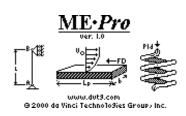
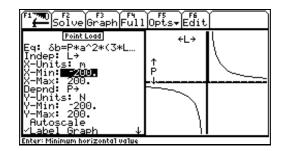
ME•Pro®

Mechanical Engineering


User's Manual


A software Application for the TI-89 and TI-92 Plus

Version 1.0 by da Vinci Technologies Group Inc

ME•Pro®

A software Application For TI-89 and TI-92 Plus

User's Guide

August 2000 © da Vinci Technologies Group, Inc.

Rev. 1.0

da Vinci Technologies Group, Inc. 1600 S.W. Western Blvd Suite 250 Corvallis, OR 97333

www.dvtg.com

Notice

This manual and the examples contained herein are provided "as is" as a supplement to ME•*Pro* application software available from Texas Instruments for TI-89, and TI-92 Plus platforms. **da Vinci** Technologies Group, Inc. ("da Vinci") makes no warranty of any kin d with regard to this manual or the accompanying software, including, but not limited to, the implied warranties of merchantability and fitness for a particular purpose. da Vinci shall not be liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or use of this manual, or the examples herein.

© Copyright da Vinci Technologies Group, Inc. 2000. All rights reserved. PocketProfessional and ME•*Pro* are registered trademarks of da Vinci Technologies Group, Inc. TI-GRAPH LINK is a trademark of Texas Instruments Incorporated, and Acrobat is a registered trademark of Adobe Systems Incorporated.

We welcome your comments on the software and the manual. Forward your comments, preferably by e-mail, to da Vinci at support@dvtg.com.

Acknowledgements

The ME•Pro software was developed by Chris Bunsen, Dave Conklin, Michael Conway, Curtis Gammel, and Megha Shyam with the generous support of TI's development team. The user's guide was developed by Michael Conway, Curtis Gammel, Melinda Shaffer, and Megha Shyam. Many helpful comments from the testers at Texas Instruments and other locations during β testing phase is gratefully acknowledged.

Table of Contents

TABLE OF CONTENTS4	
CHAPTER 1: INTRODUCTION TO ME • PRO	
1.1 Key Features of ME• <i>Pro</i>	
1.2 Purchasing, Downloading and Installing ME• <i>Pro</i>	
1.3 Ordering a Manual	
1.4 Memory Requirements	
1.5 Differences between TI-89 and TI-92 plus	
1.6 Starting ME•Pro	
1.7 How to use this Manual	
1.8 Manual Disclaimer	
1.9 Summary	
PART I: ANALYSIS	
CHAPTER 2: INTRODUCTION TO ANALYSIS	
2.1 Introduction	
2.2 Features of Analysis	
2.3 Finding Analysis	
2.4 Solving a Problem in Analysis	
2.5 Tips for Analysis	
2.6 Function keys	
2.7 Session Folders, Variable Names	
2.8 Overwriting of variable values in graphing	
2.9 Reserved Variables	
CHAPTER 3: STEAM TABLES	
3.1 Saturated Steam Properties	
3.2 Superheated Steam Properties	
3.3 Air Properties	
3.4 Using Steam Tables	
3.5 Validity Range for Temperature and Pressure	
CHAPTER 4: THERMOCOUPLES	
4.1 Introduction	
4.2 Using the Thermocouples Function	
4.3 Basis for Temperature/Voltage Conversions	
CHAPTER 5: CAPITAL BUDGETING	
5.1 Using Capital Budgeting	
CHAPTER 6: EE FOR MECHANICAL ENGINEERS	
6.1 Impedance Calculations	
6.2 Circuit Performance	
6.3 Wye $\leftrightarrow \Delta$ Conversion	
CHAPTER 7: EFFLUX	
7.1 Constant Liquid Level	36
7.2 Varying Liquid Level	
7.3 Conical Vessel	
7.4 Horizontal Cylinder	
7.5 Large Rectangular Orifice	
7.6 ASME Weirs	
7.6.1 Rectangular Notch	
7.6.2 Triangular Weir	
7.6.3 Suppressed Weir	
7.6.4 Cipolletti Weir	
CHAPTER 8: SECTION PROPERTIES	
8.1 Rectangle	42

8.2 Hollow Rectangle	
8.3 Circle	43
8.4 Circular Ring	44
8.5 Hollow Circle	
8.6 1 Section - Uneven	45
8.7 I Section - Even	46
8.8 C Section	
8.9 T Section	48
8.10 Trapezoid.	
8.11 Polygon	
8.12 Hollow Polygon	
Chapter 9: Hardness Number	
9.1 Compute Hardness Number	
PART II: EQUATIONS	
CHAPTER 10: INTRODUCTION TO EQUATIONS	55
10.1 Solving a Set of Equations	
10.2 Viewing an Equation or Result in <i>Pretty Print</i>	
10.3 Viewing a Result in different units	56
10.4 Viewing Multiple Solutions	57
10.5 when () - conditional constraints when solving equations	58
10.5 Arbitrary Integers for periodic solutions to trigonometric functions	58
10.7 Partial Solutions.	59
10.8 Copy/Paste	59
10.9 Graphing a Function	59
10.10 Storing and recalling variable values in ME• <i>Pro</i> -creation of session folders	61
10.11 solve, nsolve, and csolve and user-defined functions (UDF)	
10.12 Entering a guessed value for the unknown using <i>nsolve</i>	
10.13 Why can't I compute a solution?	62
10.13 Why can't I compute a solution?	
10.14 Care in choosing a consistent set of equations	62
10.14 Care in choosing a consistent set of equations	62 62
10.14 Care in choosing a consistent set of equations	62 62 64
10.14 Care in choosing a consistent set of equations	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams	62 62 64 64
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.3 Moment Load 11.3.2 Odumns	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3 Golumns 11.3.1 Buckling	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3.1 Buckling 11.3.1 Buckling 11.3.2 Eccentricity, Axial Load	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3.1 Buckling 11.3.1 Buckling 11.3.2 Eccentricity, Axial Load. 11.3.3 Secant Formula	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3.1 Buckling 11.3.1 Buckling 11.3.2 Eccentricity, Axial Load 11.3.3 Secant Formula 11.3.4 Imperfections in Columns	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3.1 Buckling 11.3.1 Buckling 11.3.2 Eccentricity, Axial Load. 11.3.3 Secant Formula	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.2 Point Load 11.3.1 Buckling 11.3.2 Eccentricity, Axial Load 11.3.3 Secant Formula 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling	
10.14 Care in choosing a consistent set of equations. 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS. 11.1 Simple Beams. 11.1.1 Uniform Load. 11.2 Point Load. 11.3 Moment Load. 11.2 Cantilever Beams. 11.2.1 Uniform Load. 11.2.2 Point Load. 11.3.3 Moment Load. 11.4 Solumns. 11.5 Columns. 11.6 Eccentricity, Axial Load. 11.7 Eccentricity, Axial Load.	
10.14 Care in choosing a consistent set of equations. 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS. 11.1 Simple Beams. 11.1.1 Uniform Load. 11.1.2 Point Load. 11.1.3 Moment Load. 11.2 Cantilever Beams. 11.2.1 Uniform Load. 11.2.2 Point Load. 11.3 Moment Load. 11.3 Moment Load. 11.4 Simple Beams. 11.5 Point Load. 11.6 Simple Beams. 11.6 Simple Beams. 11.7 Simple Beams. 11.8 Simple Beams. 12.1 Basic Bectricity.	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3.3 Moment Load 11.3.4 Scolumns 11.3.1 Buckling 11.3.5 Eccentricity, Axial Load 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling CHAPTER 12: EE FOR MES 12.1 Basic Electricity. 12.1.1 Resistance Formulas	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3.3 Moment Load 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling CHAPTER 12: EE FOR MES 12.1 Basic Electricity 12.1.1 Resistance Formulas 12.1.2 Ohm's Law and Power	
10.14 Care in choosing a consistent set of equations. 10.15 Notes for the advanced user in troubleshooting calculations. CHAPTER 11: BEAMS AND COLUMNS. 11.1 Simple Beams. 11.1.1 Uniform Load. 11.2 Point Load. 11.2 Cantilever Beams. 11.2.1 Uniform Load. 11.2.2 Point Load. 11.2.3 Moment Load. 11.3. Columns. 11.3.1 Buckling. 11.3.2 Eccentricity, Axial Load. 11.3.3 Secant Formula 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling. CHAPTER 12: EE FOR MES. 12.1 Basic Electricity. 12.1.1 Resistance Formulas. 12.1.2 Ohm's Law and Power. 12.1.3 Temperature Effect.	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams. 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams. 11.2.1 Uniform Load 11.2.2 Point Load 11.3.3 Moment Load 11.3.4 Solumns. 11.3.6 Loudns. 11.3.1 Buckling. 11.3.2 Eccentricity, Axial Load. 11.3.3 Secant Formula 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling. CHAPTER 12: EE FOR MES 12.1 Basic Electricity. 12.1.1 Resistance Formulas. 12.1.2 Ohm's Law and Power 12.1.3 Temperature Effect 12.2 DC Motors. 12.2.1 DC Series Motor	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER 11: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.2.3 Moment Load 11.3. Columns 11.3.1 Buckling 11.3.2 Eccentricity, Axial Load 11.3.3 Secant Formula 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling CHAPTER 12: EE FOR MES 12.1 Basic Electricity. 12.1.1 Resistance Formulas 12.1.2 Ohm's Law and Power 12.1.3 Temperature Effect 12.2 DC Motors	
10.14 Care in choosing a consistent set of equations 10.15 Notes for the advanced user in troubleshooting calculations CHAPTER II: BEAMS AND COLUMNS 11.1 Simple Beams 11.1.1 Uniform Load 11.1.2 Point Load 11.1.3 Moment Load 11.2 Cantilever Beams 11.2.1 Uniform Load 11.2.2 Point Load 11.3.3 Moment Load 11.3.4 Solumns 11.3.1 Buckling 11.3.5 Eccentricity, Axial Load 11.3.4 Imperfections in Columns 11.3.5 Inelastic Buckling CHAPTER 12: EE FOR MES 12.1 Basic Electricity 12.1.1 Resistance Formulas 12.1.2 Ohm's Law and Power 12.1.3 Temperature Effect 12.2 DC Motors 12.2.1 DC Series Motor 12.2.2 DC Shunt Motor	

12.4 AC Motors	92
12.4.1 Three φ Induction Motor I	92
12.4.2 Three of Induction Motor II	
12.4.3 1 Induction Motor	
CHAPTER 13: GAS LAWS	
13.1 Ideal Gas Laws	
13.1.1 Ideal Gas Law	
13.1.2 Constant Pressure	
13.1.3 Constant Volume	
13.1.4 Constant Temperature	
13.1.5 Internal Energy/Enthalpy	
13.2 Kinetic Gas Theory	
13.3 Real Gas Laws.	
13.3.1 van der Waals: Specific Volume	
13.3.2 van der Waals: Molar form	
13.3.3 Redlich-Kwong: Sp.Vol	
13.3.4 Redlich-Kwong: Molar	
13.4 Reverse Adiabatic	
13.5 Polytropic Process	
CHAPTER 14: HEAT TRANSFER.	
14.1 Basic Transfer Mechanisms	
14.1.1 Conduction	
14.1.2 Convection.	
14.1.3 Radiation	
14.2 1 1D Heat Transfer	
14.2.1 Conduction	
14.2.1.1 Plane Wall	
14.2.1.2 Convective Source	
14.2.1.3 Radiative Source	
14.2.1.4 Plate and Two Fluids	
14.2.2 Electrical Analogy	
14.2.2.1 Two Conductors in Series	
14.2.2.2 Two Conductors in Parallel	
14.2.2.3 Parallel-Series	132
14.2.3 Radial Systems	
14.2.3.1 Hollow Cylinder	
14.2.3.2 Hollow Sphere	136
14.2.3.3 Cylinder with Insulation Wrap	
14.2.3.4 Cylinder - Critical radius	
14.2.3.5 Sphere - Critical radius	
14.3 Semi-Infinite Solid	
14.3.1 Step Change Surface Temperature	
14.3.2 Constant Surface Heat Flux	
14.3.3 Surface Convection	145
14.4 Radiation	146
14.4.1 Blackbody Radiation	146
14.4.2 Non-Blackbody radiation	148
14.4.3 Thermal Radiation Shield	149
CHAPTER 15: THERMODYNAMICS	<i>152</i>
15.1 Fundamentals	152
15.2 System Properties	153
15.2.1 Energy Equations	153
15.2.2 Maxwell Relations	155
15.3 Vapor and Gas Mixture	
15.3.1 Saturated Liquid/Vapor	
15.3.2 Compressed Liquid-Sub cooled	159

15.4 Ideal Gas Properties	160
15.4.1 Specific Heat	160
15.4.2 Quasi-Equilibrium Compression	
15.5 First Law	163
15.5.1 Total System Energy	163
15.5.2 Closed System: Ideal Gas	167
15.5.2.1 Constant Pressure	
15.5.2.2 Binary Mixture	
15.6 Second Law	171
15.6.1 Heat Engine Cycle	
15.6.1.1 Carnot Engine	
15.6.1.2 Diesel Cycle	
15.6.1.3 Dual Cycle	
15.6.1.4 Otto Cycle	
15.6.1.5 Brayton Cycle	
15.6.2 Clapeyron Equation	
CHAPTER 16: MACHINE DESIGN	
16.1 Stress: Machine Elements	
16.1.1 Cylinders	
16.1.2 Rotating Rings	
16.1.3 Pressure and Shrink Fits	
16.1.4 Crane Hook.	
16.2 Hertzian Stresses	
16.2.1 Two Spheres	
16.2.2 Two Cylinders	
16.3.1 Bearing Life	
16.3.2 Petroff's law	
16.3.3 Pressure Fed Bearings	
16.3.4 Lewis Formula	
16.3.5 AGMA Stresses	
16.3.6 Shafts	
16.3.7 Clutches and Brakes	
16.3.7.1 Clutches.	
16.3.7.1.1 Clutches	
16.3.7.2 Uniform Wear - Cone Brake.	
16.3.7.3 Uniform Pressure - Cone Brake	
16.4 Spring Design	
16.4.1 Bending	
16.4.1.1 Rectangular Plate	
16.4.1.2 Triangular Plate	
· · · · · · · · · · · · · · · · · · ·	
16.4.1.3 Semi-Elliptical	
16.4.2.1 Cylindrical Helical - Circular wire	
16.4.2.1 Cymhul car Fiencar - Cheular Whe	
16.4.3 Torsional Spring	
16.4.3.1 Circular Straight Bar	
16.4.3.2 Rectangular Straight Bar	
16.4.4 Axial Loaded	
16.4.4.1 Conical Circular Section	
16.4.4.2 Cylindrical - Helical	
16.4.4.2.1 Rectangular Cross Section	
16.4.4.2.2 Circular Cross Section	
CHAPTER 17: PUMPS AND HYDRAULICS	
17.1 Basic Definitions	
17.2 Pump Power	
17.3 Centrifugal Pumps	225

17.3.1 Affinity Law-Variable Speed	225
17.3.2 Affinity Law-Constant Speed	
17.3.3 Pump Similarity	
17.3.4 Centrifugal Compressor	
17.3.5 Specific Speed	
CHAPTER 18: WAVES AND OSCILLATION	
18.1 Simple Harmonic Motion	
18.1.1 Linear Harmonic Oscillation.	
18.1.2 Angular Harmonic Oscillation	
18.2 Pendulums.	
18.2.1 Simple Pendulum	
18.2.2 Physical Pendulum	
18.2.3 Torsional Pendulum	
18.3 Natural and Forced Vibrations	
18.3.1 Natural Vibrations.	
18.3.1.1 Free Vibration	
18.3.1.2 Overdamped Case (ξ >1)	
18.3.1.3 Critical Damping (ξ =1)	
18.3.1.4 Underdamped Case (ξ <1)	
18.3.2 Forced Vibrations	
18.3.2.1 Undamped Forced Vibration	
18.3.2.2 Damped Forced Vibration	
18.3.3 Natural Frequencies	
18.3.3.1 Stretched String.	
18.3.3.2 Vibration Isolation	
18.3.3.3 Uniform Beams	
18.3.3.1 Simply Supported	
18.3.3.3.2 Both Ends Fixed	
18.3.3.3.3 1 Fixed End / 1 Free End	
18.3.3.4 Both Ends Free	
18.3.3.4 Flat Plates	
18.3.3.4.1 Circular Flat Plate.	
18.3.3.4.2 Rectangular Flat Plate	
CHAPTER 19: REFRIGERATION AND AIR CONDITIONING	
19.1 Heating Load	
19.2 Refrigeration.	
19.2.1 General Cycle	
19.2.2 Reverse Carnot.	
19.2.3 Reverse Brayton.	
19.2.4 Compression Cycle	
CHAPTER 20: STRENGTH MATERIALS	
20.1 Stress and Strain Basics	
20.1.1 Normal Stress and Strain	
20.1.2 Volume Dilation	
20.1.3 Shear Stress and Modulus.	
20.2 Load Problems.	
20.2.1 Axial Load	
20.2.2 Temperature Effects	
20.2.3 Dynamic Load	
20.3 Stress Analysis	
20.3.1 Stress on an Inclined Section	
20.3.2 Pure Shear.	
20.3.3 Principal Stresses	
20.3.4 Maximum Shear Stress.	
20.3.5 Plane Stress - Hooke's Law.	
20.4 Mohr's Circle Stress	

20 4341 1 6' 1 6	
20.4 Mohr's Circle Stress	280
20.5 Torsion	
20.5.1 Pure Torsion	
20.5.2 Pure Shear.	
20.5.3 Circular Shafts	
20.5.4 Torsional Member.	
CHAPTER 21: FLUID MECHANICS	
21.1 Fluid Properties	
21.1.1 Elasticity	
21.1.2 Capillary Rise	
21.2 Fluid Statics	
21.2 1 Pressure Variation	
21.2.1.1 Uniform Fluid	
21.2.1.2 Compressible Fluid	
21.2.1 Pressure Variation	
21.2.1.3 Troposphere	
21.2.1.4 Stratosphere	
21.2.2.1 Floating Bodies	
21.2.2.2 inclined Plane/Surface	
21.3.1 Bernoulli Equation	
21.3.2 Reynolds Number	
21.3.2 Reynolds Number 21.3.3 Equivalent Diameter.	
21.3.4 Fluid Mass Acceleration.	
21.3.4.1 Linear Acceleration	
21.3.4.2 Rotational Acceleration	
21.4 Surface Resistance	
21.4.1 Laminar Flow – Flat Plate	
	306
21.4.2 Turbulent Flow – Flat Plate	
	309
21.4.2 Turbulent Flow – Flat Plate	309 311
21.4.2 Turbulent Flow – Flat Plate	309 311
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe	309 311 313 316
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe	309 311 313 316
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6 Impulse/Momentum	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.2 Open Jet.	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.2 Open Jet 21.6.2.1 Vertical Plate	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.2 Open Jet 21.6.2.1 Vertical Plate 21.6.2.2 Horizontal Plate	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet. 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.2 Open Jet. 21.6.2.1 Vertical Plate 21.6.2.3 Stationary Blade	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe. 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6 Impulse/Momentum 21.6.1 Jet Propulsion 21.6.2 Open Jet. 21.6.2.1 Vertical Plate 21.6.2.3 Stationary Blade 21.6.2.4 Moving Blade	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe. 21.5.4 Flow pipe Inlet. 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.2 Open Jet. 21.6.2.1 Vertical Plate 21.6.2.2 Horizontal Plate 21.6.2.3 Stationary Blade 21.6.2.4 Moving Blade CHAPTER 22: DYNAMICS AND STATICS 22.1 Laws of Motion	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe. 21.5.4 Flow pipe Inlet. 21.5.5 Series Pipe System. 21.5.6 Parallel Pipe System. 21.5.7 Venturi Meter. 21.5.7.1 Incompressible Flow. 21.5.7.2 Compressible Flow. 21.6 Impulse/Momentum. 21.6.1 Jet Propulsion. 21.6.2 Open Jet. 21.6.2.1 Vertical Plate. 21.6.2.2 Horizontal Plate. 21.6.2.3 Stationary Blade. 21.6.2.4 Moving Blade. CHAPTER 22: DYNAMICS AND STATICS. 22.1 Laws of Motion. 22.2 Constant Acceleration. 22.2.1 Linear Motion.	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.1 Jet Propulsion 21.6.2 Open Jet 21.6.2.1 Vertical Plate 21.6.2.2 Horizontal Plate 21.6.2.3 Stationary Blade 21.6.2.4 Moving Blade CHAPTER 22: DYNAMICS AND STATICS 22.1 Laws of Motion 22.2 Constant Acceleration 22.2.1 Linear Motion 22.2.2 Free Fall	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane. 21.5 Flow in Conduits. 21.5.1 Laminar Flow: Smooth Pipe. 21.5.2 Turbulent Flow: Smooth Pipe. 21.5.3 Turbulent Flow: Rough Pipe. 21.5.4 Flow pipe Inlet. 21.5.5 Series Pipe System. 21.5.6 Parallel Pipe System. 21.5.7 Venturi Meter. 21.5.7.1 Incompressible Flow. 21.5.7.2 Compressible Flow. 21.6.1 Jet Propulsion. 21.6.1 Jet Propulsion. 21.6.2 Open Jet. 21.6.2.1 Vertical Plate. 21.6.2.3 Stationary Blade. 21.6.2.4 Moving Blade. 21.6.2.4 Moving Blade. 21.1 Laws of Motion. 22.2 Constant Acceleration. 22.2.1 Linear Motion. 22.2.2 Free Fall. 22.2.3 Circular Motion.	
21.4.2 Turbulent Flow – Flat Plate 21.4.3 Laminar Flow on an Inclined Plane 21.5 Flow in Conduits 21.5.1 Laminar Flow: Smooth Pipe 21.5.2 Turbulent Flow: Smooth Pipe 21.5.3 Turbulent Flow: Rough Pipe 21.5.4 Flow pipe Inlet 21.5.5 Series Pipe System 21.5.6 Parallel Pipe System 21.5.7 Venturi Meter 21.5.7.1 Incompressible Flow 21.5.7.2 Compressible Flow 21.6.1 Jet Propulsion 21.6.1 Jet Propulsion 21.6.2 Open Jet 21.6.2.1 Vertical Plate 21.6.2.2 Horizontal Plate 21.6.2.3 Stationary Blade 21.6.2.4 Moving Blade CHAPTER 22: DYNAMICS AND STATICS 22.1 Laws of Motion 22.2 Constant Acceleration 22.2.1 Linear Motion 22.2.2 Free Fall	

22.3.3 Gyroscope Motion	
22.4 Projectile Motion	
22.5 Collisions	
22.5.1 Elastic Collisions	
22.5.1.1 1D Collision.	
22.5.1.2 2D Collisions	
22.5.2 Inelastic Collisions	
22.5.2.1 1D Collisions	351
22.5.2.2 Oblique Collisions	352
22.6 Gravitational Effects	
22.6.1 Law of Gravitation	
22.6.2 Kepler's Laws	356
22.6.3 Satellite Orbit	358
22.7 Friction	
22.7.1 Frictional Force	
22.7.2 Wedge	362
22.7.3 Rotating Cylinder	363
22.8 Statics	
22.8.1 Parabolic cable	
22.8.2 Catenary cable	365
PART III: REFERENCE	
CHAPTER 23: INTRODUCTION TO REFERENCE	
23.1 Introduction	
23.2 Finding Reference	369
23.3 Reference Screens	370
23.4 Using Reference Tables	
CHAPTER 24: ENGINEERING CONSTANTS	372
24.1 Using Constants	
CHAPTER 25: TRANSFORMS	374
25.1 Using Transforms	374
CHAPTER 26: VALVES AND FITTING LOSS	
26.1 Valves and Fitting Loss Screens	
CHAPTER 27: FRICTION COEFFICIENTS	
27.1 Friction Coefficients Screens	
CHAPTER 28: RELATIVE ROUGHNESS OF PIPES	
28.1 Relative Roughness Screens	378
CHAPTER 29: WATER-PHYSICAL PROPERTIES	
29.1 Water-Physical Properties Screens	
Chapter 30: Gases and Vapors	
30.1 Gases and Vapors Screens	
Chapter 31: Thermal Properties	
31.1 Thermal Properties Screens	
CHAPTER 32: FUELS AND COMBUSTION	
32.1 Fuels and Combustion Screens	
Chapter 33: Refrigerants	
33.1 Refrigerants Screens	
CHAPTER 34: SI PREFIXES	
34.1 Using SI Prefixes	
Chapter 35: Greek Alphabet	
PART IV: APPENDIX AND INDEX	
APPENDIX A FREQUENTLY ASKED QUESTIONS	
A.1 Questions and Answers	
A.2 General Questions	
A.3 Analysis Questions	
A.4 Equations Questions	
A.5 Graphing	

A.6 Reference	396
APPENDIX B WARRANTY, TECHNICAL SUPPORT	397
B.1 da Vinci License Agreement	
B.2 How to Contact Customer Support	
APPENDIX C: TI-89 & TI-92 Plus- Keystroke and Display Differences	
C.1 Display Property Differences between the TI-89 and TI-92 Plus	399
C.2 Keyboard Differences Between TI-89 and TI-92 Plus	
APPENDIX D ERROR MESSAGES	404
D.1 General Error Messages	404
D.2 Analysis Error Messages	
D.3 Equation Messages	405
D.4 Reference Error Messages	406
APPENDIX E: SYSTEM VARIABLES AND RESERVED NAMES	
INDEX	

Chapter 1: Introduction to ME•Pro

Thank you for purchasing the $ME \bullet Pro$, a member of the PocketProfessional[®] Pro software series designed by da Vinci Technologies Group, Inc., to meet the portable computing needs of students and professionals in mechanical engineering. The software is organized in a hierarchical manner so that the topics easy to find. We hope that you will find the $ME \bullet Pro$ to be a valuable companion in your career as a student and a professional of mechanical engineering.

Topics in this chapter include:

Key Features of ME•*Pro*Purchasing, Download and Installing ME•*Pro*Ordering a Manual
Memory Requirements
Differences between the TI-89 and TI-92 Plus
Starting the ME•*Pro*How to use this Manual
Manual Disclaimer
Summary

1.1 Key Features of ME•Pro

The manual is organized into three sections representing the main menu headings of ME•Pro.

Analysis	Equations	Reference
Steam Tables	Beams and Columns	Engineering Constants
Thermocouples	EE For MEs	Transforms
Capital Budgeting	Gas Laws	Valves/Fitting Loss
EE For MEs	Heat Transfer	Friction Coefficients
Efflux	Thermodynamics	Roughness of Pipes
Section Properties	Machine Design	Water Physical Properties
Hardness Number	Pumps and Hydraulic Machines	Gases and Vapors
	Waves and Oscillation	Thermal Properties
	Refrigeration and Air Conditioning	Fuels and Combustion
	Strength Materials	Refrigerants
	Fluid Mechanics	SI Prefixes
	Dynamics and Statics	Greek Alphabet

These main topic headings are further divided into sub-topics. A brief description of the main sections of the software is listed below:

Analysis: Chapters 2-9

Analysis is organized into 7 topics and 25 sub-topics. The software tools available in this section incorporate a variety of analysis methods used by mechanical engineers. Examples include Steam Tables, Thermocouple Calculations, EE for MEs; Efflux, Section Properties, Hardness Number Computations and Capital Budgeting. Where appropriate, data entered supports commonly used units.

Equations: Chapters 10-22

This section contains over 1000 equations organized under 12 major subjects in over 150 sub-topics. The equations in each sub-topic have been selected to provide maximum coverage of the subject material. In

addition, the math engine is able to compute multiple or partial solutions to the equation sets. The computed values are filtered to identify results that have engineering merit. A powerful built-in unit management feature permits inputs in SI or other customary measurement systems. Over 80 diagrams help clarify the essential nature of the problems covered by the equations. Topics covered include, **Beams and Columns**; **EE for MEs**; **Gas Laws**; **Heat Transfer**; **Thermodynamics**; **Machine Design**; **Pumps and Hydraulic Machines**; **Waves and Oscillation**; **Strength of Materials**; **Fluid Mechanics**; and, **Dynamics and Statics**.

Reference: Chapters 23-25

The *Reference* section contains tables of information commonly needed by mechanical engineers. Topics include, values for Constants used by mechanical engineers; **Laplace and Fourier Transform tables**; **Valves and Fitting Loss**; **Friction Coefficient**; **Roughness of Pipes**; **Water Physical Properties**; **Gases and Vapors**; **Thermal Properties**; **Fuels and Combustion**; **Refrigerants**; **SI prefixes**; **and the Greek Alphabet**.

1.2 Purchasing, Downloading and Installing ME•Pro

The ME•*Pro* software can only be purchased on-line from the Texas Instruments Inc. Online Store at http://www.ti.com/calc/docs/store.htm. The software can be installed directly from your computer to your calculator using TI-GRAPH LINKTM hardware and software (sold separately). Directions for purchasing, downloading and installing ME•*Pro* software are available from TI's website.

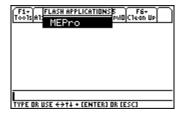
1.3 Ordering a Manual

Chapters and Appendices of the Manual for ME•*Pro* can be downloaded through TI's Web Store and viewed using the free Adobe Acrobat Reader TM that can be downloaded from http://www.adobe.com. Printed manuals can be purchased separately from da Vinci Technologies Group, Inc. by visiting the website http://www.dvtg.com/ticalcs/docs or calling (541) 754-2860, Extension 100.

1.4 Memory Requirements

The ME \bullet *Pro* program is installed in the system memory portion of the Flash ROM that is separate from the RAM available to the user. ME \bullet *Pro* uses RAM to store some of its session information, including values entered and computed by the user. The exact amount of memory required depends on the number of user-stored variables and the number of session folders designated by the user. To view the available memory in your TI calculator, use the function [2nd][MEM]. It is recommended that at least 10K of free RAM be available for installation and use of ME \bullet *Pro*.

1.5 Differences between TI-89 and TI-92 plus


ME•*Pro* is designed for two models of graphing calculators from Texas Instruments, the TI-92 Plus and the TI-89. For consistency, keystrokes and symbols used in the manual are consistent with the TI-89. Equivalent key strokes for the TI-92 Plus are listed in Appendix D.

1.6 Starting ME•Pro

To begin ME•Pro, start by pressing the $\boxed{\text{APPS}}$ key. This accesses a pull down menu. Use the \bigcirc key to move the cursor bar to $\boxed{\text{FlashApps...}}$ and press $\boxed{\text{ENTER}}$. Then move the highlight bar to ME•Pro and press the $\boxed{\text{ENTER}}$ key to get to the home screen of ME•Pro. Alternatively, press $\boxed{\text{APPS}}$; then, scroll to ME•Pro and press the $\boxed{\text{ENTER}}$ key to get to the home screen of ME•Pro.

Pull down Menu for APPS (FlashApps...option is at the top of the list)

Pull down Menu on for FlashApps... (ME•Pro will be in the list)

The ME•Pro home screen is displayed to the right. The tool bar at the top of the screen lists the titles of the main sections of ME•Pro which can be activated by pressing the function keys.

[F1]: Tools: Editing features, information about ME•Pro in A: About.

F2: Analysis: Accesses the Analysis section of the software.

F3: Equations: Accesses the **Equations** section of the software.

F4: **Reference**: Accesses the **Reference** section of the software.

F5: **Info**: Helpful hints on ME•*Pro*.

To select a topic, use the \odot key to move the highlight bar to the desired topic and press $\boxed{\text{ENTER}}$, or alternatively type the number next to the item. The **Analysis**, **Equation** and **Reference** menus are organized in a menu tree of topics and sub-topics. The user can return to a previous level of $\text{ME} \bullet Pro$ by pressing $\boxed{\text{ESC}}$. You can exit $\text{ME} \bullet Pro$ at any time by pressing the $\boxed{\text{HOME}}$ key. When $\text{ME} \bullet Pro$ is restarted, the software returns to its previous location in the program.

1.7 How to use this Manual

The manual section, chapter heading and page number appear at the bottom of each page. The first chapter in each of the *Analysis*, *Equations* and *Reference* sections gives an overview of succeeding chapters and introduces the navigation and computation features common to each of the main sections. For example, Chapter 2 explains the basic layout of the *Analysis* section menu and the navigation principles, giving examples of features common to all topics in *Analysis*. Each topic in Analysis has a chapter dedicated to describing its functionality in detail. The titles of these chapters correspond to the topic headings in the software menus. They contain example problems and screen displays of the computed solutions. Trouble-shooting information, commonly asked questions, and a bibliography used to develop the software are provided in appendixes.

1.8 Manual Disclaimer

The calculator screen displays in the manual were obtained during the testing stages of the software. Some screen displays may appear slightly different due to final changes made in the software while the Manual was being completed.

1.9 Summary

The designers of ME•*Pro* invite your comments by logging on to our website at http://www.dvtg.com or by e-mail to improvements@dvtg.com. We hope that you agree we have made complex computations easy with the software by providing the following features:

- Easy-to-use, menu-based interface.
- Computational efficiency for speed and performance.
- Helpful-hints and context-sensitive information provided in the status line.
- Advanced ME analysis routines, equations, and reference tables.
- Comprehensive manual documentation for examples and quick reference.

Part I: Analysis

Chapter 2: Introduction to Analysis

2.1 Introduction

The analysis section contains subroutines and tools designed to perform specific calculations. Computations include estimating thermodynamic properties of water at different temperature and pressure, in **Steam Tables**, computing fluid flow rates through different shaped orifices in **Efflux**, performing Wye to Δ circuit conversions of AC circuits in **EE for MEs**, and evalueating cash flow for different projects in **Capital Budgeting**. The computations are strictly top-down (i.e. the inputs and outputs are generally the same) and the interface for each section guides the user through the solving process. A brief description of some of the different sections in Analysis appear below:

Steam Tables (3 sections): *Saturated Steam, Superheated Steam, Air Properties* computes the thermodynamic parameters of steam including saturated pressure, enthalpy, entropy, internal energy, and specific volume of the liquid and vapor forms of water given entries of temperature and/or pressure. This final topic covered computes the thermodynamic properties of dry air at different temperatures.

Thermocouples: This tool converts a specified temperature to an *emf* output in millivolts (mV) or from *emf* output millivolts (mV) to a specified temperature. The software supports **T**, **E**, **J**, **K**, **S**, **R** and **B** type thermocouples. These computation algorithms result from the IPTS-68 standards adopted in 1968 and modified in 1985.

Capital Budgeting: This section performs analysis of capital expenditure for a project and compares projects against one another. Four measures of capital budgeting are included in this section: Payback period (**Payback**); Net Present Value (**NPV**); Internal Rate of Return (**IRR**); and Profitability Index (**PI**). This module provides the capability of entering, storing and editing capital expenditures for nine different projects. Projects can be graphed on **NPV** vs. **k** scale.

EE for Mechanical Engineers (3 sections): Performs evaluations on three types of circuits: *Impedance calculations; Circuit Performance; Wye\leftrightarrow \Delta Circuit conversion Impedance Calculations, computes the impedance admittance of a circuit consisting of a resistor, capacitor and inductor connected in Series or Parallel. Performance parameters section computes load voltage and current, complex power delivered, power factor, maximum power available to the load, and the load impedance required to receive the maximum power from a single power source. The final segment of the software converts configurations expressed as a Wye to its \Delta equivalent. It also performs the reverse computation.*

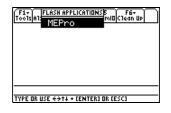
Efflux (6 sections): Constant Liquid level; Varying liquid level; Conical Vessel; Horizontal Cylinder; Large Rectangular Orifice; ASME Weirs (Rectangular notch; Triangular Weir; Suppressed Weir; Cipolletti Weir) This section contains methods to compute fluid flow via cross sections of different shapes.

Section Properties (12 sections): Rectangle; Hollow Rectangle; Circle; Circular Ring (Annulus); Uneven I-section; Even I-section; C section; T section; Trapezoid; Polygon (n-sided); Hollow Polygon (n-sided, side thickness) Computes area moment and location of center of mass for different shaped cross sections. Computed parameters include the cross section area, the polar moment of inertia, the area moment of inertia and radius of gyration on x and y axes.

Hardness Number: A dimensionless number is a measure of the yield of a material from impact. Brinell and Vicker developed two popular methods of measuring the Hardness number. These tests consist of dropping a 10 mm ball of steel with a specified load such as 500 lbf and 3000 lbf. This steel ball results in an indentation in the material. The diameter of indentation indicates of the hardness number using either the Brinell's or Vicker's formulation.

2.2 Features of Analysis

Unit Management: Appropriate unit menus for appending units to variable entries or converting computed results are accessible in most sections.


Numeric Computation – Variable entries must consist of real numbers (unless specified). Algebraic expressions must consist of defined variables so a numeric value can be condensed upon entry.

2.3 Finding Analysis


The following panels illustrate how to start ME•*Pro* and locate the **Analysis** section.

1. Press the APPS key in the HOME screen to list the applications stored in your calculator.

2. Press **1:FlashApps** and press ENTER to display the applications stored in the Flash section of memory.¹

3. HOME screen of ME•Pro. Analysis is listed as F2 on the top function key row.

There are seven sections under **Analysis**. To select a topic, use the \odot key to move the highlight bar to the desired heading and pressing $\boxed{\texttt{ENTER}}$, or alternatively type the number next to the item to select. If a topic contains several sections (Steam Tables, EE for MEs, Efflux, Section properties, an ellipsis (...) will appear next to the title (see below).

From the home screen of ME•Pro **Press** F2 to display the Analysis menu...

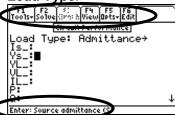
Press 1 for topics in **Steam Tables**...

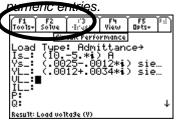
...or, press 5 for topics in **Efflux.**

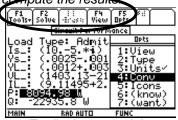
2.4 Solving a Problem in Analysis

The following example presents some of the navigational features in **Analysis**. This example is drawn from Chapter 6: **EE for MEs**.

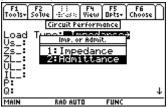
Problem - Calculate the performance parameters of a circuit consisting of a current source (10 - 5*i) with a source admittance of .0025 - .0012*I, a load of .0012 + .0034*i. Display the real result of power in kilowatts.

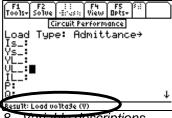

¹ Steps 1 and 2 can be combined by pressing ◆ and APPS.


1. From the home screen of ME• Pro, Press F2 to display the menu of **Analysis**.

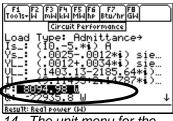

4. While the cursor is highlighting Load Type, press the right arrow key, ① or [F6] to display the menu for Load Type.

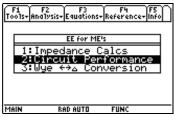
7. Variable descriptions beginning with 'Enter' require


10. Following entry of all input fields, press F2: Solve to


13. To display a result in different units, highlight the variable and press F5:Opts, move the cursor to 4:Conv.

2. Move the cursor to **EE for MEs** and press ENTER (or press [4]).

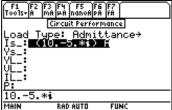

5. In the menu for Load Type move the cursor to Admittance and press ENTER.


8. Variable descriptions beginning with the word 'Result' are computed fields.

11. Results: Upper Half

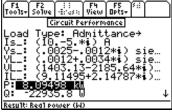


14. The unit menu for the variable appears in the top bar. Press the function key corresponding to the desired units.



3. Select Circuit

Performance from the submenu in EE for Mes.


6. Admittance is now selected for Load Type and the appropriate variables are displayed.

9. When entering a value, press a function key to add the appropriate units (F2]-[F7]).

12. Results: Lower Half

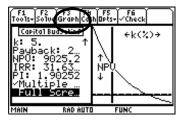
15. The computed value for Real Power, **P**, is now displayed in kilowatts (**kW**).

There are two types of interfaces in **Analysis**:

Type 1: Input/Output/Choose Fields (*Steam Tables, Thermocouples, EE for MEs, Efflux, Section Properties, and Hardness Number*). This input form lists the variables for which a numeric entry is required and prompts the user to choose a calculation setting if applicable before computing the results. The entries and results are always displayed in the same screen.

Type 2: Multiple Forms/Graphing (Capital Budgeting) This interface includes most of the features of

Type 1 with the additional screens used for entering cash flow for individual projects. The graphing features of the calculator are enabled in this section for visualizing the rate of return (Net Present Value vs. discount rate). An example of this interface is described briefly in this chapter, but in more detail in Chapter 5: Capital Budgeting.


Capital Budgeting allows the user to compare relative financial performance of several projects with relevant data such as Interest rate or discount rate (k), IRR, NPV, or Payback period. The screen displays below illustrate the basic user interface.

Input Screen for Capital Budgeting. Press F4 to display Cash Flow for Project 1.

A separate screen displays the Cash Flow for 'Project 1'. Press F2: Solve to revert to the previous screen.

Press F3: Graph. Selecting 'Multiple Graphs' allows the overlap of plots for different projects (Project 1, Project 2, etc.)

2.5 Tips for Analysis

The following instructions are useful in the **Analysis** section:

- 1. If an ellipsis (...) appears at the end of a menu title, a menu of subtopics exists in this section.
- 2. An arrow '→' to the right of a heading, as in **Load Type**, indicates an additional menu.
- 3. Variables ending with an underscore '_', such as **Vs_**, **Zs_**, and **IL_**, allow complex values.
- 4. Descriptions for variables generally appear in the status line when the variable is highlighted.
- 5. Variables for which an entry is required will have a description prefaced by the word 'Enter'. Computed variables begin with the word, 'Result'.
- 6. To convert values from one unit to another, press [5]:Opts, and 4:Conv to display the unit menu for the variable at the top of the screen. Press the function key corresponding to the appropriate units.
- 7. To return to the previous level of ME•*Pro*, press [ESC].
- 8. To exit ME•*Pro*, press F1: Tools and 8: Clear.
- 9. To return to ME•*Pro*, press 2nd APPS.
- 10. To toggle between a graph and $ME \bullet Pro$ in split-screen mode, press 2nd APPS.
- 11. To remove the split screen in ME•*Pro*. 1) Press MODE, 2) F2: Page 2, 3) ①: Split Screen App., 4) ①: Full Screen, 5) ENTER: Save.

2.6 Function keys

When **Analysis** functions are selected, the function keys in the tool bar access or activate features, which are specific to the context of the section. They are listed in **Table 2-1**:

Table 2-1 Description of Analysis Function keys

Function Key	Description
	Labeled " Tools " - displays all the functions available on the <i>TI-89</i> at the <i>Home</i>
	screen level. These functions are:
	1: Open – This opens an existing folder to store or recall variables used in an
	ME• <i>Pro</i> session.
	2: (save as) – Not active in Analysis.
	3: New – Creates a new folder for storing variable values used in an ME• <i>Pro</i>
	session.
[F1]	4: Cut - Removes entered values into the clipboard. Enabled for variables for
	which the user can enter values.
	5: Copy – Copies a highlighted value into the clipboard.
	6: Paste – Pastes clipboard contents at cursor location.
	7: Delete – Deletes highlighted values.
	8: Clear – Returns to the HOME screen of ME•Pro.
	9: (format)-Not active in Analysis.
	A: About - Displays product name and version number.
	Labeled " Solve " - Pressing this key enables the software to begin solving a
F2	selected problem and display any resulting output to the user.
	Labeled " Graph " - This feature is available in input screens where the solution can
	be represented in graphical form. A graph can be viewed in the full screen or a
F3	split screen mode. This can be performed by pressing MODE followed by F2. Use
	2nd and APPS to toggle between the data entry screen and graph window.
	Normally labeled as " View " - This enables the information highlighted by the
	cursor to be displayed using the entire screen in <i>Pretty Print</i> format.
	In some cases [F4] is labeled as "Pict", "Cash".
F4	"Pict" is available in the Section Properties or Hardness Number sections
	and when selected displays a diagram to facilitate better understanding of the
	problem.
	"Cash" is used in Capital Budgeting section of the software.
	Labeled " Opts " - This key displays a pop up menu listing the options:
	1: View - allows the highlighted item to be viewed using <i>Pretty Print</i> .
	2: (type) - Not active
	3: Units – This activates, or deactivates the unit management feature.
	4: Conv – Displays the unit menu for the highlighted variable and allows the
F5	conversion of an entry or result into different units.
	5: Icons - Presents a dialog box identifying certain Icons used by the software to
	display content and context of the information. These icon systems are only used
	in equations.
	6: (know)- Not active
	7: Want - Not active
	"Edit" - Brings in a data entry line for the highlighted parameter.
[]	"Choose" in Capital Budgeting enables the user to select from one of nine
[F6]	projects.
	"Check" requesting the user to press this key to select a highlighted parameter for
r1	use in an Analysis computation.
[F7]	"Add" Adds a cash flow entry for a project in Capital Budgeting section.
[F8]	(Not active)

2.7 Session Folders, Variable Names

ME•*Pro* automatically stores its variables in the current folder specified by the user in MODE or the HOME screen. The current folder name is displayed in the lower left corner of the screen (default is "Main"). To create a new folder to store values for a particular session of ME•*Pro*, press F1:/TOOLS, [3:/NEW and type the name of the new folder (see Guidebook for the complete details of creating and managing folders; Chapter 5 for the TI-89 and Chapter 10 for the TI-92 Plus).

There are several ways to display or recall a value:

- The contents of variables in any folder can be displayed using [VAR-LINK], moving the cursor to the variable name and pressing [F6] to display the contents of a particular variable.
- Variables in a current folder can be recalled in the HOME screen by typing the variable name.
- All inputs and calculated results from the *Analysis* and *Equations* section are saved as variable
 names. Previously calculated, or entered values for variables in a folder are replaced when
 equations are solved using new values for inputs.

2.8 Overwriting of variable values in graphing

When an equation or analysis function is graphed, $ME \cdot Pro$ creates a function for the TI grapher, which expresses the dependent variable in terms of the independent variable. This function is stored under the variable name pro(x). When $ME \cdot Pro$'s equation grapher is executed, values are inserted into the independent variable for pro(x) and values for the dependent value are calculated. Whatever values previously existed in either of the dependent and independent variables in the current folder are cleared. To preserve data under variable names, which may conflict with $ME \cdot Pro$'s variables, run $ME \cdot Pro$ in a separate folder.

2.9 Reserved Variables

A list of reserved variable names used by the TI operating system, which cannot be used as user variable names or entries are listed in **Appendix F.**

Chapter 3: Steam Tables

Steam properties are a complex function of temperature, pressure, volume, critical temperature, critical pressure, and molecular weight of water. Our software takes into account the ranges of temperature and pressure that results in good fits to data gathered over a long periods in many parts of the world.

Steam Tables offer a collection of programs organized as a powerful computational engine to calculate thermodynamic properties of steam in a user-friendly environment. Calculations of thermodynamic properties are based on standards and conventions adopted by the *International Conventions* covering properties of saturated and superheated steam.

3.1 Saturated Steam Properties

This section computes the properties of saturated steam at a single temperature or pressure.

Variable	Description	Units
Ps	Saturation pressure	MPa
Ts	Saturation temperature	K
Vf	Specific volume – liquid	m ³ /kg
Vg	Specific volume – vapor	m^3/kg
Hf	Enthalpy – liquid	kJ/kg
Hfg	Latent heat of vaporization	kJ/kg
Hg	Enthalpy – vapor	kJ/kg
Sf	Entropy – liquid	kJ/(kg·K)
Sfg	S (g) - S (f)	kJ/(kg·K)
Sg	Entropy – vapor	kJ/(kg·K)
UF	Internal energy – liquid	kJ/(kg·K)
UG	Internal energy – vapor	kJ/(kg·K)

3.2 Superheated Steam Properties

The properties of superheated steam require two inputs: temperature and pressure. From the data supplied, the program will compute saturated temperature, specific volume, enthalpy and entropy. The data is displayed in a tabular form.

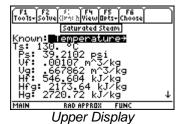
Variable	Description	Units	
Temp	Given temperature	K	
Sat Pressure	Given pressure	MPa	
Sat Temperature	Corresponding temperature	K	
Specific Volume	Specific volume	m ³ /kg	
Enthalpy	Enthalpy	kJ/kg	
Entropy	Entropy	kJ/(kg·K)	

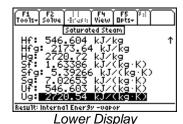
3.3 Air Properties

The properties of dry air are computed using the ideal gas law model as the basis. Using temperature as an input, the software computes a variety of parameters including specific heats, enthalpy, entropy, and velocity of sound.

Variable	Description	Units
Temp	Given temperature	K
CP	Specific heat at constant pressure	$J/(kg\cdot K)$

Variable	Description	Units
CV	Specific heat at constant volume	$J/(kg\cdot K)$
Н	Enthalpy	J/kg
U	Internal energy	J/kg
Е	Entropy function	J/(kg·K)
IPR	Isentropic pressure function	unitless
IVR	Isentropic volume function	unitless
G	Specific heat ratio	unitless
A	Speed of sound	m/s

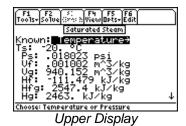

3.4 Using Steam Tables


Once you have selected STEAM TABLES at the main menu, the first screen displays three subtopics - Saturated steam, Superheated steam and Air properties. Selecting "saturated steam properties", allows properties to be calculated from user-entered value of temperature or pressure. However, properties for "superheated steam" require values for both temperature and pressure. Thermodynamic properties of air are calculated for dry air conditions only.

Example 3.1:

Calculate the properties of saturated steam at 130 °C.

Solution - Select the Saturated Steam section. The input screen calls for defining known parameter (temperature or pressure). The default condition is temperature. Move the pointer to the next line and start entering the temperature. The function keys assume unit assignments for the data about to be entered. For our example, enter 130 and press F3 key thereby attaching °C to the value just entered. Press F2 to solve for the thermodynamic parameters.



All the calculated parameters are displayed on the screen with SI units attached as shown. If you desire to see the value of saturated pressure parameter Ps, use the \bigcirc key to move the highlight bar to capture Ps. Press F5 to display a pull down menu of items to select. Select 4 (Conv). This allows other units for Ps such as Pa, kPa, atm, psi, torr attached to F3, F4, F5, F6, and F7 respectively. Pressing F6 converts the value of Ps into the new units of psi. The display is refreshed immediately in the units just selected.

Example 3.2:

Calculate the properties of superheated steam at 125 °C and 20 psi.

Solution - Select the Superheated Steam section. The input screen calls for entering temperature and pressure. Move the pointer to enter the 125 °C and 20 psi for temperature and pressure. Make sure that the appropriate units are attached to the data using the function keys. Press [2] to solve for the thermodynamic parameters.

Lower Display

All the calculated parameters are displayed on the screen with units attached as shown. The displayed results could be converted to other units as described in the first example described earlier.

Example 3.3:

Calculate the properties of dry air to be -20 °C.

Select the Air Properties section. The input screen calls for defining the temperature. Enter a temperature of -20 °C. When entering -20 °C, be sure to use the unary operator key [-] followed by 20 °C. If you use [-] key for a negative value this will result in an input error.

Press F2 to solve for the thermodynamic properties of air.

Input Screen

Result screen

All the calculated parameters are displayed on the screen with SI units attached as shown. The parameters computed can be viewed in other units as described in the examples shown here.

3.5 Validity Range for Temperature and Pressure

The computed results are valid only for the following finite ranges of temperature and pressure:

Saturated

Superheated

Temperature: 273.16 - 647.3 K Pressure: 0.006113 - 22.08 MPa Saturated temperature

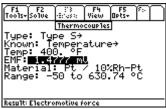
Pressure: 0.006113 - 22.08 MPa

References:

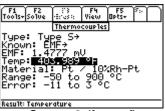
- 1. Lester Haar, John S. Gallagher and George S. Kell, NBS/NRC Steam Tables, Thermodynamic and Transport Properties for Vapor and Liquid States of Water, Hemisphere Publishing Corporation, Washington, DC.
- Steam Tables, 1967; Thermodynamic properties of Water and Steam, The Electric Research Association, Edward Arnold Limited, London England, 1967
- 3. Thomas F. Levine, Jr., and Peter E. Liley, Steam and Gas Tables with Computer Equations, Academic Press, New York, NY, 1984

Chapter 4: Thermocouples

This chapter describes using the software in the **Thermocouples** menu. Thermocouple parameters are calculated for the class of thermocouples in common usage.


4.1 Introduction

This tool converts a specified temperature to an *emf* output, millivolts (mV), and from an *emf* output, millivolts (mV), to a specified temperature. The software supports **Type T**, **E**, **J**, **K**, **S**, **R** and **B** thermocouples. The underlying assumption is a reference temperature of 0°C. These computation algorithms result from the IPTS-68 standards adopted in 1968 and modified in 1985.


4.2 Using the Thermocouples Function

Select the Thermocouples function from the Analysis menu by highlighting Thermocouples and pressing **ENTER**. This action brings out the main user interface screen. Press \bigcirc to view the choices available. Seven types of Thermocouples are available for computations. For example, to select a Pt-10%Rh-Pt thermocouple referred to as S Type thermocouple, move the high the highlight bar to Type S and press **ENTER** or press **5**. At this point, the software presents the primary user interface awaiting data entry. At the same time, the material of the thermocouple and the valid range are displayed for reference.

Thermocouple computations involve computing emf available from a known temperature or computing a temperature from an emf. The latter case is by its very nature not as accurate as the first type of computation.

Screen 1 (for temperature)

Screen 2 (for emf)

Example 4.2:

Find the emf for an S type thermocouple at 400 °F. From the value of emf computed, compute the temperature.

Solution 4.2:

Select Type S thermocouple for this problem. For temperature, enter 400, then press $\boxed{\texttt{F3}}$. The computed emf is 1.4777mV. Now return to Known line and select emf for input. Enter 1.4777 mV for emf to get 403.989 °F for temperature.

Notes: The thermocouple emf calculation can be expanded to cover the emf produced by the thermocouple if the reference temperature was different from 0 $^{\circ}$ C. For example, if the reference temperature was 30 $^{\circ}$ C instead of 0 $^{\circ}$ C, you compute the resulting emf in two steps; first find the emf (emf 1) for the temperature desired, say 300 $^{\circ}$ C, and the emf (emf 0) for the reference temperature. The resulting emf for the new reference temperature of 30 $^{\circ}$ C is the difference between the two emf's, i.e., "emf 1 - emf 0".

4.3 Basis for Temperature/Voltage Conversions

The temperature-to-voltage conversion is based on either a polynomial approximation or a combination of a polynomial coupled with a special sequence. This ensures precise calculations within some prescribed error range. These rages are displayed on each input screen.

References:

 Robert L. Powell, William J. Hall, Clyde H. Hyink, Larry L. Sparks, George W. Burns, Margaret Scoger and Harmon H. Plumb, Thermocouple Reference Tables based on IPTS-68, NBS Monograph 125, Omega Press, 1975

Chapter 5: Capital Budgeting

This chapter covers the four basic measures of capital budgeting:

♦ Payback Period

♦ Internal Rate of Return

♦ Net Present Value

♦ Profitability Index

5.1 Using Capital Budgeting

This section performs analysis of capital expenditure for a project and compares projects against one another. Four measures of capital budgeting are included in this section: Payback period (**Payback**); Net Present Value (**NPV**); Internal Rate of Return (**IRR**); and Profitability Index (**PI**). This module provides the capability of entering, storing and editing capital expenditures for nine different projects. The following equations are used in calculations:

$$NPV = \sum_{t=1}^{n} \frac{CF_t}{(1+k)^t} - CF_{t=0}$$
 Eq. 1

$$\sum_{t=1}^{n} \frac{CF_{t}}{(1+IRR)^{t}} - CF_{t=0} = 0$$
 Eq. 2

$$PI = \frac{\sum_{t=1}^{n} \frac{CF_{t}}{(1+k)^{t}}}{CF_{t=0}}$$
 Eq. 3

CF_t: Cash Flow at time t.

Payback: The number of time periods it takes a firm to recover its original investment.

NPV: The present values of all future cash flows, discounted at the selected rate, minus the cost of the investment.

IRR: The discount rate that equates the present value of expected cash flows to the initial cost of the project.

PI: The present value of the future cash flows, discounted at the selected rate, over the initial cash outlay.

Field Descriptions - Input Screen

Project: (Project) Press ENTER to select one of nine unique

projects or edit the current name of the project

by pressing F4 for Cash option.

k: (Discount Rate per Period in %) Enter a real number.

Payback: (Payback Period) Returns a real number.

npv: (Net Present Value) Returns a real number.

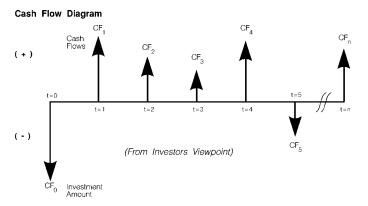
IRR: (Internal Rate of Return) Returns a real number (%).

PI: (Profitability Index) Returns a real number.

Multiple (Graph multiple projects Activation of this feature enables the overlay Graphs simultaneously)

of each successive graph (projects) on the

same axis. Press ENTER to activate.

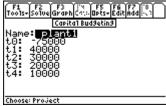

Full (Graph on full or split screen?) Press ENTER to activate.

Screen Graph

Field Descriptions - Project Edit Screen

NAME: Enter the name of the project. (Project Name) Enter a real number. t0: (Investment at t=0)

Enter a positive or negative real number. t1: (Cash flow at t=1) tn: (Cash flow at t=n) Enter a positive or negative real number.



Example 5.1:

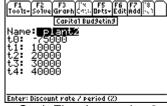
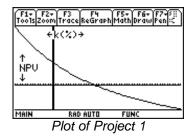

The following projects have been proposed by ACME Consolidated Inc. What are the Payback period, Net Present Value, Internal Rate of Return, and Profitability Index of each project? Which is the more viable project?

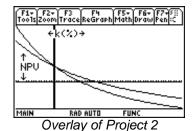
Table 5-1 Cash Flow for two projects

Name of Project: Investment Outlay: Cost of Capital:	Plant 1 \$75,000 (at t=0) 12%	Plant 2 \$75,000 (at t=0) 12%
Year	Net Cash Flow (\$)	Net Cash Flow (\$)
0	-75,000	-75,000
1	40,000	10,000
2	30,000	20,000
3	20,000	30,000
4	10,000	40,000

Cash Flow Input: plant1

Cash Flow Input: plant2


Output Screen: plant1



Output Screen: plant2

- 1. With the highlight bar on the **Project** field, press ENTER to select a project to edit. Select a project that has not been used. Note: this example uses projects 1 and 2. Press ENTER to return to the **Capital Budgeting** screen.
- 2. Press F4 to select **Cash** option; enter the project edit screen; and, edit the cash flows.
- 3. Enter "plant1" in the **Name** field. **Note:** Cash flow data for this project will be stored in a variable of this name. Therefore the entered name must begin with a letter; be no more than 8 characters in length; and, contain no embedded spaces.
- 4. Press [F7] 5 times to add 5 time points and enter the cash flows at each time point from the table on the previous page. When finished, your screen should look like the project edit screen above. Be sure to enter 75,000 as a negative number for t0. Press ESC to save your changes and return to the Capital Budgeting screen.
- 5. Enter 12 for **k**.
- 6. Press F2 to calculate Payback, NPV, IRR, and PI.
- 7. Move the highlight bar to **Multiple Graphs** and press **ENTER** to enable overlaying of successive graphs of each project.
- 8. Press [3] to graph the curvilinear relationship between the **Net Present Value** and the **Discount Rate**.
- 9. Press 2nd followed by APPS to enable the graph editing toolbar.

- 10. The curve indicates where k=0, the **Net Present Value** is simply cash inflows minus cash outflows. The IRR % is shown at the point where NPV=0. Using the built-in graphing capabilities of the TI 89, you can trace the graph to find the values of these two points. The TI 89 will give you the exact coordinates of any point along the graph. Press ◆ followed by APPS to return to the **Capital Budgeting** screen.
- 11. Repeating steps 1 through 9 for the second project, under the **Project** field, "plant2" and input the values in Table 5-1. Activating the **Multiple Graph** feature enables a simultaneous plot of the two projects. This will overlay a second graph on top of a previously plotted function. First plot *plant1*. After graphing, plot*plant2*. The first curve to appear, is *plant1*, the second is *plant2*. The most viable project in terms of discounted cash flows, in this example, is the one with the highest curve.
- 12. Pressing MODE F2 ① 1 ENTER resets the display to full screen.

Chapter 6: EE for Mechanical Engineers

This chapter describes the software in the **AC Circuits** section and is organized under three topics. These topics form the backbone of circuit calculations of interest to mechanical engineers.

♦ Impedance Calculations

♦ Circuit Performance

• Wye $\leftrightarrow \Delta$ Conversion

6.1 Impedance Calculations

The **Impedance Calculations** topic computes the impedance and admittance of a circuit consisting of a resistor, capacitor and inductor connected in Series or Parallel. The impedance and admittance values are displayed to the user in real or complex form.

Field Descriptions

CONFIG:	Circuit Configuration	(Press ENTER and select Series or Parallel configuration by using . After choosing, press ENTER to display the input screen updated for the new configuration
Elements:	Element Combination	Press ENTER to display the following circuit elements: L, C, RL, RC, LC and RLC The choice of elements determines which of the input fields are available.
fr:	Frequency in Hz	Enter a real positive number.
R:	Resistance in ohms; only	Enter a real positive number.

Resistance in ohms; only Enter a real positive number.

appears if RL, RC or RLC is chosen in Elements field

Enter a real positive number.

L: Inductance in Henry; only

appears if L, RL, LC or RLC is

chosen in Elements field

Enter a real positive number.

C: Capacitance in Farads; only Enter a real positive number.

appears if C, LC, RC or RLC is

chosen in **Elements** field

ZZ_: *Impedance in ohms* Returns a real or complex number.

YY_: Admittance in Siemens Returns a real or complex number.

Example 6.1:

Compute the impedance of a series RLC circuit consisting of a 10-ohm resistor, a 1.5 Henry inductor and a 4.7 Farad capacitor at a frequency of 100 Hz.

Input Screen

Output Screen

- Choose Series for **Config** and RLC for **Elements** using the procedure described above.
- 2. Enter 100 Hz for **Freq**.
- Enter 10Ω for **R**; 1.5 Henry for **L**; and 4.7 F for **C**. 3.
- Press **F2** to calculate **ZZ**_ and **YY**_.
- The output screen shows the results of computation.

6.2 Circuit Performance

This section shows how to compute the circuit performance of a simple load connected to a voltage or current source. Performance parameters include load voltage and current, complex power delivered, power factor, maximum power available to the load, and the load impedance required to receive the maximum power.

Field Descriptions - Input Screen

Load Type:	Type of Load	Press ENTER to select load impedance (Z) or admittance (Y). This will determine whether the remaining fields Vs_, Zs_, and ZL_ or Is_, Ys_, and YL_ are displayed, respectively.
Vs_:	rms Source Voltage in V	A real or complex number.
Zs_	Source Impedance in Ω	A real or complex number.
ZL_:	Load Impedance in Ω	A real or complex number.
ls_:	rms Source Current in A	A real or complex number.
ys_:	Source Admittance in Siemens	Enter a real or complex number.
yl_:	Load Admittance in Siemens	Enter a real or complex number.
Field Descriptions - Output Screen		
VI_:	Load Voltage in V	Returns a real, complex number.
il_:	Load Current in A	Returns a real, complex number.
P:	Real Power in W	Returns a real number.
Q:	Reactive Power in W	Returns a real number.

VI_: Apparent Power in W Returns a complex number.

θ: Power factor Angle in degrees Returns a real number.

or radian, determined by the

MODE setting

PF: Load Power Factor Returns a real number.

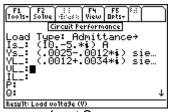
Pmax: Maximum Power Available in Returns a real number.

Zlopt_: Load Impedance for Maximum Returns a real, complex number.

> Power in Ω - if Impedance is chosen for Load Type at the

input screen

Ylopt_: Load Admittance for Maximum Returns a real, complex number.


Power in Siemens - if

Admittance, is chosen for Load

Type at the input screen

Example 6.2:

Calculate the performance parameters of a circuit consisting of a current source (10 - 5*i) with a source admittance of .0025 - .0012*I, and a load of .0012 + .0034*i.

Input Screen

Output: Upper Half

Output: Lower Half

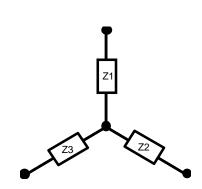
- 1. Choose Admittance for Load Type.
- 2. Enter the value 10 5*i A for Is_.
- 3. Enter the value .0025 .0012*i siemens for Ys_, and .0012 + .0034*i siemens for a load of YL_.
- 4. Press F2 to calculate the performance parameters.
- 5. The input and results of computation are shown above.

6.3 Wye $\leftrightarrow \Delta$ Conversion

The Wye \leftrightarrow Δ Conversion converts three impedances connected in Wye or Δ form to its corresponding Δ or Wye form, i.e., Wye $\leftrightarrow \Delta$ or $\Delta \leftrightarrow$ Wye

Input Fields -

Selection choices are $\Delta \rightarrow Wye$ or $Wye \rightarrow \Delta$. This **Input Type:**


determines whether the next 3 fields (input fields)

accept Δ or Wye Impedances.

Real or complex number. **ZZA_:** Δ Impedance Real or complex number. **ZZB** : Δ Impedance **ZZC_:** Δ Impedance Real or complex number.

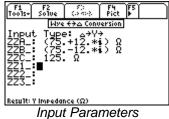
Fig. 6.1 Wye Network

ZZ1: Y Impedance Real or complex number. **ZZ2_:** Y Impedance Real or complex number.

ZZ3_: Y Impedance Real or complex number.

Result Fields

ZZA : (Δ Impedance) Real or complex number. **ZZB** : (Δ Impedance) Real or complex number. **ZZC_:** (Δ Impedance) Real or complex number. **ZZ1_:** (*Y Impedance*) Real or complex number. **ZZ2_:** (*Y Impedance*) Real or complex number. **ZZ3_:** (*Y Impedance*) Real or complex number.


Fig. 6-2 A Network

ZΑ

Example 6.3:

Compute the Wye impedance equivalent of a Δ network with impedances 75+12*i, 75-12*i, and 125 ohms.

- 1. Select $\Delta \rightarrow Y$ for Input Type. .
- 2. Enter the values $75+12*i\ \Omega$, $75-12*i\ \Omega$, $125\ \Omega$ for **ZZA_, ZZB_** and **ZZC_** respectively.
- 3. Press **F2** to calculate **ZZ1_, ZZ2_** and **ZZ3_.**

Calculated Output

The computed results are: **ZZ1**: 34.0909 - 5.45455 · *i* Ω

ZZ2_: $34.0909 + 5.45455 \cdot i \Omega$

ZZ3_: 20.9782 Ω

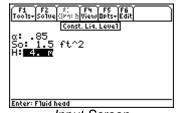
References:

- Sanford I. Heisler, The Wiley Engineer's Desk Reference, A concise guide for the Professional Engineer, John Wiley and Sons, New York, NY, 1984
- James W. Nilsson, Electric Circuits, 2nd Edition, Addison-Wesley Publishing Company, Reading MA, 1987 and later editions.

Chapter 7: Efflux

This section of Analysis contains methods to compute fluid flow via cross sections of different shapes. Many of these formulas have been derived empirically over many years of experimental observations.

- ♦ Constant Liquid Level
- ♦ Conical Vessel
- **♦** ASME Weirs


- ♦ Varying Liquid Level
- ♦ Horizontal Cylinder

7.1 Constant Liquid Level

This portion of the software computes fluid discharge from an opening of cross sectional area \mathbf{So} (m²), and a constant head \mathbf{H} (m). The discharge coefficient α (unitless) is a unique number (a number less than 1) accounting for the shape of the cross section, edge-rounding effects, and turbulence effects. Upon receiving these inputs, the software computes the volume discharge, \mathbf{Q} , (m³/s) and the discharge velocity \mathbf{V} (m/s).

Example 7.1:

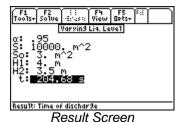
Find the discharge parameters for a 1.5 sqft opening subject to a head of 4_m. Assume the discharge coefficient to be 0.85.

Input Screen

Result Screen

To solve the problem, enter values for $\alpha = 0.85$, $\mathbf{H} = 4$ m and $\mathbf{so} = 1.5$ ft² using the appropriate unit keys accessible during data entry. After all the input variables have been entered, press $\boxed{\texttt{F2}}$ key to get the following results.

Given:	Results
$\alpha = 0.85$	$Q = 1.04917 \text{ m}^3/\text{s}$
$So = 1.5 \text{ ft}^2$	V = 7.52877 m/s
H = 4 m	


7.2 Varying Liquid Level

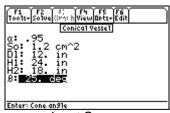
This segment of the software considers fluid discharge from a tank of cross sectional area S (m^2), an opening of cross sectional area S0 (m^2) where the head has dropped from H1 (m) to H2 (m). The discharge coefficient α (unitless) is a unique number (a number less than 1) accounting for the shape of the cross section, edge-rounding effects, and turbulence effects. Upon receiving these inputs, the software computes the time t (s) taken to see the drop in head height.

Example 7.2:

A large reservoir has an area of 10000 m^2 has head level of 4_m that needs to brought down by 0.5_m . The drainage opening is 3 m^2 and has a discharge coefficient of 0.95. How long will this process take?

Input Screen

To solve the problem, enter values for $\alpha = 0.95$, H1 = 4 m, H2 = 3.5 m and So = 3 m² using the appropriate unit keys accessible when data is being entered. After all the input variables have been entered, press [F2] key to get the results.


Given: Results $\alpha = 0.95 \\ S = 10000 \text{ m}^2 \\ So = 3 \text{ m}^2 \\ H1 = 4 \text{ m} \\ H2 = 3.5 \text{ m}$

7.3 Conical Vessel

This segment considers fluid discharge from a container that conical in shape. The parameters specified for the computations include cross sectional area, \mathbf{So} (m²), and a fluid head $\mathbf{H1}$ (m) at t=0 and $\mathbf{H2}$ (m) the fluid head at t. The discharge coefficient α (unitless) is a unique number (a number less than 1) accounting for the shape of the cross section, edge-rounding effects, turbulent effects, and β (rad) refers to the cone angle. Upon receiving these inputs, the software computes the time for the head to \drop from $\mathbf{H1}$ to $\mathbf{H2}$.

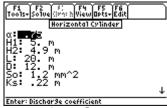
Example 7.3:

Find the time taken to discharge water from a 25 $^{\circ}$ conical vessel with a discharge coefficient of 0.95 for a 1.2 cm² opening. Consider the head drops from 24 in to 18 in. The base of the cone has a diameter**Dl** of 12 in.

Input Screen

Result Screen

To solve the problem, enter values for $\alpha = 0.95$, $\mathbf{H1} = 24$ in, $\mathbf{H2} = 18$ in, and $\mathbf{So} = 1.2$ cm² using the appropriate unit keys accessible when data is being entered. After all the input variables have been entered, press [F2] key to get the results.


Given:	Results
$\alpha = 0.95$	t = 121.456 s
$So = 1.2 \text{ cm}^2$	
Dl = 12 in	
H1 = 24 in	
H2 = 18 in	
$\beta = 25 \text{ deg}$	

7.4 Horizontal Cylinder

This segment of the software computes fluid discharge from a cylindrical tank of diameter D (m) and length L (m). The parameters specified for the computations include an opening for discharge with an area So (m²), and a fluid head H1 (m) at t=0 and H2 (m) the fluid head at t. In addition, the discharge coefficient α (unitless) is a unique number (a number less than 1) accounting for the shape of the cross section, edge-rounding effects, and turbulent effects, along with Ks (unitless), and a space factor coefficient.

Example 7.4:

Find the time to oil from a cylindrical tank 12 m in diameter and 20 m long vessel with a space factor of 0.8 and orifice discharge coefficient of 0.75. How long does it take for the oil to drop down 10 cm from an initial height of 5 m. Assume the orifice opening to be 1.2 mm².

Input Screen

Result Screen

To solve the problem, enter values for $\alpha = 0.55$, Ks = 0.8 m, H1 = 5 m, H2 = 3.5 m, L = 20 m, and So = 1.2 cm² using the appropriate unit keys accessible when data is being entered. After all the input variables have been entered, press [F2] key to get the results.

	٠			
_	1	₹ 7₽	n	•
٧T		VC		•

 $\alpha = 0.75$

H1 = 5 m

H2 = 4.9 m

L = 20 m

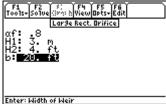
D = 12 m

 $So = 1.2 \text{ mm}^2$

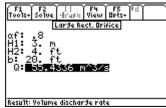
Ks = 0.22 m

Results

 $Q = .090698 \text{ } \text{ } \text{m}^3\text{/s}$


t = 492061 s

7.5 Large Rectangular Orifice


This segment of the software computes fluid discharge using a large rectangular orifice. The weir has a width of b (m). The system has a discharge coefficient αf , fluid heights H1 (m) and H2 (m) at the beginning and end.

Example 7.5:

Find the time to water to drop head from 3 m to 4 ft, for a weir 20 ft wide. Assume discharge coefficient of 0.8.

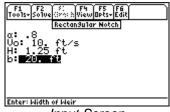
Input Screen

Result Screen

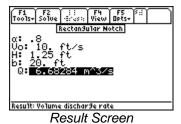
To solve the problem, enter values for $\alpha f = 0.8$, H1 = 3 m, H2 = 4 ft, and b = 20 ft. Enter all the inputs. After all the input variables have been entered, press [F2] key to get the results.

 $\begin{array}{ll} \textbf{Given:} & \textbf{Results} \\ \alpha f = 0.8 & Q = 55.4336 \text{ m}^3\text{/s} \\ \text{H1} = 3 \text{ m} \\ \text{H2} = 4 \text{ ft} \\ \text{b} = 20 \text{ ft} \\ \end{array}$

7.6 ASME Weirs


Weirs are useful devices to measure flow of liquids in open channels. A large number of empirical formulas have been developed in the engineering literature each with its own limitations. A few representative samples are included in this software.

7.6.1 Rectangular Notch


A rectangular weir has a width of b (m), initial static head of H (m), and a velocity of Vo (m/s). Assume a discharge coefficient α (unitless).

Example 7.6.1:

A rectangular weir is 20 ft wide, has water flowing over it at a velocity of 10 ft/s, a static head of 1.25 ft., and a discharge coefficient of .8. Find the discharge for the system.

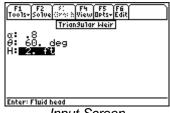
Input Screen

Results

 $Q = 6.68284 \text{ m}^3/\text{s}$

Given:

 $\alpha = 0.8$ Vo = 10 ft/s H = 1.25 ft


b = 20 ft

7.6.2 Triangular Weir

A triangular weir has a water height \mathbf{H} (m), a discharge coefficient with a static head of \mathbf{H} (m) and a velocity of \mathbf{Vo} (m/s). Assume a discharge coefficient α (unitless).

Example 7.6.2:

A triangular weir has an angle of 60 deg, a discharge coefficient of 0.8 and a 2 ft water height. Find the discharge for this condition.

Input Screen

Result Screen

Given:

 $\alpha = 0.8$ $\theta = 60 \deg$ H = 2 ft

Results

 $Q = .316531 m^3/s$

7.6.3 Suppressed Weir

A suppressed weir helps measure flow depending upon the height above the weir. The system has a coefficient of discharge of, a height H (m) over the weir, weir of width b (m), with an initial a velocity of Vo (m/s). Assume a discharge coefficient α (unitless).

Example 7.6.3:

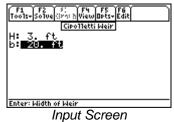
A rectangular weir is 20 ft wide, has water flowing over it at a velocity of 10 ft/s, a static head of 1.25 ft., and the discharge coefficient is .8. Find the discharge for the system.

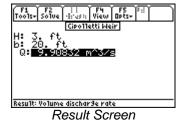
Input Screen

Result Screen

Given:

 $\alpha f = 0.8$ H = 1.25 ftb = 20 ftVo = 10 ft/s **Results**


 $Q = 13.4099 \text{ m}^3/\text{s}$


7.6.4 Cipolletti Weir

A Cipolletti weir of width **b** (ft) and static head of **H** (ft) computes discharge in ft³/s. The formulas used here are determined by experimental observation.

Example 7.6.4:

A rectangular weir is 20 ft wide, has water flowing over it with a 3 ft head. Find the discharge for the system.

riodan don

Given:

H = 3 ftb = 20 ft

Results

 $Q = 9.90832 \text{ m}^3/\text{s}$

References:

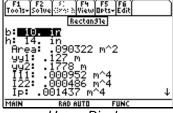
- 1. Eugene A Avallone and Theodore Baumeister, III, General Editors, 9th Edition, Mark's Standard Handbook for Mechanical Engineers, McGraw-Hill Book Company, New York, NY
- 2. Ranald Giles, Fluid Mechanics and Hydraulics, 2nd Edition, Schaum's Outline Series, McGraw-HillBook Company, New York, NY, 1962
- 3. Michael R. Lindeburg, Mechanical Engineering Reference Manual, 8th Edition, Professional Publications Inc., Belmont, CA, 1990

Chapter 8: Section Properties

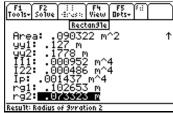
This section of the software computes properties commonly associated with sections. These properties include calculating the area of cross-section, location of the center of mass from the vertical and horizontal axes. Computed area moments, **I11** (m⁴) and **I12** (m⁴), reflect their value with reference to vertical and horizontal axes. In cases where it is meaningful, the polar area moment is computed along with radius of gyration. Twelve standard cross-sections are found in this section. A pictorial description is included where possible.

- **♦** Rectangle
- **♦** Circle
- **♦** Hollow Circle
- ♦ I Section Even
- **◆** T Section
- ♦ Polygon

- **♦** Hollow Rectangle
- ♦ Circular Ring
- ♦ I-Section uneven
- ♦ C-Section
- **♦** Trapezoid
- ♦ Hollow Polygon


8.1 Rectangle

The input screen for the rectangle requires the user to enter values of base, **b** (m), and height, **h** (m). In an illustrative example, we use a value of 10 inches for the base and 14 inches for the height. The results are displayed in SI units, however, they can be converted to different units by highlighting the values with the cursor, pressing **F5**: **Opts**, **4**: **Conv** and pressing a function key (**F1** - **F7**) to display the desired units.



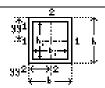
Entered values

Variable	Description	Value
b	Base	10 in
h	Height	14 in

Upper Display

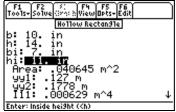
Lower Display

Solution - To enter the value of 10 inches for the base, at the data input screen, move the highlight bar to **b** and press ENTER. Type in 10 and press F4 to append the inch units to the value. Enter a value of 14 in for **h** in a similar manner. Press F2 to compute the results.

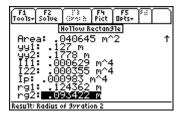

Computed Results

Variable	Description	Value
Area	Area	$.090322 \text{ m}^2$
yy1	Distance of center of mass from axis 1	.127 m
yy2	Distance of center of mass from axis 2	.1778 m
I11	Area moment inertia axis 11	$.000952 \text{ m}^4$
I22	Area moment inertia axis 12	$.000486 \text{ m}^4$
Ip	Polar area moment	.001437 m ⁴

Variable	Description	Value
rg1	Radius of gyration 1	.102653 m
rg2	Radius of gyration 2	.073323 m


8.2 Hollow Rectangle

The input screen for the hollow rectangle requires the user to enter outer and inner values of the base **b** and **bi** along with outer and inner heights **h** and **hi**. In an illustrative example, we use a value of 10 inches for the base and 14 inches for the height. The wall thickness is 1.5 in.



Entered values

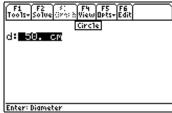
Label	Description	Value
b	Base	10 in
h	Height	14 in
bi	Inside base (<b)< td=""><td>7 in</td></b)<>	7 in
hi	Inside Height (<h)< td=""><td>11 in</td></h)<>	11 in

Lower Display

To enter the value of 10 inches for the base, move the scroll bar to **b** and press ENTER. Type in 10 and press F4 to append the inch units to the value. In a like manner, enter **7 in** for **bi**, **14 in** for **h** and **11 in** for **hi**. Press F2 to begin the calculations. The calculated results are shown below:

Computed Results

Label	Description	Value
Area	Area	0.040645 m^2
yy1	Distance of center of mass from axis 1	0.127 m
yy2	Distance of center of mass from axis 2	0.1778 m
I11	Area moment inertia axis 11	0.000629 m^4
I22	Area moment inertia axis 12	0.000355 m^4
Ip	Polar area moment	0.000983 m^4
rg1	Radius of gyration 1	0.124362 m
rg2	Radius of gyration 2	0.093422 m


8.3 Circle

The input screen for the circle requires the user to enter a value of diameter **d.** In an illustrative example, we use a value of 50 cm for the diameter.

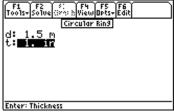
Entered values

Label
dDescription
DiameterValue
50 cm

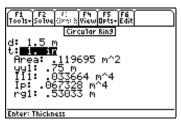
Computed results

To enter the value of 50 cm for the diameter, match the scroll bar to **d** and press ENTER. Press F2 to begin the calculations. The calculated results are listed below.

Computed Results


Label	Description	Value
Area	Area	0.19635 m^2
yy1	Distance of center of mass from axis 1	0.25 m
I11	Area moment inertia axis 11	0.003068 m^4
Ip	Polar area moment	0.006136 m^4
rg1	Radius of gyration 1	0.125 m

8.4 Circular Ring


The input screen for a circular ring requires the user to enter values of diameter \mathbf{d} and thickness \mathbf{t} . In an illustrative example, we use a value of 1.5 m for a wagon wheel with a ring thickness of 1 in.

Entered Values

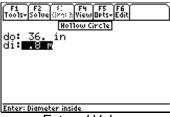
Computed results

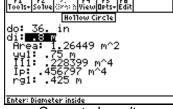
To enter the value of 1.5 m for the diameter \mathbf{d} , at the data input screen match the scroll bar to \mathbf{d} and press F2 to append the meter, \mathbf{m} , and units to the value. Enter a value of 1 in for \mathbf{t} in a similar manner. Press F2 to begin the calculations. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	0.119695 m^2
yy1	Distance of center of mass from axis 1	0.75 m
I11	Area moment inertia axis 11	0.033664 m^4

Label	Description	Value
Ip	Polar area moment	0.067328 m^4
rg1	Radius of gyration 1	0.53033 m


8.5 Hollow Circle


The input screen for the hollow circle requires the user to enter values of outer and inner diameters **do** and **di**. As an illustrative example, we use a value of 36 inches for the outer diameter and an inner diameter of 0.8 m.

Entered values

Label	Description	Value
do	Diameter	36 in
di	Thickness	0.8 m

Entered Values

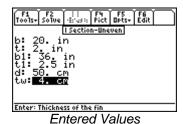
Computed results

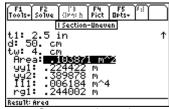
To enter the value of 36 inches for the outer diameter, at the data input screen match the scroll bar to **do** and press F1 to append the inch units to the value. Enter a value of .8 m for **di** in a similar manner. Press F2 to begin the calculations. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	1.26449 m^2
yy1	Distance of center of mass from axis 1	0.75 m
I11	Area moment inertia axis 11	0.228399 m^4
Ip	Polar area moment	0.456797 m^4
rg1	Radius of gyration 1	0.425 m

8.6 1 Section - Uneven


The input screen for an uneven I-Section consists of 6 variables needing user input. Pressing F4 allows a pictorial representation of T- and I-Beams. As shown in the picture shown here **b** and **b1** represent the widths of top and bottom flanges respectively while **t** and **t1** reflect the thickness of top and bottom flanges. The height and thickness of the fin connecting the top and bottom flanges is represented by **d** and **tw**.



As an illustrative example, we use an I-Beam; we use a top flange width of 20 in and 2 in thickness followed by 36 in width and 2.5 in thickness. The fin is 50 cm in height and 4 cm in thickness.

Entered values

Label	Description	Value
b	Width of top flange	20 in
t	Thickness of top flange	2 in
b1	Width of bottom flange	36 in
t1	Thickness of bottom flange	2.5 in
d	Height of fin	50 cm
tw	Thickness of the fin	4 cm

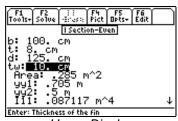
Computed results

To enter the value of 20 inches for the base, at the data input screen match the scroll bar to **b** and press F1 to append the inch units to the value. Enter the remaining values in a similar fashion. Press F2 to begin the calculating process. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	$.103871 \text{ m}^2$
yy1	Distance of center of mass from axis 1	.224422 m
yy2	Distance of center of mass from axis 2	.389878 m
I11	Area moment inertia axis 11	$.006184 \text{ m}^4$
rg1	Radius of gyration 1	.244002 m

8.7 I Section - Even


The input screen for an even I-Section, (sometimes can be looked upon and a H-Section turned on its side), consist of four inputs the top and bottom flange width **b** and **t**, and height **d** of the fin and its thickness **tw.** Pressing F4 reveals a picture on an even I-Section.

