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DARK CURRENT AND NOISE

This chapter discusses disturbances that interfere with the current or voltage to be
measured and limits the accuracy of the measurement. This includes principally dark
current and noise.

3.1 Dark current
The dark current is not, strictly speaking, a noise; however, noise that is associated
with it does impose a limitation on the detection of very low energy radiation.

The current that flows in the anode circuit when voltage is applied to a
photomultiplier in total darkness has two components:
− a continuous one due to leakage on glass and insulation surfaces,
− an intermittent one, consisting of pulses of a few nanoseconds duration.

The effect of the various causes of dark current varies according to the operating and
environmental conditions (applied voltage, gain, temperature, humidity etc.), and also
according to the tube’s history (past storage and illumination conditions, etc.). Some
of the causes are merely temporary in their effect, in which case the dark current
eventually settles down to a stable level. Others are permanent.

The permanent causes of dark current (i.e. those that are independent of the history
of the tube) are mainly:
− leakage currents
− thermionic emission
− field emission
− background radiation.

3.1.1 Leakage currents
These are the sole cause of the continuous component of the dark current and are due
to the surface conductivity of the electrode supports, envelope, base, and socket.
Surface conductivity on the inside of the tube is affected by the alkali metals used,
and on the outside by agents such as dust, moisture and grease.

The dark current component due to leakage currents varies roughly linearly with the
high voltage applied (that is, much less markedly than the gain, which varies
exponentially at a high power of the voltage). It is therefore the predominant
component when the tube operates at low gain. It is also the predominant component
at low temperatures, where thermionic emission is less significant.
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3.1.2 Thermionic emission
One of the main causes of the pulse component of the dark current is thermionic
emission from the photocathode. This emission obeys Richardson’s law

in which J represents current density, A is a constant, T is absolute temperature, and

(3.1)J = AT 2 exp( Wth/kT)

k is the Boltzmann constant. The term Wth is the thermionic work function of the
photocathode material; for semiconductors, it is less than the photoemission threshold
(§A1.1.3), being about 1 to 2 eV for cathodes sensitive to visible light.

Although the thermionic work function and the photoemission threshold are separate
quantities, within a given family of tubes, there appears to be a statistical correlation
that makes high red and infrared sensitivity incompatible with low dark current.

At room temperature, the thermionic emission of photocathodes with maximum
sensitivity in the range 300 to 500 nm is between 10 and 1000 electrons/cm2s. It
increases, however, as the sensitivity extends towards the long wavelengths (lower
electron affinity) and with an S1(C) photocathode can be as high as a few million
electrons/cm2s. Thermionic emission also occurs at the dynodes of the multiplier.

As Eq.3.1 shows, thermionic emission decreases rapidly as temperature decreases.
Figure 3.1 shows the variation in the number of dark current pulses per second as a
function of temperature for bialkaline (SbKCs) cathodes and trialkaline cathodes with
extended red sensitivity (SbNa2KCs). At normal temperatures, thermionic emission is
the predominating cause of the dark current, at least at normal supply voltages. At
low temperatures, it becomes negligible compared with other causes, and the dark
pulse rate tends towards a plateau as the temperature decreases.

Dark pulses due to thermionic emission are mainly of the single-electron type (§2.3),
and those originating in the electron multiplier are amplified less than those from the
cathode. The amplitude distribution of the pulses depends largely on the multiplier
design (Fig.2.9).
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Fig.3.1 Number of dark pulses per second as a function of
temperature, for SbKCs and SbNa2KCs photocathodes

3.1.3 Field emission
Although the electric fields in a photomultiplier are fairly low, there is some electron
emission due to field effect (cold emission) because of inevitable roughness of the
electrodes; this is aggravated by the adsorption of alkali metals (mainly caesium) at
the electrode surfaces, which considerably reduces their electron affinity. Electrons
emitted by field effect bombard the envelope glass and other surfaces causing
emission of photons which can reach the photocathode.

The dark pulse rate due to field emission does not depend much on temperature. It
does depend on the applied voltage, however, and increases faster than the gain,
which is one of the principal factors that sets a practical limit to gain. Figure 3.2
shows the three ranges of supply voltage in which each of the three causes of dark
current, so far discussed, predominates.
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Fig.3.2 Major causes of dark current versus supply voltage

3.1.4 Background radiation
Background radiation, including that due to the materials of the tube (e.g. 40K), is
another cause of dark pulses. High energy charged particles (e.g. cosmic rays) can
give rise to Cherenkov radiation in the tube window, which in turn causes
photoemission. Cherenkov radiation can generate several photons at a time, so the
dark pulses it causes (multi-electron noise) are often of high amplitude.
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3.1.5 Exposure
Of the many temporary causes of dark current, the two most often encountered are
previous exposure to light and negative-polarity connection of the photocathode.

Exposure to normal light, even when no voltage is applied, considerably increases the
subsequent dark current, owing to excitation of the photocathode itself and the glass
of the envelope. The dark current increase depends on the wavelength, the incident
flux, and the duration of exposure. Figures 3.3 to 3.5 show how the dark current of
an S13 photocathode (SbCs3 on fused silica) stabilizes after different conditions of
exposure. (In the graphs, the number of electrons per second constituting the dark
current during the stabilization period has been normalized with respect to the steady-
state dark current.) After prolonged exposure to sunlight, the time required to stabilize
the dark current may be as long as 48 hours. Hence the necessity of guarding
photomultipliers against exposure to ambient light and, if possible, storing them in the
dark when they are not in use.

