

Application Brief #3

Hybrid Power Packs

Screening Aerogel Capacitor Applications

Data Requirements

- · Battery discharge curve
 - ◆ A battery discharge voltage curve at the standby rate is acquired.
- ◆ Battery polarization data
 - Polarization data for various pulse currents is measured for the battery.
- ◆ Aerogel Capacitor ESR and Capacitance
 - ◆ The Aerogel Capacitor ESR and capacitance must be known.
- Discharge conditions
 - Pulse energy and standby times of the application device must be known.
 - These are used to determine if the Aerogel Capacitor can sustain the pulse and recharge sufficiently between pulses.
 - Depending on desired accuracy, data used may be a function of rate, state-of-charge, etc.

Nim H (2Cell) Battery Discharge 2.5 2.5 2.0 2.5 Capacity (Ah)

Author: Sean Gold

PSC9702C Issue Date: 2/97 Information subject to change without notice.

© PolyStor Corporation, 1997

Methodology

- Check:
 - ◆ Energy of pulse is less than available energy in Aerogel Capacitor to end voltage
 - ◆ Standby time allows sufficient recharge of capacitor
- Determine:
 - effective internal resistance for battery and hybrid power source for resistor network
 - voltage polarization for known pulse currents
- Plot
 - battery and hybrid source pulse discharge curve

Check:

- Pulse energy must be less than available energy in the capacitor above the lower cutoff voltage of the application device.
- $I_p t_p V_{SB} < 1/2 C (V_{SB}^2 V_{LCV}^2)$.
 - where I_P = pulse current, t_P = pulse time (sec), V_{SB} = standby voltage, C = Capacitance and V_{LCV} = pulse voltage.
- Standby time must be sufficient for recharge of capacitor.

Determine:

- Battery resistance: R_B = ΔV / I.
- Hybrid Power Pack resistance R_H = 1 / ((1 / R_B) + (1 / R_{cap})).
 - where R_{cap} = capacitor resistance.
- Battery pulse discharge voltage: V_B = R_B (I_P-I_{SB}).
 - where I_{SB} = standby or background current
- Hybrid Power Pack pulse discharge voltage:
 V_H = R_H (I_P-I_{SB}).

Application Brief #3

Page 2

Hybrid Power Packs

Screening Aerogel Capacitor Applications

- On a spreadsheet, the hybrid and battery pulse voltage curves are calculated using the measured battery voltage curve for a standby current of 0.28A or 0.1C as a baseline.
- This example uses two NiMH 4/3A cells for the conventional battery.
- The Hybrid Power Pack in this example uses two NiMH 4/3A cells and one Aerogel Capacitor.
- Note, the larger voltage drop of the conventional battery when subjected to a pulse current of 8.4A or 3C.
- Using a typical 1.0V per cell cutoff, the calculations predict the capacity of the conventional battery to be only 17% that of the hybrid pack.

- The calculated pulse discharge curves are verified by the experimental data plotted with boxes.
- This simple, fast method can be used for screening potential Hybrid Power Pack applications with limited battery and capacitor data.
- More and more applications, in particular digital, require short, high pulse discharges.
- These applications can now be quickly screened to determine the potential benefit of an advanced Hybrid Power Pack.