and the actions the entire garage door program 
is shown above. Again, the state machine itself is named. This is necessary in order to 
activate the machine. Activating state machines will be discussed later. Next the state 
machine is selected as the machine on which transitions are to be added. Then the 
transitions are detailed one by one. 
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Now examine the 3-key sequence lock program: 
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STATE-MACHINE 3_KEY_LOCK 
 
 ON-MACHINE 3_KEY_LOCK 
  APPEND-STATE WAIT_FOR_1ST_DIGIT 
  APPEND-STATE WAIT_FOR_2ND_DIGIT 
  APPEND-STATE WAIT_FOR_3RD_DIGIT 
  APPEND-STATE WAIT_FOR_ANY_KEY_TO_LOCK 
 
IN-STATE WAIT_FOR_1ST_DIGIT 
 CONDITION CORRECT_1ST_DIGIT?  
 CAUSES BEEP 
 THEN-STATE WAIT_FOR_2ND_DIGIT 
 TO-HAPPEN 
 
IN-STATE WAIT_FOR_1ST_DIGIT 
 CONDITION INCORRECT_DIGIT?  
 CAUSES BEEP 
 THEN-STATE WAIT_FOR_1ST_DIGIT 
 TO-HAPPEN 
 
IN-STATE WAIT_FOR_2ND_DIGIT 
 CONDITION CORRECT_2ND_DIGIT?  
 CAUSES BEEP 
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 THEN-STATE WAIT_FOR_3RD_DIGIT 
 TO-HAPPEN 
 
IN-STATE WAIT_FOR_2ND_DIGIT 
 CONDITION INCORRECT_DIGIT?  
 CAUSES BEEP 
 THEN-STATE WAIT_FOR_1ST_DIGIT 
 TO-HAPPEN 
 
IN-STATE WAIT_FOR_3RD_DIGIT 
 CONDITION CORRECT_3RD_DIGIT?  
 CAUSES BUZZ OPEN_LOCK 
 THEN-STATE WAIT_FOR_ANY_KEY_TO_LOCK 
 TO-HAPPEN 
 
IN-STATE WAIT_FOR_3RD_DIGIT 
 CONDITION INCORRECT_DIGIT?  
 CAUSES BEEP 
 THEN-STATE WAIT_FOR_1ST_DIGIT 
 TO-HAPPEN 
 
IN-STATE WAIT_FOR_ANY_KEY_TO_LOCK 
 CONDITION CORRECT_1ST_DIGIT?  
 CAUSES BUZZ CLOSE_LOCK 
 THEN-STATE WAIT_FOR_1ST_DIGIT 
 TO-HAPPEN 
 
Other than having more transitions, the program has no new elements. Once Isostructure 
is understood, it is easily written with IsoMax™ with great ease and regularity. 
 
To review: An state machine program is composed of three distinct parts:  
 
The name of the state machine. 
The names of the states which belong to the state machine.  These correspond to the 
bubbles in a state machine diagram. 
The "transition clauses" which define the conditions and actions of the state machine.  
These correspond to the arrows linking the states together and indicate  
the state in which the arrow originates 
the condition which must be true for the state machine to take the transition 
the action to take when the condition is true and  
the state which is to become active after the action. 
 

System 
 
The previous examples explained how Isostructure was implemented in IsoMax™. They 
were not complete examples, however. Application specific words were left undefined. 
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In order to show a full system program and advance into the higher concepts of how the 
IsoMax™ operating system works, a few of these functions must be described. 
 
Special operators are provided in IsoMax™ to accomodate the simplest forms of 
Input/Output, these being single digital lines. These special operators in IsoMax™ are 
called trinary operators. They allow manipulation or testing of bits. Often a single port 
line will represent an external real-world condition. Trinary operators can deal with 
individual bits. 
 
In the case of a thermostat, for instance, a contact closure could represent the condition of 
the temperature being too low. When the bit is in a given state, either high or low, the 
temperature is known to be too low. Similarly, another bit may represent the condition 
too hot. These are examples of single bit inputs.  
 
Outputs may also be single port lines. A port being in a given state, high or low, may 
control a heater being on or off. In the case of the thermostat, the port line may activate a 
transistor, which operates a mechanical or solid state relay which then applies powers to 
the actual heater coils. 
 
The difficulty dealing with single input/output points in microcomputers is, lines never 
occur as single points, but instead are grouped in I/O ports. It's impossible to write one 
bit in an I/O port without writting them all. So in most control languages, to change a 
single bit in an I/O port, the output port must be read, the single bit modified, and the 
output port written with the modified value. In IsoMax™ output trinary operators do 
read-modify-write operations and, therefore, make dealing with ports easier. Input trinary 
operators of a similar nature make reading selected input bits out of a full port easier, too. 
These operators are called trinary operators, because they take three values and create a 
single named action. 
Programming consists in defining actions for new words, named by the programmer. To 
begin a new definition, the keyword DEFINE is used, followed by a unique name. The 
same rules apply as do for state machine and state names. Names may be composed of up 
to 31 non-whitespace characters. The new name must follow the defining word on the 
same line. 
 