A similar increase of dark current occurs if a photomultiplier in operation is
accidentally subjected to a brief, intense flash of ‘UV’ light.

Fig.3.3 Dark-current decay of an S13 cathode at 0 °C following
exposure for 100 s at λ = 366 nm, with incident flux as parameter.
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Fig.3.4 Dark-current decay of an S13 cathode at 0 °C following exposure to an incident
flux of 120 µW at λ = 366 nm, with exposure time as parameter. Vertical scale, relative

number of electrons per second
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Fig.3.5 Dark-current decay of an S13 cathode at 0 °C following exposure for 100 s to
equal numbers of photons, with wavelength as parameter (φ ∝ 1/λ). Vertical scale,

relative number of electrons per second
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3.1.6 High-voltage polarity
In some applications it is necessary to ground the anode and apply a high negative
potential to the cathode (§5.1). When this is done the dark current immediately
assumes a value much higher than normal (curve 1, Fig.3.6) and may take more than
half an hour to settle back. The lower the normal dark current is, the more
pronounced the rise and the longer the settling time.

If a tube connected in negative polarity is not properly insulated from its surround-
ings, insulation breakdown may occur between the envelope and earth; this generates
a high, unstable, dark current and can quickly destroy the tube by electrolysis of the
glass. The risk can be guarded against by coating the wall of the tube with conductive
paint, taken to photocathode potential through a protective resistor of about 10 MΩ,
and/or enclosing it in and adequate thickness of insulation (§5.1).

When the photocathode is grounded and the anode positive, the dark current stabilizes
quickly. This polarity should therefore be used whenever possible.

Fig.3.6 Dark-current behaviour following application of high voltage in
1) negative, 2) positive polarity. Vertical scale, number of dark pulses

per second
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3.2 Statistical nature of noise
It is important to recognize the irreducible nature of noise, which always accompanies
the signals to be measured and cannot be cancelled or compensated. All the causes
of noise encountered in photomultipliers have a common physical origin, namely the
spontaneous fluctuation of currents and voltages due mainly to the discontinuous
nature of radiation, electricity and matter. Noise is, therefore, closely related to the

3−8



statistical nature of photoemission and secondary emission and is inherent in the
signal. Consider the following example.

A photomultiplier with a cathode sensitivity Sk = 10 mA/W and operated at a gain
G = 106 is exposed to a continuous flux Φe = 10−9 W. The resulting anode voltage
across a load resistance RL = 5 kΩ is Va = ΦeSKGRL = 50 mV. However, when this
is applied to an oscilloscope with a stray capacitance of 50 pF (equivalent noise band
BN = 1/4RLC = 1 MHz) a peak-to-peak fluctuation of about ±20 mV is observed,
corresponding to an anode current fluctuation of ±4 µA. That this fluctuation is noise
inherent in the signal is evidenced by the fact that it disappears completely when the
incident flux is removed. In this example, the fluctuation is relatively large because
the number of photoelectrons emitted in a single period, corresponding to the
reciprocal of the noise band (1/BN = 1 µs), is small and fluctuates considerably from
one period to the next.

If the incident flux is not continuous but pulsed, the resulting anode current fluctuates
from pulse to pulse. The amplitude of the fluctuation determines the energy resolution
of the photomultiplier; it is of the same statistical nature as the noise and yields to
the same analytical procedures.

3.2.1 Photon noise
Photon emission is a random process, the number of photons emitted during like
intervals being subject to a statistical distribution. To begin with we shall assume that
fluctuations in the number of photons striking the cathode and the number of
photoelectrons emitted both follow a Poisson distribution.

Consider a photocathode constantly illuminated by a source (e.g. a tungsten filament
lamp) from which photons are emitted independently of each other. Assume that Np
photons are received by the photocathode during a fairly long period T (Fig.3.7). We
can divide this period into a large number of intervals τ. A photon emitted during the
period T has a probability p = τ/T of being received during an interval τ and a
probability (1 − p) of being received during the complementary interval (T − τ).

. . . . . . .

τ

}

0 T

MRB206

Fig.3.7 The probability of a photon arriving during the interval τ is
p = τ/T
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All photons emitted during the period T have the same probability p of being
received during an interval τ. If the number of photons reaching the cathode during
the period T is Np, and the number during the interval τ is np,τ, then the number
during the complementary interval (T − τ) is (Np − np,τ). Thus, the possible number
of combinations of Np photons taken np,τ at a time during the period T is

and the probability P(np,τ) of obtaining np,τ photons during the interval τ is











Np

np,τ
=

Np!

np,τ!(Np np,τ)!

This is the binomial distribution, with mean value

(3.2)P(np,τ) =










Np

np,τ









τ
T

np,τ 







1 τ
T

Np np,τ

and standard deviation

np,τ = Np
τ
T
= n p τ

where = Np/T is the average number of photons received per unit time.

σ = Np
τ
T









1 τ
T

= n p τ 







1 τ
T

n p

If T is taken fairly large or, which amounts to the same, if the probability p = τ/T is
very small, the binomial distribution tends towards the Poisson distribution:

In this case, the mean value and the standard deviation are, respectively

(3.3)P(np,τ) =
(np,τ)

np,τ exp ( np,τ)

np,τ!