As an example, we use an even I-Section with a flange width of 100 cm and a thickness of 8 cm, while the fin has a height of 125 cm and a thickness of 10 cm.

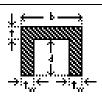
Entered values

Label	Description	Value
b	Width of top flange	100 cm
t	Thickness of top flange	8 cm
d	Height of fin	125cm
tw	Thickness of the fin	10 cm

| Figure | See | First | Figure | Figur

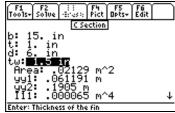
Upper Display

Lower Display

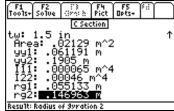

To enter the value of 100 cm for the flange width, at the data input screen match the scroll bar to **b** and press ENTER. Type in 100 and press F5 to append the cm units to the value. Use this procedure to enter 8 cm for **t**, 125 cm for **d** and 10 cm for **tw**. Press F2 to begin the calculations. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	0.285 m^2
yy1	Distance of center of mass from axis 1	0.705 m
yy2	Distance of center of mass from axis 2	0.5 m
I11	Area moment inertia axis 11	0.087117 m^4
I22	Area moment inertia axis 12	0.013438 m^4
rg1	Radius of gyration 1	0.552879 m
rg2	Radius of gyration 2	0.217138 m


8.8 C Section

The input screen for the C Section, width of flange **b** and thickness **t**, the fins have a height **d** and thickness **tw**. A picture of C Section can be viewed by pressing [F4]. As an example, we will compute the properties of a C Section with a 15 in flange with a thickness of 1 in, and the fin has a height of 6 in and a thickness of 1.5 in.



Entered values

Label	Description	Value
b	Width of top flange	15 in
t	Thickness of top flange	1 in
d	Height of fin	6 in
tw	Thickness of the fin	1.5 in

Upper Display

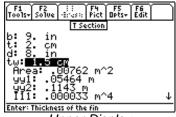
Lower Display

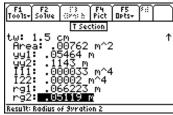
To enter the value of 15 in for the flange width at the data input screen match the scroll bar to **b** and press ENTER. Type in 15 and press F4 to append the inch units to the value. Enter the values for the rest of the parameters in a similar manner. Press F2 to begin the calculations. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	0.02129 m^2
yy1	Distance of center of mass from axis 1	0.061191 m
yy2	Distance of center of mass from axis 2	0.1905 m
I11	Area moment inertia axis 11	0.000065 m^4
I22	Area moment inertia axis 12	0.00046 m^4
rg1	Radius of gyration 1	0.055133 m
rg2	Radius of gyration 2	0.146963 m

8.9 T Section


The input screen for a T Section requires the user to enter values of top flange width b and thickness t, along height of the fin and its thickness d and tw.

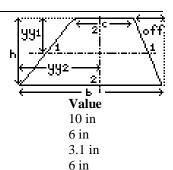

As an example, we compute the properties of a T Section 9 in wide flange with a thickness of 2 cm, and a fin of height 8 in and thickness 1.5 cm.

Entered values

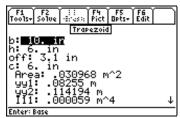
Label	Description	Value
b	Width of top flange	9 in
t	Thickness of top flange	2 cm
d	Height of fin	8 in
tw	Thickness of the fin	1.5 cm

Lower Display

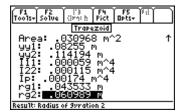
To enter the value of 9 in for the base, at the data input screen match the scroll bar to **b** and press ENTER]. Type in 9 and press [4] to append the inch units to the value. Enter the other values in a similar fashion. Press [F2] to begin the calculations. The calculated results are listed below.


Computed Results

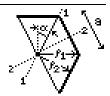
Label	Description	Value
Area	Area	0.00762 m^2
yy1	Distance of center of mass from axis 1	0.05464 m
yy2	Distance of center of mass from axis 2	0.1143 m
I11	Area moment inertia axis 11	0.000033 m^4
I22	Area moment inertia axis 12	0.00002 m^4
rg1	Radius of gyration 1	0.066223 m
rg2	Radius of gyration 2	0.05119 m


8.10 Trapezoid

The input screen for a trapezoid requires the user to enter value of base b, height h, and offset off, and top width c. In an illustrative example, we use a value of 10 in for the base and 6 in for top, a height of 6 in and an offset of 3.1 in.

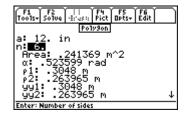

Label	Description
b	Base length
h	Height
off	Offset
c	Тор

By pressing F4 you can access a schematic of the trapezoid. To enter the value of 10 inches for the base, at the data input screen match the scroll bar to **b** and press ENTER. Type in 10 and press F4 to append the inch units to the value. Enter the values for other parameters in a like manner. Press F2 to begin the calculations and display the results. The calculated results are listed below.

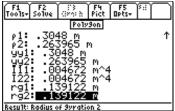

Lower Display

Computed Results

Label	Description	Value
Area	Area	0.030968 m^2
yy1	Distance of center of mass from axis 1	0.08255 m
yy2	Distance of center of mass from axis 2	0.114194 m
I11	Area moment inertia axis 11	$.000059 \text{ m}^4$
I22	Area moment inertia axis 12	0.000115 m^4
Ip	Polar area moment	0.000174 m^4
rg1	Radius of gyration 1	0.043533 m
rg2	Radius of gyration 2	0.060989 m


8.11 Polygon

A solid n-sided polygon with side a forms the basis of this segment. The input screen requires the user to enter values of side **a**, and number of sides **n**. In an illustrative example, we use a value of 12 inches for the side of a 6-sided polygon. A cross section of the polygon is shown in the screen display here.

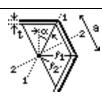


Entered values

Label	Description	Value
a	Side Length	12 in
n	Number of sides	6

Upper Display

Lower Display

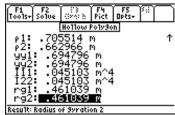

To enter the value of 12 inches for the base, at the data input screen match the scroll bar to **b** and press ENTER. Type in 10 and press F4 to append the inch units to the value. Enter the number of sides in a similar manner. Press F2 to begin the calculations and display results. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	$.241369 m^2$
α	Angle	.523599 rad
ρ1	Radius to point	0.3048 m
ρ2	Radius to line	0.263965 m
yy1	Distance of center of mass from axis 1	0.3048 m
yy2	Distance of center of mass from axis 2	0.263965 m
I11	Area moment inertia axis 11	0.004672 m^4
I22	Area moment inertia axis 12	0.004672 m^4
rg1	Radius of gyration 1	0.139122 m
rg2	Radius of gyration 2	0.139122 m

8.12 Hollow Polygon

A hollow n-sided polygon with side a forms the basis of this segment. The input screen requires the user to enter values of side **a**, wall thickness **t** and number of sides **n**. In an illustrative example, we use a value of 19 inches for the side, and a thickness of 2 in of a 9-sided polygon. A cross section of the polygon is shown in the screen display here.



Entered values

Label	Description	Value
a	Side Length	19 in
n	Number of sides	9
t	Thickness	2 in

Upper Display

Lower Display

To enter the value of 19 inches for the base, at the data input screen match the scroll bar to **b** and press <u>ENTER</u>. Type in 10 and press <u>F4</u> to append the inch units to the value. Enter the number of sides in a similar manner. Press <u>F2</u> to begin the calculations and display results. The calculated results are listed below.

Computed Results

Label	Description	Value
Area	Area	0.212191 m^2
α	Angle	.349066 rad
ρ1	Radius to point	0.705514 m
ρ2	Radius to line	0.662966 m
yy1	Distance of center of mass from axis 1	0.694796 m
yy2	Distance of center of mass from axis 2	0.694796 m
I11	Area moment inertia axis 11	0.045103 m^4
I22	Area moment inertia axis 12	0.045103 m^4
rg1	Radius of gyration 1	0.461039 m
rg2	Radius of gyration 2	0.461039 m

References:

1. Warren C. Young, Roark's Formulas for Stress and Strain, 6th Edition, McGraw-Hill Book Company, New York, NY, 1989.

Chapter 9: Hardness Number

Brinnell and Vicker developed two popular methods of measuring the Hardness number. Brinell composed his tests by dropping a ball of steel onto slab of finite thickness with standard loads such as 500 lbf and 3000 lbf. This steel ball results in an indentation in the material. Vicker had a similar principle to Brinell; instead of steel ball he used a diamond in the shape of square pyramid. By measuring the diameter of indentation, **di**, for Brinells test and the diagonal length of the impression, **di**, for Vickers test, the hardness number is computed. By long standing convention, the diameter **di** is measured in millimeters.

9.1 Compute Hardness Number

The tests to measure the hardness number allows a 10 mm diameter steel ball or 10mm diagonal length pyramid to be dropped onto the material surface with a effective force of 500 lbf or 3000 lbf. The formulas used to compute the hardness number for by Brinell's and Vicker's methods give slightly different results, but do converge in several areas of the yield curves.

Upon selecting this topic, the input screen (shown here) presents four options to the user. You can choose Brinell's method at 500 lbf or 3000 lbf or Vickers' method for the same two load values.

Upon making the selection, enter the measured data for **di** by aligning the highlight bar to **Impression size in mm.** This number should be less than 10mm. After entering numbers for di, press **ENTER** to start the solving process. At the end of the computation, the results are displayed on the screen as shown in the example below.

Example 9.1:

We choose an example of 4.2mm as the measured value of the indentation di and compute BHN and VHN for both 500-lbf loads and the 3000-lbf loads. Input and computed results are shown below.

Brinell's output at 500 lbf

Brinell's output at 3000 lbf

	5) F4 F5 Orn: 6 Pict Opts+ Ch	
Test Met Load: 150 Impressi	Hardness Number hod: Vicker IOE on size in 7528	rs+
Choose: 500 or	3000	

Vicker's	Output	at 500	lhf

F1 F2 5: F4 F5 F6 Tools-Solve (270: 6) Pict OPts-Choose		
Hardness Number		
Test Method: Vickers+ Load: ************************************		
Choose: 500 or 3000		

Vicker's output at 3000 lbf

Given:

di = 4.2 mm

Results:

Test	500 lbf	3000 lbf
Brinnell Test	34.4208	206.525
Vicker Test	48.7528	292.517

Part II: Equations

Chapter 10: Introduction to Equations

The *Equations* section of ME•*Pro* contains over 1000 equations organized into 12 topic and 185 subtopic menus.

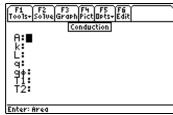
- The user can select to solve equation sets in a particular sub-topic, display all the variables used in the set of equations, enter the values for the known variables and solve for the unknowns.
- The equations in each sub-topic can be solved individually, collectively or as a sub-set.
- A unit management feature allows easy entry and display of results.
- Each equation can be graphed to examine the relationship between to variables in an equation.
- Multiple and partial solutions are possible.
- Specific parametric information about a particular variable can be displayed by highlighting the variable, press F5 and 2/Type: to show a brief description of a variable and its entry parameters.
- The input form accepts valuables for variables that have physical meaning only. For example only positive real values are accepted for variables such as radius, thickness etc.

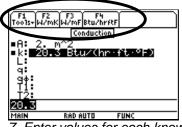
10.1 Solving a Set of Equations

- Equations are accessed from the main level of the ME•*Pro* by pressing function key F3 labeled "Equations." A pull-down menu listing all the main categories is displayed as shown in the screen display below.
- An arrow to the left of the bottom topic '↓'indicates more items are listed. Pressing 2nd ⊙ jumps to the bottom of the menu list.
- Scroll the highlight bar to an item using the arrow key ② and press ENTER, or type the subject number appearing next to subject heading (*Heat Transfer* is selected for this example).
- A dialog box presents more subjects (sub-topics) under the topic heading. For example selecting the 1st item (i.e., *Basic Transfer Mechanisms*) displays a list of subtopics (*Conduction, Convection, Radiation*). Select *Conduction* to display a set of equations for this section. A complete list of topics in the equation section is listed at this end of the chapter.
- Use the arrow key \odot to move the highlighter and press ENTER to select an equation, pressing F2 selects all equations in the set. A selected equation is marked with a check $(\sqrt{})$.
- Press [2] to display all of the variables in the selected equations. A brief description of each variable will appear in the status line at the bottom of the screen.
- Enter values for the known parameters, selecting appropriate units for each value using the toolbar menu.
- Press F2 to compute values for the unknown parameters.
- Entered and calculated values are distinguished in the display; '■' for entered values and '◆' for computed results.

 Pressing F3 displays the Equations menu. Press 4 to select 'Heat Transfer'.

2. Press 1 to display the menu for 'Basic Transfer Mechanisms'.


3. Press 1 to display the equations for 'Conduction'.

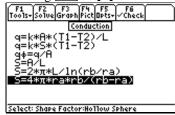

4. Equations found under conduction.

5. Select the equations for a calculation by moving the cursor to each equation and pressing [ENTER]. (Check mark '√" appears when selected).

6. Press F2 to display all the variables in the selected equations. Variable description appears on the status line at the bottom of the screen.

7. Enter values for each known variable. Append the units by pressing the function key corresponding to the desired units.

8. Once all known variable values are entered, press [F2] to solve for the unknowns.

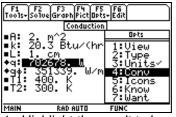


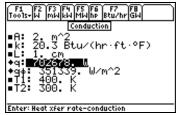
Note: Computed results
 '◆' are distinguished from entered values '■'.

Note: Only values designated as *known* '•' will be used in a computation. Results displayed from an earlier calculation will not be automatically used unless designated by the user by selecting the variable and pressing ENTER. Press F2 to compute a new result for any input that is changed.

10.2 Viewing an Equation or Result in Pretty Print

Sometimes equations and calculated results exceed the display room of the calculator. The TI-89 and TI 92 Plus include a built-in equation display feature called *Pretty Print* which is available in many areas of ME•*Pro* and can be activated by highlighting a variable or equation and pressing the right arrow key ① or pressing the F4 function key when it is designated as *View*. The object can be scrolled using the arrow keys ② ②. Pressing [ESC] or [F6] reverts to the previous screen.


 To view an equation in, Pretty Print, highlight and press [F4] or ().


2. Scroll features, using the arrow keys (1), enable a complete view of a large object.

10.3 Viewing a Result in different units

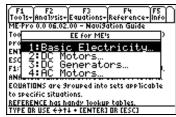
To view a calculated result in units which are different from what is displayed, highlight the variable, press [F5]/Options and [4]/Conv to display the unit tool bar at the top of the screen. Press the appropriate function key to convert the result to the desired units.

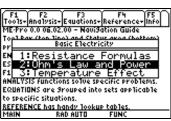
1. Highlight the result to be converted **q**. Press F5 to display the Options menu, press 4: conv.

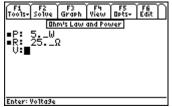
2. The unit menu tool bar is now displayed.

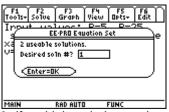
3. Press $\boxed{4}$ to convert the result of **q** from W to kW.

10.4 Viewing Multiple Solutions


When multiple solutions exist, the user is prompted to select the number of a series of computed answers to be displayed. To view additional solutions, press [F2] to repeat the calculation and enter another solution number. The user will need to determine which result is most useful to the application. The following example is taken from **Ohm's Law and Power** in the **EE for MEs** section. *Equations/EE for MEs/Basic Electricity/Ohm's Law and Power*.


1. Return to the HOME screen of ME•Pro (F1: Tools, 8: Clear or press ESC repeatedly) and access the equations section by pressing F3.


1. Select an equation using highlighting the cursor bar and to display variables.

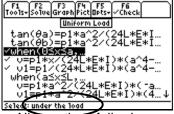

Press 1 for 'Basic Electricity'.

Press 2 for 'Ohm's Law and Power.'

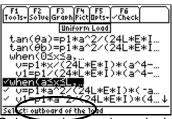
2. Enter known values for each variable using the tool bar to designate units. Press F2 to compute the results.

3. If multiple solutions exist, a dialogue box will appear requesting the user to enter the number of a solution to view.

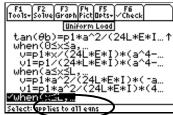
Solution 1: To view another solution, press [F2] to repeat the calculation and enter the number of another solution to be viewed.



Solution 2: Enter a new number for each 'solve' to display a series of multiple solutions.


10.5 When (...) - conditional constraints when solving equations

In several sections of $ME \bullet Pro$, equations are limited to certain variable ranges. An example can be found in *Beams and Columns/Simple Beams/Uniform Load (Chapter 11.1.1)*: A beam, experiencing a uniform load along a distance, \mathbf{a} (m), from one end, has a deflection, \mathbf{v} (m), and slope of deflection, \mathbf{v} 1, located at a distance, \mathbf{x} (m), from the end of the beam. Two sets of unique equations compute \mathbf{v} and \mathbf{v} 1 depending on whether the condition is $\mathbf{x} \leq \mathbf{a}$ or $\mathbf{x} \geq \mathbf{a}$. The conditions for the equations appear in the 'when' clauses precede the equations. $ME \bullet Pro$ allow's the selection of equations under a single 'when' clause since the conditions are generally exclusive to each other².


Note: The 'when' clauses do not serve any mathematical function in the solving process or for screening variable entry; they are only a guide for selecting equations for a specific circumstance. Additional information for a 'when' clause appears in the status line while it is highlighted.

All equations following a highlighted 'when' heading are selected when ENTER is pressed.

Only equations under a single 'when' heading can be selected at a time.

Description of constraint appears in the status line at the bottom of the screen.

Some equation sets do not form a consistent set, which can be solved together. An example occurs in *Equations/Fluid Mechanics/Fluid Dynamics/Equivalent Diameter* (see **Chapter 21.3.3**), where each equation represents fluid flow through a different-shaped cross-section. In such a case, the specific conditions for each equation appear on the status line.

10.5 Arbitrary Integers for periodic solutions to trigonometric functions

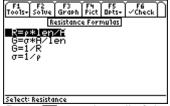
When an angle value is being computed in a trigonometric function such as tangent, cosine and sine, ME•Pro may prompt an entry for an arbitrary integer (-2, -1, 0, 1, 2...) before displaying a solution. Solutions for angles inside of trigonometric functions are generally periodic, however the solution, which is most often sought, is the principal solution. The principal solution, P, in a periodic trigonometric function, trig(...), is trigonometric function, where n is the arbitrary integer and trigonometric function, and trigonometric function. Selecting the arbitrary integer to be 0 gives the principal solution.

_

² In at least one known case (*Beams and Columns/Simple Beams/Point load*), conditions in more than one **when** (...) statement can occur simultaneously. A work around is to solve the equation set in two steps, using equations under a single **when** (...) heading at a time and designating the results from one calculation as the input into the second.

ME-Pro Solver and Grapher Arbitrary integer 21 in solution.
Replace with what small integer #? 0
\ <u>{Enter=UK}</u> 967763/158750000000000000000
MAIN RAD AUTO FUNC

Dialog box for entering an arbitrary integer for a periodic solution.


If '0' is entered, the principal solution (P) for an angle is displayed.

If '1' is entered, a non-principal solution (P+180°) is displayed.

10.7 Partial Solutions

"One partial useable solution found" or "Multiple partial solutions found." will be displayed in the status line if values for one or more variables in the selected equation set cannot be computed. This situation can occur if there are more unknowns than equations in the selected set, the entered values do not form consistent relationships with the selected equations, or if the selected equations do not establish a closed form relationship between all of the entered values and the unknowns. In such a case, only the calculated variables will be displayed. This section appears in Equations/EE for MEs/Basic Electricity/Resistance Formulas.

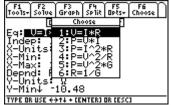
Press F2 to select all of the equations in Resistance Formulas.

If there are more unknowns
Than selected equations or
Relationships between
Variables are not established
From the selected equations...

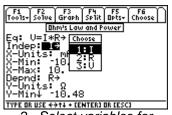
...a partial solution will be displayed if one or more of the unknown variables can be computed from the entered inputs.

10.8 Copy/Paste

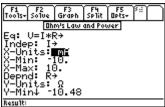
A computed result and it's expressed units can be copied and pasted to an appropriate part of the TI operating system using [F1]: **Tools-5**: **Copy** key sequence to copy a value and [F1]: **Tools-6**: **Paste**. In a few cases, The TI-89 and TI-92 operating systems, and ME•*Pro* use slightly different conventions for displaying units. The unit system in ME•*Pro* is designed to conform to the convention established by SI, however, in order to CUT and PASTE a value and units from ME•*Pro* to another area of the TI operating system, ME•*Pro* must insert extra characters in the units to match TI's syntax. **The COPY/PASTE** function can only work INSIDE of ME•*Pro* if the unit feature has been deactivated (press [F5]:Opts, [3]: Units to toggle the unit feature on or off).


10.9 Graphing a Function

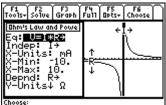
The relationship between two variables in an equation can be graphed on a real number scale if the other variables in the equation are defined.

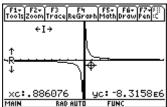

- After solving an equation, or entering values for the <u>non-x</u>, <u>y</u> variables in the equation to be plotted, press [3] /**Graph** to display the graph settings.
- Highlight **Eq:** and press **ENTER** to select the equation from the list to graph.
- Use the same steps as above to select the independent and dependent variables (**Indep:** and **Depnd:**) from the equation.
- Note: all pre-existing values stored in the variables used for Indep: and Depnd: will be cleared
 when the graphing function is executed.

- The graphing unit scale for each variable reflects the settings in the *Equations* section of ME•*Pro*.
- Scrolling down the list, specify the graphing ranges for the x and y variables, whether to graph in full or split screen modes, automatically scale the graph to fit the viewing area, and label the graph.
- Press F3 to graph the function.


Once the graph command has been executed, ME•*Pro* will open a second window to display the plot. All of the TI graphing features are available and are displayed in the toolbar, including *Zoom* [2], *Trace* [53], *Math* [55], etc. All the tools from TI graphics engine are now available to theuser. If the split-screen graphing mode is activated, the user can toggle between the ME•*Pro* graph dialogue display and the TI graph by pressing [2nd [APPS]]. If the full-screen graphing mode is activated, the user can switch between ME•*Pro* and the graph by pressing [APPS] 4:Graph or A: ME•*Pro*. To remove the split screen after graphing, you will need to change the display settings in the MODE screen of the calculator. To do this: 1) Press [MODE] 2) Press [52]: Page 2; 3) move the cursor to Split Screen. 4) Press the right arrow key (6) to display a pop-up menu. 5) Select FULL. 6) Press [ENTER] twice.

1*. Graph an equation by pressing F3. Press ENTER to choose an equation.


 Select variables for Independent (x) and Dependent (y) variables.


Variable units reflect settings in ME•Pro.

4. Select graphing options by pressing ENTER.

5. Split Screen Mode: Toggle Between graph and settings by pressing [2nd] and [APPS].

6: Full Screen Mode: Press

• and APPS to return to

ME•Pro.

*Before graphing an equation, be sure to specify values for variables in an equation, which are not going to be used as x, and y variables.

Note: If an error is generated when attempting to graph, be sure that all of the variables in the graphed equation, which are not specified as the independent, and dependent variables have known values. In the ME•*Pro* window, press ESC to view the equations in the sub-topic, select the equation to be graphed and press F2 to display the list of variables in the equation and enter values. Only the dependent (y) and independent (x) variables do not have to contain specified values. Press F3 to display the graph dialogue and repeat the above steps to graph the function.

10.10 Storing and recalling variable values in ME•*Pro*-creation of session folders

ME•*Pro* automatically stores its variables in the current folder specified by the user in MODE or the HOME screens. The current folder name is displayed in the lower left corner of the screen (default is "Main"). To create a new folder to store values for a particular session of ME•*Pro*, press F1:/**TOOLS**, ③:/NEW and type the name of the new folder.

There are several ways to display or recall a value:

- The contents of variables in **any** folder can be displayed using the [VAR-LINK], moving the cursor to the variable name and pressing [F6] to display the contents of a particular variable.
- Variables in a current folder can be recalled in the HOME screen by typing the variable name.
- Finally, values and units can be copied and recalled using the F1/Tools 5: COPY and 6: PASTE feature.

All inputs and calculated results in *Analysis* and *Equations* are saved as variable names. Previously calculated, or entered values for variables in a folder are replaced when equations are solved using new values for inputs. To preserve data under variable names, which may conflict with ME•*Pro* variables, run ME•*Pro* in a separate folder.

10.11 solve, nsolve, and csolve and user-defined functions (UDF)

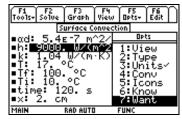
When a set of equations is solved in $ME \bullet Pro$, three different functions in the TI operating system (solve, numeric solve, and complex solve) are used to find the most appropriate solution. In a majority of cases, the entered values are adequate to find numeric solutions using either *solve*, or *csolve* functions. However, there are a few instances when UDFs external to equations are incorporated into the solving process. User defined functions which appear $ME \bullet Pro$ are the error functions **erfc (x)** and **erf (x)**.

When all the inputs to a UDF are known, *solve* or *csolve* passes a computed result to the equation: however, if the unknown variable is an input to the UDF, *solve* or *csolve* are unable to isolate the variable in an explicit form, and the operating system resorts to using *nsolve* which initiates a trial and error iteration until the solution converges. It should be noted that the solution generated by *nsolve* is *not* guaranteed to be unique (i.e. this solving process cannot determine if multiple solutions exist.).

Because nsolve is used, <u>an equation containing a user-defined function (UDF) cannot be graphed</u> when the dependent variable is contained in the UDF.


Table 15-1 User Defined Functions²

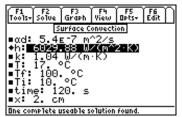
User-defined Function	Topic	Sub-topic
erf(x, αd, time)	Heat Transfer	Step Change in Surface Temperature
erfc (x, αd, time)	Heat Transfer	Constant Surface Heat Flux
erfc (x, αd, h, k, time)	Heat Transfer	Surface Convection


10.12 Entering a guessed value for the unknown using nsolve

To accelerate the converging process and, if multiple solutions exist, enhance the possibility that nsolve resolves the correct solution, the user can enter a guessed value for the unknown which nsolve will use as an initial value in its solving process.

- Enter guessed a value for the variable in the input dialogue.
- Press F5/Opts, 7/Want.
- Press F2/ to compute a solution for the

erfc(h) is a user-defined function (UDF) that appears in the 'Surface Convection' topic of 'Heat


Only one variable in a user-defined function can be specified as an unknown.

Transfer'.

ME•Pro posts a notice if the nsolve routine is used.

An initial value for the unknown can be specified for the n-solve process F5:Opts, 7: Want.

The user can enter a value for the unknown and designate it as a guessed value to accelerate the nsolve convergence process.

10.13 Why can't I compute a solution?

If a solution is unable to be computed, you might check the following:

- 1. Are there at least as many equations selected, as there are unknown parameters?
- 2. Are the entered values or units for the known parameters reasonable for a specific case?
- 3. Are the selected equations consistent in describing a particular case? (For example, certain equations used in the calculation of equivalent circular cross-section diameters in *Fluid Mechanics/Fluid Dynamics/Equivalent Diameter*, are only valid for certain shaped cross sections). Check the headings displayed at the bottom of the screen while the equation is highlighted to determine if special restrictions for a particular equation (set) apply.

10.14 Care in choosing a consistent set of equations

The success in obtaining a useful solution, or a solution at all is strongly dependent on an insight into the problem and care in choosing equations, which describe consistent relationships between the parameters.

The following steps are recommended:

- Read the description of each set of equations in a topic to determine which subsets of equations in a
 series are compatible and consistent in describing a particular case. Some restrictions or special
 conditions for an equation or set of equations are listed in the status line while the equation or 'when'
 conditions are highlighted.
- Select the equations from a subset, which describe the relationships between all of the known and unknown parameters.
- As a rule of thumb, select as many equations from the subset as there are unknowns to avoid redundancy or over-specification. The equations have been researched from a variety of sources and use slightly different approximation techniques. Over-specification (selecting too many equations) may lead to an inability of the equation solver to resolve slight numerical differences in different empirical methods of calculating values for the same variable.

10.15 Notes for the advanced user in troubleshooting calculations

When there are no solutions possible, $ME \bullet Pro$ provides important clues via the variables, **meinput**, **meprob**, **means**, and **meanstyp**. These variables are defined during the equation setup process by the built-in multiple equation solver. $ME \bullet Pro$ saves a copy of the problem, its inputs, its outputs, and a characterization of the type of solution in the user variables **meprob**, **meinput**, **means**, and **meanstyp**. For the developer who is curious to know exactly how the problem was entered into the multiple equation solver, or about what the multiple equation solver returned, and to examine relevant strings. The contents of these variables may be viewed and examined by using [VAR-LINK]. Press [VAR-LINK] ([2nd] followed by \Box), scroll to the variable name in the current folder and press [F6] to view the contents of the variable. The

string may be recalled to the status line of the home screen, modified and re-executed, if desired. **If no solutions are possible when one should be displayed, try clearing the variables in the current folder, or opening a new folder**.

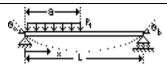
Chapter 11: Beams and Columns

This chapter covers the details found in the Beams and Columns section. Three broad areas of common interest are covered. They are:

♦ Simple Beams

♦ Cantilever Beams

♦ Columns


11.1 Simple Beams

Structural members designed to resist forces acting perpendicular to its longitudinal axis are defined as Beams. The simplest types of beams can be thought of "planar structures" wherein all the deflections occur in the same plane. The essential features of a Simple Beam, or Simply Supported Beam, are a pin support is placed at one end and a roller support at the other. The equations used here cover Simple Beams where the rollers support are always at the *right end* of the beam.

Three types of loads are considered here. They are Uniform load, Point load and Moment load. Each of these load types has unique characteristics and is illustrated in the software.

11.1.1 Uniform Load

The equation set here covers problems associated with a uniformly distributed load, $\mathbf{p1}$ (N/m), covering a distance, \mathbf{a} (m), from the left end. **Equations 1** and **2** yield the slopes at the left and right ends of the beam, $\theta \mathbf{a}$ (rad), and, $\theta \mathbf{b}$ (rad), respectively. To compute the deflection, \mathbf{v} (m),

and slope, v1, at any location, x (m), from the left, use **equations 3** and **4** when $x \le a$. When, x, lies between, **a.** and the beam length, L (m), use **equations 5** and **6** to compute, v, and v1. E (Pa), the modulus of elasticity and I (m⁴), the area moment of inertia, represent the material properties of the beam.

$$\tan(\theta a) = \frac{p \cdot 1 \cdot a^2}{24 \cdot L \cdot E \cdot I} \cdot (2 \cdot L - a)^2$$
 Eq. 1

$$\tan(\theta b) = \frac{p1 \cdot a^2}{24 \cdot L \cdot E \cdot I} \cdot \left(2 \cdot L^2 - a^2\right)$$
 Eq. 2

When $0 \le x \le a$, the following two equations are applicable

$$v = \frac{p1 \cdot x}{24 \cdot L \cdot E \cdot I} \cdot \left(a^4 - 4 \cdot a^3 \cdot L + 4 \cdot a^2 \cdot L^2 + 2 \cdot a^2 \cdot x^2 - 4 \cdot a \cdot L \cdot x^2 + L \cdot x^3 \right)$$
 Eq. 3

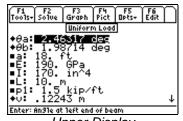
$$v1 = \frac{p1}{24 \cdot L \cdot E \cdot I} \cdot \left(a^4 - 4 \cdot a^3 \cdot L + 4 \cdot a^2 \cdot L^2 + 6 \cdot a^2 \cdot x^2 - 12 \cdot a \cdot L \cdot x^2 + 4 \cdot L \cdot x^3 \right) \quad \text{Eq. 4}$$

When $a \le x \le L$, the following two equations are applicable

$$v = \frac{p1 \cdot a^2}{24 \cdot L \cdot E \cdot I} \cdot \left(-a^2 \cdot L + 4 \cdot L^2 \cdot x + a^2 \cdot x - 6 \cdot L \cdot x^2 + 2 \cdot x^3 \right)$$
 Eq. 5

$$v1 = \frac{p1 \cdot a^2}{24 \cdot L \cdot E \cdot I} \cdot \left(4 \cdot L^2 + a^2 - 12 \cdot L \cdot x + 6 \cdot x^2 \right)$$
 Eq. 6

When $0 \le x \le L$, applies to all equations


The variable names, description and applicable default units used in these equations are listed below.

Variable	Description	Units
θ a	Angle at left (fixed) end	rad
θ b	Angle at right (roller supported) end	rad
a	Load location from left (fixed) end	m
E	Young's modulus	Pa
I	Area moment of inertia	m^4
L	Length	m
p1	Load/unit length	N/m
V	Beam deflection	m
v1	Slope of deflection	unitless
X	Dist. from left end	m

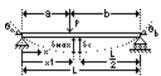

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 11.1.1:

A simple beam, 10 meters long, is subject to a uniform load of 1.5 kips/ft, spanning 18 feet from the left end. Find the slopes at left and right ends and deflection at mid-point of the beam. Assume that the Young's modulus of the beam material is 190 GPa and that the area moment is 170 in^4 .

Upper Display

Lower Display


Solution – Select the **first three equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. **Select 0** to compute the principal solution). The entries and results are shown in the screen displays above.

Given	Solution
a = 18 ft	$\theta a = 2.46317 ^{\circ}$
E = 190 GPa	$\theta b = 1.98714$ °
$I = 170 \text{ in}^4$	v = .12243 m
L = 10 m	

Given p1 = 1.5 kip/ft x = 5 m **Solution**

11.1.2 Point Load

This equation set covers problems associated with a point load, P(N), located a distance, a(m), from the left (fixed) end of a simple beam. **Equations 1** and 2 yield the slope angles, $\theta a(rad)$, $\theta b(rad)$ at the left and right ends of the beam, respectively. **Equation 3** computes the length of the beam, L(m), in terms of the load distance from the left, a(m)

(m), and right, **b** (m) ends. To compute the deflection, **v** (m), and slope **v1** at any location, **x** (m), from the left side, use **equations 4** and **5** when $0 \le x \le a$. **Equation 6** yields δc (m), the deflection at the center of the beam when $a \ge b$. **Equation 7** computes x1 (m), the location of maximum deflection, δmax (m), calculated by **equation 8**. The material properties of the beam are represented by, **E** (Pa) the modulus of elasticity, **I** (m⁴) the area moment of inertia, and **L** (m), the length of the beam.

$$\tan(\theta a) = \frac{P \cdot a \cdot b \cdot (L+b)}{6 \cdot L \cdot E \cdot I}$$

$$\tan(\theta b) = \frac{P \cdot a \cdot b \cdot (L+a)}{6 \cdot L \cdot E \cdot I}$$

$$L = a + b$$
 Eq. 3

When $0 \le x \le a$, the following two equations are applicable

$$v = \frac{P \cdot b \cdot x}{6 \cdot L \cdot E \cdot I} \cdot \left(L^2 - b^2 - x^2\right)$$
 Eq. 4

$$v1 = \frac{P \cdot b}{6 \cdot L \cdot E \cdot I} \cdot \left(L^2 - b^2 - 3 \cdot x^2\right)$$

When $a \ge b$, the following two equations are applicable

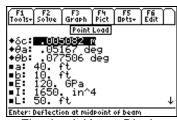
$$\delta c = \frac{P \cdot b \cdot \left(3 \cdot L^2 - 4 \cdot b^2\right)}{48 \cdot E \cdot I}$$

$$x1 = \sqrt{\frac{L^2 - b^2}{3}}$$

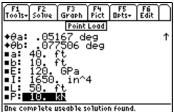
$$\delta \max = \frac{P \cdot b \cdot \left(L^2 - b^2\right)^{1.5}}{243^5 \cdot L \cdot E \cdot I}$$

When $0 \le x \le L$, applies to all equations

The variable names, description and applicable default units used in these equations are listed below.


Variable	Description	Units
δς	Deflection at mid point	m
δmax	Maximum deflection at x1	m
θ a	Angle at left (fixed) end	rad
θ b	Angle at right (roller supported) end	rad
a	Load location from left (fixed) end	m
b	Dist. from right (roller supported) end	m
E	Young's modulus	Pa
I	Area moment	m^4
L	Length	m
P	Point load	N
V	Beam deflection	m
v1	Slope of deflection	unitless
X	Distance from left end	m
xl	Maximum deflection location	m

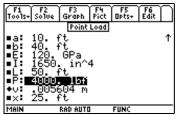
Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.


Example 11.1.2:

A simple beam, 50 ft long, is subject to a point load of 4000 lbf located 10 feet from the left end and a second load of 10 kN located 10 feet from the right end. Find the deflection at mid-beam and the slope at both ends. Assume that the Young's modulus of the beam material is 120 GPa, and the area moment is 1650 in⁴.

Solution - The problem is solved in two stages. First, compute the slopes at both ends, and the deflection at the center for the load of 10 kN. Repeat the calculations using the second load and add the two computed values using the superposition to calculate the final result. Select an arbitrary integer of 0 to compute the principal solution (the principal solution, P, in a periodic trigonometric function, trig (...), is $P=trig(\theta+n\cdot\pi)$ and n is the arbitrary integer).

First load: Upper Display


First load: Lower Display

Use Equations 1, 2 and 6 to calculate the results from the first load.

Given	Solution
a = 40 ft	$\delta c = .005082 \text{ m}$
b = 10 ft	$\theta a = .05167 \deg$
E = 120 GPa	$\theta b = 0.077506 \text{ deg}$
$I = 1650 \text{ in}^4$	
L = 50 ft	
P = 10 kN	

Second load: Upper Display

Second load: Lower Display

Use Equations 1, 2 and 4 to calculate the results from the second load.

Given

a = 10ft

b = 40 ft

E = 120 GPa

 $I = 1650 \text{ in}^4$

L = 50 ft

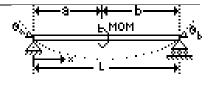
P = 4000 lbf

 $x = 25 \, ft$

Solution

 $\theta a = .137905 \text{ deg}$

 $\theta b = .091937 \text{ deg}$


v = .005604 cm

The final results of the two loads are obtained by invoking the super position principle; thus add the results of the two sets of calculations.

Solution	θ a	$\theta \mathbf{b}$	δc/v
First load	.05167 deg	.077506 deg	.005082 m
Second load	.091937 deg	.13905 deg	.005604 m
Total	.143607 deg	.216556 deg	.010686 m

11.1.3 Moment Load

This equation set covers problems associated with a moment load, **MOM** (N·m), applied at a distance, **a** (m), from the left end. Equations 1 and 2 calculate the slope angles, θa (rad), and, θb (rad), at the left and right ends of the beam, respectively. The deflection distance, v (m), and slope, v1, at distance, x (m), from the

left side of the beam are computed by **Equations 3** and **4**. The material properties of the beam are represented by, E (Pa) the modulus of elasticity, I (m⁴) the area moment of inertia, and, L (m) the length of the beam.

$$\tan(\theta a) = \frac{MOM}{6 \cdot L \cdot E \cdot I} \cdot \left(6 \cdot a \cdot L - 3 \cdot a^2 - 2 \cdot L^2\right)$$

$$\tan(\theta b) = \frac{MOM}{6 \cdot L \cdot E \cdot I} \cdot \left(3 \cdot a^2 - L^2\right)$$

When $0 \le x \le a$, the following two equations are applicable

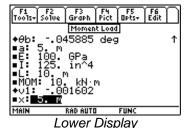
$$v = \frac{MOM \cdot x}{6 \cdot L \cdot E \cdot I} \cdot \left(6 \cdot a \cdot L - 3 \cdot a^2 - 2 \cdot L^2 - x^2 \right)$$

$$v1 = \frac{MOM}{6 \cdot L \cdot E \cdot I} \cdot (6 \cdot a \cdot L - 3 \cdot a^2 - 2 \cdot L^2 - 3 \cdot x^2)$$

When $0 \le x \le L$, applies to all equations

The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Units
θ a	Angle at left (fixed) end	rad
θ b	Angle at right (roller supported) end	rad
a	Distance of load from left (fixed) end	m
E	Young's modulus	Pa
I	Area moment of inertia	m^4
L	Length	m
MOM	Moment applied to beam	N⋅m
V	Beam deflection	m
v1	Slope of deflection	unitless
X	Distance from left (fixed) end	m


Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

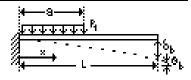
Example 11.1.3:

A simple beam, 10 meters long, is subject to a moment load of 10kN·m at the middle point of the beam. Find the slopes at left and right ends of the beam, and deflection at mid point of the beam. Assume that the Young's modulus of the beam material is 100 GPa, and the area moment to be 125 in⁴.

Upper Display

Solution – Select the **first, second**, and **fourth equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. **Select an arbitrary integer of 0** to compute the principal solution (the principal solution, P, in a periodic trigonometric function, trig (...), is $P=\text{trig}\ (\theta+n\cdot\pi)$ and n is the arbitrary integer). The entries and results are shown in the screen displays above.

Given	Solution
a = 5 m	$\theta a = .045885 \text{ deg}$
E = 100 GPa	$\theta b =046885 \text{ deg}$
$I = 125 \text{ in}^4$	v1 =001602
L = 10 m	
$MOM = 10 \text{ kN} \cdot \text{m}$	
x = 5 m	


11.2 Cantilever Beams

Structural members designed to resist forces acting perpendicular to its longitudinal axis are defined as Beams. The essential features of a Cantilever Beam are that it has a fixed support at one end and a free at the other end with no support. The fixed end of the beam is inflexible and does not incur any bending, thus ensuring the deflection and slope to be zero at this end.

Three types of loads are considered here. They are **Uniform load**, **Point load**, and **Moment load**. Each of these load types has unique characteristics and is illustrated in the software.

11.2.1 Uniform Load

This equation set covers problems associated with a uniformly distributed load, p1 (N/m), over a distance, a (m), from the left (fixed) end. **Equations 1** and **2** yield the deflection, δb (m), and slope angle, θb (rad), at the right (free) end of the beam. Deflection v (m), and slope v1, at any location v (m), away from the left can be computed by

using equations 3 and 4, when $0 \le x \le a$. When x lies between a, and beam length L, use equations 5 and 6 for the same properties. The material properties of the beam are represented by, the modulus of elasticity E (Pa), and, the area moment of inertia I (m⁴).

$$\delta b = \frac{p1 \cdot a^3}{24 \cdot E \cdot I} \cdot (4 \cdot L - a)$$

$$\tan(\theta b) = \frac{p1 \cdot a^3}{6 \cdot E \cdot I}$$

When $0 \le x \le a$, the following two equations are applicable

Eq. 3
$$v = \frac{p1 \cdot x^{2}}{24 \cdot E \cdot I} \cdot \left(6 \cdot a^{2} - 4 \cdot a \cdot x + x^{2} \right)$$

$$v1 = \frac{p1 \cdot x}{6 \cdot E \cdot I} \cdot \left(3 \cdot a^2 - 3 \cdot a \cdot x + x^2\right)$$

When $a \le x \le L$, the following two equations are applicable

$$v = \frac{p1 \cdot a^3}{24 \cdot E \cdot I} \cdot (4 \cdot x - a)$$
 Eq. 5

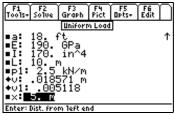
$$v1 = \frac{p1 \cdot a^3}{6 \cdot E \cdot I}$$
 Eq. 6

When $0 \le x \le L$, applies to all equations

The variable names, description and applicable default units used in these equations are listed below.

Variable	Description	Units
δb	Deflection at right (free) end	m

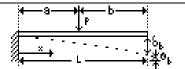
Variable	Description	Units
θ b	Slope at right (free) end	unitless
a	Distance of load from left (fixed) end	m
E	Young's modulus	Pa
I	Area moment of inertia	m^4
L	Length	m
p1	Load/unit length	N/m
V	Beam deflection	m
v1	Slope of deflection	unitless
X	Distance from left (fixed) end	m


Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 11.2.1:

A cantilever beam, 10 meters long, is subject to a uniform load of 2.5 kN/m, 18 ft from the fixed end. Find the slope and deflection at the free end of the beam, as well as at the mid-point of the beam. Assume that the Young's modulus of the beam material is 190 GPa and that the area moment is 170 in⁴.

Upper Display


Lower Display

Solution – Select equations 1, 2, 5 and 6 to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. Select the integer of 0 to compute the principal solution. The entries and results are shown in the screen displays above.

Given	Solution
a = 18 ft	$\delta b = .044162 \text{ m}$
E = 190 GPa	$\theta b = .293246 \text{ deg}$
$I = 170 \text{ in}^4$	v = .018571 m
L = 10 m	v1 = .005118
p1 = 2.5 kN/m	
x = 5 m	

11.2.2 Point Load

This equation set covers problems associated with a point load, P(N), located a distance, a(m), from the left (fixed) end. **Equations 1** and 2 yield the deflection, $\delta b(m)$, and slope angle, $\theta b(rad)$, at the right (free) end of the beam. To compute the deflection, v(m), and slope, v1, at a location v(m) from the left end, use **equations 3** and v(m), when

x occurs before the location of the load, **a** (m) ($0 \le x \le a$), and **equations 5** and **6** when **x** occurs after the load ($a \le x \le L$). The material propertie of the beam is represented by **E** (Pa), the modulus of elasticity by E (Pa), the area moment of inertiaby, **I** (m⁴), and beam length, **L** (m).

$$\delta b = \frac{P \cdot a^2 \cdot (3 \cdot L - a)}{6 \cdot E \cdot I}$$
 Eq. 1
$$\tan(\theta b) = \frac{P \cdot a^2}{2 \cdot E \cdot I}$$
 Eq. 2
$$v = \frac{P \cdot x^2}{6 \cdot E \cdot I} \cdot (3 \cdot a - x)$$
 Eq. 3
$$v = \frac{P \cdot x^2}{6 \cdot E \cdot I} \cdot (2 \cdot a - x)$$
 Eq. 4
$$v = \frac{P \cdot x}{2 \cdot E \cdot I} \cdot (2 \cdot a - x)$$
 Eq. 4
$$v = \frac{P \cdot a^2}{2 \cdot E \cdot I} \cdot (2 \cdot a - x)$$
 Eq. 5
$$v = \frac{P \cdot a^2 \cdot (3 \cdot x - a)}{6 \cdot E \cdot I}$$
 Eq. 6
$$v = \frac{P \cdot a^2}{2 \cdot E \cdot I}$$
 Eq. 6
$$v = \frac{P \cdot a^2}{2 \cdot E \cdot I}$$
 When $0 \le x \le L$, applies to all equations

The variable names, description and applicable default units used in these equations are listed below.

Variable	Description	Units
δb	Deflection at left (fixed) end	m
θ b	Angle at right (free) end of beam	rad
a	Distance of load from left (fixed) end	m
E	Young's modulus	Pa
I	Area moment	m^4
L	Length	m
P	Load	N
V	Beam deflection	m
v1	Slope of deflection	unitless
X	Distance from left (fixed) end	m

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 11.2.2:

A cantilever beam, 20 m long, is subject to a 15 kN point load located 18 feet from the fixed end. Find the slope and deflection at the free end of the beam. Assume that the Young's modulus of the beam material is 175 GPa, and that the area moment is 650 in ⁴.

Entered Values

Computed results

Solution – Select the **first two equations** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

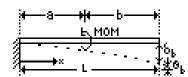
a = 18 ft

E = 175 GPa

 $I = 650 \text{ in}^4$

L = 20 m

P = 15 kN


Solution

 $\delta b = .086643 \text{ m}$

 $\theta b = .273193 \text{ deg}$

11.2.3 Moment Load

This equation set covers problems associated with a moment load, **MOM** (N·m), applied at a distance **a** (m), from the left (fixed) end. **Equations 1** and **2** calculate the deflection, δb (m), and slope, θb (rad), at the right (free) end. The deflection and slope, **v** (m) and **v1**, at a distance, **x** (m), from the left (fixed) side of the beam are defined

by equations 3 and 4 for the case when $0 \le x \le a$, and equations 5 and 6 when a < x < L. The materials properties of the beam are represented by E (Pa), the modulus of elasticity; I (m^4), the area moment of inertia; and L (m), the length of the beam.

$$\delta b = \frac{MOM \cdot a}{2 \cdot E \cdot I} \cdot (2 \cdot L - a)$$

Eq. 2

Eq. 1

$$\theta b = \frac{MOM \cdot a}{F \cdot I}$$

Eq. 2

When $0 \le x \le a$, the following two equations are applicable

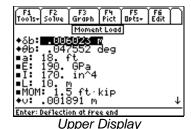
$$v = \frac{MOM \cdot x^2}{2 \cdot E \cdot I}$$

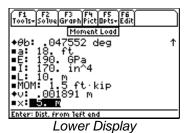
Eq. 3

$$v1 = \frac{MOM \cdot x}{E \cdot I}$$

Eq. 4

When a
$$\leq$$
 x \leq L, the following two equations are applicable
$$v = \frac{MOM \cdot a}{2 \cdot E \cdot I} \cdot (2 \cdot x - a)$$
 Eq. 5
$$v1 = \frac{MOM \cdot a}{E \cdot I}$$
 When 0 \leq x \leq L, applies to all equations


The variable names, description and applicable default units used in these equations are listed below.


Variable	Description	Units
δb	Deflection at right (free) end	m
θ b	Angle at right (free) end	rad
a	Distance of load from left (fixed) end	m
E	Young's modulus	Pa
I	Area moment	m^4
L	Length	m
MOM	Applied moment	N⋅m
v	Beam deflection	m
v1	Slope of deflection	unitless
X	Distance from left (fixed) end	m

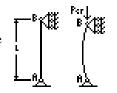
Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 11.2.3:

A simple beam, 10 meters long, is subject to a moment load of 1.5 ft-kip, 18 feet from the fixed end. Find the slope and deflection at the right end of the beam, and the deflection at mid point of the beam. Assume that the Young's modulus of the beam material is 190 GPa, and that the area moment is 170 $\rm in^4$.

Solution – Since the load occurs to the right of the midpoint of the beam ($\mathbf{x}=\mathbf{L}/2<\mathbf{a}<\mathbf{L}$, since $\mathbf{x}=5$ m = 16.4 ft <18 ft= \mathbf{a}) use **equations 1, 2,** and $\mathbf{3}$, to solve this problem. Select these equations and press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. **Select an arbitrary integer of 0** to compute the principal solution. The entries and results are shown in the screen displays above.

Given a = 18 ft E = 190 GPa $I = 170 \text{ in}^4$ L = 10 m $MOM = 1.5 \text{ ft} \cdot \text{kip}$ x = 5 m **Solution** $\delta b = .006023 \text{ m}$ $\theta b = .047552 \text{ deg}$ v = .001891 m


11.3. Columns

Structures fail a variety of ways depending upon material properties, loads and conditions of support. In this section, a variety of failures of columns will be considered. For our purpose, we define a column to be long slender structural members loaded axially in compression.

Five type of problems are considered - Buckling, Eccentric Axial load, Secant formula, Column imperfections, and Inelastic buckling.

11.3.1 Buckling

These four equations give an insight into the critical parameters for designing columns. **Equations 1** and **2** compute the critical load, **Pcr** (N), in terms of the cross-sectional area of the column, **Area** (m^2), the modulus of elasticity, **E** (Pa), the column length, **L** (m), radius of gyration, **r** (m), and the area moment of inertia, **I** (m^4). The compressive stress, **5cr** (Pa), is calculated from **equation 3** and the radius of gyration **r** is computed in **equation 4**.

$$Pcr = \frac{\pi^2 \cdot E \cdot Area}{\left(\frac{Ke \cdot L}{r}\right)^2}$$

$$Pcr = \frac{\pi^2 \cdot E \cdot I}{\left(Ke \cdot L\right)^2}$$

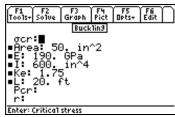
$$Eq. 2$$

$$\sigma cr = \frac{Pcr}{Area}$$

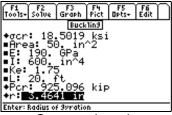
$$Eq. 3$$

$$Eq. 3$$

$$Eq. 4$$


The variable names, description and applicable default units used in these equations are listed below.

Variable	Description	Units
σcr	Critical stress	Pa
Area	Area	m^2
E	Young's modulus	Pa
I	Area moment	m^4
Ke	Effective length factor	unitless

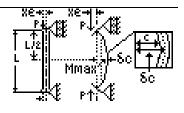

Variable	Description	Units
L	Length	m
Pcr	Critical load	N
r	Radius of gyration	m

Example 11.3.1:

A steel column, with an area of 50 in² and 20 ft long, has a modulus of elasticity of 190 GPa. The effective length factor for this column is 1.75, and the area moment is 600 in ⁴. Find the critical load, the radius of gyration and critical stress.

Entered Values

Computed results


Solution – Select **all of the equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$Area = 50 in^2$	$\sigma cr = 18.5019 \text{ ksi}$
E = 190 GPa	Pcr = 925.096 kip
$I = 600 \text{ in}^4$	r = 3.4641 in
Ke = 1.75	

11.3.2 Eccentricity, Axial Load

L = 20 ft

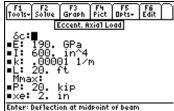
An eccentric load refers to the situation where the point load, P(N), is not located at the center of mass of the area, but is offset by a distance, xe(m). Equation 1 computes the deflection of the column at the midpoint, $\delta c(m)$. Equation 2 calculates the maximum bending moment, $Mmax(N\cdot m)$, for the specified eccentric load. The location of Mmax is the same as the location of maximum deflection (typically at half the height of the column, L/2).

$$\delta c = \frac{P \cdot xe \cdot L^2}{8 \cdot E \cdot I}$$

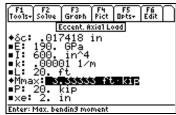
$$Eq. 1$$

$$Eq. 2$$

$$Mmax = \frac{P \cdot xe}{\cos\left(\frac{k \cdot L}{2}\right)}$$


The variable names, description and applicable default units used in these equations are listed below.

Variable	Description	Units
δc	Deflection at mid-point	m


Variable	Description	Units
E	Young's modulus	Pa
I	Area moment of inertia	m^4
k	Stiffness	1/m
L	Length	m
Mmax	Maximum bending moment	$N \cdot m$
P	Point load	N
xe	Eccentricity offset	m

Example 11.3.2:

A 20 kip point load on the column described in Example 11.3.1 is offset 2 inches from the column's central axis. Find the buckling at the center of the column and the maximum moment if the stiffness is 1×10^{-5} 1/m.

Computed results

Solution – Select **both equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

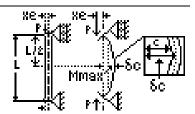
Given

E = 190 GPa $I = 600 \text{ in}^4$

 $k = .00001 \ 1/m$

L = 20 ft

P = 20 kipxe = 2 in Solution


 $\delta c = .017418 \text{ in}$

Mmax = 3.33333 ft-kip

11.3.3 Secant Formula

The equations in this section focus on further analysis of eccentric loads. **Equation 1** computes the radius of gyration, \mathbf{r} (m), from the area moment \mathbf{I} (m⁴), and the cross sectional area, **Area** (m²). **Equations 2** and **3** show two ways to calculate maximum stress,

Equations 2 and **3** show two ways to calculate maximum stress, σ max (Pa), from known properties of the column including length, **L** (m); load, **P** (N); **Area**; and the modulus of elasticity, **E** (Pa). Two key ratios, the eccentricity ratio, **ecr** and the slenderness ratio, **sr**, are

introduced in **equations 4** and $\mathbf{5}$. The eccentric offset, \mathbf{xe} (m), is distance of the load from the central longitudinal axis of the column and \mathbf{c} (m) is the distance from the axis to the concave side of the column at the location of maximum deflection.

$$r = \sqrt{\frac{I}{Area}}$$
 Eq. 1

$$\sigma max = \frac{P}{Area} + \frac{Mmax}{S}$$

$$Eq. 2$$

$$\sigma max = \frac{P}{Area} \cdot \left(1 + \frac{xe \cdot c}{r^2} \cdot \frac{1}{\cos\left(\frac{L}{2 \cdot r} \cdot \sqrt{\frac{P}{E \cdot Area}}\right)}\right)$$

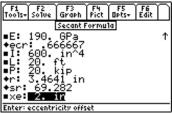
$$ecr = \frac{xe \cdot c}{r^2}$$

$$sr = \frac{L}{r}$$

$$Eq. 4$$

$$Eq. 5$$

The variable names, description and applicable default units used in these equations are listed below.


Description	Units
Maximum stress	Pa
Area	m^2
Distance of centroid to column edge	m
Young's modulus	Pa
Eccentricity ratio	unitless
Area moment of inertia	m^4
Length	m
Maximum bending moment	N⋅m
Point load	N
Radius of gyration	m
Section modulus	m^3
Slenderness ratio	unitless
Eccentric offset	m
	Maximum stress Area Distance of centroid to column edge Young's modulus Eccentricity ratio Area moment of inertia Length Maximum bending moment Point load Radius of gyration Section modulus Slenderness ratio

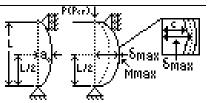
Example 11.3.3:

The column described in example 11.3.1 and 11.3.2 has a 20 kip axial load located at distance of 4 inches from the concave extremum. Find the maximum stress, radius of gyration and the slenderness ratio.

Upper Display

Lower Display

Solution – Select **equations 1, 3, 4,** and **5** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.


Given
Area = 50 in^2 C = 4 in E = 190 GPa $I = 600 \text{ in}^4$ L = 20 ft P = 20 kip xe = 2 in

Solution

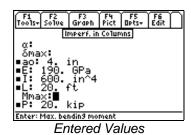
 σ max = 4.61263 MPa ecr = .666667 r = 3.4641 in sr = 69.282

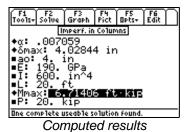
11.3.4 Imperfections in Columns

The approaches used in analyzing the impact of imperfections in columns are defined by the seven equations here. A column having a length, L (m), and initial deflection, ao (m), from the centroid (central longitudinal) axis is considered. The ratio α (unitless), of the applied load, P (N), to critical load, P (N), for the column is calculated in **equation 1**. An alternate way to

compute α is using **equation 2**, which uses area moment I (m⁴), column length L (m), applied load P; and modulus of elasticity, E (Pa). **Equations 3** and **4** compute maximum bending moment **Mmax** (N·m) and the maximum deflection, δ max (Pa), at the mid-point of the column. The **three remaining equations** solve for the maximum shear stress, σ max (Pa), using alternate methods depending on which variables are known. The variable, r (m), is the radius of gyration and, r (m), is the horizontal distance from the centroid axis to the furthest point on the concave side of the column.

$\alpha = \frac{P}{Pcr}$	Eq. 1
$\alpha = \frac{P \cdot L^2}{\pi^2 \cdot E \cdot I}$	Eq. 2
$M\max = \frac{P \cdot ao}{1 - \alpha}$	Eq. 3
$\delta \max = \frac{ao}{1-\alpha}$	Eq. 4
$\sigma \max = \frac{P}{Area} + \frac{M \max \cdot c}{I}$	Eq. 5
$\sigma \max = \frac{P}{Area} \cdot \left(1 + \frac{ao \cdot c}{r^2 \cdot (1 - \alpha)}\right)$	Eq. 6

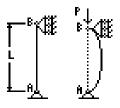

$$\sigma \max = \frac{P}{Area} \cdot \left(1 + \frac{\frac{ao \cdot c}{r^2}}{1 - \frac{P}{\pi^2 \cdot E \cdot Area} \cdot \left(\frac{L}{r}\right)^2} \right)$$


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Units
α	Ratio	unitless
δmax	Maximum deflection due to load	m
σmax	Maximum stress	Pa
ao	Deflection w/o load	m
Area	Area	m^2
c	Centroid offset extremum	m
E	Young's modulus	Pa
I	Area moment of inertia	m^4
L	Length	m
Mmax	Maximum bending moment	N⋅m
P	Point load	N
Pcr	Critical load	N
r	Radius of gyration	m

Example 11.3.4:

Find the maximum deflection for the column described in example 11.3.1 and 11.3.2. Assume an initial deflection of 4 inches exists at the mid-point of this column.



Solution – Select **equations 2, 3,** and **4** to solve this problem. Select these by highlighting the equations and pressing <code>ENTER</code>. Press <code>F2</code> to display the variables. Enter the values for the known parameters and press <code>F2</code> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
ao = 4 in	$\alpha = .007059$
E = 190 GPa	$\delta max = 4.02844 \text{ in}$
$I = 600 \text{ in}^4$	$Mmax = 6.71406 \text{ ft} \cdot kip$
L = 20 ft	
P = 20 kip	

11.3.5 Inelastic Buckling

Critical load calculations for inelastic buckling are considered in this section. **Equation 1** computes the tangential modulus load Pt (N) given the column length L (m), the area moment I (m⁴), and tangent modulus Et (Pa). The corresponding critical stress, σt (Pa), is computed in **equation 2** in terms of Et, column length, L (m), and the radius of gyration, r (m). **Equations 3** and r define a reduced modulus of elasticity, r and a reduced stress, r (Pa), in terms of the known quantities r r and the Young's modulus of elasticity, r r (Pa).

$$Pt = \frac{\pi^2 \cdot Et \cdot I}{L^2}$$

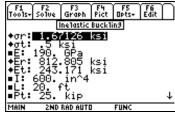
$$\sigma t = \frac{\pi^2 \cdot Et}{\left(\frac{L}{r}\right)^2}$$

$$Eq. 2$$

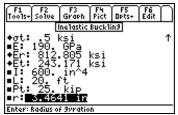
$$Er = \frac{4 \cdot E \cdot Et}{\left(E^{.5} + Et^{.5}\right)^2}$$

$$Eq. 3$$

$$\sigma r = \frac{\pi^2 \cdot Er}{\left(\frac{L}{r}\right)^2}$$


$$Eq. 4$$

The variable names, description and applicable default units used in these equations are listed below.


Variable	Description	Units
σr	Reduced stress	Pa
σt	Tangential stress	Pa
E	Young's modulus	Pa
Er	Reduced modulus of elasticity	Pa
Et	Tangent modulus of elasticity	Pa
I	Area moment of inertia	m^4
L	Length	m
Pt	Tangential load	N
r	Radius of gyration	m

Example 11.3.5:

A 25 kip tangential load is applied to the column having the computed properties in example 11.3.1. Find the tangential modulus and stress, in addition to the reduced modulus and stress.

Upper display

Lower display

Solution – Select **all of the equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
E = 190 GPa	$\sigma r = 1.67126 \text{ ksi}$
$I = 600 \text{ in}^4$	$\sigma t = .5 \text{ ksi}$
L = 20 ft	Er = 812.805 ksi
Pt = 25 kip	Et = 243.171 ksi
r = 3.4641 in	

References:

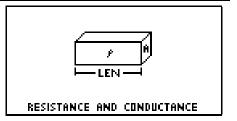
1. Mechanics of Materials, 3rd Edition, (1990) *James M Gere and Stephen P. Timoshenko*, PWS Kent Publishing Company, Boston, MA Specific sections from Chapter 9 and Appendix G.

Chapter 12: EE for MEs

This portion of the software deals common electrical engineering problems encountered by mechanical engineers. Four sections form the core of the topic.

♦ Basic Electricity

♦ DC Motor

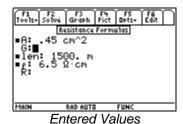

♦ DC Generators

♦ AC Motors

12.1 Basic Electricity

12.1.1 Resistance Formulas

Four equations in this section show the basic relationships between resistance and conductance. The **first equation** links the resistance, **R** (Ω), of a bar with a length, **len** (m), with a uniform cross-sectional area, **A** (m²), with a resistivity, ρ (Ω ·m). The **second equation** defines the conductance, **G** (siemen), of the same bar in terms of conductivity, σ (Sm/m), **len** (m), and **A.** The 3^{rd} and 4^{th} **equations** show the reciprocity of conductance **G** resistance **R** as well as the resistivity ρ and conductivity σ .


$$R = \frac{\rho \cdot len}{A}$$
 Eq. 1
$$G = \frac{\sigma \cdot A}{len}$$
 Eq. 2
$$G = \frac{1}{R}$$
 Eq. 3
$$\sigma = \frac{1}{\rho}$$
 Eq. 4

The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
A	Area	m^2
G	Conductance	Siemens
Len	Length	m
ρ	Resistivity	$\Omega{\cdot}{ m m}$
R	Resistance	Ω
σ	Conductivity	Siemens/m

Example 12.1.1:

A copper wire 1500 m long has a resistivity of $6.5\,\Omega$ ·cm and a cross sectional area of $0.45\,\mathrm{cm}^2$. Compute the resistance and conductance.

Solution - Examining the problem, two clear choices are evident. Either equations 1, 2 and 4 or 1 and 3 can be used to find the solution required. The second choice of equations will be used in this example. All the equations can be viewed at the equation screen wherein the two equations 1 and 3 can be selected by using the \bigcirc key to highlight the desired equation and pressing ENTER. Once both equations have been selected, press F2 to display all the variables in the selected equation set. The software is now ready for receiving the input variables. Use the \bigcirc key to move the highlight bar to the variable that needs input. Type the value for the variable and press ENTER. Repeat to enter all the known variables and press F2 to solve the selected equation set. The computed results are shown in the screen display shown here.

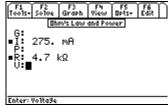
Given		
$A = .45 \text{ cm}^2$		
len=1500 m		
ρ =6.5 Ω ·cm		

Solution

G=4.61538E-7 Siemens R=2.16667E6 Ω

12.1.2 Ohm's Law and Power

The fundamental relationships between voltage, current and power are presented in this section. The **first equation** is the classic Ohm's Law, computes the voltage, V(V), in terms of the current, I(A), and the resistance, $R(\Omega)$. The **next four equations** describe the relationship between power dissipation, P(W), voltage, V, current, I, resistance, R, and conductance, G(S) (siemens). The final equation represents the reciprocity between resistance, R, and conductance, G(S)


$V = I \cdot R$	Eq. 1
$P = V \cdot I$	Eq. 2
$P = I^2 \cdot R$	Eq. 3
$P = \frac{V^2}{R}$	Eq. 4
$P = V^2 \cdot G$	Eq. 5
$R = \frac{1}{G}$	Eq. 6

The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
G	Conductance	Siemens
I	Current	A
P	Power	W
R	Resistance	Ω
V	Voltage	V

Example 12.1.2:

A 4.7 k Ω load carries a current of 275 ma. Calculate the voltage across the load, power dissipated and load conductance.

Entered Values

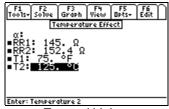
Computed results

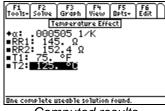
Solution - Upon examining the problem, several choices are noted. Either Equations 1, 2 and 6; or 1, 2, 3 and 5; or 2, 3 and 6; or 1, 2 and 5; or, all the equations. Choose the last option, press [52] to open the input screen, enter all the known variables and press [52] to solve.

Given	Solution
I = 275 mA	G = .000213 siemens
$R = 4.7 \text{ k}\Omega$	P = 355.438 W
	V = 1292.5 V

12.1.3 Temperature Effect

This equation models the effect of temperature on resistance. Electrical resistance changes from **RR1** (Ω) to **RR2** (Ω) when the temperature change from **T1** (K) to **T2** (K) is modified by the temperature coefficient of resistance α (1/K).


$$RR2 = RR1 \cdot (1 + \alpha(T2 - T1))$$
 Eq. 1


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
α	Temperature coefficient	1/K
RR1	Resistance, T1	Ω
RR2	Resistance, T2	Ω
T1	Temperature 1	K
T2	Temperature 2	K

Example 12.1.3:

A 145 Ω resistor at 75 °F reads 152.4 Ω at 125 °C. Find the temperature coefficient of resistance.

Entered Values

Computed results

Solution - Press F2 to display the input screen. Enter the variable values and press F2 to solve for the unknown variable.

Given RR1=145 Ω RR2 = 152.4 Ω T1=75 °F T2=125_°C

Solution

 $\alpha = .000505 \ 1/K$

12.2 DC Motors

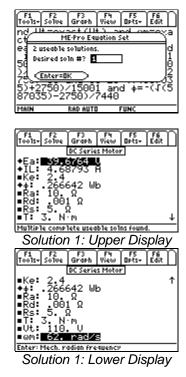
12.2.1 DC Series Motor

These eight equations describe the performance characteristics of a series DC motor. The **first equation** links the terminal voltage, Vt (V), to the back emf, Ea (V), defined by the **third equation** and the I·R drop due to armature resistance, Ra (Ω), adjustable resistance, Rd (Ω), and series resistance Rs, (Ω). The **second equation** calculates the load torque, TL (N·m), with the machine constant Ke, flux, ϕ (Wb), load current, IL (A), and the torque loss, Tloss (N·m). The **third equation** defines the back emf in the armature, Ea (V), in terms of Ke, ϕ , and mechanical frequency αm (rad/s). The **fourth equation** shows torque generated at the rotor due the magnetic flux, ϕ and current IL. The **sixth equation** computes the torque generated T as the sum of load torque TL and lost torque TL and torque TL.

$Vt = Ke \cdot \phi \cdot \omega m + (Ra + Rs + Rd) \cdot IL$	Eq. 1
$TL = Ke \cdot \phi \cdot IL - Tloss$	Eq. 2
$Ea = Ke \cdot \omega m \cdot \phi$	Eq. 3
$T = Ke \cdot \phi \cdot IL$	Eq. 4

The **fifth** equation shows a reciprocal quadratic link between ωm , Vt, Ke, ϕ , Ra, Rs, Rd, and torque T $(N \cdot m)$.

$$\omega m = \frac{Vt}{Ke \cdot \phi} - \frac{(Ra + Rs + Rd) \cdot T}{(Ke \cdot \phi)^2}$$
Eq. 5
$$T = Tloss + TL$$
Eq. 6


$Ke \cdot \phi = Kef \cdot IL$	Eq. 7
$T = Kf \cdot IL^2$	Eq. 8

The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Ea	Average emf induced in the armature	V
IL	Load current	A
Ke	Machine constant	Unitless
Kef	Field coefficient	Wb/A
ф	Flux	Wb
Ra	Armature resistance	Ω
Rd	Adjustable resistance	Ω
Rs	Series field resistance	Ω
T	Internal torque	$N \cdot m$
TL	Load torque	$N \cdot m$
Tloss	Torque loss	N⋅m
Vt	Terminal voltage	V
ωm	Mechanical radian frequency	rad/s

Example 12.2.1:

A series motor, with a machine constant of 2.4 and rotating at 62 rad/s, is supplied with a terminal voltage of 110 V and produces a torque of 3 Nm. The armature resistance is 10 Ω , the series resistance is 5 Ω , and the adjustable resistance is 0.001 Ω . Find the average voltage induced in the armature, the flux, and the load current.

ME-*Pro* for TI-89, TI-92 Plus Chapter 12 - **Equations** - EE for ME's

Solution - The first, third and fifth equations are needed to compute a solution. Select these by highlighting and pressing <code>ENTER</code>. Press <code>F2</code> to display the input screen, enter all the known variables and press <code>F2</code> to solve the selected equation set. There are two possible solutions for this example. Type the number of the solution set to be viewed and press <code>ENTER</code> twice. To view another solution set, press <code>F2</code> to and select another number. The computed results are shown in the screen displays above.

 $\begin{array}{lll} \textbf{Given} & \textbf{Solution} \\ Ke = 2.4 & Ea = 39.6764 \ V \ (70.3236 \ V) \\ Ra = 10 \ \Omega & IL = 4.68793 \ A \ (2.64491 \ A) \\ Rd = .001 \ \Omega, & \varphi = .266642 \ Wb \ (.472605 \ Wb) \\ Rs = 5. \ \Omega & \\ T = 3. \ N \cdot m & \\ Vt = 110. \ V & \\ \Theta m = 62. \ rad/s & \end{array}$

12.2.2 DC Shunt Motor

These seven equations describe the principal characteristics of a DC shunt motor. The **first equation** expresses the terminal voltage, Vt (V), in terms of the field current, IIf (A), and field resistance, Rf (Ω), along with the external field resistance, Re (Ω). The **second equation** defines the terminal voltage, Vt (V), in terms of the back emf (expressed in terms of the machine constant, Ke, flux swept, ϕ (Wb), angular velocity, \mathbf{Om} (rad/s), and the IR drop in the armature circuit.

$$Vt = (Re + Rf) \cdot IIf$$
 Eq. 1

$$Vt = Ke \cdot \phi \cdot \omega m + Ra \cdot Ia$$
 Eq. 2

The **third equation** refers to the torque available at the load, $TL(N \cdot m)$, due to the current, Ia(A), in the armature minus the loss of torque, $Tloss(N \cdot m)$, due to friction and other reasons.

$$TL = Ke \cdot \phi \cdot Ia - Tloss$$
 Eq. 3

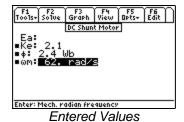
The **fourth equation** gives the definitive re lationship between the back emf **Ea** (V), **Ke**, ϕ (Wb), and ω m (rad/s).

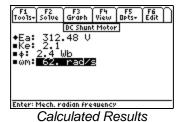
$$Ea = Ke \cdot \omega m \cdot \phi$$
 Eq. 4

The **fifth** equation displays the reciprocal quadratic relationship between αm , Vt, K, ϕ , armature resistance, Ra (Ω) , adjustable resistance, Rd (Ω) , and T $(N \cdot m)$.

$$\omega m = \frac{Vt}{Ke \cdot \phi} - \frac{(Ra + Rd) \cdot T}{(Ke \cdot \phi)^2}$$
 Eq. 5

The last two equations compute torque T in terms of Tloss, load torque TL, flux ϕ , Ia (A), and Ke.


T = Tloss + TL	Eq. 6
$T = Ke \cdot \phi \cdot Ia$	Eq. 7


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Ea	Average emf induced in armature	V
Ia	Armature current	A
Iif	Field current	A
Ke	Machine constant	Unitless
ф	Flux	Wb
Ra	Armature resistance	Ω
Rd	Adjustable resistance	Ω
Re	Ext. shunt resistance	Ω
Rf	Field coil resistance	Ω
T	Internal torque	$N \cdot m$
TL	Load torque	N⋅m
Tloss	Torque loss	N⋅m
Vt	Terminal voltage	V
ωm	Mechanical radian frequency	rad/s

Example 12.2.2:

Find the back emf for a motor with a machine constant of 2.1, rotating at 62 rad/s in a flux of 2.4 Wb.

Solution - Use the **fourth equation** to solve this problem. Select the equation with the cursor bar and press **F2** to display the input screen, enter all the known variables and press **F2** to solve the selected equation. The computed result is shown in the screen display above.

 Given
 Solution

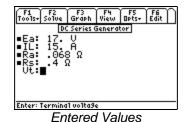
 Ke=2.1
 Ea=312.48 V

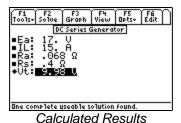
 φ=2.4 Wb
 ωm=62. rad/s

12.3 DC Generators

12.3.1 DC Series Generator

The two equations in this section describe the properties of a series DC generator. The **first equation** specifies the field current, **IIf** (A), and the armature current, **Ia** (A), to be the same. The **second equation** computes the terminal voltage, **Vt** (V), in terms of the induced emf, **Ea** (V), load current, **IL** (A), armature resistance, **Ra** (Ω), and series field windings, **Rs** (Ω).


Ia = IIf	Eq. 1
$Vt = Ea - (Ra + Rs) \cdot IL$	Eq. 2


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Ea	Average emf induced in armature	V
Ia	Armature current	A
IIf	Field current	A
IL	Load current	A
Ra	Armature resistance	Ω
Rs	Series field resistance	Ω
Vt	Terminal voltage	V

Example 12.3.1:

Find the terminal voltage of a series generator with an armature resistance of 0.068 Ω and a series resistance of 0.40 Ω . The generator delivers a 15 A load current from a generated voltage of 17 V.

Solution - Use the **second equation** to solve this problem. Select this with the highlight bar and press **ENTER**. Press **F2** to display the input screen, enter all the known variables and press **F2** to solve the selected equation. The computed result is shown in the screen display above.

Given	Solution
Ea=17. V	Vt = 9.98 V
IL=15. A	
Ra=.068 Ω	
$Rs=.4_{\Omega}$	

12.3.2 DC Shunt Generator

The **first equation** in this section expresses the induced armature voltage, **Ea** (V), in terms of the machine constant, **Ke**, the mechanical angular frequency, \mathbf{om} (rad/s), and flux, $\mathbf{\phi}$ (Wb).

$$Ea = Ke \cdot \omega m \cdot \phi$$
 Eq. 1

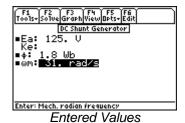
The **second equation** defines terminal voltage, Vt(V), in terms of the field current, IIf(A), external resistance, $Re(\Omega)$, and field coil resistance, $Rf(\Omega)$. The **third equation** computes Vt in terms of load current, IL(A), and load resistance, $Rl(\Omega)$. The **fourth equation** expresses Vt as the induced emf, Ea(V), minus armature IR(A), IR(A),

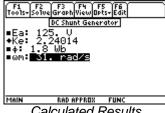
$Vt = (Re + Rf) \cdot IIf$	Eq. 2
$Vt = IL \cdot Rl$	Eq. 3
$Vt = Ea - Ra \cdot Ia$	Eq. 4

The armature current, Ia (A), is the sum of the load current IL and field current IIf in the fifth equation.

$$Ia = IL + IIf$$
 Eq. 5

The **final equation** is an alternate form of expression for **Ea**.


$$Ea = Ra \cdot Ia + (Re + Rf) \cdot IIf$$
 Eq. 6


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Ea	Average emf induced in armature	V
Ia	Armature current	A
IIf	Field current	A
IL	Load current	A
Ke	Machine constant	unitless
φ	Flux	Wb
Ra	Armature resistance	Ω
Re	Ext. shunt resistance	Ω
Rf	Field coil resistance	Ω
Rl	Load resistance	Ω
Vt	Terminal voltage	V
ωm	Mechanical radian frequency	rad/s

Example 12.3.2:

Find the machine constant of a shunt generator running at 31 rad/s and producing 125 V with a 1.8 Wb flux.

Calculated Results

Solution - Use the **first equation** to solve this problem. Select this by pressing [ENTER]. Press [F2] to display the input screen, enter all the known variables and press [7] to solve the selected equation. The computed result is shown in the screen display above.

Given Ea= 125. V $\phi = 1.8 \text{ Wb}$ ω m=31. rad/s **Solution** Ke=2.24014

12.4 AC Motors

12.4.1 Three of Induction Motor I

These eleven equations define the relationships amongst key variables used in evaluating the performance of an induction motor. The **first equation** expresses the relationship between the radian frequency induced in the rotor, or (rad/s), the angular speed of the rotating magnetic field, of the stator os (rad/s), number of poles, **p**, and the mechanical angular speed, **a** (rad/s).

$$\omega r = \omega s - \frac{p}{2} \cdot \omega m$$
 Eq. 1

The second, third and fourth equations describe the slip, s, using ωr , ωs , ωm , p, the induced rotor power per phase, **Pr** (W), and the power transferred to the rotor per phase, **Pma** (W).

$$s = 1 - \frac{p}{2} \cdot \frac{\omega m}{\omega s}$$

$$\frac{Pr}{Pma} = s$$

$$\omega r = s \cdot \omega s$$
Eq. 2
$$Eq. 3$$

$$Eq. 4$$

Pma is defined in the **fifth equation** in terms of the rotor current, **Ir** (A), and the rotor phase voltage, Ema (V).

$$Pma = 3 \cdot Ir \cdot Ema$$
 Eq. 5

The sixth and seventh equations account for the mechanical power, Pme (W), in terms of p, \omegam, \omegas, **Pma**, and torque, $T(N \cdot m)$.

$$Pme = 3 \cdot \frac{p}{2} \cdot \frac{\omega m}{\omega s} \cdot Pma$$
 Eq. 6
$$Pme = T \cdot \omega m$$
 Eq. 7

The eighth equation expresses torque in terms of p, Pma, and os.

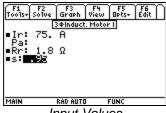
$$T = 3 \cdot \frac{p}{2} \cdot \frac{Pma}{\omega s}$$
 Eq. 8

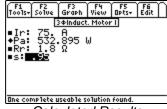
The **last three equations** show an equivalent circuit representation of induction motor action and links the power, **Pa** with rotor resistance, **Rr** (Ω), rotor current, **Ir**, slip **s**, rotor resistance per phase, **RR1** (Ω), and the machine constant, **KeM**.

$$Pma = Rr \cdot Ir^{2} + \frac{1-s}{s} \cdot Rr \cdot Ir^{2}$$

$$Pa = \frac{1-s}{s} \cdot Rr \cdot Ir^{2}$$

$$Eq. 10$$


$$Rr = \frac{RR1}{KeM^{2}}$$
Eq. 11


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Ema	Phase voltage	V
Ir	Rotor current per phase	A
KeM	Induction motor constant	unitless
p	# poles	unitless
Pa	Mechanical power available	W
Pma	Power in rotor per phase	W
Pme	Mechanical power	W
Pr	Rotor power per phase	W
RR1	Rotor resistance per phase	Ω
Rr	Equivalent rotor resistance	Ω
S	Slip	unitless
T	Internal torque	N⋅m
ωm	Mechanical radian frequency	rad/s
ωr	Electrical rotor speed	rad/s
ωs	Electrical stator speed	rad/s
	•	

Example 12.4.1:

Find the mechanical power for an induction motor with a slip of 0.95, a rotor current of 75 A, and a resistance of 1.8 Ω .

Input Values Calculated Results

Solution - Choose **equation ten** to compute the solution. Select by highlighting and pressing **ENTER**. Press **F2** to display the input screen, enter all the known variables and press **F2** to solve the equation

Given Ir = 75. A $Rr = 1.8 \Omega$ s = .95 **Solution** Pa = 532.895 W

12.4.2 Three & Induction Motor II

These equations are used to perform equivalent circuit analysis for an induction motor. The **first** equation shows the power in the rotor per phase, **Pma** (W), defined in terms of the rotor current, **Ir** (A), rotor resistance, **Rr** (Ω), and slip s.

$$Pma = \frac{Rr}{s} \cdot Ir^2$$
 Eq. 1

The **second equation** shows the expression for torque, $T(N \cdot m)$, in terms of poles p, Pma and radian frequency of the induced voltage in the stator, ωs (rad/s). The **third equation** is an alternate representation of torque in terms of the applied voltage, Va(V), stator resistance, $Rst(\Omega)$, $Rr(\Omega)$, inductive reactance $XL(\Omega)$, and ωs (rad/s).

$$T = \frac{3}{2} \cdot p \cdot \frac{Pma}{\omega s}$$

$$T = \frac{3}{2} \cdot \frac{p}{\omega s} \cdot \frac{Rr}{s} \cdot \frac{Va^2}{\left(Rst + \frac{Rr}{s}\right)^2 + XL^2}$$
Eq. 3

The **fourth equation** computes **Tmmax** ($N \cdot m$) represents the maximum positive torque available at the rotor, given the parameters of the induction motor stator resistance, **Rst**, **XL**, **Va**, **p**, and ωs .

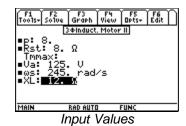
$$Tm \max = \frac{3}{4} \cdot \frac{p}{\omega s} \cdot \frac{Va^2}{\sqrt{Rst^2 + XL^2} + Rst}$$
 Eq. 4

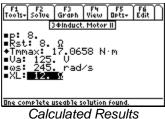
The maximum slip, sm, in the fifth equation represents the condition when dT/ds=0.

$$sm = \frac{Rr}{\sqrt{Rs^2 + XL^2}}$$
 Eq. 5

The **sixth equation** defines the so-called breakdown torque, **Tgmax** (N·m), of the motor. The **final equation** relates, **Rr** (Ω), with machine constant, **KeM**, and the rotor resistance per phase, **RR1** (Ω).

$$Tg \max = -\frac{3}{4} \cdot \frac{p}{\omega s} \cdot \frac{Va^2}{\sqrt{Rs^2 + XL^2 - Rst}}$$


$$Rr = \frac{RR1}{KeM^2}$$
Eq. 7


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Ir	Rotor current per phase	A
KeM	Induction motor constant	unitless
p	# poles	unitless
Pma	Power in rotor per phase	W
RR1	Rotor resistance per phase	Ω
Rr	Equivalent rotor resistance	Ω
Rs	Series field resistance	Ω
Rst	Stator resistance	Ω
S	Slip	unitless
Sm	Maximum slip	unitless
T	Internal torque	N⋅m
Tgmax	Breakdown torque	N⋅m
Tmmax	Maximum positive torque	N⋅m
Va	Applied voltage	V
ωs	Electrical stator speed	rad/s
XL	Inductive reactance	Ω

Example 12.4.2:

An applied voltage of 125 V is applied to an eight-pole motor rotating at 245 rad/s. The stator resistance and reactance is 8 and 12 Ω respectively. Find the maximum torque.

