
CHAPTER 4

OPERATING CHARACTERISTICS AND CONSIDERATIONS

4.1 Signal-to-noise ratio com-
parison

4.2 Photomultiplier selection
criteria

4.3 Factors affecting sensitivity
4.3.1 Wavelength
4.3.2 Collection efficiency
4.3.3 Angle of incidence

4.4 Time characteristics
4.4.1 Pulse response: determining

factors
4.4.2 Pulse response: measurement
4.4.3 Transit time differences
4.4.4 Transit time spread
4.4.5 Frequency response

4.5 Linearity
4.5.1 External factors affecting

linearity
4.5.2 Internal factors affecting

linearity
4.5.3 Linearity measurement

4.6 Stability
4.6.1 Long-term drift
4.6.2 Short-term drift

4.7 Afterpulses
4.7.1 Luminous reactions
4.7.2 Ionization of residual gases
4.7.3 Afterpulse factor

4.8 Environmental consider-
ations

4.8.1 Temperature
4.8.2 Magnetic fields
4.8.3 Radiation
4.8.4 Atmosphere
4.8.5 Mechanical stress

Appendix Signal transfer in linear
systems

A4.1 Pulse and step response
A4.1.1 Superposition principle
A4.1.2 Rise time and FWHM

A4.2 Time resolution
A4.2.1 Delta-function light pulse
A4.2.2 Arbitrary light pulse

4−1



OPERATING CHARACTERISTICS AND CONSIDERATIONS

Photomultiplier characteristics that need to be considered in most applications include
sensitivity, time and frequency response, stability, linearity, and possible environ-
mental effects at a certain gain.

Before choosing a photomultiplier for a given application, however, it is well to
establish that a photomultiplier is in fact the best type of detector for that application.
Alternatives, such as a vacuum or semiconductor photodiode plus a high-gain, low-
noise amplifier, may offer advantages in size, power supply, or cost. Other criteria on
which the choice may depend include spectral sensitivity, frequency response, and
output current range. Leaving all these out of consideration, however, the area where
a photomultiplier clearly excels is in its ability to detect very low-level light; and in
particular, below a certain threshold, to do so with a better signal-to-noise ratio than
any alternative detector. In many applications this is decisive. For the light level to
be detected and the required signal-to-noise ratio, a photomultiplier may be the only
choice.

4.1 Signal-to-noise ratio comparison: photomultiplier vs photodiode
Whether the detector is a photomultiplier, or a photoemissive cell, or a photodiode
plus amplifier, the critical factor governing signal-to-noise ratio is the quantity of light
received, which often depends on the size of the sensitive surface. To make the
following comparison independent of size, therefore, it will be based on the
assumption of equal photocurrents: Ik for the photomultiplier, and Id for the
photodiode.

Equation 3.42 gave the signal-to-noise ratio of a photomultiplier with cathode current
Ik, gain G, load resistance RL, and anode dark-current noise (referred to the cathode)
ik,n. The equivalent expression for a photodiode, plus low-noise, high-gain amplifier
connected as a current-voltage converter with feedback resistance Rf is

where id,n is the intrinsic noise current of the detector, and io,n the input equivalent

(4.1)
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noise current specified by the amplifier manufacturer. (The amplifier input equivalent
noise voltage, eo,n, also specified by the manufacturer, is usually negligible and is
here disregarded.) Equating Eq.3.42 with Eq.4.1 gives the photocurrent at which both
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detectors have like signal-to-noise ratios,

If G2RL >> Rf, this simplifies to

(4.2)RfIk = RfId =
2kT

e(a 1)
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The two terms of Eq.4.3 correspond to two limiting cases.

(4.3)RfIk = RfId =
2kT

e(a 1)
Rf

i 2
d,n i 2

o,n i 2
k,n

2e(a 1)BN

If Rf is low (say, less than 105 Ω), the second term is negligible compared with the
first. For a = 1.5 (a being 1 + VG, where VG is the photomultiplier gain variance),
the signal voltage below which the photomultiplier has the better signal-to-noise ratio
is

RfIk = RfId ≤ 2kT
e(a 1)

≈ 100 mV

The photocurrent or incident flux to which this corresponds can be lowered only by
increasing the feedback resistance Rf. But that can be done only at the expense of
bandwidth.

If Rf is high (say, more than 107 Ω), the first term becomes negligible compared with
the second. Then, since id,n and ik,n are also negligible compared with io,n, the voltage
threshold below which the photomultiplier has the better signal-to-noise ratio tends
toward

RfIk = RfId ≤ Rf

i 2
o,n

2e(a 1)BN

which, for , corresponds to a photocurrenti 2
o,n /BN

Ik = Id ≈ 10 7 A
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Thus, at very low light levels requiring a high feedback resistance Rf, the signal-to-
noise ratio of a photodiode is limited by the amplifier input equivalent noise current
io,n.

In Eqs 4.2 and 4.3 the following practical values apply.

For a photomultiplier

for a vacuum photodiode

i 2
k,n/BN < 10 14 A/Hz ½ with S1 cathode

< 10 16 A/Hz ½ with other cathodes

for a low-noise silicon photodiode

i 2
d,n/BN < 10 14 A/Hz ½ with S1 cathode

< 10 16 A/Hz ½ with other cathodes

and for a low-noise operational amplifier with FET input

i 2
d,n/BN ≤ 5 × 10 15 A/Hz ½

i 2
o,n/BN > 10 13 A/Hz ½

Figure 4.1 shows the signal-to-noise ratio, based on these values and at 1 Hz
bandwidth, as a function of photocurrent for a photomultiplier and for a photodiode
plus low-noise amplifier. For the photomultiplier, G2RL is taken as parameter, and for
the photodiode Rf. The intersections of the curves with the horizontal axis (S/N = 1)
indicate the photocurrents at which the signal is no longer distinguishable from the
noise. The intersections of the dashed curves with the solid ones indicate the
photocurrents at which the signal-to-noise ratio of a photodiode becomes competitive
with that of a photomultiplier.
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Fig.4.1 Signal-to-noise ratio as a function of photocurrent for a photo-
multiplier (solid lines) and a photodiode plus low-noise

amplifier (dashed line)

4.2 Photomultiplier selection criteria
Points to consider in choosing a tube for a given application are photocathode
characteristics, response speed, and number of stages.

Photocathode spectral sensitivity and size. If the light to be detected is monochro-
matic, choose a tube whose maximum sensitivity is as close as possible to the same
wavelength. If it is not monochromatic, look for the best match between sensitivity
and spectral distribution, using the matching factor described in A6.3. Bear in mind,
though, that the greater the sensitivity in the red, the greater the thermionic emission.
And that relative variations of sensitivity versus temperature and from tube to tube,
are largest close to the photoemission threshold.
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The choice of photocathode diameter depends partly, but not entirely, on the size of
the incident light beam or source. Beam or source size determines the minimum
practical diameter but not the maximum. If the equipment or installation does not
impose strict constraints on size or weight, tubes with medium-diameter cathodes are
often preferable to those with small ones. They are generally more stable and have
higher permissible anode currents. Dark current does not vary in strict proportion with
cathode diameter; and, if the dark current of a tube with a large-diameter cathode is
inconveniently high, it can be reduced by reducing the effective cathode diameter in
the way described in §5.8.2.

Response speed. If the rise time required is about one nanosecond or less, or the
required bandwidth more than about 100 MHz, choose a fast-response tube. Such
tubes also have the best time resolution.

If the rise time required is a few nanoseconds, or the required bandwidth between 50
and 100 MHz, a standard tube with linear-focusing dynodes is a good choice. Tubes
with venetian-blind dynodes are comparatively slow and not suitable for bandwidths
of more than about 10 MHz.

Number of stages. General-purpose tubes usually have eight or ten stages and a gain
of 103 to 107 at an applied voltage of 600 to 1800 V. Lowering the voltage impairs
fast response and linearity, so if lower gain is required, choose a tube with fewer
stages. For gain higher than 107, choose one with more stages. The additional stages
enable interdynode voltages to be kept moderate and so prevent dark current from
becoming excessive. A tube with twelve stages will safely give a gain of 108; setting
the gain higher than that limits the output current pulse range (§5.5.3) and is seldom
justified. A fast-response tube operating at a gain of 109 with type A voltage
distribution (§5.2.1) approaches its linearity limit even with single-electron pulses.

4.3 Factors affecting sensitivity
The anode sensitivity of a photomultiplier varies according to the part of the cathode
surface from which photoemission originates. The variation can be mapped by
scanning the cathode with a narrow beam of light and plotting the resulting anode
current variation. Figure 4.2 is a plot of the anode sensitivity variation measured
relative to one diameter of a 32 mm SbKCs cathode; the dashed line shows the
corresponding variation of cathode sensitivity measured along the same diameter with
the tube connected as a diode. Comparison of the two curves illustrates the relative
variation of the two components of anode sensitivity given in Eq.2.11: namely, the
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photocathode sensitivity Sk and the collection efficiency η of the cathode/first-dynode
space.

Figure 4.2 was plotted with the scanning beam normal to the cathode; a different
angle of incidence would give a different sensitivity contour.

Fig.4.2 Example anode and cathode sensitivity variation measured at λ = 424 mm along one
cathode diameter of a photomultiplier with a 32 mm SbKCs cathode. Vertical axis, relative sensitivity
(arbitrary scale); horizontal axis, distance from cathode centre, normalized with respect to cathode

radius. Curves offset for clarity

MRB221

Sk

0–1 +1
x/r

0.50.5

Sa anode

cathode

4.3.1 Wavelength
Cathode sensitivity variations depend very much on wavelength. They are usually low
in the spectral range corresponding to maximum sensitivity and increase towards the
ends of that range. SbCs (S11) and bialkali cathodes are commonly used near their
maximum sensitivity wavelengths, where uniformity of sensitivity is generally good.
Trialkali (S20, S20R) cathodes, however, are often used near their threshold
wavelengths, where uniformity is less good. Figure 4.3 shows the sensitivity variation
of an S20 cathode measured at wavelengths of 424 nm, 629 nm, and 800 nm along
a diameter aligned with the dynodes; note how the good uniformity at 424 nm
deteriorates at the longer wavelengths. For this reason, the measurement of uniformity
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of response for tubes with bialkali cathodes with, for example, green (560 nm) LEDs
can give misleading results.
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Fig.4.3 Examples of cathode sensitivity variation measured along one
diameter of a SbNa2KCs cathode at three wavelengths

4.3.2 Collection efficiency
The electron-optical input system is meant to direct all photoelectrons, regardless of
their points of origin or initial velocities, onto the useful area of the first dynode.
Design features that can contribute to this include: a spherically curved photocathode,
a large-area first dynode (e.g. venetian blind), and an electrode in the input system
whose potential can be adjusted to compensate for assembly tolerances.