Hence, the relative variance is

(3.4)
np,τ = n pτ

σnp,τ = np,τ = n pτ

from which it is evident that the larger the mean number of photons received during

(3.5)vn p,τ =
σ2

n p,τ

n2
p,τ

=
1

np,τ

=
1

n pτ

the interval τ, the smaller are the fluctuations in the number.
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3.2.2 Cathode current fluctuations
Photoemission is a random process which can usually be treated on its own. Each
photon that strikes the cathode has a probability ρ (quantum efficiency) of liberating
an electron and a probability (1 − ρ) of not liberating one. When the randomness of
photon arrival is also to be taken into account, the mean value and standardnk,τ
deviation σ of the number of photoelectrons emitted during an interval τ are,
respectively

Hence the relative variance is

(3.6)
nk,τ = n p ρ τ and

σn k,τ = n p ρ τ

For the interval τ the value of the cathode current Ik,τ is given by

(3.7)vn k,τ =
σ2

n k,τ

n2
k,τ

=
1

nk,τ

=
1

n pρτ

where e is the electron charge. Ik,τ differs from the mean current over a large number

Ik,τ =
enk,τ

τ

of intervals, Ik, by an amount

the mean square value of which is

(3.8)ik,τ = Ik,τ Ik =
e
τ

(nk,τ nk,τ)

(3.9)i 2
k,τ =

e 2

τ2
σ2

n k,τ =
e 2 n pρ

τ
=

e Ik

τ

3.2.3 Noise spectrum
When the photocathode is illuminated by a constant flux, the photocurrent Ik(t)
consists of a constant component Ik and a fluctuating component ik(t):

Here, ik(t) is a true random quantity whose mean value over a long period T is

ik(t) = Ik(t) Ik

i k(t)
zero. However, there may be a certain correlation between values of ik(t) measured
at different times; this is expressed by the autocorrelation function:
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For s = 0, the autocorrelation function assumes a maximum equal to the mean square

(3.10)γ(s) = ik(t) ik (t s)

value . As s increases, γ(s) decreases and tends towards zero. Thus, we cani 2
k(t)

characterize ik(t) by a time constant τ0 such that γ(s) becomes less than a specified
very low value (γ(s) ≤ ε) for s >> τ0. If τ0 is very small compared with the
observation time of the signal ik(t), which it usually is in practice, the correlation can
be disregarded.

We can express the autocorrelation function γ(s) another way by using the Fourier
transform

where w(f) represents the spectral density or noise spectrum of ik(t). The inverse

(3.11)γ(s) = ⌡
⌠
∞

0

w(f)cos (2πfs) df

Fourier transform expresses the noise spectrum as a function of γ(s):

This is the Wiener-Khintchine theorem which shows that the spectral density is

(3.12)w(f) = 4⌡
⌠
∞

0

ik(t) ik(t s)cos(2πfs)ds

independent of the frequency as long as 2πfτ0 << 1.

If we set s equal to zero in Eq.3.10 and 3.11, we obtain

which relates the spectral density to the mean square value of ik(t). The term

(3.13)γ(0) = i 2
k (t) = ⌡

⌠
∞

0

w(f) df

i 2
k (t)

represents the total noise power throughout the frequency spectrum, as a function of
the parameters that characterize the random nature of the photon emission and the
photon-electron conversion.

Consider the mean value of the fluctuating component ik(t) of the photocurrent over
an interval τ that is very small compared with the observation time:
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The quantity ik,τ fluctuates randomly from one interval to another; its mean square

ik,τ =
1
τ ⌡

⌠
t τ

t

ik (t) dt

value

is independent of time because of the stationary nature of the random variable ik(t).

i 2
k,τ =

1

τ2 ⌡
⌠
τ

0
⌡
⌠
τ

0

ik(t) ik(t′) dt dt′

However, if τ >> τ0,

so, by substitution from Eq.3.9,

(3.14)i 2
k,τ =

w(f)
2τ

which shows that, in the frequency range where τ >> τ0, the spectral density w(f) is

(3.15)w(f) = 2eIk

constant.

Finally, by combining Eq.3.13 and 3.15 we can write:

or, for a frequency interval ∆f,

i 2
k (t) = 2eIk ⌡

⌠
∞

0

df

which is the well known Schottky formula. Dividing by Ik
2 and substituting from

(3.16)i 2
k (t) = 2eIk∆f

Eq.3.9, gives

the square root of which is the reciprocal of the signal-to-noise ratio:

(3.17)
i 2
k (t)

I 2
k

=
2e∆f

Ik

=
2∆f

n p ρ

(3.18a)N
S

=
2∆f

n p ρ
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So the signal-to-noise ratio due to cathode current fluctuation under conditions of
constant illumination, is

in the frequency interval ∆f.