Calculated Nesults

Solution - Use the **fourth equation** to compute the solution. Select by moving the cursor bar, highlighting, and pressing **ENTER**. Press **F2** to display the input screen, enter all the known variables and press **F2** to solve the equation.

Given p = 8 Rst = 8. Ω Va = 125. V $\omega s = 245$. rad/sXL = 12. Ω Solution

 $Tmmax = 17.0658 \text{ N} \cdot \text{m}$

12.4.3 1 Induction Motor

These three equations describe the properties of a single-phase induction motor. The **first equation** defines the slip for forward flux **sf** with respect to the forward rotating flux, ϕ (Wb). The radian frequency of induced is current in the stator, ωs (rad/s). Other variables of consequence include the number of poles, **p**, and the angular mechanical speed of the rotor ωm (rad/s). The **final two equations** represent the forward and backward torques, **Tf** (N·m) and **Tb** (N·m), for the system with respect to **sf**, the number of poles **p**, the electrical stator speed, ωs (rad/s), the equivalent rotor resistance, **Rr** (Ω), and the currents, **Isf** (A) and **Isb** (A). The forward torque, **Tf**, is given by the power dissipated in the fictitious rotor resistor.

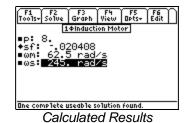
$$sf = 1 - \frac{p}{2} \cdot \frac{\omega m}{\omega s}$$

$$Tf = \frac{p}{2} \cdot \frac{1}{\omega s} \cdot \frac{Isf^2 \cdot Rr}{2 \cdot sf}$$

$$Eq. 2$$

$$Tb = -\frac{p}{2} \cdot \frac{1}{\omega s} \cdot \frac{Isb^2 \cdot Rr}{2 \cdot (2 - sf)}$$

$$Eq. 3$$


The variable names, description and applicable default units used in the equations above are listed below.

Variable	Description	Unit
Isb	Backward stator current	A
Isf	Forward stator current	A
p	# poles	unitless
Rr	Equivalent rotor resistance	Ω
sf	Slip for forward flux	unitless
Tb	Backward torque	N⋅m
Tf	Forward torque	N⋅m
ωm	Mechanical radian frequency	rad/s
ωs	Electrical stator speed	rad/s

Example 12.4.3:

Find the forward slip for an eight-pole induction motor with a stator frequency of 245 rad/s, and a mechanical radian frequency of 62.5 rad/s.

Entered Values

Solution - The **first equation** is needed to compute the solution. Select by highlighting and pressing **ENTER**. Press **F2** to display the input screen, enter all the known variables and press **F2** to solve the equation.

Given Solution $p=8 \hspace{1cm} sf=-.020408$ $\omega m=62.5_rad/s$ $\omega s=245_rad/s$

References:

- 1. Slemon G. R., and Straughen, A., Electric Machines, Addison-Wesley, Reading, MA 1980
- 2. Stevenson Jr., William D., *Elements of Power Systems Analysis*, McGraw-Hill International, New York, 1982
- 3. Wildi, Theodore, Electrical Power Technology, John Wiley and Son, New Jersey, 1981

Chapter 13: Gas Laws

This section computes properties and state changes for ideal and real gases with an emphasis on ideal gases. Selected topics for real gases include van der Waals, and Redlich -Kwong models. The ideal gas constant, **Rm**, 8.31451 J/(mol·K) is automatically inserted into all calculations and does not appear in the list of variables in the calculator.

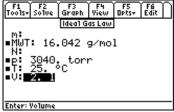
- **♦ Ideal Gas Laws**
- ♦ Real Gas Laws
- **♦** Polytropic Process

- ♦ Kinetic Gas Theory
- **♦** Reverse Adiabatic

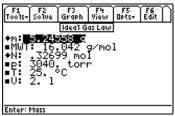
13.1 Ideal Gas Laws

13.1.1 Ideal Gas Law

The ideal gas law approximates, to a high degree, the actual properties of a gas at high temperature or low pressure. **Equations 1** and **2** define the molar volume, \mathbf{vm} (m³/mol), and specific volume, \mathbf{vs} (m³/kg), of the gas in terms of the number of moles, \mathbf{N} (mol), of gas or total mass, \mathbf{m} (kg), occupying a volume, \mathbf{V} (m³). **Equations 3, 4** and **5** are three alternate forms of the ideal gas relationship between pressure, \mathbf{p} (Pa), volume, \mathbf{V} , temperature, \mathbf{T} (K), molecular weight, \mathbf{MWT} (kg/mol), and specific volume, \mathbf{vs} . The **last equation** computes molar mass, \mathbf{MWT} , in terms of \mathbf{m} and \mathbf{N} .


$vm = \frac{V}{N}$	Eq. 1
$vs = \frac{V}{m}$	Eq. 2
$p \cdot vs = \frac{Rm}{MWT} \cdot T$	Eq. 3
$p \cdot V = N \cdot Rm \cdot T$	Eq. 4
$p \cdot vm = Rm \cdot T$	Eq. 5
$MWT = \frac{m}{N}$	Eq. 6

Variable	Description	Units
m	Mass	kg
MWT	Molar mass	kg/mol
N	No. moles	mol
p	Pressure	Pa
Rm	Molar gas constant	8.3145 J/(mol·K)
T	Temperature	K


Variable	Description	Units
V	Volume	m^3
vm	Molar volume	m^3/mol
VS	Specific volume	m^3 /mol

Example 13.1.1:

A 2-liter container is filled with methane (molecular mass = 16.042 g/mol) to a pressure of 3040 torr at room temperature (25° C). Calculate the number of moles and the total mass of methane.

Computed results

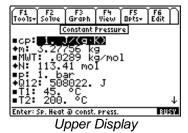
Solution - Select the **fourth** and **sixth equations** to solve this problem. All the equations can be viewed at the equation screen wherein the two equations 4 and 6 can be selected by using the \bigcirc key to highlight the desired equation and pressing ENTER. Once both equations have been selected, press F2 to display all the variables in the selected equation set. Use the \bigcirc key to move the highlight bar to the variable needing data. Enter the value for the variable then press ENTER. Repeat this until values for all known variables have been entered. Press F2 to solve the selected equation set. The computed results are shown in the screen display shown here.

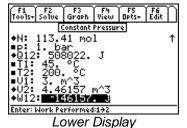
Given	Solution
MWT = 16.042 g/mol	m = 5.24558 g
p=3040 torr	N = .32699 mol
T=25. °C	
V=2.1	

13.1.2 Constant Pressure

The following equations describe the changes of the state for a fixed quantity gas at constant pressure, **p. Equation 1** describes Charles's Law- volume, $V(m^3)$, of a fixed amount of gas is directly proportional to the absolute temperature, T(K). **Equations 2** and **3** express relationship between W12 (J) in terms of pressure and volume or moles and temperatures change respectively. **Equations 4** and **5** calculate the change in total entropy, **S21** (J/K), and mass-specific entropy (entropy per unit mass), **ss21** (J/(kg·K)), due to change in temperature, **T2-T1** (K). **Equation 6** calculates the change in entropy per mole of gas, **sm21** (J/(mol·K)), from **ss21**, and molecular mass, **MWT** (kg/mol). **Equations 7** and **8** compute the transfer of heat to the system, **Q12** (J), due to expansion under constant pressure. **Equations 9** and **10** describe the relationships between the specific heat ratio **k**, to the specific heats constant volume, **cv** (J/(kg·K)), and constant pressure, **cp** (J/(kg·K)). **Equation 11** relates molecular weight, **MWT** (kg/mol), to the number of moles, **N** (mol) and total mass of the gas, **m** (kg).

$$\frac{V2}{V1} = \frac{T2}{T1}$$
 Eq. 1
$$W12 = -p \cdot (V2 - V1)$$
 Eq. 2


$W12 = -N \cdot Rm \cdot (T2 - T1)$	Eq. 3
$S21 = m \cdot cp \cdot \ln\left(\frac{T2}{T1}\right)$	Eq. 4
$ss21 = cp \cdot \ln\left(\frac{T2}{T1}\right)$	Eq. 5
$sm21 = MWT \cdot ss21$	Eq. 6
$Q12 = m \cdot cp \cdot (T2 - T1)$	Eq. 7
$Q12 = \frac{k \cdot W12}{k - 1}$	Eq. 8
$cp = cv + \frac{Rm}{MWT}$	Eq. 9
$k = \frac{cp}{cv}$	Eq. 10
$MWT = \frac{m}{N}$	Eq. 11


Variable	Description	Units
ср	Specific Heat-constant pressure	$J/(kg \cdot K)$
cv	Specific Heat-constant volume	$J/(kg \cdot K)$
k	Specific Heat Ratio	unitless
m	Mass	kg
MWT	Molar Mass.	kg/mol
N	No. moles	mol
p	Pressure	Pa
Q12	Heat Transfer: $1\rightarrow 2$	J
Rm	Molar Gas constant	8.3145 J/(mol·K)
sm21	Entropy Change-mole: $1\rightarrow 2$	$J/(mol \cdot K)$
ss21	Entropy Change-mass: $1\rightarrow 2$	$J/(kg \cdot K)$
S21	Entropy Change: $1\rightarrow 2$	J/K
T1	Initial Temperature: 1	K
T2	Final Temperature: 2	K
V1	Initial Volume	m^3
V2	Final Volume	m^3
W12	Work Performed: $1\rightarrow 2$	J

Example 13.1.2:

Dry air has a molecular mass of 0.0289 kg/mol; see **mwa** in *Reference/Engineering Constants*, and a specific heat of 1.0 J/(g·K) at constant pressure of 1 bar in the temperature range of 200-500K. Air in a 3-m3 cylinder performs work on a frictionless piston, exerting a constant pressure of 1 bar. A heating

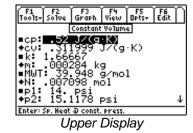
element increases the temperature of the air from 45°C to 200°C. Assuming the air has ideal gas behavior, calculate the change in volume, the work performed on the piston, and the heat absorbed by the gas due to heating.

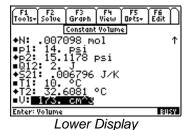
Solution - Select equations, one, two, three, seven and eleven.

Given:	Solution:
$cp = 1 J/(g \cdot K)$	m = 3.27756 kg
MWT = 0.0289 kg/mol	N = 113.41 mol
p = 1 bar	Q12 = 508022 J
T1 = 45 °C	$V2 = 4.46157 \text{ m}^3$
$T2 = 200 {}^{\circ}C$	W12 = -146157 J
$V1 = 3 \text{ m}^3$	

13.1.3 Constant Volume

The following equations describe the changes of state for a fixed quantity gas under constant volume, **V** (**m**³), conditions. **Equation 1** often called Gay-Lussac's Law, states that the pressure of a fixed quantity of gas is directly proportional to the absolute temperature under conditions of constant volume. **Equations 2** and **3** compute heat, **Q12** (J), absorbed by the constant volume system. **The fourth** and **fifth** equations compute the change in total entropy, **S21** (J/K), and mass-specific entropy (entropy per unit mass), **ss21** (J/(kg·K)), due to change in temperature, **T2-T1** (K) under conditions of constant volume. **Equation 6** calculates the change entropy per mole of gas, **sm21** J/(mol·K), from **ss21** and molar mass, **MWT** (kg/mol). **Equations 7** and **8** compute the specific heat ratio, **k**, from the specific heat for constant volume, **cv** J/(kg·K), and constant pressure, **cp** (J/(kg·K)). The **last equation** relates the molar mass, **MWT**, to the number of moles, **N** (mol), and total mass of the gas, **m** (kg).


$\frac{p2}{p1} = \frac{T2}{T1}$	Eq. 1
$Q12 = m \cdot cv \cdot (T2 - T1)$	Eq. 2
$Q12 = \frac{V \cdot (p2 - p1)}{k - 1}$	Eq. 3
$S21 = m \cdot cv \cdot \ln\left(\frac{T2}{T1}\right)$	Eq. 4
$ss21 = cv \cdot \ln\left(\frac{T2}{T1}\right)$	Eq. 5


$sm21 = MWT \cdot ss21$	Eq. 6
$cp = cv + \frac{Rm}{MWT}$	Eq. 7
$k = \frac{cp}{cv}$	Eq. 8
$MWT = \frac{m}{N}$	Eq. 9

Variable	Description	Units
ср	Specific heat-constant pressure	$J/(kg \cdot K)$
cv	Specific heat @ constant volume	$J/(kg \cdot K)$
k	Specific heat ratio	unitless
m	Mass	kg
MWT	Molar mass	kg/mol
N	No. moles	mol
p1	Initial pressure	Pa
p2	Final pressure	Pa
Rm	Molar gas constant	8.3145 J/(mol·K)
Q12	Heat transfer	J
S21	Entropy change: $1\rightarrow 2$	J/K
sm21	Entropy change-mole: $1\rightarrow 2$	$J/(mol \cdot K)$
ss21	Entropy change-mass: $1\rightarrow 2$	$J/(kg \cdot K)$
T1	Initial temperature	K
T2	Final temperature	K
V	Volume	m^3

Example 13.1.3:

An electric current transfers 2 J as heat to argon contained in a 173 cm³ neon sign. The noble gas is initially charged to a pressure of 14 psi at 10°C. Argon has a molar mass of 39.948 g/mol, a specific heat at constant pressure of 0.52 J/(g·K) (see Reference/Thermal Properties/Cp Liquids and Gases). For an ideal gas, the molar specific heat ratio is 5/3. Calculate the specific heat at constant volume, the final temperature and pressure, the total mass of argon and the total increase in entropy.

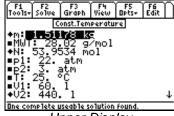
Solution – The molar specific heat ratio is the same as the mass specific heat ratio k. Select **equations one**, **two**, **three**, **four**, **eight** and **nine** to solve this problem

Given	Solution
$cp = .52 J(g \cdot K)$	cv = .311999 J/(g·K)
k = 5/3	m = .000284 kg

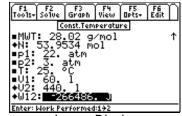
MWT = 39.948 g/mol	N = 0.007098 mol
p1 = 14 psi	p2 = 15.1178 psi
Q12 = 2J	S21 = .006796 J/K
T1 = 10 °C	$T2 = 32.6081 ^{\circ}C$
$V = 173 \text{ cm}^3$	

13.1.4 Constant Temperature

Often called Boyle's Law, the **first equation** shows that the pressure of a fixed quantity of gas is inversely proportional to the volume if the temperature, T(K), remains constant. **Equations 2** and 3 calculate the energy leaving the system in the form of work, **W12** (J), for a reversible isothermal expansion between initial volume, **V1** (m^3), and final volume, **V2** (m^3). **Equation 4** displays the heat transferred to a system, **Q12** (J), undergoing reversible expansion is converted to work, **W12** (J), leaving the gas system during an isothermal process. **Equation 5** computes the total entropy change, **S12** (J/K), from the heat transferred to the system, **Q12** (J), at temperature, **T** (K). **Equations 6, 7** and **8** compute the entropy per mass (specific), **ss21** (J/(kg·K)), and entropy per mole, **sm21** (J/(mol·K)). The **last equation** computes the molar mass, **MWT** (kg/mol), from the number of moles, **N** (mol), and total mass of the gas, **m** (kg).


$\frac{p2}{p1} = \frac{V1}{V2}$	Eq. 1
$W12 = -N \cdot Rm \cdot T \cdot \ln\left(\frac{V2}{V1}\right)$	Eq. 2
$W12 = -p1 \cdot V1 \cdot \ln\left(\frac{V2}{V1}\right)$	Eq. 3
Q12 = -W12	Eq. 4
$S21 = \frac{Q12}{T}$	Eq. 5
$ss21 = Rm \cdot T \cdot \ln\left(\frac{V2}{V1}\right)$	Eq. 6
$ss21 = \frac{S21}{m}$	Eq. 7
$sm21 = MWT \cdot ss21$	Eq. 8
$MWT = \frac{m}{N}$	Eq. 9

Variable	Description	Units
m	Mass	kg
MWT	Molar Mass	kg/mol
N	No. moles	mol


Variable	Description	Units
p1	Initial Pressure	Pa
p2	Final Pressure	Pa
Q12	Heat Transfer	J
Rm	Molar Gas constant	8.3145 J/(mol·K)
sm21	Entropy Change-mole: $1\rightarrow 2$	$J/(mol \cdot K)$
ss21	Entropy Change-mass: $1\rightarrow 2$	$J/(kg \cdot K)$
S21	Entropy Change: $1\rightarrow 2$	J/K
T	Temperature	K
V1	Initial Volume	m^3
V2	Final Volume	m^3
W12	Work Performed: $1\rightarrow 2$	J

Example 13.1.4:

A 60-liter tank of compressed nitrogen gas, measured at 22 atm relative to atmospheric pressure, is used to inflate a large Stay Puft marshmallow balloon figure. Following inflation, the equilibrium pressure between the marshmallow man and the tank is 3 atm, relative to the atmospheric pressure. Assuming a reversible expansion occurs at a constant temperature of 25°C, what is the volume of the marshmallow figure? How much work was performed to inflate the figure? What was the total mass nitrogen initially in the tank? The molar mass of nitrogen is 28.02 g/mol.

Upper Display

Lower Display

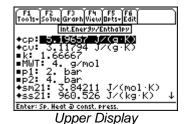
Solution – Select **equations one, two, three** and **nine**. The volume of the inflatable figure is the difference between V2-V1 (380 l).

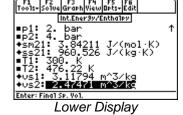
Given	Solution
MWT = 28.02 g/mol	m = 1.51178 kg
p1 = 22 atm	N = 53.9534 mol
p2 = 3 atm	V2 = 4401
$T = 25^{\circ}C$	W12 = -266486 J (energy leaving the system as work)
V1 = 60.1	

13.1.5 Internal Energy/Enthalpy

These equations compute changes in entropy, enthalpy and internal energy for ideal gases between initial and final states. **Equation 1** computes the change in internal energy **us21** (J/kg), of an ideal gas from change in temperature **T2-T1** (K), and specific heat at constant volume **cv** (J/(kg·K)). The **second equation** computes **us21** from changes in pressure, **p2-p1** (Pa), and specific volume, **vs2-vs1** (m³/kg), and from the specific heat ratio **k**. **Equations 3** and **4** compute the change in specific enthalpy, **hs21** (J/kg), from the change in temperature, **T2-T1**, and specific heat at constant pressure, **cp** (J/(kg·K)), or from the molar specific heat ratio **k** and changes in specific volume, **vs2-vs1**, and pressure, **p2-p1**. **Equations 5**, **6** and **7** calculate the change in entropy per kilogram of substance, **ss21** (J/(kg·K)), from a combination of temperature, specific volume, or pressure changes. **Equations 8**, **9** and **10** compute the molar versions of enthalpy difference, **hm21** (J/mol), internal energy difference, **um21** (J/mol), and difference in entropy, **sm21** (J/(mol·K)), from their mass equivalents **hs21**, **us21** and **ss21**. **Equation 10** describes the relationship between specific heats at constant pressure, **cp**, and constant volume, **cv**, for an

ideal gas. The **equation 11** calculates k, the ratio of specific heat at constant pressure, cp, and the specific heat at constant volume, cv. The **last two equations** show the ideal gas law for the initial (1) and final (2) states.


$us21 = cv \cdot (T2 - T1)$	Eq. 1
$us21 = \frac{p2 \cdot vs2 - p1 \cdot vs1}{k - 1}$	Eq. 2
$hs21 = cp \cdot (T2 - T1)$	Eq. 3
$hs21 = \frac{k \cdot (p2 \cdot vs2 - p1 \cdot vs1)}{k - 1}$	Eq. 4
$ss21 = cv \cdot \ln\left(\frac{T2}{T1}\right) + \frac{Rm}{MWT} \cdot \ln\left(\frac{vs2}{vs1}\right)$	Eq. 5
$ss21 = cp \cdot \ln\left(\frac{T2}{T1}\right) - \frac{Rm}{MWT} \cdot \ln\left(\frac{p2}{p1}\right)$	Eq. 6
$ss21 = \left(cp \cdot \ln\left(\frac{vs2}{vs1}\right) + cv \cdot \ln\left(\frac{p2}{p1}\right)\right)$	Eq. 7
$hm21 = MWT \cdot hs21$	Eq. 8
$um21 = MWT \cdot us21$	Eq. 9
$sm21 = MWT \cdot ss21$	Eq. 10
$cp = cv + \frac{Rm}{MWT}$	Eq. 11
$k = \frac{cp}{cv}$	Eq. 12
$p1 \cdot vs1 = \frac{Rm}{MWT} \cdot T1$	Eq. 13
$p2 \cdot vs2 = \frac{Rm}{MWT} \cdot T2$	Eq. 14


Variable	Description	Units
ср	Specific Heat -const. pressure	$J/(kg \cdot K)$
cv	Specific Heat-const. volume	$J/(kg \cdot K)$
hs21	Enthalpy Change-mass: $1\rightarrow 2$	J/kg

Variable	Description	Units
hm21	Enthalpy Change-molar: $1\rightarrow 2$	J/mol
k	Specific Heat Ratio	unitless
MWT	Molecular Weight	kg/mol
p1	Initial Pressure	Pa
p2	Final Pressure	Pa
Rm	Molar Gas constant	8.3145 J/(mol·K)
sm21	Entropy Change-mole: $1\rightarrow 2$	$J/(mol \cdot K)$
ss21	Entropy Change-mass: $1\rightarrow 2$	$J/(kg \cdot K)$
T1	Initial Temperature	K
T2	Final Temperature	K
um21	Internal energy change-molar: $1\rightarrow 2$	J/mol
us21	Internal energy change-mass: $1\rightarrow 2$	J/kg
vs1	Initial Specific Volume	m ³ /kg
vs2	Final Specific Volume	m^3/kg

Example 13.1.5:

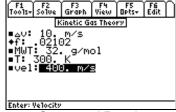
Helium (molar mass = 4 g/mol) is compressed adiabatically from a pressure of 2 bars to a pressure of 4 bars. The temperature increases from 300 K to 476.22 K. What are the initial and final values for specific volume, and the change in entropy per mass, and entropy per mole? Since helium is an ideal monatomic, gas the specific heat ratio \mathbf{k} is equivalent to 5/3.

Solution – Select equations 6, and 10 through 14 to solve this problem

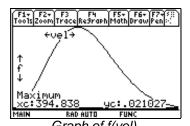
Given	Solution
k = 5/3	$cp = 5.19657 \text{ J/(g} \cdot \text{k)}$
MWT = 4 g/mol	cv = 3.11794 J/(g·k)
p1 = 2 bar	$sm21 = 3.842121 \text{ J/(mol \cdot k)}$
p2 = 4 bar	ss21 = 960.526 J/(g·k)
T1 = 300 K	$vs1 = 3.11794 \text{ m}^3/\text{kg}$
T2 = 476.22 K	$vs2 = 2.47471 \text{ m}^3/\text{kg}$

13.2 Kinetic Gas Theory

These two equations calculate the velocity and distribution for molecules in a gas phase. The **first equation** computes **vrms** (m/s), the root mean speed for molecules in an ideal gas, as a function of mass temperature, **T** (K), and molecular weight, **MWT** (kg/mol). The **second equation** calculates the fraction of molecules, **f**, in a gas sample having velocities in the range, **vel** $\pm \Delta v/2$ (m/s). The second equation is often referred to as the *Maxwell distribution of speeds*.


$$vrms = \sqrt{\frac{3 \cdot Rm \cdot T}{MWT}}$$
 Eq. 1

$$f = 4 \cdot \pi \cdot \left(\frac{MWT}{2 \cdot \pi \cdot Rm \cdot T}\right)^{\frac{3}{2}} \cdot vel^{2} \cdot e^{\frac{-MWT \cdot vel^{2}}{2 \cdot Rm \cdot T}} \cdot \Delta v$$
Eq. 2


Variable	Description	Units
$\Delta { m v}$	Velocity range	m/s
f	Distribution function	Unitless
MWT	Molecular weight	kg/mol
Rm	Molar gas constant	8.3145 J/(mol·K)
T	Temperature	K
vel	Velocity	m/s
vrms	RMS velocity	m/s

Example 13.2:

A container is filled with molecular oxygen (MWT = 32 g/mol) at 300 K. What fractions of molecules have velocities in the range of 395-405 m/s? Plot the distribution function as a function of velocity. Find the velocity where the maximum fraction occurs.

Computed Results

Solution – Select the **second equation**. Enter the known values and compute **f**. To graph the function:

- 1. Press F3, enter xmin=0 and xmax=1000.
- 2. Select **f** as the dependent variable and **vel** as the independent variable.
- 3. Move the cursor to the bottom of the screen and press [ENTER] to select **Full Screen** mode.
- 4. Press [F3] to plot the function.
- 5. Once the graph has been made, press [F5]: Math, [4]: Maximum. A prompt will appear asking you to select a Lower Bound.
- 6. Move the cursor to the left side of the maximum and press ENTER. A prompt asks you to enter the upper bound. Move the cursor to the right side of the maximum point and press ENTER.
- 7. A maximum value appears on the bottom of the screen as shown in the screen display above.

Given $\Delta v = 10 \text{ m/s}$ MWT = 32 g/mol

T = 300 K

vel = 400 m/s

Solution f = 0.02102

13.3 Real Gas Laws

Ideal gas laws assume the gas molecules are perfectly elastic spheres and that the average distance between molecules is large. This generally occurs at high temperatures or low pressure. However, under conditions of high pressure or low temperature and when the concentration of molecules increase, the forces between molecules become more significant and cause noticeable deviations from ideal gas behavior. This generally occurs for conditions of high pressure or low temperature. The van der Waals and Redlich-Kwong equations are two of several methods used to approximate the effect of intermolecular interactions in gas calculations. The coefficients for each method are specific to a particular gas and can be approximated from information using the critical temperature and critical pressure for a gas. Either method is an approximation and is likely to differ in its accuracy over certain regions. The equation sets for both the van der Waal and Redlich-Kwong methods have been adapted in molar and specific volume (gravimetric) forms.

13.3.1 van der Waals: Specific Volume

The van der Waals equation is one of the oldest methods to approximate the behavior of real gases. It has a reasonable accuracy for a wide range of conditions. The **first equation** is a modified form of the ideal gas equation found in 13.1.1: (Equation 3). The first coefficient, **avws** (Pa·m⁶/kg²), accounts for the attractive or repulsive forces between molecules, which reduce or increase pressure. The affect of these inter-molecular forces, according to the equation 1, is inversely proportional to the square of the gas volume **vs** (m³/kg). The second coefficient, **bvws** (m³/kg), accounts for the reduction in specific volume, **vs**, due to the space occupied by the gas molecules themselves. The **second** and **third equations** approximate the coefficients **avws** and **bvws** from the critical temperature **Tcr** (K), the temperature, above which, a liquid phase no longer exists for a particular gas, and critical pressure **pcr** (Pa), the pressure, at the critical temperature, when the phase boundary between the liquid and gas phase is non-existent. The **last equation** relates the molar mass, **MWT** (kg/mol), to the number of moles, **N** (mol), and total mass of the gas **m** (kg).

$\left(p + \frac{avws}{vs^2}\right) \cdot \left(vs - bvws\right) = \frac{Rm}{MWT} \cdot T$	Eq. 1
$avws = \frac{27}{64} \cdot \left(\frac{Rm}{MWT}\right)^2 \cdot \frac{Tcr^2}{pcr}$	Eq. 2
$bvws = \frac{1}{8} \cdot \frac{Rm}{MWT} \cdot \frac{Tcr}{pcr}$	Eq. 3
$MWT = \frac{m}{N}$	Eq. 4

Variable	Description	Units
avws	Coefficient van der Waals	$Pa \cdot m^6 / kg^2$
bvws	Coefficient van der Waals	m^3/kg
m	Mass	kg
MWT	Molecular weight	kg/mol
N	No. moles	mol

Variable	Description	Units
P	Pressure	Pa
pcr	Critical pressure	Pa
Rm	Molar gas constant	8.3145 J/(mol·K)
T	Temperature	K
Tcr	Critical temperature	K
VS	Specific volume	m^3/kg

Example 13.3.1:

 $Tcr = 270.3 \, {}^{\circ}F$

What are approximated values for the van der Waals coefficients of ammonia (NH₃)? Use a specific volume for a pressure of 20 atm and a temperature of -73.15 °C. The molar mass of NH₃ is approximately 17 g/mol.

Entered Values

Computed Results

Solution – Select equations one, two and three. The critical temperature and pressure for several compounds, including ammonia are listed in the Critical Data –Gases topic of Gases and Vapors in the Reference section of ME•Pro. The critical temperature is listed as 270.3 °F and the critical pressure is 111.5 atm.

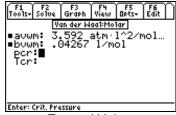
Given

MWT = 17 g/mol $avws = 1469.04 \text{ Pa} \cdot \text{m}^6/\text{kg}^2$ p = 20 atm bvws = $.002195 \text{ m}^3/\text{kg}$ pcr = 111.5 atm $vs = .002662 \text{ m}^3/\text{kg}$ $T = -73.15 \, {}^{\circ}C$

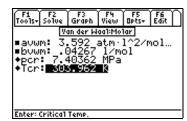
13.3.2 van der Waals: Molar form

These equations are the *molar* versions of the *gravimetric* (mass) van der Waals equations listed in the previous section. In other words, the properties per quantity of gas are expressed in moles instead of mass, ex: vs (m³/kg) are now vm (m³/mol). The first equation is an adapted form of the ideal gas equation **p** V=**n** R**m** T which accounts for the effect of attractive and repulsive forces between molecules. The molar van der Waals coefficients, avwm (Pa·m⁶/mol²) and bvwm (m³/mol), which approximate the effect of these forces for a particular gas, can be estimated from the critical temperature, Tcr (K), and critical pressure, pcr (Pa), data using Eq. 2 and 3.

$$\left(p + \frac{avwm}{vm^2}\right) \cdot (vm - bvwm) = Rm \cdot T$$


$$avwm = \frac{27}{64} \cdot Rm^2 \cdot \frac{Tcr^2}{pcr}$$
Eq. 2

$bvwm = \frac{1}{8} \cdot Rm \cdot \frac{Tcr}{pcr}$	Eq. 3
---	-------


Variable	Description	Units
avwm	van der Waals coefficient - molar	$Pa \cdot m^6/mol^2$
bvwm	van der Waals coefficient-molar	m^3/mol
p	Pressure	Pa
pcr	Critical pressure	Pa
Rm	Molar gas constant	8.3145 J/(mol·K)
T	Temperature	K
Tcr	Critical temperature	K
vm	Molar volume	m^3/mol

Example 13.3.2:

K.A. Kobe and R.E.Lynn, Jr. (*Chem. Rev.*, 52:117-236 1953) reported critical pressure and temperature values for CO_2 as 7.39 MPa and 304.2 K. This data is also available in *Reference* under *Crit.Data-Gases* in *Gases and Vapors*. Determine whether the van der Waal coefficients for carbon dioxide listed in the *CRC* 73rd ed., can be used to approximate these same values. The molar van der Waal coefficients for CO_2 listed in the *CRC* 73rd Ed (a, b) are 3.592 atm·liters²/mol² and 0.04267 liters/mol. The molar mass of carbon dioxide is 44.01 g/mol.

Entered Values

Computed Results

Solution – Select the **second** and **third equations** to solve this problem.

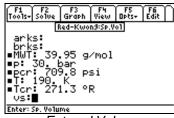
 Given
 Solution

 avwm = $3.592 \text{ atm} \cdot l^2/\text{mol}^2$ pcr = 7.40362 MPa

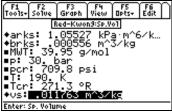
 bvwm = 0.04267 l/mol Tcr = 303.962 K

13.3.3 Redlich-Kwong: Sp.Vol

The Redlich-Kwong equations of state (*Chem. Rev.*, 44, 233, 1949) offer another method for accounting for inter-molecular forces of attraction and repulsion in calculating gas parameters. The **first equation** is a modified version of the ideal gas equation, $\mathbf{p} \cdot \mathbf{V} = \mathbf{n} \cdot \mathbf{Rm} \cdot \mathbf{T}$. The **second** and **third equations** approximate the gravimetric (mass) forms of the Redlich-Kwong coefficients, $\mathbf{arks} \cdot \mathbf{Pa} \cdot \mathbf{m}^6/(\mathbf{kg}^2 \cdot \mathbf{K}^{0.5})$ and $\mathbf{brks} \cdot (\mathbf{m}^3/\mathbf{kg})$, from the critical pressure, $\mathbf{pcr} \cdot (\mathbf{Pa})$, and temperature, $\mathbf{Tcr} \cdot (\mathbf{K})$, of a particular gas. The **last equation** relates the molar mass, $\mathbf{MWT} \cdot (\mathbf{kg/mol})$, to the number of moles, $\mathbf{N} \cdot (\mathbf{mol})$ and total mass of the gas $\mathbf{m} \cdot (\mathbf{kg})$.


$$p = \frac{Rm \cdot T}{MWT \cdot (vs - brks)} - \frac{arks}{T^{.5} \cdot vs \cdot (vs + brks)}$$
 Eq. 1

$arks = .4275 \cdot \left(\frac{Rm}{MWT}\right)^2 \cdot \left(\frac{Tcr^{2.5}}{pcr}\right)$	Eq. 2
$brks = .0867 \cdot \frac{Rm}{MWT} \cdot \frac{Tcr}{pcr}$	Eq. 3
$MWT = \frac{m}{N}$	Eq. 4


Variable	Description	Units
arks	Redlich Kwong coefficient-mass	$Pa \cdot m^6 / (kg^2 \cdot K^{.5})$
brks	Redlich Kwong coefficient-mass	m ³ /kg
m	Mass	kg
MWT	Molar Mass	kg/mol
N	No. moles	mol
p	Pressure	Pa
pcr	Critical Pressure	Pa
Rm	Molar Gas constant	8.3145 J/(mol·K)
T	Temperature	K
Tcr	Critical Temperature	K
VS	Specific Volume	m^3/kg

Example 13.3.3:

Calculate the Redlich Kwong coefficients for Argon and the specific volume at a pressure of 30 bars and a temperature of 190 K. The molar mass of Argon is 39.95 g/mol.

Entered Values

Computed Results

Solution – Select **equations 1, 2,** and **3** to solve this problem. The critical temperature and pressure for several compounds, including argon are listed in **Refrigerants-Cryogenic Properties** in the *Reference* section of ME•*Pro*. The critical temperature is listed as 271.3 °R and the critical pressure is 709.8 psi.

Given	Solution
-------	----------

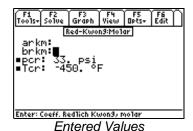
MWT = 39.95 g/mol	$arks = 1.05527 \text{ kPa} \cdot \text{m}^6/\text{kg}^2 \cdot \sqrt{\text{K}}$
p = 30 bar	$brks = 0.000556 \text{ m}^3/kg$
pcr = 709.8 psi	$vs = .0011763 \text{ m}^3/\text{kg}$
T = 190 K	

 $Tcr = 271.3 \, {}^{\circ}R$

13.3.4 Redlich-Kwong: Molar

These equations are the molar form of the Redlich Kwong equations. The **first equation** is a modified version of the ideal gas equation, $\mathbf{p} \cdot \mathbf{V} = \mathbf{n} \cdot \mathbf{Rm} \cdot \mathbf{T}$. The **second** and **third equations** approximate the molar forms of the Redlich Kwong coefficients, $\mathbf{arkm} \ Pa \cdot \mathbf{m}^6/(mol^2 \cdot \sqrt{K})$ and $\mathbf{brkm} \ (\mathbf{m}^3/mol)$, from the critical pressure, $\mathbf{pcr} \ (Pa)$, and temperature, $\mathbf{Tcr} \ (K)$, for a specific gas.

$$p = \frac{Rm \cdot T}{vm - brkm} - \frac{arkm}{\sqrt{T} \cdot vm \cdot (vm + brkm)}$$


$$arkm = \frac{.4275 \cdot Rm^2 \cdot Tcr^{2.5}}{pcr}$$

$$brkm = \frac{.0867 \cdot Rm \cdot Tcr}{pcr}$$
Eq. 3

Variable	Description	Units
arkm	Redlich Kwong coefficient-molar	$Pa \cdot m^6 / (mol^2 \cdot K^{.5})$
brkm	Redlich Kwong coefficient, molar	m^3/mol
p	Pressure	Pa
pcr	Critical Pressure	Pa
Rm	Molar Gas constant	8.3145 J/(mol·K)
T	Temperature	K
Tcr	Critical Temperature	K
vm	Molar Volume	m ³ /mol

Example 13.3.4:

The molar Redlich Kwong coefficients for Helium (He) are listed on page 143 of Reference 1 the listed values are 8.168 kPa (m³/kmol)² and 0.01655 (m³/kmol) respectively. Verify that these values are consistent with calculations from critical pressure and temperature data for helium located in *Reference/Refrigerants/Selected Materials*.

Computed Results

Solution – The values for critical temperature and pressure for Helium listed in *Reference* are –450°F and 33 psi, respectively. Select the **second** and **third equations** to solve this problem.

Given	Solution
pcr = 33 psi	$arkm = 8.68883 \text{ kPa} \cdot \text{m}^6/\text{kmol}^2 \cdot \sqrt{\text{K}}$
$Tcr = -450 ^{\circ}F$	$brkm = .000017 \text{ m}^3 / mol$

13.4 Reverse Adiabatic

These equations compute internal energy change per unit mass, us21 (J/kg), enthalpy change per unit mass, hs21 (J/kg), and work performed W12 (J), for an ideal gas undergoing a reversible adiabatic process. A reversible adiabatic process is also referred to as isentropic, i.e.: total entropy remains constant throughout the transition between initial and final states. Equations 1, 2, and 3 describe the relationships between pressure, temperature and volume for a reversible adiabatic process between initial state, p1 (Pa), V1 (m³), T1 (K), and final state, p2 (Pa), V2 (m³), T2 (K). Equations 4, 5 and 6 compute the work, W12, performed for a reversible adiabatic transition between the initial and final states. Equation 7 calculates the initial and final specific volumes, vs1 (m³/kg) and vs2 (m³/kg). Equations 8 and 9 compute the change in specific energy, us21 (J/kg), for an isentropic process. Equation 10 calculates the change in specific enthalpy, hs21 (J/kg), for a reversible adiabatic process. Equation 11 computes \mathbf{k} , the ratio of the specific heats at constant pressure \mathbf{cp} J/(kg·K), and volume \mathbf{cv} (J/(kg·K)). Equation 12 relates molecular mass, MWT (kg/mol), to the number of moles, N (mol), and total mass of the gas, m (kg). Equations 13 and 14 compute the specific volumes of the initial and final specific volumes, vs1 and vs2. The final three equations are specific for an ideal gas. Equations 15 and 16 express the ideal gas law of the initial and final states for specific volume, vs1 and vs2. The last equation computes the specific heat at constant pressure, cp, for an ideal gas from the specific heat at constant volume, cp, and molar mass MWT.

$\frac{p1}{p2} = \left(\frac{V2}{V1}\right)^k$	Eq. 1
$\frac{T2}{T1} = \left(\frac{V1}{V2}\right)^{k-1}$	Eq. 2
$\frac{T2}{T1} = \left(\frac{p2}{p1}\right)^{\frac{k-1}{k}}$	Eq. 3
$W12 = m \cdot cv \cdot (T2 - T1)$	Eq. 4
$W12 = \frac{p2 \cdot V2 - p1 \cdot V1}{k - 1}$	Eq. 5
$W12 = \frac{p1 \cdot V1 \cdot \left(\left(\frac{p2}{p1} \right)^{\frac{k-1}{k}} - 1 \right)}{k-1}$	Eq. 6
$vs2 = vs1 \cdot \left(\frac{T1}{T2}\right)^{\frac{1}{k-1}}$	Eq. 7
$us21 = cv \cdot (T2 - T1)$	Eq. 8

$us21 = \frac{p2 \cdot vs2 - p1 \cdot vs1}{k - 1}$	Eq. 9
$hs21 = \frac{k \cdot (p2 \cdot vs2 - p1 \cdot vs1)}{k - 1}$	Eq. 10
$k = \frac{cp}{cv}$	Eq. 11
$MWT = \frac{m}{N}$	Eq. 12
$vs1 = \frac{V1}{m}$	Eq. 13
$vs2 = \frac{V2}{m}$	Eq. 14
$p1 \cdot vs1 = \frac{Rm}{MWT} \cdot T1$	Eq. 15
$p2 \cdot vs2 = \frac{Rm}{MWT} \cdot T2$	Eq. 16
$cp = cv + \frac{Rm}{MWT}$	Eq. 17

Variable	Description	Units
cp	Specific Heat-constant pressure	$J/(mol \cdot K)$
cv	Specific heat -constant volume	$J/(mol \cdot K)$
hs21	Enthalpy change	J/kg
k	Specific heat ratio	Unitless
m	Mass	kg
MWT	Molar mass	kg/mol
N	No. moles	mol
p1	Initial pressure	Pa
p2	Final pressure	Pa
Rm	Molar gas constant	8.3145 J/(mol·K)
T1	Initial temperature	K
T2	Final temperature	K
us21	Internal energy change	J/kg
V1	Initial volume	m^3
V2	Final volume	m^3
vs1	Initial specific volume	m^3/kg
vs2	Final specific volume	m^3/kg

Variable	Description	Units
W12	Work performed	J

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Example 13.4:

Acetylene (C_2H_2 , MWT=26 g/mol) undergoes adiabatic compression from an initial pressure of 1 bar at an initial volume of 10 m³ to a final pressure of 5 bars. The temperature, following compression, is 300 K. What is the initial temperature, final volume, work performed, change in internal energy and enthalpy? Information regarding the specific heat of acetylene can be found in the **Reference** section under **Thermal Properties/Specific Heat/Cp Liquids and Gases** and **Cp/Cv Liq. and Gases at 1 atm**. Assume that the ratio of specific heats **cp/cv** remains constant over this pressure range and acetylene exhibits ideal gas behavior.

Upper Display

Lower Display

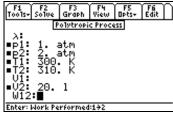
Solution – Select **Equations, one, two, six, seven, nine, ten** and **fifteen.** Use a listed value of cp/cv = 1.269 for acetylene from *Thermal Properties/Specific Heat/Cp/Cv Liq. and Gases at 1 atm* in the *Reference* section.

Given	Solution
k = 1.269	hs21 = 130822 J/kg
MWT = 26 g/mol	T1 = 213.282 K
p1 = 1 bar	us21 = 103090 J/kg
p2 = 5 bar	$V2 = 2.81317 \text{ m}^3$
T2 = 300 K	$vs1 = .682053 \text{ m}^3/\text{kg}$
$V1 = 10 \text{ m}^3$	$vs2 = .191873 \text{ m}^3/\text{kg}$
	W12 = 1.51147E6 J

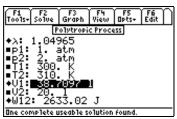
13.5 Polytropic Process

A quasi-equilibrium compression or expansion of an ideal gas is often referred to as polytropic. A criteria for a polytropic process is that it occurs at a sufficiently slow rate, that the system boundary is *fully resisted* by an external force at every stage between the initial and final state that the system, and therefore can be said to be in equilibrium at any stage in the entire process. The magnitude of work performed between the initial and final states is equivalent to the sum (integral) of the incremental work performed at each equilibrium stage between the initial state, **p1** (Pa), **V1** (m³), **vs1** (m³/kg), and **T1** (K). and final state, **p2** (Pa), **V2** (m³), **vs2** (m³/kg), and **T2** (K). **Equation 1** relates the pressure **p1**, **p2** to volume **V1**, **V2** in a polytropic process. **Equation 2** computes the polytropic specific heat, **cn** (J/(kg·K)), from the polytropic exponent λ , the specific heat ratio k and the specific heat at constant volume **cv**. **Equations 3** and **4** relate temperature to volume and temperature to pressure in a polytropic process. **Equations 5** and **6** compute the work, **W12** (J), performed from an initial state (**p1**, **V1**, **vs1**, and **T1**) and final state (**p2**, **V2**, **vs2**, and **T2**). **Equation 7** computes the heat change, **Q12** (J), of the system from the initial and final temperatures **T1** and **T2**, and the specific heat for a polytropic process **cn**. The **last two**

equations describe the relationship between the specific heats at constant pressure cp (J/(kg·K)), and constant volume cv (J/(kg·K)), for an ideal gas, and compute the specific heat ratio k.


$\frac{p1}{p2} = \left(\frac{V2}{V1}\right)^{\lambda}$	Eq. 1
$cn = \frac{cv \cdot (\lambda - k)}{\lambda - 1}$	Eq. 2
$\frac{T2}{T1} = \left(\frac{V1}{V2}\right)^{\lambda - 1}$	Eq. 3
$\frac{T2}{T1} = \left(\frac{p2}{p1}\right)^{\frac{\lambda-1}{\lambda}}$	Eq. 4
$W12 = \frac{p2 \cdot V2 - p1 \cdot V1}{\lambda - 1}$	Eq. 5
$W12 = \frac{-p1 \cdot V1 \left(\left(\frac{p2}{p1} \right)^{\frac{\lambda - 1}{\lambda}} - 1 \right)}{\lambda - 1}$	Eq. 6
$Q12 = m \cdot cn \cdot (T2 - T1)$	Eq. 7
$cp = cv + \frac{Rm}{MWT}$	Eq. 8
$k = \frac{cp}{cv}$	Eq. 9

Variable	Description	Units
λ	Polytropic coefficient, $\lambda \neq 1$	Unitless
cn	Specific heat-polytropic process	$J/(mol \cdot K)$
ср	Specific heat – constant pressure	$J/(kg \cdot K)$
cv	Specific heat-constant volume	$J/(mol \cdot K)$
k	Specific heat ratio	Unitless
m	Mass	kg
MWT	Molar mass	kg/mol
p1	Initial pressure	Pa
p2	Final pressure	Pa
Q12	Heat transfer	J
Rm	Molar gas constant	8.3145 J/(mol·K)
T1	Initial temperature	K
T2	Final temperature	K


Variable	Description	Units
V1	Initial volume	m^3
V2	Final volume	m^3
W12	Work performed	J

Example 13.5:

Suppose that inflating a balloon is a quasi-equilibrium process. If the air pressure is 1 atm outside of the balloon and the pressure of the same air inside a balloon, having an internal volume of 20 liters, is 2 atm, compute the work performed to inflate the balloon. Assume air behaves as an ideal gas, the balloon does not transfer heat to its surroundings, and the air temperature increases (due to air compression only) from 300-310 K.

Entered Values

Computed Results

Solution – Select equations, one, four and five to solve this problem. Select these by highlighting the equations and pressing [ENTER]. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
p1 = 1 atm	$\lambda = 1.04965$
p2 = 2 atm	V1 = 38.70971
T1 = 300 K	W12 = 2633.02 J
T2 = 310 K	
V2 = 201	

References:

- 1. Lynn D. Russell, and George A. Adebiyi, Classical Thermodynamics, Saunders College publishing, Harcourt Brace Jovanavich College Publishers, Fort Worth TX, 1993.
- Michael R. Lindeburg: Mechanical Engineering Reference Manual, Eighth Ed. Physical Chemistry, Peter Atkins, 5th Edition, Freeman Publishing Company, NY 1994.
- CRC Handbook of Chemistry and Physics, 73rd ed. 1992-1993, CRC Press, Boca Raton Fl, 1992.
- Redlich, O. and Kwong, J. N. S. 1949. "On the Thermodynamics of Solutions. V. An Equation of State: Fugacities of Gaseous Solutions." Chemical Reviews. Vol. 44, No. 1. 233-244.
- K.A. Kobe and R.E.Lynn, Jr, Chemical Reviews, Vol. 52: 117-236 1953.

Chapter 14: Heat Transfer

This section covers heat transfer due to conduction, convection and radiation. The equations in this chapter are grouped into four main categories. A list of thermal properties and conductivities for many materials is available in the Reference section under Thermal Properties/Thermal Conductivity.

- **Basic Transfer Mechanics**
- Semi-infinite Solid

- 1D Heat Transfer
- **Radiation**

14.1 Basic Transfer Mechanisms

14.1.1 Conduction

This section describes steady-state conduction of heat through objects with rectangular and circular cross-sections. The rate of heat transfer, \mathbf{q} (W), is due to the thermal conductivity of a material, \mathbf{k} (W/(m·K)), and the temperatures J, (K) and J₂ (K) at the surfaces 1 and 2 over a distance, L (m). The thermal conductivity, k, depends on thermo physical

properties and thermodynamic properties of the substance at a given temperature. The shape factor for conduction, S, is determined from the geometric properties of the object, including length L, area \mathbf{A} (m²) of the rectangular surface, inner radius \mathbf{ra} (m), and outer radius \mathbf{rb} (m) for a circular conductor. **Equation 1** computes the rate of heat loss, q, for a rectangular flat plate with a cross-sectional area, A, and a temperature difference, (T1-T2), across length, L. Equation 2 computes the rate of heat transfer, q, through an object with a geometric shape factor, S. Equation 3 computes the rate of heat transfer per rectangular surface area, $q\phi$ (W/m²), of the material. The **next** three equations compute the shape factor, S, for a rectangular thin plate (Eq.4), a cylinder with inner radius, ra, outer radius, rb, and length, L (Eq. 5), and a hollow sphere with inner radius, ra and outer radius, rb (Eq. 5). These equations assume steady-state transfer of heat, uniform conductivity, and the absence of thermal gradients perpendicular to the direction of main heat transfer.

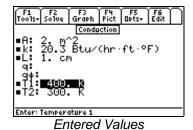
$$q = k \cdot A \cdot \frac{(T1 - T2)}{L}$$
 Eq. 1

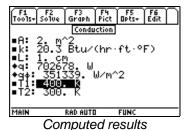
$$q = k \cdot S \cdot (T1 - T2)$$
 Eq. 2

$$q\phi = \frac{q}{A}$$
 Eq. 3

$$S = \frac{A}{I}$$
 Eq. 4

$$S = \frac{2 \cdot \pi \cdot L}{\ln\left(\frac{rb}{ra}\right)}$$
 Eq. 5


$S = \frac{rb - ra}{rb - ra}$	$S = \frac{4 \cdot \pi \cdot ra \cdot rb}{rb - ra}$	Eq. 6
-------------------------------	---	-------


Variable	Description	Units
A	Area	m²
k	Thermal conductivity	$W/(m \cdot K)$
L	Length	m
q	Heat transfer rate - conduction	W
qφ	Heat flux	W/m^2
ra	Inner radius	m
rb	Outer radius	m
S	Shape factor	m
T1	Temperature at 1	K
T2	Temperature at 2	K

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 14.1.1:

A lead slab, laid flat, has a cross-sectional area of 2 m² and a thickness of 1 cm. If the temperatures of the upper and lower sides are maintained at 400K and 300 K, what is the rate of heat transfer per area of the metal?

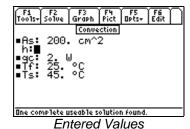
Solution –The thermal conductivity of lead is listed as k=20.3 Btu/(hr·ft·°F) in the temperature range 32-500°F (see **Reference/Thermal Properties/Thermal Conductivity/Elemental**). Use the **first** and **third equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$A = 2 \text{ m}^2$	q = 702678 W
$k = 20.3 \text{ Btu/(hr·ft·}^{\circ}\text{F)}$	$q\phi = 351339 \text{ W/m}^2$
L = 1 cm	
T1=400 °C	
T2=300 °C	

14.1.2 Convection

Convection is the transfer of heat from a surface to a moving fluid. It is a combination of heat transfer due to conduction, from the surface to the fluid immediately adjacent to the surface, and transport of the heat due to fluid motion. The mean coefficient of heat transfer, **h**, depends on several factors:

- The shape, size, roughness, and thermal conductivity of the surface.
- The thermal and physical properties of the fluid, including density, specific heat, and conductivity at a specific temperature.
- The flow properties of the fluid: velocity, viscosity and stability.

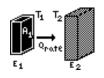

The single equation in this section describes a steady state process for heat transfer from a surface due to convection, \mathbf{qc} (W), from a surface with temperature, \mathbf{Ts} (K), and an area, \mathbf{As} (m²), to a flowing fluid with average temperature, \mathbf{Tf} (K). **Equation 1** is commonly known as Newton's Law for cooling.

$$qc = h \cdot As \cdot (Ts - Tf)$$
 Eq. 1

Variable	Description	Units
As	Total surface area	m^2
h	Convection coefficient	$W/(m^2 \cdot K)$
qc	Heat transfer rate-convection	W
Tf	Temperature of fluid	K
Ts	Surface temperature of emitter	K

Example 14.1.2:

Convective transfer occurs from a surface, with an average temperature of 45°C and an area of 200 cm² to an air stream with an average temperature of 25°C. The rate of heat loss is 2 watts. What is the coefficient of transfer due to convection for this system?



Solution –Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$As = 200 \text{ cm}^2$	$h = 5 \text{ W/(m}^2 \cdot \text{K)}$
qc = 2 W	
Tf = 25 °C	
Ts = 45 °C	

14.1.3 Radiation

Radiation is the transmission of heat in the form of electromagnetic waves. An object absorbing all incoming radiation is defined as a blackbody. The following equations describe radiative transfer between two blackbodies. Often called Stefan-Boltzmann law, **equation 1** links emissive power of a black body, Eb (W/m^2) to the surface temperature of a radiating body Ts (K) and a constant σ . **Equations 2** and **3** compute

the emissions, **E1** and **E2**, for objects with non-blackbody properties. The variables, **E1** and **E2**, account for the differences in emissivity, due to material type composition and temperature (ϵ =1 for a blackbody, ϵ =0 for a purely reflective body). **Equation 4** computes the net radiative transfer, **Qrate** (W), of heat between two bodies. **Fs2r** is the shape (or view) factor representing the fraction of radiation transmitted by one object, which is absorbed by the other. The shape factor, **Fs2r**, becomes 1 if the receiving surface area surrounds the emissive surface area, **A1** (m). **Ts** (K) and **Tr** (K) are the temperatures of the sending and receiving bodies, and σ =5.670 x 10⁻⁸ W/(m²·K⁴) is the Stefan-Boltzmann constant for radiation.

$Eb = \sigma \cdot Ts^4$	Eq. 1
$E1 = \varepsilon 1 \cdot \sigma \cdot T1^4$	Eq. 2
$E2 = \varepsilon 2 \cdot \sigma \cdot T2^4$	Eq. 3
$Qrate = A1 \cdot Fs2r \cdot (Eb1 - Eb2)$	Eq. 4

Variable	Description	Units
σ	Stefan-Boltzmann constant	$5.670 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
ε1	Emissivity of 1	unitless
ε2	Emissivity of 2	unitless
A1	Area of radiating surface	m^2
Eb	Black body emissive power	W/m^2
E1	Emissive power-radiating surface	W/m^2
E2	Emissive power-receiving surface	W/m^2
Fs2r	Radiation shape factor	unitless
Qrate	Heat transfer rate-radiation	W
T1	Surface temperature of emitter	K
T2	Temperature of receptor	K
Ts	Surface temperature of emitter	K

Example 14.1.3:

A machine case with a blackbody emissive surface area of 20 ft² is exposed to black body radiation with the surrounding walls and ceiling of a room. The temperature of the case and the walls is 50°C and 25°C, respectively. What is the heat transferred from the case to the ceiling and walls of the room?

Upper Display Lower Display

Solution – Select **equations 2, 3,** and **4**. The Stefan-Boltzmann constant, $\sigma = 5.670 \text{ x } 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$, is automatically inserted into the equation when solving.

Given $\epsilon 1 = 1$ $\epsilon 2 = 1$ $A1 = 20 \text{ ft}^2$ Fs2r = 1 $T1 = 50 \,^{\circ}\text{C}$ $T2 = 25 \,^{\circ}\text{C}$ **Solution** E1 = 618.356 W/m² E2 = 448.086 W/m²

Qrate = 316.372 W

14.2 1 1D Heat Transfer

One-dimensional (1D) transfer equations describe heat exchange along a single axis (x-axis). No temperature gradients occur along the y and z-axes. Heat transfer is assumed to be time invariant.

14.2.1 Conduction

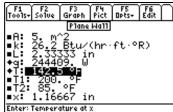
14.2.1.1 Plane Wall

The following equations describe heat transfer due to conduction along the horizontal axis of a plane wall. The wall, composed of a homogeneous material with thermal conductivity, \mathbf{k} (W/(m·K)), separates temperatures $\mathbf{T1}$ (K) and $\mathbf{T2}$ (K). The wall has a length, \mathbf{L} (m), along the axis of conduction and an area, \mathbf{A} (m²), normal to the direction of heat transfer. The **first equation** computes the temperature, \mathbf{T} (K), at position \mathbf{x} (m) from the side of the wall where the temperature is $\mathbf{T1}$. The **second equation** computes the rate of heat transfer, \mathbf{q} (W), between $\mathbf{T1}$ and $\mathbf{T2}$. \mathbf{Rk} (K/W) is the total thermal resistance to heat conduction of a rectangular plane wall having length \mathbf{L} , area \mathbf{A} , and conductivity, \mathbf{k} .

$$T = T1 + \frac{T2 - T1}{L} \cdot x$$
 Eq. 1

$$q = \frac{k \cdot A}{L} \cdot (T1 - T2)$$
 Eq. 2

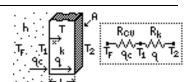
$$Rk = \frac{L}{k \cdot A}$$
 Eq. 3


Variable	Description	Units
A	Area	m^2
k	Thermal conductivity	$W/(m \cdot K)$
L	Length	m
q	Heat transfer rate - conduction	\mathbf{W}
Rk	Thermal resistance - conduction	K/W
T	Temperature at x	K
T1	Temperature at 1	K
T2	Temperature at 2	K
X	Distance from the left/side length	m

Example 14.2.1.1:

Steel (1% carbon) is listed in the **Reference** section of the software as having a thermal conductivity of 26.2 Btu/(hr·ft· $^{\circ}$ F) for the temperature range 60-212 $^{\circ}$ F. Compute the steady state heat transfer across a steel plate with a cross-sectional area of 5 m² and a thickness of $2\frac{1}{3}$ ". The temperatures on each side of the plate are maintained at 200°F and 85°F. Calculate the temperature at the midpoint inside the plate.

Entered Values


Computed results

Solution – Select the **first** and **second equations** to solve this problem. The thermal conductivity for Steel (1% C) is listed in **Reference/Thermal Properties/Thermal Conductivity/Alloys**. The entries and results are shown in the screen displays above.

Given Solution $A=5 \text{ m}^2$ q=244409 W K=26.2 Btu/(hr·ft·°F) T=142.5 °F T=285 °F T=1.16667 in

14.2.1.2 Convective Source

These equations compute heat transfer for cases where convection and conduction occur in sequence. The diagram to the right portrays heat transfer between a fluid with temperature, Tf(K), to a surface with temperature, T1(K), and area, $A(m^2)$. Heat is then conducted across the thickness of the plate, L(m), where the temperature is T2. Equation 1

computes the temperature, T(K), at a distance, x(m) inside the plate from T1. The thermal conductivity, $k(W/(m\cdot K))$, measures the plate material's ability to conduct heat. The convective coefficient, $h(W/(m^2\cdot K))$, measures the fluid's ability to transport heat away from the surface and is dependent on the flow rate, viscosity, and specific heat of the fluid. The **second** and **third equations** compute the thermal resistances for conduction, Rk(K/W), and convection Rcv(K/W). Thermal resistances are often used in

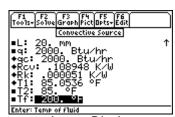
viewing the heat transfer process as analogous to an electrical circuit. Equations 4 and 5 calculate, T1, the temperature of the surface adjacent to the fluid. Equation 6 computes qc (W), the rate of heat transfer due to convection. Equations 7 and 9 compute q (W), the rate of heat transfer due to conduction. Equation 8 assumes a steady state process of heat transfer for the convection and conduction series transfer mechanisms.

$\frac{T - T2}{Tf - T2} = \frac{L - x}{L + \frac{k}{h}}$	Eq. 1
$Rk = \frac{L}{k \cdot A}$	Eq. 2
$Rcv = \frac{1}{h \cdot A}$	Eq. 3
$T1 = \frac{\frac{Tf}{Rcv} + \frac{T2}{Rk}}{\frac{1}{Rcv} + \frac{1}{Rk}}$	Eq. 4
$T1 = \frac{Tf \cdot h + \frac{T2 \cdot k}{L}}{h + \frac{k}{L}}$	Eq. 5
$qc = \frac{Tf - T1}{Rcv}$	Eq. 6
$q = \frac{T2 - T1}{Rk}$	Eq. 7
q = qc	Eq. 8
$q = \frac{Tf - T2}{Rcv + Rk}$	Eq. 9

Variable	Description	Units
A	Area	m^2
h	Convection coefficient	$W/(m^2 \cdot K)$

[†] Ohm's law (i=V/R) states that the rate of electron transfers, **I**, which flows through a circuit, is proportional to the voltage difference, **V**, over the resistance of the circuit, **R**. Heat transfer can be viewed as an analogy of Ohm's Law ($q=\Delta T/R$) where **q** is the rate of heat transfer, **T** is the temperature difference, and **R** is the resistance to heat transfer. See section 14.2.2 for more explanation.

-


Variable	Description	Units
k	Thermal conductivity	$W/(m \cdot K)$
L	Length	m
q	Heat transfer rate-conduction	W
qc	Heat transfer rate-convection	W
Rcv	Resistance to convection	K/W
Rk	Thermal resistance - conduction	K/W
T	Temperature at x	K
T1	Temperature at 1	K
T2	Temperature at 2	K
Tf	Temperature of fluid	K
X	Distance from the left/side length	m

Example 14.2.1.2:

Compute the average convective transfer coefficient and surface temperature for air flowing over an aluminum plate having a surface area of 1.75 m², a thickness of 20 mm, an average air temperature of 85°F and a surface temperature on the opposite side of the plate of 200°F. The rate of heat transfer is 2000 Btu/hr. Which mechanism of transfer (convection or conduction) limits transfer the most?

Upper Display


Lower Display

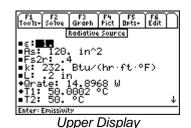
Solution – Aluminum has a thermal conductivity of 130 Btu/(hr·ft·°F), see **Reference/Thermal Properties/Thermal Conductivity/Elements**. Select the **third** through the **seventh equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. The thermal resistance having the higher value limits heat transfer the most (convection in this example).

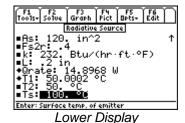
Given	Solution
$A = 1.75 \text{ m}^2$	$h = 5.24496 \text{ W/(m}^2 \cdot \text{K)}$
$k = 130 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$	qc = 2000 Btu/hr
L = 20 mm	Rcv = .108948 K/W
q = 2000 Btu/hr	Rk = .000051 K/W
T2 = 85 °F	$T1 = 85.0536 ^{\circ}F$
$Tf = 200 ^{\circ}F$	

14.2.1.3 Radiative Source

These equations describe a sequential transfer of heat, first due to radiation, and secondly by conduction through a rectangular plane wall. The **first equation** calculates the rate of heat transferred, **Qrate**, (w) from an emitting object with emissivity, ϵ s, and surface temperature, Ts, (K) to a blackbody plane wall with surface temperature, T1 (K). The **second equation** computes the temperature,

T1, (K) at the surface of the plane wall. **Fs2r**, is the shape factor, representing the fraction of radiation transmitted from the emitting surface area, \mathbf{As} , (\mathbf{m}^2) that is absorbed by the plane wall. The **last equation**


computes heat conducted through a plane wall with thermal conductivity, k (W/m·K), length, L (m), surface temperature, T1 (K) (facing the emitter), and a surface temperature, T2, (K) on the opposite side of the plane wall.


$Qrate = \sigma \cdot Fs2r \cdot As \cdot \varepsilon \cdot (Ts^4 - T1^4)$	Eq. 1
$Qrate = \frac{k}{L} \cdot (T1 - T2)$	Eq. 2
$T1 = \frac{T2 + Fs2r \cdot \frac{\sigma \cdot L}{k} \cdot Ts^4}{1 + Fs2r \cdot \frac{\sigma \cdot L}{k} \cdot T1^3}$	Eq. 3

Variable	Description	Units
σ	Stefan-Boltzmann constant	$5.670 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
ε	Emissivity	unitless
As	Total Surface area	m^2
Fs2r	Radiation shape factor	unitless
k	Thermal conductivity	$w/(m \cdot K)$
L	Length	m
Qrate	Heat transfer rate-radiation	W
T1	Temperature at 1	K
T2	Temperature at 2	K
Ts	Temperature of radiating surface	K

Example 14.2.1.3:

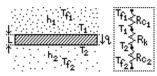
The larger surface of a rectangular flat copper plate with dimensions 12" x 10" x 0.2" is exposed to a radiating blackbody (ϵ =1) with a surface temperature of 100° C. If the temperature of the opposite side of the copper plate is maintained at 50°C, what are the heat transfer and the boundary temperature of the side facing the blackbody emitter? Assume the shape factor for the radiating body and the copper surface is 0.4.

Solution – Copper has a thermal conductivity of 232 Btu/(hr·ft· $^{\circ}$ F), see **Reference/Thermal Properties/Thermal Conductivity/Elements**). The **first** and **second equations** are needed to solve the problem. The Stefan-Boltzmann constant, $\sigma = 5.670 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$, is automatically inserted into the equation when solving and does not appear in the list of variables.

Given

 $\varepsilon = 1$ $As = 120 \text{ in}^2$ Fs2r = .4 $k = 232 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$

L = .2 in $T2 = 50 \, {}^{\circ}C$


 $Ts = 100 \, ^{\circ}C$

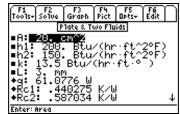
Solution

Orate = 14.8968 WT1 = 50.0002 °C

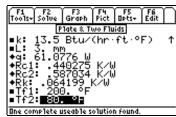
14.2.1.4 Plate and Two Fluids

These equations compute the rate of heat transfer between two fluids separated by a rectangular plate. **Equation 1** calculates the thermal resistance due to convection, Rc1 (K/W), between a fluid with a convection coefficient of, h1 (W/(m²·K), and a plate surface with area, A (m). Equation 2 computes the thermal resistance due to convection, Rc2

(K/W), between a fluid with convection coefficient, **h2** W/(m²·K), and the plate surface with area, **A** (m). The third equation calculates the thermal resistance, **Rk** (K/W), for a rectangular plate with a thermal conduction coefficient of, k (W/(m·K)), thickness L (m), and surface area A (m). Equation 4 computes the rate of heat transfer, q (W), between two fluids, with temperatures, Tf1 (K) and Tf2 (K), separated by a plate having a thermal resistance, **Rk** (K/W). The **last two equations** estimate the surface temperatures on either side of the plate. T1 (K), is the temperature of the plate on the surface adjacent to the fluid having a temperature, Tf1, (K), and thermal resistance to convection of Rc1 (K/W). T2 (K), is the temperature of the surface adjacent to the fluid having a temperature, Tf2 (K), and a thermal resistance to convection of, Rc2 (K).


$Rc1 = \frac{1}{h1 \cdot A}$	Eq. 1
$Rc2 = \frac{1}{h2 \cdot A}$	Eq. 2
$Rk = \frac{L}{k \cdot A}$	Eq. 3
$q = \frac{Tf 1 - Tf 2}{Rc 1 + Rc 2 + Rk}$	Eq. 4
$T1 = Tf 1 - Rc 1 \cdot q$	Eq. 5
$T2 = Tf 2 + Rc 2 \cdot q$	Eq. 6

Variable	Description	Units
A	Area	m^2
h1	Convection coefficient	$W/(m^2 \cdot K)$
h2	Convection coefficient	$W/(m^2 \cdot K)$
k	Thermal conductivity	$W/(m \cdot K)$
L	Length	m


Variable	Description	Units
q	Heat transfer rate-conduction	W
Rc1	Thermal resistance-convection	K/W
Rc2	Thermal resistance-convection	K/W
Rk	Thermal resistance-conduction	K/W
T1	Temperature at 1	K
T2	Temperature at 2	K
Tf1	Temperature of fluid 1	K
Tf2	Temperature of fluid 2	K

Example 14.2.1.4:

A stainless steel plate section in a heat exchanger has a thermal conductivity of $13.5 \, Btu/(h \cdot ft \cdot {}^{o}F)$, a thickness of 3 mm and a surface area of $20 \, cm^2$ in contact with the fluid. If the convection coefficients of two fluids flowing in opposite directions on each side of the plate are $200 \, Btu/(h \cdot ft^2 \cdot {}^{o}F)$ and $150 \, Btu/(h \cdot ft^2 \cdot {}^{o}F)$ and the temperatures of each fluid are $200 \, {}^{o}F$ and $80 \, {}^{o}F$, respectively, what is the rate of heat transfer through the plate?

Upper Display

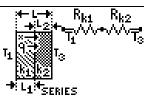
Lower Display

Solution – Select equations, one, two, three and four to solve this problem.

Given	Solution
$A = 20 \text{ cm}^2$	q = 61.0776 W
$h1 = 200 \text{ Btu/(hr·ft}^2 \cdot {}^{\circ}F)$	Rc1 = .440275 K/W
$h2 = 150 \text{ Btu/(hr·ft}^2 \cdot {}^{\circ}F)$	Rc2 = .587034 K/W
$k = 13.5 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$	Rk = .064199 K/W
L = 3 mm	
$Tf1 = 200 ^{\circ}F$	
$Tf2 = 80 ^{\circ}F$	

14.2.2 Electrical Analogy

The equation for the rate heat transfer, \mathbf{q} (W), through a conducting medium between temperatures, $\mathbf{T1}$ (K) and $\mathbf{T2}$ (K), is similar to Ohm's Law for a current, \mathbf{i} (A) moving through a resistive circuit between voltages, $\mathbf{V1}$ (V) and $\mathbf{V2}$ (V).


$$i = \frac{V1 - V2}{R}$$
 $q = \frac{T1 - T2}{R}$ Ohm's Law Heat Transfer

The variable, \mathbf{R} , in the equation for heat transfer, is the *thermal resistance to heat transfer* for a particular medium. \mathbf{R} (K/W) depends on the physical dimensions of the conducting medium area, \mathbf{A} (m²), length \mathbf{L}

(m), or shape factor $\mathbf{Fs2r}$ and the convection, \mathbf{h} W/(m 2 ·K), or conductivity, \mathbf{k} W/(m·K), coefficient of the medium. Heat transfer through a plane wall composed of different materials in series or parallel arrangement to the direction of heat transfer can be viewed similarly to current movement through resistors in series or parallel arrangement. The following topics describe conduction of heat through composite materials, each having different conductivities, in parallel, series or combination arrangements.

14.2.2.1 Two Conductors in Series

These equations describe heat transfer and temperature profiles inside a plane wall composed of two materials. The materials have a series arrangement with respect to the direction of heat flow and perfect thermal contact exists between the two materials (i.e. there is no additional resistance at the contact point between the materials due to surface roughness). In addition, a steady state condition for heat transfer exists with no heat sources or sinks in the

series arrangement. The two materials have lengths, in the direction of heat flow, **L1** (m) and **L2** (m), conductivities, **k1** W/(m·K) and **k2** W/(m·K), and cross-sectional areas, **A1** (m²) and **A2** (m²). **Equation 1** computes the thermal resistance for heat transfer in the first section of the plane wall, **Rk1** (K/W). **Equation 2** calculates the thermal resistance for the second material, **Rk2** (K/W). The **third equation** computes the rate of heat transfer, **q** (W), through the combined series arrangement between temperatures, **T1** (K) and **T3** (K). **Equation 4** computes, **q**, for the first material from temperatures, **T1** (K) and **T2** (K), and **Rk1**. **Equation 5** calculates, **q**, conducted through the second section of the wall with boundary temperatures, **T2** and **T3**. The **last two equations** compute the temperature, **T** (K), inside the wall at distance, **x** (m), from **T1**.

$$Rk1 = \frac{L1}{k1 \cdot A}$$
 Eq. 1

$$Rk2 = \frac{L2}{k2 \cdot A}$$
 Eq. 2

$$q = \frac{T1 - T3}{Rk1 + Rk2}$$
 Eq. 3

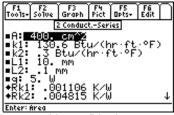
$$q = \frac{T1 - T2}{Rk1}$$
 Eq. 4

$$q = \frac{T2 - T3}{Rk2}$$
 Eq. 5

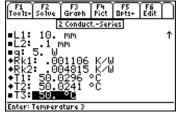
When x < 0 and x < L1 the following equation is applicable

$$\frac{T-T1}{T2-T1} = \frac{x}{L1}$$

When $L1 \le x$ and x < (L1+L2) the following equation is applicable


$$\frac{T - T2}{T3 - T2} = \frac{x - L1}{L2}$$
 Eq. 7

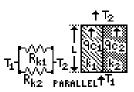
Variable	Description	Units
A	Area	m^2
k1	Thermal conductivity	$W/(m \cdot K)$
k2	Thermal conductivity	$W/(m \cdot K)$
L1	Length	m
L2	Length	m
q	Heat Transfer rate - conduction	\mathbf{W}
Rk1	Thermal resistance-Conduction	K/W
Rk2	Thermal resistance-Conduction	K/W
T	Temperature at x	K
T1	Temperature at 1	K
T2	Temperature at 2	K
T3	Temperature at 3	K
X	Distance from the left/side length	m


Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 14.2.2.1:

A 0.1 mm oxide coating exists on an aluminum plate thick having a thickness of 10 mm and a surface area of 400 cm^2 . If the rate of heat loss through the plate is 5 W and the surface temperature of the oxide coating is maintained 50 °C, what are the temperatures of the opposite side of the aluminum plate and the interface between the aluminum and the oxide? The thermal conductivity of aluminum is 130.6 Btu/(hr·ft·°F) and the oxide coating is 0.3 Btu/(h·ft·°F).

Upper Display


Lower Display

Solution – Select equations, one, two, three and four to solve this problem.

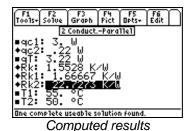
Given	Solution
$A = 400 \text{ cm}^2$	Rk1 = .001106 K/W
$k1 = 130.6 \text{ Btu/(hr·ft·}^{\circ}F)$	Rk2 = .004815 K/W
$k2 = .3 \text{ Btu/(hr \cdot ft \cdot {}^{\circ}F)}$	T1 = 50.0296 °C
L1 = 10 mm	$T2 = 50.0241 ^{\circ}C$
L2 = .1 mm	
q = 5 W	
$T3 = 50^{\circ} C$	

14.2.2.2 Two Conductors in Parallel

These equations describe heat transfer in a composite material of two substances with the grain parallel to the direction of heat transfer. **Equations 1** and **2** compute the thermal resistances, **Rk1** (K/W) and **Rk2** (K/W), for the individual materials from lengths, **L1** (m) and **L2** (m), cross-sectional areas, **A1** (m^2) and **A2** (m^2), and thermal conductivities, **k1** W/(m·K) and **k2** W/(m·K). **Equations 3** and **4** calculate the rates of heat transfer, **qc1** (W) and **qc2** (W), through each material

due to conduction. **Equation 5** computes the average temperature at distance, **x**, from **T1** (K). **Equation 6** calculates the total transfer of heat between temperatures, **T2** (K) and **T1**. The **last equation** calculates the equivalent resistance, **Rk** (K/W), for the parallel system from the individual resistances, **Rk1** and **Rk2**. These equations assume there is negligible transfer of heat between the two materials.

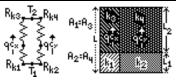

$Rk1 = \frac{L}{k1 \cdot A1}$	Eq. 1
$Rk2 = \frac{L}{k2 \cdot A2}$	Eq. 2
$qc1 = \frac{T1 - T2}{Rk1}$	Eq. 3
$qc2 = \frac{T1 - T2}{Rk2}$	Eq. 4
$T - T1 = \frac{(T2 - T1) \cdot x}{L}$	Eq. 5
$qT = \frac{T1 - T2}{Rk}$	Eq. 6
$\frac{1}{Rk} = \frac{1}{Rk1} + \frac{1}{Rk2}$	Eq. 7


Variable	Description	Units
A1	Area	m^2
A2	Area	m^2
k1	Thermal conductivity	$W/(m \cdot K)$
k2	Thermal conductivity	$W/(m \cdot K)$
L	Length	m
qc1	Heat transfer rate	\mathbf{W}
qc2	Heat transfer rate	\mathbf{W}
qT	Total heat transfer rate	\mathbf{W}
Rk	Thermal Resistance-Conduction	K/W
Rk1	Thermal resistance-Conduction	K/W

Variable	Description	Units
Rk2	Thermal resistance-Conduction	K/W
T	Temperature at x or x, t	K
T1	Temperature at 1	K
T2	Temperature at 2	K
X	Distance from the left/side length	m

Example 14.2.2.2:

A CPU loses heat through a sink mounted with steel screws. The rate of heat transfer through the sink alone, with an internal temperature of 55 °C and surface temperature of 50 °C, is 3 W. The power loss for the sink, including the stainless steel screws, for the same surface temperature, is 3.22 W. Assume there is imperfect thermal contact between the screws and heat sink and negligible heat transfer occurs between the two. Compute the individual and total thermal resistances for the heat sink and the screws.

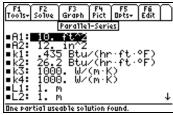


Solution – Select **equations 3, 4, 6,** and **7**. The entries and results are shown in the screen displays above.

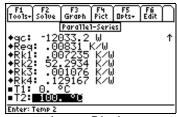
Given	Solution
qc1 = 3 W	qc2 = .22 W
qT = 3.22 W	Rk = 1.5528 K/W
T1 = 55 °C	Rk1 = 1.66667 K/W
T2 = 50 °C	Rk2 = 22.7273 K/W

14.2.2.3 Parallel-Series

This section describes the conduction of heat between temperatures, **T1** (K) and **T2** (K), through a parallel-series arrangement of four different materials. **Equation 1** computes the rate of heat transfer, **qc** (W), due to conduction through the composite system between **T1** and **T2**. **Req** (K/W), is the equivalent resistance of the combined parallel-


series arrangement. **Equation 2** computes, **qc**, as the sum of the parallel heat transfer rates for the left, **qcx** (W), and right, **qcy** (W), sides. **Equation 3** calculates the rate of heat transfer, **qcx**, between temperatures, **T1** and **T2**, for the series arrangement of thermal resistances, **Rk1** (K/W) and **Rk3** (K/W). **Equation 4** computes the rate of heat transfer, **qcy**, in the second series arrangement, using thermal resistances, **Rk2** (K/W) and **Rk4** (K/W). **Equations 5**, **6**, **7**, and **8** compute the thermal resistances, **Rk1**, **Rk2**, **Rk3**, and **Rk4** from thermal conductivities, **k1**, **k2**, **k3**, and **k4**, W/(m·K) cross-sectional areas, **A1** and **A2** (m²), and diffusion lengths, **L1** and, **L2** (m). The last equation calculates the equivalent resistance of the parallel-series arrangement, **Req** from **Rk1**, **Rk2**, **Rk3**, and **Rk4**.

$qc = \frac{T1 - T2}{\operatorname{Re} q}$	Eq. 1
qc = qcx + qcy	Eq. 2
$qcx = \frac{T1 - T2}{Rk1 + Rk3}$	Eq. 3
$qcy = \frac{T1 - T2}{Rk2 + Rk4}$	Eq. 4
$Rk1 = \frac{L1}{k1 \cdot A1}$	Eq. 5
$Rk2 = \frac{L1}{k2 \cdot A2}$	Eq. 6
$Rk3 = \frac{L2}{k3 \cdot A1}$	Eq. 7
$Rk4 = \frac{L2}{k4 \cdot A2}$	Eq. 8
$\frac{1}{Req} = \frac{1}{Rk1 + Rk3} + \frac{1}{Rk2 + Rk4}$	Eq. 9


Variable	Description	Units
A1	Area	m^2
A2	Area	m^2
k1	Thermal conductivity	$W/(m \cdot K)$
k2	Thermal conductivity	$W/(m \cdot K)$
k3	Thermal conductivity	$W/(m \cdot K)$
k4	Thermal conductivity	$W/(m \cdot K)$
L1	Length	m
L2	Length	m
qc	Heat Transfer rate	W
qcx	Heat Transfer rate	W
qcy	Heat Transfer rate	W
Req	Equivalent thermal resistance	K/W
Rk1	Thermal resistance-Conduction	K/W
Rk2	Thermal resistance-Conduction	K/W
Rk3	Thermal resistance-Conduction	K/W
Rk4	Thermal resistance-Conduction	K/W
T1	Temperature at 1	K
T2	Temperature at 2	K

Example 14.2.2.3:

A 1 ft thick section of concrete wall, with four steel rods running parallel to the wall thickness, is exposed to a fluid having a temperature of 100 °C. The wall has a cross sectional area of 10 ft 2 . The rods, which run parallel to the direction of heat transfer, have a total cross sectional area of 12 in 2 and a length which is the same as the thickness of the wall. The temperature on the opposite side of the wall is 0 °C. If the thermal conductivity is 0.435 Btu/(hr·ft· 0 F) for concrete, 26.2 Btu/(hr·ft· 0 F) for steel (1% C), and the convection coefficient for the fluid are 1000 W/(m 2 ·K), what is the rate of heat transfer and thermal resistance in each material?

Upper Display

Lower Display

Solution – This problem can be solved using the conversion for the convection coefficient, h=k/L. Enter the value of h in the place k and enter L=1. The units of L must be the same as the length units in k.

Example:

1. For h = 1000 W/(m2·K)
$$k = 1000 W/(m·K)$$

L = 1 m

2. For h = 500 Btu/(hr·oF·ft2)
$$k = 500$$
 Btu/(hr·oF·ft) $L = 1$ ft

Select **equations**, **one**, **five**, **six**, **seven**, **eight and nine**. The entries and results are shown in the screen displays above. The value of qc is negative since heat travels in a direction opposite to the diagram above.

Given

 $A1 = 10 \text{ ft}^2$ $A2 = 12 \text{ in}^2$

 $k1 = 26.2 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F)}$

 $k2 = .435 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{^oF})$

k3 = 1000 W/(m·K)

k4 = 1000 W/(m·K)

L1 = 1 ft

L2 = 1 m

T1 = 0 °C

T2 = 100 $^{\circ}C$

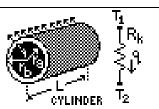
Solution

qc = -12033.2 W

Req = .00831 K/W

Rk1 = .007235 K/W

Rk2 = 52.2934 K/W


Rk3 = .001076 K/W

Rk4 = .129167 K/W

14.2.3 Radial Systems

14.2.3.1 Hollow Cylinder

These three equations compute heat conduction between the interior and exterior of a hollow cylinder made from a single material having a thermal conductivity, \mathbf{k} (W/(m·K)). The length of the cylinder is, \mathbf{L} (m), and the inner and outer radii of the cylinder are, \mathbf{ra} (m) and \mathbf{rb} (m). The surface temperatures at the inner and outer radii are, $\mathbf{T1}$ (K) and $\mathbf{T2}$ (K), respectively. The **first equation** computes the rate of heat transfer, \mathbf{q} (W), due to conduction between the interior and the exterior of the cylinder.

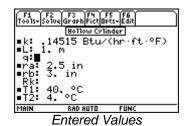
Equation 2 calculates the thermal resistance, \mathbf{Rk} (K/W), for conduction from \mathbf{rb} , \mathbf{ra} , \mathbf{L} and \mathbf{k} . The **last equation** estimates the temperature, \mathbf{T} (K), at position, \mathbf{r} (m), inside the cylinder wall, where $\mathbf{ra} < \mathbf{r} < \mathbf{rb}$.

$$q = \frac{2 \cdot \pi \cdot L \cdot k}{\ln\left(\frac{rb}{ra}\right)} \cdot (T1 - T2)$$
 Eq. 1

$$Rk = \frac{\ln\left(\frac{rb}{ra}\right)}{2 \cdot \pi \cdot L \cdot k}$$

When r = ra and $r \le rb$ the following equation is applicable

$$\frac{T-T1}{T2-T1} = \frac{\ln\left(\frac{r}{ra}\right)}{\ln\left(\frac{rb}{ra}\right)}$$
Eq. 3


When ra < rb applies to all equations in this set.

Variable	Description	Units
k	Thermal conductivity	$W/(m \cdot K)$
L	Length	m
q	Heat transfer rate - conduction	W
ra	Inner radius	m
rb	Outer radius	m
Rk	Thermal resistance-conduction	K/W
T	Temperature at x or x, t	K
T1	Temperature at 1	K
T2	Temperature at 2	K

Example 14.2.3.1:

A PVC pipe with an inner diameter 5" and an outer diameter of 6"has an interior surface temperature of 40°C and an outside surface temperature of 4°C. What is the rate of heat transfer per meter length of the pipe? Rigid poly-vinyl chloride (PVC) has a thermal conductivity of 0.14515 Btu/(hr·ft.°F).