In tubes with focusing dynodes the uniformity of collection is generally best along
a diameter perpendicular to the plane of symmetry. The ratio of the first-to-second
dynode voltages is also important, for it influences the effective area of the second
dynode. To optimize performance, the second dynode potential, and that of any
adjustable focusing electrode in the input system, must be carefully adjusted with the
tube biased for maximum gain and preferably with the cathode fully illuminated.

Magnetic fields, including the earth’s, to which a photomultiplier is exposed have an
adverse effect on collection efficiency.
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4.3.3 Angle of incidence
Depending on its angle of incidence, light that passes through a semitransparent
photocathode may either be reflected back to it from the interior of the tube (Fig. 4.4)
or impinge on some internal photoemissive surface. In either case, the resulting
photoelectrons may be collected by the multiplier and contribute to the anode signal.
This is an important cause of the variation of apparent anode sensitivity with angle
of incidence. Figure 4.5(a) shows examples of anode sensitivity contours measured
on the same tube at three angles of incidence. As the transmission coefficient of the
photoemissive layer varies with wavelength, so does the amount of light that
penetrates to the interior of the tube. Thus, the variation of apparent sensitivity with
angle of incidence is also a function of wavelength.

MRB223

i

Fig.4.4 Light that passes through a semitransparent cathode may be reflected back
to it by internal surfaces

Increasing the thickness of the photoemissive layer reduces the amount of light it
transmits and, hence, the amount of internal reflection. This effect is clearly evident
in a comparison of the angle-of-incidence related sensitivity variations of the thin S20
and the thick S20R photocathode.

In some cases nearly all internal reflection effects can be eliminated by frosting
(sandblasting or etching) the outside of the input window, without any loss of
absolute sensitivity (Fig.4.5(b)). This is not effective, however, when the tube is
optically coupled to a scintillator or light guide by means of a matching compound
such as silicone grease.
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Fig.4.5 Examples of relative anode sensitivity variation at three angles of
incidence, measured at λ = 629 mm along one diameter of a tube with
SbNa2KCs cathode; with (a) polished and (b) frosted input window. x is the

distance from the cathode centre
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4.4 Time characteristics
4.4.1 Pulse response: determining factors
When a light pulse of infinitesimal duration (delta-function pulse) excites the
photomultiplier, the duration of the resulting anode pulse is not infinitesimal. The
lengthening is due to electron transit time variations in the cathode/first-dynode space
and in successive stages of the electron multiplier. The probability distribution of the
variations in each stage is called the specific response of the stage. The individual
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stages are not, however, statistically independent; there is some correlation between
the transit time spreads in successive stages, and this makes it difficult to calculate
the pulse response of the tube from the response of the respective stages. However,
if the probability distribution of electrons arriving at the anode is assumed to be
approximately gaussian with a standard deviation σR, then the response Rδ(t) to a
delta-function light pulse is given by

(4.4)Rδ(t) = 1

σR 2π
exp













(t tt)
2

2σ2
R

where tt is the mean transit time.

To a good approximation, the variance σR
2 of the pulse response can be represented

by the sum of the variances of the response of each stage:

Generally, it can be assumed that all stages beyond the second have equal response;

(4.5)σ2
R = σ2

k,d1 σ2
d1,d2 . . . σ2

dN 1,dN σ2
dN,a

hence,

and the response pulse width (FWHM) is

(4.6)σ2
R = σ2

k,d1 σ2
d1,d2 (N 1) σ2

d,d

This is least when the response is due to a single photoelectron, for then there are no

(4.7)tw = 2.36 σR

transit time differences in the cathode/first-dynode space and the term σk
2
,d1 in Eq.4.6

vanishes.

Electrodynamic effects in the anode collection space can also affect the pulse
response, altering the anode pulse shape and increasing tw. Among these are the
electromagnetic effect of electron movement close to the anode collector grid and the
generation of high-frequency currents due to oscillation of electrons about this grid.
The often imperfect matching of the anode to the output transmission line can also
give rise to oscillations at the pulse trailing edge (‘ringing’).

Effect of applied voltage. The transit-time fluctuations that affect pulse response have
two main causes:
− the initial velocity spread of electrons emitted by different electrodes; the

contribution of this cause varies as 1/Vd,d (where Vd,d is the interdynode voltage).
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− the difference in transit time due to different points of emission from the same
dynode; this contribution varies as .1/ Vd,d

Thus, the lengthening of the response pulse at each stage depends on a factor betweenV 1
d,d

and . Provided the permissible limits are observed, increasing the voltage perV 1/2
d,d

stage is an effective way to improve the pulse response.

Effect of wavelength. The photoelectron energy distribution depends on the incident
light wavelength. This, therefore, also affects transit time fluctuations, but only in the
electron-optical input system and the first multiplier stage. Moreover, as all stages of
the tube contribute about equally to the lengthening of the response pulse, the overall
effect of wavelength is only moderate. The existence of other causes of response
pulse lengthening, apart from transit time fluctuations, further diminishes the overall
significance of wavelength.

4.4.2 Pulse response: measurement
Single-electron response. There are two ways to measure the response to emission
of a single photoelectron:
− with continuous light so attenuated that the average interval between successive

photoelectrons is much greater than the least interval the measuring set-up is able
to resolve;

− with light pulses so attenuated that the probability of each pulse giving rise to only
one photoelectron is much greater than the probability of its giving rise to more
than one.

If fluctuations in the number of photons per light pulse follows a Poisson distribution,
so will the number, nk,i, of photoelectrons emitted in response to them:

Thus the probability of no photoelectron being emitted is ; the

P(nk,i) =
(nk,i)

nk,i

nk,i!
exp( nk,i)

P(0) = exp( nk, i )
probability of only one being emitted is ; and the probabilityP(1) = nn,kexp( nn,k )
of more than one being emitted is P(nk,i > 1) = 1−P(0)−P(1). Since the ratio
P(nk,i > 1)/P(1) tends toward /2 as tends toward zero, it is evident that it isnk, i nk, i
possible to so attenuate the light pulses that the probability of more than one
photoelectron being emitted per pulse is negligible compared with that of only one
being emitted. In practice single-electron operation is obtained by so attenuating the
light that less than one anode pulse occurs per hundred light pulses. The ratio
P(nk,i > 1)/P(1) is then less than 5×10−3.
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Multi-electron response is measured with subnanosecond pulses − as from fast
LEDs, semiconductor lasers, spark sources, or Cherenkov sources − which are short
compared with the several nanosecond pulse-widths tw of present-day photomulti-
pliers.

optical
attenuator

photomultiplier

light-
pulse source

pick-off
T

1 - 2 ns
delay

sync.

input

MRB225

Fig.4.6 Set-up for measuring pulse response

Figure 4.6 shows the usual set-up for measuring pulse response. The oscilloscope may
be synchronized by a signal with 1 or 2 ns lead time taken from one of the last
dynodes, or by one taken from a pick-off T that precedes a 1 or 2 ns delay as shown.
The response R*(t) measured on the oscilloscope is the convolution of the illumina-
tion function L(t), the pulse response Rδ(t) of the photomultiplier, and the pulse
response S(t) of the measuring set-up (transmission line, delay line, oscilloscope):

When the measurement is made under single-electron conditions, L(t) approximates

(4.8)R (t) = L(t) Rδ(t) S(t)

a delta function and Eq.4.8 simplifies to

The pulse response of the measuring set-up must be accurately known; estimates may

R (t) = Rδ(t) S(t)

introduce significant error. It is preferable to use a set-up whose response is known
to approximate a delta function. Then, in the single-electron case

and in the multi-electron case

R (t) ≈ Rδ(t)
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R*(t) then has a standard deviation

(4.9)R (t) ≈ L(t) Rδ(t)

where σL and σR are the standard deviations of the illumination function L(t) and the

(4.10)σR = σ2
L σ2

R

photomultiplier response Rδ(t).

4.4.3 Transit time differences
Transit time differences are due mainly to differences in electron path lengths but
also, in part, to differences in electric field strength. The largest originate in the
cathode/first-dynode space, where path-length differences are greatest; the electron
multiplier, where path lengths are more nearly equal, does not make so important a
contribution.

Effect of applied voltage. Like transit-time fluctuations, transit-time differences vary
inversely as the square root of inter-electrode voltage. As it is the cathode/first-dynode
space that contributes most, it is here that the most can be gained by applying the
maximum permissible voltage.

Effect of wavelength. Incident light wavelength does not significantly affect transit
time differences. In fact, even its effect on overall transit time is small. At
wavelengths from 250 nm to 900 nm the initial energy of the photoelectrons is only
a fraction of an electron-volt, which is negligible compared with the several hundred
electron-volts they may gain from the electric field between the cathode and first
dynode. The observed variation in transit time as a function of wavelength amounts
to only about 1 ps/nm.

Measurement of transit-time differences. Transit time is determined by measuring
the interval between signals known to be synchronous with light pulses at the cathode
and the resulting anode pulses. Transit-time differences can be measured, and mapped,
by focusing the light pulses on different parts of the cathode and noting the
corresponding transit times. Figure 4.7 is an example of the transit-time differences
measured with reference to perpendicular cathode diameters of a fast-response
photomultiplier. Figure 4.8 shows a set-up for measuring both transit-time differences
and transit-time spread.
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Fig.4.7 Transit-time differences of a fast-response photomultiplier as
functions of distance from the cathode centre, measured along

perpendicular diameters
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4.4.4 Transit-time spread
The pulse-to-pulse fluctuation of transit time (jitter) limits the accuracy of
photomultiplier-based time measurements. For single-electron operation it has been
suggested that the variance σ t

2
t of the total transit-time fluctuation is

where σk
2
,d1 and σm

2 are the variances of the transit-time fluctuations in the cath-

(4.11)σ2
tt = σ2

k,d1 σ2
m

ode/first-dynode space and the electron multiplier. If all stages of the multiplier except
the first are identical,

where g1 is the gain of the first stage, g the average gain of subsequent stages, vg1

(4.12)σ2
m =

σ2
d1

g1

(1 vg1)
σ2

dd

g1(g 1)
(1 vg)

and vg are the relative variances of those gains, and σd
2
1 and σd

2
d are respectively the

variances of the transit-time fluctuations in the first and subsequent stages. Equations
4.11 and 4.12 show that the stages that predominate in determining the transit-time
spread are the cathode/first-dynode space and the first multiplier stage.

Transit-time fluctuations in the cathode/first-dynode space have two components: a
chromatic one due to the spread of photoelectron initial velocities, and a geometric
one due to path-length differences.