Once a new word is defined, its purpose must be qualified. In the case of the trinary 
operators now under discussion, the three defining parameters and the type of operator 
must be specified. Input trinary operators need three parameters: 1) a mask telling which 
bits in the input port are active, 2) a mask telling which state the active bits must be in, 
and 3) the address of the I/O port. The keywords which procede the parameters are, in 
order: 1) TEST-MASK, 2) DATA-MASK and 3) AT-ADDRESS. Finally, the keyword 
FOR-INPUT finishes the defining process, identifying which trinary operator is in effect. 
 
The following lines might be used in the thermostat program. A 68HC11 target processor 
is assumed which has Port A at $B000. On the 68HC11 PA0-PA2 are inputs. PA4-PA6 
are outputs. (PA3 and PA7 are programmable as inputs or outputs, but default to being 
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inputs, unless specifically programmed otherwise.) In the case of the thermostat, if 
historesis is built into the mechanical thermostat switch, only one input line is needed.  
 
PA0 was selected for the input signal. For the condition TOO-COLD? a test mask of 01 
indicates only the least significant bit in the port, corresponding to PA0, is active in 
testing. A data mask of 01 inidcates the least significant bit in the port is tested for being 
set when the returned boolean conditional is true.  
 
For the condition TOO-HOT? a test mask of 01 indicates only the least significant bit in 
the port, corresponding to PA0, is active in testing. A data mask of 00 inidcates the least 
significant bit in the port is tested for being clear when the returned boolean conditional 
is true. (In this case, TOO-HOT? is the logical oppositie of the TOO-COLD? condition.) 
 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code. Before entering hexidecimal numbers, the keyword HEX invokes the use of the 
hexidecimal number system. This remains in effect until it is change by a later command. 
The numbering system can be returned to decimal using the keyword DECIMAL: 
 
HEX 
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS B000 
FOR-INPUT 
DEFINE TOO-HOT?  TEST-MASK 01 DATA-MASK 00 AT-ADDRESS B000 
FOR-INPUT 
DECIMAL 
 
Output trinary operators also need three parameters. In this instance, using the trinary 
operation mode of setting and clearing bits would be convenient. This mode requires: 1) 
a mask telling which bits in the output port are to be set, 2) a mask telling which bits in 
the output port are to be cleared, and 3) the address of the I/O port. The keywords which 
procede the parameters are, in order: 1) SET-MASK, 2) CLR-MASK and 3) AT-
ADDRESS. Finally, the keyword FOR-OUTPUT finishes the defining process, identifying 
which trinary operator is in effect. 
 
A single output port line is needed to turn the heater on and off. The act of turning the 
heater on is unique and different from turning the heater off, however. Two actions need 
to be defined, therefore, even though only one I/O line is involved. PA4 was selected for 
the heater control signal.  
 
When PA4 is high, or set, the heater is turned on. To make PA4 high, requires PA4 to be 
set, without changing any other bit of the port. Therefore, a set mask of 10 indicates the 
least significant bit in the high order nibble of the port, corresponding to PA4, is to be set. 
All other bits are to be left alone without being set. A clear mask of 00 inidcates no other 
bits of the port are to be cleared.  
 
When PA4 is low, or clear, the heater is turned off. To make PA4 low, requires PA4 to be 
cleared, without changing any other bit of the port. Therefore, a set mask of 00 indicates 
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no other bits of the port are to be set. A clear mask of 10 inidcates the least significant bit 
in the high order nibble of the port, corresponding to PA4,  is to be cleared. All other bits 
are to be left alone without being cleared.  
 
Putting the keywords and parameters together produces the following lines of IsoMax™ 
code: 
 
HEX 
DEFINE HEATER-ON  SET-MASK 10 CLR-MASK 00 AT-ADDRESS B000 
FOR-OUTPUT 
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 10 AT-ADDRESS B000 
FOR-OUTPUT 
DECIMAL 
 
With the Isostructure given, and the trinary operators, most digital control applications 
can be written. Only a handful of system words need to be covered to allow programming 
at a system level, now. 
 
MACHINE-CHAIN ALL-TASKS 
   THERMOSTAT_A 
END-MACHINE-CHAIN 
 
DECIMAL 
: MAIN 
   SEI 
   WAIT_ON_LOW_TEMP SET-STATE 
   HEATER-ON 
   EVERY 20000 CYCLES SCHEDULE-RUNS ALL-TASKS 
   CLI ; 
 
XXXX AUTOSTART MAIN 
 
 

Procedures 
 
Up to this point, only the structure of IsoMax™ has been highlighted. Procedures have 
been limited to a single word. Conditionals in transistions have been defined as a single 
word. Actions have been defined as a single word. The examples were limited to 
conditions and actions which could be represented as a simple boolean. While a great 
number of real time applications require nothing greater, many other applications inputs 
and outputs are more complex. 
 