Solution – Select **equations**, **one** and **two** to solve this problem.

Computed results

Given

 $k = .14515 \text{ Btu/ hr} \cdot \text{ft} \cdot \text{F}^{\text{o}}$

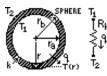
L = 1 m

ra = 2.5 in

rb = 3 in

 $T1 = 40 \, {}^{\circ}C$

T2 = 4 °C


Solution

q = 311.668 W

Rk = .115508 K/W

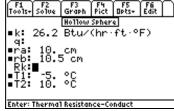
14.2.3.2 Hollow Sphere

These equations compute the rate of heat transfer between the inner and outer surfaces of a hollow sphere due to conduction. The first equation calculates the rate of heat conducted, q (W), between the inner surface of the sphere, having temperature, T1 (K), and the outer surface, having a temperature of, T2 (K). Equation 2 calculates the thermal resistance, **Rk** (K/W), between the inner and outer surfaces of the sphere from the inner radius, ra (m), outer radius, rb (m), and thermal conductivity, k W/(m·K). Equation 3 computes the temperature T(K) at position r(m) where ra < r < rb.

 $q = \frac{T1 - T2}{Rk}$ **Eq.** 1

$$Rk = \frac{rb - ra}{4 \cdot \pi \cdot rb \cdot ra \cdot k}$$
 Eq. 2

When $rb \ge r \ge ra$ the following equation is applicable.


$$\frac{T-T1}{T2-T1} = \frac{r-ra}{rb-ra} \cdot \frac{rb}{r}$$
 Eq. 3

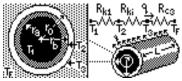
When ra < rb applies to all equations in this set.

Variable	Description	Units
k	Thermal conductivity	$W/(m \cdot K)$
q	Heat transfer rate - conduction	W
r	Radius	m
ra	Inner radius	m
rb	Outer radius	m
Rk	Thermal resistance-conduction	K/W
T	Temperature at x	K
T1	Temperature at 1	K
T2	Temperature at 2	K

Example 14.2.3.2:

A hollow steel ball has an inner diameter of 20 cm and an outer diameter of 21 cm. The internal and external surface temperatures of the steel surface are -5° C and 10° C. What is the steady rate of heat transfer?

Entered Values



Computed results

Solution – **Equations one** and **two** are needed to solve the problem. Steel (1% carbon) has a thermal conductivity value of 26.2 Btu/(hr·ft· $^{\circ}$ F) in the range of 60-212 $^{\circ}$ F (this value is listed in **Reference/Thermal Properties/Thermal Conductivity/Alloys**). Assume the listed value of thermal conductivity for steel has the same value at -4 $^{\circ}$ C and 10 $^{\circ}$ C.

14.2.3.3 Cylinder with Insulation Wrap

These equations describe a three-stage transfer of heat between an insulated pipe or cylinder, and a surrounding fluid. The first stage is conduction across the pipe material, having an inner surface radius, $\bf ra$ (m) and an outer radius, $\bf rb$ (m). The temperature on the interior surface of the pipe is $\bf T1$ (K), and the outer surface is $\bf T2$ (K). The

second stage of heat transfer is conduction across a pipe insulation material having an inner radius, **rb**, and outer radius, **ro** (m). The temperature difference between the inner and outer surfaces of the insulation wrap is **T3-T2**. The final step is convection of heat between the outer surface of the insulation material and the surrounding fluid, having a temperature, **Tf** (K), and convective transfer coefficient, **h** (W/(m^2 ·K)). Since these steps occur in sequence, a series resistor analogy is used to describe the overall rate of heat exchange (see section 14.2.2). **Equation 1** computes the thermal resistance due to conduction, **Rk1** (K/W), between the inner and outer surfaces of a pipe having inner and outer radii, **ra**

and \mathbf{rb} , length \mathbf{L} , and thermal conductivity, $\mathbf{k1}$ (W/(m·K)). **Equation 2** calculates the thermal resistance due to conduction for the insulation wrap, having an interior and exterior radii, \mathbf{rb} and \mathbf{ro} , length \mathbf{L} , and thermal conductivity, \mathbf{ki} W/(m·K). **Equation 3** computes the thermal resistance due to convection between the insulation wrap and surrounding fluid, having a convection coefficient, \mathbf{h} . **Equation 4** calculates the equivalent resistance, \mathbf{Req} (K/W), for heat transfer between the interior of the pipe and the fluid. The **next two equations 5** & 6 compute the rate of heat transfer, \mathbf{q} (W), from the temperature differences and the thermal resistances to heat transfer for the pipe and insulation. **Equation 7** calculates the pipe/insulation boundary temperature, $\mathbf{T2}$. The last equation computes the interfacial temperature, $\mathbf{T3}$, for the surface of the insulation in contact with the fluid.

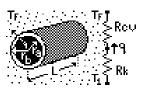
$q = \frac{T1 - Tf}{Req}$	Eq. 1
$q = \frac{T1 - T2}{Rk1}$	Eq. 2
$T2 = T1 + \frac{T1 - Tf}{\operatorname{Re} q} \cdot Rk1$	Eq. 3
$T3 = Tf + \frac{T1 - Tf}{Req} \cdot Rc3$	Eq. 4
$Rk1 = \frac{\ln\left(\frac{rb}{ra}\right)}{2 \cdot \pi \cdot L \cdot k1}$	Eq. 5
$Rki = \frac{\ln\left(\frac{ro}{ra}\right)}{2 \cdot \pi \cdot L \cdot ki}$	Eq. 6
$Rc3 = \frac{1}{h \cdot 2 \cdot \pi \cdot ro \cdot L}$	Eq. 7
$\operatorname{Re} q = Rk1 + Rki + Rc3$	Eq. 8
When ra < rb and bb < ro applies to all equations in this set.	

Variable	Description	Units
h	Convection coefficient	$W/(m^2 \cdot K)$
ki	Thermal conduct. insulator	$W/(m \cdot K)$
k1	Thermal conduct. cylinder	$W/(m \cdot K)$
L	Length	m
q	Heat transfer rate - conduction	\mathbf{W}
ra	Inner radius	m
rb	Outer radius	m

Rc3	Thermal resistance-convection	K/W
Req	Equivalent thermal resistance	K/W
Rk1	Thermal resistance-conduction	K/W
Rki	Thermal resistance-insulator	K/W
ro	Outer radius	m
T1	Temperature at 1	K
T2	Temperature at 2	K
T3	Temperature at 3	K
Tf	Temperature of fluid	K

Example 14.2.3.3:

A copper pipe having a conductivity of k=560 Btu/(hr·ft·°F), an inner and outer radius of 0.4" and 0.5", is surrounded by a half-inch thick layer of polyurethane foam (PUF) k=0.024191 Btu/(hr·ft·°F). The temperature of the interior of the pipe is 50°C. Cooling outside the pipe occurs due to natural convection with a fluid having a temperature of 5°C and a convection coefficient for heat of h=3.6 Btu/(hr·ft²·°F). Assuming steady-state transfer of heat occurs, what is the rate of heat transfer to the surrounding fluid per meter length of the pipe? What is the temperature of the outside of the copper pipe and the outside of the insulation?



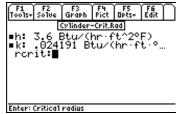
Solution – Select **equations**, **one**, **two**, **four**, **five**, **six**, **seven** and **eight**. The entries and results are shown in the screen displays above.

Given	Solution
$h = 3.6 \text{ Btu/(hr} \cdot \text{ft}^2 \cdot {}^{\circ}\text{F})$	q = 8.60615 W
$k1 = 560 \text{ Btu/(hr} \cdot \text{ft} \cdot {}^{\circ}\text{F})$	Rc3 = .204351
$ki = .024191 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$	Req = 5.22882 K/W
L = 1 m	Rk1 = .000037 K/W
ra = .4 in	Rki = 5.02443 K/W
rb = .5 in	T2 = 49.9997 °C
ro = 1.5 in	$T3 = 6.75868 ^{\circ}C$
$T1 = 50^{\circ}C$	
$Tf = 5^{\circ}C$	

14.2.3.4 Cylinder - Critical radius

The equations in this section describe the transfer of heat from a pipe to a surrounding fluid. The **first equation** calculates the rate of heat transfer as a function of the temperature of the fluid $\mathbf{Tf}(K)$, inner surface temperature of the pipe $\mathbf{T1}(K)$, the resistance to conduction $\mathbf{Rk}(K/W)$, and the resistance to convection $\mathbf{Rcv}(K/W)$. **Equation 2** computes the resistance to conduction, $\mathbf{Rk}(K/W)$, of the pipe from the inner and outer pipe radii, $\mathbf{ra}(m)$, and, $\mathbf{rb}(m)$, the

length of the pipe, L (m), and the thermal conductivity of the pipe material, k W/(m·K). **Equation 3** calculates the resistance due to convection, **Rcv**, for a fluid having a convection coefficient, h W/(m²·K). **Equation 4** computes the critical radius, **rcrit** (m). If rb < rcrit the rate of transfer will increase as rb


(pipe thickness) increases. This is due to a greater decrease of **Rcv** with increasing surface area, than increase in **Rk** with pipe thickness. If **rb>rcrit**, an increase in pipe thickness will cause a decrease in the rate of heat transfer.

$$q = \frac{T1 - Tf}{Rk + Rcv}$$
 Eq. 1
$$Rk = \frac{\ln\left(\frac{rb}{ra}\right)}{2 \cdot \pi \cdot L \cdot k}$$
 Eq. 2
$$Rcv = \frac{1}{h \cdot 2 \cdot \pi \cdot L \cdot rb}$$
 Eq. 3
$$rcrit = \frac{k}{h}$$
 Eq. 4
When ra < rb applies to all equations in this set.

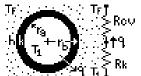
Variable	Description	Units
h	Convection coefficient	$W/(m^2 \cdot K)$
k	Thermal conductivity	$W/(m \cdot K)$
L	Length	m
q	Heat transfer rate - conduction	W
ra	Inner radius	m
rb	Outer radius	m
rcrit	Critical radius	m
Rcv	Thermal resistance - convection	K/W
Rk	Thermal resistance - conduction	K/W
T1	Temperature at 1	K
Tf	Temperature of fluid	K

Example 14.2.3.4:

Determine whether an increase in the thickness of the insulation wrap in the previous problem would increase or decrease the rate of heat transfer.

Entered Values

ME-Pro for TI-89, TI-92 Plus Chapter 14 - **Equations -** Heat Transfer


Solution – Select the **last equation** to solve this problem. If the outer radius of the insulation (1.5 inches) is greater than the critical radius, **rcrit**, than an increase in thickness will result in a decrease in the rate of heat transfer. If $\operatorname{rcrit} < 1.5$ " than an increase in thickness will cause **q**, the rate of heat transfer, to increase.

Given Solution $h = 3.6 \text{ Btu(hr·ft·}^{\circ}F)$ rcrit = .080637 in

 $k = .024191 \text{ Btu/(hr·ft}^2 \cdot {}^{\circ}F)$

14.2.3.5 Sphere - Critical radius

These equations describe the transfer of heat from a hollow sphere to a surrounding fluid. The **first equation** calculates the rate of heat transfer, \mathbf{q} (W), as a function of the temperature of the fluid, \mathbf{Tf} (K), inner surface temperature of the sphere, $\mathbf{T1}$ (K), the resistance to conduction, \mathbf{Rk} (K/W) between the inner and outer surfaces, and the resistance to convection of heat

from the sphere surface to the fluid, **Rcv** (K/W). **Equation 2** computes the resistance to conduction, **Rk** (K/W) inside the sphere from the inner and outer radii, **ra** (m) and **rb** (m), and thermal conductivity of the material, **k** W/(m·K). **Equation 3** calculates the resistance due to convection from the heat conducting capacity of the fluid, **h** W/(m²-K). **Equation 4** computes the critical radius, **rcrit** (m). If **rb** < **rcrit** the rate of transfer will increase as **rb** increases. This is due to a greater decrease of **Rcv** (increasing surface area), than increase in **Rk** (sphere thickness), with additional material. If **rb**>**rcrit**, an increase in sphere thickness will cause a decrease in heat transfer.

$$q = \frac{T1 - Tf}{Rk + Rcm}$$
 Eq. 1

$$Rk = \frac{rb - ra}{4 \cdot \pi \cdot ra \cdot rb \cdot k}$$
 Eq. 2

$$Rcv = \frac{1}{h \cdot 4 \cdot \pi \cdot rb^2}$$
 Eq. 3

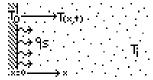
$$rcrit = \frac{2 \cdot k}{h}$$
 Eq. 4

Variable	Description	Units
h	Convection coefficient	$W/(m^2 \cdot K)$
k	Thermal conductivity	$W/(m \cdot K)$
q	Heat transfer rate - conduction	W
ra	Inner radius	m
rb	Outer radius	m
rcrit	Critical radius	m
Rcv	Thermal resistance	K/W
Rk	Thermal resistance-conduction	K/W
T1	Temperature at 1	K
Tf	Temperature of fluid	K

Example 14.2.3.5:

Compute the critical radius for a hollow sphere composed of a material having a thermal conductivity of 25 Btu/(hr·ft·°F) surrounding by a fluid having a convection coefficient of 10 Btu/(hr·ft·°F).

Entered Values Computed results


Solution – Select the **last equation** to solve this problem. The entries and results are shown in the screen displays above.

Given Solution h = 10. Btu/(hr·ft²·°F). rcrit = 60 in k = 25. Btu/(hr·ft·°F).

14.3 Semi-Infinite Solid

14.3.1 Step Change Surface Temperature

The equation set in this topic computes the unsteady case for one-dimensional heat transfer, in a semi-infinite solid, from a constant temperature source. **Equation 1** calculates the temperature, T(K), at position, x(m), from the constant temperature source after, time(s), has elapsed since the heat source was introduced. To(K), is the temperature of the constant heat source and Ti is

the initial temperature of the solid at the time the heat source is introduced, i.e. Ti = T(x,0) and $T(\infty, time)$ To=T(0, time). Equation 2 calculates the rate of heat transfer into the solid, qs(W), after time, has elapsed since the addition of the heat source. Area, $A(m^2)$, is the area of the solid in direct contact with the heat source, $\alpha d(m^2/s)$, is thermal diffusion coefficient of heat in the solid, and k Btu/(ft·hr· 0 F) is the thermal conductivity of the solid. Equation 3 computes the heat flux, $qf(W/m^2)$, the rate of heat transfer per area. Equation 1 incorporates the complimentary error function, erfc().

$$\frac{T - To}{Ti - To} = erf\left(\frac{x}{2 \cdot \sqrt{\alpha d \cdot time}}\right)$$

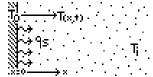
$$qf = \frac{k \cdot (To - Ti)}{\sqrt{\pi \cdot \alpha d \cdot time}}$$
Eq. 2
$$qf = \frac{qs}{A}$$
Eq. 3

Variable	Description	Units
αd	Thermal diffusivity	m^2/s
A	Area	m^2
k	Thermal conductivity	$W/(m \cdot K)$
qf	Heat flux	W/m^2
qs	Heat transfer rate	W
T	Temperature at x or x, t	K
Ti	Temperature (x, time = 0 or ∞ , time = t)	K
То	Temperature $(0, time = t)$	K
time	Time	J
X	Distance from the left/side length	m

Example 14.3.1:

One end of a rectangular slab of lead, at 25° C, is brought into thermal contact with a mixture of ice and water. At what distance inside the slab, from the water contact point, has a temperature of 10° C after 10 seconds? After 20 seconds? After 30 seconds? What is the rate of heat transfer per square meter during these periods? Lead as a thermal conductivity of $20.3 \, \text{Btu/(hr·ft·°F)}$ and a thermal diffusion coefficient of $24.1 \, \text{x} \, 10^{-6} \, \text{m}^2/\text{s}$ at room temperature.

Entered Values (First Solution)


Computed Results (First Solution)

Solution – Select the **first** and **second equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. A notice will appear stating that **nsolve(...)**, numeric solve, will be used to compute the solution. Press **ENTER**. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha d = 0.000024 \text{ m}^2/\text{s}$	x = 1.1489 cm (10 s)
$k = 20.3 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$	x = 1.6248 cm (20 s)
$T = 10^{\circ}C$	x = 1.98996 cm (30 s)
$Ti = 25^{\circ}C$	$qf = -31987.9 \text{ W/m}^2 (10 \text{ s})$
$To = 0^{\circ}C$	$qf = -22618.9 \text{ W/m}^2 (20 \text{ s})$
time = $10, 20, 30 \text{ s}$	$qf = -18468 \text{ W/m}^2 (30 \text{ s})$

14.3.2 Constant Surface Heat Flux

These equations describe the unsteady case for heat diffusion through a conducting plane wall, with initial temperature, Ti(K), in contact with a heat source transferring a *constant rate of heat* with time, qs(W), i.e.: the temperature of the heat source varies with time to conduct the same amount of heat through the wall. **Equation 1** calculates the temperature, T(K), at

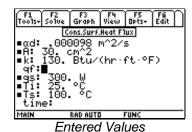
position \mathbf{x} (m), from the constant heat source inside the wall after, **time** (s), has elapsed since the heat source was introduced. **Equation 2** computes the temperature of the surface in contact with the constant heat source, \mathbf{Ts} (K), at after **time** has elapsed. \mathbf{Ti} (K), is the initial temperature of the plane wall at the

time the heat source is introduced, i.e. Ti = T(x,0) and $T(\infty, time)$ and Ts = T(0, time). Equation 3 computes the heat flux, $qf(W/m^2)$, the rate of heat transfer over the area, A(m), of the conducting surface in contact with the emitting source. $\alpha d(m^2/s)$, is the thermal diffusion coefficient and, $R = \frac{1}{2} \frac$

$$T = Ti + \frac{2 \cdot qf}{k} \cdot \sqrt{\frac{\alpha d \cdot time}{\pi}} \cdot e^{\frac{-x^2}{4 \cdot \alpha d \cdot time}} - \frac{qf \cdot x}{k} \cdot erfc\left(\frac{x}{2 \cdot \sqrt{\alpha d \cdot time}}\right)$$

$$Ts = Ti + \frac{2 \cdot qf}{k} \cdot \sqrt{\frac{\alpha d \cdot time}{\pi}}$$

$$Eq. 2$$


$$qf = \frac{qs}{A}$$

$$Eq. 3$$

Variable	Description	Units
αd	Thermal diffusivity	m^2/s
A	Area	m^2
k	Thermal conductivity	$W/(m \cdot K)$
qf	Heat flux	W/m^2
qs	Heat transfer rate	W
T	Temperature at x	K
Ti	Temperature	K
Ts	Surface temperature of emitter	K
time	Time	S
X	Distance from the left/side length	m

Example 14.3.2:

A heat element, with a surface area of 30 cm^2 and emitting a constant 300 W, is implanted in a semi-infinite block of aluminum. The aluminum has initial temperature of 25°C , a thermal conductivity of $130 \text{ Btu/(hr·ft·}^{\circ}\text{F)}$ (see **Reference/Thermal Properties/Thermal Conductivity/Elements**) and a thermal diffusion coefficient of $97.5 \times 10^{-6} \text{ m}^2/\text{s}$. At what time following the activation of the heating element does the temperature of the aluminum adjacent to heat element reach 100°C ?

Computed results

Solution – Select the **second** and **third equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. A notice will appear stating that **nsolve()**

(numeric solve) will be used to compute the solution. Press **ENTER** to start the solver. The entries and results are shown in the screen displays above.

Given $\alpha d = 97.5E-6 \text{ m}^2/\text{s}$ A = 30 cm²

k = 130 Btu/(hr·ft·°F)

qs = 300 W $Ti = 25^{\circ}C$ $Ts = 100^{\circ}C$ **Solution**

 $qf = 100000 \text{ W/m}^2$ time = 229.38 s

14.3.3 Surface Convection

The following equations describe the unsteady case of convective heat transfer from a fluid to a solid plane wall and diffusion of heat through the wall by means of conduction. The fluid has a convective transfer coefficient, \mathbf{h} W/(m 2 ·K), the solid has a thermal conductivity, \mathbf{k} W/(m·K), and a thermal diffusion coefficient, \mathbf{cd} (m 2 /s). **Equation 1** computes temperature, \mathbf{T} (K), at position \mathbf{x} (m), and elapsed **time** (s), after the exposure of the solid to the fluid. The solid has an initial temperature, \mathbf{T} i (K), and the liquid maintains a constant temperature, \mathbf{T} if (K). The **second equation** computes the temperature of the solid surface at the solid/fluid interface at **time**. **Equation 3** computes the heat flux, \mathbf{q} if (W/m 2), at after **time** has elapsed. The **last equation** computes the heat flux, \mathbf{q} if (W/m 2), from the total flux, \mathbf{q} is, over the fluid/solid contact surface area, \mathbf{A} (m 2).

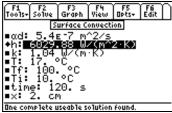
$$\frac{T - Ti}{Tf - Ti} = erfc \left(\frac{x}{2 \cdot \sqrt{\alpha d \cdot time}}\right) - e^{\frac{h \cdot x}{k} + \frac{h^2 \cdot \alpha d \cdot time}{k^2}} \cdot erfc \left(\frac{\frac{x}{2}}{\sqrt{\alpha d \cdot time}} + \frac{h \cdot \sqrt{\alpha d \cdot time}}{k}\right) \quad \text{Eq. 1}$$

$$\frac{Ts - Ti}{Tf - Ti} = 1 - e^{\frac{h^2 \cdot oxd \cdot time}{k^2}} \cdot erfc\left(\frac{h \cdot \sqrt{oxd \cdot time}}{k}\right)$$
 Eq. 2

$$qf = h \cdot (Tf - Ti) \cdot e^{\frac{h^2 \cdot \alpha d \cdot time}{k^2}} \cdot erfc\left(\frac{h\sqrt{\alpha d \cdot time}}{k}\right)$$
 Eq. 3


$$qf = \frac{qs}{A}$$

Variable	Description	Units
αd	Thermal diffusivity	m^2/s
A	Area	m^2
h	Convection coefficient	$W/(m^2 \cdot K)$
k	Thermal conductivity	$W/(m \cdot K)$
qf	Heat flux	W/m^2
qs	Heat transfer rate	W
T	Temperature at x or x,t	K
Tf	Temperature of fluid	K
Ti	Temperature (x, time = 0 or ∞ , time = t)	K


Variable	Description	Units
Ts	Surface temperature of emitter	K
time	Time	S
X	Distance from the left/side length	m

Example 14.3.3:

Boiling water is continuously sprayed onto a fireclay brick wall. A temperature probe, placed at the solid liquid interface at a distance of 2 cm inside the brick, records an initial temperature of 10° C and a temperature of 17° C, after 120 seconds have elapsed. The brick has a thermal conductivity of 1.04 W/(m· $^{\circ}$ K) and thermal diffusion coefficient of 5.4×10^{-7} m²/s. What is the convection coefficient for the boiling water being sprayed on the brick surface?

Entered Values: Use F5: Opts, 7: Want to convert 'h' to an initial value for nsolve(..)

Computed results

Solution – Select the first equation to solve this problem. Select this by highlighting the equation and pressing ENTER. Press F2 to display the variables. An initial guess value of h, is needed for nsolve (...) to converge to a solution. The convection coefficient for boiling water typically ranges from 2000 to 50000 W/(m^2 ·K). Enter h = 9000 W/(m^2 ·K) and press F5:Opts, [7: Want, to flag the entered value for h as a starting value for nsolve (...). Press F2 to compute the solution. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha d = 5.4 \text{ E-7 m}^2/\text{s}$	$h = 6029.88 \text{ W/(m}^2 \cdot \text{K)}$
k = 1.04 W/(m·K)	

 $T = 17^{\circ}C$

 $Tf = 100^{\circ}C$ $Ti = 10^{\circ}C$

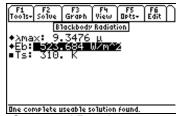
time = 120 s

x = 2 cm

14.4 Radiation

14.4.1 Blackbody Radiation

Equation 1 is the Stefan-Boltzmann law for radiation emitted by a blackbody source. **Eb** (W/m²), is the total emissive power for all wavelengths, λ (m), for an *ideal* blackbody and **Ts** (K), is the surface temperature of the blackbody emitter. The **second equation** computes **E** (W/m²), the power emitted from a non-ideal blackbody source. The emissivity factor, ε , accounts for a particular material's radiative spectrum at a particular temperature ($\varepsilon = 1$ an ideal blackbody). The **third equation** is Planck's Law for monochromatic power, **Eb** λ (W/m²), emitted by a blackbody surface at temperature, **Ts** and wavelength λ (m). The **last equation** computes the wavelength of maximum power emission from a blackbody, λ max (m), at blackbody surface temperature, **Ts**. The Stefan-Boltzmann constant for radiation, $\sigma = 5.670 \times 10^{-8}$


W/(m²·K⁴), and the blackbody radiation constants, **brc1**=3.7417749 x 10^{-16} W·m², **brc2**=0.01438769 m·K, and the Wein displacement constant **brc3**=0.002897756 m·K, are values automatically inserted into the equation by ME•*Pro* during the solving process. The values for σ , **brc1**, **brc2** and **brc3** are listed in the **Reference/Engineering Constants** section of ME•*Pro*.

$Eb = \sigma \cdot Ts^4$	Eq. 1
$E = \varepsilon \cdot Eb$	Eq. 2
$Eb\lambda = \frac{brc1}{\lambda^5 \cdot \left(e^{\frac{brc2}{\lambda \cdot Ts}} - 1\right)}$	Eq. 3
$Ts \cdot \lambda \max = brc3$	Eq. 4

Variable	Description	Units
ε	Emissivity	unitless
σ	Stefan-Boltzmann constant for radiation	$5.670 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
λ	Wavelength	m
λmax	Peak wavelength	m
brc1	1 st radiation constant	$3.7417749 \times 10^{-16} \text{ W} \cdot \text{m}^2$
brc2	2 nd radiation constant	0.01438769 m⋅K
brc3	Wein displacement constant	0.002897756 m·K
E	Emissive power	W/m^2
Eb	Black body emissive power	W/m^2
Εbλ	Monochromatic emissive power	W/m^3
Ts	Surface temperature of emitter	K

Example 14.4.1:

What is the total power emitted, per area, from an ideal blackbody at 310 K? What is the monochromatic power and wavelength at which the maximum emission occurs?

Computed Results: 1st step

Computed Results: 2nd step

Solution – Solve this problem in two steps. **Select equations one** and **four.** Enter the temperature and press $\boxed{F2}$ to solve. **Deselect equations one** and **four,** select **equation 3**, press $\boxed{F2}$ to solve. Enter the calculated value of λ max for λ . Press $\boxed{F2}$ to solve.

Given	Solution
Ts = 310 K	λ max = 9.3476 μ

Given

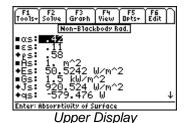
Solution

 $Eb = 523.684 \text{ W/m}^2$ $Ebmax = 3.68364E7 \text{ W/m}^3$

14.4.2 Non-Blackbody radiation

Most surfaces are not blackbody surfaces but exhibit a combination of radiative and reflective properties (opaque). **Equation 1** is the equation for the rate of energy emitted per area, **Es** (W/m²), by a non-blackbody surface at temperature **T** (K). **Equation 2** computes the radiosity, **Js** (W/m²), per area from the surface, **As** (m²), as the sum of the radiative, **Es**, and reflective, **Gs** ρ s, light components. **Gs** (W/m²), is the thermal radiation per area incident on surface and, ρ s, is the fraction of the incoming light which is reflected. **Equation 3** and 4 compute the radiative energy ρ s (W), leaving the opaque surface, where ρ s is the fraction of the light, incident on the opaque surface, which is absorbed and, ρ s, is the emissivity of the surface. The absorptivity, ρ s, is dependent on the wavelength of the incoming light. For objects exhibiting graybody characteristics, the light absorbed is independent of the wavelength of the incoming light and the assumption can be made that ρ s ρ s ρ s. **Equation 5** computes the thermal radiative-resistance-to-transfer, ρ s, and reflective, ρ s, components of incident energy on the surface (ρ s=1, ρ s=0 for totally reflective, ρ s=0, ρ s=1 for blackbody).

$Es = \varepsilon s \cdot \sigma \cdot T^4$	Eq. 1
$Js = Es + \rho s \cdot Gs$	Eq. 2
$qs = As \cdot (Js - Gs)$	Eq. 3
$qs = \frac{\frac{\varepsilon s}{\alpha s} \cdot Es - Js}{Rs}$	Eq. 4
$Rs = \frac{1 - \alpha s}{\alpha s \cdot As}$	Eq. 5
$\rho s = 1 - \alpha s$	Eq. 6


Variable	Description	Units
σ	Stefan-Boltzmann constant for radiation	$5.670 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
α s	Absorptivity	unitless
ES	Emissivity of shield	unitless

[‡] Radiative transfer of the *first kind* views exchange of heat between two surfaces as powered by a thermal gradient, (**T1-T2**). The equation for this approach is, $\mathbf{q} = (\mathbf{T1-T2})/\mathbf{Rf}$, where \mathbf{Rf} (K/W) is the resistance to transfer of the first kind and is a function of temperature, radiation area and shape factors. This approach works for heat exchange between two surfaces of having temperatures **T1** and **T2**. Radiative transfer of the *second kind* views heat exchange as powered by a difference in emission (**E1-E2**) between objects. The equation for this approach is, $\mathbf{q} = (\mathbf{E1-E2})/\mathbf{Rs}$, where \mathbf{Rs} (1/m²), is the resistance to transfer of the *second kind*. The second approach allows the advantage of modeling heat transfer between several surfaces (see Lindon Thomas, *Heat Transfer* p. 300).

Variable	Description	Units
ρs	Reflectivity	unitless
As	Total surface area	m^2
Es	Emissive power-radiating surface	W/m^2
Gs	Irradiation	W/m^2
Js	Radiosity	W/m^2
qs	Heat transfer rate	\mathbf{W}
Rs	Thermal resistance, 2nd kind	$1/m^2$
T	Temperature at x or x, t	K

Example 14.4.2:

Polished stainless steel has a solar absorptivity of 0.42, and an emissivity of 0.11 at room temperature (300 K). If sunlight, with an intensity of 1.5 kW/ m^2 is irradiated on the steel surface, what is the total radiosity, and radiation emitted per square meter?

Lower Display

Solution – Select the **equations**, **one**, **two**, **three** and **six** to solve this problem. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha s = .42$	$\rho s = .58$
ε s = .11	$Es = 50.5242 \text{ W/m}^2$
$As = 1 m^2$	$Js = 920.524 \text{ W/m}^2$
$Gs = 1.5 \text{ kW/m}^2$	qs = -579.476 W
T = 300 K	_

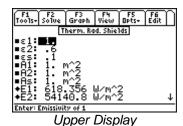
14.4.3 Thermal Radiation Shield

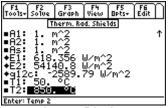
Insulating walls are composed of layers of reflective materials separated by evacuated spaces. The reflective plates reduce heat transfer due to radiation and the spaces add extra insulation by reducing heat exchange due to thermal contact. In these equations, plates with surface areas \mathbf{As} (m²) and emissivity $\mathbf{\epsilon s}$ separate emissive graybodies with surface areas, $\mathbf{A1}$ (m²) and $\mathbf{A2}$ (m²), emissivities, $\mathbf{\epsilon 1}$ and $\mathbf{\epsilon 2}$, and steady-state emissions, $\mathbf{E1}$ (W) and $\mathbf{E2}$ (W). These equations assume the following conditions:

- The shield surfaces are thin, and have a negligible resistance to conduction.
- The shape factors between shields and radiating surfaces are ≈ 1 .
- Since the thermal shields are highly reflective, radiation received by the first gray-body, **E1** is assumed to originate primarily from itself.
- The non-isothermal gray-body approximation assumes ε1/α1≈1. Where α1 is the absorptivity of surface A1.

Equations 1 and **2** compute the power emission for each surface. **Equation 3** computes the steady state heat transfer between, **A1**, and, **A2**, for a *series* arrangement of two reflective shields in the direction of

heat transfer. Each shield has an emissivity, **\varepsilons**, and a reflective area, **As**. **Equation 4** calculates the case where **Ns** shields (**As**, **\varepsilons**) are placed in a parallel arrangement between **A1** and **A2**.


$E1 = \varepsilon 1 \cdot \sigma \cdot T1^4$	Eq. 1
$E2 = \varepsilon 2 \cdot \sigma \cdot T2^4$	Eq. 2
$q12c = \frac{E1 - E2}{\frac{1 - \varepsilon 1}{A1 \cdot \varepsilon 1} + \frac{1}{A1} + \frac{1 - \varepsilon 2}{A2 \cdot \varepsilon 2} + \frac{2 - \varepsilon s}{As \cdot \varepsilon s}}$	Eq. 3
$q12c = \frac{A1 \cdot (E1 - E2)}{\frac{1}{\varepsilon 1} + \frac{1}{\varepsilon 2} - 1 + \frac{(2 - \varepsilon s) \cdot Ns}{\varepsilon s}}$	Eq. 4


Variable	Description	Units
σ	Stefan-Boltzmann constant for radiation	$5.670 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$
ε1	Emissivity of 1	unitless
ε2	Emissivity of 2	unitless
εs	Emissivity of shield	unitless
A1	Area	m^2
A2	Area	m^2
As	Total surface area	m^2
E1	Emissive power 1	W/m^2
E2	Emissive power 2	W/m^2
Ns	No. of shields	unitless
q12c	Heat flux	W/m^2
T1	Temperature 1	K
T2	Temperature 2	K

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 14.4.3:

A blackbody plate with a temperature of 50° C exchanges radiation with a stainless steel plate having a temperature of 850° C and ϵ =0.6. If two thin, polished aluminum shields (ϵ =0.1), are placed in a series arrangement between the plates, what is net heat transfer per square meter between the two plates?

Lower Display

Solution – Select the **first three equations** to solve this problem. The entries and results are shown in the screen displays above.

Given	Solution
$\varepsilon 1 = 1$	$E1 = 618.356 \text{ W/m}^2$
$\varepsilon 2 = .6$	$E2 = 54140.8 \text{ W/m}^2$
$\varepsilon s = .1$	$q12c = -2589.79 \text{ W/m}^2$
$A1 = 1 \text{ m}^2$	
$A2 = 1 \text{ m}^2$	
$As = 1 m^2$	
$T1 = 50^{\circ}C$	
$T2 = 850^{\circ}C$	

References:

1. Thomas, Lindon C, "Heat Transfer", Prentice Hall NJ, 1992

A useful source for heat transfer properties of many materials can be located on the web* at: http://www.tak2000.com/

A glossary of websites for material related to this topic is located at: http://www.uic.edu/~mansoori/Thermodynamic.Data.and.Property_html

*Note: These websites are not maintained or affiliated with da Vinci Technologies Group. da Vinci does not guarantee the availability and reliability of information located at these URL's.

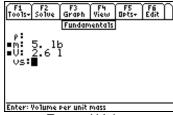
Chapter 15: Thermodynamics

This section covers a wide range of topics under six subheadings.

- ♦ Fundamentals
- ♦ Vapor and Gas Mixture
- ♦ First Law

- ♦ System Properties
- ♦ Ideal Gas Properties
- ♦ Second Law

15.1 Fundamentals


These equations list various forms for expressing the quantity of a substance. **Equation 1** calculates the specific volume, \mathbf{vs} (m³/kg), which is the volume occupied per unit mass of a substance. The **second equation** computes density, $\mathbf{\rho}$ (kg/m³). **Equation 3** calculates the specific weight, $\mathbf{\gamma}$ (N/m³), from the total mass, \mathbf{m} (kg), and volume, \mathbf{V} (m³) of the substance. The gravitational acceleration constant, **grav** (_g = 9.80665 m/s²), is automatically inserted into the computation by ME•*Pro* and does not appear in the list of variables. The **last equation** computes the number of moles, \mathbf{n} (mol), of a substance from its total mass, \mathbf{m} , and molar mass, \mathbf{MWT} (kg/mol).

$vs = \frac{V}{m}$	Eq. 1
$ \rho = \frac{m}{V} $	Eq. 2
$\gamma = \frac{m \cdot grav}{V}$	Eq. 3
$n = \frac{m}{MWT}$	Eq. 4

Variable	Description	Units
γ	Specific weight	N/m^3
ρ	Density	kg/m ³
grav	Acceleration due to gravity	$9.80665 \text{ m}^2/\text{s}$
m	Mass	kg
MWT	Molar mass	kg/mol
n	Number of moles	mol
V	Volume	m_{\perp}^{3}
VS	Volume per unit mass	m ³ /kg

Example 15.1:

Compute the density and specific volume of a liquid having a volume of 2.6 liters and a mass of 5 pounds.

Entered Values

Computed results

Solution – Select the **first** and **second equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
m = 5 lb	$\rho = 872.293 \text{ kg/m}^3$
V = 2.61	$vs = .001146 \text{ m}^3/\text{kg}$

15.2 System Properties

15.2.1 Energy Equations

This section includes the general forms of the equations used to describe the state of a pure substance in thermodynamic equilibrium. **Equation 1** computes the enthalpy, \mathbf{H} (J), as the sum of the internal energy, \mathbf{UE} (J), of the material, and the work, $\mathbf{p} \cdot \mathbf{V}$ (J), performed by the system. The variables, \mathbf{p} (Pa) and \mathbf{V} (m³), are the pressure and volume of the gas component of the system. The **second equation** computes the Helmoltz energy, \mathbf{A} (J), the maximum work the system is able to perform. The quantity, $\mathbf{T} \cdot \mathbf{S}$ (J), is the energy in the system stored as random heat energy, and is unavailable for work. \mathbf{T} (K), is the temperature and, \mathbf{S} (J/K), is the total entropy of the system. **Equations 3** and $\mathbf{4}$ compute the Gibbs energy, \mathbf{G} (J), the work that can be extracted from the system, after work, ($\mathbf{p} \cdot \mathbf{V}$), and the energy lost to increasing the entropy of the system, ($\mathbf{T} \cdot \mathbf{S}$). The energies \mathbf{H} , \mathbf{U} , \mathbf{A} and \mathbf{G} are extensive properties; i.e., dependent on the quantity of the substance. **Equations 5-9** are differentiated forms of the first three equations and represent a thermodynamic transition of the system. $\mathbf{\Delta}$ in **equations 10-17**, indicates a change in a property (\mathbf{p} , \mathbf{V} , \mathbf{T} , \mathbf{H} , \mathbf{UE} , \mathbf{G} , \mathbf{A} , \mathbf{S}) between state 1 and state 2.

$H = UE + p \cdot V$	Eq. 1
$A = UE - T \cdot S$	Eq. 2
$G = H - T \cdot S$	Eq. 3
$G = A + p \cdot V$	Eq. 4
$\Delta UE = T \cdot \Delta S - p \cdot \Delta V$	Eq. 5
$\Delta H = \Delta U E + p \cdot \Delta V + V \cdot \Delta p$	Eq. 6
$\Delta A = \Delta U E - S \cdot \Delta T - T \cdot \Delta S$	Eq. 7
$\Delta G = \Delta H - S \cdot \Delta T - T \cdot \Delta S$	Eq. 8

$\Delta G = \Delta A + p \cdot \Delta V + V \cdot \Delta p$	Eq. 9
$\Delta A = A2 - A1$	Eq. 10
$\Delta G = G2 - G1$	Eq. 11
$\Delta H = H2 - H1$	Eq. 12
$\Delta p = p2 - p1$	Eq. 13
$\Delta S = S2 - S1$	Eq. 14
$\Delta T = T2 - T1$	Eq. 15
$\Delta V = V2 - V1$	Eq. 16
$\Delta UE = UE2 - UE1$	Eq. 17

Variable	Description	Units
ΔA	Difference - Helmoltz function	J
ΔG	Difference - Gibbs free energy	J
ΔH	Difference - enthalpy	J
Δp	Difference - pressure	Pa
ΔS	Difference - entropy	J/K
$\Delta \mathrm{T}$	Difference - temperature	K
$\Delta ext{UE}$	Difference - internal energy	J
ΔV	Difference - volume	m^3
A	Helmoltz function	J
A1	Helmoltz energy –1	J
A2	Helmoltz energy –2	J
G	Gibbs Free energy	J
G1	Gibbs energy –1	J
G1	Gibbs energy –2	J
Н	Enthalpy	J
H1	Enthalpy –1	J
H2	Enthalpy –2	J
p	Pressure	Pa
p1	Partial pressure –1	Pa
p2	Partial pressure –2	Pa
S	Entropy	J/K
S 1	Entropy –1	J/K
S2	Entropy –2	J/K
T	Temperature	K
T1	Temperature –1	K
T2	Temperature –2	K
UE	Internal energy	J
UE1	Internal energy – state –1	J
UE2	Internal energy – state –1	J
V	Volume	m_3^3
V1	Volume – state – 1	m_3^3
V2	Volume – state –2	m^3

Example 15.2.1:

One mole of hydrogen gas reacts with half a mole of molecular oxygen at room temperature (298.15 K) and standard atmospheric pressure (1 atm), to form 1 mol of liquid water.

$$H_2(g) + \frac{1}{2} \cdot O_2(g) \rightarrow 2 \cdot H_2O(l)$$

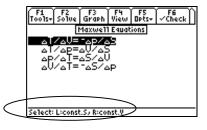
The enthalpy of formation for both hydrogen and oxygen under standard atmospheric and pressure conditions is 0 J/(mol·K). The enthalpy of formation for liquid water (298.15 K, 1 atm) is -285.83 kJ/mol. If the reaction creates -252 kJ of energy available for work, what is the change in entropy for the reaction?

Entered Values

Computed results

Solution – Select the **eighth** and **twelfth equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters. A value for S is not needed since this is a constant temperature process. Press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
ΔG =-252 kJ	$\Delta H = -252 \text{ kJ}$
$\Delta T = 0 \text{ K}$	$\Delta S = -113.466 \text{ J/K}$
H1 = 0 J	
H2 = -285.83 kJ	
S = 0 J/K	
T=298.15 K	


15.2.2 Maxwell Relations

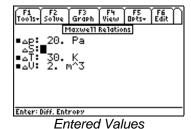
These four equations describe exact differential relationships used in thermodynamic calculations. An advantage of the Maxwell Relations is the ability to relate changes in observable parameters, such as pressure, volume and temperature (p, V, T), to changes in non-measurable quantities such as entropy (S). The subscripts to the bottom right of the parenthesis indicate a parameter being held constant while the other two parameters inside the parenthesis vary. Δ indicates the change in a property (p, V, T, and S).

Note: Due to display limitations, the subscript variable, which remains constant during a transition, cannot be shown. The parameter being held constant on the left and right side of the equations appears in the status line at the bottom screen while the equation is being highlighted.

$$\left(\frac{\Delta T}{\Delta V}\right)_{S} = -\left(\frac{\Delta p}{\Delta S}\right)_{V}$$
 Eq. 1

$$\left(\frac{\Delta T}{\Delta p}\right)_{S} = \left(\frac{\Delta V}{\Delta S}\right)_{p}$$
Eq. 2
$$\left(\frac{\Delta p}{\Delta T}\right)_{V} = \left(\frac{\Delta S}{\Delta V}\right)_{T}$$
Eq. 3
$$\left(\frac{\Delta V}{\Delta T}\right)_{p} = -\left(\frac{\Delta S}{\Delta p}\right)_{T}$$
Eq. 4

Status Line message for a highlighted Maxwell Relation


S (entropy) is constant for the left side of the equation V (volume) is constant for the right side of the equation.

Variable	Description	Units
Δp	Difference - pressure	Pa
ΔS	Difference - entropy	J/K
ΔT	Difference - temperature	K
ΔV	Difference - volume	m^3

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Example 15.2.2:

If the constant-volume heating of a gas produces an increase of 20 Pa with an increase in temperature of 30 K, what will be the change in entropy for the same gas if the volume expands by 2 m³ during an isothermal heating?

F1 F2 F3 F4 F5 F6 Tools- Solve Graph View Opts- Edit

Maxwell Relations

Ap: 20. P3

AT: 30. K

AU: 2. m^3

Computed results

Solution – Select the **third equation** to solve this problem. Select this by highlighting the equation and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given Solution $\Delta p = 20 \text{ Pa} \qquad \Delta S = 1.33333 \text{ J/K}$ $\Delta T = 30 \text{ K}$ $\Delta V = 2 \text{ m}^3$

15.3 Vapor and Gas Mixture

15.3.1 Saturated Liquid/Vapor

The following equations describe a pure liquid in equilibrium with its vapor at constant temperature. The chemical equation for conversion of a pure substance, \mathbf{A} , from a liquid (l) to a vapor (v) is described below.

$$A(l) \longrightarrow A(v)$$

$$(1-x) \qquad (x)$$

Equation 1 computes x, the dryness fraction, or the degree of conversion of A from a liquid to a vapor, or, the mole fraction of A in vapor form (x=0 when A is a liquid, x=1 when A is a vapor). Equation 2 calculates the total volume occupied by the chemical, V (m³), as the sum of the total liquid volume, Vtl (m³), and total vapor volume, Vtv (m³), of A. Equation 3 computes the total volume, V, from the mass of the liquid, **mlq** (kg), and vapor, **mv** (kg), components of A, in addition to the volumes occupied per mass of liquid, vI (m³/kg), and gas, vv (m³/kg). Equation 4 calculates, V, from the total mass of the liquid and vapor, **m** (kg), and the volume occupied, per mass, by the liquid/vapor system, **vs** (m³/kg). Equation 5 computes the change in specific volume, δv (m³), for the conversion of a pure substance from a liquid to a vapor. Equation 6 computes, vs, from the mass of the vapor, mv, the total mass, m, and the specific volumes of the liquid, vl and vapor, vv. Equation 7 calculates, vs, as the sum of the specific volume of the liquid, \mathbf{vl} , and the additional volume contribution of the substance in vapor form $\mathbf{x} \cdot (\mathbf{vv} \cdot \mathbf{vl})$. Equation 8 computes the change in internal energy per mass, δu (J/kg), for a liquid/vapor transition from the difference of the internal energy of the vapor, ul (J/kg), and the vapor, uv (J/kg). Equation 9 calculates the internal energy per mass of the liquid/vapor us (J/kg) for the dryness fraction, x. Equation 10 computes the specific enthalpy change, **\delta** (J/kg), for converting a pure substance from a liquid to a vapor. Equation 11 calculates the enthalpy per mass, hs (J/kg), of the liquid/vapor system for the dryness fraction, x. The last two equations, (Eq. 12 and 13), compute the entropy change per mass, & J/(kg·K), of liquid converted to a vapor, and the entropy per mass, ss J/(kg·K), of the liquid/vapor system.

$x = \frac{mv}{mlq + mv}$	Eq. 1
V = Vtl + Vtv	Eq. 2
$V = mlq \cdot vl + mv \cdot vv$	Eq. 3
$V = m \cdot vs$	Eq. 4
$\delta v = vv - vl$	Eq. 5

$vs = \frac{m - mv}{m} \cdot vl + \frac{mv}{m} \cdot vv$	Eq. 6
$vs = vl + x \cdot \delta v$	Eq. 7
$\delta u = uv - ul$	Eq. 8
$us = ul + x \cdot \delta u$	Eq. 9
$\delta h = hv - hl$	Eq. 10
$hs = hl + x \cdot \delta h$	Eq. 11
$\delta s = sv - sl$	Eq. 12
$ss = sl + x \cdot \delta s$	Eq. 13

Variable	Description	Units
δh	Difference in specific enthalpy	J/kg
δs	Difference in specific entropy	$J/(kg \cdot K)$
δυ	Difference in specific internal energy	J/kg
δv	Difference in specific volume	m^3/kg
hl	Specific enthalpy - liquid	J/kg
hs	Specific enthalpy	J/kg
hv	Specific enthalpy – vapor	J/kg
m	Mass	kg
mlq	Mass of liquid	kg
mv	Mass of vapor	kg
SS	Entropy per unit mass	$J/(kg \cdot K)$
sl	Specific entropy – liquid	$J/(kg \cdot K)$
SV	Specific entropy – vapor	$J/(kg \cdot K)$
ul	Internal energy/mass (liquid)	J/kg
us	Internal energy/mass	J/kg
uv	Internal energy/mass (vapor)	J/kg
V	Volume	m^3
vl	Specific volume – liquid	m^3/kg
VS	Volume per unit mass	m_{a}^{3}/kg
Vtl	Total liquid volume	m_{a}^{3}
Vtv	Total vapor volume	m_{a}^{3}
VV	Specific vapor volume	m^3
X	Dryness fraction	unitless

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

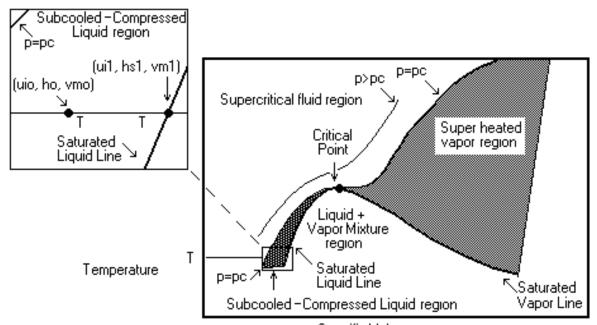
Example 15.3.1:

A table lists Refrigerant-22 as having a vapor quality (dryness fraction) of 0.5 at $T=40^{\circ}C$. The saturated specific volumes of the refrigerant at this temperature are 0.000883 m³/kg for the liquid and 0.0151 m³/kg

for the vapor. The specific enthalpies of the liquid and vapor are 94.93 kJ/kg and 261.14 kJ/kg. Find the specific volume and the specific enthalpy of the refrigerant.

Upper Display

Lower Display


Solution – Select **equations 5**, **7**, **10**, and **11** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

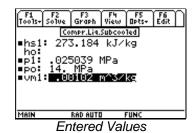
Given	Solution
hl = 94.93 kJ/kg	$\delta h = 166$.

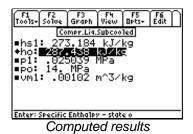
 $\begin{array}{lll} hl = 94.93 \text{ kJ/kg} & \delta h = 166.21 \text{ kJ/kg} \\ hv = 261.14 \text{ kJ/kg} & \delta v = .014217 \text{ m}^3/\text{kg} \\ vl = .000883 \text{ m}^3/\text{kg} & hs = 178.035 \text{ kJ/kg} \\ vv = .0151 \text{ m}^3/\text{kg} & vs = .007992 \text{ m}^3/\text{kg} \end{array}$

x = .5

15.3.2 Compressed Liquid-Sub cooled

Specific Volume


Equation 1 describes the change in thermodynamic properties between initial state, 0 and final state, 1. Sub cooled liquid data for many substances is not available. Equation 2 is an approximate version of the first equation for calculating of the thermodynamic state for a compressed or sub cooled liquid ho (J/kg) and po (Pa), from saturated liquid properties, h1 (J/kg), vm1 (m³/mol), p1 (Pa), at the same temperature. It is assumed that the internal energy and the specific volumes of the saturated liquid can be used for the sub-cooled state without a significant loss of accuracy. The assumptions are made are that uio = ui1 (J/kg) and vino = vin1 (m³/mol) at constant temperature, T (K).


$ho = hs1 + uio - ui1 + po \cdot vmo - p1 \cdot vm1$	Eq. 1
$ho = hs1 + vm1 \cdot (po - p1)$	Eq. 2

Variable	Description	Units
hs1	Specific enthalpy – state 1	$J/(kg \cdot K)$
ho	Specific enthalpy – state o	$J/(kg \cdot K)$
p1	Partial pressure – 1	Pa
po	Partial pressure – o	Pa
ui1	Internal energy/mass state 1	J/kg
uio	Internal energy/mass state o	J/kg
vm1	Volume per mass at state 1	m³/kg
vmo	Volume per mass at state o	m³/kg

Example 15.3.2:

Compute the sub cooled liquid properties for water at 65 °C and 14 MPa.

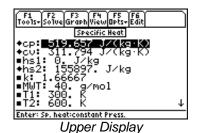
Solution – Obtain the thermodynamic values for the saturated liquid state from Analysis/Steam Tables/Saturated Steam (see Chapter 3). Select Temperature, enter Ts = 65°C and press F2 to solve. Use the values of Ps, Vf, and Hf for p1, vm1 and hs1 respectively, in equation 2 of this section. Use F1: Tools, 5: Copy/6: Paste.

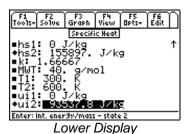
Given T = 65°C hs1 (Hf) = 273.184 kJ/kg p1 (Ps) = .025039 MPa po = 14 MPa vm1 (Vf) = .00102 m³/kg

Solution ho = 287.438 kJ/kg

15.4 Ideal Gas Properties

15.4.1 Specific Heat


The following equations compute various thermodynamic properties of ideal gases. **Equation 1** is the ideal gas law. The **second equation** computes the difference in specific heats of constant pressure and constant volume for an ideal gas. **Equation 3** calculates the specific heat ratio, **k**. **Equations 4** and **5** compute the change in specific enthalpy, **hs2-hs1** (J/kg), and internal energy per mass, **ui2-ui1** (J/kg), with change in temperature, **T2-T1** (K). The specific heats at constant volume and pressure, **cv** J/(kg·K), and **cp** J/(kg·K), in equations 4 and 5, are assumed to remain constant with temperature.


$p \cdot vs = \frac{Rm}{MWT} \cdot T$	Eq. 1
$cp - cv = \frac{Rm}{MWT}$	Eq. 2
$\frac{cp}{cv} = k$	Eq. 3
$hs2 - hs1 = cp \cdot (T2 - T1)$	Eq. 4
$ui2 - ui1 = cv \cdot (T2 - T1)$	Eq. 5

Variable	Description	Units
cp	Specific heat at constant pressure	$J/(kg \cdot K)$
cv	Specific heat at constant volume	$J/(kg \cdot K)$
VS	Specific volume	m^3/kg
hs1	Specific enthalpy – 1	J/kg
hs2	Specific enthalpy –2	J/kg
k	Specific heat ratio	unitless
MWT	Molar mass	kg/mol
p	Pressure	Pa
Rm	Molar gas constant	8.3145 J/(kg·K)
T	Temperature	K
T1	Temperature - 1	K
T2	Temperature – 2	K
ui1	Internal energy/mass state - 1	J/kg
ui2	Internal energy/mass state - 2	J/kg

Example 15.4.1:

An ideal monatomic gas, having a molar mass of 40 g/mol, is contained in a cylinder with a piston exerting a constant pressure. A heating element increases the temperature of the gas from 300 K to 600 K. What is the change in specific enthalpy, internal energy per kilogram, the specific heat at constant pressure and volume for the monatomic gas?

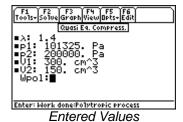
Solution – A specific heat ratio of k = 5/3 can be used for an ideal monatomic gas. Select **equations 2, 3, 4,** and **5** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

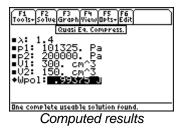
Given	Solution
hs1 = 0 J/kg	$cp = 519.657 \text{ J/(kg} \cdot {}^{\circ}\text{K)}$
k = 5/3	$cv = 311.794 \text{ J/(kg.}^{\circ}\text{K)}$
MWT = 40 g/mol	hs2 = 155897 J/kg
T1 = 300 K	ui2 = 93537.8 J/kg
T2 = 600 K	
ui1 = 0 J/kg	

15.4.2 Quasi-Equilibrium Compression

The following equations compute the work performed by a gas due to quasi-equilibrium expansion or compression. Equation 1 computes the work performed, Wp (J), at a constant pressure, p (Pa), between an initial volume, V1 (m³), and final volume, V2 (m³). Equation 2 computes the work performed at constant temperature, Wt (J), due to isothermal expansion/compression from an initial volume, V1 to a final volume, V2. The third equation computes the work performed for a polytropic process, Wpol (J), (see Chapter 13.5 for more information on polytropic or quasi-equilibrium processes). The polytropic coefficient is restricted to values of $\lambda \neq 1$. When $\lambda=0$ (constant pressure), equation 3 simplifies to Equation 1. When $\lambda=\infty$, the constant volume condition is fulfilled and Wpol becomes zero. The fourth equation computes Wpol for an ideal gas between an initial temperature T1 (K) and final temperature T2 (K). Equation 5 shows the equivalence relationship between pressure and volume for the initial, V1 (m³) and p1 (Pa), and final, V2 (m³) and p2 (Pa), states of a polytropic process. Equations 6 and 7 compute the heat flow, Opol (J), into the system for a polytropic process.

$Wp = p \cdot (V2 - V1)$	Eq. 1
$Wt = p1 \cdot V1 \cdot \ln\left(\frac{V2}{V1}\right)$	Eq. 2
$Wpol = \frac{p2 \cdot V2 - p1 \cdot V1}{1 - \lambda}$	Eq. 3
$Wpol = \frac{\frac{m}{MWT} \cdot Rm \cdot (T2 - T1)}{1 - \lambda}$	Eq. 4
$p1 \cdot V1^{\lambda} = p2 \cdot V2^{\lambda}$	Eq. 5
$Qpol - Wpol = m \cdot (ui2 - ui1)$	Eq. 6
$Qpol = m \cdot cv \cdot (T2 - T1) + Wpol$	Eq. 7


Variable	Description	Units
λ	Polytropic Index $(\lambda \neq 1)$	unitless
cv	Specific heat at constant volume	$J/(K \cdot kg)$
m	Mass	kg
MWT	Molar mass	kg/mol
р	Pressure	Pa
p1	Pressure 1	Pa
p2	Pressure 2	Pa


Variable	Description	Units	
Qpol	Heat Flow - polytropic		J
T1	Temperature 1		K
T2	Temperature 2		K
ui1	Internal energy/mass state 1		J/kg
ui2	Internal energy/mass state 2		J/kg m³
V1	Volume 1		
V2	Volume 2		m^3
Wp	Work done: constant pressure)	J
Wpol	Work done: polytropic process	S	J
Wt	Work: constant temperature		J

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

Example 15.4.2:

A piston compresses a gas reversibly from an initial pressure 101,325 Pa and an initial volume of 300 cm³ to a final pressure of 200,000 Pa and a final volume of 150 cm³. The polytropic index for the system is 1.4. Compute the work performed.

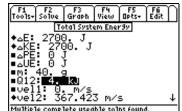
Solution – To solve the problem select **Equation 3**. Highlight the equation by and press **ENTER**. Press **E2** to display the variables. Enter the values for the known parameters and press **E2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\lambda = 1.4$	Wpol = .99375 J
p1 = 101325 Pa	
p2 = 200000 Pa	
$V1 = 300 \text{ cm}^3$	
$V2 = 150 \text{ cm}^3$	

15.5 First Law

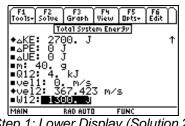
15.5.1 Total System Energy

The following equations describe the conservation of various forms of energy. The **first equation** computes the change in energy, ΔE (J), due to heat added to the system, Q12 (J), less the work performed on the surroundings, W12 (J). **Equation 2** computes the total change in energy as the sum of the changes of kinetic energy, ΔKE (J), potential energy, ΔPE (J), and internal energy, ΔUE (J). **Equation 3** calculates the difference in kinetic energy, ΔKE , between the initial, KE1 (J), and final, KE2 (J), states. **Equation 4** calculates the change in internal energy, ΔPE , from the initial, PE1 (J), and final, PE2 (J),

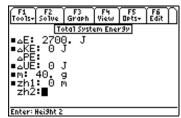

energy states. **Equation 5** calculates the change in internal energy, ΔUE , from the initial, UE1 (J), and final, UE2 (J), energy states. **Equation 6** computes, ΔKE , due to difference in linear velocities, **vel1** (m/s) and **vel2** (m/s). **Equation 7** calculates the difference in potential energy, ΔPE , due to relative heights, **zh1** (m) and **zh2** (m), in the earth's gravitational field. The **last equation** computes ΔUE from the change in internal energy per mass, **ui1** (J/kg) and **ui2** (J/kg), and the total mass of the substance, **m** (kg).

$\Delta E = Q12 - W12$	Eq. 1
$\Delta E = \Delta KE + \Delta PE + \Delta UE$	Eq. 2
$\Delta KE = KE2 - KE1$	Eq. 3
$\Delta PE = PE2 - PE1$	Eq. 4
$\Delta UE = UE2 - UE1$	Eq. 5
$\Delta KE = \frac{1}{2} \cdot m \cdot \left(vel2^2 - vel1^2 \right)$	Eq. 6
$\Delta PE = m \cdot grav \cdot (zh2 - zh1)$	Eq. 7
$\Delta UE = m \cdot (ui2 - ui1)$	Eq. 8

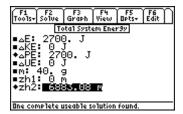
Variable	Description	Units
$\Delta \mathrm{E}$	Energy change	J
ΔKE	Difference in kinetic energy	J
ΔPE	Difference in potential energy	J
$\Delta ext{UE}$	Difference in internal energy	J
grav	Gravitational constant	9.80665 m/s^2
KE1	Kinetic energy – state 1	J
KE2	Kinetic energy – state 2	J
m	Mass	kg
PE1	Potential energy – state 1	J
PE2	Potential energy – state 2	J
Q12	Heat Flow	J
ui1	Internal energy/mass state 1	J
ui2	Internal energy/mass state 2	J
UE1	Internal energy state 1	J
UE2	Internal energy state 2	J
vel1	Velocity – state 1	m/s
vel2	Velocity – state 2	m/s
W12	External work performed – 1 to 2	J
zh1	Height 1	m
zh2	Height 2	m


Example 15.5.1:

A 40 g bullet is fired vertically from a gun. The heat generated from gunpowder combustion inside the bullet is 4 kJ. The energy lost due to work and heating the gun is 1300 J. The remainder of the energy is transferred as kinetic energy to the bullet. If there is no wind friction, how high will the bullet travel?



Multiple complete usedble solns found.


Step 1: Upper Display (Solution 2)

Step 1: Lower Display (Solution 2)

Step 2: Entered Values

Step 2: Computed Results

Solution – This problem needs to be solved in two stages. First, calculate the conversion of stored energy, in the gunpowder, to kinetic energy in the bullet using **Equations 1, 2,** and **6**. The first computation (**Step 1**) has two possible solutions, press 2 for the second solution for the results shown on this page. Then calculate the conversion of kinetic energy to potential energy using **Equations 2** and **7**. Enter the known variables for each step as shown in the screen displays above.

Step 1: Given	Step 1: Solution
$\Delta PE = 0 J$	$\Delta E = 2700 J$
$\Delta UE = 0 J$	$\Delta KE = 2700 J$
m = 40 g	vel2 = 367.423 m/s
Q12 = 4 kJ	
vel1 = 0 m/s	
W12 = 1300 J	
Step 2: Given	Step 2: Solution
Step 2: Given $\Delta E = 2700 \text{ J}$	Step 2: Solution $\Delta PE = 2700 \text{ J}$
-	-
$\Delta E = 2700 \text{ J}$	$\Delta PE = 2700 \text{ J}$
$\Delta E = 2700 J$ $\Delta KE = 0 J$	$\Delta PE = 2700 \text{ J}$

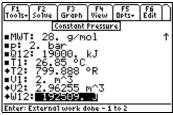
15.5.2 Closed System: Ideal Gas

15.5.2.1 Constant Pressure

These equations describe the thermodynamic properties of a system undergoing transition under constant pressure. The **first equation** calculates the heat change of a system, **Q12** (J), as the sum of the change of the internal energy components, **ui2-ui1** (J/kg), and the work performed, **W12** (J). **Equation 2** computes **Q12** from the change in specific enthalpy,**hs2-hs1** J/(kg·K). **Equation 3** computes the work, **W12**, performed by the system during a expansion/compression between an initial volume, **V1** (m³), and final volume, **V2** (m³), by a constant pressure, **p** (Pa). **Equation 4** calculates the change in specific enthalpy, **hs2-hs1**, from the specific heat at constant pressure, **cp** J/(kg·K), and the change in temperature, **T2-T1** (K). **Equation 5** computes the change in internal energy, **ui2-ui1**, from the specific heat at constant volume, **cv** J/(kg·K). **Equation 6** calculates the change in specific enthalpy, **ss2-ss1** J/(kg·K), from **cp** and the initial and final temperatures, **T1** (K) and **T2** (K). **Equation 7** computes the total change in entropy of the system, **S21** (J/K). **Equation 8** calculates, **k**, the ratio of specific heats. **Equations 9** and **10** compute the ideal gas law at states 1 and 2.

$Q12 = m \cdot (ui2 - ui1) + W12$	Eq. 1
$Q12 = m \cdot (hs2 - hs1)$	Eq. 2
$W12 = p \cdot (V2 - V1)$	Eq. 3
$hs2 - hs1 = cp \cdot (T2 - T1)$	Eq. 4
$ui2 - ui1 = cv \cdot (T2 - T1)$	Eq. 5
$ss2 - ss1 = cp \cdot \ln\left(\frac{T2}{T1}\right)$	Eq. 6
$S12 = m \cdot (ss2 - ss1)$	Eq. 7
$k = \frac{cp}{cv}$	Eq. 8
$p \cdot V1 = \frac{m}{MWT} \cdot Rm \cdot T1$	Eq. 9
$p \cdot V2 = \frac{m}{MWT} \cdot Rm \cdot T2$	Eq. 10

Variable	Description	Units
ср	Specific heat at constant pressure	$J/(K \cdot kg)$
cv	Specific heat at constant volume	$J/(K \cdot kg)$
hs1	Specific enthalpy – state1	J/kg


Variable	Description	Units
hs2	Specific enthalpy – state 2	J/kg
m	Mass	kg
MWT	Molar mass	kg/mol
p	Pressure	Pa
Q12	Heat flow	J
Rm	Ideal gas constant	8.31451 J/(K·mol)
S12	Entropy	J/K
ss1	Entropy per mass – state 1	$J/(K \cdot kg)$
ss2	Entropy per mass – state 2	$J/(K \cdot kg)$
T1	Temperature – state 1	K
T2	Temperature – state 2	K
ui1	Internal energy/mass - state 1	J/kg
ui2	Internal energy/mass – state 2	J/kg
V1	Volume – 1	m^3
V2	Volume – 2	m^3
W12	External work done - 1 to 2	J

Example 15.5.2.1:

Nitrogen (28 g/mol), contained in a volume of 2 m³, exerts a constant pressure of 2 bars against a movable, frictionless piston. The temperature of the nitrogen gas is 26.85 °C. A heating element exchanges 19,000 kJ of heat causing the volume to expand and the temperature to increase. The specific heat at constant pressure for nitrogen in this temperature range is approximately 7 Btu/(lb·F). What is the mass of nitrogen in the cylinder, the final volume and temperature the gas, and the work performed? Assume nitrogen has ideal gas behavior and the specific heat remains constant with temperature.

Upper Display

Lower Display

Solution – Select the **second, third, fourth, ninth** and **tenth equations**. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

 $\begin{array}{lll} \textbf{Given} & \textbf{Solution} \\ cp = 7 \ Btu/(lb. {}^{\circ}F) & hs2 = 4.23149 \ E6 \ J/kg \\ hs1 = 0 \ J/kg & m = 4490.14 \ g \\ MWT = 28 \ g/mol & T2 = 799.888 \ {}^{\circ}R \\ p = 2 \ bar & V2 = 2.96255 \ m^3 \\ Q12 = 19000 \ kJ & W12 = 192509 \ J \\ T1 = 26.85 \ {}^{\circ}C \\ V1 = 2. \ m^3 & \end{array}$

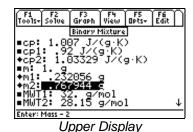
15.5.2.2 Binary Mixture

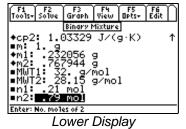
The following equations compute the thermodynamic state for a mixing of two ideal gases. The gases are assumed to occupy the same volume before and after mixing. **Equations 1 and 2** compute the specific internal energy, **us** (J/kg), and the specific enthalpy, **hs** (J/kg), of the binary mixture at a temperature, **T** (K). The reference temperature, **Trf** (K), and the reference pressure, **pref** (Pa), must be identical for both gases. **Equation 3** calculates the specific entropy of the mixture, **ss** J/(kg·K), as the sum of the entropies of the individual gases at temperature, **T**, and entropy *of mixing* contribution (from the middle terms) due to the irreversible mixing of two gases. The two gases have partial pressures, **p1** (Pa) and **p2** (Pa), and occupy an initial and final volume, **V1** (m³) and **V2** (m³). **Equation 4** calculates the specific heat at constant pressure, **cp** J/(K·kg), of the gas mixture as the sum of the individual contributions of the specific heats of each gas, **cp1** J/(K·kg) and **cp2** J/(K·kg). **Equation 5** computes the mole ratio from the masses, **m1** (kg) and **m2** (kg), and the molar masses of each gas, **MWT1** (g/mol) and **MWT2** (g/mol). The **final equation** calculates the total mass, **m** (kg), of the gas mixture as the sum of the individual masses of each ideal gas, **m1** (kg) and **m2** (kg).

$$us = \frac{m1}{m} \cdot cv1 \cdot (T - Trf) + \frac{m2}{m} \cdot cv2(T - Trf) + \frac{m1}{m} \cdot \left(h1rf - \frac{Rm}{MWT1} \cdot Trf\right) + \frac{m2}{m} \cdot \left(h2rf - \frac{Rm}{MWT2} \cdot Trf\right)$$
Eq. 1

$$hs = \frac{m1}{m} \cdot cp1(T - Trf) + \frac{m2}{m} \cdot cp2 \cdot (T - Trf) + \frac{m1}{m} \cdot h1rf + \frac{m2}{m} \cdot h2rf$$
 Eq. 2

$$ss = \frac{m1}{m} \cdot cp1 \cdot \ln\left(\frac{T}{Trf}\right) + \frac{m2}{m} \cdot cp2 \cdot \ln\left(\frac{T}{Trf}\right) - \left(\frac{m1 \cdot Rm}{m \cdot MWT1} \cdot \ln\left(\frac{p1}{pref}\right) + \frac{m2 \cdot Rm}{m \cdot MWT2} \cdot \ln\left(\frac{p2}{pref}\right)\right) + \frac{m1}{m} \cdot s1rf + \frac{m2}{m} \cdot s2rf$$
 Eq. 3


$$cp = \frac{m1}{m} \cdot cp1 + \frac{m2}{m} \cdot cp2$$
 Eq. 4


$\frac{n2}{n1} = \frac{MWT1 \cdot m2}{MWT2 \cdot m1}$	Eq. 5
m = m1 + m2	Eq. 6

Variable	Description	Units
ср	Specific heat of mixture: Constant Pressure	$J/(kg \cdot K)$
cp1	Specific heat: constant pressure – substance 1	$J/(kg \cdot K)$
cp2	Specific heat: constant pressure – substance 2	$J/(kg \cdot K)$
cv1	Specific heat: constant volume – substance 1	$J/(kg \cdot K)$
cv2	Specific heat: constant volume – substance 2	$J/(kg \cdot K)$
h1rf	Specific enthalpy – substance 1, at pref = Trf,	J/kg
h2rf	Specific enthalpy – substance 2, at pref = Trf	J/kg
hs	Specific enthalpy of mixture	J/kg
m	Mass of mixture	kg
m1	Mass 1	kg
m2	Mass 2	kg
MWT1	Molar mass: substance 1	kg/mol
MWT2	Molar mass: substance 2	kg/mol
n1	No. moles: substance 1	mol
n2	No. moles: substance 2	mol
p1	Partial pressure: substance 1	Pa
p2	Partial pressure: substance 2	Pa
pref	Reference partial pressure	Pa
SS	Specific entropy of mixture	$J/(kg \cdot K)$
s1rf	Specific entropy – substance 1, at temp. = Trf, press. = pref	$J/(kg \cdot K)$
s2rf	Specific entropy – substance 2, at temp. = Trf, press. = pref	$J/(kg \cdot K)$
T	Temperature	K
Trf	Temperature – reference	K
us	Internal energy/mass	J/kg

Example 15.5.2.2:

Dry air has an approximate volume composition of 79 % Nitrogen (28.15 g/mol) and 21% oxygen (32 g/mol). The specific heat at constant pressure for dry air is listed as 1.007 J/g/K at 1 bar and 300 K. The specific heat at constant pressure for molecular oxygen, at the same temperature and pressure, is 0.92 J/(g·K). Approximate the specific heat at constant pressure for nitrogen.

Solution – Select the **last three equations** to solve this problem. The volumetric fractions of an ideal gas are the same as the mole fractions. Use a value of **m=1** so **m1** (oxygen) and **m2** (nitrogen) are computed as mass ratios. The actual value of the specific heat for nitrogen is 1.0302 J/(kg·K).

Given Solution cp = 1.007 J/(g·K) cp2 = 1.03329 J/(kg·K)

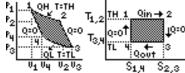
Given

cp1=0.92 J/(g·K) m = 1 gMWT1 = 32 g/mol

MWT2 = 28.15 g/mol n1 = .21 mol

n1 = .21 moln2 = .79 mol **Solution**

m1 = .232056 gm2 = .767944 g


15.6 Second Law

15.6.1 Heat Engine Cycle

Heat engines exemplify the principles of the 2nd law of thermodynamics. By a series of reversible compression and expansion processes, work can be done.

15.6.1.1 Carnot Engine

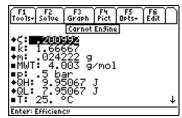
The Carnot cycle, the most efficient heat engine, is composed of the following stages:

- 1→2: Reversible isothermal expansion (heat, **QH** (J), enters the system, temperature is constant).
- $2\rightarrow$ 3: Reversible adiabatic expansion (no heat is exchanged, Q=0 J).
- 3→4: Reversible isothermal compression (heat, **QL** (J), is exchanged to the heat sink, temperature is constant).
- $4\rightarrow 1$: Reversible adiabatic compression (no heat is exchanged).

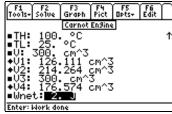
The **first equation** computes the work performed, **Wnet** (J), as the difference of the heat extracted from the heat source, **QH**, and the heat deposited into a heat sink, **QL**. **Equation 2** calculates the heat removed from the heat source, **QH**, during isothermal expansion (step $1\rightarrow 2$) from the mass of the ideal gas, **m** (kg), the molar mass of the gas, **MWT** (g/mol), the temperature of the heat source, **TH** (K), and the initial, **V1** (m³), and final, **V2** (m³), volumes during the isothermal expansion process. **Equation 3** computes the heat transferred to the heat sink, **QL**, during the isothermal compression (step $3\rightarrow 4$). **TL** (K), is the temperature of the heat sink. **V3** (m³) and **V4** (m³) are the initial and final volumes of the reversible isothermal compression. **Equations 4** and **5** calculate the ratio of the initial and final volumes for the reversible adiabatic expansion (**V2** \rightarrow **V3**) and compression (**V4** \rightarrow **V1**) stages in the Carnot cycle from the ratio of the initial and final temperatures (**TL** \rightarrow **TH** for stage 2, and **TH** \rightarrow **TL** for stage 4). **Equations 6** and **7** compute the efficiency, ζ , of converting heat to work, for the Carnot cycle. **Equation 8** computes the specific heat ratio, **k**, from the specific heat of the gas at constant pressure, **cp** J/(kg·K), and constant volume, **cv** J/(kg·K). **Equation 9** and **10** calculate the relationship between the initial and final temperatures and pressures for an adiabatic process. The **last equation** computes the mass of the gas, **m** (kg), used in the Carnot cycle from the ideal gas relationship.

$$QH - QL = Wnet$$
 Eq. 1

$$QH = \frac{m \cdot Rm}{MWT} \cdot TH \cdot \ln\left(\frac{V2}{V1}\right)$$
 Eq. 2


$QL = \frac{-m \cdot Rm}{MWT} \cdot TL \cdot \ln\left(\frac{V4}{V3}\right)$	Eq. 3
$\frac{TL}{TH} = \left(\frac{V2}{V3}\right)^{k-1}$	Eq. 4
$\frac{TL}{TH} = \left(\frac{V1}{V4}\right)^{k-1}$	Eq. 5
$\zeta = 1 - \frac{TL}{TH}$	Eq. 6
$\zeta = \frac{Wnet}{QH}$	Eq. 7
$k = \frac{cp}{cv}$	Eq. 8
$\frac{TH}{TL} = \left(\frac{p2}{p3}\right)^{\frac{k-1}{k}}$	Eq. 9
$\frac{TH}{TL} = \left(\frac{p1}{p4}\right)^{\frac{k-1}{k}}$	Eq. 10
$p \cdot V = \frac{m \cdot Rm}{MWT} \cdot T$	Eq. 11

Variable	Description	Units
ζ	Efficiency	unitless
ср	Specific heat at constant pressure	$J/(kg \cdot K)$
cv	Specific heat at constant volume	$J/(kg \cdot K)$
k	Ratio of specific heats	unitless
m	Mass	kg
MWT	Molar mass	kg/mol
p	Pressure	Pa
p1	Pressure - 1	Pa
p2	Pressure – 2	Pa
p3	Pressure – 3	Pa
p4	Pressure – 4	Pa
QH	Heat flow at TH	J
QL	Heat flow at TL	J
Rm	Molar gas constant	8.3145 J/(kg·K)
T	Temperature	K
TH	Temperature	K


Variable	Description	Units
TL	Temperature	K
V	Volume	m^3
V1	Volume – 1	m^3
V2	Volume – 2	m^3
V3	Volume – 3	m^3
V4	Volume – 4	m^3
Wnet	Work done	J

Example 15.6.1.1:

A boiling pot of water $(100\,^{\circ}\text{C})$ and the ambient air $(25\,^{\circ}\text{C})$ are the heat source and heat sink for a Carnot engine using helium. If the work generated per cycle is 2 J, the maximum volume for a compression cycle is 300 cm³, and the measured pressure is at the maximum volume of 0.5 bars, what is the maximum efficiency of the engine, the heat absorbed and dispensed during a single cycle?

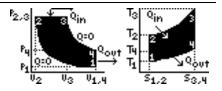
Upper Display

Lower Display

Solution – Select equations 1, 3, 4, 5, 6, 7, and 11. The maximum volume in the cycle occurs at step 3 where the volume is V3 and the temperature is TL. The molar mass (MWT) of helium is 4.003 g/mol. Use a value of k=5/3 for an ideal monatomic gas.

Given	Solution
k = 1.66667	$\zeta = .200992$
MWT = 4.003 g/mol	m = 0.02422 g
p = .5 bar	QH = 9.95067 J
T = 25 °C	QL = 7.95067 J
$TH = 100 ^{\circ}C$	$V1 = 126.111 \text{ cm}^3$
$TL = 25^{\circ}C$	$V2 = 214.264 \text{ cm}^3$
$V = 300 \text{ cm}^3$	$V4 = 176.564 \text{ cm}^3$
$V3 = 300 \text{ cm}^3$	
Wnet = $2 I$	

15.6.1.2 Diesel Cycle


The ideal diesel cycle consists of four reversible steps:

Stage 1: $1 \rightarrow 2$: Isentropic compression

Stage 2: $2 \rightarrow 3$: Reversible constant pressure heating

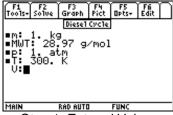
Stage 3: $3 \rightarrow 4$: Isentropic expansion

Stage 4: $4 \rightarrow 1$: Reversible constant volume cooling

The **first equation** calculates the rate heat intake **Qin** (W), into the ideal diesel cycle during the constant pressure-heating step (Stage 2). **Equation 2** computes the heat exhaust rate, **Qout** (W), during the constant volume-cooling step (Stage 4). **Equations 3** and **4** compute the net power, **Wr** (W), available for work. **Equations 5**, **6**, and **7** compute the maximum efficiency, $\boldsymbol{\zeta}$ (unitless), for the conversion of heat to work in the ideal diesel cycle. **Equation 8** calculates the specific heat ratio, **k**. **Equation 9** computes

the work ratio, Rw (net work over of the work performed during isentropic expansion), from the compression ratio, cr, and the cutoff ratio, cor. Equation 10 calculates the mean effective pressure, mep (Pa), or the constant pressure required to perform the network of the cycle (Wr·time) in a single compression stroke, $V1 \rightarrow V2$ (m³). The cutoff ratio, **cor**, is defined in **Equation 11** as the ratio of the volume of air at which constant pressure heating ends, V3 (m³), to the clearance volume, V2 (m³). Equation 12 calculates cor in terms of T1 (K) and T2 (K). Equation 13 computes the compression ratio, cr, the ratio of the initial volume, V1 (m³), and final volume, V2 (m³), in the first stage of the diesel cycle (the compression ratio must be greater than 14 and T2 must be greater than the ignition temperature for the diesel to ignite). Equations 14 and 15 relate the initial and final temperatures, T1 and T2, and pressures, p1 and p2, of the compression cycle (Stage 1), to the compression ratio, V1/V2 and the specific heat ratio, k. Equation 16 displays the pressure equivalence during the constant pressure expansion (Stage 2) of the ideal diesel cycle. Equations 17 and 18 relate the initial and final temperatures, T3 (K) and T4 (K), of the isentropic expansion process (Stage 3) to the volume ratio (V3/V4 or cr/cor) and the specific heat ratio, k. Equations 19 and 20 compute the temperature, T4 and T1 (K), pressure, p4 and p1 (Pa), and volume, V4 and V1 (m³), relationships for the constant volume cooling step of the ideal diesel cycle (stage 4). The last two equations compute the ideal gas law (Eq. 21) and the time (s) (Eq. 22) for a complete revolution of the diesel cycle from the mass flow rate, mr (kg/s), of fuel and air into the cycle and the mass of gas, **m** (kg), inside the cycle.

$Qin = mr \cdot cp \cdot (T3 - T2)$	Eq. 1
$Qout = mr \cdot cv \cdot (T4 - T1)$	Eq. 2
Wr = Qin - Qout	Eq. 3
$Wr = mr \cdot cp \cdot T1 \cdot cr^{k-1} \cdot (cor - 1) - mr \cdot cv \cdot T1 \cdot (cor^{k} - 1)$	Eq. 4
$\zeta = 1 - \frac{Qout}{Qin}$	Eq. 5
$\zeta = 1 - \frac{T1}{k \cdot T2} \cdot \left(\frac{\frac{T4}{T1} - 1}{\frac{T3}{T2} - 1} \right)$	Eq. 6
$\zeta = 1 - \frac{\frac{1}{cr^{k-1}} \cdot (cor^k - 1)}{k \cdot (cor - 1)}$	Eq. 7
$k = \frac{cp}{cv}$	Eq. 8
$Rw = \frac{k(cor - 1) \cdot cr^{k-1} - (cor^{k} - 1)}{k(cor - 1) \cdot cr^{k-1} - (cor^{k} - cr^{k-1})}$	Eq. 9

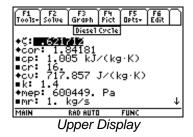

$mep = \frac{Wr}{V1 \cdot \left(1 - \frac{1}{cr}\right)} \cdot time$	Eq. 10
$cor = \frac{V3}{V2}$	Eq. 11
$cor = \frac{T3}{T2}$	Eq. 12
$cr = \frac{V1}{V2}$	Eq. 13
$T2 = T1 \cdot cr^{k-1}$	Eq. 14
$p2 = p1 \cdot cr^{k-1}$	Eq. 15
p2 = p3	Eq. 16
$T4 = T3 \cdot \left(\frac{cor}{cr}\right)^{k-1}$	Eq. 17
$T4 = T3 \cdot \left(\frac{V3}{V4}\right)^{k-1}$	Eq. 18
$p4 = p1 \cdot \left(\frac{T4}{T1}\right)$	Eq. 19
V1 = V4	Eq. 20
$p \cdot V = \frac{m}{MWT} \cdot Rm \cdot T$	Eq. 21
$time = \frac{m}{mr}$	Eq. 22

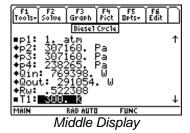
Variable	Description	Units
ζ	Efficiency	unitless
cor	Cutoff ratio	unitless
cp	Specific heat at constant pressure	$J/(kg \cdot K)$
cr	Compression ratio	unitless
cv	Specific heat at constant volume	$J/(kg \cdot K)$
k	Ratio of specific heats	unitless
m	Mass of gas in cycle	kg
mep	Mean effective pressure	Pa

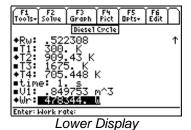
Variable	Description	Units
mr	Mass flow rate	kg/s
MWT	Molar mass	kg/mol
p	Pressure	Pa
p1	Pressure - 1	Pa
p2	Pressure – 2	Pa
p3	Pressure – 3	Pa
p4	Pressure – 4	Pa
Qin	Heat inflow rate	\mathbf{W}
Qout	Heat outflow rate	\mathbf{W}
Rm	Molar gas constant	8.3145 J/(kg·K)
Rw	Work ratio	unitless
T	Temperature	K
T1	Temperature - 1	K
T2	Temperature - 2	K
T3	Temperature - 3	K
T4	Temperature - 4	K
time	Time elapsed	S
V	Volume	m^3
V1	Volume - 1	m^3
V2	Volume – 2	m^3
V3	Volume – 3	m^3
V4	Volume – 4	m^3
Wr	Work rate	\mathbf{W}

Example 15.6.1.2:

An air standard diesel engine has a compression ratio of 16 and operates at maximum and minimum temperatures, 1675 K and 300 K. The pressure at the beginning of compression is 1 atm, the specific heat ratio for air is assumed to be 1.4 and the specific heat of air at constant pressure is $1.005 \, kJ/(kg \cdot K)$. Compute the pressure and temperature at each point in the cycle, the network performed per kilogram of gas in a single cycle, the maximum thermal efficiency, and the work ratio and mean effective pressure. The molar mass of air is $28.97 \, g/mol$.