4−15



The chromatic component has a variance σv
2
i which can be resolved into components

σv
2
n and σv

2
t corresponding to the normal and tangential components of initial velocity:

If the probability distribution of the initial velocities is known, σvn and σvt can be

(4.13)σ2
vi = σ2

vn σ2
vt

found from Eq.1.1. For fast-response tubes σvi is between 50 and 500 picoseconds,
depending to some extent on incident-light wavelength and applied voltage.

The geometric component has a variance σc
2
b which can be calculated if the relation

between photoelectron points of origin and transit-time differences can be formulated.
If, for instance, the transit time varies roughly as the square of the distance of the
point of origin from the cathode centre, then σcb ≈ 0.3 ∆ttmax, where ∆ttmax is the
transit-time increment due to origination at the maximum distance from the centre.

For the total contribution of the electron-optical input system

For fast-response photomultipliers, σk,d1 is usually between 150 and 350 ps,

(4.14)σ2
k,d1 = σ2

vn σ2
vt σ2

cb

depending on the cathode/first-dynode voltage and the incident-light wavelength.

The contribution of the electron multiplier, σm, is mainly from the first stage, for two
reasons:
− the number of secondary electrons there is smaller than in subsequent stages, so the

standard deviation tends to be larger;
− the role of the first stage as a coupling zone between the electron-optical input

system and the iterative part of the multiplier also tends to increase the standard
deviation.

Again, there is a chromatic component and a geometric one. The chromatic
component is due to the spread of secondary electron initial velocities. The geometric
one, which may predominate and can be an important factor in the effect of
wavelength on overall transit-time spread, is due to the scatter of electrons on the first
dynode. It thus depends on the primary-electron velocity spread. In fast-response tubes
σm is between about 150 ps and 250 ps, depending on voltage and wavelength.

Effect of applied voltage. The spread of initial velocities varies as 1/Vd,d, and the
spread of transit-time differences as . Furthermore, the stage gain g in1/ Vd,d
Eq.4.12 varies as a power of Vd,d between 0.65 and 0.75. Hence the overall transit
time spread varies as , where n is between 0.5 and 1.V n

d,d
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Effect of wavelength. Wavelength affects the energy distribution of the
photoelectrons and, hence, their initial velocity spread, which increases as wavelength
decreases. Although wavelength changes have little effect on the geometric component
in the electron-optical input system, they do affect the chromatic component there,
σvi, and the geometric component σcb in the first multiplier stage. The overall effect
depends on the relative importance of these contributory effects. With a bialkali
cathode, a wavelength increase from 400 nm to 560 nm decreases the transit-time
spread about 40%.

Measurement of transit-time spread. Transit-time spread is measured by recording
the intervals between a clocked series of light pulses and the corresponding series of
anode pulses (Fig.4.8). The transit time probability distribution depends on the mean
number of photoelectrons, , emitted per light pulse, the variance being greatest fornk, i
single-electron operation. The measured probability distribution can also depend to
some extent on the statistics of photon emission because the timing reference chosen
is a light pulse.
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Fig.4.8 Set-up for measuring transit-time differences and transit-time spread

Single-electron operation. Let L(t) be the probability distribution of the instants of
photon emission, such that

⌡
⌠
∞

0

L(t) dt = 1
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and R(t) the probability distribution of the occurrence of the corresponding anode
pulses referred to the instants of photoelectron emission. Then the measured
probability distribution of the transit time will be

The single-electron time resolution, designated R*
t, is the FWHM of the R*(t) curve.

(4.15)R (t) = L(t) R(t)

Provided the light pulses with which it is measured are very short in comparison with
R(t), R*

t is an accurate measure of the transit time spread. Figure 4.9 is a single-
electron time resolution curve of a fast-response photomultiplier.

Fig.4.9 Time resolution of a fast-response photomultiplier, for single-electron pulses
originating from a single point on the cathode at an illumination wavelength of 560 nm,
measured according to the method of Fig.4.8. Vertical axis, number of pulses per
channel (arbitrary scale); horizontal axis, channel number (about 40 ps per channel)
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If L(t) and R(t) are approximately gaussian, with variance σ2
L and σ2

t t, then R*(t) will
also be gaussian, with a variance

and FWHM

(4.16)
σ

2

tt = σ2
L σ2

tt
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Multi-electron operation. Provided L(t) and R(t) are gaussian,

(4.17)Rt = 2.36 σtt

For fast-response tubes in single-electron operation at an illumination wavelength of

(4.18)σ
2

tt =
σ2

L σ2
tt

nk,i

400 nm, R*
t is usually less than 1 ns; in operation with an average of 10

photoelectrons per light pulse this is divided by and becomes less than 320 ps.10

4.4.5 Frequency response
The frequency response G(f) is important in applications involving modulated light.
Its upper limit is mainly due to statistical effects and imperfect matching of the output
to the external circuit. The frequency response can be derived from the pulse response
Rδ(t) via the Fourier transform

The narrower the pulse response, the higher the cut-off frequency. If the pulse

(4.19)G(f) = ⌡
⌠
∞

∞

Rδ(t) exp( j2πft) dt

response is gaussian with a variance σR
2,

and, from Eq.4.19,

(4.20)Rδ(t) = 1

σR 2π
exp













(t tt)
2

2 σ2
R

the absolute value of which is

(4.21)G(f) = exp 2(πfσR)2 j2πftt

This corresponds to a 3 dB bandwidth

(4.22)G(f) = exp 2(πfσR)2

The bandwidth can also be expressed as a function of the step-response rise time tr,ε.

(4.23)B3dB =
0.133

σR

If the pulse response is gaussian, with a variance σ2
R (and FWHM tw = 2.36 σR), the

rise time in response to a unit step ε(t) is (§A4.1.2)
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whence, from Eq.4.23,

(4.24)tr,ε ≈ 1.11 tw = 1.11 × 2.36 σR

For a photomultiplier with tw ≈ 3 ns, B3dB ≈ 105 MHz.

(4.25)B3dB ≈ 0.35
tr,ε

(Some authors have suggested other ways of describing the step response of a
photomultiplier yielding a comparable 3 dB bandwidth.)

Note. In accordance with IEC standard, Publications 306-4 (1971) and 462 (1974),
the pulse response is specified in terms of delta-function rise time (tr) and FWHM
(tw); this is not to be confused with the step-response rise time tr,ε used for calculating
the bandwidth.

4.5 Linearity
The degree of proportionality between the number of electrons collected at the anode
and the number of incident photons is called charge linearity. The degree of
proportionality between incident flux and anode current is called current linearity; in
this relationship therefore, time is an additional parameter. Limits on both charge and
current linearity are set by internal and external factors.

4.5.1 External factors affecting linearity
Power supply. Changes in interelectrode voltages affect gain (Fig.4.10) by
influencing the dynode secondary emission factors and the electron trajectories.

Divider current. When the electrode voltages are derived from a resistive divider
across a stabilized power supply, the anode current Ia tends to lessen the potential
between the last dynode and the anode. This upsets the voltage distribution throughout
the divider and causes an increase of gain comparable to what would be caused by
increasing the high voltage by the same amount.

The current through an iterative divider (R = R1 = R2 ... = RN) when there is no
anode current is
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where Vht is the high voltage and R is the common value of the resistors. When there

(4.27)Ip =
Vht

(N 1)R

is an anode current, the currents in the resistors are altered as shown in Fig.4.11. To
keep Vht constant, Ip must assume a new value

From Eq.2.7 the gain at divider current Ip′ is

(4.28)Ip′ = Ip ∆Ip = Ip
1

N 1

N

i = 0

Ii

and the gain when the anode current is zero is

(4.29)G = KV Nα
ht = KR Nα

N 1

i = 0

(Ip ∆Ip Ii)
α

Thus, the ratio of the gain at divider current Ip to that when the anode current is zero

Gm = KR Nα I Nα
p

is

or, if we neglect terms higher than the first order

(4.30)G
Gm

=
N 1

i = 0











1
∆Ip Ii

Ip

α

Substituting the value of ∆Ip from Eq.4.28 gives

G
Gm

=













1
N 1

i = 0











∆Ip

Ip

Ii

Ip

α

As the quantity under the summation is always less than unity, the quantity between

(4.31)G
Gm

=













1
IN

Ip











N
N 1

1
N 1

N 1

i = 0

Ii

IN

α

the inner parentheses is positive and the gain G is an increasing function of the ratio
IN/Ip = Ia/Ip.

Throughout the range of variation IN ≤ Ip the ratio IN/Ip is nearly independent of the
gain of each stage; so, by setting
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and noting that gN >> 1, Eq.1.31 can be simplified to

Ii

Ii 1

= gi = g

Or, for large values of N,

G
Gm

=













1
Ia

Ip









N
N 1

1
(N 1) (1 g)

α

Equation 4.32 expresses the relative variation of the gain as a function of the ratio

(4.32)∆G
G

=
G Gm

G
≈ α N

N 1

Ia

Ip

of the anode current Ia to the nominal divider current at Ia = 0, provided the decrease
of voltage across the terminals of the last stage does not impair collection efficiency.
Under these conditions (and provided no internal factors work against it), the ratio
∆G/G has the same sign as Ia/Ip: an increase of Ia results in an increase of gain
(Fig.4.12). This increase (or overlinearity) as a function of Ia is largely independent
of N. For α = 0.7, N = 10, and Ia/Ip = 0.1, it amounts to about 7%.

Fig.4.10 Gain variation as a function of the voltage between successive
dynodes, for a tube with (a) linear focusing dynodes, (b) venetian-blind

dynodes. Vd = nominal interdynode voltage
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When the ratio Ia/Ip approaches unity, Eq.4.32 no longer holds. The voltage drop in
the last stage, which increases with Ia, becomes too great and collection efficiency
declines rapidly, leading to an abrupt decrease of gain. Internal factors may accentuate
this effect (§4.5.2). To maintain linear operation in resistive voltage dividers, a good
rule is to ensure that the ratio Ia/Ip ≤ 0.01 (see Fig.4.12 and §5.2.2).

d1

k

dN
a

MRB263

dN–1dN–2d3d2

Vht

R RR R RR

1
g1–

gN-2

Ia 1
g1–

g2

Ia1
g1–

gN–1

Ia

gN–1

Ia

1
g1–

g

Ia 1
g1–Ia Ia

gN

Ia
gN–2

Ia IaI'p
g2

IaI'p g
IaI'pI'pI'pI'p

I'p

gN

Ia

Fig.4.11 Current distribution in an iterative voltage divider
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Fig.4.12 Gain variation (overlinearity) as a function of the ratio Ia/Ip
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The maximum value of the ratio ∆G/G depends mainly on the voltage across the tube
and how the drop between anode and last dynode affects the voltage distribution
among the first stages.