(3.18b)S
N

=
n p ρ
2∆f

3.2.4 Noise in scintillation detectors
So far we have considered only the fluctuations of a continuous photocurrent due to
constant illumination of the cathode. However, we can extend the same reasoning to
the photocurrent of a scintillation detector, even though the scintillation photon pulses
decay exponentially, provided we choose sampling intervals long enough to include
effectively the whole of a scintillation. As a first approximation we can assume that
the number of photons per scintillation, np,s, follows a Poisson distribution; if np,s is
large, the Poisson distribution tends towards a gaussian distribution. The number of
photoelectrons per scintillation, nk,s, then also follows a gaussian distribution, with
relative variance

The probability distribution of the number of photoelectrons is usually determined on

(3.19)vn k,s =
σ2

n k,s

n 2
k,s

=
1

nk,s

the basis of an anode pulse histogram generated by a multichannel pulse-height
analyser. When the scintillations are due to monoenergetic radiation (e.g. X-or γ-rays),
the histogram has a more or less well-defined peak corresponding to photoelectric
absorption of the radiation in the scintillator. If the FWHM of the peak corresponds
to ∆nk,s electrons emitted by the cathode, the energy resolution of the photomultiplier-
scintillator combination is

Re =
∆nk,s

nk,s

which, for a gaussian distribution, reduces to

Re = 2.36 vn k,s

or, from Eq.3.19,
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Comparison of Eq.3.20 and 3.18 illustrates the close relation between energy

(3.20)Re =
2.36

nk,s

resolution and signal-to-noise ratio.

3.2.5 Noise contribution of the electron multiplier
To take account of fluctuations in the secondary emission of the dynodes, a more
extended treatment is required. Fluctuations in electron multiplication have been
treated statistically by Lombard and Martin, using the method of generating functions;
here, we merely summarize the main results.

First, assume that the random processes at all stages of the electron multiplier obey
a Poisson distribution and occur independently of each other. The number of electrons
reaching the anode during an interval τ is

where G is the photomultiplier gain. The relative variance of na,τ is

(3.21)na,τ = nk,τ G = np,τ ρG

where vG is the relative variance of the gain. It has been shown that when all

(3.22)vn a,τ =
σ2

n a,τ

n2
a,τ

=
1

n pρτ
(1 vG)

electron-multiplier stages except the first have the same gain g,

where g1 is the (usually higher) gain of the first stage, and vη is the relative variance

(3.23)vG = vη
1
η

. 1
g1

. g
g 1

of the collection efficiency η of the input optics. In the ideal case, when η is
independent of the point on the photocathode from which the electrons originate,

e.g. for η = 0.95, vη ≈ 0.05.

(3.24)vη =
1 η

η

If we introduce the fluctuating component ia(t) of the anode current,

Eq.3.17 and 3.20 can be replaced by

ia(t) = Ia(t) Ia = ik(t) G
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and

(3.25)
i 2
a (t)

I 2
a

=
2∆f

n pρ
(1 vG) = 2e∆f

Ik

(1 vG) and

(3.26)Re = 2.36
1 vG

nk,s

The Poisson distribution assumption for secondary emission is only a rough
approximation. The single-electron spectrum, which reveals the probability distribution
of the electron multiplier gain, provides an accurate means to test it experimentally.

Equation 3.23 can be restated in the form

where

(3.27)vG = vη
vM

η

is the relative variance of the electron multiplier gain. This can be calculated from the

(3.28)vM =
1
g1

. g
g 1

single-electron spectrum obtained as follows.

The cathode is illuminated by a constant flux sufficient to cause the emission of fewer
than 104 electrons per second, so that the mean interval between successive electrons
is at least 100 µs. The resulting anode charges are then integrated with a time
constant of less than 1 µs so that each voltage pulse has a very low probability
(< 1%) of being due to the emission of more than one electron at the cathode. The
resulting anode pulse histogram obtained from a multichannel analyser constitutes the
single-electron spectrum.

Figures 2.4 and 3.8 show examples of single-electron spectra obtained in this way
from photomultipliers with focusing and with venetian-blind dynodes. In neither case
is the Poisson-distribution assumption confirmed: the variance is larger than that given
by Eq.3.28, the discrepancy being greater for venetian-blind than for focusing
dynodes. Anything that interferes with the input system focusing or impairs the
collection efficiency increases the variance.
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(a) (b)

Fig.3.8 Single-electron spectra of photomultipliers with CuBe dynodes a) linear-focusing, b) venetian-
blind. Vertical axes, pulse frequency (arbitrary scale; horizontal axes, anode pulse amplitude referred to

number of electrons per pulse at the cathode

0 1e 2e 3e 4e 5e

νM = 0.65

0 1e 2e 3e 4e

νM = 0.35

Considering that the relative variance vG only appears as a corrective factor in
Eq.3.25 and 3.26, it is simpler and sufficient to use Eq.3.27 and to consider vη as an
experimental factor. For tubes with focusing dynodes, vη is between 0.1 and 0.2,
depending on structural details and the voltages used. For venetian-blind dynode
structures, vη is between 0.2 and 0.4. At very low voltage (for example, 100 V
between cathode and first dynode), vη may be as high as 0.5.

Equation 3.28 has the merit of highlighting the predominant effect of the first- stage
gain g1. For example, if g1 = 7, g = 4, and vη = 0.1, vG can be about 0.3; whereas
if g1 = g = 3, and vη = 0.4, vG can be close to unity.