Step 1: Entered Values

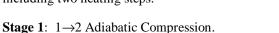


Step 1: Computed results

Solution - Step 1—Solve this problem in two steps. Select **Equation 21** and compute **V** for State 1 (beginning of the isentropic compression). Record the computed value of **V**.

Solution - Step 2 –Deselect Equation 21 and select Equations 1, 2, 3, 5, 8, 9, 10, 12, 14, 15, 16, 17, and 19. Enter the computed value of $V = .849753 \text{ m}^3$ in the previous step for V1. Note, from the diagram above, that the high temperature occurs at V3. Since V3 will be computed as the network per kg of gas per cycle (J/kg), enter a mass flow rate of V3 and cycle time of V3 so V3 displays the appropriate computed result for these units.

Step 1:


Given	Solution
MWT = 28.97 g/mol	$V = .849753 \text{ m}^3 \text{ (enter for V1 in Step 2)}$
p=1 atm	
T=300. K	
m=1 kg	

Step 2:

Given	Solution
$cp = 1.005 \text{ kJ/(kg} \cdot \text{K)}$	$\zeta = .621712$
cr = 16	cor = 1.84181
k = 1.4	$cv = 717.857 \text{ J/(kg} \cdot \text{K)}$
mr = 1kg/s	mep = 600449 Pa
p1 = 1 atm	p2 = 307160 Pa
T1 = 300 K	p3 = 307160 Pa
T3 = 1675 K	p4 = 238265 Pa
time = 1 s	Qin = 769398 W
$V1 = .849753 \text{ m}^3 \text{ (from step 1)}$	Qout = 291054 W
	Rw = .522308
	T2 = 909.43 K
	T4 = 705.448 K
	Wr = 478344 W

15.6.1.3 Dual Cycle

The ideal dual cycle better approximates the actual performance of a diesel engine. It is composed of 5 stages, including two heating steps:

Stage 2: 2→3 Constant Volume Heating.

Stage 3: $3 \rightarrow 4$ Constant pressure heating.

Stage 4: 4→5 Adiabatic Expansions.

Stage 5: 5→1 Constant Volume Cooling.

F₃y Qin T₄ Qin T₃ Qin T₃ Qin T₃ Qin T₃ Qin T₃ Qin T₃ Qout T₅ Qout T₅ Qout T₄ Qout

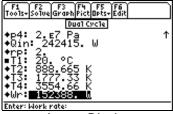
The **first equation** computes the total rate of heat intake, **Qin** (W), in Stages 2 and 3. **Equation 2** calculates the rate of heat exhaust, **Qout** (W), in Stage 5. **Equation 3** determines the net power available for work, **Wr** (W). **Equations 4, 5**, and **6** compute the maximum thermal efficiency, **ζ**,(unitless) of the heat cycle. **Equation 7** calculates the specific heat ratio, **k**. The pressure ratio, **rp**, is calculated in **equation 8**. The compression ratio, **cr**, is determined in **equation 9**. The cut-off ratio, **cor**, the ratio of volumes at the end of constant pressure heating, is computed in **equation 10**. The temperature/volume relationship during adiabatic compression (Stage 1) is computed in **equation 11**. **Equation 12** computes the temperature increase during the adiabatic compression step. **Equations 13** and **14** calculate the pressure/volume/temperature relationship for constant volume heating (Stage 2). **Equations 15** and **16** compute the gas properties for constant pressure heating (Stage 3). **Equation 17** and **18** computes the

temperature/volume relationship for adiabatic expansion (Stage 4). **Equations 19** and **20** describe the constant volume cooling stage, the final step of the cycle (Stage 5). The **last two equations** compute the ideal gas law (**Eq. 21**) and the **time** (s) (**Eq. 22**) for a complete revolution of the dual cycle from the mass flow rate, **mr** (kg/s), of fuel and air into the cycle and the mass of gas, **m** (kg), inside the cycle.

$Qin = mr \cdot cv \cdot (T3 - T2) + mr \cdot cp \cdot (T4 - T3)$	Eq. 1
$Qout = mr \cdot cv \cdot (T5 - T1)$	Eq. 2
$Wr = \zeta \cdot Qin$	Eq. 3
$\zeta = 1 - \frac{T5 - T1}{T3 - T2 + k \cdot (T4 - T3)}$	Eq. 4
$\zeta = 1 - \frac{Qout}{Qin}$	Eq. 5
$\zeta = 1 - \frac{\frac{1}{cr^{k-1}} \cdot (rp \cdot cor^{k} - 1)}{k \cdot rp \cdot (cor - 1) + rp - 1}$	Eq. 6
$\frac{cp}{cv} = k$	Eq. 7
$rp = \frac{p3}{p2}$	Eq. 8
$cr = \frac{V1}{V2}$	Eq. 9
$cor = \frac{V4}{V3}$	Eq. 10
$T2=T1\cdot cr^{k-1}$	Eq. 11
$T2 = T1 \cdot \left(\frac{p2}{p1}\right)^{\frac{k-1}{k}}$	Eq. 12
T3=T2-rp	Eq. 13
V2 = V3	Eq. 14
$T4 = T3 \cdot cor$	Eq. 15

p3 = p4	Eq. 16
$T5=T4\left(\frac{V4}{V5}\right)^{k-1}$	Eq. 17
$T5 = T4 \cdot \left(\frac{p5}{p4}\right)^{\frac{k-1}{k}}$	Eq. 18
$T5 = \frac{T1 \cdot p5}{p1}$	Eq. 19
V1 = V5	Eq. 20
$p \cdot V = \frac{m}{MWT} \cdot Rm \cdot T$	Eq. 21
$time = \frac{m}{mr}$	Eq. 22


Variable	Description	Units
ζ	Efficiency	unitless
cor	Cutoff ratio	unitless
ср	Specific heat at constant pressure	$J/(kg \cdot K)$
cr	Compression ratio	unitless
cv	Specific heat at constant volume	$J/(kg \cdot K)$
k	Ratio of specific heats	unitless
m	Mass of gas in cycle	kg
mr	Mass Flow rate	kg/s
MWT	Molar mass	kg/mol
p	Pressure	Pa
p1	Pressure – 1	Pa
p2	Pressure – 2	Pa
p3	Pressure –3	Pa
p4	Pressure –4	Pa
p5	Pressure –5	Pa
Qin	Heat inflow rate	W
Qout	Heat outflow rate	W
Rm	Molar gas constant	8.3145 J/(kg·K)
rp	Pressure ratio	unitless
T	Temperature	K
T1	Temperature – 1	K
T2	Temperature – 2	K
T3	Temperature – 3	K
T4	Temperature – 4	K
T5	Temperature – 5	K
time	Cycle duration	S
V	Volume	m^3
V1	Volume - 1	m^3
V2	Volume – 2	m^3
V3	Volume – 3	m^3


Variable	Description	Units
V4	Volume – 4	m^3
V5	Volume – 5	m^3
Wr	Work rate	W

Example 15.6.1.3:

A dual cycle is used to estimate the performance of a piston engine. Atmospheric air, at 20°C, is drawn into the engine a rate of 0.1 kg/s. The air in the piston chamber is compressed to a pressure of 10 MPa. Following combustion, the pressure increases to 20 MPa. Assuming a cut-off ratio of 2 and a compression ratio of 16, compute the maximum thermal efficiency, the rate of heat intake and power available for work. Air has a specific heat ratio of 1.4 and a specific heat at constant pressure of 1.005 $kJ/(kg\cdot K)$.

Upper Display

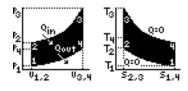
Middle Display

Lower Display

Solution – Solve this problem using equations 1, 3, 6, 7, 8, 11, 13, 15, and 16. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
cor = 2	$\zeta = .628625$
$cp = 1.005 \text{ kJ/(kg} \cdot \text{K)}$	cv = 717.857 J/(kg·K)
cr = 16	p4 = 2.E7 Pa
k = 1.4	Qin = 242415 W
mr = .1 kg/s	rp = 2
p2 = 10 MPa	T2 = 888.665 K
p3 = 20 MPa	T3 = 1777.33 K
$T1 = 20^{\circ}C$	T4 = 3554.66 K
	Wr = 152388 W

15.6.1.4 Otto Cycle


The ideal Otto cycle is the approximate pattern of internal combustion (spark ignition) engines in automobiles.

Stage 2: $2 \rightarrow 3$ Reversible constant volume heating

Stage 3: 3→4 Isentropic expansion

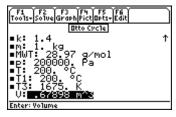
Stage 4: 4→1 Reversible constant volume cooling

The first equation computes the rate of heat intake, Qin (W), into the system. Equation 2 calculates the rate of heat exhaust, **Qout** (W). **Equation 3** and **4** compute the power available for work, **Wr** (W). Equations 5, 6, and 7 calculate the maximum thermal efficiency of the ideal Otto cycle, ζ.(unitless) Equation 8 calculates the mean effective pressure, mep (Pa), as the pressure needed to perform the net work per cycle (Wr·time) in a single compression stroke, V1 \rightarrow V2. Equation 9 computes the work ratio, Rw, network over of the work performed during isentropic expansion, from the compression ratio, cr,

and the low and high temperatures, T1 (K) and T3 (K). Equation 10 calculates the specific heat ratio, k. Equation 11 computes the compression ratio, cr, as the ratio of the initial and final volumes, valeq va

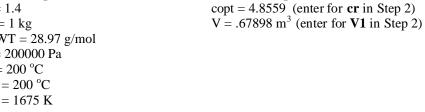
$Qin = mr \cdot cv \cdot (T3 - T2)$	Eq. 1
$Qout = mr \cdot cv \cdot (T4 - T1)$	Eq. 2
$Wr = mr \cdot cv \cdot T3 \left(1 - \frac{T1}{T3} \cdot cr^{k-1}\right) \cdot \left(1 - \frac{1}{cr^{k-1}}\right)$	Eq. 3
$Wr = \zeta \cdot Qin$	Eq. 4
$\zeta = 1 - \frac{T1}{T2} \cdot \frac{\left(\frac{T4}{T1} - 1\right)}{\left(\frac{T3}{T2} - 1\right)}$	Eq. 5
$\zeta = 1 - \frac{Qout}{Qin}$	Eq. 6
$\zeta = 1 - \frac{1}{cr^{k-1}}$	Eq. 7
$mep = \frac{Wr}{V1 \cdot \left(1 - \frac{1}{cr}\right)} \cdot time$	Eq. 8
$Rw = 1 - \frac{T1}{T3} \cdot cr^{k-1}$	Eq. 9
$k = \frac{cp}{cv}$	Eq. 10
$cr = \frac{V1}{V2}$	Eq. 11

$copt = \left(\frac{T3}{T1}\right)^{\frac{1}{2(k-1)}}$	Eq. 12
$\frac{T2}{T1} = cr^{k-1}$	Eq. 13
V3 = V2	Eq. 14
$\frac{T3}{T4} = \left(\frac{V4}{V3}\right)^{k-1}$	Eq. 15
V1 = V4	Eq. 16
$p \cdot V = \frac{m \cdot Rm}{MWT} \cdot T$	Eq. 17
$time = \frac{m}{mr}$	Eq. 18


Variable	Description	Units
ζ	Efficiency	unitless
copt	Compression ratio	unitless
ср	Specific heat at constant pressure	$J/(kg \cdot K)$
cr	Compression ratio	unitless
cv	Specific heat at constant volume	$J/(kg \cdot K)$
k	Ratio of specific heats	unitless
m	Gas mass in cycle	kg
mep	Mean effective pressure	Pa
mr	Mass flow rate	kg/s
MWT	Molar mass	kg/mol
p	Pressure	Pa
Qin	Heat inflow rate	W
Qout	Heat outflow rate	W
Rm	Molar gas constant	8.3145 J/(kg·K)
Rw	Work ratio	unitless
T	Temperature	K
T1	Temperature - 1	K
T2	Temperature - 2	K
T3	Temperature - 3	K
T4	Temperature - 4	K
time	Time elapsed	S
V	Volume	m^3
V1	Volume – 1	m^3
V2	Volume – 2	m_{\perp}^{3}
V3	Volume – 3	m_{a}^{3}
V4	Volume – 4	m^3
Wr	Work rate	W

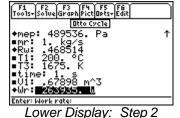
Example 15.6.1.4:

An air spark-ignition engine operates at a low pressure of 200 kPa, a low temperature of 200 °C and a high temperature of 1675 K. Compute the maximum work per mass of gas in one cycle revolution, the optimum compression ratio and the maximum thermal efficiency. Air has a molar mass of 28.97 g/mol, a specific heat ratio of 1.4 and a specific heat at constant pressure of 1.005 kJ/(kg·K).


Upper Display: Step

Lower Display: Step 1

Solution – Step 1: Compute the solution in two steps. First compute the optimum compression ratio, copt, and the initial volume for a kilogram of air, V, using equations 12 and 17. Be sure to record the value of **copt** and **V** for **cr** and **V1**, respectively, in the next step.

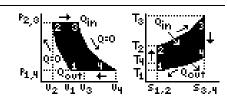

Given (Step 1)
k = 1.4
m = 1 kg
MWT = 28.97 g/mol
p = 200000 Pa
T = 200 °C
$T1 = 200 {}^{\circ}C$
T3 = 1675 K

Solution (Step 1)

Upper Display: Step 2

Solution – Step 2: After computing V and copt, deselect the equations 12 and 17 by highlighting the equations and pressing [ENTER], and select equations 3, 7, 8, 9, and 10. Enter the previously calculated value of **copt** for **cr**, **V** for **V1**, a value of 1 s for cycle duration, **time**, and 1 kg/s for the mass flow rate, mr, so the computed value of Wr displays the work performed per mass of gas in a single cycle. Press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given (Step 2)	Solution (Step 2)
$cp = 1.005 \text{ kJ/(kg} \cdot \text{K)}$	$\zeta = .468514$
cr = 4.8559 (computed in step 1)	$cv = 717.857 \text{ J/(kg} \cdot \text{K)}$
k = 1.4	mep = 489536 Pa
mr = 1 kg/s	Rw = .468514
$T1 = 200 {}^{\circ}C$	Wr = 263935 W
T3 = 1675 K	
time = 1 s	
$V1 = .67898 \text{ m}^3 \text{ (computed in step 1)}$	


15.6.1.5 Brayton Cycle

The Brayton Cycle is used to model power generation in gas turbine systems. It is composed of four stages:

Stage 2: 2 to 3: Constant pressure (Isobaric) heating.

Stage 4: 4 to 1: Constant pressure (Isobaric) cooling.

The **first equation** computes the rate of heat intake, **Qin** (W), during the constant pressure-heating step (Stage 1). **Equation 2** computes the rate of heat exhaust, **Qout** (W). **Equation 3** calculates the power available for work, **Wr** (W). **Equation 4, 5, 6**, and **7** compute the maximum heat efficiency, **ζ**, (unitless) of the Brayton cycle. **Equation 8** computes the work ratio **Rw**, the network over of the work performed during isentropic expansion. **Equation 9** computes the optimum pressure ratio, **ropt**, required to perform the maximum rate of work for the Brayton Cycle temperature conditions. **Equation 10** calculates the specific heat ratio, **k**. **Equation 11** computes the pressure ratio, **rp**, of the isobaric heating process (Stage 2). **Equation 12** computes the temperature/pressure relationship for adiabatic compression (Stage 1). **Equation 13** states the constant pressure condition for isobaric heating (Stage 2). **Equation 14** computes the temperature/pressure relationship for adiabatic expansion (Stage 3). **Equation 15** states the constant pressure condition for isobaric cooling (Stage 4). The **last two equations** compute the ideal gas law (**Eq. 16**) and the **time** (s) (**Eq. 17**) for a complete revolution of the dual cycle, from the mass flow rate, **mr** (kg/s), of fuel and air into the cycle and the mass of gas, **m** (kg), inside the cycle.

$Qin = mr \cdot cp \cdot (T3 - T2)$	Eq. 1
-------------------------------------	-------

$$Qout = mr \cdot cp \cdot (T4 - T1)$$
 Eq. 2

$$Wr = \zeta \cdot Qin$$
 Eq. 3

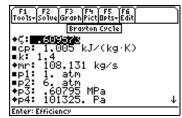
$$\zeta = 1 - \frac{\frac{T1}{T2} \cdot \left(\frac{T4}{T1} - 1\right)}{\left(\frac{T3}{T2} - 1\right)}$$
 Eq. 4

$$\zeta = 1 - \frac{Qout}{Qin}$$
 Eq. 5

$$\zeta = 1 - rp^{\frac{1-k}{k}}$$
 Eq. 6

$$\zeta = 1 - \left(\frac{p1}{p2}\right)^{\frac{k-1}{k}}$$
 Eq. 7

$$Rw = 1 - \frac{T1}{T3} \cdot rp^{\frac{k-1}{k}}$$
 Eq. 8


$ropt = \left(\frac{T3}{T1}\right)^{2 \cdot \frac{k}{k-1}}$	Eq. 9
$k = \frac{cp}{cv}$	Eq. 10
$rp = \frac{p2}{p1}$	Eq. 11
$rp = \left(\frac{T1}{T2}\right)^{\frac{k}{k-1}}$	Eq. 12
p2 = p3	Eq. 13
$\frac{p3}{p4} = \left(\frac{T3}{T4}\right)^{\frac{k}{k-1}}$	Eq. 14
p1 = p4	Eq. 15
$p \cdot V = \frac{m}{MWT} \cdot Rm \cdot T$	Eq. 16
$time = \frac{m}{mr}$	Eq. 17

Variable ζ cp	Description Efficiency Specific heat at constant pressure	Units unitless J/(kg·K)
cv	Specific heat at constant volume	$J/(kg \cdot K)$
k	Ratio of specific heats	unitless
m	Mass of gas in cycle	kg
mr	Mass flow rate	kg/s
MWT	Molar mass	kg/mol
p	Pressure	Pa
p1	Pressure 1	Pa
p2	Pressure 2	Pa
p3	Pressure 3	Pa
p4	Pressure 4	Pa
Qin	Heat inflow rate	W
Qout	Heat outflow rate	W
Rm	Molar gas constant	8.3145 J/(kg·K)
ropt	Optimum pressure ratio	unitless
rp	Pressure ratio	unitless
Rw	Work ratio	unitless
T	Temperature	K
T1	Temperature – 1	K

Variable	Description	Units
T2	Temperature – 2	K
T3	Temperature – 3	K
T4	Temperature – 4	K
time	Time elapsed	S
V	Volume	m^3
Wr	Work rate	W

Example 15.6.1.5:

Air, having a pressure of 1 atm and temperature of 300 K, is drawn into a turbine where it is compressed to a pressure of 6 atm. The air is heated, at constant pressure, to a temperature of 1100 K. The rate of energy input during heating is 100 MW. Assume the turbine operates on the ideal Brayton cycle. Compute the temperature and pressure at each point in the cycle, the airflow rate (kg/s), the work ratio, and the thermal efficiency for the gas turbine. Air has a specific heat ratio of 1.4 and a specific heat at constant pressure of 1.005 kJ/(kg·K).

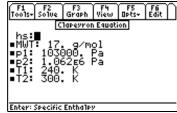
Upper Display

LowerDisplay

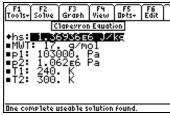
Solution – Select the following **Equations 1, 3, 4, 8, 11, 12, 13, 14, and 15** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$cp = 1.005 \text{ kJ/(kg} \cdot \text{K)}$	$\zeta = .609573$
k = 1.4	mr = 108.131 kg/s
p1 = 1 atm	p3 = .60795 MPa
p2 = 6 atm	p4 = 101325 Pa
Qin = 100 MW	rp = 6
T1 = 300 K	Rw = .544952
T3 = 1100 K	T2 = 179.801 K
	T4 = 659.271 K
	Wr = 6.09573 E7 W

15.6.2 Clapeyron Equation


The Clausius Clapeyron equation describes the change in vapor pressure, of a pure substance, p1-p2 (Pa), with change in temperature, T1-T2 (K). It is assumed that the pure substance does not undergo a phase change between temperatures, T1 and T2. The specific enthalpy, hs (J· kg·K⁻¹), determines the amount of energy-required convert a kilogram of pure substance from a solid to a vapor (sublimation) or liquid to a vapor (vaporization).

$$\ln\left(\frac{p2}{p1}\right) = \frac{MWT \cdot hs}{Rm} \cdot \left(\frac{1}{T1} - \frac{1}{T2}\right)$$
Eq. 1


Variable	Description	Units
hs	Enthalpy per unit mass	J/(kg⋅K)
MWT	Molar mass	kg/mol
p1	Pressure 1	Pa
p2	Pressure 2	Pa
Rm	Molar gas constant	8.3145 J/(kg·K)
T1	Temperature – 1	K
T2	Temperature -2	K

Example 15.6.2:

Liquid ammonia (molar mass: 17 g/mol) has a vapor pressure of 103,000 Pa at 240 K and 1,062,000 Pa at 300 K. What is the approximate enthalpy of vaporization per mass of ammonia?

Entered Values

Computed results

Solution – Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

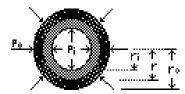
Given	Solution
MWT = 17 g/mol	hs=1.36936 E6 J/kg
p1 = 103,000 Pa	
p2 = 1,062,000 Pa	
T1 = 240 K	
T2 = 300 K	

References:

- 1. Lynn D. Russell, and George A. Adebiyi, Classical Thermodynamics, Saunders College publishing, Harcourt Brace Jovanavich College Publishers, Fort Worth TX, 1993
- 2. Michael R. Lindeburg, Mechanical Engineering reference manual, 8th Edition, Professional Publications, Belmont, CA 1990

Chapter 16: Machine Design

This section of the software deals a wide range of calculations under the broad classification "Machine Design". Topics include designing springs, calculating induced stresses due to contact between cylinders or shafts, stresses in a variety of types of machine elements and bearings. The topics in this section are organized under four headings. They are:


- ♦ Stress Machine elements
- ♦ Bearings

- ♦ Hertzian Stresses
- ♦ Spring Design

16.1 Stress: Machine Elements

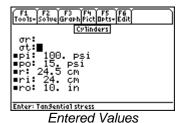
16.1.1 Cylinders

Cylindrical pressure vessels, hydraulic cylinders, gun barrels, pipes carrying fluids at high pressures develop both radial and tangential stresses with values strongly dependent upon the radius of the elements under consideration. In determining the radial stress, σr (Pa), and tangential stress, σt (Pa), the assumption is made that the longitudinal elongation is constant. We designate the inner and outer

radius of the cylinder as **ri** (m) and **ro** (m), while the internal and external pressures are designated by **pi** (Pa) and **po** (Pa). The **two equations** listed here determine the radial and tangential stresses respectively.

$$\sigma t = \frac{pi \cdot ri^2 - po \cdot ro^2 - \frac{ri^2 \cdot ro^2 \cdot (po - pi)}{r^2}}{ro^2 - ri^2}$$
 Eq. 1

$$\sigma r = \frac{pi \cdot ri^2 - po \cdot ro^2 + \frac{ri^2 \cdot ro^2 \cdot (po - pi)}{r^2}}{ro^2 - ri^2}$$


Eq. 2

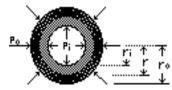
When r < ro and r > ri both equations give physically meaningful results.

Variable	Description	Units
σr	Radial stress	Pa
σt	Tangential stress	Pa
pi	Pressure inside	Pa
po	Pressure outside	Pa
r	Radius	m
ri	Inside radius	m
Ro	Outside radius	m

Example 16.1.1:

A hollow cylinder, with an outer radius of 10 inches and an inside radius of 24 cm, carries a fluid at a pressure of 100 psi. The pressure outside is 15 psi. Find the radial and tangential stresses 0.5 cm away from the inner radius line.

Computed results


Solution – Select **both equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
pi = 100 psi	$\sigma r = -67.966 \text{ psi}$
po = 15 psi	$\sigma t = -1453.81 \text{ psi}$
r = 24.5 cm	
ri = 24 cm	
ro = 10 in	

The stress results shown here have been converted to psi units.

16.1.2 Rotating Rings

Many problems such as flywheels and blowers can be simplified to rotating ring problems to determine stresses. The two equations listed below describe the radial stress, σr (Pa), and tangential stress, σt (Pa), are linked to key parameters density, ρ (kg/m³), angular velocity, ω (rad/s), Poisson's ratio, ζ (unitless), inside radius ro (m), outer radius ro (m) and radial distance, r (m), between ri and ro. The **first equation** computes the tangential stress, σt (Pa), while the **second equation** computes the radial, σr .

$$\sigma t = \rho \cdot \omega^2 \cdot \frac{3+\zeta}{8} \cdot \left(ri^2 + ro^2 + \frac{ri^2 \cdot ro^2}{r^2} - \frac{1+3\cdot\zeta}{3+\zeta^2} \cdot r^2 \right)$$
Eq. 1
$$\sigma r = \rho \cdot \omega^2 \cdot \frac{3+\zeta}{8} \cdot \left(ri^2 + ro^2 - \frac{ri^2 \cdot ro^2}{r^2} - r^2 \right)$$
When r < ro and r > ri both equations give physically meaningful results.

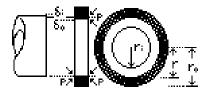
Variable	Description	Units
ζ	Poisson's ratio	unitless
ρ	Density	kg/m ³
σr	Radial stress	Pa
σt	Tangential stress	Pa
ω	Angular velocity	rad/s
r	Radius	m

Variable	Description	Units
ri	Inside radius	m
ro	Outside radius	m

Example 16.1.2:

A material with a density of 1.5 lb/in³ is a thin ring rotating at 300 rpm. The ring has an inner radius of 10 in and an outer radius of 11 in. Given the Poisson of 0.8, find the stress at mid-point of the ring thickness.

Entered Values


Computed results

Solution – Select **both equations** to solve the problem. Select these by highlighting the equations and pressing [ENTER]. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\zeta = .8$	$\sigma r = 1.82034 \text{ psi}$
$\rho = 1.5 \text{ lb/in}^3$	$\sigma t = 422.75 \text{ psi}$
$\omega = 300 \text{ rpm}$	
r = 10.5 in	
ri = 10 in	
ro = 11 in	

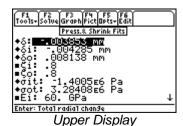
16.1.3 Pressure and Shrink Fits

Shrinking or pressing one part against the other, assembles two cylindrical parts, a contact pressure is created. The five equations presented in this equation set form the foundation for calculating stresses and dimensional changes in the two components involved in the assembly. The **first equation** computes the tangential stress, **oit** (Pa), at the transition radius, **r** (m), of the inner member, inner

radius of the inner member, ri (m), and pressure, p (Pa). In a similar manner, the second equation calculates the tangential stress of the outer rim, σ ot (Pa), in terms of p, r and the inner surface radius of the outer member, r_0 (m). The next two equations determine the radial elongation/contraction, δi (m), and, δo (m), of the inner and outer members in terms of r, ri, ro, p and the respective modulus of elasticity, **Eo** (Pa), **Ei** (Pa) and Poisson's ratios, ζ**i** (unitless) and ζ**o** (unitless). The **last equation** calculates the radial interference, δ (m).

$$\sigma it = \frac{-p \cdot (r^2 + ri^2)}{r^2 - ri^2}$$

$$\sigma ot = \frac{p \cdot (ro^2 + r^2)}{ro^2 - r^2}$$
Eq. 1


$$\delta o = \frac{p \cdot r}{Eo} \cdot \left(\frac{ro^2 + ri^2}{ro^2 - r^2} + \zeta_O \right)$$

$$\delta i = \frac{-p \cdot r}{Ei} \cdot \left(\frac{r^2 + ri^2}{r^2 - ri^2} - \zeta_i \right)$$
Eq. 3
$$\delta = \left| \delta i \right| - \left| \delta o \right|$$
When r < ro and r > ri all the equations give physically meaningful results.

Variable	Description	Units
δ	Total radial change	m
δί	Change in inner radius	m
δο	Change in outer radius	m
ζi	Poisson's ratio – inner ring	Unitless
ζi ζο	Poisson's ratio – outer ring	Unitless
σit	Tangential stress – inner rim	Pa
σot	Tangential stress – outer rim	Pa
Ei	Young's modulus inner material	Pa
Eo	Young's modulus outer material	Pa
р	Pressure	Pa
r	Radius	m
ri	Inside radius	m
ro	Outside radius	m

Example 16.1.3:

Two cylinders of radius 7 inches and 10 inches are made of materials with modulus of elasticity 60 GPa and 100 GPa respectively and are press fitted with a pressure of 50 psi. The transition radius is 9 inches. Assume that the Poisson's ratios of the inner and outer members to be 0.8. Find the stresses in the inner and outer members at the transition radius. Compute the radial interference.

Fis F2 F3 F4 F5 F6

Frosts Shrink Fits

+oit: -1.4005E6 Pa ↑

+oot: 3.28408E6 Pa

Ei: 60. GPa

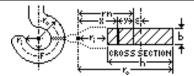
Eo: 100. GPa

=p: 50. psi

=r: 7. in

=ro: 10.101

Lower Display


Solution – Select **all of the equations** to solve this problem by pressing ENTER. Now press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\zeta i = 0.8$	$\delta = -0.003853 \text{ mm}$
$\zeta o = 0.8$	$\delta i = -0.004285 \text{ mm}$
Ei = 60 GPa	δo =0.008138 mm
Eo = 100 GPa	$\sigma it = -1.4005E6 Pa$
p = 50 psi	σ ot = 3.28408E6 Pa
r = 9 in	

Given Solution ri = 7 in ro = 10 in

16.1.4 Crane Hook

The three equations in this section help solve the essential parameters involved in the use of a crane hook. The **first equation** calculates the cross sectional area, \mathbf{A} (m²), in terms of the width, \mathbf{b} (m) and depth, \mathbf{h} (m), of the crane hook. The **second equation** calculates the radius, \mathbf{rn} (m), of the neutral axis using the inner and

outer radius, \mathbf{ri} (m) and \mathbf{ro} (m). The **third equation** calculates the stress, $\boldsymbol{\sigma}$ (Pa), in terms of the force, \mathbf{F} (N), area \mathbf{A} , moment \mathbf{MOM} (N·m), \mathbf{rn} , eccentricity, $\boldsymbol{\epsilon}$ (m). **Equation 4** relates \mathbf{ri} and \mathbf{ro} to the depth of the hook, \mathbf{h} . The **last equation** computes the distances to an arbitrary position on the hook from the neutral axis \mathbf{y} (m), and the central axis, \mathbf{x} (m).

$A = b \cdot h$	Eq. 1
h	Eq. 2
$rn = \frac{h}{\ln\left(\frac{ro}{ri}\right)}$	
$\sigma = F + MOM \cdot y$	Eq. 3
$\sigma = \frac{F}{A} + \frac{MOM \cdot y}{A \cdot \varepsilon \cdot (rn - y)}$	
ro = ri + h	Eq. 4
rn = x + y	Eq. 5
When rn < ro and rn > ri, these equations give physically meaningful results.	

Variable	Description	Units
ε	Eccentricity	m
σ	Stress	Pa
A	Area	m^2
b	Width	m
F	Force	N
h	Height	m
MOM	Moment of inertia	$N \cdot m$
ri	Inside radius	m
rn	Radius of neutral axis	m
ro	Outside radius	m
Υ	Distance	m

Example 16.1.4:

A rectangular crane hook has to lift a load of 12500 lbf. The width of the hook is 1 inch and the thickness is 1 inch. The hook ring has an outer radius of 8 inches and an inner radius of 7 inches. The eccentric offset is 1 inch and the moment is applied 1.5 inches away from the center. A moment load of 1000 N·m is applied. Find the radius of neutral axis, and stress in the hook material.

Upper Display

Lower Display

Solution – Select **all the equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

ro = 8 iny = 1.5 in

Solution

$$\sigma = 14716.8 \text{ psi}$$

 $A = .000645 \text{ m}^2$
 $rn = 7.48888 \text{ in}$
 $X = .152117 \text{ m}$

16.2 Hertzian Stresses

When two spheres or cylinders with curved surfaces are pressed together to have a point or line contact stresses are developed in both bodies. The stresses developed in the two bodies are in general three dimensional in nature. The contact stresses arise in a number of practical cases such as wheel on a rail, in automotive cams and tappets, mating stresses in gear teeth and roller bearings.

The general case of contact stresses for two spheres or cylinders are called Hertzian Stresses.

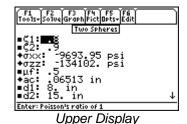
16.2.1 Two Spheres

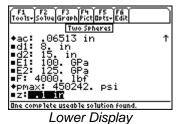
When two solid spheres of diameters, d1 (m) and d2 (m), are pressed together with a force, F(N), a circular contact area of radius, ac (m), is formed. The stress is maximum in the center of this circular contact area. By specifying the Young's modulus, E1 (Pa) and E2 (Pa), and the Poisson's ratio, C1 and C2 (unitless), for the two spheres, the contact radius, C2 (m), is calculated from equation 1. The second equation computes the maximum pressure, C2 pmax (Pa), at the center of the contact area. The principal stresses, C3 (Pa) and C4 (Pa), are computed from equations 3 and

area. The principal stresses, σxx (Pa) and σzz (Pa), are computed from equations 3 and 4 illustrating the variation of these stresses away from the principle point of contact with coefficient of friction μf (unitless).

$$ac = \left(\frac{\frac{3 \cdot F}{8} \left(\frac{1 - \zeta 1^2}{E1} + \frac{1 - \zeta 2^2}{E2}\right)}{\frac{1}{d1} + \frac{1}{d2}}\right)^{\frac{1}{3}}$$
 Eq. 1

$$p \max = \frac{3 \cdot F}{2 \cdot \pi \cdot ac^2}$$


$$\sigma xx = -pmax \cdot \left(\left(1 - \frac{z}{ac} \cdot \tan^{-1} \left(\frac{ac}{z} \right) \right) \cdot \left(1 + \mu f \right) - \frac{1}{2 \cdot \left(1 + \frac{z^2}{ac^2} \right)} \right)$$


$$\sigma zz = \frac{-pmax}{1 + \frac{z^2}{ac^2}}$$
Eq. 4

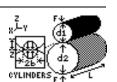
Variable	Description	Units
ζ1	Poisson's ratio of 1	unitless
ζ2	Poisson's ratio of 2	unitless
σχχ	Stress along x axis	Pa
σzz	Stress along z axis	Pa
μf	Coefficient of friction	unitless
ac	Radius of contracted area	m
d1	Diameter of 1	m
d2	Diameter of 2	m
E1	Young's modulus –1	Pa
E2	Young's modulus -2	Pa
F	Force	N
pmax	Maximum pressure	Pa
Z	z-axis distance from contact point	m

Example 16.2.1:

Two spheres, with diameters 8 inch and 15 inch, are pressing a load of 4000 lbf between them. The two spheres have elastic constants of 100 GPa and 125 GPa respectively, and have Poisson's ratios of 0.8 each. If the friction coefficient is 0.5, find the stress 0.1 inches away from the point of impact.

Solution – Select **all the equations** to solve this problem. Select these by highlighting the equations and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

The problem is solved best in two stages. First solve the first two equations as a pair; then solve the last two equations as a new set knowing the values calculated from the first two equations. The composite results are shown below.


Given $\zeta 1 = .8$ $\zeta 2 = .9$ $\mu f = .5$ d1 = 8 in d2 = 15 in E1 = 100 GPa E2 = 125 GPa F = 4000 lbf z = .1 in

Solution

 $\sigma xx = -9693.95 \text{ psi}$ $\sigma zz = -134102 \text{ psi}$ ac = .06513 inpmax = 450242 psi

16.2.2 Two Cylinders

When two solid cylinders with diameters d1 (m), d2 (m) and length L (m) are pressed together with a force F (N), a circular contact area of radius ac (m) is formed. The maximum stress is in the center of this circular contact area. By specifying the Young's modulus, E1 and E2 (Pa), and Poisson's ratio, $\zeta1$ and $\zeta2$ (unitless), for the two cylinders, the contact radius ac (m) is calculated from equation 1. The second

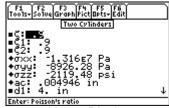
equation computes the maximum pressure **pmax** (Pa) at the center of the contact area. The principal stresses σxx (Pa), σyy (Pa) and σzz (Pa) are computed from equations 3, 4 and 5 illustrating the variation of these stresses away from the principle point of contact with coefficient of friction μf (unitless).

$$ac = \sqrt{\frac{\frac{2 \cdot F}{\pi \cdot L} \cdot \left(\frac{1 - \zeta 1^2}{E1} + \frac{1 - \zeta 2^2}{E2}\right)}{\frac{1}{d1} + \frac{1}{d2}}}$$
 Eq. 1

$$pmax = \frac{2 \cdot F}{\pi \cdot ac \cdot L}$$
 Eq. 2

$$\sigma xx = -2 \cdot \zeta \cdot pmax \cdot \left(\sqrt{1 + \frac{z^2}{ac^2}} - \frac{z}{ac} \right)$$
 Eq. 3

$$\sigma yy = -p \max \left(\left(2 - \frac{1}{1 + \frac{z^2}{ac^2}} \right) \cdot \sqrt{1 + \frac{z^2}{ac^2}} - \frac{2 \cdot z}{ac} \right)$$
 Eq. 4


$$\sigma zz = \frac{-p \max}{\sqrt{1 + \frac{z^2}{ac^2}}}$$
 Eq. 5

Variable	Description	Units
ζ1	Poisson's ratio of 1	unitless
ζ2	Poisson's ratio of 2	unitless
ζ	Poisson's ratio	unitless
σχχ	Stress along x axis	Pa

Variable	Description	Units
σуу	Stress along y axis	Pa
σzz	Stress along z axis	Pa
ac	Radius of contracted area	m
d1	Diameter of 1	m
d2	Diameter of 2	m
E1	Young's modulus -1	Pa
E2	Young's modulus –2	Pa
F	Force	N
L	Length	m
Pmax	Maximum pressure	Pa
Z	z-axis distance from contact point	m

Example 16.2.2:

Two cylinders 12 inches long, diameters 4 and 6 inches respectively, have Poisson's ratio of 0.9 and elasticity modulus of 50 and 60 GPa each. Find the stress at the line of impact when a 4000 -lbf load is applied.

Upper Display

Lower Display

Pa

Solution – Select **all the equations** to solve this problem. Select these by highlighting the equations and pressing **FNTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above. The problem takes about 20 seconds to solve.

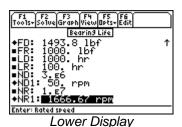
Given	Solution
$\zeta = .9$	$\sigma xx = -1.316 E7 Pa$
$\zeta 1 = .9$	$\sigma yy = -8926.28 \text{ Pa}$
$\zeta 2 = .9$	$\sigma zz = -2116.48 \text{ psi}$
d1 = 4 in	ac = .004946 in
d2 = 6 in	pmax = 2.95815 E8
E1 = 50 GPa	
E2 = 60 GPa	
F = 4000 lbf	
L = 12 in	
z = 0.1 in	

16.3 Bearings

16.3.1 Bearing Life

Under the heading Bearing life, we have listed four equations that help design key bearing parameters in developing design equations. The main parameters of interest can be divided into manufacturer specified parameters are the rating load, FR (N), rated number of revolutions, NR (unitless), and the rated life, LR (s); in the design process, one specifies the corresponding design load, FD (N), design life, LD (s), and required design in the number of revolutions, ND (unitless). In addition, the rated speed, NR1 (1/s), and designed speed, ND1 (1/s), are also included in the calculations. The manufacturer supplies these ratings. The constant β is either 3 for ball bearings or 3.33 for collar bearings based on experience from the field.

$ND = LD \cdot ND1$	Eq. 1
$NR = LR \cdot NR1$	Eq. 2
$\frac{ND}{NR} = \left(\frac{FR}{FD}\right)^{\beta}$	Eq. 3
$FR = FD \cdot \left(\frac{LD \cdot ND1}{LR \cdot NR1}\right)^{\frac{1}{\beta}}$	Eq. 4


Variable	Description	Units
β	A Constant: enter 3 for ball bearings and 3.33 for roller bearings	unitless
FD	Radial design load	N
FR	Radial rating load	N
LD	Required design life	S
LR	Catalog rated life	S
ND	Required design: number of revolutions	unitless
ND1	Required design speed	1/s
NR	Rated number of revolutions	unitless
NR1	Rated speed	1/s

Example 16.3.1:

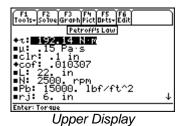
Design a bearing system from the following specifications:

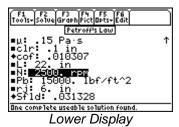
Rating load is 1000 lbf; rated life is 100 hr; rated revolutions is 10000000; design goals are 3000000 revolutions for life, a design life of 1000 hrs. Assume a value of 3 for β .

Solution – Select **all the equations** to solve this problem. Press ENTER to select all the equations and start the solving process by displaying all the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\beta = 3$	FD = 1493.8 lbf
FR = 1000 lbf	ND1 = 50 rpm
LD = 1000 hr	NR1 = 1666.67 rpm
LR = 100 hr	_
ND = 3 E6	
NR = 1 E7	

16.3.2 Petroff's law


Petroff was one of the first to recognize clear connection between torque, speed, clearance, and coefficient of friction. In developing similar ideas, Sommerfeld was able to recognize a non-dimensional number named after him indicating a characteristic property of bearings. The four equations below form the core set of relationships. The **first equation** connects torque, τ (Nm), with the journal radius, rj (m), length L (m), clearance clr (m), absolute viscosity, μ (Pas), and significant speed, N (1/s). The **second equation** computes coefficient of friction, cof (unitless), in terms of μ , N, load pressure, Pb (Pa), and clr. The **third and fourth equations** are alternative ways to link the Sommerfeld number, **Sfld** (unitless), with cof, rj, clr, μ , Pb.


$\tau = \frac{4 \cdot \pi^2 \cdot rj^3 \cdot L \cdot \mu \cdot N}{clr}$	Eq. 1
$cof = \frac{2 \cdot \pi^2 \cdot \mu \cdot N}{Pb} \cdot \frac{rj}{clr}$	Eq. 2
$\frac{cof \cdot rj}{clr} = 2 \cdot \pi^2 \cdot Sfld$	Eq. 3
$Sfld = \left(\frac{rj}{clr}\right)^2 \cdot \left(\frac{\mu \cdot N}{Pb}\right)$	Eq. 4

Description	Units
Torque	N⋅m
Absolute viscosity	Pa·s
Clearance	m
Coefficient of friction	Unitless
Length	m
Significant speed	1/s
Load per bearing area	Pa
Journal radius	m
Sommerfeld number	unitless
	Torque Absolute viscosity Clearance Coefficient of friction Length Significant speed Load per bearing area Journal radius

Example 16.3.2:

A journal bearing with a radius of 6 inches, 22 inches long, is working at a pressure of 15,000 lbf/ft ². With a clearance of 0.1 in and an absolute viscosity of 0.15 Pa·s revolves at a speed of 2500 rpm. Find the torque, coefficient of friction and Sommerfeld number.

Solution – Select the **first three equations** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\mu = .15 \text{ Pa} \cdot \text{s}$	$\tau = 192.14 \text{ N} \cdot \text{m}$
clr = 0.1 in	cof = .010307
L = 22 in	Sfld = .031328
N = 2500 rpm	
$Pb = 15000 lbf/ft^2$	
rj = 6 in	

16.3.3 Pressure Fed Bearings

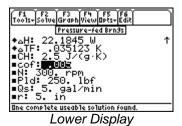
The equations analyze the use of forced lubrication in a bearing system; enable the computation of heat dissipated and temperature rise in the fluid cooling the system.

$$Qs = \frac{\pi \cdot ps \cdot r \cdot clr^{3}}{3 \cdot \mu \cdot L} \cdot (1 + 1.5 \cdot ecc^{2})$$

$$umax = \frac{ps \cdot clr^{2}}{8 \cdot \mu \cdot L}$$

$$\Delta H = \frac{2 \cdot \pi \cdot cof \cdot Pld \cdot r \cdot N}{J}$$

$$\Delta TF = \frac{2 \cdot \Delta H \cdot grav}{\gamma \cdot CH \cdot Qs}$$
Eq. 4

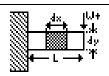

Variable	Description	Units
γ	Specific weight	N/m^3
ΔH	Rate of heat loss	W
$\Delta \mathrm{TF}$	Temperature rise	K
μ	Absolute viscosity	Pa⋅s
СН	Specific heat	$J/(kg \cdot K)$

Variable	Description	Units
clr	Clearance	m
Cof	Coefficient of friction	unitless
ecc	Eccentricity	unitless
J	Mechanical equivalent heat	unitless
L	Length	m
N	Significant speed	1/s
Pld	Load	N
ps	Supply pressure	Pa
Qs	Sideflow	m^3/s
R	Radius	m
umax	Maximum velocity	m/s

Example 16.3.3:

A cooling fluid with a specific weight of $100 \, lbf/ft^3$ is forced into a system at the rate of 5 gal/min. The specific heat of the fluid is $2.5 \, J/(g \cdot K)$. The shaft is rotating at a speed of 300 rpm. If the load is $250 \, lbf$, find the amount of heat removed and the temperature rise of the fluid. Assume that the shaft radius is 5 inches.

Upper Display


Solution – Select the **last two equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the

Given	Solution
$\gamma = 100 \text{ lbf/ft}^3$	$\Delta H = 22.1845 \text{ W}$
CH = 2.5 J/(g·K)	$\Delta TF = .035123 \text{ K}$
cof = 0.005	
N = 300 rpm	
Pld = 250 lbf	
Qs = 5 gal/min	
r = 5 in	

16.3.4 Lewis Formula

screen displays above.

Two equations illustrate computing stress, σ (Pa), from different input data. The **first equation** computes σ from the length, L (m), along the z-axis, the load expressed as weight, Wt (N), and the x and y dimensions, dx (m) and dy (m), respectively. The **second equation** computes σ from Wt, dx, the diametrical pitch pd (1/m) and the Lewis form factor, Lf (unitless).

$$\sigma = \frac{6 \cdot Wt \cdot L}{dx \cdot dy^2}$$
 Eq. 1

Variable	Description	Units
σ	Stress	Pa
Dx	X-section dimension	m
Dy	Y-section dimension	m
L	Length	m
Lf	Lewis form factor	unitless
Pd	Diametrical pitch	1/m
Wt	Load	N

Example 16.3.4:

Compute the Lewis form factor and stress in a mechanical system defined below:

The tooth is 4 inches wide, 2 inches high, and is 16 inches long. It is subjected to a weight of 1000 lbf. Assume diametrical pitch to be 4 1/m.

Entered Values

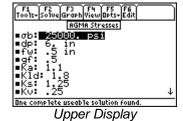
Computed results

Solution – Select **both equations** to solve this problem. Select these by highlighting the equations and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
dx = 4 in	$\sigma = 6000 \text{ psi}$
dy = 2 in	Lf = .001348
L = 16 in	
pd = 4 1/m	
Wt = 1000 lbf	

16.3.5 AGMA Stresses

American Gear Manufacturer's Association (AGMA) has established some industry wide standards for stress calculations. The two equations in this section reflect their standards. The **first equation** computes the bending stress, **σb** (Pa), of the gear in terms of load, **Wt** (N), face width, **fw** (m), pitch diameter, **dp** (m), a series of factors of the system such as geometry factor, **gf** (unitless), application factor, **Ka** (unitless), size factor, **Ks** (unitless), and dynamic factor, **Kv** (unitless), and load distribution factor, **Kld** (unitless). The **second equation** computes compressive stress, **σc** (Pa), in terms of the application parameter, **Ca** (unitless), surface condition factor, **Cf** (unitless), load distribution factor, **Cm** (unitless), elastic coefficient factor, **CP** (Pa), size factor **CS** (unitless), dynamic factor, **Cv** (unitless), **dp**, **gf**, and **fw**.


$$\sigma b = \frac{Wt \cdot Ka}{Kv} \cdot \frac{1}{fw \cdot dp} \cdot \frac{Ks \cdot Kld}{gf}$$

$$\sigma c = \sqrt{\frac{CP \cdot Wt \cdot Ca \cdot CS \cdot Cm \cdot Cf}{Cv \cdot fw \cdot dp \cdot gf}}$$
Eq. 2

Variable	Description	Units
σb	Stress	Pa
σc	Compressive stress	Pa
Ca	Application factor	unitless
Cf	Surface condition factor	unitless
Cm	Load distribution factor	unitless
CP	Elastic coefficient	Pa
CS	Size Factor	unitless
Cv	Dynamic Factor	unitless
dp	Pitch diameter	m
fw	Face width	m
gf	Geometric factor	unitless
Ka	Application factor	unitless
Kld	Load distribution factor	unitless
Ks	Size factor	unitless
Kv	Dynamic Factor	unitless
Wt	Load	N

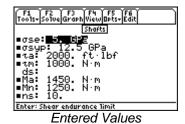
Example 16.3.5:

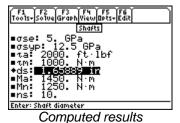
Compute the base stress for a system with a stress level of 25000 psi, application factor of 1.1, pitch diameter of 6 inches, dynamic factor of 0.25, face width of 0.5 inches, load distribution factor of 1.8, size factor of 1.25 and geometry factor of 0.5. Find the load the system can bear.

Solution – Select the **first equation** to solve this problem. Select it by highlighting the equations and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\sigma b = 25000 \text{ psi}$	Wt = 3787.88 lbf
dp = 6 in	
fw = .5 in	
gf = .5	
Ka = 1.1	
Kld = 1.8	
Ks = 1.25	
Kv = 0.25	

16.3.6 Shafts


The equation below reflects a way to compute minimum shaft diameter, ds (m), given design criteria such as shear endurance limit, σse (Pa), and shear yield point, σsyp (Pa), torque amplitude, τse (N·m), mean torque, τm (N·m), moment amplitude, Ma (N·m), moment mean, Mn (m), and a factor of safety, ns (unitless).


$$ds = \left(\frac{32 \cdot ns}{\pi} \cdot \left(\left(\frac{\tau se}{\sigma se} + \frac{\tau m}{\sigma syp}\right)^2 + \left(\frac{Ma}{\sigma se} + \frac{Mn}{\sigma syp}\right)^2 \right)^5 \right)^{1/3}$$
 Eq. 1

Variable	Description	Units
σse	Shear Endurance limit	Pa
σsyp	Shear yield point	Pa
τα	Torque amplitude	N⋅m
τm	Mean torque	N⋅m
ds	Shaft diameter	m
Ma	Moment amplitude	N⋅m
Mn	Moment mean	N⋅m
ns	Factor of safety	unitless

Example 16.3.6:

Find the mean diameter of a shaft required to transmit a mean torque of 1000 N·m and torque amplitude of 2000 ft·lbf. The shaft has to withstand 5 GPa of an endurance limit, and a shear yield point of 12.5 GPa. The moment amplitude and mean moment of the shaft are 1450 N·m and 1250 N·m. Assume a factor of safety of 10.

Solution – Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
σ se = 5 GPa	ds = 1.65889 in
σ syp = 12.5 GPa	
$\tau a = 2000 \text{ ft} \cdot \text{lbf}$	
$\tau m = 1000 \text{ N} \cdot \text{m}$	
$Ma = 1450 \text{ N} \cdot \text{m}$	
$Mn = 1250 \text{ N} \cdot \text{m}$	
ns = 10	

16.3.7 Clutches and Brakes

16.3.7.1 Clutches

16.3.7.1.1 Clutches

The six equations in this section are based on the following assumptions:

- 1. The pressure at any point is proportional to distance from the hinge.
- 2. The effect of centrifugal force neglected.
- 3. The shoe is assumed to be rigid.
- 4. Coefficient of friction does not vary with pressure.

For a clockwise rotation the pin reactions along x and y directions are shown by, \mathbf{Rcx} (N) and \mathbf{Rcy} (N), from **equations 1 and 2** in terms of maximum pressure, \mathbf{pa} (Pa), width \mathbf{b} (m), radius \mathbf{r} (m), friction factor, $\mu\mathbf{f}$ (unitless), two computed unitless parameters, \mathbf{conA} and \mathbf{conB} , and loads, \mathbf{Fx} (N) and \mathbf{Fy} (N). The angle, $\theta\mathbf{a}$ (rad), represents the angle from the hinge. The **third and fourth equations** compute \mathbf{Rax} (N) and \mathbf{Ray} (N) representing the calculations for the counterclockwise case. The two angles, $\theta\mathbf{1}$ (rad) and $\theta\mathbf{2}$ (rad), represent the minimum and maximum angles of the brake shoe. The **last two equations** compute \mathbf{conA} and \mathbf{conB} in terms of $\theta\mathbf{1}$ and $\theta\mathbf{2}$.

$$Rcx = \frac{pa \cdot b \cdot r}{\sin(\theta a)} \cdot (conA - \mu f \cdot conB) - Fx$$
 Eq. 1

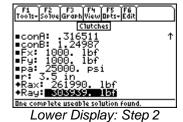
$$Rcy = \frac{pa \cdot b \cdot r}{\sin(\theta a)} \cdot (conB + \mu f \cdot conA) - Fy$$
 Eq. 2

$$Rax = \frac{pa \cdot b \cdot r}{\sin(\theta a)} \cdot (conA + \mu f \cdot conB) - Fx$$
 Eq. 3

$$Ray = \frac{pa \cdot b \cdot r}{\sin(\theta a)} \cdot (conB - \mu f \cdot conA) - Fy$$
 Eq. 4

$$conA = \frac{\left(\sin(\theta 2)\right)^2 - \left(\sin(\theta 1)\right)^2}{2}$$
 Eq. 5

$$conB = \frac{\theta 2 - \theta 1}{2} - \frac{\sin(2 \cdot \theta 2) - \sin(2 \cdot \theta 1)}{4}$$
 Eq. 6


Variable	Description	Units
θ1	Minimum angle	rad
θ 2	Maximum angle	rad
θ a	Angle from hinge pin, location of pa	rad
μf	Coefficient of friction	unitless
b	Width	m
conA	Constant A	unitless
conB	Constant B	unitless
Fx	Force along x	N
Fy	Force along y	N
pa	Maximum pressure at θ a	Pa
r	Radius	m
Rax	Reaction x-axis (anti-clockwise)	N
Ray	Reaction y-axis (anti-clockwise)	N
Rcx	Reaction x-axis (clockwise)	N
Rcy	Reaction y-axis (clockwise)	N

Example 16.3.7.1.1:

A clutch/brake system has a show that covers from 20 degrees to 120 degrees, with the angle from the hinge pin of 70 degrees. The coefficient of friction is 0.5. For a load of 1000 lbf along the x-axis and 1000 lbf along y-axis, and a maximum pressure of 25000 psi, find the counterclockwise reactions for a system 3 inches wide and 3 inches in radius.

Display: Step 1 Upper Display: Step 2

Solution – Solve this problem in two steps. First select **equations 5 and 6** to solve for **conA** and **conB**. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and

the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. Following the calculations of **conA** and **conB**, deselect the last two equations and **select equations 3 and 4.** Designate the previously computed results for **conA** and **conB** as known values using the highlight bar and F5:Opts/6:Know. Press F2 to solve for Rax and Ray.

Given (first step)	
$\theta 1 = 20 \text{ deg}$	
$\theta 2 = 120 \text{ deg}$	

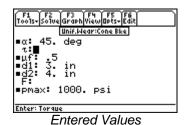
Given (second step) $\theta a = 70 \text{ deg}$ $\mu f = .5$ b = 3 in Fx = 1000 lbf Fy = 1000 lbfpa = 25000 psi **Solution (first step)** conA = .316511 conB = 1.24987

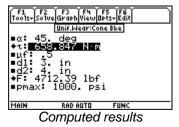
Solution (second step) Rax = 261990 lbf Ray = 303939 lbf

r = 3 in

16.3.7.2 Uniform Wear - Cone Brake

The two equations in this section represent the force and torque required for a cone brake where uniform wear is assumed. The **first equation** represents the force F(N) necessary to actuate the brake system based on the maximum stress, **pmax** (Pa), outer diameter, **d1** (m), and inner diameter, **d2** (m). The **second equation** determines the torque, $\tau(N \cdot m)$, needed in terms of the same parameters and cone angle, α (rad).


$$F = \frac{\pi \cdot pmax \cdot d1}{2} \cdot (d2 - d1)$$


$$\tau = \frac{\pi \cdot \mu f \cdot pmax \cdot d1}{8 \cdot \sin(\alpha)} \cdot (d2^2 - d1^2)$$
Eq. 2

Variable	Description	Units
α	Half thread/cone angle	rad
τ	Torque	N⋅m
μf	Coefficient of friction	unitless
d1	Inner diameter	m
d2	Outer diameter	m
F	Force	N
Pmax	Maximum pressure	Pa

Example 16.3.7.2:

A cone brake with an angle of 45 degrees, an outer diameter of 4 inches, and an inner diameter of 3 inches, has coefficient of friction of 0.5. Find the force if the maximum pressure allowed is 1000 psi.

Solution – Select **both equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha = 45 \text{ deg}$	τ=658.647 N⋅m
$\mu = .5$	F = 4712.39 lbf
d1 = 3 in	
d2 = 4 in	
pmax = 1000 psi	
uf = .5	

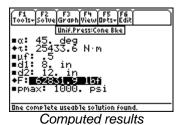
16.3.7.3 Uniform Pressure - Cone Brake

The two equations here reflect the force, \mathbf{F} (N), and torque, $\mathbf{\tau}$ (N·m), for the case where the pressure on the cone is assumed to be uniform. The **first equation** represents the force, \mathbf{F} (N), necessary to actuate the brake system based on the maximum stress, **pmax** (Pa), outer diameter, **d1** (m), and inner diameter, **d2** (m). The **second equation** determines the torque, $\mathbf{\tau}$ (N·m), needed in terms of the same parameters and cone angle, $\mathbf{\alpha}$ (rad).

$$F = \frac{\pi \cdot pmax \cdot (d2^2 - d1^2)}{4}$$

$$\tau = \frac{F \cdot \mu f}{3 \cdot \sin(\alpha)} \cdot (d2^3 - d1^3)$$

$$d2^2 - d1^2$$
Eq. 1
$$\frac{f \cdot \mu f}{d2^2 - d1^2}$$


Variable	Description	Units
α	Half thread/cone angle	rad
τ	Torque	N⋅m
μf	Coefficient of friction	unitless
d1	Inner diameter	m
d2	Outer diameter	m
F	Force	N
pmax	Maximum pressure	Pa

Example 16.3.7.3:

A cone brake has an angle of 45 degrees, an outer diameter 12 inches and an inner diameter of 8 inches. Assuming a coefficient of friction of 0.5, find the force if the maximum pressure allowed is 1000 psi.

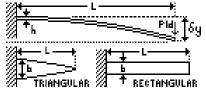
Entered Values

Solution – Select **both equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha = 45 \text{ deg}$	$\tau = 25433.6 \text{ N} \cdot \text{m}$
$\mu f=.5$	F = 62831.9 lbf
d1 = 8 in	
d2 = 12 in	
pmax = 1000 psi	

16.4 Spring Design

Design of springs has played a key role in a variety of situations where effort is made to find the proper combination of material, spring strength and volume of material. In this section we have treated a variety of spring designs:


- 1. Bending Springs plate springs with a rectangular, triangular or semi-elliptical shapes.
- 2. Coiled Springs Cylindrical helical springs with circular or rectangular cross section.
- 3. Torsional Springs Circular or rectangular straight bar
- 4. Axially Loaded Springs Conical circular section, or cylindrical helical spring with rectangular or circular cross section.

In the following subsections, the design equations for these springs are included and example problems are solved.

16.4.1 Bending

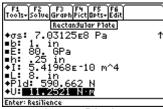
16.4.1.1 Rectangular Plate

The four equations in this section define the key design equations for a bending spring of rectangular cross section. The spring has a length, \mathbf{L} (m), width \mathbf{b} (m), and thickness, \mathbf{h} (m). The spring is subjected to a load, Pld (N), resulting in a stress, σs (Pa), and a deflection, δy (m). U (J), represent the energy in the spring and the area moment is given by \mathbf{I} (m⁴). The **first equation** computes, σs ,

for a given load, **Pld**. The **second equation** computes the area moment, **I**, while the **third equation** estimates the energy, **U**. The **last equation** links up deflection, δy , in terms of **Pld**, **L**, Young's modulus, **E** (Pa), and **I**.

$Pld = \frac{b \cdot h^2 \cdot \sigma s}{6 \cdot L}$	Eq. 1
$I = \frac{b \cdot h^3}{12}$	Eq. 2
$U = \frac{Pld \cdot \delta y}{2}$	Eq. 3
$\delta y = \frac{Pld \cdot L^3}{3 \cdot E \cdot I}$	Eq. 4

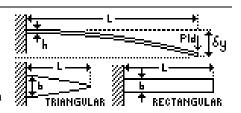
Variable	Description	Units
δу	Deflection	m
σs	Safe stress	Pa
b	Width	m
E	Young's modulus	Pa


Variable	Description	Units
h	Height	m
I	Area moment	m^4
L	Length	m
Pld	Load	N
U	Resilience	N⋅m

Example 16.4.1.1:

A rectangular plate spring is 8 inches long, 1 inch wide and 0.25 in thick. The material has a Young's modulus of 80 GPa, and flexes 1.5 inches. Find the maximum load the system can handle, the energy stored in the spring and the stress level for the maximum load.

Upper Display


Lower Display

Solution – Select **all the equations** to solve this problem. Select these by highlighting the equations and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\delta y = 1.5 \text{ in}$	$\sigma s = 7.03125E8 Pa$
b = 1 in	$I = 5.41968E-10 \text{ m}^4$
E = 80 GPa	Pld = 590.662 N
h = .25 in	$U = 11.2521 \text{ N} \cdot \text{m}$
L = 8 in	

16.4.1.2 Triangular Plate

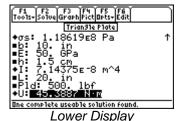
The four equations in this section define the key design equations for a bending spring of rectangular cross section. The spring has a length, \mathbf{L} (m), and width, \mathbf{b} (m), and thickness, \mathbf{h} (m). The spring is subjected to a load, \mathbf{Pld} (N), resulting in a stress, $\mathbf{\sigma}\mathbf{s}$ (Pa) and a deflection, $\mathbf{\delta}\mathbf{y}$ (m). \mathbf{U} (J), represent the energy in the spring and the area moment is given by \mathbf{I} (m⁴). The **first equation** computes $\mathbf{\sigma}\mathbf{s}$ for a given load,

Pld. The **second equation** computes the area moment, I, while the **third equation** estimates the energy in the spring, U. The **last equation** links up deflection, δy , in terms of **Pld**, L, Young's modulus, E (Pa), and I.

$$Pld = \frac{b \cdot h^2 \cdot \sigma s}{6 \cdot L}$$

$$I = \frac{b \cdot h^3}{12}$$
Eq. 2

$U = \frac{Pld \cdot \delta y}{2}$	Eq. 3
$\delta y = \frac{Pld \cdot L^3}{2 \cdot E \cdot I}$	Eq. 4


Variable	Description	Units
δу	Deflection	m
σs	Safe stress	Pa
b	Width	m
E	Young's modulus	Pa
h	Height	m
I	Area moment	m^4
L	Length	m
Pld	Load	N
U	Resilience	$N \cdot m$

Example 16.4.1.2:

A triangular plate 20 inches long with a base width of 10 inches and a thickness of 1.5 cm is subject to a load of 500 lbf. Find the deflection due to this load, the energy of the spring, and the maximum stress introduced into the material. The spring has a modulus of elasticity of 50 GPa.

Upper Display



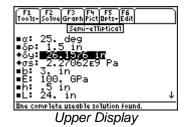
Solution – Select **all the equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
b = 10 in	$\delta y = 1.6069 \text{ in}$
E = 50 GPa	$\sigma s = 1.18619 E8 Pa$
h = 1.5 cm	$I = 7.14375 E-8 m^4$
L = 20 in	$U = 45.3887 \text{ N} \cdot \text{m}$
Pld = 500 lbf	

16.4.1.3 Semi-Elliptical

The two equations in this section specify key design properties for a semielliptical spring design. These equations are useful for designing springs for automobiles. The spring has a half-length, \mathbf{L} (m), width, \mathbf{b} (m), and a leaf thickness, \mathbf{h} (m). The spring is subjected to a load 2*Pld (N) resulting in a stress, σ s (Pa), and a deflection, δ y (m). The **first equation** computes σ s for

a load, **Pld**, given the number of leaves, **nf**, (unitless), and the no-load sag, δp (m). The **second equation** computes the deflection, δy (m), in terms of **L**, **nf**, **b**, **h**, **Pld**, δp , Young's modulus, **E** (Pa), and the half cone angle, α (rad).

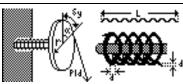

$$Pld = nf \cdot b \cdot h^{2} \cdot \frac{\sigma s}{6 \cdot (L + \delta p \cdot \tan(\alpha))}$$

$$\delta y = \frac{6 \cdot L^{2}}{nf \cdot b \cdot h^{3}} \cdot Pld \cdot \frac{L + \delta p \cdot \tan(\alpha)}{E}$$
Eq. 2

Variable	Description	Units
α	Half thread/cone angle	rad
δр	Sag without load	m
δу	Deflection	m
σs	Safe stress	Pa
b	Width	m
E	Young's modulus	Pa
Н	Height	m
L	Length	m
Nf	Number of coils/leaves	unitless
Pld	Load	N

Example 16.4.1.3:

A semi-elliptical spring has 6 leaves and is 24 inches long, 3 inches wide and .5 inches thick. The Young's modulus for the steel spring is 100 GPa. Find the deflection and stress for a 10000-lbf load. Assume the spring has initial sag of 1.5 inches. The half angle formed at the top of the spring is 25 degrees.


Solution – Select **both equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha = 25 \text{ deg}$	$\delta y = 26.1576 \text{ in}$
$\delta p = 1.5 \text{ in}$	$\sigma s = 2.27062E9 Pa$
b = 3 in	
E = 100 GPa	
h = .5 in	
L = 24 in	
nf = 6	
Pld = 10000 lbf	

16.4.2 Coiled Springs

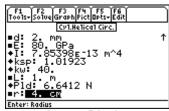
16.4.2.1 Cylindrical Helical - Circular wire

The seven equations in this section form the design equations for a cylindrical helical spring with a circular wire. The wire of the spring has a diameter, \mathbf{d} (m), a coil radius, \mathbf{r} (m), and length, \mathbf{L} (m). The spring is subjected to a load, \mathbf{Pld} (N), resulting in a stress, $\mathbf{\sigma}\mathbf{s}$ (Pa), and a deflection, $\mathbf{\delta}\mathbf{y}$ (m). \mathbf{U} (J) represents the energy in the spring and

the area moment is given by I (m^4). The **first equation** computes σ s for a given load, **Pld**. The **second equation** computes the area moment, I, while the **third equation** estimates the energy, I. The **fourth equation** links up deflection, I0, in terms of **Pld**, I1, Young's modulus, I2 (Pa), and I3. **Equations 6 and 7** define the geometry factor, I1, while the geometry ratio, I2, and I3. The last equation computes the deflection, I3, from the coil radius, I3, and the deflection angle, I3.

$Pld = \frac{\pi \cdot h^3 \cdot \sigma s}{32 \cdot r \cdot ksp}$	Eq. 1
$I = \frac{\pi \cdot d^4}{64}$	Eq. 2
$U = \frac{\sigma s^2 \cdot V}{8 \cdot E \cdot ksp^2}$	Eq. 3
$\delta y = \frac{2 \cdot r \cdot L \cdot \sigma s}{d \cdot E \cdot ksp}$	Eq. 4
$kw = \frac{2 \cdot r}{h}$	Eq. 5
$ksp = \frac{4 \cdot kw - 1}{4 \cdot kw - 4}$	Eq. 6
$\delta y = r \cdot \alpha$	Eq. 7

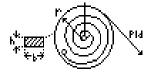
Variable	Description	Units
α	Half thread/cone angle	rad
δу	Deflection	m
σs	Safe stress	Pa
d	Diameter	m
E	Young's modulus	Pa
h	Height	m
I	Area moment	m^4
ksp	Geometry factor	unitless
kw	Geometry ratio	unitless


Variable	Description	Units
L	Length	m
nf	Number of coils/leaves	unitless
Pld	Load	N
r	Radius	m
U	Resilience	N⋅m
V	Volume of spring	m^3

Example 16.4.2.1:

A helical spring is to be designed with a circular wire. The wire used has a diameter 2 mm, and is wound as a spring of radius 4 cm. The total length of the wire is 1 m, and a safe stress is established at 50000 psi. Assume that the elastic modulus for the wire material is 80 GPa. Find the load the spring is designed to carry and the moment of inertia for the wire.

Upper Display


Lower Display

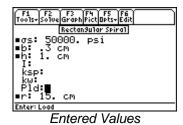
Solution – Select the **equations 1, 2, 4, 5** and **6** in this set to solve this problem. Select these by highlighting the equations and pressing **ENTER**]. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\sigma s = 50000 \text{ psi}$	$\delta y = .169117 \text{ m}$
d = 2 mm	$I = 7.85398 E-13 m^4$
E = 80 GPa	ksp = 1.01923
L = 1 m	kw = 40
r = 4 cm	Pld = 6.6412 N

16.4.2.2 Rectangular Spiral

The five equations in this section define the key design equations for a bending spring having a rectangular cross section. The spring has a width, \mathbf{b} (m), thickness, \mathbf{h} (m), and a radius, \mathbf{r} (m). The spring is subjected to a load, **Pld** (N) resulting in a stress, σ s (Pa), and a deflection, δ y (m). U (J) represents the energy in spring and the area moment is given by, \mathbf{I} (m⁴). The

first equation computes σs for a given load, **Pld**. The **second equation** computes the area moment, **I**, while the **third equation** estimates the energy, **U**, in terms of the volume of the spring, **V** (m³). The **last two equations** define the geometry factor **ksp** (unitless) and the geometry ratio **kw** (unitless).

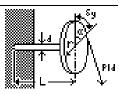

$$Pld = \frac{b \cdot d^2 \cdot \sigma s}{6 \cdot r \cdot ksp}$$
Eq. 1
$$I = \frac{b \cdot h^3}{12}$$
Eq. 2

$U = \frac{\sigma s^2 \cdot V}{8 \cdot E \cdot ksp^2}$	Eq. 3
$kw = \frac{2 \cdot r}{d}$	Eq. 4
$ksp = \frac{3 \cdot kw - 1}{3 \cdot kw - 3}$	Eq. 5

Variable	Description	Units
σs	Safe stress	Pa
В	Width	m
E	Young's modulus	Pa
h	Height	m
I	Area moment	m^4
ksp	Geometry factor	unitless
kw	Geometry ratio	unitless
Pld	Load	N
r	Radius	m
U	Resilience	N⋅m
V	Volume of spring	m^3

Example 16.4.2.2:

A spring design calls for a 0.3 cm wide bar of height 1 cm, is wound to a radius of 15 cm. The safe stress is 50000 psi. Find the area moment of the spring and load it is designed to handle.

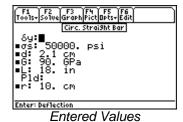

Solution – Select **equations 1, 2, 4,** and **5** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

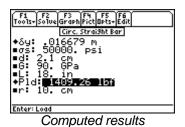
Given	Solution
$\sigma s = 50000 \text{ psi}$	$I = 2.5 E-10 m^4$
b = 0.3 cm	ksp = 1.02299
h = 1 cm	kw = 30
r= 15 cm	Pld = 112.33 N

16.4.3 Torsional Spring

16.4.3.1 Circular Straight Bar

The four equations in this section define the design equations for a spring designed as a circular straight bar. The spring bar has a diameter, \mathbf{d} (m), length \mathbf{L} , (m) and is subject to a load, \mathbf{Pld} (N), resulting in a stress, σs (Pa), and a deflection, δy (m). \mathbf{U} (J) represents the energy in the spring. The **first equation** computes σs for a given load \mathbf{Pld} . The **second equation** computes the spring energy, \mathbf{U} . The **last two equations** compute the deflection due to the load, δy (m).

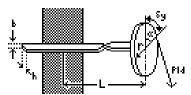



$Pld = \frac{\pi \cdot d^3 \cdot \sigma s}{16 \cdot r}$	Eq. 1
$U = \frac{\sigma s^2 \cdot V}{4 \cdot G}$	Eq. 2
$\delta y = \frac{2 \cdot r \cdot L \cdot \sigma s}{d \cdot G}$	Eq. 3
$\delta y = r \cdot \alpha$	Eq. 4

Description	Units
Half thread/cone angle	rad
Deflection	m
Safe stress	Pa
Diameter	m
Modulus of rigidity	Pa
Length	m
Load	N
Radius	M
Resilience	N⋅m
Volume of spring	m^3
	Half thread/cone angle Deflection Safe stress Diameter Modulus of rigidity Length Load Radius Resilience

Example 16.4.3.1:

A circular straight bar, 18 inches long, has a diameter of 2.1 cm, and a safe stress level of 50000 psi. The material of the spring has a bulk elasticity of 90 GPa. The radius of the circular plate is 10 cm. Find the load and deflection for such a spring.



Solution – Select equations **1** and **3** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\sigma s = 50000 \text{ psi}$	$\delta y = .016679 \text{ m}$
d = 2.1 cm	Pld = 1409.26 lbf
G = 90 GPa	
L = 18 in	
r = 10 cm	

16.4.3.2 Rectangular Straight Bar

The five equations in this section define the key design equations for a rectangular straight bar with length, L (m), and width, b (m), and thickness, h (m). The spring is subjected to a load, Pld (N), resulting in a stress σs , (Pa) and a deflection, δy (m). U (J) represents the energy in the spring. The **first equation** computes σs for a given load, Pld. The **second equation** computes the spring energy, U. The

third equation computes C, a geometry factor. The last two equations compute the deflection, δy , in alternate forms.

$$Pld = \frac{2 \cdot b^{2} \cdot h \cdot \sigma s}{9 \cdot r}$$

$$U = \frac{4 \cdot \sigma s^{2} \cdot V(C^{2} + 1)}{45 \cdot G}$$

$$Eq. 2$$

$$C = \frac{b}{h}$$

$$\delta y = \frac{\frac{4}{5} \cdot r \cdot L \cdot \sigma s \cdot (b^{2} + h^{2})}{b \cdot h^{2} \cdot G}$$

$$Eq. 3$$

$$Eq. 3$$

$$Eq. 4$$

Variable	Description	Units
α	Half thread/cone angle	rad
δу	Deflection	m
σ_s	Safe stress	Pa
b	Width	m
C	Constant: max when C=1	unitless
G	Modulus of rigidity	Pa
h	Height	m
L	Length	m
Pld	Load	N
r	Radius	m
U	Resilience	N⋅m

Variable	Description	Units
V	Volume of spring	m^3

Example 16.4.3.2:

A rectangular straight bar is 3 cm wide and 1 cm high. If the radius of the load from the torque center is 20 cm and the allowed safe stress is 10 GPa, find the allowed load.

Entered Values

Computed results

Solution – Select the first equation to solve this problem. Select by this highlighting the equation and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given
$\sigma s = 10 \text{ GPa}$
b = 3 cm
h = 1 cm
r = 20 cm

16.4.4 Axial Loaded

16.4.4.1 Conical Circular Section

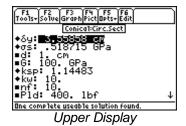
The five equations in this section define the key design equations for an axialloaded conical spring, having a circular cross section. The spring has a coil diameter, **d** (m), and is subject to a load, **Pld** (N), resulting in a stress, **c**s (Pa), and a deflection, δy (m). U (J) represents the energy in the spring. The **first equation** computes **o**s for a given load, **Pld**, spring radius, **r** (m), and wire diameter, **d**. The second equation computes the energy, U, in terms of bulk modulus, G (Pa), spring volume, V (m³), and σ s. The next two equations compute geometrical, unitless parameters, ksw and kw, that must be considered in computing load. The last equation calculates the deflection due to the load, **δy** (m).

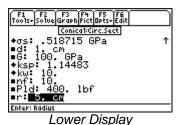
$$Pld = \frac{\pi \cdot d^3 \cdot \sigma s}{16 \cdot r \cdot ksp}$$

$$U = \frac{\sigma s^2 \cdot V}{8 \cdot G \cdot ksp^2}$$

$$Eq. 2$$

$$ksp = \frac{4 \cdot kw - 1}{4 \cdot kw - 4} + \frac{.615}{kw}$$

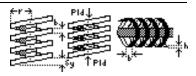

$$Eq. 3$$


$kw = \frac{2 \cdot r}{d}$	Eq. 4
$\delta y = \frac{\pi \cdot nf \cdot r^2 \cdot \sigma s}{d \cdot G \cdot ksp}$	Eq. 5

Variable	Description	Units
δу	Deflection	m
σ_s	Safe stress	Pa
d	Diameter	m
G	Modulus of rigidity	Pa
ksp	Geometry factor	unitless
kw	Geometry ratio	unitless
nf	Number of coils/leaves	unitless
Pld	Load	N
r	Radius	m
U	Resilience	N⋅m
V	Volume of spring	m^3

Example 16.4.4.1:

A 1 cm diameter wire is wound into a coil, 5 cm in radius, as an axially loaded spring. There are 10 rounds in the spring. If a load of 400 lbf is applied to this spring, what is the deflection and stress in the wire? Use a value of 100 GPa for the bulk modulus.


Solution – Select **equations 1, 3, 4, and 5** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
d = 1 cm	$\delta y = 3.55858 \text{ cm}$
G = 100 GPa	$\sigma s = .518715 \text{ GPa}$
nf = 10	ksp = 1.14483
Pld = 400 lbf	kw = 10
r = 5 cm	

16.4.4.2 Cylindrical - Helical

16.4.4.2.1 Rectangular Cross Section

The six equations in this section define the key design equations for a bending spring of rectangular cross section. The spring ribbon has a width, \mathbf{b} (m), and thickness, \mathbf{h} (m). The spring is subject to a load, **Pld** (N), resulting in a stress, σ s (Pa), and a deflection, δ y (m). U (J) represents the energy in the spring. The **first equation** computes σ s

for a given load, **Pld**. The **second equation** computes a parameter, **C**, that expresses the aspect ratio of the ribbon material. The **third equation** estimates the energy of the spring, **U**, from the volume, **V** (m^3), and bulk modulus, **G** (Pa). The **fourth equation** computes **ksp**, a geometric factor in terms of **kw**, computed by **equation 6**. The deflection, $\delta \mathbf{y}$, is computed by **equation 5**.

$$Pld = \frac{2 \cdot b^{2} \cdot h \cdot \sigma s}{9 \cdot r \cdot ksp}$$

$$C = \frac{b}{h}$$

$$U = \frac{4 \cdot \sigma s^{2} \cdot V \cdot (C^{2} + 1)}{45 \cdot G \cdot ksp^{2}}$$

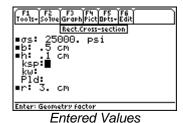
$$Eq. 2$$

$$ksp = \frac{4 \cdot kw - 1}{4 \cdot kw - 4} + \frac{.615}{kw}$$

$$\delta y = \frac{7 \cdot 2 \cdot \pi \cdot nf \cdot r^{3} \cdot Pld \cdot (b^{2} + h^{2})}{b^{3} \cdot h^{3} \cdot G}$$

$$Eq. 5$$

$$kw = \frac{2 \cdot r}{b}$$

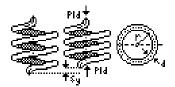

$$Eq. 6$$

Variable	Description	Units
δу	Deflection	m
σs	Safe stress	Pa
b	Width	m
C	Constant: maximum when C=1	unitless
G	Modulus of rigidity	Pa
h	Height	m
ksp	Geometry factor	unitless
kw	Geometry ratio	unitless
nf	Number of coils/leaves	unitless
Pld	Load	N
r	Radius	m
U	Resilience	$N \cdot m$

Variable	Description	Units
V	Volume of spring	m^3

Example 16.4.4.2.1:

Find the load for a helical ribbon 0.5 cm wide, 0.1 cm thick, wound as a spring 3 cm in radius. Assume that allowed stress is 25000 psi.



Solution – Select **equations 1, 4** and **6** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\sigma s = 25000 \text{ psi}$	kw = 12
b = .5 cm	ksp = 1.11943
h = .1 cm	Pld = 6.41034 lbf
r = 3 cm	

16.4.4.2.2 Circular Cross Section

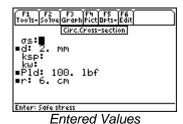
The five equations in this section represent the key design equations for a bending spring of rectangular cross section. The spring has a wire diameter, \mathbf{d} (m), and spring radius, \mathbf{r} (m). The spring is subject to a load, \mathbf{Pld} (N), resulting in a stress, $\mathbf{\sigma s}$ (Pa), and a deflection, $\mathbf{\delta y}$ (m). \mathbf{U} (J) represents the energy in the spring. The **first equation** computes $\mathbf{\sigma s}$ for a given load, \mathbf{Pld} . The unitless parameters, \mathbf{kw} and \mathbf{ksp} , represent the

impact of the geometry of the wire. **Equation 2** computes the geometric ratio of the spring, $\mathbf{k}\mathbf{w}$ (unitless). The **third equation** estimates the energy, \mathbf{U} , using the spring volume, \mathbf{V} (m³), and bulk modulus, \mathbf{G} (Pa). The deflection due to the load, $\delta \mathbf{y}$, is computed by **equation 4**. The **last equation** computes, $\mathbf{k}\mathbf{s}\mathbf{p}$ a geometric factor, in terms of $\mathbf{k}\mathbf{w}$, computed by **equation 2**.

$$Pld = \frac{\pi \cdot d^{3} \cdot \sigma s}{16 \cdot r \cdot ksp}$$

$$kw = \frac{2 \cdot r}{d}$$

$$U = \frac{\sigma s^{2} \cdot V}{4 \cdot G \cdot ksp^{2}}$$
Eq. 3


$$\delta y = \frac{4 \cdot \pi \cdot nf \cdot r^2 \cdot \sigma s}{d \cdot G \cdot ksp}$$

$$ksp = \frac{4 \cdot kw - 1}{4 \cdot kw - 4} + \frac{.615}{kw}$$
Eq. 5

Variable	Description	Units
δу	Deflection	m
σs	Safe stress	Pa
d	Diameter	m
G	Modulus of rigidity	Pa
ksp	Geometry factor	unitless
kw	Geometry ratio	unitless
nf	Number of coils/leaves	unitless
Pld	Load	N
r	Radius	m
U	Resilience	N⋅m
V	Volume of spring	m^3

Example 16.4.4.2.2:

A spring coil 2 mm in diameter is wound as a coil 6 cm in radius. A load of 100 lbf is applied. What is the stress in the spring coil?

Solution – Select **equations 1, 2** and **5** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
d = 2 mm	$\sigma s = 2.52092 \text{ E6 psi}$
Pld = 100 lbf	ksp = 1.02296
r = 6 cm	kw = 60

References:

- 1. Joseph E. Shigley and Charles R. Miseke, Mechanical Engineering Design, 5th Edition, McGraw-Hill Publishing company, New York, NY 1989
- 2. Eugene A. Avallone and Theodore Baumeister III, Standard Handbook for Mechanical Engineers, 9th Edition, McGraw-Hill Book Company, New York, 1984
- 3. Michael R Lindeburg, Mechanical Engineer's Reference Manual, Professional Publications, Belmont,
- 4. Joseph E. Shigley and Charles R. Miseke, Mechanical Engineering Design, 3rd Edition, McGraw-Hill Publishing company, New York, NY 1977

Chapter 17: Pumps and Hydraulics

This portion of the software engages in solving problems encountered in dealing with pumps and hydraulic machines. The equations are presented under, three classifications listed below.