To ensure that the ratio Ia/Ip ≤ 0.01, Ip may be increased, but this solution is limited
by power dissipation which may not exceed a few watts.

d1 d2 d3 d4
k

dN

RL

a

(+)

MRB262

dN−1dN−2

Vht
(−)

Z
R0 R1 R2 R3 RN−1RN−2

Fig.4.13 Voltage divider with zener diode for improved linearity

The dependence of gain on anode current can be lessened by substituting a zener
diode for the resistance RN and possible for RN−1 (Fig.4.13); the overlinearity is then
eliminated and the anode current at which the rapid decrease of gain occurs becomes
about ten times higher.

A voltage divider composed solely of zener diodes is never used: firstly, because it
makes it impossible to adjust the gain by adjusting the supply voltage; and secondly,
because it provides no current-limiting action to guard against the consequences of
accidental overexposure of the cathode. In high-current applications, therefore, active
dividers (employing transistors) are often preferred.

Reservoir capacitors. When the anode current can reach high values for only a small
fraction of the time (short-pulse operation), it is preferable to connect reservoir (or
decoupling) capacitors to the dynodes (§5.2.5). The charge stored by the capacitors
must be sufficiently large compared with that supplied by each dynode when pulses
pass through the tube so that the dynode potentials will not vary by more than one
or two volts. Calculation of the required capacitance values differs according to
whether the decoupling is parallel or series; in the latter case voltage variations are
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cumulative. When space or insulation considerations limit the size of the capacitors
that can be used, their values must be calculated with especial care, as inadequate
decoupling affects charge linearity rather than current linearity, which could cause
misleading results.

Damping resistors. When a photomultiplier is operating in the pulse mode, a high-
frequency spurious oscillation superimposed on the anode pulses may be observed,
even with pulses as wide as a few hundred nanoseconds. This oscillation, which
affects the linearity characteristic of the tube, usually producing an overlinearity, may
appear abruptly when the anode current exceeds a certain level. One way of
overcoming this effect is to connect a 50 Ω non-inductive resistor in series with each
of the last two or three dynodes. Fast-response photomultipliers with plastic bases
have such resistors built-in. For other types they must be wired into the socket,
between the base and the decoupling capacitors.

Anode load. The voltage developed across the anode load subtracts from the last-
dynode to anode voltage and, if it is not negligible compared with that, may affect
linearity. As the load voltage rarely exceeds a few volts, however, this is seldom the
case.

4.5.2 Internal factors affecting linearity
Space charge. At high currents, space charge can influence the electron trajectories,
causing collection losses; at still higher currents it can cause some electrons to return
to the surfaces from which they originate. The condition resembles that of a space-
charge limited diode with parallel-plane electrodes, for which the relation between
current density Js (in A/cm2) and electric field is given by the Child-Langmuir
equation

where V is the interelectrode voltage in volts, and d the interelectrode distance in

(4.33)Js = 2.2 x 10 6 V 3/2

d 2

centimetres.

The current density is normally highest between the last dynode and the anode. To
ensure a high field there, the anode is positioned close to the surface of the last
dynode and made in the form of a grid through which the electrons pass on their way
from the next-to-last dynode. Then, it is the field between the next-to-last dynode and
the anode, which is 3 to 5 times lower, that sets the limit for current linearity in most
photomultipliers.
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That limit can be raised by using a progressive instead of an equal voltage
distribution in the last stage (§5.2.1), so as to raise the voltage between the last two
stages to as much as 300 V or more. To maintain correct focusing between dynodes
without unduly increasing the gain, the interelectrode voltages are progressively
decreased in the anode to cathode direction so that the nominal value applies at the
terminals of the first stages. For tubes with focusing dynodes, the data sheets give,
in addition to the conventional voltage distribution, one or two examples of
recommended progressive distributions. Using these, the maximum pulse current in
linear operation can be increased from 10 − 50 mA to 100 − 300 mA. For some
special tubes, linear pulse operation can be obtained at currents of more than 5 A.

For tubes with venetian-blind or box-and-grid dynodes, the maximum pulse currents
for linear operation are smaller (10 − 50 mA) because of the very low electric fields
between all dynodes other than the last.

For most tubes, the current linearity limit due to space charge varies as Vh
n

t, where
n is between 2 and 3. This is merely approximate, but when the limit at one voltage
is known from the published data it gives a practical indication of the limit at another
voltage, especially if the onset of saturation is progressive. If linearity is not
important, the maximum anode current that can be obtained before saturation is
several times greater than the maximum for linear operation.

The space charge phenomena that limit current linearity last for times comparable to
the transit times between dynodes, that is, 1 to 2 ns. Even when linearity errors are
severe, there is no charge accumulation and the errors are strictly related to the
electron current passing between the last dynodes.

Current linearity is important when pulses are wide compared with the pulse response
of the tube; when they are of the same order as the pulse response, it is no longer
relevant. The significant parameter then is charge linearity. Depending on the shape
of the pulses, higher peak anode currents, can be obtained under short-pulse
conditions while still maintaining good charge linearity.

Data sheets specify only the current linearity limit, not the charge linearity limit, and
for a worst-case situation with anode pulses about 100 ns wide.

Cathode resistivity. The electron-optical input system is designed on the assumption
that the cathode is an equipotential surface. Any departure from that condition is
likely to alter the electron trajectories and affect the collection efficiency of the first
dynode. This is what happens, at least in the case of semitransparent cathodes having
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no underlying conductive layer, when the cathode current is too large in relation to
the surface resistivity.

MRB229
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Fig.4.14 Potential distribution due to cathode resistivity; r is the cathode
radius

Consider a circular cathode of uniform sensitivity, uniformly illuminated and emitting
a total current Ik (Fig.4.14). Let R be its surface resistivity (the bulk resistivity
divided by the thickness); the potential difference between the centre and the edge is
then

If it exceeds a few volts, this potential difference increases the input-system con-

(4.34)∆Vk =
R Ik

4 π

vergence and causes loss of electrons emitted from the cathode edge. More
complicated effects occur when only small areas of the cathode are illuminated. These
lead to a dynamic variation of gain as a function of cathode current; in other words,
to linearity errors. However, for the cathode current normally encountered, such
phenomena are practically significant only with bialkali cathodes. For these, the
surface resistivity is about 1010 Ω at ambient temperature, decreasing slightly with
illumination but increasing rapidly as temperature decreases. A tube with a 45 mm
diameter bialkali cathode exhibits a non-linearity of a few percent at a mean cathode
current of about 10 nA at ambient temperature; at −30°C the same non-linearity
occurs at a current of only 0.1 nA. In tubes with larger cathode diameters, the
currents at which comparable non-linearity occurs are even lower. In tubes with S11
and SbRbCs cathodes, comparable non-linearity at ambient temperature occurs at
currents respectively about 100 times and 10 times higher.
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Fortunately, the distributed capacitance of the cathode (about 1 pF) is sufficient to
store a charge of about 10−12 C. At a gain of 105, this corresponds to an anode pulse
of 100 mA amplitude and 1 µs duration; cases in which cathode resistivity actually
presents a problem are therefore fairly uncommon.

Gain drift. Gain may undergo more or less reversible variations when the mean
anode current varies. Although this too constitutes a linearity error, by convention it
is treated as an instability (§4.6).

4.5.3 Linearity measurement
Many methods of linearity measurement have been developed but all are limited to
an accuracy no better than 2%. Two types of gain drift may interfere with the
measurement:
− long-term, time-dependent drift (§4.6.1)
− short-term shift due to changes of illumination (§4.6.2).

To avoid these, the measurement must be made quickly and with a mean current not
exceeding a few microamperes. The measurement should result in determining the
anode current at which space charge limiting starts to become evident, avoiding all
other causes of linearity limiting. The methods described below are for measuring
either current or charge linearity.

Fig.4.15 Typical current or charge linearity characteristics of a photomultiplier operating
from a supply with type B voltage division (flux Φ in arbitrary units)
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Figure 4.15 shows a typical linearity curve, in which a slight overlinearity appears
before saturation. Such overlinearity is often observed with voltage dividers designed
for delaying the onset of saturation at high current levels (§5.2.1). It can be corrected
by adjusting the voltages of the stages immediately preceding the last, but at the cost
of lowering the current threshold beyond which saturation occurs (§5.2.3).

XY method. This method makes use of an oscilloscope having identical X and Y
deflection factors (Fig.4.16). The anode pulse of the photomultiplier under test
deflects the beam parallel to one axis, and the anode pulse of a reference
photomultiplier operating in its known linear region deflects it parallel to the other.
The measurement is therefore one of instantaneous current linearity. Both tubes are
excited simultaneously by light pulses of a few hundred nanoseconds.

optical
attenuator

LIGHT
SOURCE

Y

X

50 Ω

50 Ω

y

x

MRB231

PMT
UNDER TEST

PMT
REFERENCE

Fig.4.16 Set-up for the XY-method of measuring linearity

(a) (b)

Fig.4.17 Oscillogram obtained by the method of Fig.4.16 showing (a) linear and (b) non-linear
response. Scales, 50 mA/div
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At each level of pulse current corresponding to the setting of an optical attenuator,
an oscilloscope trace is obtained. This may have, for example, the shape of
Fig.4.17(b), with a linear part and a curved part; the linearity error is the percentage
by which the curved part of the trace departs from the line of the straight part. This
is a measurement of integral linearity. In Fig.4.17(b), the tube under test is linear
within 5% up to 200 mA and within 10% up to 300 mA.

Dual pulse method. The flux from a practically monochromatic source (for example
a LED) can be calibrated with great accuracy. Two such light sources controlled by
separate generators send light pulses to the photomultiplier under test. The width of
the pulses is about 100 ns and their amplitudes are in a fixed ratio, for example 2:1.
Provided the timing of the two generators is known, the pulses from each can be
recognized by the processing electronics. The pulse repetition frequency must decrease
with increasing pulse height to ensure that the mean anode current of the
photomultiplier remains constant (at a value < 1 µA) throughout the whole range of
pulse amplitude variation.

The method consists in increasing the light-pulse amplitudes, while maintaining their
ratio (for example, by the use of neutral filters), and monitoring the height or charge
ratio of the current pulses supplied by the photomultiplier. In this way, a pulse-current
value can be determined beyond which the height or charge ratio differs by a given
amount from the initial ratio. This is a differential linearity measurement. An
advantage of it is that it does not require the use of a reference photomultiplier.

The ratio of the photomultiplier pulses can be measured with a multichannel pulse-
height analyser, or with an oscilloscope, but not so accurately.