3.2.6 Johnson noise
Equation 3.25 can be rewritten as follows to give the reciprocal of the signal-to-noise
ratio at the anode

where Φ is the incident flux and SK the cathode sensitivity. Comparison of this with

(3.29)N
S

=
i 2
a

I 2
a

=
2e∆f (1 vG)

Ik

=
2e∆f (1 vG)

ΦSk

Eqs 3.17 and 3.18 illustrate one of the fundamental advantages of amplification by
secondary emission; the signal-to-noise ratio is only slightly degraded (20% in the
worst case) and, to a first approximation, is nearly independent of the gain used.
Hence, there is no objection to using the maximum gain, provided the mean anode
current stays within the permissible limits and no feedback phenomena interfere with
the operation (§5.5.2).
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In any case, there is a minimum gain for which the signal noise (or shot noise)
becomes predominant compared with the Johnson noise in the load resistance RLC.
(For simplicity, intrinsic amplifier noise is here disregarded). The RMS value of the
signal noise is given by

and the RMS value of Johnson noise by

(3.30)
RL i 2

a = GRL 2e∆f (1 vG) Ik

from which it is possible to calculate that the minimum gain for which the Johnson

(3.31)4kTRL∆f

noise is negligible compared with the signal noise,

or, with T = 300 K, k = 1.38 × 10−23 J/K, vG = 0.5

(3.32)G >> 2kT
eRLIk (1 vG)

An approximation giving a reasonable margin of safety is

G 2 >> 3.5 × 10 2(V)
RL(Ω) Ik (A)

where the mean anode current Ia = GIk

(3.33)G 2
min =

1(V)
RL(Ω) Ik (A)

or Gmin =
1(V)

RL(Ω) Ia (A)

3.2.7 Scintillation detection
Pulse mode. This is the mode used in nuclear spectrometry. Equation 3.26 shows that
if the number of light photons per scintillation is proportional to the energy Eph of
the X- or γ-photons absorbed in the scintillator, the energy resolution should vary
inversely as . However, this is not observed experimentally, especially at highEph
energy levels. When the γ-radiation of 137Cs (662 keV) is absorbed in a NaI(Tl)
scintillator for example, the number of photons emitted should give a resolution of
about 5%; however, the value observed experimentally is closer to 7%. Reasons for
the discrepancy are:
− scintillation efficiency is not uniform throughout the bulk of the scintillator;
− cathode sensitivity is not uniform − scintillations from different parts of the

scintillator give rise to different numbers of electrons;
− variations in the energy conversion process in the scintillator.
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Faulty optical coupling, incomplete collection at the first dynode, or anything tending
to impair cathode uniformity also impairs the energy resolution.

A theoretical analysis which has served as the basis for all subsequent statistical
treatments of energy spectrometry has shown that the energy resolution can be
expressed by the general equation

(3.34)
Re = 2.36











vn p,s

1 ρ vG

np,s ρ

where ρ is the photocathode quantum efficiency, vG the relative variance of the
photomultiplier gain (Eq.3.23 or 3.27) and vn p,s the relative variance of the photon
distribution, which must be determined empirically.

Letting represent the ratio of the initial energy of the X- or γ-photonsk = Eph/np,s
completely absorbed in the scintillator to the mean number of photons received by the
photocathode, Eq.3.34 can be rewritten in the form

where

(3.35)R 2
e = α β

Eph

and

α = 2.362vn p,s

β = 2.362 (1 ρ vG) k
ρ

In Fig.3.9, a straight line corresponding to Eq.3.35 is superimposed on values
obtained by measurement. At energies below about 300 keV Eq.3.35 is in good
agreement. From the intersection of the line with the ordinate it is possible to
determine α and vn p,s empirically. At higher energies the resolution is better than
predicted by Eq.3.35, as shown by the measured values being below the straight line.
Various explanations for this have been proposed.
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Fig.3.9 Energy resolution as a function of the X or γ photon energy E
absorbed in the scintillator

The lower line in Fig.3.9 is based on an assumed Poisson distribution, ,vn p,s = 1/ np,s
for which Eq.3.35 simplifies to

where β′ = 2.362 (1 + vG) k/ρ. This is identical to Eq.3.26 and represents a limiting

R 2
e =

β′
Eph

case for energy resolution; the slope of the line depends on the quantum efficiency
and the variances of the gain.

Continuous mode. In some applications, scintillation detectors are used in a continu-
ous mode. In scanning electron microscopy, for example, electrons reflected from a
specimen are accelerated onto a scintillator and the resulting output of a photo-
multiplier provides the video signal for a television monitor. Continuous thickness
measurements of sheet metal, paper, etc. by the absorption of β- or γ-radiation are
also based on this mode.

The quantity to be measured is the arrival rate of the quanta (X-, γ-photons, α-, β-
particles, etc.). However, because some give rise to no scintillation, there is an
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uncertainty in the number of quanta, nq, which depends on the probability p of their
interaction with the scintillator. Thus, if Q is the ratio of the number of electrons
received at the anode, na, to the number of interactions in the scintillator per unit of
time,

which is equivalent to Eq.3.21, so the same analysis applies. Replacing the number

Q =
na

nqp
and

(3.36)na = nqpQ

of photons np,τ, the quantum efficiency ρ and the gain G by the nq, p and Q
respectively, we can write Eq 3.17 in the form

This allows only for fluctuations in the number of interactions in the scintillator;

(3.37)
i 2
k (t)