♦ Basic Definitions

♦ Pump Power

♦ Centrifugal Pumps

17.1 Basic Definitions

This area of mechanical engineering is a rather specialized area and commands a vocabulary of its own. The **first equation** describes friction head, **hf** (m), defined as the resistance to flow in the pipe, fittings valves, entrance and exits. The friction head, **hf**, results from friction coefficient **f** (unitless), a velocity, \mathbf{V} (m/s), diameter, \mathbf{d} (m), the effective length, \mathbf{Le} (m), and the acceleration due to gravity, \mathbf{grav} (m/s²). The **second equation** defines the kinetic head, \mathbf{hv} (m), from the velocity, \mathbf{V} (m/s), and gravity, \mathbf{grav} . The **third** and **fourth equations** are the so-called atmospheric head, \mathbf{pa} (Pa), and pressure head, \mathbf{hp} (m), due to a pressure, \mathbf{p} (Pa). Fluid vapor pressure, \mathbf{pvp} (Pa), converted to an equivalent head is defined as \mathbf{hvp} (m) in **equation 5**. The **sixth** and **seventh equations** show the combined effects of the various heads defined here. For example, \mathbf{hd} (m), represents total dynamic discharge head, \mathbf{hd} (m), while, \mathbf{nps} (m), represents the net positive suction head.

$$hf = \frac{f \cdot Le \cdot V^{2}}{2 \cdot d \cdot grav}$$

$$Eq. 1$$

$$hv = \frac{V^{2}}{2 \cdot grav}$$

$$Eq. 2$$

$$ha = \frac{pa}{\rho \cdot grav}$$

$$Eq. 3$$

$$hp = \frac{p}{\rho \cdot grav}$$

$$Eq. 4$$

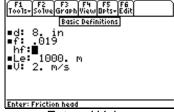
$$hvp = \frac{pvp}{\rho \cdot grav}$$

$$Eq. 5$$

$$hd = hs + hv + hf$$

$$Eq. 6$$

$$nps = ha + hs - hf - hvp$$


$$Eq. 7$$

Variable	Description	Units
ρ	Density	kg/m ³
d	Diameter	m
f	Friction coefficient	unitless

Variable	Description	Units
grav	Gravitational acceleration	9.80665 m/s^2
ha	Atmospheric head	m
hd	Discharge head	m
hf	Friction head	m
hp	Pressure head	m
hs	Static head	m
hv	Velocity head	m
hvp	Vapor pressure head	m
Le	Equivalent length	m
hps	Net positive suction head	m
р	Pressure	Pa
pa	Air pressure	Pa
pvp	Vapor pressure	Pa
V	Velocity	m/s

Example 17.1:

Water (T=20°C) flows through an eight-inch diameter asphalted cast iron pipe with a velocity of 2 m/s. The friction coefficient is computed from a Moody diagram to be 0.019. What is the head loss per kilometer length of pipe?

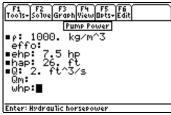
Entered Values

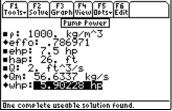
Computed results

Solution – Select the **first equation** to solve this problem. Select this by highlighting the equation and pressing [ENTER]. Press [F2] to display the variables. The gravitational constant, grav (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
d = 8 in	hf = 19.0695 m
f = .019	
Le = 1000 m	
V = 2 m/s	

17.2 Pump Power


The following equations compute the energy (head) added by a pump, hap (m), to a flowing fluid. The first equation is a modified version of the Bernoulli equation. The variables, po (m) and pi (m) are the pressures at the outlet and inlet of the pump. Vo (m/s) and Vi (m/s) are the flow velocities at the outlet and inlet sides of the pump; **zh2** (m) is the height of the pump outlet and **zh1** (m) is the height of the inlet. The **second equation** computes the hydraulic horsepower, **whp** (W) from the mass flow rate, **Qm** (kg/s), and head added by the pump, hap. Equation 3 computes the brake horsepower delivered to the pump shaft, **bhp** (W) from **whp** and the pump efficiency, **effp**. The friction horsepower, **fhp** (W), is calculated in equation 4. The electrical horsepower of the motor, ehp (W), is computed in equation 5. The sixth equation computes the overall efficiency of the pump, effo. The last equation computes the mass flow rate, **Om**, from the volume flow rate, **O** (m³/s), and the fluid density, ρ (kg/m³).


$hap = \frac{po}{\rho} - \frac{pi}{\rho} + \frac{Vo^2}{2 \cdot grav} - \frac{Vi^2}{2 \cdot grav} + zh2 - zh1$	Eq. 1
$whp = Qm \cdot grav \cdot hap$	Eq. 2
$bhp = \frac{whp}{effp}$	Eq. 3
fhp = bhp - whp	Eq. 4
$ehp = \frac{bhp}{effe}$	Eq. 5
$effo = \frac{whp}{ehp}$	Eq. 6
$Qm = Q \cdot \rho$	Eq. 7

Variable	Description	Units
ρ	Density	kg/m ³
bhp	Brake horsepower	W
effe	Motor efficiency	unitless
effo	Overall efficiency	unitless
effp	Pump efficiency	unitless
ehp	Electric horsepower to the motor	W
fhp	Frictional horsepower	W
grav	Gravitational acceleration	9.80665 m/s^2
hap	Head added by pump	m
pi	Pressure at inlet	Pa
po	Pressure at outlet	Pa
Q	Discharge rate	m³/s
Qm	Mass discharge rate	kg/s
Vi	Velocity at inlet	m/s
Vo	Velocity at outlet	m/s
whp	Hydraulic horsepower	W
zh1	Elevation at inlet	m
zh2	Elevation at outlet	m

Example 17.2:

An electric pump consuming 7.5 hp adds a 26 ft head to a flow rate of 2 ft 3 /s. What is the overall efficiency of the pump? Assume the density of water is 1000 kg/m^3 .

Entered Values

Computed results

Solution – Select **equations 2, 6** and **7** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. The entries and results are shown in the screen displays above.

Given	Solution
$\rho = 1000 \text{ kg/m}^3$	effo = .786971
ehp = 7.5 hp	Qm = 56.6337 kg/s
hap = 26 ft	whp = 5.90228 hp
$Q = 2 \text{ ft}^3/\text{s}$	

17.3 Centrifugal Pumps

17.3.1 Affinity Law-Variable Speed

The following equations compute the change in pump performance (discharge rate, head and brake horsepower) with variation of pump speed, assuming the efficiency remains constant.

$$\frac{Qd2}{Qd1} = \frac{n2}{n1}$$

$$\frac{h2}{h1} = \left(\frac{n2}{n1}\right)^2$$
Eq. 2
$$\frac{bhp2}{bhp1} = \left(\frac{n2}{n1}\right)^3$$
Eq. 3

Variable	Description	Units
bhp1	Brake horsepower, machine 1	W
bhp2	Brake horsepower, machine 2	W
h1	Head for machine 1	m
h2	Head for machine 2	m
n1	Revolutions per second, machine 1	1/s
n2	Revolutions per second, machine 2	1/s
Qd1	Discharge rate, machine 1	m^3/s
Od2	Discharge rate, machine 2	m^3/s

Example 17.3.1:

A 3600-rpm pump adds a head of 430 ft to a discharge rate of 150 gallons per minute. What will be the head and discharge rate for a similar pump at 2500 rpm?

Entered Values Computed results

Solution – Select the **first two equations** to solve this problem. Select these by highlighting the equations and pressing <code>ENTER</code>. Press <code>F2</code> to display the variables. Enter the values for the known parameters and press <code>F2</code> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
h1 = 430 ft	h2 = 207.369 ft
n1 = 3600 rpm	Qd2 = 104.167 gal/min
n2 = 2500 rpm	
Od1 = 150 gal/min	

17.3.2 Affinity Law-Constant Speed

The following equations compute the variation of pump parameters (discharge rate, head and brake horsepower) with impeller diameter, for a homologous pump assuming the pump speed remains constant.

$$\frac{Qd2}{Qd1} = \frac{d2}{d1}$$

$$\frac{h2}{h1} = \left(\frac{d2}{d1}\right)^2$$
Eq. 2
$$\frac{bhp2}{bhp1} = \left(\frac{d2}{d1}\right)^3$$
Eq. 3

Variable	Description	Units
bhp1	Brake horsepower, machine 1	W
bhp2	Brake horsepower, machine 2	W
d1	Diameter, machine 1	m
d2	Diameter, machine 2	m
h1	Head for machine 1	m
h2	Head for machine 2	m
Qd1	Discharge rate, machine 1	m^3/s
Qd2	Discharge rate, machine 2	m^3/s

226

Example 17.3.2:

What ratio of impeller diameter increase is needed to raise the head from 25 to 30 ft?

Entered Values

Computed results

Solution – Select the **second equation** to solve this problem. Since a ratio of diameter increase is being computed, enter an arbitrary value of 1 ft for **d1**. Select this by highlighting the equation and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
d1 = 1 ft	$d2 = 1.09545 \text{ ft } (\sim 10\% \text{ increase})$
h1 = 25 ft	
h2 = 30 ft	

17.3.3 Pump Similarity

These equations are used to predict the performance of homologous pump (2) from the known parameters of another pump. These similarity laws assume that both pumps operate in the turbulent region, have the same operating efficiency, specific speed, cavitation number and the same percentage of wide-open flow.

$\frac{n1 \cdot d1}{\sqrt{h1}} = \frac{n2 \cdot d2}{\sqrt{h2}}$	Eq. 1
$Qd1 \cdot d2^2 \cdot \sqrt{h2} = Qd2 \cdot d1^2 \cdot \sqrt{h1}$	Eq. 2
$\frac{bhp1}{bhp2} = \frac{\rho \cdot 1 \cdot d1^{2} \cdot h1^{1.5}}{\rho \cdot 2 \cdot d2^{2} \cdot h2^{1.5}}$	Eq. 3
$\frac{Qd1}{Qd2} = \frac{n1 \cdot d1^3}{n2 \cdot d2^3}$	Eq. 4
$\frac{bhp1}{bhp2} = \frac{\rho \cdot 1 \cdot n \cdot 1^3 \cdot d \cdot 1^5}{\rho \cdot 2 \cdot n \cdot 2^3 \cdot d \cdot 2^5}$	Eq. 5
$\frac{n1}{n2} = \sqrt{\frac{Qd2}{Qd1}} \cdot \left(\frac{h1}{h2}\right)^{\frac{3}{4}}$	Eq. 6

Variable	Description	Units
ρ1	Fluid density in machine 1	kg/m ³
ρ2	Fluid density in machine 2	kg/m ³
bhp1	Brake horsepower, machine 1	W
bhp2	Brake horsepower, machine 2	W

Variable	Description	Units
d1	Diameter, machine 1	m
d2	Diameter, machine 2	m
h1	Head for machine 1	m
h2	Head for machine 2	m
n1	Revolutions per second, machine 1	1/s
n2	Revolutions per second, machine 2	1/s
Qd1	Discharge rate, machine 1	m^3/s
Qd2	Discharge rate, machine 2	m^3/s

Example 17.3.3:

Compute the head and discharge capacity of a 8" pump operating at 1170 rpm from a similar pump having a diameter of 6", a discharge capacity of 1500 gallons per minute against a head pressure of 80 ft and operating at a speed of 1770 rpm.

Entered Values

Computed results

2350.28 gal/min

Solution – Select the first and fourth equations to solve this problem. Select these by highlighting the equations and pressing [ENTER]. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
d1 = 6 in	h2 = 62.1431 ft
d2 = 8 in	Qd2 = 2350.28 g
h1 = 80 ft	
n1 = 1770 rpm	
n2 = 1170 rpm	
Qd1 = 1500 gal/min	

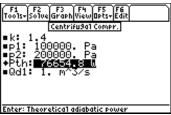
17.3.4 Centrifugal Compressor

Centrifugal compressors are used to increase pressures for compressible fluids. The theoretical power of a compressor, **Pth** (W), is computed for two cases in this section. The **first equation** assumes the compression process is adiabatic. The **second equation** computes **Pth** for an isothermal process in a water-cooled compressor. **Qd1** (m³/s) is the volumetric flow entering the pump, **p1** and **p2** (Pa) are the pressures at the inlet and outlet of the pump, respectively.

$$Pth = \frac{k}{k-1} \cdot Qd1 \cdot p1 \cdot \left(\left(\frac{p2}{p1} \right)^{\frac{k-1}{k}} - 1 \right)$$

$$Pth = p1 \cdot Qd1 \cdot \ln \left(\frac{p2}{p1} \right)$$
Eq. 2

228


Variable	Description	Units
k	Isentropic index	unitless
p1	Pressure 1	Pa
p2	Pressure 2	Pa
Pth	Theoretical power	W
Qd1	Discharge rate, machine 1	m^3/s

Example 17.3.4:

What is the theoretical power for an air compressor having an intake rate of $1 \text{ m}^3/\text{s}$, increasing the pressure from 100 kPa, to 200 kPa. The specific heat ratio (isentropic index) for air is k=1.4.

Entered Values

Computed results

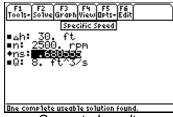
Solution – Select the **first equation** to solve this problem. Select this by highlighting the equation and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given Solution k = 1.4 Pth = 76654.8 W p1 = 100000 Pa p2 = 200000 Pa Qd1 = 1 m³/s

17.3.5 Specific Speed

The specific speed is a parameter used to rate the suitability of a pump or impeller type for a specific application. It is computed in the following equations from the pump parameters including the head coefficient, **CH**, discharge coefficient, **CQ**, rotational speed, **n** (1/s), head, Δh (m), and the rate of discharge, **Q** (m³/s).

$$ns = \frac{CQ^{.5}}{CH^{.75}}$$
Eq. 1
$$ns = \frac{n \cdot \sqrt{Q}}{(grav \cdot \Delta h)^{.75}}$$
Eq. 2
$$CH = \frac{\Delta h \cdot grav}{d^2 \cdot n^2}$$
Eq. 3
$$CQ = \frac{Q}{n \cdot d^3}$$
Eq. 4


Variable	Description	Units
Δh	Head	m
CH	Head coefficient	unitless
CQ	Discharge coefficient	unitless
d	Diameter	m
grav	Gravitational acceleration	9.80665 m/s^2
n	Revolutions per second	Hz
ns	Specific speed	unitless
Q	Discharge rate	m^3/s

Example 17.3.5:

Compute the specific speed for a pump having a rotational speed, 2500 rpm, a flow rate of 8 ft³/s and a head increase of 30 ft.

Entered Values

Computed results

Solution – Select the **second equation** to solve this problem. Select this by highlighting the equation and pressing ENTER. Press F2 to display the variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\Delta h = 30 \text{ ft}$	ns = .680555
n = 2500 rpm	
$Q = 8 \text{ ft}^3/\text{s}$	

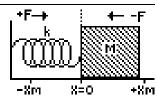
References

- 1. Michael R. Lindeburg, Mechanical Engineering Reference Manual, 8th Edition, Professional Publications, Belmont, CA 1990
- 2. John A. Roberson and Clayton T. Crowe, Engineering Fluid Mechanics, 5th Edition, Houghton Mifflin Company, Boston, MA, 1993

Chapter 18: Waves and Oscillation

This section contains equations describing oscillation or vibration of mechanical devices. The equations are presented under, three classifications listed below.

♦ Simple Harmonic Motion


Natural and Forced Vibrations

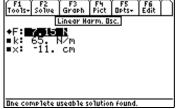
♦ Pendulums

18.1 Simple Harmonic Motion

18.1.1 Linear Harmonic Oscillation

These equations describe the oscillation of a mass, m (kg), attached to the end of an ideal spring. The **first equation** is called Hooke's Law to compute the restoring force of the spring, F (N), in a direction opposite to the direction of displacement, x (m), from its equilibrium position. **Equation 2** calculates the natural frequency of vibration, ω (rad/s), of the system with a mass, m, and a spring stiffness, k (N/m). **Equation 3**


computes the period of oscillation, **Tp** (s). The **last equation** calculates the oscillation frequency, **freq** (Hz).

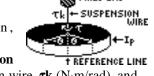

$F = -k \cdot x$	Eq. 1
$\omega = \sqrt{\frac{k}{m}}$	Eq. 2
$Tp = 2 \cdot \pi \cdot \sqrt{\frac{m}{k}}$	Eq. 3
$freq = \frac{1}{Tp}$	Eq. 4

Variable	Description	Units
ω	Radian frequency	rad/s
F	Restoring force	N
freq	Frequency	Hz
k	Stiffness	N/m
m	Mass	kg
Tp	Period	S
X	Displacement from fest position	m

Example 18.1.1:

A block is attached to a spring having a stiffness of 65 N/m. The block is pushed, compressing the spring to a distance 11 cm from its equilibrium position. What is the restoring force exerted by the spring?

Entered Values

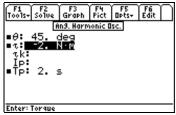

Computed results

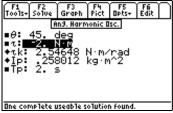
Solution – Use the **first equation** to solve this problem. Select it by highlighting the equation and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter a negative value for displacement (x=-11 cm) since we want to compute the force in the opposite direction. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
k = 65 N/m	F = 7.15 N
x = -11 cm	

18.1.2 Angular Harmonic Oscillation

These equations describe the angular oscillation of a mass, with a rotational moment of inertia, \mathbf{Ip} (kg·m²), attached to the end of a torsion spring. If the mass is twisted (or displaced) by an angle, $\boldsymbol{\theta}$ (rad), from its equilibrium position, the wire will exert a restoring torque, $\boldsymbol{\tau}$ (N·m), in the opposite direction.


FIXED END


$Tp = 2 \cdot \pi \cdot \sqrt{\frac{Ip}{\tau k}}$	Eq. 1
$\tau = -\tau k \cdot \theta$	Eq. 2
$\omega = \frac{2 \cdot \pi}{Tp}$	Eq. 3

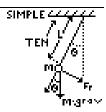
Variable	Description	Units
θ	Displacement angle	rad
τ	Torque	N⋅m
τk	Torsion constant	N·m/rad
ω	Radian frequency	rad/s
Ip	Rotational inertia	kg·m ²
Tp	Period of oscillation	s

Example 18.1.2:

A suspension wire has a restoring torque of -2 $N \cdot m$ at a displacement angle of 45° . A mass is then attached to the end of a suspension and allowed to oscillate freely. The period for one oscillation is 2 s. Compute the torsion constant of the spring and the rotational moment of inertia for the mass.

Entered Values

Computed results


Solution – Use the **first and second** equations to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\theta = 45 \text{ deg}$	$\tau k = 2.54648 \text{ N} \cdot \text{m/rad}$
$\tau = -2 \text{ N} \cdot \text{m}$	$Ip = .258012 \text{ kg} \cdot \text{m}^2$
Tp = 2 s	

18.2 Pendulums

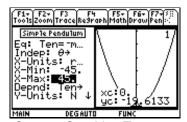
18.2.1 Simple Pendulum

The following equations describe the harmonic motion of a mass, m (kg), hanging from an ideal string (massless, non-stretchable) and having a length, L (m). The angle of displacement, θ (rad), is relative to a vertical line connecting the string to a mount. Equation 1 computes the period of oscillation, Tp (s), for a simple pendulum with a string length, L. Equation 2 calculates the tension, Ten (N), in the string at a displacement angle, θ , from the equilibrium position. Equation 3 computes the restoring force, **Fr** (N), active in forcing the pendulum to its

equilibrium position. The last equation calculates the oscillation frequency of the pendulum, freq (Hz).


$Tp = 2 \cdot \pi \cdot \sqrt{\frac{L}{grav}}$	Eq. 1
$Ten = -m \cdot grav \cdot \cos(\theta)$	Eq. 2
$Fr = m \cdot grav \cdot \sin(\theta)$	Eq. 3
$freq = \frac{1}{Tp}$	Eq. 4

Variable	Description	Units
θ	Displacement angle	rad
Fr	Restoring force	N
freq	Frequency	Hz
grav	Gravitation acceleration constant	9.08665 m/s^2
L	Length	m
m	Mass	kg


Variable	Description	Units
Ten	Tension	N
Tp	Period of oscillation	S

Example 18.2.1:

Compute the oscillation period and frequency for a simple pendulum having a cord length of 40 cm. If a mass, weighing 2 kg, is attached to the end of the pendulum, what is the maximum tension exerted by the gravitational field and angle of displacement for this tension?

Step 1: Computed results

Step 2: Graphing Ten vs. θ (Tracing the minimum value of Ten using F3: Trace)

Solution – This solution can be computed in two steps. The TI graphing features will be used in the second part. **Step 1:** use the **first** and **fourth equations** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter a value for $\mathbf{L} = 40$ cm and press $\boxed{\text{F2}}$ to solve for \mathbf{Tp} and \mathbf{freq} . The entries and results are shown in the screen displays above. Note that the gravitational acceleration constant, $\mathbf{grav} = 9.08665 \text{ m/s}^2$, is automatically inserted into the calculation by the software and does not appear in the variable list.

Step 2: Check the MODE settings of your calculator to make sure the ANGLE mode is set to DEGREE. Access the mode screen by pressing MODE, and move the highlight bar to ANGLE. If 'RADIAN' is listed, press the right arrow key ① and select DEGREE. Press ENTER twice to save the settings and return list of variables.

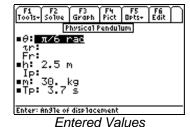
Continuing the solution for the example, press $\boxed{\texttt{ESC}}$ to view the equations; select the **second equation**; press $\boxed{\texttt{F2}}$ to display the list of variables; and enter $\mathbf{m} = 2$ kg. Now press $\boxed{\texttt{F3}}$ to graph the newly selected equation. Select the second equation, identify $\mathbf{\theta}$ as the **Independent** variable and **ten** as the **Dependent** variable.

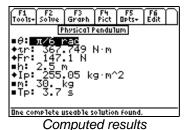
Enter X-Min: -45 and X-Max: 45.

Press $\boxed{53}$ to graph the selected equation. In this case, the graph appears in the right side of the screen. Press $\boxed{2nd}$ and \boxed{APPS} to switch the active window from ME•Pro to the **Graph** interface. To switch back to ME•Pro press $\boxed{2nd}$ and \boxed{APPS} . Press $\boxed{53}$ **Trace** and move the cursor to the minimum point (θ =0, **Ten**=-19.6 N). The value for **ten** is negative since the force is in a direction opposite to **ten** in the diagram. An alternative method for finding the minimum: Press $\boxed{55}$ **Math**, $\boxed{3}$: **Minimum**. Move the cursor to a location to the left of the minimum for the '**Lower Bound**' and press \boxed{ENTER} , and then move the cursor to a location on the right of the minimum and press \boxed{ENTER} for the '**Upper Bound**'. To switch back to ME•Pro press $\boxed{2nd}$ \boxed{APPS} .

Given	Solution
L = 40 cm (Step 1)	freq = .788044 Hz
m = 2 kg (Step 2)	Tp = 1.26896 s
	Ten = -19.6133 (from Graph)

18.2.2 Physical Pendulum


A physical pendulum represents the behavior of real pendulums to a greater degree than the 'simple' case. The equations in this section describe a physical pendulum, having a mass, \mathbf{m} (kg), and a rotational moment of inertia at the pivot point, \mathbf{Ip} (kg·m²), with its center of mass located at a distance, \mathbf{h} (m), from the pivot point. When the pendulum is displaced from its equilibrium position at an angle, $\mathbf{\theta}$ (rad), relative to the gravitational field, a restoring torque, $\mathbf{\tau r}$ (N·m) appears (Eq.1). The period of motion, \mathbf{Tp} (s), for the physical pendulum can be calculated from \mathbf{Ip} , \mathbf{m} , and \mathbf{h} using equation 2. The restoring force, \mathbf{Fr} (N), acting at the center of mass is computed in the last equation.


$\tau r = m \cdot \operatorname{grav} \cdot h \cdot \sin(\theta)$	Eq. 1
$Tp = 2 \cdot \pi \cdot \sqrt{\frac{Ip}{m \cdot grav \cdot h}}$	Eq. 2
$Fr = \frac{\tau r}{h}$	Eq. 3

Variable	Description	Units
θ	Displacement angle	rad
τr	Restoring torque	N⋅m
Fr	Restoring force	N
grav	Gravitation acceleration constant	9.08665 m/s^2
h	Distance from pivot to center to	m
Ip	Rotational inertia	kg·m ²
m	Mass	kg
Tp	Period of oscillation	S

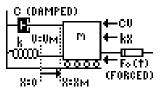
Example 18.2.2:

A steel cord weighing 30 kg and having a length of 5 m is suspended from a hook. What is the restoring torque and restoring force, at the center of mass, for a displacement angle of $\pi/6$ rad? Assume the center of mass is located at the midpoint of the cable. If the period of oscillation is 3.7 seconds, what is the moment of inertia of the cable at the pivot point?

Solution – Select **all the equations** to solve this problem. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\theta = \pi/6 \text{ rad}$	$\tau r = 367.749 \text{ N} \cdot \text{m}$
h = 2.5 m	Fr = 147.1 N
m = 30 kg	$Ip = 255.05 \text{ kg} \cdot \text{m}^2$
Tp = 3.7 s	

18.2.3 Torsional Pendulum


This menu heading reflects the contents of section 18.1.2 'Angular Harmonic Motion' and contains the same equation set.

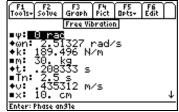
18.3 Natural and Forced Vibrations

18.3.1 Natural Vibrations

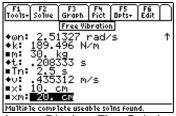
18.3.1.1 Free Vibration

These equations compute the position and velocity of a free, linear, undamped oscillating system with respect to time, t (s). The **first** equation computes the displacement, x (m), of the oscillating system, relative to its equilibrium position (x=0) at time, t. The second equation computes the linear velocity of the system, v (m/s), at position, x, and time, t. Equations 3 and 4 relate the angular offset, ψ (rad), used in

equations 1 and 2, to the initial displacement, \mathbf{xo} (m), the velocity at \mathbf{t} =0, \mathbf{vo} (m/s), and the natural oscillation frequency, \mathbf{om} (rad/s). Equation 5 computes the maximum displacement amplitude from the equilibrium position, \mathbf{xm} (m). Equation 6 computes the maximum velocity of the oscillating object, \mathbf{vm} (m/s). Equation 7 calculates the angular offset, $\mathbf{\psi}$, from the initial position and velocity, \mathbf{xo} and \mathbf{vo} , and the natural frequency, \mathbf{om} . Equation 8 computes the natural vibration frequency, \mathbf{om} , of the oscillating system from the mass of the object, \mathbf{m} (kg), attached to a spring having a stiffness, \mathbf{k} (N/m). The last equation calculates the period, \mathbf{Tn} (s), of the natural vibration.


$x = xm \cdot \sin(\omega n \cdot t + \psi)$	Eq. 1
$v = xm \cdot \omega n \cdot \cos(\omega n \cdot t + \psi)$	Eq. 2
$xo = xm \cdot \sin(\psi)$	Eq. 3
$vo = xm \cdot \omega n \cdot \cos(\psi)$	Eq. 4
$xm = \sqrt{xo^2 + \left(\frac{vo}{\omega n}\right)^2}$	Eq. 5
$vm = xm \cdot \omega n$	Eq. 6

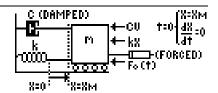
$\psi = \tan^{-1} \left(\frac{xo \cdot \omega n}{vo} \right)$	Eq. 7
$\omega n = \sqrt{\frac{k}{m}}$	Eq. 8
$Tn = \frac{2 \cdot \pi}{\omega n}$	Eq. 9


Variable	Description	Units
Ψ	Phase angle	rad
ώn	Natural frequency	rad/s
k	Stiffness	N/m
m	Mass	kg
t	Time	s
Tn	Natural oscillation period	S
V	Velocity	m/s
vm	Maximum velocity	m/s
vo	Initial velocity	m/s
X	Displacement	m
xm	Maximum displacement from rest position	m
xo	Initial displacement	m

Example 18.3.1.1:

A mass (30 kg) attached to a spring oscillates once every 2.5 seconds and has a maximum displacement amplitude of 22 cm. If a stopwatch is set when the mass passes the equilibrium position of the spring, at what time will the mass reach a distance halfway between the equilibrium position and the position of maximum displacement? What will be the linear velocity at that time?

Upper Display: First Solution
Arbitrary Integer, 0 (Principal solution)


Lower Display: First Solution Arbitrary Integer, 0 (Principal solution)

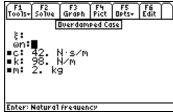
Solution – Select Equations 1, 2, 8 and 9 to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. Select an arbitrary integer of 0 to compute the principal solution (the principal solution, P, in a periodic trigonometric function, trig (...), is $P=\text{trig }(\theta+n\cdot\pi)$ and n is the arbitrary integer). Select '1' in the 'Multiple solutions dialog box to display the first solution. The entries and results are shown in the screen displays above.

Given	Solution
$\psi = 0$ rad	$\omega n = 2.51327 \text{ rad/s}$
m = 30 kg	k = 189.496 N/m
Tn = 2.5 s	t = .208333 s
x = 10 cm	v = .435312 m/s
xm = 20 cm	

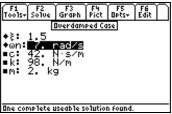
18.3.1.2 Overdamped Case (ξ>1)

A damped oscillation system has a mechanism for removing mechanical energy from the vibrating system in the form of heat. An over damped vibrating system is defined as the case where the damping ratio, $\xi>1$ (Eq.4), and the roots $\lambda 1$ and $\lambda 2$ (Equations 5 and 6) are distinct real negative numbers. The dashpot, in the diagram to the right, has a viscous damping

coefficient of \mathbf{c} (N·s/m) and exerts a frictional force proportional to the velocity of the oscillating mass, \mathbf{m} (kg). **Equation 1** computes the displacement of the mass from the rest position, \mathbf{x} (m), at time, \mathbf{t} (s), following release of the object. **Equations 2** and $\mathbf{3}$ calculate the constants, $\mathbf{A1}$ (m) and $\mathbf{A2}$ (m), for the case when the timer is started (\mathbf{t} =0) when the mass is located at the amplitude of maximum displacement, \mathbf{xm} (m), and the linear velocity ceases, ($\mathbf{dx}/\mathbf{dt} = \mathbf{0}$). **Equation 4** calculates the damping ratio, $\mathbf{\xi}$, from the viscous damping coefficient, \mathbf{c} , and the natural radian frequency, \mathbf{on} (rad/s). **Equations 5** and $\mathbf{6}$ compute the roots, $\mathbf{\lambda 1}$ (rad/s) and $\mathbf{\lambda 2}$ (rad/s) from the damping ratio, $\mathbf{\xi}$. The **last two equations** compute the natural frequency of the oscillating system, \mathbf{on} (rad/s) and the natural period, \mathbf{Tn} (s).


$x = A1 \cdot e^{\lambda 1 \cdot t} + A2 \cdot e^{\lambda 2 \cdot t}$	Eq. 1
$A1 = xm \cdot \frac{\lambda 2}{\lambda 2 - \lambda 1}$ (When x=xm and dx/dt=0 at t=0)	Eq. 2
$A2 = \frac{-xm \cdot \lambda 1}{\lambda 2 - \lambda 1}$ (When x=xm and dx/dt=0 at t=0)	Eq. 3
$\xi = \frac{c}{2 \cdot \pi \cdot \omega n}$	Eq. 4
$\lambda 1 = \omega n \cdot \left(-\xi + \sqrt{\xi^2 - 1} \right)$	Eq. 5
$\lambda 2 = \omega n \cdot \left(-\xi - \sqrt{\xi^2 - 1} \right)$	Eq. 6
$\omega n = \sqrt{\frac{k}{m}}$	Eq. 7
$Tn = \frac{2 \cdot \pi}{\omega n}$	Eq. 8

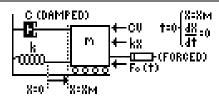
Variable	Description	Units
λ1	Natural radian frequency 1	rad/s


Variable	Description	Units
λ2	Natural radian frequency 2	rad/s
ξ	Damping ratio	unitless
ωn	Natural frequency	rad/s
A1	Constant, when t=0, x=xm	m
A2	Constant, when $t=0$, $x=xm$	m
c	Viscous damping coefficient	$N \cdot s/m$
k	Stiffness	N/m
m	Mass	kg
t	Time	S
Tn	Natural oscillation period	S
X	Displacement from rest position	m
xm	Maximum displacement from rest position	m

Example 18.3.1.2:

What is the damping ratio for a damped oscillating system having a spring stiffness of 98 N/m, a viscous damping coefficient of 42 N·s/m, and a mass of 2 kg?

Entered Values

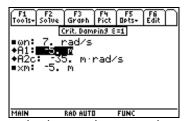

Computed results

Solution – Select the **fourth** and **seventh equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

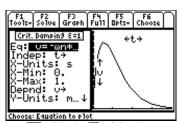
Given	Solution
$c = 42 \text{ N} \cdot \text{s/m}$	$\xi = 1.5$
k = 98 N/m	$\omega n = 7 \text{ rad/s}$
m = 2 kg	

18.3.1.3 Critical Damping (ξ=1)

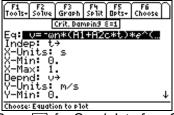
Critical damping exists when the frequency of the damping mechanism is the same as the natural frequency, ωn (rad/s), or ξ =1. A critically damped system approaches equilibrium faster than the overdamped case. The following equations compute the unique case when the object is released at t=0 (x=xm (m) and dx/dt=0). The coefficients for critically damped case (λ 1

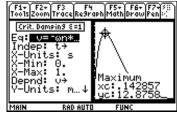

and $\lambda 2$ in the overdamped case, section 18.3.1.2), are equivalent to the natural vibration frequency (i.e. $\lambda 1 = \lambda 2 = -\omega n$). Equation 1 computes the displacement from the equilibrium position, \mathbf{x} (m), at time, \mathbf{t} (s), following release. Equation 2 computes the linear velocity, \mathbf{v} (m/s), at time, \mathbf{t} . Equations 3 and 4 compute the coefficients, A1 (m) and A2c (m·rad/s), from the initial (maximum) displacement, $\mathbf{xm} = \mathbf{xo}$ (m) and the natural oscillation frequency, ωn . The fifth equation computes ωn from the spring constant, \mathbf{k} (N/m), and the mass of the oscillating object, \mathbf{m} (kg). The last equation calculates the period of natural vibration, \mathbf{Tn} (s).

$x = (A1 + A2c \cdot t) \cdot e^{-\omega n \cdot t}$	Eq. 1
$v = -\omega n \cdot (A1 + A2c \cdot t) \cdot e^{-\omega n \cdot t} + A2c \cdot e^{-\omega n \cdot t}$	Eq. 2
A1 = xm (When x=xm and dx/dt=0 at t=0)	Eq. 3
$A2c = A1 \cdot \omega n$ (When x=xm and dx/dt=0 at t=0)	Eq. 4
$\omega n = \sqrt{\frac{k}{m}}$	Eq. 5
$Tn = \frac{2 \cdot \pi}{\omega n}$	Eq. 6


Variable	Description	Units
ωn	Natural frequency	rad/s
A1	Constant, when $t=0$, $x=xm$	m
A2c	Constant, when $t=0$, $x=xm$	m·rad/s
k	Stiffness	N/m
m	Mass	kg
t	Time	S
Tn	Natural oscillation period	S
V	Velocity	m/s
X	Displacement from rest position	m
xm	Maximum displacement from rest position	m

Example 18.3.1.3:


A critically damped system has a natural oscillation frequency of 7 rad/s and an initial displacement of 5 m. What is the maximum linear velocity between the time of release and the time the system has reached equilibrium?


1: Entered values and computed results.

3: F5: Math, 4: Maximum.
Select Lower and Upper bounds.

2: Press F3 for Graph Interface Screen.

4: Result for maximum velocity.

C (DAMPED)

Solution – This problem can be solved in **two steps**. **First**, compute the constants, **A1** and **A2c**, from **xm** and **\omega** using the **third** and **fourth equations**. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters. Enter a negative value for displacement since we want to compute a positive velocity in the other direction. Press F2 to solve for the unknown variables: Frame 1. Next, press F3: **Graph** and use the right ① arrow key to display the equations in this set. Select the second equation by highlighting and pressing ENTER. Select t as the **independent** variable and **v** as the **dependent**. Enter **Xmin = 0** and **Xmax=1**, **Ymin=0** and **Ymax=15** (Frame 2). Deselect **Autoscale**. Press F3: **Graph** to plot the equation on the right side of the screen. **Press** 2nd APPS to switch from ME•Pro to the graphing window. The maximum velocity occurs at the maximum of the graph. To locate the maximum, Press F5: Math and 4: Maximum. Move the cursor to a point on the left side of the curve using the left arrow key ① and press ENTER. (Frame 3). Next move to the right side of the curve using the right arrow key ① and press ENTER. The x and y coordinate of the maximum are displayed (Frame 4). **To switch back to ME•Pro**, **Press** 2nd APPS.

18.3.1.4 Underdamped Case (ξ<1)

The following equations compute the vibration properties of an

-cu 먭 underdamped oscillation system. An underdamped system does not cease U:UM ← kg oscillating after a single period (ξ <1). The **first equation** computes the displacement, \mathbf{x} (m), of the oscillating system relative to its equilibrium position, x=0, at time, t(s). The **second equation** computes the linear 8=0 ⁵ ⁵X=XM velocity of the system, \mathbf{v} (m/s), at position, \mathbf{x} , and time, \mathbf{t} . Equations 3 and 4 calculate the initial displacement, xo (m), and velocity, vo (m/s), at t=0. Equation 5 computes the damping frequency, ωd (rad/s), for a system having a damping ratio, **\xi**<1. Equation 6 computes the natural vibration frequency, on, of the oscillating system from the mass of the object, m (kg), attached to a spring having a stiffness, k (N/m). Equation 7 computes the maximum displacement amplitude from the equilibrium position, xm (m). Equation 8 computes the angular offset, ψ (rad), at t=0. Equations 9 and 10 calculate the damping ratio, ξ , from either an observed value of the logarithmic damping factor, δ (m), or the viscous damping factor, c (N·s/m). & represents the decrease in oscillation amplitude, xm, vs, time due to damping. The last two equations calculate the periods of the damping oscillation, Td (s) and the natural frequency of vibration, Tn (s).

$$x = xm \cdot e^{-\xi \cdot \omega n \cdot t} \cdot \sin(\omega d \cdot t + \psi)$$

$$v = -\xi \cdot \omega n \cdot xm \cdot e^{-\xi \cdot \omega n \cdot t} \cdot \sin(\omega d \cdot t + \psi) + xm \cdot e^{-\xi \cdot \omega n \cdot t} \cdot \omega d \cdot \cos(\omega d \cdot t + \psi)$$

$$Eq. 2$$

$$xo = xm \cdot \sin(\psi)$$

$$Eq. 3$$

$$vo = -\xi \cdot \omega n \cdot xm \cdot \sin(\psi) + \omega d \cdot xm \cdot \cos(\psi)$$

$$Eq. 4$$

$$\omega d = \omega n \cdot \sqrt{1 - \xi^2}$$

$$Eq. 5$$

$$\omega n = \sqrt{\frac{k}{m}}$$

$$Eq. 6$$

$$xm = \sqrt{xo^2 + \left(\frac{vo}{\omega n}\right)^2}$$

$$\psi = \tan^{-1}\left(\frac{xo \cdot \omega n}{vo}\right)$$

$$\xi = \frac{\delta}{\sqrt{4 \cdot \pi^2 + \delta^2}}$$

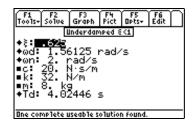
$$\xi = \frac{c}{2 \cdot m \cdot \omega n}$$

$$Eq. 9$$

$$Eq. 10$$

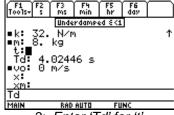
$$Td = \frac{2 \cdot \pi}{\omega d}$$

$$Eq. 11$$

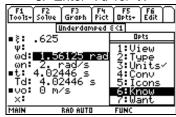

$$Tn = \frac{2 \cdot \pi}{\omega n}$$

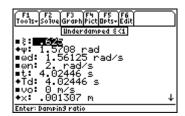
$$Eq. 12$$

Variable	Description	Units
δ	Logarithmic decrement	unitless
ξ	Damping ratio	unitless
Ψ	Phase angle	rad
ωd	Damping frequency	rad/s
ωn	Natural frequency	rad/s
c	Viscous damping coefficient	$N \cdot s/m$
k	Stiffness	N/m
m	Mass	kg
t	Time	S
Td	Underdamped oscillation period	S
Tn	Natural oscillation period	S
v	Velocity	m/s
vo	Initial velocity	m/s
X	Displacement	m
xm	Maximum displacement from rest position	m
XO	Initial displacement	m

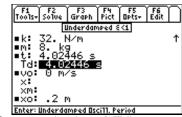

Example 18.3.1.4:

An 8 kg mass attached to a damped spring is released at a distance of 0.2 m from its equilibrium position. The spring stiffness is 32 N/m and the viscous damping coefficient is $20~\text{N}\cdot\text{s/m}$. Compute the amplitude after one complete oscillation.



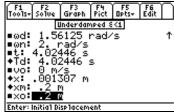

1: Entered Values and computed Results

Enter 'Td' for 't'.



5: Use F5: Opts, 6: Know to designate previously computed values as Known '...

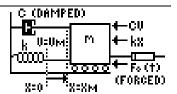
7: Results: Upper Display


2: Equations Screen

4: Computed value of 'Td' appears for 't'.

6: Press [F2]: Solve. Select the 4th possible solutions ($\psi = \pi/2$).

8: Results: Lower Display

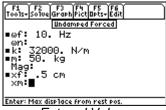

Solution – Compute this solution in two steps. The time, t, of a complete oscillation is equivalent to the damped period, **Td**. The computed value of **Td** will need to be entered for **t** in the first equation. To compute the period of the damped oscillation, **Td**, select the **fifth**, **sixth**, **tenth**, and **eleventh** equations. Select these by highlighting the equations and pressing [ENTER]. Press [F2] to display the variables. Enter the values for the known parameters (c, k, and m) and press [F2] to solve for the unknown variables (cd, on, ξ , and Td). Next, press [ESC] to view the equation list. Deselect Equations 5, 6 and 10 by highlighting the equations and pressing [ENTER] and select equations 1, 7 and 8; i.e.: Equations 1, 7, 8, and 11 should now be selected. Press [F2] to display the variables. Move the cursor to each of the variables, ξ , on, and od. Press [F5]: Opts, [6]: Know to select each of the previously computed values to an entered value for computations. For t, enter the variable 'Td' and press ENTER, the computed value of **Td** will appear for **t**. Enter values for **x0**, **v0** and press [F2] to solve for the unknown variables (ψ , **x** and xm). When the ME \bullet Pro dialogue box appears, select the fourth solution ($\psi = \pi/2$). The entries and results are shown in the screen displays above.

Given	Solution
$c = 20 \text{ N} \cdot \text{s/m}$	$\xi = .625$
k = 32 N/m	$\psi = 1.5708 \text{ rad}$
m = 8 kg	$\omega d = 1.56125 \text{ rad/s}$
vo = 0 m/s	$\omega n = 2 \text{ rad/s}$
xo = .2 m	t = 4.02446 s (computed value of Td)
	Td = 4.02446 s
	x = .001307 m (less than 1% of xm)
	xm = 2 m

18.3.2 Forced Vibrations

18.3.2.1 Undamped Forced Vibration

These equations describe the steady state oscillation conditions of an undamped system, experiencing an external periodic force, \mathbf{Fo} (N). The undamped system has a natural vibration frequency, \mathbf{on} (rad/s). The external vibration force has a frequency and magnitude of \mathbf{of} (rad/s) and \mathbf{Fo} . The **first equation** computes the particular solution (solution of the system in steady state) of the position, \mathbf{xp} (m), vs. time, \mathbf{t} (s). The


equation assumes the velocity ceases, (dx/dt) = 0, when xp = xm at t = 0 s. The amplitude of the forced, undamped system, xm (m), is computed in equation 2 from the amplitude of the forced oscillation, xf (m), the angular frequency of the natural motion, ωn , and the forced motion, ωf . The magnification factor, Mag, in Equation 3, computes the degree of resonance between the forced and natural resonance frequencies. As ωf approaches ωn , the limits of the attached spring are tested as Mag and xm approach infinity. This condition is to be avoided. If $\omega f < \omega n$, Mag>0 and the vibration is in phase with the force, Fo. If $\omega f > \omega n$, the vibration is out of phase with the external force, Fo and Mag<0. Equation 4 computes the natural frequency of the oscillating system, ωn , from the spring constant, k (N/m), and the mass attached to the spring, m (kg). Equation 5 calculates the amplitude of the external force, Fo, on the oscillating system.


$xp = xm \cdot \cos(\omega f \cdot t)$	Eq. 1
$xm = \frac{xf}{1 - \left(\frac{\omega f}{\omega n}\right)^2}$	Eq. 2
$Mag = \frac{1}{1 - \left(\frac{\omega f}{\omega n}\right)^2}$	Eq. 3
$\omega n = \sqrt{\frac{k}{m}}$	Eq. 4
$Fo = k \cdot xf$	Eq. 5

Variable	Description	Units
ωf	Forced radian frequency	rad/s
ωn	Natural frequency	rad/s
Fo	Magnitude of driving force	N
k	Stiffness	N/m
m	Mass	kg
Mag	Magnification	unitless
t	Time	S
xf	Forced displacement amplitude	m
xm	Maximum displacement of steady state	m
xp	Displacement: particular solution	m

Example 18.3.2.1:

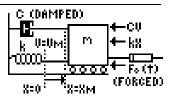
A machine weighing 50 kg is mounted on four springs, each having a spring constant of 8000 N/m. The machine is mounted on a vibrating platform, having a vibration frequency of 10 Hz and a displacement of 0.5 cm. What is the maximum displacement of the forced system under steady-state conditions? Is the forced vibration in or out of phase with the natural vibration frequency? What is the maximum displacement of the forced system?

Entered Values

Computed results

Solution – Select the **second, third,** and **fourth** equations to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given ωf = 10 Hz k = 32000 (4 x 80


k = 32000 (4 x 8000) N/m m = 50 kg xf = .5 cm

Solution

ωn = 4.02634 Hz Mag = -1.9348 (out of phase) xm = -.09674 cm (out of phase)

18.3.2.2 Damped Forced Vibration

These equations describe the features of a damped oscillating system experiencing a periodic, external vibration force having an angular frequency, ωf (rad/s) and amplitude, xf (m). The **first equation** computes the particular solution of the displacement amplitude, xp (m), at time, t (s), for the steady state condition of forced oscillation. The equation assumes (dx/dt) = 0 and xp = xm at $t = \psi/\omega f$. Equation 2 calculates the maximum

displacement of the damped, forced system, \mathbf{xm} (m), from the natural frequency of the oscillating system, \mathbf{vm} (rad/s), the damping ratio, $\boldsymbol{\xi}$, the forced amplitude, \mathbf{xf} , and the frequency, \mathbf{vf} , of the external vibration. The phase offset, $\boldsymbol{\psi}$ (rad), or the degree the amplitude of response, \mathbf{xp} (m), lags the amplitude of the applied force, \mathbf{xf} , is computed in **equation 3**. The magnification factor, \mathbf{Mag} (unitless), represents a degree of resonance between the forced, \mathbf{vf} , and natural, \mathbf{vm} , oscillation frequencies is computed in **Equation 4**. Resonance is achieved when $\boldsymbol{\psi} = 90$ deg for all values of $\boldsymbol{\xi}$. **Equation 5** computes the damping ratio, $\boldsymbol{\xi}$, from the viscous damping coefficient, \mathbf{c} (N·s/m), of the damping system. The damping force ($\mathbf{c} \cdot \mathbf{v}$) is proportional to the velocity of the spring, \mathbf{v} (m/s). The maximum damping occurs when $\mathbf{vf} = \mathbf{vm}$. **Equation 6** computes the natural frequency of the oscillating system, \mathbf{vm} , from the spring stiffness, \mathbf{k} (N/m), and the mass attached to the spring, \mathbf{m} (kg). **Equation 7** calculates the maximum force, \mathbf{Fo} (N), applied to the base of the system, as the sum of the spring and damping forces. The **last two equations** calculate the periods of the natural frequency of vibration, \mathbf{Tn} (s), and the forced oscillation, \mathbf{Tf} (s)

$$xp = xm \cdot \cos(\omega f \cdot t - \psi)$$
 Eq. 1

$$xm = \frac{xf}{\left(\left(1 - \left(\frac{\omega f}{\omega n}\right)^2\right)^2 + \left(2 \cdot \xi \cdot \frac{\omega f}{\omega n}\right)^2\right)^5}$$
 Eq. 2

$$\psi = \tan^{-1} \left(\frac{2 \cdot \xi \cdot \frac{\omega f}{\omega n}}{1 - \left(\frac{\omega f}{\omega n} \right)^2} \right)$$
 Eq. 3

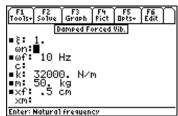
$$Mag = \frac{1}{\left(\left(1 - \left(\frac{\omega f}{\omega n}\right)^{2}\right)^{2} + \left(2 \cdot \xi \cdot \frac{\omega f}{\omega n}\right)^{2}\right)^{0.5}}$$
 Eq. 4

$$\xi = \frac{c}{2 \cdot \pi \cdot \omega n}$$
 Eq. 5

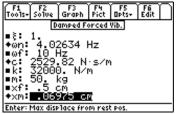
$$\omega n = \sqrt{\frac{k}{m}}$$
 Eq. 6

$$Fo = xm\sqrt{k^2 + c^2 \cdot \omega f^2}$$
 Eq. 7

$$Tn = \frac{2 \cdot \pi}{con}$$
 Eq. 8


$$Tf = \frac{2 \cdot \pi}{\omega f}$$
 Eq. 9

Variable	Description	Units
ξ	Damping ratio	unitless
Ψ	Phase angle	rad
ωf	Forced radian frequency	rad/s
ωn	Natural frequency	rad/s
c	Viscous damping coefficient	$N \cdot s/m$
Fo	Magnitude of driving force	N
k	Stiffness	N/m
m	Mass	kg
Mag	Magnification	unitless
t	Time	S
Tf	Forced oscillation period	S
Tn	Natural oscillation period	S
xf	Displacement due to Fo	m
xm	Maximum displacement of steady state	m

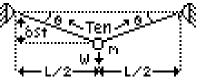

Variable	Description	Units
xp	Displacement: particular solution	m

Example 18.3.2.2:

The machine in Example 18.3.2.1 is equipped with four damp pads. What value for the viscous damping coefficient must each pad have to critically damp the system?

Entered Values

Computed results


Solution – A system is critically damped when ξ =1. **Equations 2, 5,** and 6 are needed to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. The computed viscous damping coefficient value (2529.82 N·s/m), must be divided by four to compute the **c** for each pad (632.455 N·s/m).

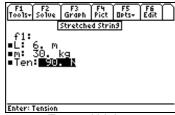
Given	Solution
$\xi = 1$	$\omega n = 4.02634 \text{ Hz}$
$\omega f = 10 \text{ Hz}$	$c = 2529.82 \text{ N} \cdot \text{s/m} (4 \text{ x } 632.455 \text{ N} \cdot \text{s/m})$
k = 32000 N/m	xm = .06975 cm (86% reduction)
m = 50 kg	
xf = .5 m	

18.3.3 Natural Frequencies

18.3.3.1 Stretched String

The **first equation** calculates the natural frequency, **f1** (Hz), of longitudinal vibration for a hanging mass, **m** (kg), located at the center of a string. The string has two fixed ends located at distance, L (m), apart at the same height on an axis perpendicular to the gravitational field. **Ten** (N) is the tension

in the string. The **second equation** computes the tension in the string, **Ten**, from the load and the deflection angle, θ (rad), from the horizontal axis. The load, **W** (N), is computed in the **third equation** from the mass of the hanging object, **m**, and the gravitational constant, **grav** (9.08665 m/s²). The **last equation** computes the deflection, **8st** (m), the vertical distance of the object from the horizontal axis between the two mounts from the angle deflection at each end, θ (rad). The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables.


$$f1 = \frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{4 \cdot Ten}{m \cdot L}}$$
 Eq. 1

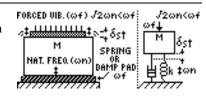
$Ten = \frac{W}{2 \cdot \sin \theta}$	Eq. 2
$W = m \cdot grav$	Eq. 3
$\tan \theta = \frac{2 \cdot \delta st}{L}$	Eq. 4

Variable	Description	Units
δst	Deflection	m
θ	Deflection angle	rad
f1	Natural frequency due to load (W)	Hz
grav	Gravitational acceleration	9.80665 m/s^2
Ĺ	Length	m
m	Mass	kg
Ten	Tension	N
W	Point Load	N

Example 18.3.3.1:

Compute the natural frequency for a mass of 3 kg hanging from a string at a horizontal distance of 3 m from each fixed point. The tension of the string is 90 N.

Entered Values

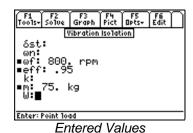


Solution – Select the **first equation** to solve this problem. Highlight the equation using the cursor and press ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

 $\begin{tabular}{lll} \textbf{Given} & \textbf{Solution} \\ L=6 \ m & f1=.225079 \ Hz \\ m=30 \ kg \\ Ten=90 \ N \end{tabular}$

18.3.3.2 Vibration Isolation

The isolation of equipment from a vibrating platform can be accomplished using pads or damped springs. The damped vibration system is similar to the damped forced vibration schematic on the right side of the diagram. The **first equation** computes the natural frequency of the damped vibration system, **on** (rad/s). **Equation 2** computes the amplitude of displacement, **ost** (m) for the vibrating


system. Equation 3 calculates the isolation efficiency, eff, from the forced vibration. For a reduction in vibration to occur, the following condition must be met: $\sqrt{2 \cdot \omega n} < \omega f$. The last equation relates the load, W (N), on the oscillating system to the mass of the machine, m (kg).

$\omega n = \sqrt{\frac{grav}{\delta st}}$	Eq. 1
$\delta st = \frac{W}{k}$	Eq. 2
$eff = 1 - \frac{1}{\left(\frac{\omega f}{\omega n}\right)^2 - 1}$	Eq. 3
$W = m \cdot grav$	Eq. 4

Variable	Description	Units
δst	Deflection	m
ωn	Natural frequency due to load (W)	rad/s
ωf	Forcing frequency	rad/s
eff	Isolation efficiency	unitless
grav	Gravitation acceleration constant	9.08665 m/s^2
k	Stiffness	N/m
m	Mass	kg
W	Point load	N

Example 18.3.3.2:

A centrifugal fan (75 kg), rotating at 800 rpm, requires an isolation efficiency of 95%. What spring constant is required for the isolating material?

Solution – **Select all of the equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\omega f = 800 \text{ rpm}$	$\delta st = .029343 \text{ m}$
eff = .95	$\omega n = 174.574 \text{ rpm}$
m = 75 kg	k = 25065.7 N/m
	W = 735.499 N

18.3.3.3 Uniform Beams

18.3.3.3.1 Simply Supported

The following equations compute the natural frequency for a simply supported beam of length, **L** (m), with a point load, **W** (N), uniform load, **w1** (N/m), or both. The **first equation** computes the natural frequency of vibration, **f1** (Hz), for a beam having a length, **L**, an area moment of inertia, **I** (m⁴), a modulus of elasticity (Young's modulus), **E** (Pa), and a point load, **SIMPLE SUPPORT W**. W, at the center of the beam. **Equation 2** calculates the frequency of vibration, **fn** (Hz), for a vibration mode (harmonic), **n**, for the same beam, having a uniform load, **w1**, instead of a point load, **W**. **Equation 3** computes the natural frequency of vibration, **f2** (Hz), for a beam with a combined point and uniform load (**W** and **w1**). Values for the vibration mode-based constant, **Kn**, in the second equation, are listed in **Table 18.1** for different vibration modes (harmonics).

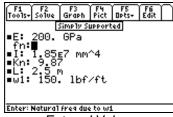
Table 18.1: Kn for a simply supported, uniform beam, length L, vibration mode, n (Ref. #6)

Mode (n)	Kn	Nodal positions/L					
1	9.87	0.0	1.00				
2	39.5	0.0	0.50	1.00			
3	88.8	0.0	0.33	0.67	1.00		
4	158	0.0	0.25	0.50	0.75	1.00	
5	247	0.0	0.20	0.40	0.60	0.80	1.00

$$f1 = \frac{6.93}{2 \cdot \pi} \sqrt{\frac{E \cdot I \cdot grav}{W \cdot L^3}}$$

$$fn = \frac{Kn}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{w1 \cdot L^4}}$$

$$Eq. 2$$


$$f2 = \frac{6.93}{2 \cdot \pi} \sqrt{\frac{E \cdot I \cdot grav}{W \cdot L^3 + .486 \cdot w1 \cdot L^4}}$$

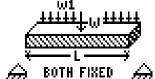
$$Eq. 3$$

Description	Units
Young's modulus	Pa
Natural frequency due to W	Hz
Natural frequency due to W and w1	Hz
Frequency for w1, mode 'n'	Hz
Gravitation acceleration constant	9.08665 m/s^2
Area moment of inertia	m^4
Constant for vibration mode, 'n'	unitless
Beam length	m
Point load	N
Load per unit length (Uniform)	N/m
	Young's modulus Natural frequency due to W Natural frequency due to W and w1 Frequency for w1, mode 'n' Gravitation acceleration constant Area moment of inertia Constant for vibration mode, 'n' Beam length Point load

Example 18.3.3.3.1:

Compute the natural frequency of a simply supported beam ($\mathbf{L} = 2.5 \text{ m}$, $\mathbf{E} = 200 \text{ GPa}$, $\mathbf{I} = 18.5 \text{ x } 10^6 \text{ mm}^4$) having a uniform load of 150 lb/ft.

Entered Values


Computed results

Solution – Select the **second equation**. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. Since we are calculating the natural frequency, the vibration mode-based constant is 1 and a value of $\mathbf{Kn} = 9.87$ is selected from **Table 18.1**. The entries and results are shown in the screen displays above.

Given E = 200 GPa I = 1.85 E 7 mm⁴ Kn = 9.87 L = 2.5 m w1 = 150 lb/ft **Solution** fn = 32.3584 Hz

18.3.3.3.2 Both Ends Fixed

The following equations compute the natural frequency for a uniform beam with both ends fixed. The **first equation** computes the natural frequency of vibration, **f1** (Hz), for a beam having a length, **L**, an area moment of inertia, **I** (m⁴), a modulus of elasticity (Young's modulus), **E** (Pa), and a point load, **W** at the center of the beam. **Equation 2** calculates the frequency of vibration, **fn**, for a vibration mode (harmonic), **n**, for the same beam, having a uniform

load, w1, instead of a point load, W. Equation 3 computes the natural frequency of vibration, f2 (Hz), for a beam with a combined point and uniform load (W and w1). Values for the vibration mode-based constant, Kn, in the second equation, are listed in Table 18.2 for different vibration modes.

Table 18.2: Kn for a uniform beam, both ends fixed, length L, for vibration mode, n (Ref.#6).

n	Kn	Nodal positions/L					
1	22.4	0.0	1.00				
2	61.7	0.0	0.50	1.00			
3	121	0.0	0.36	0.64	1.00		
4	200	0.0	0.28	0.50	0.72	1.00	
5	299	0.0	0.23	0.41	0.59	0.77	1.00

$$f1 = \frac{13.86}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{W \cdot L^3}}$$

$$fn = \frac{Kn}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{w1 \cdot L^4}}$$

$$Eq. 2$$

$$f2 = \frac{13.86}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{W \cdot L^3 + .383 \cdot w1 \cdot L^4}}$$

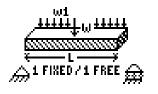
$$Eq. 3$$

Variable	Description	Units
E	Young's modulus	Pa
f1	Natural frequency for W	Hz
f2	Natural frequency for W and w1	Hz
fn	Frequency for w1, mode 'n'	Hz
grav	Gravitation acceleration constant	9.08665 m/s^2
Ĭ	Area moment of inertia	m^4
Kn	Constant for vibration mode, 'n'	unitless
L	Beam length	m
W	Point load	N
w1	Load per unit length (Uniform)	N/m

Example 18.3.3.3.2:

Compute the natural frequency of a uniform beam with both ends fixed ($\mathbf{L} = 2.5 \text{ m}$, $\mathbf{E} = 200 \text{ GPa}$, $\mathbf{I} = 18.5 \text{ x}$ 10^6 mm^4) having a uniform load of 150 lb/ft.

Entered Values


Computed results

Solution – Select the **second equation**. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. Since we are calculating the natural frequency, the vibration mode-based constant is 1 and a value of $\mathbf{Kn} = 22.4$ is selected from **Table 18.2**. The entries and results are shown in the screen displays above.

 $\begin{array}{lll} \textbf{Given} & \textbf{Solution} \\ E = 200 \text{ GPa} & \text{fn} = 73.4375 \text{ Hz} \\ I = 1.85 \text{ E7 mm}^4 \\ Kn = 22.4 \\ L = 2.5 \text{ m} \\ w1 = 150 \text{ lb/ft} \end{array}$

18.3.3.3.3 1 Fixed End / 1 Free End

The following equations compute the natural frequency for a beam with one end fixed and one end free. The **first equation** computes the natural frequency of vibration, **f1** (Hz), for a beam having a length, **L**, an area moment of inertia, **I** (\mathbf{m}^4), a modulus of elasticity (Young's modulus), **E** (Pa), and a point load, **W** at the center of the beam. **Equation 2** calculates the frequency of vibration, **fn**, for a vibration mode (harmonic), **n**, for the

same beam, having a uniform load, **w1**, instead of a point load, **W. Equation 3** computes the natural frequency of vibration, **f2** (Hz), for a beam with a combined point and uniform load (**W** and **w1**). Values for the vibration mode-based constant, **Kn**, in the second equation, are listed in **Table 18.3** for different vibration modes.

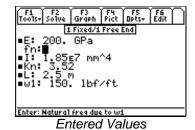
Table 18.3: Kn for a uniform beam, length L, One fixed/One free end, vibration mode, n (Ref.#6).

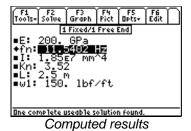
n	Kn	Nod	lal position	s/L			
1	3.52	0.0					
2	22.0	0.0	0.783				
3	61.7	0.0	0.504	0.868			
4	121	0.0	0.358	0.644	0.905		
5	200	0.0	0.279	0.500	0.723	0.926	

$$f1 = \frac{1.732}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{W \cdot L^3}}$$

$$fn = \frac{Kn}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{w1 \cdot L^4}}$$

$$Eq. 2$$


$$f2 = \frac{1.732}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{W \cdot L^3 + .236 \cdot w1 \cdot L^4}}$$


$$Eq. 3$$

Variable	Description	Units
E	Young's Modulus	Pa
f1	Natural frequency due to W	Hz
f2	Natural frequency due to W and w1	Hz
fn	Frequency for w1, mode 'n'	Hz
grav	Gravitation acceleration constant	9.08665 m/s^2
I	Area moment of inertia	m^4
Kn	Constant for vibration mode, 'n'	unitless
L	Beam length	m
W	Point load	N
w1	Load per unit length (Uniform)	N/m

Example 18.3.3.3:

Compute the natural frequency of a uniform beam with both ends fixed ($\mathbf{L} = 2.5 \text{ m}$, $\mathbf{E} = 200 \text{ GPa}$, $\mathbf{I} = 18.5 \text{ x}$ 10^6 mm^4) having a uniform load of 150 lb/ft.

Solution – Select the **second equation**. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. Since the natural frequency is being calculated, the vibration mode-based constant is, $\mathbf{n=1}$, and a value of $\mathbf{Kn} = 3.52$ is selected from **Table 18.3**. The entries and results are shown in the screen displays above.

Given E = 200 GPa $I = 1.85 \text{ E 7 mm}^4$ Kn = 3.52 L = 2.5 mw1 = 150 lb/ft **Solution** fn = 11.5402 Hz

18.3.3.3.4 Both Ends Free

The following equation computes the frequency of vibration, \mathbf{fn} (Hz), for a uniform beam with both ends free. The beam has a length \mathbf{L} (m), an area moment of inertia, \mathbf{I} (m⁴), a modulus of elasticity (Young's modulus), \mathbf{E} (Pa), and a uniform load, $\mathbf{w1}$ (N/m). Values for the vibration mode-based constant, \mathbf{Kn} , are listed in **Table 18.4** for different vibration modes, \mathbf{n} .

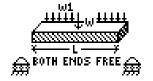
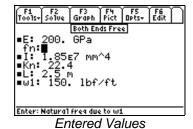
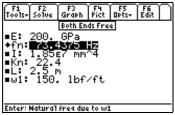


Table 18.4: Kn for a uniform beam, length L, both ends free, vibration mode, n (Ref.#6).


n	Kn	Noda	al position	s/L			
1	22.4	0.224	0.776				
2	61.7	0.132	0.500	0.868			
3	121	0.095	0.356	0.644	0.905		
4	200	0.074	0.277	0.500	0.723	0.926	
5	299	0.060	0.226	0.409	0.591	0.774	0.940


$$fn = \frac{Kn}{2 \cdot \pi} \cdot \sqrt{\frac{E \cdot I \cdot grav}{w1 \cdot L^4}}$$
 Eq. 1

Variable	Description	Units
E	Young's modulus	Pa
fn	Frequency for w1, mode 'n'	Hz
grav	Gravitation acceleration constant	9.08665 m/s^2
Ī	Area moment of inertia	m^4
Kn	Constant for vibration mode, 'n'	unitless
L	Beam length	m
w1	Load per unit length (Uniform)	N/m

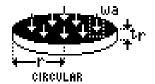
Example 18.3.3.3.4:

Compute the natural frequency of a uniform beam with both ends free ($\mathbf{L} = 2.5 \text{ m}$, $\mathbf{E} = 200 \text{ GPa}$, $\mathbf{I} = 18.5 \text{ x}$ 10^6 mm^4) having a uniform load of 150 lb/ft.

Computed results

Solution – Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. Since we are calculating the natural frequency, the vibration mode-based constant is 1 and a value of $\mathbf{Kn} = 22.4$ is selected from **Table 18.4**. The entries and results are shown in the screen displays above.

Given E = 200 GPa $I = 1.85 \text{ E 7 mm}^4$ Kn = 22.4


L = 2.5 mw1 = 150 lb/ft **Solution**

fn = 73.4375 Hz

18.3.3.4 Flat Plates

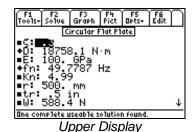
18.3.3.4.1 Circular Flat Plate

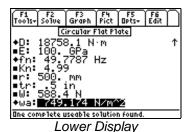
The following equations compute the natural vibration properties for a circular plate having a radius, \mathbf{r} (m) and uniform thickness, \mathbf{tr} (m) experiencing a uniform load per unit area, \mathbf{wa} (N/m²), which includes the weight of the plate. The **first equation** computes the frequency of vibration, \mathbf{fn} (Hz). The **second equation** computes the flexural of rigidity for the plate, \mathbf{D} (N·m), from the elastic properties of the material (Poisson's ratio, $\boldsymbol{\zeta}$,

and Young's modulus, \mathbf{E}) and the thickness of the plate, \mathbf{tr} . Values for the vibration mode-based constant, \mathbf{Kn} , in equation 1 are listed in **Table 18.5** for different mounting types and vibration modes (harmonics), \mathbf{n} . The **third equation** computes the load per area, \mathbf{wa} , from the total load, \mathbf{W} (N), and the radius of the circle, \mathbf{r} (m). The **last equation** adapts the previous three equations for an elliptical plate, having a major axis radius \mathbf{ra} (m), and minor axis radius, \mathbf{rb} (m), with its edges fixed.

Table 18.5: Kn for a Circular Plate, radius r, thickness, tr and an elliptical plate (Ref.#6).

Support Type (Circular)	n	Kn	Nodal positions/L
Edge fixed	1	10.2	Fundamental
	2	18.3	One nodal diameter
	3	34.9	Two nodal diameters
	4	39.8	One nodal circle
Edge Simply Supported	1	4.99	Fundamental
(ζ=0.3)	2	13.9	One nodal diameter
,	3	25.7	Two nodal diameters
	4	29.8	One nodal circle
Edge Free	1	5.25	Two nodal diameters
(ζ=0.33)	2	9.08	One nodal circle
,	3	12.2	Three nodal diameters
	4	20.5	One nodal diameter and One nodal circle
Elliptical Flat Plate (edge fixed)	ra/rb	Kn (n=1)	
Major Radius ra , Minor Radius rb	1	10.2	
	1.1	11.3	
	1.2	12.6	
	1.5	17.0	
	2.0	27.8	
	3.0	57.0	

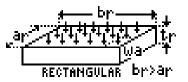

$$fn = \frac{Kn}{2 \cdot \pi} \cdot \sqrt{\frac{D \cdot grav}{wa \cdot r^4}}$$
 Eq. 1


$D = \frac{E \cdot tr^3}{12 \cdot \left(1 - \zeta^2\right)}$	Eq. 2
$wa = \frac{W}{\pi \cdot r^2}$	Eq. 3
$r = \frac{ra + rb}{2}$	Eq. 4

Variable	Description	Units
ζ	Poisson's ratio	unitless
Ď	Flexural of rigidity	N⋅m
E	Young's modulus	Pa
fn	Natural frequency for wa, mode 'n'	Hz
Kn	Constant for vibration mode, 'n'	unitless
r	Plate radius	m
ra	Major radius	m
rb	Minor radius	m
tr	Plate thickness	m
W	Total load	N
wa	Load per unit area	N/m^2

Example 18.3.3.4.1:

A simply supported, cast iron manhole cover weighs 60 kg (radius 500 mm, thickness $\frac{1}{2}$ "). Cast iron has a Young's Modulus of 100 GPa and a Poisson's ratio of 0.3. If the load is solely due to the plate's mass 588.4 N (60 kg * 9.80665 m/ s²), compute the fundamental vibration frequency.



Solution –Select the **first three equations** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. A value of $\mathbf{Kn} = 4.99$ is selected from **Table 18.5** for the fundamental vibration mode. The entries and results are shown in the screen displays above.

Given	Solution
$\zeta = 0.3$	$D = 18758.1 \text{ N} \cdot \text{m}$
E = 100 GPa	fn = 49.7787 Hz
Kn = 4.99	$wa = 749.174 \text{ N/m}^2$
r = 500 mm	
tr = .5 in	
W = 588.4 N	

18.3.3.4.2 Rectangular Flat Plate

The following equations compute the natural vibration properties for a rectangular plate having a short side length, \mathbf{ar} (m), a longer side length, \mathbf{br} (m) and uniform thickness, \mathbf{tr} (m), experiencing a uniform load per unit area, \mathbf{wa} (N/m²), including the weight of the plate. The **first equation** computes the natural frequency of vibration, \mathbf{fn} (Hz). The **second equation** computes the flexural of rigidity of the plate, \mathbf{D}

 $(N \cdot m)$, from the elastic properties of the material (Poisson's ratio, ζ , and Young's modulus, E) and the thickness of the plate, tr. Values for the vibration mode-based constant, Kn, in equation 1 are listed in **Table 18.6** for some different mounting types and vibration modes (harmonics), n. The **third equation** computes the load per area, wa, from the total load, W(N), and the dimensions of the plate, ar and br. The **last equation** computes Kn for the special case where all edges are simply supported. The constants na and nb are positive integers and represent the number of vibration modes along the axis' of ar and br.

Table 18.6: Kn for a Rectangular Plate, thickness, tr (Ref.#6).

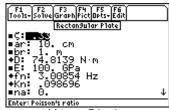
Rectangular Flat Plate	ar/br	Kn (n=1)
All edges fixed	1	36.0
ar – shorter edge length	0.9	32.7
br – longer edge length	0.8	29.9
	0.6	25.9
	0.4	23.6
	0.2	22.6
	0	22.4
All edges simply supported	Use Equation 4	Use Equation 4
2 'ar' fixed/1 'br' fixed/1 'br' free	3.0	213
	2.0	99
	1.6	67
	1.2	42.4
	1.0	33.1
	0.8	25.9
	0.6	20.8
	0.4	17.8
	0.2	16.2
	0	15.8

$$fn = \frac{Kn}{2 \cdot \pi} \cdot \sqrt{\frac{D \cdot grav}{wa \cdot ar^4}}$$

$$D = \frac{E \cdot tr^3}{12 \cdot (1 - \zeta^2)}$$

$$Eq. 2$$

$$wa = \frac{W}{ar \cdot br}$$


$$Eq. 3$$

$$Kn = \pi^2 \cdot \left(na^2 + \left(\frac{ar}{br} \right)^2 \cdot nb^2 \right)$$
 (When all edges are supported) Eq. 4

Variable	Description	Units
ζ	Poisson's ratio	unitless
ar	Shorter length of rectangular plate	m
br	Longer length of rectangular plate	m
D	Flexural rigidity	N⋅m
E	Young's modulus	Pa
fn	Frequency for wa, mode 'n'	Hz
Kn	Constant for vibration mode, 'n'	unitless
na	Mode of vibration: ar axis $\{1, 2, 3\}$	unitless positive integer
nb	Mode of vibration: br axis $\{1, 2, 3\}$	unitless positive integer
tr	Plate thickness	m
W	Total load	N
wa	Load per unit area	N/m^2

Example 18.3.3.4.2:

Compute the fundamental frequency for a titanium plate 2 mm thick with edge lengths 1m and 10 cm. The load, including the weight of the titanium, is 20 N. All of the edges are fixed. Pure titanium has a Young's modulus value of 110 GPa and a Poisson's ratio value of 0.33.

Upper Display

Lower Display

Solution – Select **all of the equations** to solve this problem. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. Enter values of $\mathbf{na} = 0$ and $\mathbf{nb} = 1$. The entries and results are shown in the screen displays above.

Given	Solution
$\zeta = 0.33$	$D = 74.8139 \text{ N} \cdot \text{m}$
ar = 10 cm	fn = 3.00854 Hz
br = 1 m	Kn = .098696
E = 100 GPa	$wa = 200 \text{ N/m}^2$
na = 0	
nb = 1	
tr = 2 mm	
W = 20 N	

References:

- 1. Halliday, Resnick and Walker "Fundamentals of Physics" 4th ed. 1993, John Wiley and Sons Inc., NY
- Eugene A Avallone and Theodore Baumeister III, Mark's Handbook for Mechanical Engineers, 9th Edition, McGraw-Hill Book company, New York, NY 1986
- 3. Michael R. Lindeburg, Mechanical Engineering Reference Manual, 8th Edition, Professional Publications, Belmont, CA 1990
- 4. R. C. Hibbeler "Engineering Mechanics, Statics and Dynamics" 7th Edition Prentice Call, Engle Cliffs, NJ 1995
- 5. Meriam J.L., Kraige L.G. "Engineering Mechanics Vol. 2: Dynamics" 2nd Edition, John Wiley and Sons, NY, 1986
- 6. Young, W. "Roark's Formulas for Stress and Strain", 6th ed, McGraw Hill, NY, 1989

Chapter 19: Refrigeration and Air Conditioning

This portion of the software is designed to solve some of the common problems encountered in Refrigeration and Air conditioning. Two distinct areas form the basis for the calculations.

♦ Heating Load

♦ Refrigeration

19.1 Heating Load

Eleven equations listed in this category are used in the design of insulation and heating systems. The first equation computes the overall heat transfer coefficient, U W/(m²·K), for a heat loss surface. The variables, hin and hout W/(m²·K), are the film coefficients of the inside and outside surfaces. Equation 2 computes the resistance due to convection in an air space, Rh (m²·K/W); ak W/(m²·K) is the thermal conductivity of the air space-typically 1.65 for inside (still) air and 6.0 for outside (~15 mph wind) air. Equation 3 calculates the thermal resistance of conduction for three surfaces in series, **Rk** (m²·K/W), each having thickness, xd1, xd2, and xd3 (m), and conductivities k1, k2, and k3 W/(m·K). Equation 4 calculates the effective space emissivity, E, due to thermal conduction in air spaces. The variables, e1 and e2, are the emissivities of side 1 and side 2 of the enclosure. Equation 5 estimates the rate of heat transfer, Qrate (W), from the heat loss surface having an overall heat transfer coefficient, U, and area, A (m²). **Equation 6** estimates **Orate** through the edges of a floor surface. The perimeter, **peri** (m), is used when slab edge data is available. The heat loss coefficient, $\mathbf{F} \, W/(m \cdot K)$, varies between 1.4 $W/(m \cdot K)$ for an exposed surface edge and 0.95 W/(m·K) for insulated edges. **Equations 7** and 8 compute the heat required to warm moisture in incoming air, qw (J), from the specific heat of water vapor, cp J/(kg·K), the inside and outside temperature, Ti(K) and To(K), the air density $\rho(kg/m^3)$ and the humidity ratio, ω (unitless). **Equations 9** and **10** calculate the total heat required, to warm incoming moist air, **qt** (J). Values of **hi** $J/(kg \cdot K)$ and **ho** $J/(kg \cdot K)$, the enthalpies of moist air at temperatures, **Ti** and **To**, are available from psychometric charts (see Analysis Steam Tables). The last equation computes the volumetric flow rate of air, Vf (m³/s) through a fixture using the *crack* method. If 1 wall is exposed, the total crack length is used for L (m), the greater crack length for 2 exposed walls, the crack length of two walls if 3 walls are exposed and one half the total crack length is used for 4 walls. **B** (m²/hr) is the infiltration coefficient, which is specific to a type of fixture and the wind velocity.

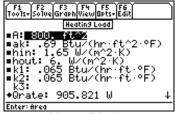
$$U = \frac{1}{\frac{1}{hin} + \frac{1}{hout} + Rk + Rh}$$

$$Rh = \frac{1}{ak}$$

$$Rk = \frac{xd1}{k1} + \frac{xd2}{k2} + \frac{xd3}{k3}$$

$$\frac{1}{E} = \frac{1}{e1} + \frac{1}{e2} - 1$$

$$Qrate = U \cdot A \cdot (Ti - To)$$
Eq. 5


$Qrate = peri \cdot F \cdot (Ti - To)$	Eq. 6
$qw = \rho \cdot \omega \cdot Vf \cdot cp \cdot (Ti - To)$	Eq. 7
$qt = \rho \cdot Vf \cdot (hi - ho)$	Eq. 8
qt = qa + qw	Eq. 9
$Vf = B \cdot L$	Eq. 10

Variable	Description	Units
ρ	Density of incoming air	kg/m ³
ω	Humidity ratio	unitless
A	Area	m^2
ak	Thermal coefficient for air	$W/(m \cdot K)$
В	Infiltration coefficient	m ² /hr
ср	Specific heat at constant pressure	$J/(kg \cdot K)$
Ē	Effective space emissivity	unitless
e1	Emissivity	unitless
e2	Emissivity	unitless
F	Heat loss coefficient	$W/(m^2 \cdot K)$
hi	Enthalpy-inside Air	J/kg
hin	Film coefficient	$W/(m^2 \cdot K)$
ho	Enthalpy - outside Air	J/kg
hout	Film coefficient	$W/(m^2 \cdot K)$
k1	Thermal conductivity of 1	$W/(m \cdot K)$
k2	Thermal conductivity of 2	$W/(m \cdot K)$
k3	Thermal conductivity of 3	$W/(m \cdot K)$
L	Length	m
ma	Air mass	kg
mw	Water vapor mass	kg
peri	Perimeter	m
qa	Heat transfer-dry air	J
Qrate	Rate of heat loss	W
qt	Rate of heat transfer-incoming air	W
qw	Rate of heat transfer-moisture	W
Rh	Resistance due to convection	$\mathbf{K} \cdot \mathbf{m}^2 / \mathbf{W}$
Rk	Resistance due to conduction	$\mathbf{K} \cdot \mathbf{m}^2 / \mathbf{W}$
Ti	Inside temperature	K
To	Outside temperature	K
U	Overall heat transfer coefficient	$\mathrm{m}^2{\cdot}\mathrm{K}$
Vf	Volumetric flow rate	m^3/s
xd1	Thickness of material 1	m
xd2	Thickness of material 2	m
xd3	Thickness of material 3	m


Example 19.1:

A roof, having an area of 800 ft², is made of two layers of Oregon Pine (thickness of 1 in, thermal conductivity of 0.065 Btu/(ft·hr· $^{\circ}$ F) separated by an air space of ~ 4 inches having a convection coefficient of 0.69 Btu/(ft²·hr· $^{\circ}$ F). Assuming no heat loss occurs due air seepage through cracks, what is

the rate of heat loss if the inside temperature is 75°F and the outside temperature is 30°F. Assume the film coefficients for the inside and outside air are 1.65 and 6.0 W/(m²·K).

Upper Display

Middle Display

Lower Display

Solution – Select equations 1, 2, 3, and 5 to solve this problem. Select these by highlighting the equations and pressing [ENTER]. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

 $A = 800 \text{ ft}^2$

 $ak = .69 \text{ Btu/(hr} \cdot \text{ft}^2 \cdot \text{°F})$

 $hin = 1.65 \text{ W/(m}^2 \cdot \text{K)}$

hout = $6 \text{ W/(m}^2 \cdot \text{K)}$

 $k1 = .065 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$

 $k2 = .065 \text{ Btu/(hr} \cdot \text{ft} \cdot \text{°F})$

k3 = (blank)

Ti = 75 $^{\circ}F$

 $To = 30 \, ^{\circ}F$

xd1 = 1 in

xd2 = 1 in

xd3 = 0 in

Solution

Qrate = $905.821 \text{ W/(m}^2 \cdot \text{K)}$

 $Rh = .826952 \text{ m}^2 \cdot \text{K/W}$

 $Rk = .451565 \text{ m}^2 \cdot \text{K/W}$

 $U = .487509 \text{ W/(m}^2 \cdot \text{K)}$

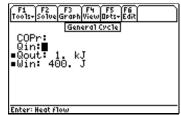
19.2 Refrigeration

19.2.1 General Cycle

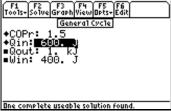
The following equations focus on the performance characteristics of refrigeration cycles. Equation 1 computes the coefficient of performance for a refrigeration cycle, COPr (unitless). Equation 2 calculates the coefficient of performance **COPh** (unitless) for a heat pump. The **third equation** shows the implicit relationship between COPr and COPh. The last equation calculates the work required to drive the refrigeration cycle, Win (J). Qin (J), is the heat input from the low temperature reservoir and **Qout** (J), is the exhaust of heat into the high temperature area.

$$COPr = \frac{Qin}{Qout - Qin}$$
 Eq. 1

 $COPh = \frac{Qin + Win}{Qout - Qin}$ Eq. 2


 $COPh = COPr + 1$ Eq. 3

Win = Qout - Qin	Eq. 4
------------------	-------


Variable	Description	Units
COPh	Performance coefficient -heat pump	unitless
COPr	Performance coefficient –refrigeration	unitless
Qin	Heat flow – from low temperature region	J
Qout	Heat flow – from high temperature region	J
Win	Work input	J

Example 19.2.1:

A refrigeration cycle requires 400 J of work and expels 1 kJ of heat. What is the heat drawn from the cool area and the coefficient of performance?

Entered Values

Computed results

Solution – Select the **first** and **last equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
Qout = 1 kJ	COPr = 1.5
Win = 400 J	Qin = 600 J

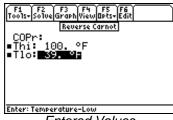
19.2.2 Reverse Carnot

The reverse Carnot cycle is composed of four steps:

- 1. Isentropic expansion
- 2. Isothermal heating (vaporization)
- 3. Isentropic compression
- 4. Isothermal cooling (condensation)

The coefficient of performance for the reverse Carnot cycle (refrigeration), **COPr** (unitless), is computed from the high and low temperatures, **Thi** (K) and **Tlo** (K). The coefficient of performance for the forward Carnot cycle (heat pump) **COPh** (unitless) is computed from **Thi** and **Tlo** in the second equation.

$$COPr = \frac{T1o}{Thi - T1o}$$
 Eq. 1


 $COPh = \frac{Thi}{Thi - T1o}$ Eq. 2

 $COPh = COPr + 1$ Eq. 3

Variable	Description	Units
COPh	Performance coefficient -heat pump	unitless
COPr	Performance coefficient -refrigeration	unitless
Thi	Temperature – High	K
Tlo	Temperature – Low	K

Example 19.2.2:

What is the coefficient of performance for a reverse carnot cycle having a high temperature of 100 °F and a low temperature of 39 °F?

Entered Values

Computed results

Solution - Select the first equation to solve this problem. Select this by highlighting the equation and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Solution Given Thi = $100 \, {}^{\circ}F$ COPr = 8.17492 $Tlo = 39 \, ^{\circ}F$

19.2.3 Reverse Brayton

The reverse Brayton (air refrigeration) cycle is composed of four steps:

- 1. Isentropic expansion.
- 2. Constant pressure heating.
- 3. Isentropic compression.
- 4. Constant pressure cooling.