Composite radiation method. This method consists in exposing a scintillator-
photomultiplier combination to radiation from a composite γ-source emitting several
known energies between a few hundred keV and a few MeV (Fig.4.18). The relative
heights of the integrated current pulses of the photomultiplier are then measured with
a multichannel pulse-height analyser. When the mean amplitudes of the pulses
corresponding to each γ line are plotted against energy, the resulting curve has an
initial linear part followed by a curved part indicative of either overlinearity or
saturation. The anode pulse height beyond which the curve departs from straightness
by a given amount is a measure of the integral linearity of the scintillator-
photomultiplier combination, and from this it is possible to determine the linearity of
the photomultiplier alone. (As inorganic scintillators are not linear at low energies,
pulses corresponding to γ-energies of less than a few hundred keV should be
disregarded.)
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Fig.4.18 Distribution of γ-ray energies emitted by a source consisting of 60Co, 137Cs, 232Th
and AmBe as used in measuring photomultiplier linearity. Vertical scale, channel number of

multichannel pulse-height analyser
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The composite radiation method is especially applicable to high-gain tubes: at a gain
of 107 an energy of 1 MeV absorbed in a NaI(Tl) scintillator gives an anode pulse
of about 30 mA. A major drawback of the method is the near-impossibility of
adjusting the amplitude of the light pulses. The amplitude of the anode pulses can
therefore be adjusted only by varying the gain. Since this means varying the high
voltage, it can itself affect the linearity to be measured.

Method using bursts of three pulses. In this method, a special pulse generator,
giving burst of three calibrated pulses of increasing amplitude is used to drive one
LED. The light reaches the cathode, passing through a neutral optical filter giving a
five-fold attenuation. The anode pulses feed a multichannel analyzer (Fig.4.19 (a)).
and the registered channel numbers p1, p2, and p3 become p1′ , p2′ and p3′ when the
filter is withdrawn and an five-fold electrical attenuator is placed before the
multichannel analyser. An on-line calculator can be used to calculate the ratios
a = p2/p1 and a′ = p2′ /p1′ and to calculate the linearity deviation (a′ − a)/a. In the same
way, the ratios b = p3/p1 and b′ = p3′ /p1′ give the linearity deviation (b′ − b)/b.

A typical test setup could, for example, comprise the following:
− burst of three pulses of 50 ns giving, when the filter is ON, three anode pulses of

6, 20 and 30 mA peak value at the operating gain
− time between each pulse of 100 µsec
− burst frequency of a few kilohertz.
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When the filter is OFF, the anode pulses should be 30, 100 and 150 mA.

Fig.4.19(b) shows the results of this test. The linearity deviation is then calculated
between the channel numbers corresponding to the ideal values 100 − 30 mA on the
one hand, and 150 − 30 mA on the other hand, with respect to the tube linearity at
very low level. One advantage of this method (which measures the differential
linearity) is that the result is not affected by the possible gain shift due to the change
of mean anode current that occurs when the filter is withdrawn.

Fig.4.19 Pulse-linearity test; (a) block diagram of the ‘three-pulses method’; (b) example
of an experimental linearity curve obtained with the three-pulses method (channel number

in arbitrary units)
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4.6 Stability
The term ‘stability’ is used to describe the relative constancy of anode sensitivity with
time, temperature, mean current, etc. The most important departures from constancy
are:
− long-term drift, which is a time-dependent variation of gain under conditions of

constant illumination
− short-term shift, which is a variation of gain following a change in mean current.
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4.6.1 Long-term drift
Two modes of long-term drift can be distinguished, according to whether the mean
anode current is high or low.

High-current drift; operating life. Certain more or less irreversible effects are
observable at mean anode currents larger than about 10 µA. After long storage (e.g.
a few months), a photomultiplier exhibits a large drift of gain for the first one or two
days of operation. For some thousands of hours after that the gain is relatively stable,
then it slowly decreases as a function of the total charge handled. The rate of these
variations varies roughly as the anode current of the tube.

Operating life, defined as the time required for anode sensitivity to be halved,
appears to be a function of the total charge delivered. Values of 300 to 1000
coulombs are typical. If the incident flux is reduced (by, say, 90%) or cut off
completely, or if the supply voltage is switched off for several days, the following
sequence can be observed when the original operating conditions are restored: first,
a certain recovery of sensitivity accompanied by a renewed initial drift; then, a
tendency to catch up fairly quickly with the slow decline of sensitivity at the point
at which it was interrupted.

Figure 4.20 illustrates the relative gain variation of a photomultiplier operating at a
mean anode current of 30 µA. The initial drift, which can be considered an ageing
period, is between 20% and 40%. The duration of the ageing period depends on the
anode current; at 10 µA it is about 24 hours. As long as the mean current does not
fall below about 100 nA, ageing is still observable though very slow.
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Fig.4.20 Relative gain variation of a photomultiplier operating at high
average current
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In most cases, if the gain is high and the cathode current low, the variations of anode
sensitivity reflect variations of gain due to changes in the surface state of the
dynodes. This is commonly attributed to the mobility under electron bombardment of
the alkali metal molecules (mainly potassium and caesium) with which they are
coated, though the exact mechanism is probably more complicated than the literature
suggests.

When mean anode current is only a few microamperes, total charge delivered is no
longer the decisive factor for operating life. Other effects, such as helium migration
through the glass or internal migration and diffusion balances, determine the end of
useful life, which is then measured in years and is independent of the mode of
operation. The experience of many users would even seem to indicate that continuous,
uninterrupted operation results in better long-term stability of performance characteris-
tics than storage.

Photomultipliers with S1 cathodes deserve separate mention. Even at anode currents
of only a few microamperes they exhibit large short-term drift which is independent
of the gain adjustment. This drift is reversible, and the process can be speeded up by
heating the tube for a few hours at the maximum permissible temperature, which
suggests that there is some exchange of molecules between the dynodes and surfaces
not subject to electron bombardment.

Low-current drift. When a photomultiplier is switched on and subjected to more or
less constant illumination, its gain changes over the first few hours or days. The
amount of change differs from type to type and even from one specimen to another
of the same type. In most cases, though, the rate of change quickly decreases to as
low as one per cent a month (Fig.4.21), and the higher the current the quicker the
gain stabilizes. It is sometimes worthwhile to speed the process by operating the tube
initially at a current up to ten times higher than that expected in the intended
application. It is also advisable to leave the tube switched on even when it is idle. If
the tube is stored for a time comparable with its former operating period, the gain
change reverses and is repeated when the tube is again put into service.

The ANSI1) test, which is used to characterize this type of drift, employs a
scintillator and a 137Cs source positioned so as to produce a fixed count rate between
103 and 104 per second. After a stabilization period of 30 to 60 minutes, the height

1) ANSI: American National Standards Institute N42.9-1972
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of the 137Cs peak (662 keV) is recorded every hour for the next 16 hours and the
mean gain deviation (MGD) calculated according to the formula:

where p is the mean height of the peak averaged over the 17 readings and pi the

(4.35)
MGD =

17

i = 1

p pi

17
. 100

p

height corresponding to the ith measurement.

0

95
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12 24
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Fig.4.21 Examples of initial low-current drift

This type of drift is not related to the high-current long-term drift previously
described. Though its major cause is also related to change in the structure of the
emissive surfaces, other factors, such as the charge distribution at insulator surfaces
(e.g. dynode spacers), may also play an important part. The drift is much less
(MGD < 1%, typically) in tubes with multialkali cathodes and CuBe or SbCs coated
dynodes than in those with S11 cathodes or AgMg dynodes.

The ANSI test specification does not mention the anode sensitivity at which the test
is to be performed. However, when a figure for long term stability is given, the mean
anode current during the test must be specified. Values of about a microampere are
generally used because they are broadly representative of most applications. For
convenience, the scintillator and source used in the ANSI test may be replaced by a
LED.
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Figure 4.22 gives some examples of anode sensitivity variation curves having the
same maximum deviation but different MGD values. For some applications, one may
want to know the stability over a long period (for example, a month). It is possible
to determine an MGD over such a period, but the measurement is more difficult
because of the likelihood of drift in the measuring system itself. For such measure-
ments, a radioactive source in combination with a scintillator is preferable to a LED
because its long-term stability is much better.

Fig.4.22 Anode sensitivity curves showing the same absolute change over 16 hours but
different values of mean gain deviation (MGD) according to the ANSI method. Curve a: MGD
= 1.6%; curve b: MGD = 1.1%; curve c: MGD = 0.75%; p(a), p(b) and p(c) are the

corresponding mean heights of the pulse peak averaged over 17 readings
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4.6.2 Short-term shift
When the flux to which a photomultiplier is exposed gives rise to a mean anode
current of less than 10 µA, the gain is usually sufficiently stabilized after about 10
or 15 minutes for its long-term drift to be disregarded. If the flux is then changed
abruptly, the anode current, instead of assuming a new value abruptly, starts a new
drift phase before stabilizing again (Fig.4.23). Thus, the gain becomes a function
(often an increasing one) of the mean value of the anode current reckoned over an
interval of a second or longer.

For most photomultipliers, the time required to stabilize the gain after changing the
average flux is around a second. But in some cases, and especially for tubes with S11
cathodes, this fast shift is augmented by one with a much longer time constant (about
an hour). Figure 4.24 gives an example of shift with a single, short time constant; and
Fig.4.25 an example with two time constants, one short and one long.
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Two methods are used to measure the gain shift due to a change of average flux. The
ANSI test uses a 137Cs radioactive source and NaI(Tl) scintillator. After a stabilization
time of at least 15 minutes, the position of the 137Cs absorption peak is recorded at
a count rate of 104 per second. The source is then moved to reduce the rate to 103

counts per second and the new position of the peak is recorded. The shift is
characterized by the relative shift of the peak, ∆p/p.

MRB236

∆G
G

shift due to change
from Ia1 to Ia2

long-term drift at I a2

long-term drift at Ia1

hysteresis

Fig.4.23 Long-term gain drift and short-term shift due to change of
operating conditions

The ANSI test specification does not mention the anode sensitivity at which the test
is to be performed. For the stability figures to have meaning, the extreme values of
the anode mean current must be quoted. To take account of typical photomultiplier
applications, the test is usually performed between 300 nA and 30 nA, 1 µA and
100 nA or even between 10 µA and 100 nA.

Another method, easier to set up, uses two independent LEDs that illuminate the
photomultiplier simultaneously. One emits pulses of adjustable intensity and
frequency, or simply a continuous flux of adjustable intensity, for setting the mean
anode current to any desired level throughout the applicable range. The other emits
pulses of fixed intensity and frequency. The mean height of the anode pulses due to
these is a measure of the relative gain at the set level.