I 2
k

=
2∆ f

n qp

however, the number of photons created per interaction, the number of photoelectrons
emitted, and the number of secondary electrons are also subject to fluctuation,
independently of each other and of the number of scintillator interactions. Fortunately,
the total of these fluctuations can be evaluated on the basis of the anode pulse
amplitude distribution corresponding to the single-quantum spectrum (SQS). This can
be determined with a multichannel analyser by irradiating the scintillator with quanta
of the type in question (X- or γ-photons, α-, β-particles, etc.). The spectrum is
characterized by a relative variance vQ. With an NaI(Tl) scintillator, for example, this
ranges from 0.002 for the γ-radiation of 57Co (Eγ = 122 keV) to 0.450 for the γ-
radiation of 137Cs (Eγ = 662 keV). Some spectra with an exponential shape or with
widely separated peaks (§A.3) can have a variance close to unity. By analogy with
Eq.3.25, vG can be replaced by vQ and Eq.3.37 rewritten in the form

vQ, like vG, is a corrective term that lowers the S/N ratio by a factor 1/(1+vQ)1/2,

(3.38)i 2
a (t)

Ia (t)2
=

2∆ f

n qp
(1 vQ)

which is usually between 0.7 and 0.9; the number of interactions in the scintillator
remains the predominant factor. Table 3.1 compares the parameters used in the pulse-
mode and analogue-mode analysis and illustrates their close parallelism.
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Table 3.1
Statistical parameters in the detection of continuous light and scintillation pulses.

continuous light scintillation pulses

photon flux

⇓
X, γ, α, β quanta, etc.

⇓
photon noise quantum noise

relative variance, 1

n p

relative variance, 1

n q

photoemission
quantum efficiency, ρ

⇓

scintillator interactions
interaction probability, p

⇓
random number of photoelectrons random number of scintillations

relative variance, 1

n pρ

multiplication by secondary
emission

⇓

relative variance, 1

n qp

photon-current
conversion

⇓
single-electron spectrum (SES) single-quantum spectrum (SQS)

relative variance, vM → vG relative variance, vQ

noise-to-signal ratio

(Eq.3.25)N
S
=

2∆f (1 vG)

n p ρ

noise-to-signal ratio

(Eq.3.38)N
S
=

2∆f (1 vQ)

n q p
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3.3 Equivalent noise input and minimum discernible signal
Because the noise sources dealt with so far cause uncertainty in the detection of small
signals or inaccuracy in their measurement, we have pursued an analysis that
emphasizes the relation between noise and energy resolution and leads to a
mathematical expression for signal-to-noise ratio. Now we shall give a more general
definition of signal-to-noise ratio and introduce the new quantities, noise equivalent
power and equivalent noise input. These can be measured experimentally and used
for determining the minimum discernible signal. In practice, however, the minimum
discernible signal also depends on the method of detection, the observer, and the
probability that can be accepted of obtaining a spurious signal.

3.3.1 Definitions
Several definitions relating to maximum sensitivity are sanctioned by usage or
recommended by the IEC. However there are still no full and precise standards on the
subject. Here we shall give the most useful definitions, together with the abbreviations
under which they are often known.

Equivalent anode dark current input, EADCI, of an individual photomultiplier is the
flux that must be applied to the photocathode to produce an anode current equal to
the dark current Iao. Hence, it is the ratio of the anode dark current to the anode
sensitivity

expressed in watts or lumens, depending on the unit of Sa. It varies greatly with the

(3.39)EADCI =
Iao

Sa

experimental conditions (temperature, humidity, stabilizing time), and is of practical
interest only when the tube is operating continuously.

Signal-to-noise ratio, S/N, defined at the system output is the ratio between the RMS
values of the output signal and the overall noise (signal noise plus dark current noise)
within the system bandwidth.

Noise equivalent power, NEP, (symbol PN) is the incident flux that produces an RMS
output signal equal to the RMS noise measured at the output under specific operating
conditions. It may be expressed in watts or lumens depending on the nature of the
application and the incident flux, and is significant only in relation to the specified
set of operating conditions; (for instance: incident flux spectrum, modulation
frequency, measuring equipment bandwidth, illuminated cathode area, operating
temperature). The lower the noise equivalent power, the better the photomultiplier is
able to detect low flux inputs.
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Some publications specify PN for a bandwidth of 1 Hz based on the assumption of
constant spectral density throughout the frequency range concerned. It is then
expressed in W/Hz1/2 or lm/Hz1/2.

Equivalent noise input, ENI, (symbol EN) is the ratio of the noise equivalent power
to the area of the cathode, assuming the whole cathode to be uniformly illuminated.
It is expressed in W/m2 or lm/m2. For a bandwidth of 1 Hz it is expressed in W/m2

Hz1/2 or lm/m2 Hz1/2. Like noise equivalent power, a specified equivalent noise input
is significant only in relation to a specified set of operating conditions.

Detectivity, D, is the reciprocal of the noise equivalent power:

It is expressed in W-1 or lm-1.

(3.40)D =
1

PN

3.3.2 Minimum value of noise equivalent power
The photomultiplier and its load resistance account for the greater contribution to the
total noise measured, the electronics for a much smaller contribution. Two of the
main sources of noise are:
− the shot noise associated with the photomultiplier signal current, Eq.3.30
− the Johnson noise due to the load resistance, Eq.3.31.