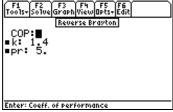
Equations 1 and 2 compute the coefficient of performance, COP, from the temperatures T1 (K), T2 (K), T3 (K) and T4 (K) at each stage in the cycle, the compression ratio, pr (unitless), and the specific heat ratio, k (unitless). The compression ratio, pr, is defined as the ratio of the high and low pressures in the third equation.

$$COP = \frac{T3 - T2}{T4 - T1 - (T3 - T2)}$$

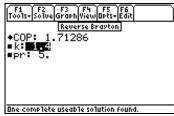
$$COP = \frac{1}{pr^{\frac{k-1}{k}} - 1}$$

$$Eq. 1$$

$$Eq. 2$$


$$Eq. 2$$

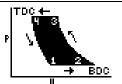
$$Eq. 3$$


Variable	Description	Units
COP	Coefficient of performance	unitless
k	Adiabatic expansion coefficient	unitless
phi	Pressure – High	Pa
plo	Pressure – Low	Pa
pr	Pressure ratio	unitless
T1	Temperature	K
T2	Temperature	K
T3	Temperature	K
T4	Temperature	K

Example 19.2.3:

Compute the coefficient of performance for an air refrigeration cycle having a compression ratio of 5.

Entered Values


Computed results

Solution – Select the **second equation** to solve this problem. Select this by highlighting the equation and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Use a value of k=1.4 for air (see *Reference/Thermal Properties/Specific Heat/ Cp/Cv Liquids and Gases at 1 atm*). Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
k = 1.4	COP = 1.71286
pr - 5	

19.2.4 Compression Cycle

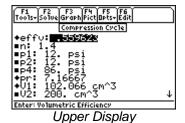
The following equations describe the properties of a reciprocating single-stage compressor with clearance for an ideal gas. The four processes forming the foundation of the cycle are described below:

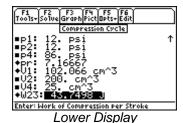
- 1. Intake valve opens and suction occurs at constant pressure.
- 2. Intake valve closes, polytropic compression occurs.
- 3. Discharge valve opens and discharge occurs at constant delivery pressure until piston.
- 4. System returns to its original state (residual gases from original compression exist

The pressure and volume of the gas at the beginning of the cycles are defined below:

- 1. Beginning of stroke 1 Pressure $\mathbf{p1}$ (Pa) and volume $\mathbf{V1}$ (m³)
- 2. Beginning of stroke 2 Pressure **p2** (Pa) and volume **V2** (m³)
- 3. Beginning of stroke 3 Pressure **p3** (Pa) and volume **V3** (m³)
- 4. Beginning of stroke 4 Pressure **p4** (Pa) and volume **V4** (m³)

The volume at the end of Stage 1, **V2**, is termed the bottom dead center (BDC). The volume at the end of Stage 3, **V4** is the top dead center (TDC). The **first and second equations** compute the compression ratio, **pr** (unitless), as the ratio of the high and low pressures in the cycle (**p4=p3**, high pressure; **p1=p2**, low pressure). **Equations 3** and **4** calculate the volumetric efficiency, **effv** (unitless), and the ratio of the


mass of compressed gas to the mass of the swept volume. **Equations 5** and **6** relate the pressure/volume ratios for polytropic compression. The variable, **n** (unitless), is the polytropic exponent. If the compression is isentropic, **n**, has a value equivalent to the specific heat ratio of the gas (**cp/cv** where **cp** is the specific heat at constant pressure and **cv** is the specific heat at constant volume). The **last equation** computes the work performed by the system during polytropic compression, **W23** (J) (Stage 2).


$pr = \frac{p4}{p1}$	Eq. 1
$pr = \frac{p3}{p2}$	Eq. 2
$effv = \frac{V2 - V1}{V2 - V4}$	Eq. 3
$effv = 1 - \frac{\left(pr^{\frac{1}{n}} - 1\right) \cdot V4}{V2 - V4}$	Eq. 4
$\frac{V1}{V4} = pr^{\frac{1}{n}}$	Eq. 5
$\frac{V2}{V3} = pr^{\frac{1}{n}}$	Eq. 6
$W23 = \frac{-n \cdot p2 \cdot V2}{1 - n} \cdot \left(pr^{\frac{n - 1}{n}} - 1 \right)$	Eq. 7

Variable	Description	Units
effv	Volumetric efficiency	unitless
N	Polytropic exponent	unitless
p1	Pressure	Pa
p2	Pressure	Pa
p3	Pressure	Pa
p4	Pressure	Pa
Pr	Pressure ratio	unitless
V1	Volume	m^3
V2	Volume	m^3
V3	Volume	m^3
V4	Volume	m^3
W23	Work - compression/ stroke	J

Example 19.2.4:

What is the volumetric efficiency and work required for compression for a compressor which discharges air at constant pressure of 86 psi and draws in air at a constant pressure of 12 psi? The BDC volume is 200 cm³ and the TDC volume is 25 cm³. Assume the compression process is adiabatic (n=1.4).

Solution – Note: V4=TDC and V2=BDC, and p1=p2=low pressure, and p3=p4=high pressure. Select equations 1, 3, 4, 5 and 7 to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
n = 1.4	effv = .559623
p1 = 12 psi	pr = 7.16667
p2 = 12 psi	$V1 = 102.066 \text{ cm}^3$
p4 = 86 psi	W23 = 43.7498 J
$V2 = 200 \text{ cm}^3$	
$V4 = 25 \text{ cm}^3$	

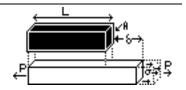
References: -

- 1. Michael R. Lindeburg, Mechanical Engineering Reference Manual, 8th Edition, Professional Publications, Belmont, CA 1990
- 2. John A. Roberson and Clayton T. Crowe, Engineering Fluid Mechanics, 5th Edition, Houghton Mifflin Company, Boston, MA, 1993
- 3. Eugene A Avallone and Theodore Baumeister III, Mark's Handbook for Mechanical Engineers, 9th Edition, McGraw-Hill Book company, New York, NY 1986

Chapter 20: Strength Materials

Strength of materials section is designed to cover a range of example problems encountered in characterizing materials under a variety of types of stresses. The topics are covered under these broad categories:

- ♦ Stress and Strain Basics
- ♦ Stress Analysis
- ♦ Torsion

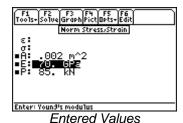

- **♦** Load Problems
- ♦ Mohr's Circle

20.1 Stress and Strain Basics

Three basic definitions of stresses and strains are introduced in this section. They are Normal Stress and Strain, Volume dilation and Shear stress. Each of these sections is described here.

20.1.1 Normal Stress and Strain

Three equations describe the basic definitions of stress and strain. The **first equation** defines the relationship between stress, σ (Pa), load, P (N), and area, A (m²). The **second equation** establishes the definition of strain, ε (no units), as the ratio of elongation, δ (m), due to the force, P, of a bar of length, L (m). The **third equation** represents Hooke's law relating stress, σ , to strain, ε , using the elasticity modulus, E (Pa).

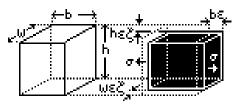


$\sigma = \frac{P}{A}$	Eq. 1
$\varepsilon = \frac{\delta}{L}$	Eq. 2
$\sigma = \varepsilon \cdot E$	Eq. 3

Variable	Description	Units
δ	Equivalent elongation	m
ε	Strain	unitless
σ	Stress	Pa
A	Area	m^2
E	Young's modulus	Pa
L	Length	m
P	Load	N

Example 20.1.1:

Calculate the stress and strain of a bar with an Area of .002 m². The bar is made of an aluminum alloy (2014-T6) with a modulus of elasticity of 70 GPa. A load of 85 kN is placed upon this bar in tension mode.


Computed results

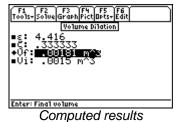
Solution – Select the **first** and **third equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$A = .002 \text{ m}^2$	$\epsilon = .000607$
E = 70 GPa	$\sigma = .0425 \text{ GPa}$
P = 85 kN	

20.1.2 Volume Dilation

Volume dilation refers to volume changes in a solid body due to shear forces. A solid block defined by the dimensions base, \mathbf{b} (m), height \mathbf{h} (m), and width, \mathbf{w} (m). The initial volume, \mathbf{Vi} (m³), of such a parallel-piped is defined by the **first equation**. A stress applied to this bar results in a strain, $\boldsymbol{\epsilon}$ (no units), along the direction of the stress. However, the lateral dimensions shrink by the longitudinal strain

modulated by the so-called Poisson's ratio, ζ (no units). This is illustrated by the **second equation**. The **last equation** defines the volumetric strain, **ev** (no units), in terms of ε and ζ .


$Vi = b \cdot h \cdot w$	Eq. 1
$Vf = Vi \cdot (1 + \varepsilon) \cdot (1 - \zeta \cdot \varepsilon) \cdot (1 - \varepsilon \cdot \zeta)$	Eq. 2
$ev = (1 + \varepsilon) \cdot (1 - \varepsilon \cdot \zeta)^2 - 1$	Eq. 3

Variable	Description	Units
ε	Strain	unitless
ζ	Poisson's ratio	unitless
В	Base	m
Ev	Volume dilation	unitless
Н	Height	m
Vf	Final volume	m^3
Vi	Initial volume	m^3
W	Width	m

Example 20.1.2:

A copper bar, with an initial volume of .0015 m³, is subject to a volumetric strain of 4.416. The Poisson's ratio for this copper bar is 1/3. Find the final volume of the copper bar after the stress has been applied.

Entered Values

Solution – Select the **second equation** to solve this problem. Select this by highlighting the equation and pressing FNTER. Press 2 to display the variables. Enter the values for the known parameters and press 2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\varepsilon = 4.416$	$Vf = .00181 \text{ m}^3$
$\zeta = 1/3$	
$V_i = 0.015 \text{ m}^3$	

20.1.3 Shear Stress and Modulus

The average shear stress, τav (Pa), on the cross section of an element such as a bolt is defined by the **first equation** as the shear force, F(N), acting over an area, $A(m^2)$. The **second equation** expresses shear stress as a product of shear strain, γ (unitless), and bulk shear modulus, G(Pa), in a manner similar to Hooke's Law in shear. The **third equation** connects the modulus of elasticity in tension and shear (E(Pa)) and G(Pa)) in terms of the Poisson's ratio, ζ (unitless).

$\tau a v = \frac{P}{A}$	Eq. 1
$ abla av = G \cdot \gamma $	Eq. 2
$G = \frac{E}{2 \cdot (1 + \zeta)}$	Eq. 3

Variable	Description	Units
γ	Shear strain	Unitless
ζ	Poisson's ratio	unitless
τav	Shear stress	Pa
A	Area	m^2
E	Young's modulus	Pa
G	Shear modulus	Pa
P	Load	N

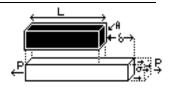
Example 20.1.3:

Find the shear stress and shear strain on a steel bolt that passes through one steel plate on a tractor and a U-shaped hitch on a trailer. The trailer is in a motionless position. As the tractor starts to move, it exerts a load on the bolt of 25 lbf. The area of the plate on the tractor is 60 cm² and the modulus of elasticity on the bolt is 80 GPa.

Entered Values

Computed results

Solution – Select the **first** and **second equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

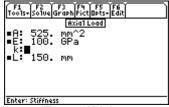

Given	Solution
$A = 60 \text{ cm}^2$	$\gamma = 2.31678$ E-7
G = 80 GPa	$\tau av = .000019 \text{ GPa}$
P = 25 lbf	

20.2 Load Problems

This section is devoted to the behavior of a selected set of axially loaded members, which refers to structural elements having longitudinal axes and carrying only axial forces whether they are tensile or compressive. This family of problems is associated with bars in trusses, columns in buildings, spokes in bicycle wheels, and struts in aircraft engine mounts.

20.2.1 Axial Load

The elastic properties of a primitive bar of length, L (m), loaded in tension by axial forces, P (N), is characterized by the **first equation** defining the elongation of the bar. The material of the bar has a Young's modulus, E (Pa), and area, A (m²), elongated by a distance, δ (m). For the axial bar, a convenient unit of measure is the stiffness, k (N/m) (i.e., the force needed to produce a unit elongation), computed in **Equation 2**.



$\delta = \frac{P \cdot L}{E \cdot A}$	Eq. 1
$k = \frac{E \cdot A}{L}$	Eq. 2

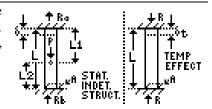
Variable	Description	Units
δ	Equivalent elongation	m
A	Area	m^2
E	Young's modulus	Pa
k	Stiffness	N/m
L	Length	m
P	Load	N

Example 20.2.1:

Find the stiffness, the amount of force required for elongation, of a Titanium Alloy bar that is 150 mm long. This bar has an area of 525 mm², and the modulus of elasticity is 100 GPa.

Entered Values

Computed results

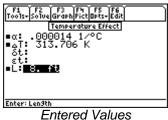

Solution – Select the **second equation** to solve this problem. Select this by highlighting the equation and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

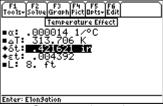
 $\begin{tabular}{lll} \textbf{Given} & \textbf{Solution} \\ A = 525 \text{ mm}^2 & \textbf{K} = 3.5 \text{E8 N/m} \\ E = 100 \text{ Gpa} & \end{tabular}$

20.2.2 Temperature Effects

L = 150 mm

A change in the temperature of an object tends to produce a change in its dimensions. As shown in the schematic diagram shown here, a homogeneous rectangular block with length, \mathbf{L} (m), area, \mathbf{A} (m²), is subject to a temperature change, ΔT (K), and a thermal expansion coefficient, α (1/K), results in a uniform thermal strain, ϵt (unitless) computed in **equation 1**. The **second equation** calculates the actual expansion, δt (m), due to thermal strain. The

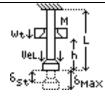

third equation computes the thermal strain force, \mathbf{R} (N), induced in the member if the material is confined in a fixed space that does not allow the top to expand.


$\varepsilon t = \alpha \cdot \Delta T$	Eq. 1
$\delta_t = \varepsilon_t \cdot L$	Eq. 2
$R = A \cdot E \cdot \alpha \cdot \Delta T$	Eq. 3

Variable	Description	Units
α	Coefficient of thermal expansion	1/K
ΔT	Temperature difference	K
δt	Elongation	m
εt	Thermal strain	unitless
A	Area	m^2
E	Young's modulus	Pa
L	Length	m
R	Thermal strain force	N

Example 20.2.2:

If a porch had a roof that is held up by concrete pillars, how much will it move in an environment that has a 313.706 k temperature change from winter to summer? Also how much of a strain will this put on the pillars? The pillars are 8 ft tall, and the coefficient of thermal expansion for concrete is 14E-6 1/°C.


s Computed results

Solution – Select the **first** and **second equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\alpha = 14E-6 1/^{\circ}C$	$\delta t = .421621 \text{ in}$
$\Delta T = 313.706 \text{ k}$	$\epsilon t = .004392$
L = 8 ft	

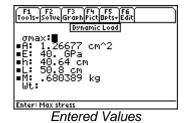
20.2.3 Dynamic Load

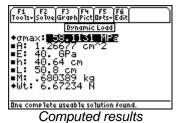
Dynamic loads differ from static loads in that they are generally and loads can be applied suddenly and from an impact load. The eight equations in this section focus on impact of a dynamic load and helps compute its impact on properties of the system. We use the example of a collar and flange designed so that the collar sits on the flange and moves downwards with it. This situation is often referred to as *perfectly plastic impact*. Two key assumptions are made in this analysis -

- Disregard energy losses
- Assume all kinetic energy of the falling mass is converted to strain energy of the bar.

The **first equation** falls out of the conservation of energy principle whereby the potential energy lost by the mass, \mathbf{M} (kg), with a weight, \mathbf{Wt} (N), is transferred to the bar of length, \mathbf{L} (m), area, \mathbf{A} (m²), height, \mathbf{h} (m), elastic modulus, \mathbf{E} (Pa), results in a maximum deflection, $\delta \mathbf{max}$ (m). The **second equation** solves for the positive root of $\delta \mathbf{max}$. The **third equation** extracts the static elongation, $\delta \mathbf{st}$ (m), in terms of the static load parameters, \mathbf{Wt} , \mathbf{L} , \mathbf{E} and \mathbf{A} . The **next equation** is an alternative form of the first equation except $\delta \mathbf{max}$ is expressed as a function of the static elongation, $\delta \mathbf{st}$, and the effect of the dynamic load. The **next three equations** reflect a calculation of the maximum tensile stress, $\sigma \mathbf{max}$ (Pa), from parameters of the system. **Equation 7** describes maximum stress, $\sigma \mathbf{max}$, in terms of velocity; weight, \mathbf{Wt} , physical properties of the system such as area \mathbf{A} , length \mathbf{L} , velocity \mathbf{vel} (m/s), and modulus of elasticity \mathbf{E} (Pa). The **final equation** relates weight, \mathbf{Wt} , and mass, \mathbf{M} .

$$Wt \cdot (h + \delta max) = \frac{E \cdot A \cdot \delta max^{2}}{2 \cdot L}$$


$$\delta max = \frac{Wt \cdot L}{E \cdot A} + \left(\left(\frac{Wt \cdot L}{E \cdot A} \right)^{2} + \frac{2 \cdot Wt \cdot L \cdot h}{E \cdot A} \right)^{.5}$$
Eq. 2


$\delta st = \frac{Wt \cdot L}{E \cdot A}$	Eq. 3
$\delta max = \delta st + \left(\delta st^2 + 2 \cdot h \cdot \delta st\right)^{.5}$	Eq. 4
$\sigma max = \frac{Wt}{A} + \left(\left(\frac{Wt}{A} \right)^2 + \frac{2 \cdot Wt \cdot h \cdot E}{A \cdot L} \right)^{.5}$	Eq. 5
$\sigma max = \sigma st + \left(\sigma st^2 + \frac{2 \cdot h \cdot E}{L} \cdot \sigma st\right)^5$	Eq. 6
$\sigma max = \left(\frac{Wt \cdot vel^2 \cdot E}{A \cdot L \cdot grav}\right)^{.5}$	Eq. 7
$M = \frac{Wt}{grav}$	Eq. 8

Variable	Description	Units
δmax	Maximum elongation	m
δst	Static elongation	m
σmax	Maximum stress	Pa
σst	Static stress	Pa
A	Area	m^2
E	Young's modulus	Pa
h	Height	m
L	Length	m
M	Mass of load	kg
vel	Maximum velocity	m/s
Wt	Force	N

Example 20.2.3:

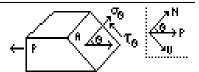
When a collar around a copper rod is dropped from a height of 40.64 cm, find the force of the collar, and the maximum stress experienced by the rod. The length of the rod is 50.8 cm and its modulus of elasticity is 40 GPa. The collar has a mass of .680389 kg and the rod has an area of 1.26677 cm².

Solution – Select the **fifth** and **eighth equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

 $A = 1.26677 \text{ cm}^2$ E = 40 GPah = 40.64 cm

L = 50.8 cmM = .680389 kg **Solution**

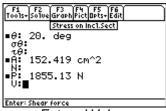

 σ max = 58.1147 MPa Wt = 6.67234 N

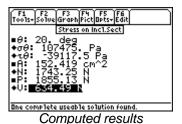
20.3 Stress Analysis

Five varieties of stress analysis problems are covered under this section.

20.3.1 Stress on an Inclined Section

By slicing a plane through a bar at an angle an inclined plane section is cut, θ (rad). The plane is subject to an axial force, P(N). The normal force, N(N), and shear force, V(N), result on the inclined plane and is defined by the **first two equations**. The normal force, N, represents the force perpendicular to the inclined plane, while

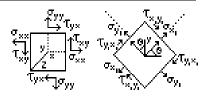

shear force, **V**, represents the force parallel to the inclined plane. The **equations 3** and **4** formulate the normal stress, $\sigma\theta$ (Pa) and shear stress, $\tau\theta$ (Pa), in terms of **P**, area, **A** (m²), and θ .


$N = P \cdot \cos(\theta)$	Eq. 1
$V = P \cdot \sin(\theta)$	Eq. 2
$\sigma\theta = \frac{P}{A} \cdot \left(\cos(\theta)\right)^2$	Eq. 3
$\tau\theta = \frac{-P}{A} \cdot \sin(\theta) \cdot \cos(\theta)$	Eq. 4

Variable	Description	Units
θ	Inclined plane angle	rad
$\sigma\theta$	Normal stress	Pa
$\tau\theta$	Shear stress	Pa
A	Area	m^2
N	Normal force	N
P	Load	N
V	Shear force	N

Example 20.3.1:

Given the area of a bar, the load of an object, and the angle of the incline plane on the bar as 152.419 cm², 1855.125 N, and 20 deg respectively, find the shear force, the normal force, the normal stress, and the shear stress of the placed upon the bar by the object.

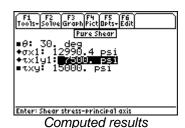

Entered Values

Solution – Select **all** of the **equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\theta = 20 \text{ deg}$	$\sigma\theta = 107475.0 \text{ Pa}$
$A = 152.419 \text{ cm}^2$	$\tau\theta = -39117.5 \text{ Pa}$
P = 1855.125 N	N = 1743.25 N
	V = 634.49 N

20.3.2 Pure Shear

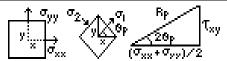
When a circular bar is subject to torsion, shear stresses act over the cross sections and longitudinal planes as shown in the thin cross-sectional element in the accompanying diagram. The **first equation** shows the shear stress along the principal stress, $\sigma x1$ (Pa), relates to the inclined plane angle, θ (rad), and shear stress, τxy (Pa). The **second equation** shows the shear stress, $\tau x1y1$ (Pa), along the principal axis perpendicular to $\sigma x1$ in terms of τxy (Pa) and θ .


$\sigma x 1 = 2 \cdot \tau x y \cdot \cos(\theta) \cdot \sin(\theta)$	Eq. 1
$\tau x 1 y 1 = \tau x y \cdot \left(\left(\cos(\theta) \right)^2 - \left(\sin(\theta) \right)^2 \right)$	Eq. 2

Variable	Description	Units
θ	Inclined plane angle	rad
σx1	Stress along principal axis	Pa
τx1y1	Shear stress along principal axis	Pa
τχ	Shear stress	Pa

Example 20.3.2:

Find the principal shear stress on a plane 30 deg from the longitudinal axis when a shear stress of 15000 psi.

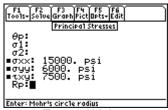

Entered Values

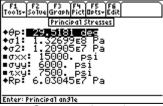
Solution – Select **all** the **equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\theta = 30 \text{ deg}$	$\sigma x1 = 12990.4 \text{ psi}$
$\tau xy = 15000 \text{ psi}$	$\tau x 1 y 1 = 7500 \text{ psi}$

20.3.3 Principal Stresses

The transformation equations for plane stresses to principal stresses form the backbone of these equations. From the normal stresses along the x and y-axis, σxx (Pa) and σyy (Pa), and shear stress, τxy (Pa), we can compute the angle


of the plane, θp (rad), as shown by the **first equation**. The **second equation** computes a characteristic radius, Rp (Pa), often called the Mohr circle radius. The **third** and the **fourth equations** define the stresses, $\sigma 1$ (Pa) and $\sigma 2$ (Pa), along the principal axis. While the **fifth equation** shows a simple linear relationship amongst $\sigma 1$, $\sigma 2$, σxx and σyy , the **final two equations** show a method of computing θp using alternative methods.


$\tan(2 \cdot \theta p) = \frac{2 \cdot \tau xy}{\sigma xx - \sigma yy}$	Eq. 1
$Rp = \sqrt{\left(\frac{\sigma x x - \sigma y y}{2}\right)^2 + \tau x y^2}$	Eq. 2
$\sigma 1 = \frac{\sigma xx + \sigma yy}{2} + \sqrt{\left(\frac{\sigma xx - \sigma yy}{2}\right)^2 + \tau xy^2}$	Eq. 3
$\sigma 2 = \frac{\sigma xx + \sigma yy}{2} - \sqrt{\left(\frac{\sigma xx - \sigma yy}{2}\right)^2 + \tau xy^2}$	Eq. 4
$\sigma 1 + \sigma 2 = \sigma x x + \sigma y y$	Eq. 5
$\cos(2 \cdot \theta p) = \frac{\sigma x x - \sigma y y}{2 \cdot Rp}$	Eq. 6
$\sin(2\cdot\theta p) = \frac{\tau xy}{Rp}$	Eq. 7

Variable	Description	Units
θp	Principal angle	rad
σ1	Stress in 1	Pa
σ2	Stress in 2	Pa
σχχ	Stress along x axis	Pa
σуу	Stress along y axis	Pa
τχγ	Shear stress	Pa
Rp	Mohr's circle radius	Pa

Example 20.3.3:

Compute the Mohr radius given 15000 psi and 6000 psi for the normal stresses on the x and y axis', respectively. The shear stress is 7500 psi. Find the principal angle of the principal plane and values for the principal stresses.

Entered Values Computed results

Solution – Select the **first four equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. At the ME•Pro solver, **select an arbitrary integer of 0** to compute the principal solution (the principal solution, P, in a periodic trigonometric function, trig (...), is $P=trig(\theta + n \cdot \pi)$ and n is the arbitrary integer).

Given	Solution
$\sigma xx = 15000 \text{ psi}$	$\theta p = 29.5181 \text{ deg}$
$\sigma yy = 6000 \text{ psi}$	$\sigma 1 = 1.32699 \text{ E8 Pa}$
$\tau xy = 7500 \text{ psi}$	$\sigma 2 = 1.20905E7 Pa$
	Rp = 6.03045E7 Pa

20.3.4 Maximum Shear Stress

The five equations below compute the maximum shear stress experienced in a member and the angle of the plane where this stress is experienced. The **first equation** defines θ s (rad) as the angle of orientation of the plane of maximum shear stress in terms of the normal shear stresses, σ xx (Pa) and σ yy (Pa), along x and y axis respectively, and the shear stress, τ xy (Pa). The **second equation** connects θ s to θ p (rad), the angle of orientation to the principal planes. The plane of algebraically maximum value of maximum shear, τ max (Pa), is shown by the **third equation**. The **last two equations** show alternate forms of computing τ max in terms of σ xx, σ yy and τ xy or the corresponding principal stresses, σ 1 (Pa) and σ 2 (Pa).

$$\tan(2 \cdot \theta s) = \frac{-(\sigma x x - \sigma y y)}{2 \cdot \tau x y}$$

$$\tan(2 \cdot \theta s) = \frac{-1}{\tan(2 \cdot \theta p)}$$
Eq. 2
$$\theta s 1 = \theta p - \frac{\pi}{4}$$
Eq. 3
$$\tau max = \sqrt{\left(\frac{\sigma x x - \sigma y y}{2}\right)^2 + \tau x y^2}$$
Eq. 4

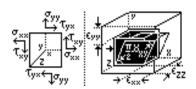
$\tau max = \frac{\sigma 1 - \sigma 2}{2}$	Eq. 5
--	-------

Variable	Description	Units
θ p	Principal angle	rad
Θ s	Principal angle- maximum shear	rad
θs1	Principal angle- maximum shear 1	rad
σ1	Stress in 1	Pa
σ2	Stress in 2	Pa
σχχ	Stress along x axis	Pa
буу	Stress along y axis	Pa
τmax	Maximum shear stress	Pa
τχ	Shear stress	Pa

Example 20.3.4:

An element in plane stress is subject to a normal stress of 12300 psi along x-axis, and a stress of -4200 psi along y-axis, along with a shear stress of -4700 psi. Determine the principal stresses and the angle of maximum shear stress.

Entered Values

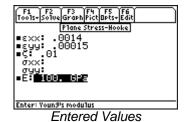

Computed results

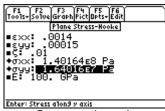
Solution – Select the first four equations to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. Because of the presence of trigonometric relationships, multiple solutions are possible and the principal solutions were chosen here. At ME•*Pro* solver and grapher, use "0" for the replacement integer of the arbitrary integer.

Given	Solution
$\sigma xx = 12300 \text{ psi}$	$\theta p = -14.835 \text{ deg}$
$\sigma yy = -4200 \text{ psi}$	θ s = 30.165 deg
$\tau xy = -4700 \text{ psi}$	θ s1 = -59.835 deg
	$\tau \max = 6.54648E7 Pa$

20.3.5 Plane Stress - Hooke's Law

Normal strains, $\boldsymbol{\epsilon} \boldsymbol{x} \boldsymbol{x}$ (unitless), $\boldsymbol{\epsilon} \boldsymbol{y} \boldsymbol{y}$ (unitless) and $\boldsymbol{\epsilon} \boldsymbol{z} \boldsymbol{z}$ (unitless), represent the changes in dimensions of an infinitesimally small cube having edges of unit length. The normal stress-strain relationships shown in the **first three equations** reflect Hooke's law relationships, where stress and strain are related by the Young's modulus of elasticity, \boldsymbol{E} (Pa), and the Poisson's ratio $\boldsymbol{\zeta}$ (unitless). The **fourth**


equation shows the Hooke's law for shear stress, τxy (Pa), bulk modulus of elasticity, **G** (Pa) and shear strain, γxy (unitless). The **last two equations** complement the first two equations where stresses, σxx (Pa), σyy (Pa), and σzz (Pa), are expressed in terms of strains.

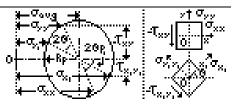

$\varepsilon xx = \frac{1}{E} \cdot (\sigma xx - \zeta \cdot \sigma yy)$	Eq. 1
$\varepsilon yy = \frac{1}{E} \cdot (\sigma yy - \zeta \cdot \sigma xx)$	Eq. 2
$\varepsilon zz = \frac{-\zeta}{E} \cdot (\sigma xx + \sigma yy)$	Eq. 3
$\gamma xy = \frac{\tau xy}{G}$	Eq. 4
$\sigma xx = \frac{E}{1 - \zeta^2} \cdot (\varepsilon xx + \zeta \cdot \varepsilon yy)$	Eq. 5
$\sigma yy = \frac{E}{1 - \zeta^2} \cdot (\varepsilon yy + \zeta \cdot \varepsilon xx)$	Eq. 6

Variable	Description	Units
γχy	Shear strain along x, y axis	unitless
ЕХХ	Strain-x axis	unitless
εуу	Strain-y axis	unitless
EZZ	Strain-z axis	unitless
ζ	Poisson's ratio	unitless
σχχ	Stress along x axis	Pa
σуу	Stress along y axis	Pa
τχγ	Shear stress	Pa
E	Young's modulus	Pa
G	Shear modulus	Pa

Example 20.3.5:

A cubic structure is subject to linear strains of 1.4E-3 along the x-axis, and 1.5E-4 along the y-axis, and a Poisson's ratio of 0.01. If the Young's modulus of elasticity for this member is 100 GPa, find the stresses along x, and y-axis'.

Computed results


Solution – Select the **last two equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above

Given	Solution
$\varepsilon xx = 1.4E-3$	$\sigma xx = 1.40164E8 Pa$
$\varepsilon yy = 1.5E-4$	$\sigma yy = 1.64016E7 Pa$
$\zeta = 0.01$	
E = 100 GPa	

20.4 Mohr's Circle Stress

20.4 Mohr's Circle Stress

A graphical presentation of transformation equations for plane stress is called the Mohr's circle. Six equations listed here form the core relationships that reflect various aspects of the components constituting the Mohr's circle. The **first equation** relates principal axis stress, **ox1** (Pa), to stresses along x and y-axis, **oxx** (Pa) and **oyy** (Pa), and the inclined

plane angle, θ (rad). The **second equation** shows the relationship of these variables to the principal shear stress, $\tau x1yt1$ (Pa). The **third equation** computes the average stress, σav (Pa). The Mohr's circle radius, **Rp** (Pa), is calculated from, $\sigma x1$, σav and τxy . The **last two equations** show alternate ways to calculate $\theta p1$ (rad), the angle of the principal axis.

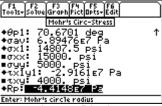
$$\sigma x 1 - \frac{\sigma x x + \sigma y y}{2} = \frac{\sigma x x - \sigma y y}{2} \cdot \cos(2 \cdot \theta) + \tau x y \cdot \sin(2 \cdot \theta)$$
 Eq. 1

$$\tau x 1 y 1 = \frac{-(\sigma x x - \sigma y y)}{2} \cdot \sin(2 \cdot \theta) + \tau x y \cdot \cos(2 \cdot \theta)$$
 Eq. 2

$$\sigma av = \frac{\sigma xx + \sigma yy}{2}$$
 Eq.3

$$Rp^2 = (\sigma x 1 - \sigma a v)^2 + \tau x 1 y 1^2$$
 Eq. 4

$$\cos(2 \cdot \theta p 1) = \frac{\sigma x x - \sigma y y}{2 \cdot R p}$$
 Eq. 5


$$\sin(2 \cdot \theta p 1) = \frac{\tau xy}{Rp}$$
 Eq. 6

Variable	Description	Units
θ	Inclined plane angle	rad
θp1	Principal angle 1	rad
σav	Average stress	Pa
σx1	Stress-principal axis 1	Pa
σχχ	Stress along x axis	Pa
σуу	Stress along y axis	Pa
τx1y1	Shear stress – principal axis	Pa
τχ	Shear stress	Pa
Rp	Mohr's circle radius	Pa

Example 20.4:

An element in plane stress is subject to a stress of 15000 psi along the x-axis, 5000 psi along the y-axis and a shear force of 4000 psi. The plane is at an angle of 40 degrees to the axis. Find the principal stress values and angle of the planes for maximum stress.

Upper Display

Lower Display

Solution – Select the **first five equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. At ME•*Pro* solver and grapher, use "0" for the replacement integer of the arbitrary integer. The first usable solution is shown in this example.

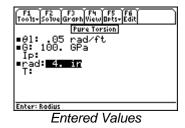
Given	Solution
$\theta = 40 \text{ deg}$	θ p1 =70.6701 deg
$\sigma xx = 15000 \text{ psi}$	$\sigma av = 6.89476E7 Pa$
$\sigma yy = 5000 \text{ psi}$	$\sigma x 1 = 14807 .5 \text{ psi}$
$\tau xy = 4000 \text{ psi}$	$\tau x 1 y 1 = -2.9161 E7 Pa$
	Rp = 4.4146E7 Pa

20.5 Torsion

Torsion refers to the twisting of a structural member, when it is loaded by a *couple* which produces rotation about the longitudinal axis.

20.5.1 Pure Torsion

Eight equations are listed here to illustrate various aspects of torsion. The **first two equations** focus on the definition of torsional shear strain, γ (unitless), in terms of the shaft radius, \mathbf{rad} (m), and length \mathbf{L} (m), angular twists per unit length, $\theta \mathbf{1}$ (rad/m), and twist, ϕ (rad). The **third equation** represents Hooke's law for shear. The **fourth equation** yields the torque, \mathbf{T} (N·m), for the angular twist modulated by the bulk modulus, \mathbf{G} (Pa), and polar moment of inertia, \mathbf{Ip} (m⁴). The **fifth equation** computes \mathbf{Ip} in terms of \mathbf{rad} . The **sixth equation** shows the computation of the twist, ϕ , in terms of \mathbf{T} , \mathbf{L} , \mathbf{G} and \mathbf{Ip} . The **last two equations** show alternate forms of \mathbf{Tmax} (Pa), the maximum shear stress.


$\gamma = rad \cdot \theta 1$	Eq. 1
$\gamma = \frac{rad \cdot \phi}{L}$	Eq. 2
$ au = G \cdot \gamma$	Eq. 3
$T = G \cdot Ip \cdot \theta 1$	Eq. 4

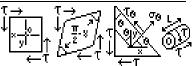
$Ip = \frac{\pi \cdot rad^4}{2}$	Eq. 5
$\phi = \frac{T \cdot L}{G \cdot Ip}$	Eq. 6
$\tau max = \frac{T \cdot rs}{Ip}$	Eq. 7
$\tau max = \frac{16 \cdot T}{\pi \cdot d^3}$	Eq. 8

Variable	Description	Units
γ	Shear strain	unitless
θ1	Angle of twist/unit length	rad/m
τ	Shear stress	Pa
τmax	Maximum shear stress	Pa
φ	Angle of twist	rad
d	Diameter	m
G	Shear modulus	Pa
Ip	Polar moment of inertia	m^4
L	Length	m
rad	Radius	m
rs	Shaft radius	m
T	Torque	N⋅m

Example 20.5.1:

Compute the torque needed for a system with a radius of 4 inches, G=100 GPa, and a twist of 0.05 rad/ft.

Solution – Select the **fourth** and **fifth equations** to solve this problem. Select these by highlighting the equations and pressing <code>ENTER</code>. Press <code>F2</code> to display the variables. Enter the values for the known parameters and press <code>F2</code> to solve for the unknown variables. The entries and results are shown in the screen displays above.


Given $\theta 1 = 0.05 \text{ rad/ft}$ G = 100 GParad = 4 in

Solution

Ip = 0.000167 m^4 T = $2.74568E6 \text{ N} \cdot \text{m}$

20.5.2 Pure Shear

When a circular bar either solid or hollow is subject to torsion, shear stress, τ (Pa), acts over the cross section of the inclined face of a plane inclined at an angle of θ (rad). The **first equation** in this set calculates, $\sigma\theta$ (Pa), the normal stress perpendicular to the plane of

interest in terms of shear stress, τ (Pa) and θ . The **second equation** gives the shear stress value, $\tau\theta$ (Pa), for the system on the plane. The **next two equations** complement the first two by expressing $\tau\theta$ and $\sigma\theta$ in alternate forms using trigonometric identities. The **fifth equation** represents Hooke's law for shear linking shear strain, γ (unitless), with bulk modulus, G (Pa), and shear stress, τ . The **remaining equations** compute Young's modulus, E (Pa), strain, **Emax** (unitless), and elastic strain energy, E (J), with E (Poisson's ratio E (unitless), system torque, E (N·m), polar moment E (m⁴).

$\sigma\theta = 2 \cdot \tau \cdot \sin(\theta) \cdot \cos(\theta)$	Eq. 1
$\tau\theta = \tau \cdot \left(\left(\cos(\theta) \right)^2 - \left(\sin(\theta) \right)^2 \right)$	Eq. 2
$\sigma\theta = \tau \cdot \sin(2 \cdot \theta)$	Eq. 3
$\tau\theta = \tau \cdot \cos(2 \cdot \theta)$	Eq. 4
$\gamma = \frac{\tau}{G}$	Eq. 5
$E = 2 \cdot G \cdot (1 + \varsigma)$	Eq. 6
$\varepsilon max = \frac{\tau}{E} \cdot (1 + \varsigma)$	Eq. 7
$U = \frac{T^2 \cdot L}{2 \cdot G \cdot Ip}$	Eq. 8

Variable	Description	Units
γ	Shear strain	unitless
Emax	Maximum strain	unitless
ζ	Poisson's ratio	unitless
θ	Inclined plane angle	rad
$\sigma\theta$	Normal stress	Pa
τ	Shear stress	Pa
$\tau\theta$	Shear stress	Pa
E	Young's modulus	Pa
G	Shear modulus	Pa

Variable	Description	Units
Ip	Polar moment of inertia	m^4
L	Length	m
T	Torque	N⋅m
U	Elastic strain energy	J

Example 20.5.2:

Find the normal stress $\sigma\theta$ and shear stress $\tau\theta$ for system when a shear stress of 15000 psi is applied to a plane at an angle of 30 degrees.

Computed results

Solution – Select the **first** and **second equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\theta = 30$ degrees	$\sigma\theta = 12990.4 \text{ psi}$
$\tau = 15000 \text{ psi}$	$\tau\theta = 7500 \text{ psi}$

20.5.3 Circular Shafts

Circular shafts are used invariably in transferring mechanical power from one system to another. The three equations below represent the basic properties of such a rotating system. The **first equation** connects the power, Pwr (W), with the torque, T (N·m), and angular frequency, ω

(rad/s). The **second equation** shows the connection between ω and frequency, **freq** (Hz). The **last equation** expresses the relation between the rotational speed, **rpm** (rpm) and **freq**.

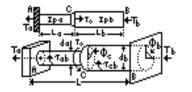
$Pwr = T \cdot \omega$	Eq. 1
$\omega = 2 \cdot \pi \cdot freq$	Eq. 2
rpm = freq	Eq. 3

Variable	Description	Units
ω	Radian frequency	rad/s
freq	Frequency	Hz
Pwr	Power	W
rpm	Revolutions per minute	1/s
T	Torque	N⋅m

Example 20.5.3:

Find the torque needed to transfer 1000W of power at 300 revolutions per minute.

Entered Values


Computed results

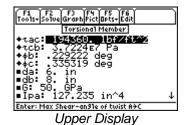
Solution – Select **all** the **equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

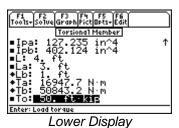
 $\begin{array}{ll} \textbf{Given} & \textbf{Solution} \\ Pwr = 1000 \ W & \omega = 31.4159 \ rad/s \\ rpm = 300 \ rpm & freq = 5 \ Hz \\ & T = 31.831 \ N \cdot m \end{array}$

20.5.4 Torsional Member

The ten equations in this section represent an analysis of the flexibility method applied to bars in torsion, as shown in the picture. We examine the case of two bars of diameters, \mathbf{da} (m) and \mathbf{db} (m), loaded by a torque, \mathbf{To} (N·m), at the location C shown in the picture above. The object is to compute \mathbf{Ta} (N·m) and \mathbf{Tb} (N·m), the reactive torque at each end of the system. The angle of rotation, $\phi \mathbf{c}$ (rad), from C to

A, and ϕb (rad), represents the angle of rotation from B to C. The two segments of the element have lengths, \mathbf{La} (m) and \mathbf{Lb} (m), giving a total length of \mathbf{L} (m). \mathbf{Ipa} (m⁴) and \mathbf{Ipb} (m⁴) represent the polar moments of the regions of the member, while \mathbf{Tac} (Pa) and \mathbf{Tbc} (Pa), represent the maximum shear from A to C and maximum shear from B to C respectively. \mathbf{G} (Pa), is defined as the bulk modulus. The equations listed below represent a complex set of relations between all the variables described here.


To = Ta + Tb	Eq. 1
$\phi b = \frac{(To - Tb) \cdot La}{G \cdot Ipa} - \frac{Tb \cdot Lb}{G \cdot Ipb}$	Eq. 2
$Ta = \frac{To \cdot Lb}{L}$	Eq. 3
$Tb = \frac{To \cdot La}{L}$	Eq. 4
L = La + Lb	Eq. 5
$\tau ac = \frac{To \cdot Lb \cdot da}{2 \cdot (La \cdot Ipb + Lb \cdot Ipa)}$	Eq. 6
$\tau cb = \frac{To \cdot La \cdot db}{2 \cdot (La \cdot Ipb + Lb \cdot Ipa)}$	Eq. 7


$\phi c = \frac{Ta \cdot La}{G \cdot Ipa}$	Eq. 8
$\phi c = \frac{Tb \cdot Lb}{G \cdot Ipb}$	Eq. 9
$\phi c = \frac{La \cdot Lb \cdot To}{G \cdot (La \cdot Ipb + Lb \cdot Ipa)}$	Eq. 10

Variable	Description	Units
τας	Maximum shear at angle of twist $A \rightarrow C$	Pa
τcb	Maximum shear at angle of twist $C \rightarrow B$	Pa
φb	Angle of rotation at B	rad
фс	Angle of rotation at C	rad
da	Diameter at end A	m
db	Diameter at end B	m
G	Shear modulus	Pa
Ipa	Polar moment of inertia of A	m^4
Ipb	Polar moment of inertia of B	m^4
L	Length	m
La	Shaft length-diameter da	m
Lb	Shaft length-diameter db	m
Ta	Reactive torque at A	N⋅m
Tb	Reactive torque at B	N⋅m
To	Load torque	N⋅m

Example 20.5.4:

A shaft 4 feet long has a diameter of 6 inches for the first 3 feet and 8 inches for the remaining length. The bulk modulus has a value of 100 GPa. If a torque of 50 ft·kips is applied at the transition point, find the angles of twist, and shear stresses in the system. Assume that the polar moments are 127.235 in⁴ and 402.124 in⁴ respectively.

Solution – Select the **first eight equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
da = 6 in	$\tau ac = 194360 \text{ lbf/ft}^2$
db = 8 in	$\tau cb = 3.7224E7 Pa$
G = 50 GPa	$\phi b = .229222 \ deg$
Ipa = 127.235 in^4	$\phi c = .335319 \text{ deg}$
Ipb = 402.124 in^4	Lb = 1 ft

Given Solution

 $\label{eq:Last} \begin{array}{ll} L=4 \text{ ft} & Ta=16947.7 \text{ N} \cdot \text{m} \\ La=3 \text{ ft} & Tb=50843.2 \text{ N} \cdot \text{m} \end{array}$

To = 50 ft-kip

References:

Gere and Timoshenko "Mechanics of Materials" 3rd Ed. PWS-Kent. 1990

Chapter 21: Fluid Mechanics

The fluid mechanics section of the equation library offers a collection of equations organized in convenient topics identified below. These topics have several subtopics to assist quick access to the subject matter of choice.

- **♦** Fluid properties
- **♦ Fluid Dynamics**
- **♦** Flow in Conduits

- ♦ Fluid Statics
- **♦** Surface Resistance
- ♦ Impulse/Momentum

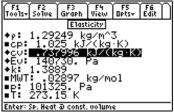
21.1 Fluid Properties

21.1.1 Elasticity

Elasticity is a measure of the deformation (expansion or contraction) of a fluid due to a pressure change. The **first equation** computes the bulk modulus of elasticity, **Ev** (Pa), for an ideal compressible fluid undergoing an **isothermal** process. **Equation 2** computes **Ev** for an **adiabatic** process. **Equation 3** computes the specific heat ratio, **k** (unitless), from the specific heat at constant pressure, **cp** ($J/(kg\cdot K)$), and the specific heat at constant volume, **cv** ($J/(kg\cdot K)$). **Equation 4** links **cp** and **cv** using the molecular mass, **MWT** (kg/mol) and **Rm** ($J/(mol.\ K)$, the universal Gas Constant. **Equation 5** computes the density of the fluid, ρ (kg/m^3), from the mass, **m** (kg), occupied per volume, **vol** (m^3). The **last equation** is the ideal gas law.

$Ev = \frac{\rho \cdot Rm \cdot T}{MWT}$	Eq. 1
$Ev = k \cdot p$	Eq. 2
$k = \frac{cp}{cv}$	Eq. 3
$cp = cv + \frac{Rm}{MWT}$	Eq. 4
$\rho = \frac{m}{vol}$	Eq. 5
$p = \frac{\rho \cdot Rm \cdot T}{MWT}$	Eq. 6

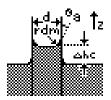
Variable	Description	Units
ρ	Density	kg/m ³
ср	Specific heat at constant pressure	$J/(kg \cdot K)$
cv	Specific heat at constant volume	$J/(kg \cdot K)$


Variable	Description	Units
Ev	Bulk modulus for an ideal gas	Pa
k	Specific heat ratio	Unitless
m	Mass	Kg
MWT	Molar mass	kg/mol
р	Pressure	Pa
Rm	Ideal Gas constant	8.31451 J/(mol·K)
T	Temperature	K
vol	Volume	m^3

Example 21.1.1:

Compute the adiabatic elasticity for air using values for molar mass, standard temperature and pressure.

Entered Values


Computed results

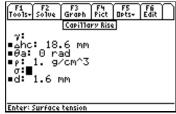
Solution – The molar mass of dry air (ma = 0.02897 kg/mol), the standard temperature (ST = 273.15 K) and the standard pressure, (SP = 101325 Pa) are listed in ME•*Pro* under the **Reference** section in **Engineering Constants** (see Chapter 27). The specific heat for dry air, **cp** = 1.025 kJ/(kg·K), at 275 K is listed under **Reference/Thermal Properties/Specific Heat/Cp Liquids and Gases** (see Chapter 34). Select **Equations 2, 3, 4 and 6** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. Note that **Rm**, is automatically inserted into the calculation by the software. The entries and results are shown in the screen displays above.

Given	Solution
$cp = 1.025 \text{ kJ/(kg} \cdot \text{K)}$	$\rho = 1.29249 \text{ kg/m}^3$
MWT = .02897 kg/mol	cv = .737996 kJ/(kg·K)
p = 101325 Pa	Ev = 140730 Pa
T = 273.15 K	k = 1.3889

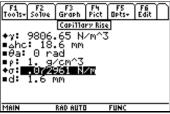
21.1.2 Capillary Rise

These equations compute the rise of a fluid inside a capillary tube due to surface tension. The **first equation** computes the surface tension, σ (N/m), of a fluid inside a capillary due to the vertical displacement of the fluid inside of the tube, Δhc (m), the inner diameter of the capillary, d (m), and the contact angle of the fluid with sides of the capillary tube, θa (rad). **Equation 2** computes the radius of the meniscus, **rdm** (m). The **last equation** computes the specific weight of the fluid, γ (N/m³), from the density, ρ (kg/m³) and the gravitational acceleration.

$$\Delta hc = \frac{4 \cdot \sigma \cdot \cos(\theta a)}{\gamma \cdot d}$$
 Eq. 1


$rdm = \frac{d}{2 \cdot \cos(\theta a)}$	Eq. 2
$\rho = \frac{\gamma}{grav}$	Eq. 3

Variable	Description	Units
γ	Specific weight	N/m^3
θ a	Contact angle	rad
Δhc	Capillary rise	m
ρ	Density	kg/m ³
σ	Surface tension	N/m
d	Diameter	m
grav	Gravitational acceleration	9.80665 m/s^2
rdm	Meniscus radius	m


Example 21.1.2:

d = 1.6 mm

A capillary having an interior diameter of 1.6 mm is inserted into water ($\mathbf{p} = 1.0 \text{ g/cm}^3$). If a height displacement of 18.6 mm is measured and the contact angle of the meniscus is assumed to be zero, what is the surface tension?

Entered Values

Computed results

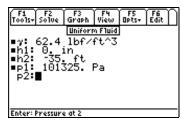
Solution – Select the **first** and **third equations** to solve this problem. Select these by highlighting the equations and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Note that **grav**, is automatically inserted into the calculation. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\Delta hc = 18.6 \text{ mm}$	$\gamma = 9806.65 \text{ N/m}^3$
$\theta a = 0 \text{ rad}$	$\sigma = .072961 \text{ N/m}$
$\rho = 1 \text{ g/cm}^3$	

21.2 Fluid Statics

21.2 1 Pressure Variation

21.2.1.1 Uniform Fluid


This equation computes the pressure variation, p1 (Pa) and p2 (Pa), between heights, h1 (m) and h2 (m), for a uniform density fluid, having a specific gravity, γ (N/m³).

$$\frac{pI}{\gamma} + hI = \frac{p2}{\gamma} + h2$$
 Eq. 1

Variable	Description	Units
γ	Specific weight	N/m^3
h1	Height at 1	m
h2	Height at 2	m
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa

Example 21.2.1.1:

Water has a specific weight of 62.4 lbf/ft³ at 25 °C. If a pressure gauge is dropped 35 ft below the water surface (at sea level), and the temperature of the water is uniform, what is the pressure reading?

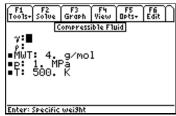
Entered Values

Solution – Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknowns. The entries and results are shown in the screen displays above.

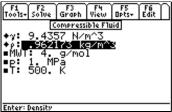
Hint: the value of specific weight, $\gamma(N/m^3)$ can be calculated from the density, $\rho(kg/m^3)$, of a fluid in the next section. The value of standard pressure for **p1**, (SP = 101325 Pa) is listed in ME•*Pro* under the **Reference** section in **Engineering Constants** (see Chapter 27).

Given $\gamma = 62.4 \text{ lbf/ft}^3$ h1 = 0 h2 = -35 ftp1 = 101325 Pa **Solution** p2 = 205895 Pa

21.2.1.2 Compressible Fluid


These equations compute the specific weight, $\gamma(N/m^3)$ and density, $\rho(kg/m^3)$ for an ideal gas. The **first** equation calculates γ , from pressure, $\rho(Pa)$, temperature, $\rho(Pa)$, temperature, $\rho(Pa)$, molar mass, $\rho(Pa)$, and the gravitational acceleration, $\rho(Pa)$, $\rho(Pa)$. The second equation computes $\rho(Pa)$ from its density, $\rho(Pa)$.

$$\gamma = \frac{p \cdot grav \cdot MWT}{Rm \cdot T}$$
 Eq. 1
$$\rho = \frac{\gamma}{grav}$$


Variable	Description	Units
γ	Specific weight	N/m^3
ρ	Density	kg/m ³
Grav	Gravitational acceleration	9.80665 m/s^2
MWT	Molar mass	kg/mol
Rm	Ideal gas constant	8.31451 J/(mol·K)
P	Pressure	Pa
T	Temperature	K

Example 21.2.1.2:

What is the specific weight and density for helium (molar mass = 4 g/mol) at 1 MPa and 500 K?

Entered Values

Computed results

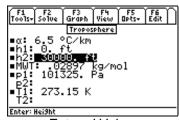
Solution – Select **both equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. Note that **grav** and **Rm** are automatically inserted into the calculation by the software.

Given	Solution
MWT = 4 g/mol	$\gamma = 9.4357 \text{ N/m}^3$
p = 1 MPa	$\rho = .962173 \text{ kg/m}^3$
T = 500 K	

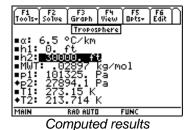
21.2.1 Pressure Variation

21.2.1.3 Troposphere

This section computes the temperature and pressure in the troposphere region of the atmosphere (up to 10,800 m above sea level). The atmospheric lapse rate in the troposphere is $\alpha = 6.50$ K/km. These equations can also compute the variation of pressure and temperature with height for any compressible fluid.


$$T2 = T1 - a \cdot (h2 - h1)$$

$$p2 = p1 \cdot \left(\frac{T1 - a \cdot (h2 - h1)}{T1}\right)^{\frac{grav \cdot MWT}{\alpha \cdot Rm}}$$
Eq. 2


Variable	Description	Units
α	Lapse rate	°C/m
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
MWT	Molar mass	kg/mol
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
Rm	Ideal gas constant	8.31451 J/(mol·K)
T1	Temperature at 1	K
T2	Temperature at 2	K

Example 21.2.1.3:

Given the adiabatic lapse rate $\alpha = 6.5$ °C/km, and the standard temperature and pressure conditions at sea level, calculate the atmospheric temperature and pressure at a height of 30000 ft above sea level?

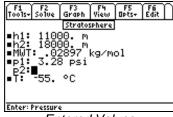
Entered Values

Solution – The values for the standard temperature (ST = 273.15 K) and the standard pressure, (SP = 101325 Pa) and the molar mass of dry air (ma = 0.02897 kg/mol), are listed in ME•*Pro* under the **Reference** section of **Engineering Constants** (see Chapter 24). Select **both equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. Note that **grav** and **Rm** are automatically inserted into the calculations. The entries and results are shown in the screen displays above.

MWT = .02897 kg/molp1 = 101325 Pa

T1 = 273.15 K

21.2.1.4 Stratosphere


The following equation computes the variation of pressure with height in the stratosphere. The stratosphere occurs at heights greater than 10,769 m and extends to an elevation of 32.3 km. The usual assumption in stratosphere calculations is that the temperature is constant in the entire region.

$$p2 = p1 \cdot e^{\frac{-(h2-h1)\cdot MWT \cdot grav}{Rm \cdot T}}$$
 Eq. 1

Variable	Description	Units
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
MWT	Molar mass	kg/mol
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
Rm	Ideal gas constant	8.31451 J/(mol·K)
T	Temperature	K

Example 21.2.1.4:

If the pressure and temperature of the atmosphere are 3.28 psi and -55 °C at an elevation of 11,000 m, what is the pressure at 18,000 m, assuming the temperature remains constant with height in this range?

Entered Values

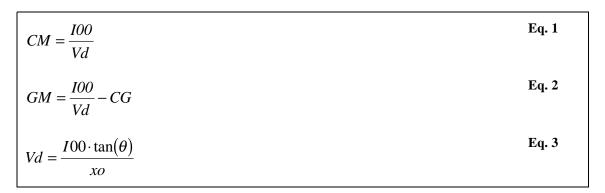
Solution – The molar mass of dry air (ma = 0.02897 kg/mol), is listed in ME•Pro under the **Reference** section in **Engineering Constants** (see Chapter 24). Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. The entries and results are shown in the screen displays above. Note that **grav** and **Rm** are automatically inserted into the calculation by the software.

Given


h1 = 11000 m h2 = 18000 m MWT = .02897 kg/mol p1 = 3.28 psi $T = -55 \text{ }^{\circ}\text{C}$ **Solution**

p2 = 1.09574 psi

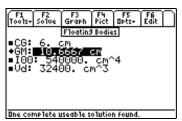
21.2.2.1 Floating Bodies


These equations compute the stability of a floating object due to buoyancy. A floating object has a center of gravity located at G and a center of buoyancy C along the axis of symmetry as shown in the schematic diagram shown here. The object has a second moment of $I00 \, (m^4)$ with respect to the waterline. When the object is tilted (heeled) at an angle θ (rad), the center of buoyancy is shifted by a distance, xo (m) to a new location,

G-CENTER OF
GRAVITY
C-CENTER OF
BUOYANCY
C-DISPLACED CENTER
OF BUOYANCY
M-METACENTER
*O-DISPLACEMENT

C', due to the displacement of liquid, Vd (m^3), on one side of the moment axis. The intersection of the vertical line connecting C' to the moment axis is defined as the metacenter M. If the M is located above the G, the floating object is stable (ie. CM is positive). If CM is negative, M is below G, than the object is unstable (likely to tip over). The **first equation** calculates CM (m) from IOO (m^4) and Vd (m^3). **Equation 2** computes the distance GM (m) between the metacenter and the center of gravity. The **last**

equation computes Vd (m³), from the second moment of inertia, I00, the shift xo, between the C and C'.


Variable	Description	Units
θ	Angle	rad
CG	Dist. from center of buoyancy to center of gravity	m
CM	Dist. from center of mass to metacenter	m
GM	Metacentric height (G to M)	m
100	2 nd Moment of inertia	m^4
Vd	Displaced volume	m^3
xo	Displacement of buoyancy center	m

Example 21.2.2:

A block of wood (30 x 30x 60 cm) floats at an immersed depth of 18 cm with its longitudinal axis parallel to the water surface. The block has a longitudinal second moment of 135,000 cm⁴ and a transverse second moment of 540,000 cm⁴. Determine whether the object is stable on each axis.

Longitudinal Stability

Transverse Stability

Solution – Select the **second equation** to solve this problem. Select this by highlighting the equation and pressing $\overline{\text{ENTER}}$. Press $\overline{\text{F2}}$ to display the variables. The center of gravity, \mathbf{G} , is located at a distance of 15 cm (1/2 x 30 cm) from the bottom of the block and the center of buoyancy, \mathbf{C} , is located at a distance of 9 cm (1/2 x 18 cm) from the bottom. The difference, \mathbf{CG} , is 6 cm. The displaced volume, \mathbf{Vd} , is 32,400 cm³ (18 x 30 x 30 cm). Enter the values for the known parameters and press $\overline{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

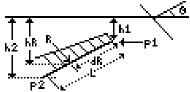
Given Solution

CG = 6 cm

 $I00 = 135,000 \text{ cm}^4 \text{ (longitudinal moment)}$

 $I00 = 540,000 \text{ cm}^4 \text{ (transverse moment)}$

 $Vd = 32400 \text{ cm}^3$


GM = -1.83333 cm (longitudinal) unstable

GM = 10.6667 cm (transverse) stable

21.2.2.2 Inclined Plane/Surface

These equations compute the pressure on a flat rectangular surface immersed in a liquid with one of its

edges inclined at an angle, θ (rad), relative to the surface of the liquid. The **first equation** computes the density of the liquid, ρ (kg/m³) from the specific weight, γ (N/m³) and the gravitational acceleration, **grav** (9.80655 m/s²). **Equation 2** computes the pressure on the inclined edge surface, **p1** (Pa), immersed at a vertical distance of **h1** (m) from the liquid's surface (see figure).

Equation 3 computes the pressure at the edge furthest from the liquid surface, $p\bar{2}$ (Pa), at a vertical distance $h\bar{2}$ (m) from the surface. Equation 4 computes the average pressure, pavg (Pa), over the inclined surface. Equation 5 calculates the vertical distance from the liquid surface to the center of pressure, $h\bar{R}$ (m), on the inclined surface. Equation 6 computes the relationship between the length of the inclined side, L (m) and the heights, $h\bar{1}$ and $h\bar{2}$. The last equation relates $h\bar{R}$, to $d\bar{R}$ (m), the distance from the upward edge located at $h\bar{1}$ to the center of pressure.

$\rho = \frac{\gamma}{grav}$	Eq. 1
$pl = r \cdot grav \cdot hl$	Eq. 2
$p2 = r \cdot grav \cdot h2$	Eq. 3
$pavg = \frac{1}{2} \cdot \rho \cdot grav \cdot (hI + h2)$	Eq. 4
$hR = \frac{2}{3} \cdot \left(hI + h2 - \frac{hI \cdot h2}{hI + h2} \right)$	Eq. 5
$L = \frac{h2 - h1}{\sin(\theta)}$	Eq. 6
$dR = \frac{hr - hI}{\sin(\theta)}$	Eq. 7

Variable	Description	Units
γ	Specific weight	N/m^3
θ	Angle	rad
ρ	Density	kg/m ³
dR	Distance to R from edge 1	m
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
hR	Distance to center of pressure	m
L	Length	m
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
pavg	Average pressure	Pa

Example 21.2.3:

A swimming pool has an inclined portion of its wall at an angle of 60 ° and a vertical depth of 10 ft from the water's surface. The length of the incline is 2 ft. Compute the average pressure on the inclined surface and the location of the pressure center from the leading edge. Water has a density of 1000 kg/m³.

Entered Values

Computed results

Solution – Select the **last four equations** to solve this problem. Select these by highlighting the equations and pressing **FNTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. Note that **grav** is automatically inserted into the calculations. The entries and results are shown in the screen displays above.

 $\begin{array}{lll} \textbf{Given} & \textbf{Solution} \\ \theta = 60 \ deg & dR = 1.02657 \ ft \\ \rho = 1000 \ kg/m^3 & h2 = 11.7321 \ ft \\ h1 = 10 \ ft & hR = 10.889 \ ft \\ L = 2 \ ft & pavg = 32479.3 \ Pa \end{array}$

21.3 Fluid Dynamics

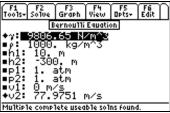
21.3.1 Bernoulli Equation

The following equations expound the conservation of energy for fluid flow between an inlet 1 and an outlet 2. The fluid is assumed to be incompressible (i.e., the pressure does not change more than 10 % between 1 and 2) and the flow is frictionless and adiabatic. The **first equation** is the so called the Bernoulli equation. The first term on each side of the equation represents the energy associated with pressure p1 (Pa) and specific weight γ (N/m³) at the inlet and the corresponding pressure p2 (Pa) and γ (N/m³). The second term on each side represents kinetic energy associated with the fluid flow due to velocities v1 and v2.

Equation 2 is a duplicate of equation 1 with the total pressure head, ht (m), and equivalent to the left-hand side of the equation. Equation 3 calculates the total pressure, pt (Pa), at the inlet (1) from the specific weight, γ (N/m³) of the fluid and the total head, ht (m). Equation 4 calculates the total head, ht, at the inlet (1) from the pressure, p1 (Pa), velocity, v1 (m/s), and head due to height, h1 (m). Equation 5 computes the impact head, hs (m). Equation 6 calculates pressure head, hp (m). Equation 7 estimates the velocity head, hv (m). Equation 8 computes the total energy, Et (J), for a mass of fluid, m (kg), at the inlet. Equation 9 computes the relationship between the specific weight, γ (N/m³) and density, ρ (kg/m³), of the fluid.

$$\frac{pI}{\gamma} + \frac{vI^2}{2 \cdot grav} + hI = \frac{p2}{\gamma} + \frac{v2^2}{2 \cdot grav} + h2$$
Eq. 1

$ht = \frac{p^2}{\gamma} + \frac{v^2}{2 \cdot grav} + h^2$	Eq. 2
$pt = \gamma \cdot ht$	Eq. 3
ht = hs + hI	Eq. 4
hs = hp + hv	Eq. 5
$hp = \frac{pI}{\gamma}$	Eq. 6
$hv = \frac{vI^2}{2 \cdot grav}$	Eq. 7
$Et = m \cdot grav \cdot ht$	Eq. 8
$\rho = \frac{\gamma}{grav}$	Eq. 9


Variable	Description	Units
γ	Specific weight	N/m^3
ρ	Density	kg/m ³
Et	Total energy of fluid	J
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
hp	Pressure head	m
hs	Impact head	m
ht	Total head	m
hv	Velocity head	m
m	Mass	kg
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
pt	Total pressure	Pa
v1	Velocity at 1	m/s
v2	Velocity at 2	m/s

Example 21.3.1:

An intake pipe in a water reservoir is located 10 m below the water surface. The discharge pipe is located 300 m below the intake pipe. What is the velocity of the water leaving the discharge pipe? Assume no significant change in atmospheric pressure exists between the two heights and water has a density of 1000 kg/m^3 .

Entered Values

Computed results

Solution – Select the **first** and **last equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. The entries and results are shown in the screen displays above. Choose the second solution (positive velocity).

Given

 $\rho = 1000 \text{ kg/m}^3$

h1 = 10 m

h2 = -300 m

p1 = 1 atm

p2 = 1 atm

v1 = 0 m/s

Solution

 $\gamma = 9806.65 \text{ N/m}^3$ v2 = 77.9751 m/s

21.3.2 Reynolds Number

The following equations compute the Reynolds number, Nre. If Nre \leq 2000, the flow is assumed to be laminar. If Nre >2000, the fluid flow is assumed to be turbulent³. Equation 1 computes Nre from the equivalent diameter of the conduit, de (m) (determined in the next section), the average flow velocity, v (m/s), the fluid density, ρ (kg/m³), and the absolute viscosity, μ (N·s/m²). Equation 2 computes Nre from the kinematic viscosity of the fluid, μ k (m²/s). The next three equations calculate Nre from the mass flow rate per area, Qf (kg/s/m²), mass flow rate, Qm (kg/s), and volume flow rate, Qv (m³/s). The last equation relates the kinematic viscosity, μ k (m²/s) to the absolute viscosity, μ (N·s/m²).

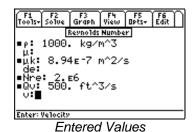
$$Nre = \frac{de \cdot v \cdot \rho}{\mu}$$

$$Nre = \frac{de \cdot v}{\mu k}$$

$$Nre = \frac{de \cdot Qf}{\mu}$$

$$Nre = \frac{de \cdot Qf}{\mu}$$

$$Nre = \frac{de \cdot Qm}{\pi \cdot \mu \cdot de}$$
Eq. 3

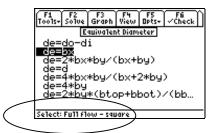

³ A transition region between laminar and turbulent flow exists between **Nre**=2000 to 4000. However, for most cases for turbulent flow, values of **Nre** are well above 4000.

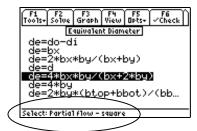
$Nre = \frac{4 \cdot Qv \cdot \rho}{\pi \cdot \mu \cdot de}$	Eq. 5
$\mu k = \frac{\mu}{\rho}$	Eq. 6

Variable	Description	Units
ρ	Density	kg/m ³
μ	Absolute viscosity	$N\cdot s/m^2$
μk	Kinematic viscosity	m^2/s
de	Equivalent diameter	m
Nre	Reynolds number	unitless
Qf	Mass flow rate per area	$kg/(s \cdot m^2)$
Qm	Mass flow rate	kg/s m ³ /s
Qv	Rate of volume discharge	m^3/s
V	Velocity	m/s

Example 21.3.2:

Water (25°C) has a kinematic viscosity of $8.94 \times 10^{-7} \text{ m}^2/\text{s}$ and a density of 1000 kg/m^3 . Compute the equivalent diameter needed to support a volume flow rate of 500 cubic feet per second and maintain an approximate Reynolds value of 2×10^6 . What is the linear velocity of flow?

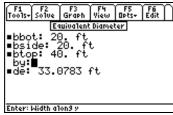

Solution – Select the **second** and **last two equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.


 $\begin{array}{lll} \textbf{Given} & \textbf{Solution} \\ \rho = 1000 \; kg/m^3 & \mu = .000894 \; N \cdot s/m^2 \\ \mu k = 8.94 \; E - 7 \; m^2/s & de = 33.0783 \; ft \\ Nre = 2 \; E6 & v = .581829 \; ft/s \end{array}$

21.3.3 Equivalent Diameter

 $Qv = 500 \text{ ft}^3/\text{s}$

The following equations compute the circular pipe equivalent diameter, de (m), for different shaped conduit cross sections (annulus, square, rectangular and trapezoid). The equivalent diameter, de, is four times the ratio of the area in flow over the wetted perimeter, i.e.: de = 4-(area in flow/wetted perimeter). The description of each equation appears at the bottom of the screen when the equation is highlighted with the cursor (see below). The description includes the name of the cross section and whether flow completely fills the cross-section.


Equation description appears at the bottom of the screen

de = do - di (Full flow-annulus cross-section, do -longer radius, di -shorter radius)	Eq. 1
de = bx (Full flow-square, bx -side length)	Eq. 2
$de = \frac{2 \cdot bx \cdot by}{bx + by}$ (Full flow-rectangle, bx-width, by-depth)	Eq. 3
de = d (Half-filled circle)	Eq. 4
$de = \frac{4 \cdot bx \cdot by}{bx + 2 \cdot by}$ (Partially full rectangle, <i>bx</i> -wide, <i>by</i> -depth of flow)	Eq. 5
$de = 4 \cdot by$ (Wide shallow stream, by-depth of flow)	Eq. 6
$de = \frac{2 \cdot by \cdot (btop + bbot)}{bbot + 2 \cdot bside}$ (Partial flow-trapezoid, by- flow depth, btop- top width, bbot- bottom width, bs- side length)	Eq. 7

Variable	Description	Units
bbot	Width along bottom	m
bside	Side of trapezoid	m
btop	Width along top	m
bx	Flow width -x	m
by	Flow depth – y	m
d	Diameter	m
de	Equivalent diameter	m
di	Inner diameter	m
do	Outer diameter	m

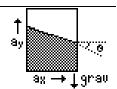
Example 21.3.3:

An equivalent diameter of 33.0783 ft was needed to achieve turbulent flow in the previous example (example 21.3.2). If the flow occurs in a trapezoid canal having a bottom width of 20 ft, a top width of 40 ft and a side length of 20 ft, what is the depth of flow?

Entered Values Computed results

Solution – Select the **last equation** to solve this problem. Select this by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given Solution bbot = 20 ft by = 16.5392 ft

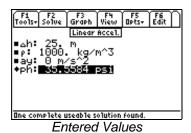

bside = 20 ft

btop = 40 ftde = 33.0783 ft

21.3.4 Fluid Mass Acceleration

21.3.4.1 Linear Acceleration

These equations compute the change in surface angle of a contained liquid when subject to a linear acceleration from an applied force. The **first equation** computes the angle of incline for the liquid surface, θ (rad), due to the vertical, ay (m/s²), horizontal, ax (m/s²), and gravitational, grav (9.80665 m/s²) components of acceleration. The vertical acceleration, ay, is opposite in direction to grav. The **second equation** calculates the head pressure of the liquid, ph (Pa), due to the height change, Δh (m), gravitation, grav, and vertical acceleration, ay.


$$\tan(\theta) = \frac{ax}{ay + grav}$$


$$ph = \rho \cdot grav \cdot \Delta h \cdot \left(1 + \frac{ay}{grav}\right)$$
Eq. 2

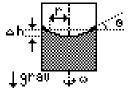
Variable	Description	Units
Δh	Height difference	m
θ	Angle	rad
ρ	Density	kg/m ³
ax	Acceleration along x	m/s^2
ay	Acceleration along y	m/s^2
grav	Gravitational acceleration	9.80665 m/s^2
ph	Pressure head	Pa

Example 21.3.4.1:

A pipe joint in a rocket is equipped with a seal that can withstand a fluid pressure of 100 psi. What is the increase in pressure for the pipe seal system, having a head of 25 m, in the earth's gravitational field, and then subjected to an additional vertical acceleration of 3 g's (gravitational fields) due to launching? Will the seal be able to withstand the additional pressure? Use water as a fluid for the pipe system and ignore the change in atmospheric pressure with height.

Computed results

Solution – Select the **second equation** to solve this problem. Select this by highlighting the equation and pressing ENTER. Press F2 to display the variables. The density of water is approximately 1000 kg/m^3 . First compute the pressure, **ph**, where **ay=0**, then calculate the pressure when **ay = 3*grav**, where **grav** is a defined constant in ME•*Pro* for the gravitational acceleration constant (9.80665 m/s²). The gravitational constant, **grav**, is automatically inserted into the calculation and does not appear in the list of variables. The entries and results are shown in the screen displays above.


Given

 $\Delta h = 25 \text{ m}$ $\rho = 1000 \text{ kg/m}^3$ $ay = 0 \text{ m/s}^2$ $ay = 3^* \text{ grav } (29.42 \text{ m/s}^2)$ **Solution**

ph = 35.5584 psi (ay = 0 m/s²) ph = 142.233 psi (ay = 29.42 m/s²) (The seal does not have sufficient capacity)

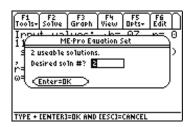
21.3.4.2 Rotational Acceleration

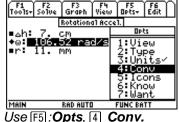
When a liquid mass is rotated about its central axis at angular velocity, \mathbf{or} (rad/s), the liquid surface forms into a parabolic shape (see diagram). The **first equation** computes the average angle of incline, $\mathbf{0}$ (rad), of a liquid surface between the axis of rotation and the edge of the vessel containing the liquid. The **second equation** computes the change in height of the center of the meniscus due to rotation. The radius of the meniscus during rotation, \mathbf{r} (m), is measured from the

axis of rotation to the edge of the liquid at the height of the liquid surface prior to rotation. **Equation 3** computes the tangential velocity, \mathbf{v} (m/s), of the rotating liquid at distance, \mathbf{r} , from the axis of rotation.

$$\tan(\theta) = \frac{\omega^2 \cdot r}{grav}$$

$$\Delta h = \frac{(\omega \cdot r)^2}{2 \cdot grav}$$


$$v = \omega \cdot r$$
Eq. 1
Eq. 2
Eq. 3


 $\begin{array}{ccc} \text{Variable} & \text{Description} & \text{Units} \\ \Delta h & \text{Height difference} & m \\ \theta & \text{Angle} & \text{rad} \end{array}$

Variable	Description	Units
ω	Angular velocity	rad/s
grav	Gravitational acceleration	9.80665 m/s^2
r	Radius	m
v	Velocity	m/s

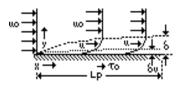
Example 21.3.4.2:

A 22 cm length test tube, having a diameter of 22 mm is filled with a liquid to a height of 15 cm. If the test tube is placed on an agitator, which spins the fluid, what is the maximum rotational velocity setting (Hz) that can be used to prevent the liquid from spilling due to rotation? Use the radius of the test tube as a rough estimate for the meniscus radius.

Computed results

Dialogue displaying number of possible solutions (select 2)

to convert ω to units of Hz


Solution – Select the second equation to solve this problem. Select this by highlighting the equation and pressing [FNTER]. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The gravitational constant, grav (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. Select the second of two possible solutions (positive angular velocity). To convert the value of ω (rad/s) to units of Hertz, highlight ω, and press [F5]: Opts, [4] Conv. The unit menu for ω will appear in the tool bar at the top. Press [F6] Hz. The entries and results are shown in the screen displays above.

Given **Solution** $\omega = 16.9532 \text{ Hz} \text{ (2}^{\text{nd}} \text{ solution)}$ $\Delta h = 7 \text{ cm}$ r = 11 mm

21.4 Surface Resistance

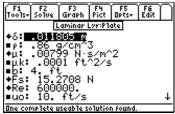
21.4.1 Laminar Flow – Flat Plate

These equations describe the dimensions and velocity profile of boundary layer formation over a plate for laminar flow. When a fluid, having a mean velocity, uo (m/s), encounters a plate parallel to its stream, a velocity gradient forms over the plate. The velocity, **u** (m/s), at the surface of the plate is zero and increases with height until **u=uo**. The region where the velocity gradient occurs is the laminar boundary

layer. The height at which **u=0.99·uo** is the boundary layer depth, δ (m). The thickness of the boundary layer, δ (m), increases with distance from the edge of the plate, x (m). The **first equation** computes the thickness of the boundary layer, δ , at distance x (m) from the edge the plate. Equation 2 computes the shear stress, τ_0 (N/m²), on the plate at a given distance from the plate edge, x. Equation 3 computes the shear force, $F_{\mathbf{s}}(N)$, exerted over an upwind portion of the plate having an area, $\mathbf{b} \cdot \mathbf{x}$ (m²), where, \mathbf{b} (m) is the width of the plate and x is the traveled distance of the fluid over the plate. Equation 4 computes the Reynolds value, **Re**, from the mean velocity of the fluid, **uo**, the distance traveled by the fluid, **x**, and the

kinematic viscosity, μk (m²/s). **Equation 5** calculates the velocity, \mathbf{u} , inside the laminar boundary layer at distance, \mathbf{x} , from the plate edge and vertical distance, \mathbf{y} (m) from the plate surface. **Equation 6** calculates the local shear stress coefficient, \mathbf{cf} , from the shear, $\mathbf{\tau o}$, and mean fluid velocity, \mathbf{uo} . **Equation 7** computes the average shear stress coefficient, \mathbf{Cof} , for the length of the plate, \mathbf{Lp} (m). The **last equation** relates the absolute viscosity, $\mathbf{\mu}$ (N·s/m²), to the kinematic viscosity, $\mathbf{\mu}\mathbf{k}$ (m²/s).

$\frac{\delta}{x} \cdot \sqrt{\text{Re}} = 5$	Eq. 1
$\tau o = \frac{\mu \cdot uo \cdot \sqrt{Re}}{3 \cdot x}$	Eq. 2
$Fs = .664 \cdot b \cdot \mu \cdot uo \cdot \sqrt{\text{Re}}$	Eq. 3
$Re = \frac{uo \cdot x}{\mu k}$	Eq. 4
$\frac{u}{uo} = \frac{.332 \cdot y \cdot \sqrt{Re}}{x}$	Eq. 5
$cf = \frac{2 \cdot \tau o}{\rho \cdot uo^2}$	Eq. 6
$Cof = \frac{1.33}{\left(\frac{uo \cdot Lp}{\mu k}\right)^5}$	Eq. 7
$\mu = \mu k \cdot \rho$	Eq. 8


Variable	Description	Units
δ	Boundary layer thickness	m
ρ	Density	kg/m ³
το	Shear stress	N/m^2
μ	Absolute viscosity	$N \cdot s/m^2$
μk	Kinematic viscosity	m^2/s
b	Breadth	m
cf	Local shear stress coefficient	unitless
Cof	Average shear stress coefficient	unitless
Fs	Shear force	N
Lp	Length of plate	m
Re	Reynolds value at x	unitless
u	Velocity	m/s
uo	Free atream velocity	m/s
X	Distance from edge	m
у	Depth: distance along y	m

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Example 21.4.1:

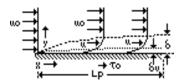
Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Crude oil, at 70 °F (μ k = 10^{-4} ft/s, $\rho = 0.86$ g/cm³), flows over plate with a free stream velocity of 10 ft/s. The plate has a width of 4 ft and a length of 6 ft. Compute the thickness of the boundary layer at the end of the plate and the total drag force exerted on the plate by the fluid.

Upper Display

Lower Display

Solution – Select **Equations 1, 3, 4,** and **8** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.


Given

 $\rho = .86 \text{ g/cm}^3$ $\mu k = .0001 \text{ ft}^2/\text{s}$ b = 4 ft uo = 10 ft/sx = 6 ft **Solution**

$$\begin{split} \delta &= .011805 \ m \\ \mu &= .00799 \ N \cdot s/m^2 \\ Fs &= 15.2708 \ N \\ Re &= 600000 \end{split}$$

21.4.2 Turbulent Flow - Flat Plate

The following equations describe turbulent flow over a smooth plate. Turbulent flow is more complex than the laminar case. Different velocity profiles occur in different regions above the surface and different equations are required for each. The boundary layer depth, δ , is defined as the region where $\mathbf{u} \leq \mathbf{0.99 \cdot uo}$. This section contains equations for three regions in the boundary layer region, δ (m), above

a plate. The viscous sub layer, immediately above the surface, is characterized laminar flow, shear is constant with height, and momentum transport occurs due to viscous forces rather than turbulence. The viscous sub layer underneath a turbulent layer has a depth, δv (m), computed in **Equation 10** and a velocity profile described in **Equation 11**. A second region above, δv , is the turbulent layer where logarithmic velocity profile law applies (**Eq. 12**). The logarithmic profile is valid for heights above the surface, v (m), where v (v) (1.5.v). The final region inside the boundary layer is approximated by the power law (**Eq. 13**). This equation overlaps region where the logarithmic profile equation and spans from v (1.5.v) inside the boundary layer. The **first equation** relates absolute viscosity, v (N·s/m²) to the kinematic viscosity of the fluid, v (m²/s). **Equation 2** computes the local shear stress coefficient, v (or the surface. **Equation 3** calculates the average shear stress coefficient, v (or the length of the

plate, Lp (m). Equation 4 calculates the shear force per area, τ_0 , (N/m^2) on the plate. Equation 5 computes the shear force, Fs (N), over the area of the plate having a width, b (m), from the fluid density, ρ (kg/m³), the free stream velocity, **uo** (m/s), and boundary layer depth, δ (m). **Equation 6** computes the friction velocity, uf (m/s). The Reynolds value, Re, is computed in the seventh equation. The determinant, Rf, in Equation 8, is used to determine whether height, v, occurs inside the viscous sub layer (Rf<11.84), or in the logarithmic profile region (30<Rf<500, or y/δ <0.15). The boundary layer depth, δ (m), is computed in **Equation 9**. The depth of the viscous sub layer, δv , is determined in equation 10. Equation 11 estimates the velocity, **u** (m/s), at height **y** inside the viscous sub layer. Equation 12 computes the velocity, \mathbf{u} , at height \mathbf{v} in the turbulent region, $\mathbf{v} > \delta \mathbf{v}$. Equation 11 is valid for Reynolds values, $Re<10^7$. Equation 12, is known as the power law, and approximates, to a good degree, the velocity profile over about 90% of the boundary layer $0.1 < y/\delta < 1$. The last two equations compute the velocity, u, at a height, v, in an equilibriated turbulent boundary layer above a flat roughened surface having a roughness length, kd (m), height displacement, hd (m), friction velocity, uf, and the von Kármán constant, vk (~ 0.4). ψ is the stability factor ($\psi = 0$ neutral, $\psi > 0$ stable, $\psi < 0$ unstable) and is calculated in the last equation from the Monin-Obukhov path length, Lm (m) where Lm = +5 m for extremely stable conditions, Lm= -5 m for extremely unstable conditions, and Lm= ∞ for neutral conditions.