One cause of shift may be that charges on internal insulators (dynode spacers) are
affected by the passage of electrons (scatter, for example), and that this in turn
modifies the focusing between stages. In present-day photomultipliers, particularly
those with venetian-blind dynodes, careful design of the electrode structure practically
eliminates this effect. But even so, variations in gain due to variations in secondary

4−37



emission can still be observed, which suggests the influence of phenomena at the
level of the emissive layer itself.

Fig.4.24 Gain shift of a photomultiplier with a single, short stabilization time constant: (a)
as a function of mean anode current, (b) as a function of time. Measured 5 minutes and 15

minutes after illumination changes made every 20 minutes
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Tubes with bialkali cathodes and CuBe venetian-blind or SbCs coated dynodes are
usually considered the most stable in respect of shift, gain variations of less than 1%
being common for anode current variations of ten to one (from 100 nA to 1 µA).
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Figures 4.24 and 4.25 show that the gain does not return exactly to its original value
when the flux does. This hysteresis reflects an interaction between long-term and
short-term stability parameters. During prolonged operation, the higher the current the
quicker the hysteresis tends to disappear. Here again, accelerated ageing at medium
to high current has a useful effect.

(a)

(b)

Fig.4.25 Gain change of a photomultiplier with one short and one long stabilization time
constant: (a) as a function of mean anode current, (b) as a function of time. Measuring

conditions as for Fig.4.24
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4.7 Afterpulses
Afterpulses are spurious pulses that appear in the wake of true pulses. They can be
observed on an oscilloscope during detection of very short flashes such as scintillation
and laser pulses. As they are time-correlated with the true pulses, they are particularly
inconvenient in chronometry and time spectrometry applications using coincidence
techniques; in counting applications they often spuriously limit the number of true
pulses that can be registered. Afterpulses have two main causes − luminous reactions
and ionization of residual gases − which can be distinguished by the interval that
separates the afterpulse from the true pulse.

4.7.1 Luminous reactions
When the electrodes are bombarded by electrons they emit photons. Although the
luminous efficiency of these impacts is very low, in some tubes it is possible for light
emitted even by the last stages to make its way back to the photocathode and so give
rise to afterpulses. With respect to the true pulses from which they originate, theses
are delayed by the sum of the light and electron pulse transit times, typically 20 to
100 ns.

4.7.2 Ionization of residual gases
Ionization of gas traces also gives rise to afterpulses. The traces may be of residual
gases left in the tube after evacuation or desorbed by materials of its structure, or of
helium that has migrated through the glass. Ionization afterpulses are delayed by a
few hundred nanoseconds to as much as several microseconds with respect to the true
pulses from which they originate.

Ionization afterpulses can be subdivided according to whether they originate in the
electron-optical input system or the electron multiplier.

Primary photoelectrons in the electron-optical input system can generate positive ions
that are accelerated towards the cathode and there give rise to emission of one or
more secondary electrons. The transit time of the ions depends more on the input-
system electric field and the mass of the ions than on the distance from the cathode
at which they originate. The usual ions are H2

+, and He+, and CH4
+; in a photo-

multiplier with a 50 mm cathode, these have transit times of about 0.3 µs, 0.4 µs and
1 µs, respectively, at a cathode to first-dynode voltage of 300 V. The amplitude of
the resulting afterpulses, relative to the true pulses, increases very rapidly with
increasing cathode to first-dynode voltage.
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The amount of helium entering the tube depends on the kind of glass used, its surface
area, and the ambient helium partial pressure (typically 0.7 Pa ≈ 5 × 10-3 torr). For
applications in which higher helium partial pressures are encountered, tubes with soft
(lime) glass envelopes are preferred.

Ionization afterpulses originating in the electron multiplier come mainly from the last
stages, where the electron current is largest. The relative amplitude of these pulses is
independent of the cathode to first-dynode voltage but it does increase rapidly with
gain. The delays observed for afterpulses of this type amount to a microsecond or
more (e.g. about 3 µs for Cs+ ions).

4.7.3 Afterpulse ratio
Each true pulse may be followed by one or more afterpulses (Fig.4.26). The relation
between true pulses and afterpulses is quantified by an afterpulse ratio which may be
stated as
− the ratio of the number of afterpulses to the number of true pulses, or
− the ratio of charge transferred by the afterpulses to charge transferred by the true

pulses,
in either case expressed as a percentage.

true pulse afterpulses

charge
qa,i

qa,i + 1

qa,i + 2

qa,i + 3

total charge qp,i

qp,i + 3

qp,i + 1

MRB240

Fig.4.26 Examples of the development in number and charge of after-
pulses

4−41



In specifying the afterpulse ratio, the interval in which afterpulses are counted
following each true pulse must also be stated. The ratio can vary greatly depending
on the measuring conditions and can be interpreted differently according to the
application.

Afterpulse ratio stated as a charge ratio is given by the expression

where qa,i is the charge transferred by true pulses and qp,i the charge transferred by

(4.36)Fapq =
qp,i

qa,i

× 100

afterpulses. The ratio is usually less than 1% and, as long as the gain is not too high,
does not vary much with the number of true pulses or the amount of charge they
contain. When the charge transferred by each true pulse is very small (e.g. in single-
electron operation), that transferred by each afterpulse may be as large or even larger.
However, as proportionally fewer true pulses are then followed by afterpulses, the
charge ratio remains about the same.

The afterpulse ratio can be reduced by decreasing the cathode to first-dynode voltage
as far as the application will permit, or by working with minimum gain, or both.

The effects of afterpulses can be minimized by using coincidence techniques, by
blanking the photomultiplier for a set interval after each true pulse (§5.10), or simply
by using electronics with sufficiently long dead time.

4.8 Environmental considerations
Environmental factors − chiefly temperature, magnetic fields, background radiation,
and atmosphere − can affect the operation of a photomultiplier in varying degrees,
temporarily or permanently. To a large extent the effects can be guarded against or
compensated.

4.8.1 Temperature
By the nature of their photoemissive and secondary emissive materials, photo-multi-
pliers are also sensitive to temperature variations. These affect three of the main
characteristics:
− spectral response (the shape of the curve)
− dark current (the thermionic component)
− anode sensitivity and gain (secondary emission coefficients).
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Changes in characteristics due to temperature variations within the permissible limits
are usually reversible, though there may be some hysteresis that disappears only
gradually.

Effects of temperature on the photoemission and secondary-emission surfaces are
complex. They depend not only on the composition of the surfaces but also, to some
extent, on the type of tube; and even between tubes of the same type there are
appreciable differences. However, tendencies and average values can be identified.

In storage as well as use, photomultipliers must be kept within the temperature limits
specified in their data sheets, usually −30 °C to 80 °C (50 °C for types with S1
cathodes). Beyond those limits effects such as sublimation of the cathode or stresses
in the glass may occur. Always consult the manufacturer before considering
operation of a photomultiplier outside its published temperature limits.

Effect on spectral sensitivity. The spectral sensitivity characteristic does not vary
much with temperature. The greatest relative variation is usually observed close to the
photoemission threshold. For a given application, therefore, it is advisable to choose
a tube with a type of cathode that makes it possible to operate far from the threshold.

The dependence of monochromatic sensitivity on temperature differs from one type
of cathode to another. For a given type it is defined (in percent per degree at 20 °C)
by the ratio

where ∆Sk is the change of cathode sensitivity observed over a temperature interval

(4.37)αk =
∆Sk

Sk(20°C)∆θ
× 100

∆θ. For commonly used photocathodes αk usually varies continuously with wave-
length, in some cases passing through the zero and changing sign.

The value of αk and its variation with wavelength depend not only on the composi-
tion of the cathode but also on the structure of the tube, and therefore differ
considerably from one type to another. The figures given below are merely indicative.

S11 cathode. Of all photocathodes, this type exhibits the widest variation of αk as a
function of wavelength; see Figs 4.27 and 4.28. The sign change of two of the
specimens in Fig.4.28 at about 580 nm wavelength is supported by other observations
but is not the rule; the temperature coefficient of many S11 cathodes keeps the same
sign at least throughout the range of practical wavelengths (400 nm to 620 nm).

4−43



Bialkali SbKCs cathode. The temperature coefficient is very low in wavelength range
400 nm to 500 nm (Fig.4.29) where sensitivity is maximum, and may go to zero there
or change sign. In Fig.4.30, where the coefficient is plotted for temperature intervals
−20 °C to 20 °C, and 20 °C to 60 °C, it is nowhere greater than 0.15% in the range
400 nm to 500 nm. Furthermore, its variation with temperature is very small at short
wavelengths.

S20 and S20R trialkali cathodes. These are characterized by a negative temperature
coefficient throughout most of the useful spectrum. Figure 4.31 shows the variation
of relative sensitivity as a function of temperature, of both types for several wave-
lengths; and Fig.4.32, the variation of temperature coefficient as a function of
wavelength. Note that type S20R, whose response extends farther into the red, has a
larger temperature coefficient than type S20.

Whatever the type of cathode, the residual change of sensitivity (hysteresis) following
a temperature cycle is usually much less than 1% and can be disregarded.
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Fig.4.27 Relative variation of sensitivity of a type S11 cathode as a
function of temperature, with wavelength as parameter
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Fig.4.28 Examples of the variation of the temperature sensitivity coeffi-
cient αk of type S11 cathodes as a function wavelength
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Fig.4.29 Relative variation of sensitivity of a SbKCs bialkali cathode as
a function of temperature, with wavelength as parameter
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Fig.4.30 Examples of the variation of the temperature sensitivity coeffi-
cient αk of SbKCs bialkali cathodes as a function of wavelength
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Fig.4.31 Relative variation of sensitivity of type S20 cathode as a
function of temperature, with wavelength as parameter

Fig.4.32 Examples of the variation of the temperature sensitivity coefficient αk
of type S20 and S20R cathodes as a function of temperature
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Effect on cathode resistivity. The resistivity of photocathodes varies inversely with
temperature. This can limit the minimum operating temperature, especially of bialkali
SbKCs cathodes which, at room temperature, have a resistivity a hundred to a
thousand times greater than that of S11 and S20 cathodes (Fig.4.33). The practical
minimum for bialkali cathodes is −30 °C (if cathode current is more than 0.1 nA);
and for all other types, about −100 °C.
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Fig.4.33 Surface resistivities of three photoemissive materials as func-
tions of temperature

Effect on the dark current. The thermionic component of the dark current obeys
Richardson’s law, Eq.3.1; therefore, both dark current and dark pulse rate increase
strongly with temperature. The rate of increase depends mainly on the cathode
material but may differ considerably from one tube to another of the same type. This
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is because some components of the dark current, such as thermionic emission, field
emission, leakage current, etc., have different temperature coefficients and differ in
relative importance from tube to tube. For the same reason, the dark current and dark
pulse rate do not usually continue to decrease below a certain temperature, and in
some cases may even increase, particularly in tubes with multialkali cathodes.