Both apply over a frequency interval of ∆f. All the other causes of noise can be taken
into account by assuming an additional random component of the anode current with

a mean square value over the interval ∆f. The signal-to-noise ratio of thei 2
a,n

photomultiplier is then

(3.41)

S
N

=
Ia

4kT∆f
RL

2e G 2 Ik ∆f (1 vG) i 2
a,n

The term mainly represents the noise associated with the different componentsi 2
a,n

of the dark current (thermionic noise, field emission noise, etc.) plus such additional
noise as the input noise of the electronics. It does not necessarily obey the Schottky
formula, nor should it be regarded as wideband white noise; it is sufficient to bear
in mind that it applies to a frequency interval ∆f equal to the energy bandwidth BN,
or equivalent noise bandwidth, of the measuring circuit.
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It is more convenient to express the signal-to-noise ratio as a function of the cathode
current; Eq.3.41 then becomes

where a = 1 + vG and is the calculated additional anode noise referred

(3.42)

S
N

=
Ik

BN













4kT

G 2RL

2eaIk

i 2
k,n

BN

i 2
k,n = i 2

a,n /G 2

to the cathode. In Eq.3.42 this term is referred to the unit of bandwidth ( ).i 2
k,n /BN

Ik

0

Ik,s

Ik,o

MRB207
t

Fig.3.10 Cathode current when the input flux is chopped

Equation 3.42 shows that the most effective way to improve the signal-to-noise ratio
is to reduce the bandwidth BN of the measuring circuit, at least in the frequency range

where the is still small. A light modulator combined with a very narrow bandi 2
k,n /BN

AC amplifier is often used for this (Fig.3.13) and has the advantage of automatically
cancelling the DC component of the dark current, although the noise associated with
the dark current is amplified normally. If the amplifier bandwidth is very narrow (a
few hertz), only the fundamental component of the modulated signal is amplified.

If the light is modulated by a symmetrical square wave (Fig.3.10), the RMS value of
the fundamental component of the cathode current due to the signal is

and the mean noise current associated with the signal and measured in the equivalent

(3.43)
Ik,s

π
2

noise bandwidth BN is

i 2
k,s =

2ea Ik,s BN

2
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Therefore, assuming that G2RL is large enough to allow the Johnson noise to be
neglected, the ratio of the RMS signal and noise currents is

The noise equivalent power, PN, is found by setting the S/N ratio equal to unity:

(3.44)
S
N

=
Ik,s

π
2

eaIk,sBN i 2
k,n

If the equivalent noise bandwidth BN tends towards zero,

(3.45)PN =
Ik,s

Sk

at S
N

= 1

provided the spectral density tends towards a finite limit as BN tends towards

(3.46)lim
BN→ 0

PN

BN

=
π
Sk

i 2
k,n

2BN

i 2
k,n /BN

zero. This shows that PN has significance only when the bandwidth is defined in

which is specified (width and centre frequency). The value of can bei 2
k,n i 2

k,n /BN

of the order of 10−16 A/Hz½ for a photomultiplier having a photoemission threshold
in the visible spectrum (Wph > 1.5 eV).

A limiting case to consider is that in which the noise component represents onlyi 2
k,n

the noise power associated with the dark current, that is to say

where Iko is the equivalent dark current of the photocathode, corresponding to the

(3.47)i 2
k,n = 2ea Iko BN

anode dark current divided by the gain, Iko = Iao/G. Equation 3.47 represents a

minimum value for the noise component , disregarding the DC component of thei 2
k,n

dark current (i.e. the leakage current, which is usually negligible) and the noise
contribution of the measuring circuits. The minimum noise equivalent power PN
referred to the bandwidth is then

(3.48)lim
BN→0













PN

BN

=
π
Sk

eaIko
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3.3.3 Effect of bandwidth
Equation 3.48 is valid only when the bandwidth is very small (a few hertz); we shall
now consider how the noise equivalent power varies as bandwidth increases.

Assume that the bandwidth of the amplifier in the measuring circuit is equivalent to
that of an RC circuit, the DC component of the signal being blocked (Fig.3.13).
When the incident flux is modulated by a symmetrical square wave (Fig.3.10), the
RMS value of the periodic component of the cathode current due to the signal is

where the modulation coefficient m ≤ 1 and depends on the bandwidth and

(3.49)(Ik Iko)2 = m
Ik,s

2

modulation frequency. If the bandwidth is taken as the 3 dB cut-off frequency of the
RC circuit.

and the modulation frequency fm as 100 Hz, Fourier analysis shows that the value of

B3dB = fc =
1

2πRC

m is

Figure 3.11 shows the variation of m as a function of B3dB. The signal-to-noise ratio

m =
2
π

2
∞

n=1

1

(2n 1)2
. 1

1










100(2n 1)
B3dB

2

is thus

and, from Eq.3.45, the noise equivalent power is

(3.50)
S
N

=
m Ik,s

2 eaIk,s BN i 2
k,n

When the bandwidth is high (in practice, B3dB > 103 Hz), m tends towards unity and

(3.51)
PN =

2eaBN

m 2SK

















1 1
m 2 i 2

k,n

e 2a 2B 2
N

the expression for PN/NBN tends towards
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(3.52)lim
BN→∞













PN

BN

=
4ea
Sk

BN

m

B3dB  (Hz)MRB208
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Fig.3.11 Modulation coefficient m as a function of the 3 dB bandwidth
of the measuring circuit. (fm = 100 Hz)