To illustrate, reconsider the simple thermostat. The conditions TOO-COLD? and TOO-
HOT? can be represented as a single binary digit, or as a simple boolean. In the physical 
world, to allow proper hysteresis, this would be constructed as thermostat contact 
closures on a bimetalic strip with a glass tube containing a bead of mercury. When the 
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bimetalic strip cools and contracts enough to tip the glass tube one way, the bead of 
mercury moves from the one end of the tube (hot position) to the other (cold position). In 
so moving, it weights down the new end (cold position) which resists being tilted back. 
When the bimetalic strip heats and expands enough to tip the glass tube the other way, 
the bead of mercury moves from the one end of the tube (cold position) to the other (hot 
position). In so moving, it weights down the new end (hot position) which resists being 
tilted back.  
 
This arrangement takes a number of control factors out of the realm of control for the 
microprocessor. The temperature setting, and the range of hysteresis is set mechanically. 
A better approach would be to use an analog temperature sensor, read the temperature 
with the microprocessor, and then set point and range (or low point and high point) under 
program control. 
 
The reading of an A/D converter and comparison to a given value, are not as simple as 
testing a boolean value. Some procedureal processing is required before a decision can be 
reached, or put another way, a boolean value calculated for evaluation.  
 
To simplify the examples up to this point, the trinary operators where introduced, which 
defined simple boolean inputs and outputs as single named words. Procedures can be 
used instead of single named words.  
 
For instance, in the thermostat example, an A/D reading can be taken from A/D registers 
if the A/D control register has been set up. That A/D value can then be compared to a 
preset limit. The result of that comparison, a boolean, can be used instead of the trinary 
operator as the object of the conditional. Disregarding the set up of the A/D control 
register, the modified code for the state machine would look like this: 
 
STATE-MACHINE THERMOSTAT_A 
 
 ON-MACHINE THERMOSTAT_A 
  APPEND-STATE WAIT_ON_LOW_TEMP 
  APPEND-STATE WAIT_ON_HIGH_TEMP 
 
IN-STATE WAIT_ON_LOW_TEMP 
 CONDITION B031 C@ LOW-LIMIT @ U< ( TOO_COLD? 
 CAUSES HEATER_ON 
 THEN-STATE WAIT_ON_HIGH_TEMP 
 TO-HAPPEN 
 
IN-STATE WAIT_ON_HIGH_TEMP 
 CONDITION HIGH-LIMIT @ B031 C@ U< ( TOO_WARM? 
 CAUSES HEATER_OFF 
 THEN-STATE WAIT_ON_LOW_TEMP 
 TO-HAPPEN 
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It is not necessary to insert the entire procedure into the area between the CONDITION 
and CAUSES portion of the transition code. Nor is it likely to be desireable to do so. 
(Factoring and information hiding are popular descriptions of the methodology of 
separating code into "parcel" size components. This factoring makes code easier to test 
and maintian.) A better approach would be to define and name the procedure.  
 
DEFINE TOO-COLD? 
  PROC B031 C@ LOW-LIMIT @ U< END-PROC 
DEFINE TOO-HOT? 
  PROC HIGH-LIMIT @ B031 C@ U< END-PROC 
 
STATE-MACHINE THERMOSTAT_A 
 
 ON-MACHINE THERMOSTAT_A 
  APPEND-STATE WAIT_ON_LOW_TEMP 
  APPEND-STATE WAIT_ON_HIGH_TEMP 
 
IN-STATE WAIT_ON_LOW_TEMP 
 CONDITION TOO_COLD? 
 CAUSES HEATER_ON 
 THEN-STATE WAIT_ON_HIGH_TEMP 
 TO-HAPPEN 
 
IN-STATE WAIT_ON_HIGH_TEMP 
 CONDITION TOO_WARM? 
 CAUSES HEATER_OFF 
 THEN-STATE WAIT_ON_LOW_TEMP 
 TO-HAPPEN 
 
 
 
 
 
 

Trinaries 
 
DEFINE TOO-COLD? TEST-MASK 01 DATA-MASK 01 AT-ADDRESS B000 
FOR-INPUT 
DEFINE TOO-HOT?  TEST-MASK 02 DATA-MASK 02 AT-ADDRESS B000 
FOR-INPUT 
 
DEFINE HEATER-ON  SET-MASK 10 CLR-MASK 00 AT-ADDRESS B000 
FOR-OUTPUT 
DEFINE HEATER-OFF SET-MASK 00 CLR-MASK 10 AT-ADDRESS B000 
FOR-OUTPUT 
 
DATA-MASK 
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TEST-MASK 
 
SET-MASK 
CLR-MASK 
 
AND-MASK 
XOR-MASK 
 

Counter/Timers 
 
DEFINE 1SEC  COUNTDOWN-TIMER 
 
   1000 TIMER-INIT 1SEC 
 

Debugging 
 
   ON-MACHINE PULSE-RED 
        APPEND-STATE RED-ON     WITH-VALUE 00 AT-ADDRESS 
7FFF  AS-TAG 
        APPEND-STATE RED-OFF    WITH-VALUE FF AT-ADDRESS 
7FFF  AS-TAG 
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