Table 4.1 Thermionic emission characteristics of common photocathodes

Type of cathode Thermionic emission

at 20 °C

(A/cm2)

Temperature rise for which

thermionic current doubles

(K)

Minimum operating

temperature

(°C)

AgOCs (S1) 10−13 − 10−11 5 − 7 −100

SbCs (S11) 10−16 − 10−15 6 − 15 −20

SbKCs 10−19 − 10−17 4 − 5 −20

SbNa2KCs (S20) 10−19 − 10−15 4 −40

SbNa2KCs (S20R) 10−17 − 10−15 4 −40

Effect on gain and anode sensitivity. Dynode secondary emission also varies with
temperature (though less so than cathode thermionic emission) and correspondingly
affects gain. The temperature coefficient of gain is usually negative and depends not
only upon the composition of the dynodes but also upon that of the cathode and, to
some extent, the structure of the multiplier. For CuBe and AgMg dynodes the
coefficient is about −0.1% per degree with bialkali and trialkali (S20) cathodes, and
between −0.5% and −1% per degree with S11 cathodes. It is smaller in tubes with
venetian-blind dynodes than in those with focusing dynodes.

Variations in anode sensitivity reflect variations in both cathode sensitivity and
multiplier gain. At certain temperatures and wavelengths these may be equal and
opposite, cancelling each other.

After a temperature cycle, anode sensitivity usually does not return exactly to its
previous value. The hysteresis is mainly in the multiplier gain (cathode sensitivity
hysteresis being negligible) and tends to disappear after long storage. Figure 4.34
shows the relative cathode sensitivity, gain, and anode sensitivity hysteresis of a tube
with bialkali cathode and CuBe venetian-blind dynodes.
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Gain hysteresis hardly varies from tube to tube. It is not cumulative and, in fact, tends
to diminish after repeated temperature cycles. As an example, a tube with venetian-
blind dynodes showed a −2% gain change after a first −40 °C to 60 °C to −40 °C
cycle, but only −0.8% after a second cycle.
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Fig.4.34 Temperature variation of cathode and anode sensitivity and gain of a
tube with a bialkali cathode at a wavelength of 405 nm, showing hysteresis.
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4.8.2 Magnetic fields
Magnetic fields even as weak as the earth’s affect photomultiplier performances. This
can be demonstrated by rotating a horizontally mounted tube about its main axis. The
resulting variation of anode sensitivity is due to the varying effect of the earth’s field
on the electron trajectories, and the corresponding variation of collection efficiency
in all stages. Highly focused tubes, in which the electron impact areas on the dynodes
are small, are the most sensitive to magnetic effects; a transverse flux density of a
few tenths of a millitesla can reduce gain by 50%. In a tube with venetian-blind
dynodes, the field required to produce the same effect would be up to three times as
large.

Magnetic influence is greatest in the electron-optical input system, where electron
trajectories are longest. Increasing the voltage across the input system increases the
energy of the electrons and decreases the sensitivity to magnetic fields. A photo-
multiplier tube is least sensitive to magnetic fields parallel to its axis.

Tubes with linear focusing dynodes are most sensitive to magnetic influence when the
field is parallel to the dynodes (axis y in Fig.4.35). (For precautions against magnetic
effects see §5.9.)

MRB250
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Fig.4.35 Axes used in measuring magnetic sensitivity

Magnetic sensitivity is measured relative to three perpendicular axes (Figs 4.35 and
4.36). Data sheets give either the measured sensitivity curves or the values of
magnetic flux density parallel to each axis at which gain is halved. The data are for
optimum operating conditions. Magnetic sensitivity is greater when electrode
potentials are not optimum, as is the case when gain is deliberately decreased by
defocusing a dynode or the accelerating electrode.
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Strong fields may permanently magnetize some parts of a photomultiplier, lastingly
affecting its performance. If that happens, the tube can be demagnetized with a coil
producing a flux density of about 10 mT, at 50 Hz.

Fig.4.36 Relative gain variation as a function of magnetic field: (a) for a tube with linear
focusing dynodes, (b) for a tube with venetian-blind dynodes.

curve 1: field aligned with y-axis (Fig.4.35)
curve 2: field aligned with x-axis
curve 3: field aligned with z-axis
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4.8.3 Radiation
Ionizing radiation can give rise to secondary effects such as dark current increase or,
if the radiation is sufficiently intense, permanent loss of sensitivity and gain.

Dark current increase. Background radiation interacts with parts of the tube, mainly
the glass, to produce light pulses that increase the dark current or dark pulse rate. The
effect can be demonstrated by bringing a radioactive source close to the tube; for
high-energy γ-radiation (more than 1 MeV) the dark current will increase consider-
ably, owing to pair production in the glass.

Light pulses due to background radiation have two causes: scintillation and the
Cherenkov effect.

Scintillation is due to interaction of low-energy α- and β-radiation with the glass of
the envelope; such radiation may come from the surroundings or from the glass itself
(e.g. from traces of 40K). The scintillation efficiency is very low − about 10 photons
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per MeV, not all of which reach the cathode − so the resulting pulses are mostly
single-electron.

Cherenkov effect occurs when charged particles traverse a medium − e.g. the glass of
the envelope − at more than the speed of light in that medium. Such particles may
be due to cosmic radiation or may be generated in the medium itself by high-energy
γ-radiation. The resulting anode pulses are of large amplitude, corresponding to 10 to
20 photoelectrons; moreover, they are followed by low-amplitude afterpulses due to
phosphorescence of the glass excited by the ultraviolet content of the Cherenkov
emission.

Cherenkov effect due to cosmic radiation can be a troublesome source of dark pulses
in many applications; however, there are several ways of keeping it, or its influence
on the measurement, to a minimum.

− Thin input window. The amplitude of light pulses due to the Cherenkov effect is
proportional to the thickness of the glass: about 500 photons/cm in the wavelength
range 300 nm to 600 nm. Input windows should therefore be as thin as possible
to help keep the Cherenkov effect low.

− Inverting the tube. The direction of cosmic rays is usually more or less vertical.
Positioning the tube with the input window down reduces their effect; Cherenkov
radiation then tends to be emitted outwards, and only the fraction reflected back
by the glass-air interface reaches the cathode. If the window is up, all of it reaches
the cathode. (Mounting the tube horizontally gives an intermediate result. The glass
cross-section presented to cosmic rays is much smaller but the distance the rays
travel in the glass is much larger, so the count rate is lower but the pulse amplitude
higher).

− Window material. Glass that limits transmission of ultraviolet light attenuates that
component of the Cherenkov radiation. Glass windows give less Cherenkov-effect
dark current than fused silica windows.

− Anti-coincidence. With an anti-coincidence system using two detectors it is possible
to eliminate a large part of the dark current due to cosmic radiation. An anti-coinci-
dence detector above the photomultiplier, or better still, completely surrounding it,
makes it possible to cancel all pulses registered simultaneously.

− High discrimination. As pulses due to cosmic rays are of high amplitude, this
characteristic can often be used as a basis for discrimination. When low-energy
radiation is to be detected, for instance, the counting window can be centred on the
relevant energy band so as to exclude high-amplitude pulses.
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Materials in the surroundings may have a significant effect. Cosmic rays interact with
them to produce showers of secondary particles that give rise to trains of noise pulses
in the photomultiplier. A concrete roof a few centimetres thick is not enough to block
cosmic radiation but, on the contrary, may be a troublesome source of noise due to
secondary particles (spallation noise).

Gain and sensitivity loss. Permanent loss of gain and sensitivity is a serious risk
only in very high radiation environments, such as parts of extraterrestrial space where
electron flux can reach 1010 electrons per square centimetre per second. Under those
conditions the emissive properties of the dynodes change and the input window
darkens, affecting the transmission at shorter wavelengths. Lithium fluoride and lime
glass windows are more sensitive than others to prolonged radiation. The
photoemissive layer is relatively unaffected, probably because its absorption
coefficient for ionizing radiation is low.

Permanent alteration of gain and sensitivity becomes noticeable only after exposure
doses of about 104 rad.

4.8.4 Atmosphere
Humidity. Because of the high voltages used, operation in a damp atmosphere can
lead to insulation problems. Condensation gives rise to leakage currents which
increase the dark current. Local insulation breakdowns may also occur. Take particular
care to avoid condensation on the glass, at the pins, and especially inside the plastic
base. If moisture does get into the base, it will be necessary to drill a hole in the base
key to enable it to escape.

Ambient pressure. Photomultipliers can operate satisfactorily at low ambient
pressure, but precautions against flashover at the pins are necessary at pressures below
10 kPa (≈ 75 torr). For operation or storage at high ambient pressure, consult the
manufacturer; permissible pressures differ from type to type and are not usually given
in the data sheets.

Helium partial pressure. Glass is permeable to helium, the rate of penetration being
proportional to the helium partial pressure. Of the glasses used in photomultipliers,
lime glass (soft glass) is the least permeable; borosilicate glass and fused silica (hard
glasses) are, respectively, about 100 and 1000 times more permeable. Helium
intrusion increases the afterpulse factor and shortens the life: a tube with a fused
silica window in a helium partial pressure of 100 kPa has a useful life of only a few
days; this is a hazard to be guarded against in helium-cooled high-energy physics
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experiments. The partial pressure of atmospheric helium is normally about 0.7 Pa,
which is low enough to allow an average useful life of some ten years. Finally, note
that helium penetration increases with temperature.

4.8.5 Mechanical stress
Like all electron tubes, photomultipliers should be protected against mechanical and
temperature stress. Vibration or shock transmitted to the dynodes can modulate the
gain (microphony). Especially robust types are available for use in hostile environ-
ments.
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APPENDIX 4. SIGNAL TRANSFER IN LINEAR SYSTEMS

A4.1 Pulse and step responses
A transmission system having an input signal U1(t) and an output signal U2(t), is
called linear if its response to the sum of two input signals acting together is equal
to the sum of its responses to the two acting separately.