Figure 3.12 shows the variation in the noise equivalent power PN as a function of the
energy bandwidth BN for two values of . The solid line on the left correspond toi 2

k,n
very low values of bandwidth (BN < 10 Hz) centred about the fundamental frequency
of the modulated signal. This is where the smallest value of the noise equivalent
power is obtained; the practical minimum is determined by the noise associated with
the dark current, hence the interest in keeping the dark current as low as possible.
The solid lines on the right correspond to high values of bandwidth (BN > 103 Hz,
for a modulation frequency of 100 Hz). This is where the noise equivalent power PN
becomes proportional to the energy bandwidth of the measuring circuit.
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Fig.3.12 Noise equivalent power (flux as a function of the measuring
circuit passband, for two value of additional noise: 1) 10−16 A/Hz1/2,

2) 7 × 10−18 A/Hz1/2
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3.3.4 Measurement of noise equivalent power
Figure 3.13 shows the set-up used for determining the minimum value of the noise
equivalent power. The incident flux is mechanically chopped to obtain a symmetrical
square-wave voltage at the photomultiplier anode; the usual chopping frequency is
100 Hz. The photomultiplier signal is applied to a filter with a 3 dB bandwidth of
1000 Hz (the preceding amplifier blocks the DC component). A voltmeter measures
the RMS value of the amplified voltage.
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Fig.3.13 Set-up for measuring noise equivalent power

The minimum noise equivalent power is determined by measuring the signal-to-noise
ratio. The effective bandwidth of the measuring set-up being 1000 Hz, the signal-to-
noise ratio at a bandwidth of 1 Hz is obtained by calculation. Two measurements are
carried out in succession:

− first, with no light, the RMS noise voltage VN is measured for an energy
bandwidth BN = (π/2)1000 Hz. Assuming the spectral density of the noise to be
constant throughout the frequency range under consideration, the RMS noise
voltage for a bandwidth of 1 Hz is then

− next, with chopped light, the RMS signal voltage VS is measured for a 3 dB

(3.53)
VN (1 Hz) =

VN

π
2

1000

V/Hz ½

bandwidth of 1000 Hz. The RMS value calculated for a bandwidth of 1 Hz is the
RMS value of the fundamental component of the modulated voltage. Thus, from
Eq.3.43 and 3.49,

where m takes account of the finite bandwidth (Fig.3.11). For a bandwidth of

VS (1 Hz) =
2Vs 2

mπ

1000 Hz and a modulation frequency of 100 Hz, m = 0.968; hence,

Thus, from Eqs 3.53 and 3.54, for an energy bandwidth of 1 Hz,

(3.54)Vs (1 Hz) = 0.930 Vs
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Finally, the minimum noise equivalent power is given by

VS (1 Hz)

VN (1 Hz)
= 0.930

VS

VN

1000 π
2

or

(3.55)PN = Φ
VN (1 Hz)

VS (1 Hz)

expressed in W/Hz½ or in lm/Hz½ depending on the unit of incident flux, Φ.

(3.56)
PN =

VN Φ

0.930 VS 1000 π
2
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APPENDIX 3

A3.1 Practical scintillation spectra
β-spectrum The β-spectrum is intermediate between the uniform and the triangular
distributions; its relative variance v is close to 0.4.

γ-spectrum consisting of a single gaussian peak (55Fe, 57Co), .Re =2.36 v
55Fe: Eγ = 5.9 keV, Re = 0.40, v = 2.9 × 10−2

57Co: Eγ = 122 keV, Re = 0.10, v = 1.8 × 10−3

γ-spectrum with Compton distribution For a typical case, 137Cs (Eγ = 662 keV), v ≈
0.45.

Complex spectrum with several peaks approximating delta functions When the peaks
are narrow and entirely separate v is between 0.5 and 1.

A3.2 Noise equivalent bandwidth
Consider a linear transmission system having a transfer function G(f) for a signal of
frequency f and unit amplitude. If a randomly varying signal i(t) − for example, the
noise component of photomultiplier anode current − is applied to such a system, its
response is(t) is given by

i 2
s (t) = ⌡

⌠
∞

0

w(f) G(f) 2df

where w(f) is the energy density spectrum of i(t).

If w(f) can be assumed to be independent of frequency so that it can be replaced by
a constant w0, then the original transmission system can be replaced by a notional one
which fulfils the following conditions:
− it transmits a constant power density equal to w0G0

2 throughout a frequency interval
BN = f2 − f1;

− the total noise power it transmits throughout this interval is equal to that of the
original system.
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Fig.A3.1 Definition of noise pass-band BN.

For such a system

whence

w0 G 2
0 BN = w0 ⌡

⌠
∞

0

G(f) 2 df

BN =
1

G 2
0

⌡
⌠
∞

0

G(f) 2 df

where G0 may be either the maximum value of G(f) or its value at the centre
frequency between f1 and f2.

BN defines the energy bandwidth, or noise equivalent bandwidth, of the actual
transmission system. The transfer function of such a system may take a variety of
forms; a commonly encountered one is equivalent to that of an RC circuit,

G(f) =
G0

1 (2 πf RC)2

for which B3dB = 1/2πRC and the noise equivalent bandwidth is
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This treatment applies only to linear systems; non-linear systems require a more

BN =
1

4RC
=

π
2

B3dB

general interpretation of noise equivalent bandwidth.
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