When a unit-area input pulse U1(t) of width ∆t and amplitude 1/∆t is applied, the
output pulse U2(t) is wider than ∆t (Fig.A4.1). As ∆t tends toward zero, U1(t) tends
toward the delta function δ(t), such that

The corresponding output pulse U2(t) then represents the pulse response, Rδ(t).

lim
∆t→ 0 ⌡

⌠
∆t

0

δ(t)dt = 1

The step response Rε(t) is the response to a unit step ε(t) such that

The unit step is related to the delta function by the expression:

ε(t) = 0, for t < 0
ε(t) = 1, for t ≥ 0

(A4.1)δ(t) = d
dt

ε(t)

0 ∆t

∆t
1

U1(t)

t 0

U2(t)

tt1

MRB253A

Fig.A4.1 Response to a rectangular pulse
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A4.1.1 Superposition principle
An arbitrary input signal U1(t) can be represented by the superposition of very narrow
adjacent pulses of width ds (Fig.A4.2). The response of the system to one such pulse
occurring at an instant δ is (to within the second order) equal to the product of the
pulse area and the pulse response of the system, shifted by the time s:

dU2(t) = U1(s)ds . Rδ(t s)

0

U1(t)

t 0

U2(t)

dU2(t)

t

ds

MRB253B

Fig.A4.2 Superposition of elemental pulses

Provided the system is linear, its response to the input signal U1(t) is the summation
of the individual responses to the elementary pulses; thus,

or, letting ds tend toward zero,

U2(t) =
s

dU2(t)

This integral is known as the convolution product and is written

(A4.2)U2(t) = ⌡
⌠
∞

∞

U1(s) Rδ(t s) ds

Interchanging the variables s and t-s gives an equivalent form of Eq.A4.2,

(A4.3)U2(t) = U1(t) Rδ(t)

(A4.4)U2(t) = ⌡
⌠
∞

∞

U1(t s) Rδ(s) ds

i.e., the convolution product is commutative.
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From Eqs A4.2, A4.3 and A4.4 it is possible to calculate the step response Rε(t) if
the pulse response Rδ(t) is known:

This equation is useful when it is difficult to measure the step response directly. With

(A4.5)Rε(t) = ε(t) Rδ(t)

photomultipliers, for example, it is easier to simulate repetitive delta-function pulse
inputs than it is to simulate repetitive unit-step inputs.

Using the superposition principle and similar reasoning to the above, it can be shown
that the output of a linear system can also be expressed as a function of the step
response Rε(t) by the relation:

This is equivalent to Eq.A4.3 and can be derived from it via Eqs A4.1 and A4.5.

(A4.6)U2(t) = d
dt

U1(t) Rε(t)

A4.1.2 Rise time and FWHM
Equation A4.5 can be simplified by noting that the pulse response Rδ(t) and the step
response Rε(t) are zero for t ≤ 0; thus,

Several workers have proposed that the pulse response Rδ(t) of a photomultiplier can

(A4.7)Rε(t) = ⌡
⌠
t

0

Rδ(s) ds

be accurately represented by a function of the type

(A4.8)Rδ(t) = ε(t) m 1
m!σR











m 1
σR

t

m

exp










m 1
σR

t

where m = 8 (solid line in Fig.A4.3(a)). The dashed line in Fig.A4.3(a) represents the
step response Rε(t) derived from the pulse response Rδ(t) via Eq.A4.5 or A4.7. The
step response is usually characterized in terms of the rise time tr,ε between 10% and
90% of maximum (points A and B). Figure A4.3(a) illustrates an interesting
consequence of Eq.A4.7: the rise time between points A′ and B′, where the slope of
the step response is half of its maximum, is equal to the full width at half maximum
tw of the pulse response. Points A′, B′ are located close to points A, B respectively.
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Fig.A4.3 Pulse response (a) of the type atmexp (−bt); (b) Gaussian
pulse response

Another case to consider is the gaussian function (Fig.A4.3(b)) with standard
deviation σR

which is sometimes assumed for the pulse response of a photomultiplier, even though

(A4.9)Rδ(t) = ε(t) 1

σR 2π
exp













(t tt)
2

2σ2
R

it is symmetrical; it is easier to manipulate than Eq.A4.8 and facilitates approximation.
For the gaussian function points A′ and B′ are very close to points A and B, and the
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step response rise time is nearly equal to the pulse response full width at half
maximum:

(A4.10)tr,ε ≈ 1.11 tw

Gaussian light pulse. The photomultiplier pulse response will be as given by
Eq.A4.9, and the convolution of this with a gaussian light pulse is:

or:

(A4.11)R (t) = 1
2πσLσR

⌡
⌠
t

0

exp













(s tL)2

2σ2
L

exp













(t tt s)2

2σ2
R

ds

It can be shown that if (tL + tt) is greater than about twice the quantity ,

(A4.12)R (t) = f(t)
2πσLσR

exp













(t tt tL)2

2(σ2
L σ2

R

σ2
L σ2

R
the function f(t), which increases monotonically, quickly approaches the asymptote

When t is in the range tL + tt ± 2 , the function f(t) approaches this

(A4.13)












2π
σ2

Lσ2
R

σ2
L σ2

R

σ2
L σ2

R
asymptote to within less than 1%; R*(t) can then be written in the form

which is a gaussian function with variance σL
2 + σR

2.

(A4.14)R (t) = 1

2π σ2
L σ2

R

exp













(t tt tL)2

2 σ2
L σ2

R

A4.2 Time resolution
Pulse transit time in a photomultiplier (Fig.A4.4) fluctuates from pulse to pulse. As
the instant to which it is referred is the instant of illumination, however, its
probability density distribution cannot be considered independently of the statistics of
photon emission. Illumination that takes the form of, say, a delta-function pulse gives
a different density distribution than illumination by a pulse of arbitrary width.
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L (t) Ia (t)

tt 

MRB255

Fig.A4.4 Pulse transit time tt.

A4.2.1 Delta-function light pulse
It is convenient to normalize the illumination function with respect to the mean
number of photoelectrons per pulse, , thusnk, i

The pulse transit time can be defined as the interval separating the occurrence of the

L(t) = nk,i δ(t)

light pulse and a definable reference point on the ensuing current pulse − say, its
centre of gravity. Let R(t) represent the probability density of the transit time tt when
the tube operates repeatedly under single-electron conditions (one photoelectron per
pulse, Fig.A4.5); the mean transit time is and the variance σ t

2
t(1). Now assume thatt t

the cathode emits nk,i >> 1 electrons per pulse, and that each of these gives rise to
an identical anode pulse; the sum of the nk,i anode pulses is then the total response
of the tube. The transit times of the individual pulses obey the R(t) probability
density; however, they conform to it exactly only if their number is infinite. In
actuality, therefore, the multi-electron pulse transit time fluctuates about a mean value
that must be determined with reference to a large number of light pulses.

L (t) = δ (t) R (t)

tt 

MRB256

Fig.A4.5 Pulse transit-time probability distribution

To determine the variance of the fluctuations when each light pulse releases nk,i
photoelectrons, consider the period during which the nk,i elementary responses arrive
at the anode to be divided into infinitesimal intervals dt (Fig.A4.6). The fraction dnk,i
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of current pulses arriving at the anode during a single interval dt fluctuates from one
interval to the next because the nk,i elementary pulses are randomly divided amongst
the intervals; and also because the number nk,i itself fluctuates from one light pulse
to the next. The first of these factors predominates; if the number nk,i is large enough,
its fluctuations are negligible compared with those of the fraction dnk,i arriving during
a single interval dt. To simplify calculation without affecting the generality of the
results, we can therefore replace nk,i by its mean value and dnk,i by nk(t). Ank, i
variation ∆nk(t) in this number shifts the centre of gravity of the transit time
distribution by an amount

or,

∆tt =
∆nk(t)

nk,i

(t t t) if ∆nk(t) << nk,i

where σ t
2
t and σn

2
k(t) are the variances of tt and nk(t).

σ2
tt =

σ2
nk(t)

n2
k,i

(t t t)
2

MRB257

L (t) = nk,i δ(t)

d (t)tt

fluctuationsmean distribution R(t)

Fig.A4.6 Transit-time distribution of nk,i elementary response pulses

If we assume that the fluctuations in the number nk(t) during the intervals dt are
absolutely independent of each other, then nk(t) obeys a Poisson law and we can write

whence

σ2
nk(t) = nk,iR(t)dt

or, by integrating over all the intervals dt:

σ2
tt (t) =

R(t)dt

nk,i

(t t t)
2

If we assume R(t) to be gaussian with a mean value and a variance σ t
2
t(1)t t
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(A4.15)σ2
tt (nk,i) =

1

nk,i
⌡
⌠
∞

∞

(t t t)
2 R(t)dt

(A4.16)R(t) = 1

σtt(1) 2π
exp













(t t t)
2

2σ2
tt(1)

and Eq.A4.15 becomes:

That is: when nk,i photoelectrons are emitted in response to a delta-function light

(A4.17)σ2
tt(nk,i) =

σ2
tt(1)

nk,i

pulse, the transit-time variance is equal to the single-electron pulse transit time
variance divided by nk,i.

A4.2.2 Arbitrary light pulse
For a light pulse of measurable width, transit time must be referred to definable
points on both the light pulse and the ensuing anode pulse (Fig.A4.7).

L (t) Ia (t)

tt 

MRB259

Fig.A4.7 Reference points for transit-time measurement must be clearly
definable

Consider first the single-electron case. Relative to the chosen reference point, the
instant of photoemission fluctuates from pulse to pulse with a density distribution
corresponding to the illumination function L(t) which, in this case, may be normalized
to unity.
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As photoemission and electron multiplication are separate events in cascade, the

(A4.18)
⌡
⌠
∞

0

L(t)dt = 1

density distribution of the times after the reference point on the light pulse when
anode pulses occur is given by the convolution product

If L(t) and R(t) are approximately gaussian, with standard deviations σL and σtt(1),

(A4.19)R (t) = L(t) R(t)

then is also gaussian and its variance isR (t)

Now consider the case when nk,i >> 1 photoelectrons are emitted per light pulse. As

(A4.20)σ 2
tt(1) = σ2

L σ2
tt(1)

before, these can be assumed to give rise to nk,i elementary anode pulses the transit
times of which will obey the density distribution of Eq.A4.19. The reasoning applied
in the case of the delta-function light pulse can then be extended to the arbitrary light
pulse by substituting for R(t), and Eq.A4.15 can be rewrittenR (t)

and the transit time variance is

(A4.21)σ 2
tt (nk,i) =

1

nk,i
⌡
⌠
∞

∞

(t t t)
2R (t)dt

The foregoing reasoning disregards the effect of gain fluctuations on the shape of the

(A4.22)σ 2
tt (nk,i) =

σ2
L σ2

tt(1)

nk,i

anode pulse and, hence, the position of a reference point such as its centre of gravity.
It has been shown that, for large values of gain fluctuations with a relativenk, i
variance vG increase both the delta-pulse and the arbitrary-pulse transit time variances
by a factor (1 + vG).
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