$\mu = \rho \cdot \mu k$	Eq. 1
$\mu = \rho \cdot \mu k$ $cf = \frac{.058}{\text{Re}^{1/5}}$	Eq. 2
$Cof = \frac{.074}{\left(\frac{uo \cdot Lp}{\mu k}\right)^{1/5}}$	Eq. 3
$\tau o = \frac{cf \cdot \rho \cdot uo^2}{2}$	Eq. 4
$Fs = b \cdot \rho \cdot uo^2 \cdot \delta$	Eq. 5
$uf = \sqrt{\frac{\tau_O}{\rho}}$	Eq. 6
$Re = \frac{uo \cdot x}{\mu k}$	Eq. 7
$Rf = \frac{uf \cdot y}{\mu k}$	Eq. 8
$\delta = \frac{0.37 \cdot x}{\text{Re}^2}$	Eq. 9

$$\delta v = \frac{5 \cdot \mu k}{uf}$$
 Eq. 10

when $y \le \delta v$ the following equation is applicable

$$u = \frac{\tau o \cdot y}{\mu}$$
 Eq. 11

when $\delta v < y \le .15 \cdot \delta$ the following equation is applicable

$$\frac{u}{uf} = 5.75 \cdot \log\left(\frac{y \cdot uf}{\mu k}\right) + 5.56$$
 Eq. 12

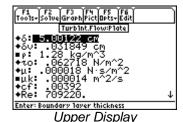
when $0.1 \cdot \delta v < y < \delta$ the following equation is applicable

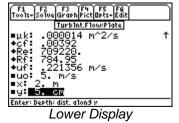
$$u = uo \cdot \left(\frac{y}{\delta}\right)^{\frac{1}{7}}$$
 Eq. 13

when kf>0 (turbulent flow over a rough surface) the following equations are applicable

$$\frac{u}{uf} = \frac{1}{vk} \cdot \left(\ln \left(\frac{y}{kf} \right) + \psi \right)$$
 Eq. 14

$$\psi = \frac{4.7 \cdot y}{Lm}$$
 Eq. 15


Variable	Description	Units
δ	Boundary layer thickness	m
δv	Viscous sub layer depth	m
ρ	Density	kg/m ³
το	Shear stress	N/m^2
Ψ	Stability (ψ >0 stable, ψ <0 unstable, ψ =0 neutral)	unitless
μ	Absolute viscosity	$N \cdot s/m^2$
μk	Kinematic viscosity	m^2/s
b	Breadth	m
cf	Local shear stress coefficient	unitless
Cof	Average shear stress coefficient	unitless
Fs	Shear force	N
kf	Roughness Length	m
Lm	Monin-Obukhov path length (L= +5m stable, L= -5m unstable, L= ∞ neutral)	m
Lp	Length of plate	m
Re	Reynolds value at x	unitless
Rf	Reynolds determinant	unitless
u	Velocity	m/s
uf	Friction velocity	m/s


Variable	Description	Units
uo	Free stream velocity	m/s
vk	von Kármán constant (~0.4)	unitless
X	Distance from edge	m
у	Depth: distance along y	m

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Example 21.4.2:

Air flows with a velocity of 5 m/s parallel with a smooth plate. What is the nominal thickness of the viscous layer, the shear force at a horizontal distance of 2 m from edge of the plate and a height of 5 cm above the surface? The kinematic viscosity and density of air at (10 $^{\circ}$ C, 1 atm) is 1.41 x 10⁻⁵ m²/s and 1.28 kg/m³ (the density of air can be calculated using the **last equation** in the first section of this chapter, 21.1.1:Elasticity using **MWT** = 28.97 g/mol).

Solution – Solve this problem in two steps. First determine whether y=5 cm is inside the boundary layer, and, if it is, which equation of velocity should be used. Select **Equations 1, 2, 4, 6, 7, 8, 9,** and **10.** Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. Since y is close to the height of δ and Rf>500, equation 13 (power law) should be used to compute the velocity. Press ESC, select the **last equation**, and press F2 to return to the variable list, and F2 to solve. The entries and results are shown in the screen displays above.

Given	Solution
$\rho = 1.28 \text{ kg/m}^3$	$\delta = 5.00122 \text{ cm}$
$\mu k = 1.41E^{-5}$	$\delta v = .031849 \text{ cm}$
uo = 5 m/s	$\tau_0 = .062718 \text{ N/m}^2$
x = 2 m	$\mu = .000018 \text{ N} \cdot \text{s/m}^2$
y = 5 cm	cf = .00392
	Re = 709220
	Rf = 784.95
	u = 4.99983 m/s
	uf = .221356 m/s

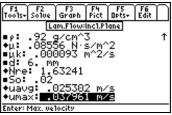
21.4.3 Laminar Flow on an Inclined Plane

These equations describe laminar flow of a fluid down a smooth plate inclined at an angle $\boldsymbol{\theta}$ (rad). The flow is uniform and occurs as a result of gravitational acceleration. These equations assume a constant flow depth, \boldsymbol{d} (m), and velocity, \boldsymbol{u} (m/s), with distance down the inclined plane. In addition, it is assumed that the shear, $\boldsymbol{\tau}\boldsymbol{o}$ (N/m²), decreases linearly with height from the plate surface (bottom), where shear is at it's maximum, to the height of the liquid surface, \boldsymbol{d} , where shear with the atmosphere is assumed to be negligible. The criteria of whether laminar or turbulent flow exists is determined by the Reynolds

number, Nre. In this case, if Nre \leq 500, the flow is considered laminar. Equations 1 and 2 compute the average velocity of the fluid, uavg (m/s) from the specific weight, γ (N/m³), the absolute viscosity, μ (N·s/m²), kinematic viscosity, μ k (m²/s), the angle of incline, θ , and the depth of fluid flow, d (m). Equation 3 computes the slope of the incline, So. Equation 4 calculates the flow velocity, u (m/s), at height, y (m), from the plane. Equation 5 computes the maximum velocity, umax (m/s), when y=d. The sixth equation computes the Reynolds number, Nre. Equation 7 calculates the shear, τ 0, at height, y, from the plate surface. Equation 8 relates the absolute viscosity, μ (N·s/m²) to the kinematic viscosity, μ k (m²/s), of the fluid. The last equation relates the specific weight, γ , to the density ρ (kg/m³) of the fluid.


$uavg = \frac{\gamma \cdot d^2}{3 \cdot \mu \cdot \sin(\theta)}$	Eq. 1
$uavg = \frac{grav \cdot d^2}{3 \cdot \mu k} \cdot \sin(\theta)$	Eq. 2
$So = \tan(\theta)$	Eq. 3
$u = \frac{grav \cdot So}{2 \cdot \mu k} \cdot y \cdot (2 \cdot d - y)$	Eq. 4
$umax = \frac{grav \cdot So}{2 \cdot \mu k} \cdot d^2$	Eq. 5
$Nre = \frac{uavg \cdot d}{\mu k}$	Eq. 6
$\tau o = \gamma \cdot \sin \theta (d - y)$	Eq. 7
$\mu = \mu k \cdot \rho$	Eq. 8
$\gamma = \rho \cdot grav$	Eq. 9

Variable	Description	Units
γ	Specific weight	N/m^3
θ	Angle	rad
ρ	Density	kg/m ³
το	Shear stress	N/m^2
μ	Absolute viscosity	$N \cdot s/m^2$
μk	Kinematic viscosity	m^2/s
d	Depth	m
grav	Gravitational acceleration	9.80665 m/s^2
Nre	Reynolds number	unitless
So	Slope	unitless
u	Velocity	m/s
uavg	Average velocity	m/s
umax	Maximum velocity	m/s


Variable	Description	Units
У	Depth: distance along y	m

Example 21.4.3:

Crude oil flows down a plate having a slope incline of 0.02. Crude oil has a density of $0.92g/cm^3$ and a kinematic viscosity of $9.3 \times 10^{-5} \text{ m}^2/\text{s}$. If the depth of flow is 6 mm, what are the maximum and average flow velocities? Is the flow laminar?

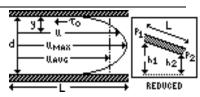
Upper Display

Lower Display

Solution – Select Equations 2, 3, 5, 6, and 8, to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. Select an arbitrary integer of 0 to compute the principal solution. The entries and results are shown in the screen displays above.

Given

$$\begin{split} \rho &= .92 \text{ g/cm}^3 \\ \mu k &= .000093 \text{ m}^2 \text{/s} \\ d &= 6 \text{ mm} \\ So &= .02 \end{split}$$


Solution

 $\theta = 1.14576 \text{ deg}$ $\mu = .08556 \text{ N} \cdot \text{s/m}^2$ Nre = 1.63241 (laminar) uavg = .025302 m/sumax = .037961 m/s

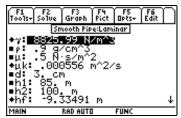
21.5 Flow in Conduits

21.5.1 Laminar Flow: Smooth Pipe

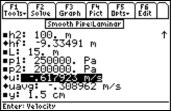
These equations describe laminar flow of an incompressible fluid in a smooth pipe, having a circular cross-section and length, L (m). The **first equation** the computes the pressures, p1 and p2 (Pa), on two ends of a pipe due to height (or head) difference, h1-h2 (m), and head loss due to friction, hf (m). **Equation 2** calculates the velocity, u (m/s), at a distance, y (m) from the wall towards the center of the pipe.

Equation 3 computes the shear, τ_0 (N/m²), on the surface of the pipe opposite to the direction of fluid flow. Equation 4 estimates the head loss due to friction, hf, over the length of the pipe section, L (m), from the mean velocity, uavg (m/s), and the diameter of the pipe, d (m). Equation 5 computes the Reynolds number, Nre, for the flow in the pipe. If Nre < 2000, flow is considered to be laminar. Equation 6 calculates the volume flow rate, Q (m³/s), from the mean velocity of the fluid, uavg, and the area of the pipe. Equation 7 calculates the resistance coefficient, fr, for laminar flow in a pipe having a Reynolds number, Nre. Equation 8 relates the absolute viscosity, μ (N·s/m²), to the kinematic viscosity, μ k (m²/s), of the fluid. The last equation relates the specific weight, γ (N/m³), to the density, ρ (kg/m³), of the fluid.

$$\frac{p1}{\gamma} + h1 = \frac{p2}{\gamma} + h2 + hf$$
 Eq. 1


$u = \frac{d \cdot y - y^2}{4 \cdot \mu} \cdot \frac{hf \cdot \gamma}{L}$	Eq. 2
$\tau o = \frac{d}{4 \cdot L} \cdot hf \cdot \gamma$	Eq. 3
$hf = \frac{32 \cdot \mu \cdot L \cdot uavg}{\gamma \cdot d^2}$	Eq. 4
$Nre = \frac{ uavg \cdot d}{\mu k}$	Eq. 5
$Q = \frac{uavg \cdot \pi}{4} \cdot d^2$	Eq. 6
$fr = \frac{64}{Nre}$ $\gamma = \rho \cdot grav$	Eq. 7
$\gamma = \rho \cdot grav$	Eq. 8
$\mu = \mu k \cdot \rho$	Eq. 9

Variable	Description	Units
γ	Specific weight	N/m^3
ρ	Density	kg/m ³
το	Shear stress	N/m^2
μ	Absolute viscosity	$N \cdot s/m^2$
μk	Kinematic viscosity	m^2/s
d	Diameter	m
fr	Friction coefficient	unitless
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
hf	Head loss due to friction	m
L	Length	m
Nre	Reynolds number	unitless
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
Q	Rate of volume discharge	m^3/s
u	Velocity	m/s
uavg	Average velocity	m/s
у	Depth: distance along y	m


Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Example 21.5.1:

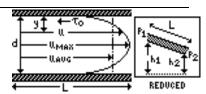
Oil, having a density of 0.9 g/cm^3 and an absolute viscosity of $5 \times 10^{-1} \text{ N} \cdot \text{s/m}^2$, flows down a vertical 3 cm pipe. The pipe pressure at a height of 85 m is 250,000 Pa and the pressure at 100 m is 200,000 Pa. What is the direction of flow and the fluid velocity at the center of the pipe?

Upper Display

Lower Display

Solution – Select Equations 1, 2, 4, 8 and 9 to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. Note: the equations compute a positive velocity and head loss if flow occurs from $1 \rightarrow 2$ and a negative velocity for flow in the direction of $2\rightarrow 1$. In this case, the lower height and pressure were entered for h1 and p1, and the height and pressure at the higher elevation were entered as h2 and p2. The negative velocity for u indicates a movement of fluid downwards due to gravity. The entries and results are shown in the screen displays above.

Given


 $\rho = .9 \text{ g/cm}^3$ $\mu = .5 \text{ N·s/m}^2$ d = 3 cm h1 = 85 m h2 = 100 m L = 15 m P1 = 250000Pa P2 = 200000 Pa Y = 1.5 cm

Solution

$$\begin{split} \gamma &= 8825.99 \text{ N/m}^3 \\ \mu k &= .000556 \text{ m}^2/\text{s} \\ hf &= -9.33491 \text{ m} \\ u &= -.617923 \text{ m/s} \\ uavg &= -.308962 \text{ m/s} \end{split}$$

21.5.2 Turbulent Flow: Smooth Pipe

Turbulent flow occurs in pipes when the Reynolds number Nre>3000. These equations describe turbulent flow of an incompressible fluid in through a smooth circular pipe of length, L (m) and constant diameter, d (m). The **first equation** the computes the pressures at each end of a pipe due to height (or head) difference, h1-h2 (m), and head loss due to friction, hf (m). **Equation 2** (Darcy-Weisbach equation) estimates

the head loss due to friction, **hf**, over the length of the pipe section, **L**, from the mean velocity, **uavg** (m/s), and diameter of the pipe, **d**. **Equation 3** is an analytical expression which relates the resistance coefficient, **fr**, for turbulent flow in a pipe, to the Reynolds number, **Nre**. **Equation 4** computes the friction velocity, **uf** (m/s). **Equation 5** calculates, **Rf**, a determinant used for the velocity profile equations, **Equation 11** and **12**. The computed value of **Rf** determines whether a distance, **y** (m) from the side of the pipe, lies inside the viscous sub layer (non turbulent) region of pipe flow, or the turbulent region. **Equation 6** computes the Reynolds number, **Nre**, for the flow in the pipe. **Equation 7** computes the shear, **70** (N/m²), on the surface of the pipe in the direction opposite to the direction of fluid flow. **Equation 8** calculates the volume flow rate, **Q** (m³/s), from the mean velocity of the fluid, **uavg**, and the

cross-sectional flow area of the pipe. **Equation 9** calculates the specific weight, γ (N/m³), from the density of the fluid, ρ (kg/m³), and the gravitational acceleration, **grav** (9.80655 m/s²). **Equation 10** relates the absolute viscosity, μ (N·s/m²) to the kinematic viscosity, μ k (m²/s) of the fluid. **Equations 11**, **12** and **13** compute velocity profiles inside the pipe at vertical distance, ν , from the edge. If **Rf<5** then **equation 11** is used to compute the velocity at height ν . If **20<Rf<10**5, than the logarithmic profile, **equation 12**, is should be used. The appropriate ranges of for the determinant, **Rf**, or Reynolds number, **Nre**, for each equation are listed in a **when** (...) clause preceding the equation. The coefficient, ν , in the **last equation** varies with Reynolds number, **Nre**. The appropriate values of ν for **Nre** are listed in **Table 21.1**.

Table 21.1 Empirical values of n vs. Nre in Equation 13¹

Nre	n
4×10^3	6.0
2.3×10^4	6.6
1.1×10^5	7.0
1.1×10^6	8.8
3.2×10^6	10.0

$\frac{p1}{\gamma} + h1 = \frac{p2}{\gamma} + h2 + hf$	Eq. 1
$ hf = \frac{fr \cdot L \cdot uavg^2}{2 \cdot grav \cdot d}$	Eq. 2
$\frac{1}{\sqrt{fr}} = 2 \cdot \log(Nre \cdot \sqrt{fr})8$	Eq. 3
$uf = uavg \cdot \sqrt{\frac{fr}{8}}$	Eq. 4
$Rf = \frac{ uf \cdot y}{\mu k}$	Eq. 5
$Nre = \frac{ uavg \cdot d}{\mu k}$	Eq. 6
$\tau o = uf^2 \cdot \rho$	Eq. 7

$$Q = \frac{uavg \cdot \pi}{4} \cdot d^{2}$$

$$\gamma = \rho \cdot grav$$

$$\mu = \mu k \cdot \rho$$
Eq. 8
$$Eq. 9$$

$$Eq. 10$$

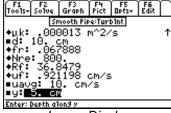
when 0< Rf < 5, the following equation is applicable

$$|u| = \frac{uf^2 \cdot y}{uk}$$
 Eq. 11

when 20 < Rf < 1 E5, the following equation is applicable

$$\frac{u}{uf} = 5.75 \cdot \log \left(\frac{y \cdot |uf|}{\mu k} \right) + 5.5$$
 Eq. 12

when 4 E3< Nre < 3.2 E6, the following equation is applicable

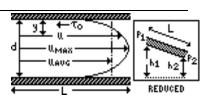

$$u = u \max \left(\frac{2 \cdot y}{d}\right)^{\frac{1}{n}}$$
 Eq. 13

Variable	Description	Units
γ	Specific weight	N/m^3
ρ	Density	kg/m ³
το	Shear stress	N/m^2
μ	Absolute viscosity	$N \cdot s/m^2$
μk	Kinematic viscosity	m^2/s
d	Diameter	m
fr	Friction coefficient	unitless
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
hf	Head loss due to friction	m
L	Length	m
n	Constant: turbulent flow (see Table 21.1)	unitless
Nre	Reynolds number	unitless
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
Q	Volume discharge	m^3/s
Rf	Determinant	unitless
u	Velocity	m/s
uf	Friction velocity	m/s
uavg	Average velocity	m/s
umax	Maximum velocity	m/s
у	Depth: distance along y	m

Example 21.5.2:

A fluid having a density of 800 kg/m³ and an absolute viscosity of 10⁻² N·s/m², flows at a speed of 10 cm/s through a 10 cm diameter circular pipe. What is the maximum velocity?

Upper Display


Lower Display

Solution – The maximum velocity occurs at the center of the pipe, y=d/2. To determine which equation for velocity profile should be used (Eq. 11, 12, 13), compute Rf and Nre in equations 4 and 5. Use Equations 3, 4, 5, 6 and 10. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for Rf and Nre. Since 20 < Rf < 1 E5, select equation 12 (logarithmic profile equation), to solve for the maximum velocity. The entries and results are shown in the screen displays above.

Given	Solution
$\rho = 800 \text{ kg/m}^3$	$\mu k = .000013 \text{ m}^2/\text{s}$
$\mu = .01 \text{ N} \cdot \text{s/m}^2$	fr = .067888
d = 10 cm	Nre = 800
uavg = 10 cm/s	Rf = 36.8479
y = 5 cm	uf = .921198 cm/s

21.5.3 Turbulent Flow: Rough Pipe

The following equations compute turbulent flow in a circular pipe having a roughened surface. For high values of **Nre**, the resistance coefficient, **fr**, is solely a function of the mean roughness of the surface elements inside the pipe, **kf** (m), and the pipe diameter, **d** (m). The **first equation** computes the difference in pressures, **p1** (Pa) and **p2** (Pa), at each end of the pipe due to height (or head) difference, **h1**-

h2 (m), and head loss due to friction, **hf** (m). **Equation 2** calculates the volume flow rate, **Q** (m³/s), from the mean velocity of the fluid, uavg (m/s), and the cross-sectional area of the pipe. Equations, 3 and 4, compute the Reynolds number, Nre, for flow in a pipe. If Nre>3000, the flow in the pipe is considered turbulent. Equation 4 is an empirical equation, which calculates the resistance coefficient, fr, for turbulent flow in a pipe having a Reynolds number, Nre, length, L, and diameter, d. Equation 5 calculates the velocity, \mathbf{u} (m/s), at a distance, \mathbf{v} (m) from the pipe wall towards the center of the pipe. Equation 6 (Darcy-Weisbach equation) estimates the head loss due to friction, hf (m), over the length of the pipe section, L, from the mean velocity, uavg (m/s), and diameter of the pipe, d. Equation 7 computes the friction velocity, **uf** (m/s). **Equation 8** calculates the shear, **70** (N/m²), on the surface of the pipe in the direction opposite to the fluid flow. **Equation 9** calculates the specific weight, γ (N/m³), from the density ρ (kg/m³) of the fluid and the gravitational acceleration, grav (9.80655 m/s²). Equation 10 relates the absolute viscosity, μ (N·s/m²) to the kinematic viscosity, μ k (m²/s) of the fluid. **Equations** 11, 12 and 13 are explicit formulas for relating fr, hf, Q and d. These formulas have been reported to have an accuracy of 3% for the following ranges of kf/d and Nre 1 : $10^{-5} < \text{kf/d} < 2 \times 10^{-2}$ and $4 \times 10^{3} <$ Nre $< 10^8$. Since Eq. 11, 12 and 13 compute approximate relationships for fr, hf, Q and d, it is recommended, at the most, only one be used in a computation. Some roughness values, kf (m), for some common pipe surfaces are listed in **Table 21.2**.

Table 21.2: Relative roughness for various pipe surfaces 1,5

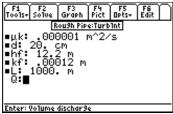
Pipe Surface	kf
Riveted Steel	0.9 mm
Concrete	0.3 mm
Cast Iron	0.26 mm
Galvanized Iron	0.15 mm
Asphalt Cast Iron	0.12 mm
Commercial steel or wrought iron	0.046 mm
Brass and Copper	0.0015 mm
Drawn Tubing	0.0015 mm

$\frac{p1}{\gamma} + h1 = \frac{p2}{\gamma} + h2 + hf$	Eq. 1
$Q = \frac{uavg \cdot \pi}{4} \cdot d^2$	Eq. 2
$Nre = \frac{ uavg \cdot d}{\mu k}$	Eq. 3
$Nre = \frac{d^{3/2}}{\sqrt{fr} \cdot \mu k} \cdot \sqrt{\frac{2 \cdot grav \cdot hf }{L}}$	Eq. 4
$\frac{u}{uf} = 5.75 \cdot \log\left(\frac{y}{kf}\right) + Kc$	Eq. 5
$ hf = \frac{fr \cdot L \cdot uavg^2}{2 \cdot grav \cdot d}$	Eq. 6
$uf = uavg \cdot \sqrt{\frac{fr}{8}}$	Eq. 7
$ au o = uf^2 \cdot \rho$	Eq. 8
$\gamma = \rho \cdot grav$	Eq. 9
$\mu = \mu k \cdot \rho$	Eq. 10

when 4 E3 < Nre < 1E8 and when 1 E -5 < kf/d < 2 E-2, the following equations are applicable

$$fr = \frac{.25}{\left(\log\left(\frac{kf}{3.7 \cdot d} + \frac{5.74}{Nre^{.9}}\right)\right)^2}$$

$$Q = -2.22 \cdot d^{5/2} \cdot \sqrt{\frac{grav \cdot |hf|}{L}} \cdot \log \left(\frac{kf}{3.7 \cdot d} + \frac{1.78 \cdot \mu k}{d^{3/2} \cdot \sqrt{\frac{grav \cdot |hf|}{L}}} \right)$$
Eq. 12


$$d = .66 \cdot \left(kf^{1.25} \cdot \left(\frac{L \cdot Q^2}{grav \cdot |hf|} \right)^{4.75} + \mu k \cdot Q^{9.4} \cdot \left(\frac{L}{grav \cdot |hf|} \right)^{5.2} \right)^{.04}$$
 Eq. 13

Variable	Description	Units
γ	Specific weight	N/m^3
ρ	Density	kg/m ³
το	Shear	N/m^2
μ	Absolute viscosity	$N \cdot s/m^2$
μk	Kinematic viscosity	m^2/s
d	Diameter	m
fr	Friction coefficient	unitless
grav	Gravitational acceleration	9.80665 m/s^2
h1	Height at 1	m
h2	Height at 2	m
hf	Head loss due to friction	m
kf	Roughness length (see Table 21.2)	m
Kc	Coefficient	unitless
L	Length	m
Nre	Reynolds number	unitless
p1	Pressure at 1	Pa
p2	Pressure at 2	Pa
Q	Rate of volume discharge	m^3/s
u	Velocity	m/s
uf	Friction velocity	m/s
uavg	Average velocity	m/s
у	Depth: distance along y	m

Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing [F2] will not select all the equations and start the solver.

Example 21.5.3:

The head loss for water (20°C) in an asphalted cast-iron pipe, having a diameter of 20 cm and a length of 1 km, is 12.2 m. What is the volumetric flow rate in this pipe? Water has a kinematic viscosity of 1 x 10° 6 m²/s at T = 20°C. The roughness value, **kf**, for a cast iron pipe is listed as 0.12 mm in **Table 21.2**.

F1 F2 F3 F4 F5 F6 Tools+ Solve Graph Pict Opts+ Edit

Entered Values

Computed results

Solution – **Equation 12** can be used to solve this problem. Select it by highlighting the equation and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

 $\mu k = .000001 \text{ m}^2/\text{s}$

d = 20 cm

hf = 12.2 m

kf = .00012 m

L = 1000 m

Solution

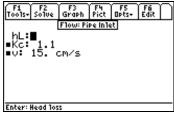
 $Q = .05025 \text{ m}^3/\text{s}$

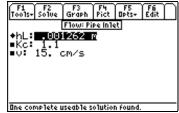
21.5.4 Flow pipe Inlet

The following equation computes the head loss caused by flow separation or turbulence in pipe bends or transitions to different pipe sizes. **Table 21.3** lists the coefficient, **Kc**, for different inlets, outlets, or fittings for turbulent flow.

$$hL = \frac{Kc \cdot v^2}{2 \cdot grav}$$

Variable	Description	Units
Grav	Gravitational acceleration	9.80665 m/s^2
HL	Head loss	m
Kc	Coefficient (see Table 21.3)	unitless
V	Velocity	m/s


Table 21.3 Loss Coefficients for various Transitions and Fittings1

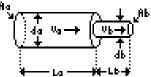

Pipe Entrance	r/d	
		Kc
76	0.0	0.50
↑ _ <u>d∓ "→</u> ^ <u>∧</u> _r	0.1	0.12
L	>0.2	0.03
Contraction	D2/D1	Kc (θ=60°/θ=180°C)

Pipe Entrance	r/d	
		Kc
<u> </u>	0.0	0.08/0.50
D ₁ 0 Q D ₂ U →	0.20	0.08/0.49
<u>-▼-</u> -7↑	0.40	0.07/0.42
	0.60	0.06/0.32
	0.80	0.05/0.18
	0.90	0.04/0.10
Expansion	D2/D1	Kc (θ=10°/θ=180°C)
<u> </u>	0.0	/1.00
$ D_1 V \rightarrow \bigcirc 0 D_2$	0.20	0.13/0.92
 _	0.40	0.11/0.72
	0.60	0.06/0.42
	0.80	0.03/0.16
90° Miter Bend	Without Vanes	With Vanes
<u>→</u> √2	1.1	0.2
l2[i]		
VANES 🕹		
90° Smooth Bend	r/d	Kc
1d+	1	0.35
	2	0.19
1.141	4	0.16
	6	0.21
	8	0.28
	10	0.32
Threaded Pipe Fittings	Globe valve-Wide Open	10.0
	Angle valve-Wide Open	5.0
	Gate valve-Wide Open	0.2
	Gate valve-Half Open	5.6
	Return Bend	2.2
	Tee-straight-through flow	0.4
	Tee-side-outlet flow	1.8
	90° Elbow	0.9
	45° Elbow	0.4

Example 21.5.4:

Compute the head loss for a 90° miter pipe bend (w/o vanes) having a flow velocity of 15 cm/s.

Entered Values


Computed results

Solution – From **Table 21.3**, select Kc = 1.1. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given Solution Kc = 1.1 (from Table 21.3) hL = .001262 m v = 15 cm/s

21.5.5 Series Pipe System

These equations compute the head loss of two pipes (a and b) connected in series. The head loss due to friction, **hf** (m), is computed as the sum of individual losses in each section. These equations can be used in conjunction with the pipe flow equations in the preceding sections, 21.5.1, 21.5.2, 21.5.3, and the equation for computing loss due to fittings or

transitions (*Flow Pipe Inlet*, 21.5.4). The **first equation** computes the conservation of volume flow in a series connection of two pipes each having velocities, **va** (m/s) and **vb** (m/s), and circular diameters, **da** (m) and **db** (m). **Equation 2** computes the head loss, **hf**, in both pipes from the individual losses due to friction in each pipe. The friction coefficients, **fa** and **fb**, for each individual pipe section, can be computed for specific pipes or flow features using equations which compute, **fr**, in sections, *Laminar Flow in Smooth Pipes*, 21.5.1: Turbulent Flow in Smooth Pipes, 21.5.2: and Turbulent Flow in Rough Pipes 21.5.3:).

$$vb = \left(\frac{da}{db}\right)^{2} \cdot va$$

$$hf = \frac{va^{2}}{2 \cdot grav} \cdot \left(\frac{fa \cdot La}{da} + \frac{fb \cdot Lb}{db} \cdot \left(\frac{da}{db}\right)^{4}\right)$$
Eq. 1

Variable	Description	Units
da	Diameter of pipe a	m
db	Diameter of pipe b	m
fa	Friction coefficient of pipe a	unitless
fb	Friction coefficient of pipe b	unitless
grav	Gravitational acceleration	9.80665 m/s^2
hf	Head loss due to friction	m
La	Length of pipe a	m
Lb	Length of pipe b	m
va	Flow velocity in pipe a	m/s
vb	Flow velocity in pipe b	m/s

Example 21.5.5:

A 12 cm diameter riveted steel pipe ($\mathbf{fr} = 0.039$), having a flow velocity of 15 cm/s, is connected to an asphalt cast-iron pipe having a friction coefficient of 0.019 and a diameter of 20 cm. The lengths of each pipe are 20 m and 400 m, respectively. What is the flow velocity in the second pipe and what is the total head loss due to friction in both pipes?

Upper Display

Lower Display

Solution – Select **all of the equations** to solve this problem. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. The entries and results are shown in the screen displays above.

Given

da = 12 cm

db = 20 cm

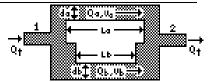
fa = .039

fb = .019

La = 20 m

Lb = 400 m

va = 15 cm/s


Solution

hf = 0.013106 m

vb = 5.4 cm

21.5.6 Parallel Pipe System

When a second pipe, **b**, is added to an existing line, **a**, the flow will divide itself so the head loss due to friction is the same in each pipe. The **first equation** describes the equivalence relationship of head loss in each pipe, **hfa** (m) and **hfb** (m). **Equations 2** and **3** compute the head loss in each pipe, **hfa** and **hfb** (m), due to friction. The

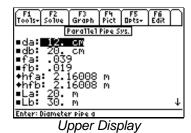
friction coefficients, **fa** and **fb**, can either be obtained from Moody diagrams for different pipe surfaces or computed from the pipe roughness factor, **kf** (m), and the Reynolds number, **Nre**, using the formula for **fr** in *Turbulent Flow: Rough pipes*. The variables, **va** (m/s) and **vb** (m/s) are the velocities each pipe. **Equation 4** computes the total flow rate, **Qt** (m³/s) as the sum of the flows in each pipe, **Qa** (m³/s) and **Qb** (m³/s). The **last two equations** compute the flow rates in each pipe, **Qa** and **Qb**, from the respective flow velocities, **va** and **vb**, and pipe diameters, **da** (m) and **db** (m).

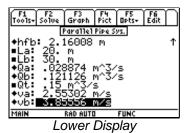
$$hfa = hfb$$

$$va = \sqrt{\frac{2 \cdot da \cdot grav}{fa \cdot La} \cdot hfa}$$

$$Eq. 2$$

$$vb = \sqrt{\frac{2 \cdot db \cdot grav}{fb \cdot Lb} \cdot hfb}$$

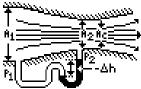

$$Eq. 3$$


Qt = Qa + Qb	Eq. 4
$Qa = \frac{va \cdot \pi \cdot da^2}{4}$	Eq. 5
$Qb = \frac{vb \cdot \pi \cdot db^2}{4}$	Eq. 6

Variable	Description	Units
da	Diameter of ppe - a	m
db	Diameter of pipe - b	m
fa	Friction coefficient of pipe - a	unitless
fb	Friction coefficient of pipe - b	unitless
grav	Gravitational acceleration	9.80665 m/s^2
hfa	Head loss due to friction - a	m
hfb	Head loss due to friction - b	m
La	Length of pipe - a	m
Lb	Length of pipe - b	m
Qa	Rate of volume discharge - a	m^3/s
Qb	Rate of volume discharge - b	m^3/s
Qt	Rate of total volume flow	m^3/s
va	Flow velocity in pipe a	m/s
vb	Flow velocity in pipe b	m/s

Example 21.5.6:

A 12 cm diameter, 20 m length riveted steel pipe ($\mathbf{fr} = 0.039$) is connected in parallel with a 20 cm diameter, 30 m length, and asphalt cast-iron pipe ($\mathbf{fr} = 0.019$). If the total flow rate is 0.15 m³, what are the flow rates through each pipe?


Solution – Select **all** of the **equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. The entries and results are shown in the screen displays above.

Given	Solution
da = 12 cm	hfa = 2.16008 m
db = 20 cm	hfb = 2.16008 m
fa = .039	$Qa = .028874 \text{ m}^3/\text{s}$
fb = .019	$Qb = .121126 \text{ m}^3/\text{s}$
La = 20 m	va = 2.55302 m/s
Lb = 30 m	vb = 3.85556 m/s
$\Omega t = 15 \text{ m}^3/\text{s}$	

21.5.7 Venturi Meter

21.5.7.1 Incompressible Flow

The following equations are used to compute flow rates of an incompressible liquid through a venturi meter, or a constricting orifice. The **first equation** computes the conservation of energy for fluid flow between an inlet, having cross-sectional area, $A1 \, (m^2)$, a mean flow velocity, $v1 \, (m/s)$, an inlet pressure, $p1 \, (Pa)$, a nozzle (constriction) area, $A2 \, (m^2)$, nozzle flow velocity, $v2 \, (m/s)$, and a nozzle pressure, $p2 \, (Pa)$ and head loss, $hf \, (m)$. The

conservation of energy equation assumes no head loss occurs due to friction. Equation 2 computes the velocity in the constriction zone, v2 (m/s), from the approach velocity, Fva, and the pressure difference of the inlet and nozzle (p1-p2). The third equation computes the volume flow rate, Qv (m³/s), from the flow coefficient fc, the area of the nozzle, A2, and the pressure drop, p1-p2. The fourth equation computes the approach velocity, Fva, from the area ratio of the inlet, A1, nozzle, A2, and the contraction coefficient, cc. Equation 5 computes the discharge coefficient, dc, from the contraction coefficient, cc, and the coefficient of velocity, vc. Table 21.5 lists values of the discharge coefficient for different Reynolds values. The coefficient of velocity, vc. accounts for viscous forces at low Reynolds numbers (typically close to 0.98 for Reynolds values greater than 10⁵ and decreases at lower Reynolds values). The contraction coefficient, cc, in the nozzle is computed in the sixth equation as the ratio of the minimum flow area, Ac (m²), to A2, the area of the orifice or nozzle in the venturi meter. The contracted flow area, Ac, is generally smaller than the contracted flow area, A2, for orifices, but usually unity for venturi meters. Equation 7 calculates the flow coefficient, fc, from the approach velocity, Fva, and the discharge coefficient, dc. Equation 8 computes the Reynolds number, Nre, from the velocity at the inlet, v1, and the inlet diameter, d1 (m). Equation 9 calculates the initial flow velocity in the inlet, v1, from the inlet area, A1, and the volume flow rate, Qv. Equation 10 and 11 compute the static pressure head inside the inlet, hp1 (Pa) and the nozzle, hp2 (Pa). Equation 12 and 13 compute the total head, ht1 (Pa) and ht2 (Pa). Equation 14 computes the head difference, Δh , of the fluid between the inlet and nozzle from the density of the fluid, ρ (kg/m³). Equation 15 computes the head difference measured by a manometer when the fluid inside the manometer (density=pm) has a different density than the flowing fluid ($\rho m \neq \rho$).

Table 21.5: Discharge Coefficient (dc) values for Venturi Meters (2<A1/A2<3)

dc	Nre
.94	6,000
.95	10,000
.96	20,000
.97	50,000
.98	200,000
.99	2,000,000

$$\frac{p1}{\rho \cdot grav} + \frac{v1^2}{2 \cdot grav} = \frac{p2}{\rho \cdot grav} + \frac{v2^2}{2 \cdot grav} + hf$$
 Eq. 1

$$v2 = Fva \cdot \sqrt{\frac{2 \cdot (p1 - p2)}{\rho}}$$
 Eq. 2

$$Qv = fc \cdot A2\sqrt{\frac{2 \cdot (p1 - p2)}{\rho}}$$
 Eq. 3

$$Fva = \frac{1}{\sqrt{1 - cc^2 \cdot \left(\frac{A2}{A1}\right)^2}}$$
 Eq. 4

$$dc = vc \cdot cc$$

$$cc = \frac{Ac}{A2}$$

$$fc = Fva \cdot dc$$

$$Nre = \frac{v1 \cdot d1}{\mu k}$$
 Eq. 8

$$v1 = \frac{Qv}{A1}$$
 Eq. 9

$$hp1 = \frac{p1}{\rho \cdot grav}$$
 Eq. 10

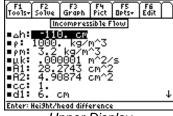
$$hp2 = \frac{p2}{\rho \cdot grav}$$
 Eq. 11

$$ht1 = hp1 + \frac{v1^2}{2 \cdot grav}$$
 Eq. 12

$$ht2 = hp2 + \frac{v2^2}{2 \cdot grav}$$
 Eq. 13

when $\rho = \rho m$, the following equation applies

$$\Delta h = \frac{p1 - p2}{\rho \cdot grav}$$
 Eq. 14


when $\rho \neq \rho m$, the following equation applies

$$\Delta h = \frac{\rho \cdot \left(\frac{Qv}{fc \cdot A2}\right)^2}{2 \cdot grav \cdot (\rho m - \rho)}$$
 Eq. 15

Variable	Description	Units
Δh	Head difference	m
ρ	Density	kg/m ³
ρm	Density of fluid in manometer	kg/m ³
μk	Kinematic viscosity	m^2/s
Ac	Contracted flow area	m^2
A1	Area of 1 (inlet)	m^2
A2	Area of 2 (nozzle/orifice)	m^2
cc	Flow area contraction coefficient	m^2
d1	Diameter of inlet	m
dc	Discharge coefficient (see Table 21.5)	unitless
fc	Flow coefficient	unitless
Fva	Approach velocity	unitless
grav	Gravitational acceleration	9.80665 m/s^2
hp1	Pressure head at 1 (inlet)	m
hp2	Pressure head at 2 (nozzle/orifice)	m
ht1	Total head at 1 (inlet)	m
ht2	Total head at 2 (nozzle/orifice)	m
Nre	Reynolds number	unitless
p1	Pressure at 1 (inlet)	Pa
p2	Pressure at 2 (nozzle/orifice)	Pa
Qv	Rate of volume discharge	m³/s
v1	Velocity at 1-initial	m/s
v2	Velocity at 2-final	m/s
VC	Velocity coefficient	m/s

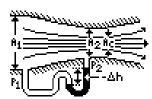
Example 21.5.7.1:

Water ($p=1000 \text{ kg/m}^3$, $\mu k=1 \text{ x } 10^{-6} \text{ m}^2/\text{s}$) flows through a circular venturi meter having a circular inlet diameter of 6 cm and a nozzle diameter of 2.5 cm. A tube containing air (3.2 kg/m³) is connected to the venturi meter and displays a fluid height difference of 110 cm. Compute the volume flow rate. Assume a value of $\mathbf{cc}=1$ and verify that $\mathbf{dc}=0.97$ is an appropriate value of the discharge coefficient using a calculated value of the Reynolds number and **Table 21.5**.

Upper Display Lower Display

Solution – Select **equations 4, 7, 8, 9** and **15** to solve this problem. Select these by highlighting the equations and pressing ENTER. The height difference is negative (Δh =-110 cm). The formula for converting diameter, **d** (m) to area, **A** (m²), is **A**= π ·**d**²/**4**. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given


$$\begin{split} \Delta h &= -110 \text{ cm} \\ \rho &= 1000 \text{ kg/m}^3 \\ \rho m &= 3.2 \text{ kg/m}^3 \\ \mu k &= 1 \text{ E} - 6 \text{ m}^2 / \text{s} \\ A1 &= 28.2743 \text{ cm}^2 \left(\pi \cdot 6^2 / 4 \right) \text{ cm}^2 \\ A2 &= 4.90874 \text{ cm}^2 \left(\pi \cdot 2.5^2 / 4 \right) \text{ cm}^2 \\ \text{cc} &= 1 \\ d1 &= 6 \text{ cm} \\ dc &= .97 \end{split}$$

Solution

fc = .984957 Fva = 1.01542 Nre = 47579.7 Q = 2242.14 cm³/s v1 = .792996 m/s

21.5.7.2 Compressible Flow

The following equations compute the flow properties of a compressible fluid, of molar mass MWT (kg/mol), in a venturi meter having an inlet cross-section area, A1 (m²), and a nozzle diameter, A2 (m²). The expansion/compression of the fluid is adiabatic. The **first equation** computes the conservation of energy for a compressible fluid having a specific heat ratio, \mathbf{k} . The velocity of the fluid at the inlet is $\mathbf{v1}$ (m/s) and $\mathbf{v2}$ (m/s) at the nozzle. The conservation of energy equation

assumes no head loss occurs due to friction. **Equations 2** and **3** compute the velocities, **v1** (m/s), and **v2** (m/s), the fluid densities, $\rho f1$ (kg/m³) and $\rho f2$ (kg/m³), and the areas, A1 and A2, at the inlet and nozzle. The **fourth equation** relates the adiabatic change in density of a compressible fluid due to the change in pressure inside the venturi meter, p1 to p2. **Equation 5** computes the mass flow rate, Qm (kg/s), from the velocity, v2, density, pf2, and area at the venturi thoat (nozzle). The discharge coefficient, dc is assumed to be unity, dc=1, for high Reynolds numbers, which are characteristic for compressible flow. **Equations 6** and **7** compute the fluid densities $\rho f1$ and $\rho f2$, at the inlet and nozzle for a compressible fluid having ideal gas behavior. The temperature, T1 (K) and T2 (K), are the temperatures at the inlet and nozzle of the venturi meter. **Equation 8** and **9** compute the inlet and nozzle static pressure heads, hp1 (Pa) and hp2 (Pa). **Equations 10** and **11** compute the total head at the inlet and nozzle. **Equation 12** computes the head difference, Δh (m), of the fluid between the inlet and nozzle from the density of the fluid in the manometer, ρm (kg/m³). **Equation 13** computes the Reynolds number, Nre, from the velocity at the inlet, v1 and the inlet diameter, v1 (m). **Equations 14** and 15 compute the mass flow rate, v2 (m), through a square orifice, having a cross-section area, v2 (m²).

$$\frac{v1^2}{2} + \frac{k \cdot Rm \cdot T1}{k - 1} = \frac{v2^2}{2} + \frac{k \cdot Rm \cdot T2}{k - 1}$$
 Eq. 1

$$v1 = \frac{\rho f \cdot 2 \cdot A \cdot v2}{\rho f \cdot A \cdot A \cdot A}$$
 Eq. 2

$$v2 = \left(\frac{\frac{2 \cdot k}{k - 1} \cdot \left(\frac{p1}{\rho f \, 1} - \frac{p2}{\rho f \, 2}\right)}{1 - \left(\frac{\rho f \, 2 \cdot A2}{\rho f \, 1 \cdot A1}\right)^2}\right)^{1/2}$$
Eq. 3

$$\frac{p1}{p2} = \left(\frac{\rho f \, 1}{\rho f \, 2}\right)^k$$
 Eq. 4

$$Qm = dc \cdot \rho f \cdot 2 \cdot A2 \cdot v2$$
 Eq. 5

$$\rho f 1 = \frac{p1}{\frac{Rm}{MWT} \cdot T1}$$
 Eq. 6

$$\rho f 2 = \frac{p2}{\frac{Rm}{MWT} \cdot T2}$$
 Eq. 7

$$hp1 = \frac{p1}{\rho f \cdot grav}$$
 Eq. 8

$$hp2 = \frac{p2}{\rho f \cdot grav}$$
 Eq. 9

$$ht1 = hp1 + \frac{v1^2}{2 \cdot grav}$$
 Eq. 10

$$ht2 = hp2 + \frac{v2^2}{2 \cdot grav}$$
 Eq. 11

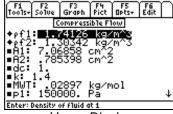
$$\Delta h = \frac{p1 - p2}{\rho m \cdot grav}$$
 Eq. 12

$$Nre = \frac{v1 \cdot d1}{\mu k}$$
 Eq. 13

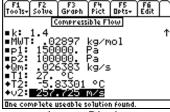
The following equations are valid for compressible fluid flow through SQUARE orifices

$$Qm = Yc \cdot Ao \cdot fc \cdot \sqrt{2 \cdot \rho f \cdot (p1 - p2)}$$
 Eq. 14

$$Yc = 1 - \frac{1}{k} \cdot \left(1 - \frac{p2}{p1}\right) \cdot \left(.41 + .35 \cdot \left(\frac{Ao}{A1}\right)^2\right)$$
 Eq. 15


Variable	Description	Units
Δh	Head difference	m
ρf1	Density at 1	kg/m ³
ρf2	Density at 2	kg/m ³

Variable	Description	Units
ρm	Density of fluid in Manometer	kg/m ³
A1	Area of 1 (inlet)	m^2
A2	Area of 2 (nozzle/orifice)	m^2
Ao	Square orifice area	m^2
dc	Discharge Coefficient (see Table 21.5)	unitless
fc	Flow Coefficient	unitless
grav	Gravitational Acceleration	9.80665 m/s^2
hp1	Pressure head at 1 (inlet)	m
hp2	Pressure head at 2 (nozzle/orifice)	m
ht1	Total head at 1 (inlet)	m
ht2	Total head at 2 (nozzle/orifice)	m
k	Specific Heat ratio	unitless
MWT	Molar Mass	kg/mol
p1	Pressure at 1 (inlet)	Pa
p2	Pressure at 2 (nozzle/orifice)	Pa
Qm	Mass flow rate	kg/s
Rm	Ideal Gas constant	8.31451 J/(kg·K)
T1	Temperature at 1	K
T2	Temperature at 2	K
v1	Velocity at 1-initial	m/s
v2	Velocity at 2-final	m/s
Yc	Compressibility factor	unitless


Caution: Because the equations represent a set where several subtopics are covered, the user has to select each equation to be included in the multiple equation solver. Pressing F2 will not select all the equations and start the solver.

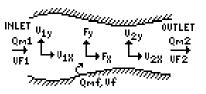
Example 21.5.7.2:

A venturi meter, having a circular throat diameter of 1 cm, is connected to a 3 cm diameter pipe carrying air. The static pressure in the pipe is 150 kPa and the pressure at the throat is 100, kPa. The static temperature of the air in the pipe is 27°C. The specific heat ratio and the molar mass of air are 1.4 (see *mwa in Reference/Engineering Constants*) and 0.02897 kg/mol. Compute the mass flow rate.

Upper Display

Lower Display

Given	Solution
$A1 = 7.06858 \text{ cm}^2 (\pi \cdot 3^2 / 4) \text{ cm}^2$	$\rho f1 = 1.74126 \text{ kg/m}^3$
$A2 = .785398 \text{ cm}^2 (\pi \cdot 1^2 / 4) \text{ cm}^2$	$\rho f2 = 1.30342 \text{ kg/m}^3$

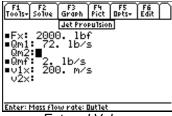

Given dc = 1 k = 1.4 MWT = .02897 kg/mol p1 = 150000 Pa p2 = 100000 Pa T1 = 27 °C **Solution**

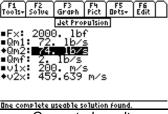
Qm = .026383 kg/s T2 = -5.83301 °C v2 = 257.725 m/s

21.6 Impulse/Momentum

21.6.1 Jet Propulsion

The following equations compute the conservation of momentum properties for fluid flow in a propulsion system. The **first equation** computes the mass flow rate of air through the inlet, **Qm1** (kg/s), from the volumetric flow rate, **VF1** (m 3 /s) and the air density, $\rho 1$ (kg/m 3). **Equation 2** calculates the fuel flow rate, **Qmf** (kg/s). **Equation 3** computes the mass flow of air/fuel


mixture leaving the propulsion system through the nozzle, $\mathbf{Qm2}$ (kg/s). **Equations 4** and **5**, calculate the thrust in the horizontal, \mathbf{Fx} (N), and vertical, \mathbf{Fy} (N), directions from the x, y, components of the incoming air, $\mathbf{v1x}$ (m/s) and $\mathbf{v1y}$ (m/s), and the outflow of the air/fuel mixture, $\mathbf{v2x}$ (m/s) and $\mathbf{v2y}$ (m/s).


$Qm1 = \rho 1 \cdot VF1$	Eq. 1
$Qmf = \rho f \cdot Vf$	Eq. 2
Qm2 = Qm1 + Qmf	Eq. 3
$Fx = Qm2 \cdot v2x - Qm1 \cdot v1x$	Eq. 4
$Fy = Qm2 \cdot v2y - Qm1 \cdot v1y$	Eq. 5

Variable	Description	Units
ρ1	Air density	kg/m ³
ρf	Fuel density	kg/m ³
Fx	Force due to flow – x	N
Fy	Force due to flow – y	N
Qm1	Mass flow rate – inlet	kg/s
Qm2	Mass flow rate – outlet	kg/s
Qmf	Mass flow rate – fuel	kg/s
Vf	Volume flow rate – fuel	m^3/s
VF1	Volume flow rate: Inlet	m^3/s
v1x	Inlet velocity – x	m/s
v1y	Inlet velocity – y	m/s
v2x	Outlet velocity – x	m/s
v2y	Outlet velocity – y	m/s

Example 21.6.1:

A turbo jet is required to exert a thrust of 2000 lbf. If the rate of air flow into the jet is 72 lb/s, the fuel flow rate is 2 lbs and the air velocity is 200 m/s, what is the velocity of the gas leaving the nozzle? Assume all flow occurs along the same coordinate.

Entered Values

Computed results

Solution – Select the **third** and **fourth equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given Fx = 2000 lbf Qm1 = 72 lb/s Qmf = 2 lb/s v1x = 200 m/s **Solution** Qm2 = 74 lb/s v2x = 459.639 m/s

21.6.2 Open Jet

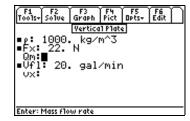
The following sets of equations compute the force exerted by an open jet on a flat plate.

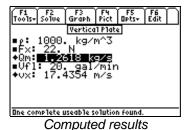
21.6.2.1 Vertical Plate

The **first equation** computes the horizontal force, **Fx** (N), exerted by a jet on a vertical plate parallel to the gravitational field. The jet discharges a mass flow rate of **Qm** (kg/s), with a fluid velocity, **vx** (m/s) perpendicular to the plate. The **second equation** relates the mass flow rate, **Qm** (kg/s), to the volumetric flow rate, **Vf1** (m³/s). **Equation 3** computes the volumetric flow rate, **Vf1** (m³/s), from the initial velocity of the stream, **vx**, and the cross sectional area of the jet, **A** (m²). The **last equation** computes the cross sectional area of the jet, **A**, from the circular jet diameter **d** (m).

 $Fx = Qm \cdot vx$ Eq. 1

 $Qm = \rho \cdot Vfl$


 $Vfl = vx \cdot A$ Eq. 3


 $A = \frac{\pi \cdot d^2}{A}$ Eq. 4

Variable	Description	Units
ρ	Density	kg/m ³
A	Area	m^2
d	Diameter	m
Fx	Force due to flow $-x$	N
Qm	Mass flow rate	kg/s
Vfl	Volume flow rate	$\frac{\text{kg/s}}{\text{m}^3/\text{s}}$
VX	Velocity – x	m

Example 21.6.2.1:

An open horizontal jet discharges water onto a wall at a rate of 20 gallons per minute. The wall experiences a force of 22 N. What is the horizontal velocity of the water before it reaches the wall? The density of water is 1000 kg/m^3 .

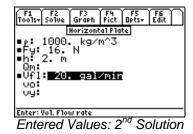
Entered Values

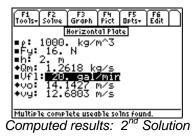
Solution – Select the **first two equations** to solve this problem. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

 $\begin{array}{ll} \textbf{Given} & \textbf{Solution} \\ \rho = 1000 \text{ kg/m}^3 & Qm = 1.2618 \text{ kg/s} \\ Fx = 22 \text{ N} & vx = 17.4354 \text{ m/s} \\ Vfl = 20 \text{ gal/min} & \end{array}$

21.6.2.2 Horizontal Plate

These equations compute the force exerted by vertical jet on a horizontal plate at a height, **h** (m), above the jet. The fluid leaves the jet at velocity, **vo** (m/s). The **first equation** computes the vertical velocity of the fluid at the height of the plate, **vy** (m/s), from the initial velocity, **vo**, and the change in kinetic energy due to gravitation acceleration, **grav** (9.80665 m/s). **Equation 2** computes the vertical force, **Fy** (N), exerted by the jet, from the mass flow rate, **Qm** (kg/s). The **third equation** relates the mass flow rate, **Qm**, to the volumetric flow rate, **Vf1** (m³/s). **Equation 4** computes the volumetric flow rate, **Vf1**, from the initial velocity of the stream, **vy**, and the cross sectional area of the jet, **A** (m²). The **last equation** computes the cross sectional area of the jet, **A**, from the circular jet diameter, **d** (m).

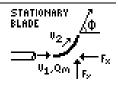

$vy = \sqrt{vo^2 - 2 \cdot grav \cdot h}$	Eq. 1
$Fy = Qm \cdot vy$	Eq. 2
$Qm = \rho \cdot Vf 1$	Eq. 3


$Vfl = vo \cdot A$	Eq. 4
$A = \frac{\pi \cdot d^2}{4}$	Eq. 5

Variable	Description	Units
ρ	Density	kg/m ³
A	Area	m^2
d	Diameter	m
Fy	Force due to flow – y	N
grav	Gravitational Acceleration	9.80665 m/s^2
h	Height	m
Qm	Mass flow rate	kg/s
Vfl	Volume flow rate	m^3/s
VO	Initial velocity	m/s
vy	Velocity - y	m

Example 21.6.2.2:

An open vertical jet discharges water at a rate of 20 gallons per minute. A horizontal plate, 2 m above the nozzle experiences a force of 16 N. What is the vertical velocity of the water at the nozzle and the height of the wall? Assume the density of water is 1000 kg/m³.



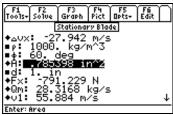
Solution – Select the **first three equations** to solve this problem. Press $\boxed{F2}$ to display the variables. Enter the values for the known parameters and press $\boxed{F2}$ to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. Select the second solution. The entries and results are shown in the screen displays above.

 $\begin{array}{lll} \textbf{Given} & \textbf{Solution} \\ \rho = 1000 \; kg/m^3 & Qm = 1.2618 \; kg/s \\ Fy = 16 \; N & vo = 14.1427 \; m/s \\ h = 2 \; m & vy = 12.6803 \; m/s \\ Vfl = 20 \; gal/min & \end{array}$

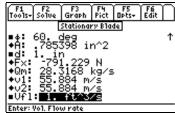
21.6.2.3 Stationary Blade

These equations compute the vertical (y) and horizontal (x) force components of an open jet on a stationary blade having an incline angle, ϕ (rad). The jet has a mass flow rate of **Qm** (kg/s). **Equation 1** calculates the change in the horizontal component of velocity, Δvx (m/s), from the initial velocity of the stream before it reaches the plane, v1 (m/s), and the velocity of the stream following deflection by

the blade, v2 (m/s). Equation 2 calculates the change in the vertical component of the stream velocity


due to blade deflection, Δvy (m/s). **Equations 3** and **4** compute the horizontal force, Fx (N), and the vertical force, Fy (N), exerted by the blade on the stream. **Equation 5** relates the mass flow rate, Qm, to the volume flow rate, Vfl (m³/s). **Equation 6** computes the volumetric flow rate, Vfl, from the initial velocity of the stream, v1, and the area of the jet, A (m²). **Equation 7** computes the cross sectional area of the jet, A, from the jet diameter d (m). The **last equation** relates the initial velocity, v1, and final velocity, v2, when the flow on the blade is frictionless.

$\Delta vx = v2 \cdot \cos(\phi) - v1$	Eq. 1
$\Delta vy = v2 \cdot \sin(\phi)$	Eq. 2
$Fx = Qm \cdot \Delta vx$	Eq. 3
$Fy = Qm \cdot \Delta vy$	Eq. 4
$Qm = \rho \cdot Vf 1$	Eq. 5
$Vfl = v1 \cdot A$	Eq. 6
$A = \frac{\pi \cdot d^2}{4}$	Eq. 7
v1 = v2	Eq. 8


Variable	Description	Units
Δvx	Change in velocity - x	m/s
$\Delta \mathrm{vy}$	Change in velocity - y	m/s
ρ	Density	kg/m ³
ф	Deflection angle	rad
A	Area	m^2
d	Diameter	m
Fx	Force due to flow - x	N
Fy	Force due to flow - y	N
Qm	Mass flow rate	kg/s
v1	Velocity 1 (Initial)	m/s
v2	Velocity 2 (Final)	m/s
Vfl	Volume flow rate	m^3/s

Example 21.6.2.3:

A stationary frictionless vane having an angle of 60° deflects a water jet, having a volumetric flow rate of 1 cubic foot per second and a diameter of 1 in. Compute the horizontal force exerted by the vane. The density of water is 1000 kg/m^3 .

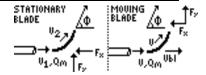
Upper Display

Lower Display

Solution – Select the **Equations 1, 3, 5, 6, 7** and **8** to solve this problem. Select these by highlighting the equations and pressing **ENTER**]. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

 $\rho = 1000 \text{ kg/m}^3$ $\phi = 60 \text{ deg}$ d = 1 in $Vfl = 1 \text{ ft}^3/\text{s}$ $\Delta vx = -27.942 \text{ m/s}$ $A = .785398 \text{ in}^2$ Fx = -791.229 N


Solution

Qm = 28.3168 kg/sv1 = 55.884 m/s

v2 = 55.884 m/s

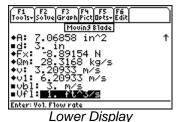
21.6.2.4 Moving Blade

These equations compute the vertical (y) and horizontal (x) force components of an open jet, with a mass flow rate of \mathbf{Qm} (kg/s) incident on a moving blade. The blade is inclined at an angle, $\boldsymbol{\phi}$ (rad), and moving with a velocity, \mathbf{vbl} (m/s), in the direction parallel to fluid flow. **Equation 1** calculates the change in the horizontal component of

velocity, Δvx (m/s), from the initial velocity of the stream before it reaches the blade, v1 (m/s) and the velocity of the stream following deflection by the blade, v (m/s). **Equation 2** calculates the change in the vertical component of the stream velocity due to blade deflection, Δvy (m/s). **Equation 3** computes the horizontal force exerted by the blade in deflecting the stream, Fx (N). **Equation 4** calculates the vertical force exerted by the blade in deflecting the stream, Fy (N). **Equation 5** relates the mass flow rate, Qm, to the volume flow rate VF (m³/s). **Equation 6** computes the volumetric flow rate, VfI, from the initial velocity of the stream, v1, and the cross sectional area of the jet, v1 (m²). **Equation 7** computes the cross sectional area of a circular jet, v1, having a diameter, v1 (m). The **last equation** relates the initial and final velocities, v1 and v, when the flow on the blade is frictionless.


$\Delta vx = (v - vb1) \cdot (\cos(\phi) - 1)$	Eq. 1
$\Delta vy = (v - vb1) \cdot \sin(\phi)$	Eq. 2
$Fx = Qm \cdot \Delta vx$	Eq. 3
$Fy = Qm \cdot \Delta vy$	Eq. 4
$Qm = \rho \cdot Vf 1$	Eq. 5
$Vfl = v1 \cdot A$	Eq. 6

$A = \frac{\pi \cdot d^2}{4}$	Eq. 7
v = v1 - vbl	Eq. 8


Variable	Description	Units
Δvx	Change in velocity - x	m/s
$\Delta \mathrm{vy}$	Change in velocity - y	m/s
ρ	Density	kg/m ³
ф	Deflection angle	rad
A	Area	m^2
d	Diameter	m
Fx	Force due to flow - x	N
Fy	Force due to flow - y	N
Qm	Mass flow rate	kg/s
V	Velocity (following deflection)	m/s
v1	Velocity 1 (Initial)	m/s
vbl	Velocity of the blade (in direction of flow)	m/s
Vfl	Volume flow rate	m^3/s

Example 21.6.2.4:

A moving frictionless blade, having a deflection angle of 120 deg, channels a water jet, having a volumetric flow rate of 1 $\rm ft^3/s$ and a diameter of 3 in. The vane has a constant velocity of 3 m/s in the direction of the jet flow. Compute the horizontal force of the jet exerted by the vane. Assume the density of water is $1000~\rm kg/m^3$.

Upper Display

Solution – Select Equations **1**, **3**, **5**, **6**, **7**, **8** to solve this problem. Select these by highlighting the equations and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\rho = 1000 \text{ kg/m}^3$	$\Delta vx =314002 \text{ m/s}$
$\phi = 120 \text{ deg}$	$A = 7.06858 \text{ in}^2$
d = 3 in	Fx = -8.89154 N
vbl = 3 m/s	Qm = 28.3168 kg/s
$Vfl = 1 ft^3/s$	v = 3.20933 m/s
	v1 = 6.20933 m/s

References:

 John A. Roberson and Clayton T. Crowe, Engineering Fluid Mechanics, 5th Edition, Houghton-Mifflin Company, Boston, MA 1993

- 2. Ranald V. Giles, Fluid Mechanics & Hydraulics, 2nd Edition, Schaum's outline series, McGraw-Hill Publishing company, New York, NY 1962
- 3. William F. Hughes and John A. Brigham, Fluid Dynamics, Schaum's Outline series, McGraw-Hill Publishing company, New York, NY 19991
- 4. Michael R. Lindeburg, Mechanical Engineering Reference Manual, 8th Edition, Professional Publications Inc., Belmont, CA, 1990
- 5. Eugene A. Avallone & Theodore Baumeister III, Mark's Handbook for Mechanical Engineers, McGraw-Hill Book Company, New York, NY 1984
- 6. Sanford I. Heisler, The Wiley Engineer's Desk referencee, John Wiley and Sons, New York, NY 1984
- 7. Robert W. Fox and Alan T. McDonald, Introduction to Fluid Mechanics, John Wiley and Sons, New York, 1978
- 8. Robert H. Nunn, Intermediate Fluid Mechanics, Hemisphere Publishing Company, New York, 1989

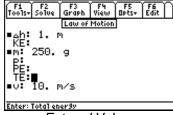
Chapter 22 Dynamics and Statics

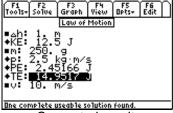
This section contains general equations related to the topic of dynamics and statics. The gravitational acceleration constant, **grav** ($g = 9.80665 \text{m/s}^2$), and the universal gravitation constant, **G** (Gc = 6.67259 x $10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$), are predefined in ME•*Pro* and are automatically inserted into calculations. They do not appear in the list of variables for entry screen.

- ♦ Laws of Motion
- ♦ Angular Motion
- ♦ Collisions
- ♦ Friction

- ♦ Constant Acceleration
- ♦ Projectile Motion
- ♦ Gravitational Effects
- ♦ Statics

22.1 Laws of Motion


The basic laws of force, velocity, acceleration, energy, and momentum are introduced in this topic. The **first equation** represents Newton's second law: an acceleration, \mathbf{a} (m/s²), will result from a force, \mathbf{F} (N), acting on a mass, \mathbf{m} (kg). The **second equation** calculates momentum, \mathbf{p} (Pa), of mass, \mathbf{m} , from the velocity, \mathbf{v} (m/s). The **third equation** computes kinetic energy, \mathbf{KE} (J), for a mass with a velocity, \mathbf{v} . The **fourth equation** calculates the potential energy, \mathbf{PE} (J), stored or released due to a change in height, $\Delta \mathbf{h}$ (m), in the earth's gravitational field. The total energy, \mathbf{TE} (J), is the sum of \mathbf{KE} and \mathbf{PE} and is computed in the **fifth equation**. The instantaneous power, \mathbf{Pwr} (W), of the system is given in the **last equation**.

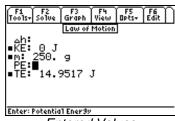

$F = m \cdot a$	Eq. 1
$p = m \cdot v$	Eq. 2
$KE = \frac{1}{2} \cdot m \cdot v^2$	Eq. 3
$PE = m \cdot grav \cdot \Delta h$	Eq. 4
TE = PE + KE	Eq. 5
$Pwr = F \cdot v$	Eq. 6

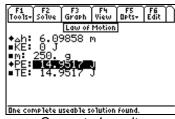
Variable	Description	Units
$\Delta \mathrm{h}$	Change in height	m
a	Acceleration	m/s^2
F	Force	N
grav	Acceleration due to gravitation	9.80665 m/s^2
KE	Kinetic energy	J
m	Mass	kg
p	Linear momentum	kg⋅m/s
PE	Potential energy	J
Pwr	Power	W
TE	Total energy	J
V	Velocity	m/s

Example 22.1: Part 1

A ball weighing 250 g is thrown vertically from a height of 1 m at 10 m/s. What is the ball's initial momentum and kinetic, potential and total energy?

Entered Values


Computed results


Solution – Select the **second, third, fourth, and fifth equations.** Enter the known values and solve for the unknown variables. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the variables. The entries and results are shown in the screen displays above.

Given	Solution
$\Delta h=1 \text{ m}$	KE = 12.5 J
m=250 g	TE = 14.9517 J
v=10 m/s	p = 2.5 kg m/s
	PE = 2.45166 J

Example 22.1: Part 2

Suppose that the total energy calculated in the preceding problem is converted to potential energy when the ball ceases to travel upwards. What height above the ground will the ball reach?

Entered Values

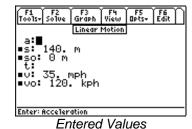
Computed results

Solution - Calculate results for the above problem. Deselect the **second and third equations** and press $\boxed{\texttt{F2}}$ to solve. Highlight the calculated value of **TE** and press $\boxed{\texttt{F3}}$:**Opts**, $\boxed{\texttt{2}}$: **Know**. This changes the value to a known parameter used in computation. Enter zero for **KE** and **delete** the values for Δh and **PE**.

Given	Solution
KE=0 J	$\Delta h = 6.0986 \text{ m}$
M = 250 g	PE = 14.9517 J
TE = 14.9517 J	

22.2 Constant Acceleration

22.2.1 Linear Motion


The five equations in this section describe the position and velocity of a moving object, subject to acceleration. The **first equation** computes a change in velocity, \mathbf{v} - \mathbf{vo} (m/s), due to constant acceleration, \mathbf{a} (m/s²), over time, \mathbf{t} (s). The **equations 2** and $\mathbf{3}$ calculate the final position, \mathbf{s} (m), of the object from its initial position, \mathbf{so} (m), from the initial velocity, \mathbf{vo} (m/s), final velocity, \mathbf{v} (m/s), time traversed, \mathbf{t} , and average acceleration, \mathbf{a} . **Equation 4** describes a method of computing the distance traveled given the initial and final velocity and time spent traveling. The **final equation** computes the velocity, \mathbf{v} , from the acceleration, \mathbf{a} , and traversed distance, \mathbf{s} - \mathbf{so} (m).

$v = vo + a \cdot t$	Eq. 1
$s = so + vo \cdot t + \frac{1}{2} \cdot a \cdot t^2$	Eq. 2
$v^2 = vo^2 + 2 \cdot a \cdot (s - so)$	Eq. 3
$s = so + \frac{v + vo}{2} \cdot t$	Eq. 4
$s = so + v \cdot t - \frac{1}{2} \cdot a \cdot t^2$	Eq. 5

Variable	Description	Units
a	Acceleration	m/s^2
S	Final position	m
SO	Initial position	m
t	Time	S
V	Velocity	m/s
vo	Initial velocity	m/s

Example 22.2.1:

Spotting a police car, Jodi Ulsoor needs to reduce her velocity from 120 km/h to 35 mph and accomplish this in a span of 140 m. Compute the time needed for this task and the deceleration.

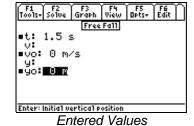
| Fig. |

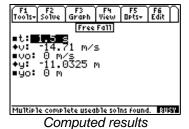
ME-*Pro* for TI-89, TI-92Plus Chapter 22 - **Equations** – Dynamics and Statics

Solution - Select the **third** and **fifth equations**. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
s = 140 m	t = 5.71665 s
so = 0 m	$a = -3.09383 \text{ m/s}^2$
v = 35 mph	
vo = 120 km/h	

22.2.2 Free Fall


The following equations calculate the vertical velocity, \mathbf{v} (m/s), at position, \mathbf{y} (m), of a free falling object in the earth's gravitational field after time, \mathbf{t} (s), has elapsed since an initial vertical velocity, \mathbf{vo} (m), and initial vertical position, \mathbf{yo} (m). Friction effect is ignored.


$y - yo = vo \cdot t - \frac{1}{2} \cdot grav \cdot t^2$	Eq. 1
$v^2 = vo^2 - 2 \cdot grav \cdot (y - yo)$	Eq. 2
$y - yo = \frac{1}{2} \cdot (vo + v) \cdot t$	Eq. 3
$y - yo = v \cdot t + \frac{1}{2} \cdot grav \cdot t^2$	Eq. 4
$v = vo - grav \cdot t$	Eq. 5

Variable	Description	Units
grav	Acceleration due to gravitation	9.80665 m/s^2
t	Time	S
V	Velocity	m/s
VO	Initial velocity	m/s
у	Displacement	m
yo	Initial vertical position	m

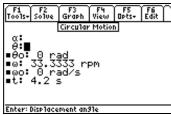
Example 22.2.2:

A construction worker, working on the top floor of a ten-story building, drops her hammer. How far will the hammer travel in 1.5 seconds and what will its velocity be?

Solution – Use the worker's vertical position as a zero reference height. Choose the **first** and **second equations**. Select these by highlighting the equations and pressing **ENTER**. This problem requires the first two equations. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. There are two possible solutions, depending on whether velocity scale is pointing in the upward or downward directions. In this case (1 st solution), a positive velocity is assumed to be pointing in the positive direction of height. The entries and results are shown in the screen displays above.

Given	Solution
t = 1.5 s	v = -14.71 m/s
vo = 0 m/s	y = -11.0325 m
vo = 0 m	

22.2.3 Circular Motion


These 5 equations describe change in angular position, $\boldsymbol{\theta}$ (rad), and angular velocity, $\boldsymbol{\omega}$ (rad/s), from an initial angle position, $\boldsymbol{\theta}$ 0 (rad), and initial angular velocity, $\boldsymbol{\omega}$ 0 (rad/s), due to time, \boldsymbol{t} (s), and angular acceleration, $\boldsymbol{\alpha}$ 3 (rad/s²).

$\omega = \omega o + \alpha \cdot t$	Eq. 1
$\theta - \theta o = \omega o \cdot t + \frac{1}{2} \cdot \alpha \cdot t^2$	Eq. 2
$\omega^2 = \omega o^2 + 2 \cdot \alpha \cdot (\theta - \theta o)$	Eq. 3
$\theta - \theta o = \frac{1}{2} \cdot (\omega + \omega o) \cdot t$	Eq. 4
$\theta - \theta o = \omega \cdot t - \frac{1}{2} \cdot \alpha \cdot t^2$	Eq. 5

Variable	Description	Units
α	Angular acceleration	rad/s ²
θ	Displacement angle	rad
θ o	Initial displacement angle	rad
ω	Angular velocity	rad/s
ωο	Initial angular velocity	rad/s
t	Time	S

Example 22.2.3:

A turntable at rest, is able to accelerate to an angular velocity of $33^{1}/_{3}$ rpm in 4.2 seconds. What is the average angular acceleration and what is the angle of displacement from the record's initial position?

Entered Values

Computed results

Solution - Since two unknowns are being calculated, two equations are needed which, as a set, contain all of the variables. A number of possible equation choices exist. **Equations 1** and **2** were selected for the example above. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given
θo=0 rad
ω=33.3333 rpm
ωo=0 rad/s
t=4.2 s

Solution θ =7.3308 rad α =.8311091 rad/s²

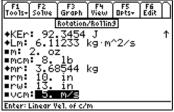
22.3 Angular Motion

22.3.1 Rolling/Rotation

These equations describe the location and rotational properties of a circular object, rolling at a constant speed. The **first equation** describes the circumferential arc length, **sa** (m), between an initial angle, **\theta** (rad), and displaced angle, **\theta** (rad), for a round object having a radius, **rw** (m). The translation velocity of the center of mass, **vcm** (m/s), of the rotating object is described in the **second equation**. The **third equation** calculates, **KE** (J), the rotational kinetic energy of a rolling object having a total moment of inertia, **Ip** (kg·m²), and an angular velocity, **\omega** (rad/s). The angular momentum, **Lm** (kg·m²/s), is computed in the **fourth equation**. The **fifth equation** accounts for the adjustment of a rotational moment inertia, **Ip**, for the special case of a mass, **m** (kg), attached at distance, **rm** (m), from the center of rotating object with moment of inertia, **Icm** (kg·m²). The **next equation** calculates the tangential velocity of the top edge of the rolling object, **vtop** (m/s). The **seventh equation** computes the sum of the rotational and linear kinetic energies of the rolling object, **KEr** (J). The **second-to-last equation** computes the total mass of the rolling object, **mr** (kg). The **last equation** computes the power, **Pwr** (W), exerted by a torque, **\tau** (N·m), to achieve an angular velocity, **\omega**.

$sa = rw \cdot (\theta - \theta o)$	Eq. 1
$vcm = \omega \cdot rw$	Eq. 2
$KE = \frac{1}{2} \cdot Ip \cdot \omega^2$	Eq. 3
$Lm = Ip \cdot \omega$	Eq. 4
$Ip = Icm + m \cdot rm^2$	Eq. 5

$vtop = 2 \cdot vcm$	Eq. 6
$KEr = KE + \frac{1}{2} \cdot mr \cdot vcm^2$	Eq. 7
mr = mcm + m	Eq. 8
$Pwr = \tau \cdot \omega$	Eq. 9


Variable	Description	Units
θ	Displacement angle	rad
θ o	Initial displacement angle	rad
τ	Torque	$N \cdot m$
ω	Angular velocity	rad/s
Icm	Moment of inertia - c/m	$kg \cdot m^2$
Ip	Moment of inertia	kg·m·2
KE	Kinetic energy	J
KEr	Kinetic energy of rolling object	J
Lm	Angular momentum	$kg \cdot m^2/s$
m	Mass	kg
mr	Mass of rolling object	kg
mcm	Mass of Icm	kg
Pwr	Power	W
rm	Radius of m to center of mass	m
rw	Radius	m
sa	Arc length	m
vcm	Linear velocity of c/m	m/s
vtop	Linear velocity of top of rolling object	m/s

Example 22.3.1:

A reflector weighing 2 oz is attached 10" from the center of a rolling bicycle wheel weighing 8 lb, having a radius of 13", and a rotational moment of inertia of 0.4 kg/m². If the wheel is rolling with a linear velocity of 5 m/s, find the angular velocity, angular momentum and the total kinetic energy.

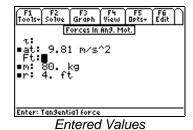
Upper Display

Lower Display

Solution - The **second, third, fourth, fifth, seventh** and **eighth** equations are needed to solve the problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$Icm = 0.4 \text{ kg m}^2$	ω =15.1423 rad/s
m=2 oz	$Ip=.403658 \text{ kg m}^2$
mcm=8 lb	KE=46.2775 J
Rm=10 in	KEr=92.3454 J
rw=13 in	$Lm=6.11233 \text{ kg m}^2/\text{s}$
vcm=5 m/s	mr = 3.68544 kg

22.3.2 Forces in Angular Motion


These four equations describe Newton's first law of motion in angular and linear forms. These equations are useful for converting force, **Ft** (N), to torque, τ (rad), and linear acceleration, a (m/s²), to angular acceleration, α (m/s²). I (kg·m²) is the rotational moment of inertia of a rotating body and m (kg), is the mass of the rotating object acting as a torque at a distance, \mathbf{r} (m), from the center of the rotating body.

$Ft = m \cdot at$	Eq. 1
$\tau = Ft \cdot r$	Eq. 2
$\tau = m \cdot \alpha \cdot r^2$	Eq. 3
$ au = I \cdot \alpha$	Eq. 4
$Pwr = \tau \cdot \omega$	Eq. 5

Variable	Description	Units
α	Angular acceleration	rad/s^2
τ	Torque	N⋅m
ω	Angular velocity	rad/s
at	Tangential acceleration	m/s^2
Ft	Tangential force	N
I	Moment of inertia	$kg \cdot m^2$
m	Mass	kg
Pwr	Power	W
r	Radius	m

Example 22.3.2:

John McClaine (mass of 80 kg) jumps off the top of Nakatomi plaza with a fire hose wrapped around his waist. The fire hose is attached to the edge of a rotating spool, which is 8 ft in diameter. Assuming the force acting on the spool is solely due to Mr. McClaine's total weight in the gravitational field (9.81 m/s), what is the initial torque on the fire hose spool?

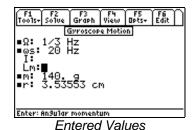
One complete useable solution found.

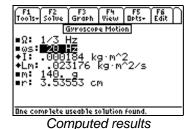
Computed results

Solution - Select the **first** and **second equations** to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$at=9.81 \text{ m/s}^2$	τ=956.828 N⋅m
m=80 kg	Ft=784.8 N
r=4 ft	

22.3.3 Gyroscope Motion

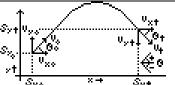

These two equations describe the precession rate, Ω (rad/s), and angular momentum, Lm (kg·m²/s), of a gyroscope with a mass, m (kg), moment of inertia, I (kg·m²), angular velocity, ω (rad/s), and a radius from the fixed point, r (m), on an axis perpendicular to the earth's gravitational field.


$\Omega = \frac{m \cdot grav \cdot r}{I \cdot \omega s}$	Eq. 1
$Lm = I \cdot \omega s$	Eq. 2

Variable	Description	Units
grav	Acceleration due to gravitation	9.80665 m/s^2
Ω	Precession rate	rad/s
ωs	Angular velocity	rad/s
I	Moment of inertia	$kg \cdot m^2$
Lm	Angular momentum	$kg \cdot m^2/s$
m	Mass	kg
r	Radius	m

Example 22.3.3:

A gyroscope precesses with its rotational axis 45 degrees from the direction of the gravitational field. The gyroscope's rotational speed is 20 revolutions per second. Calculate the moment of inertia and angular momentum of a gyroscope having a precession rate of one revolution every three seconds, a mass of 140 g, and a longitudinal axle, of negligible mass, 10 cm in length.

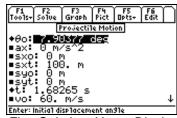

ME-Pro for TI-89, TI-92Plus Chapter 22 - **Equations** – Dynamics and Statics

Solution - **Both equations** are needed to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Check the MODE settings of your calculator to determine whether trigonometric functions accept radian or degree entries. Enter the values for the known parameters. The distance from the fixed point to the gyroscope center is half the length of the longitudinal axle. For the radius, \mathbf{r} , enter $5*\cos(\pi/4)$ cm if the MODE is set for radian entries, or, $5*\cos(45^\circ)$. Press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. To convert the result to different units, press F5: **Opts**, $\boxed{4}$: **Conv**, and select the desired units from the toolbar.

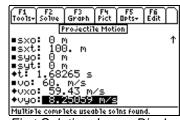
 $\begin{array}{ll} \mbox{Given} & \mbox{Solution} \\ \Omega = 0.33333 \ \mbox{Hz} & \mbox{I} = 0.018443 \ \mbox{kg m}^2 \\ \mbox{os} = 20 \ \mbox{Hz} & \mbox{Lm} = 2.31764 \ \mbox{kg m}^{2/s} \\ \mbox{m} = 140 \ \mbox{g} \\ \mbox{r} = 5*\cos(\pi/4 \ \mbox{or} \ 45^{\circ})\mbox{cm} = 3.53553 \ \mbox{cm} \end{array}$

22.4 Projectile Motion

The following set of equations describes the horizontal, **x**, and vertical, **y**, components of position, velocity and acceleration of a launched projectile in the earth's gravitational field. Friction is ignored.


 $vxt = vxo + ax \cdot t$ **Eq. 1 Eq. 2** $sxt = sxo + vxo \cdot t + \frac{1}{2} \cdot ax \cdot t^2$ $vxt^2 = vxo^2 + 2 \cdot ax \cdot (sxt - sxo)$ Eq. 3 $vyt = vyo - \frac{1}{2} \cdot grav \cdot t$ Eq. 4 Eq. 5 $syt = syo + vyo \cdot t - \frac{1}{2} \cdot grav \cdot t^2$ $vyt^2 = vyo^2 - 2 \cdot grav \cdot (syt - syo)$ Eq. 6 Eq. 7 $vxo = vo \cdot cos(\theta o)$ **Eq. 8** $vvo = vo \cdot \sin(\theta o)$ Eq. 9 $vxt = vt \cdot \cos(\theta t)$ Eq. 10 $vyt = vt \cdot \sin(\theta t)$ Eq. 11 $vo = \sqrt{vxo^2 + vyo^2}$

$vt = \sqrt{vxt^2 + vyt^2}$	Eq. 12


Variable	Description	Units
θ o	Initial displacement angle	rad
Θt	Projectile angle at time=t	rad
ax	Acceleration along x axis	m/s^2
grav	Acceleration due to gravitation	9.80665 m/s^2
SXO	x position at t=0	m
sxt	x position at time t	m
syo	y position at t=0	m
syt	y position at time t	m
t	Time	S
vo	Initial velocity	m/s
vt	Velocity at time=t	m/s
VXO	Initial velocity along x axis at t=0	m/s
vxt	Velocity at time=t along x axis	m/s
vyo	Initial velocity along y axis at t=0	m/s
vyt	Velocity at time=t along y axis	m/s

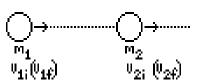
Example 22.4:

An arrow is launched from a bow towards a target at the same height, 100m away. The velocity of the arrow is 60 m/s. What angle above the center of the target must the archer aim? How long does it take the arrow to reach the target?

First Solution: Upper Display

First Solution: Lower Display

Solution - The **second, fifth, seventh,** and **eighth** equations are needed to solve this problem. Select these equations using the highlight bar and pressing <code>ENTER</code>, press <code>F2</code> to display the unknowns. Enter the values using appropriate units, and press <code>F2</code> to solve for the unknown variables. The gravitational constant, **grav** (9.80665 m/s²), is automatically inserted into the calculation and does not appear in the list of variables. Two parabolic trajectories are possible.


Given	Solution
$ax=0 \text{ m/s}^2$	θ =7.90377 deg (82.0962 deg)
sxo = 0 m	t = 1.68265 s (12.1204 s)
sxt = 100 m	vxo = 59.43 m/s (8.25059 m/s)
syo=0 m	vyo = 8.25059 m/s (59.43 m/s)
syt = 0 m	
vo = 60 m/s	

22.5 Collisions

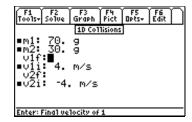
22.5.1 Elastic Collisions

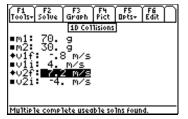
22.5.1.1 1D Collision

Elastic collisions are characterized by conservation of energy and momentum. The **first equation** states the law of the conservation of momentum and the **second equation** states the conservation of energy. **Equations 3** and **4** are combinations of the first two equations. We use the convention that velocity is positive when the mass moves to the right.

$$m1 \cdot v1i + m2 \cdot v2i = m1 \cdot v1f + m2 \cdot v2f$$

$$m1 \cdot v1i^{2} + m2 \cdot v2i^{2} = m1 \cdot v1f^{2} + m2 \cdot v2f^{2}$$


$$v1f = \frac{m1 - m2}{m1 + m2} \cdot v1i + \frac{2 \cdot m2}{m1 + m2} \cdot v2i$$

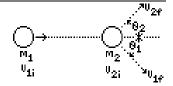

$$v2f = \frac{2 \cdot m1}{m1 + m2} \cdot v1i + \frac{m2 - m1}{m1 + m2} \cdot v2i$$
Eq. 4

Variable	Description	Units
m1	Mass 1	kg
m2	Mass 2	kg
v1f	Final velocity of 1	m/s
v1i	Initial velocity of 1	m/s
v2f	Final velocity of 2	m/s
v2i	Initial velocity of 2	m/s

Example 22.5.1.1:

Tia and Ryan throw two rubber balls toward each other. The balls have masses of 70 g and 30 g and are each traveling at 4 m/s. Assuming a perfectly elastic collision occurs on the axis of flight, what are the velocities and directions of each ball immediately after they collide?

Entered Values


Computed results:

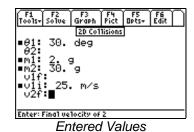
Solution - Use the **third and fourth** equations to determine the solution, since both include the conservation of energy and momentum along a single axis. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
m1=70 g	vlf= -0.8 m/s (ball rebounds)
m2=30 g	v2f=7.2 m/s (ball rebounds)
v1i = 4 m/s	
v2i=-4 m/s	

22.5.1.2 2D Collisions

These equations describe an elastic collision between two objects in a two-dimensional coordinate system. One mass, m2 (kg), is initially at rest and the other, m1 (kg), has an initial velocity, v1i (m/s). Following an elastic collision, the objects have final velocities of, v1f (m/s) and v2f (m/s). The deflection angles $\theta1$ (rad) and $\theta2$ (rad) are relative to the velocity axis for m1 before the collision.

$$m1 \cdot v1i = m1 \cdot v1f \cdot \cos(\theta 1) + m2 \cdot v2f \cdot \cos(\theta 2)$$


$$m1 \cdot v1f \cdot \sin(\theta 1) = m2 \cdot v2f \cdot \sin(\theta 2)$$

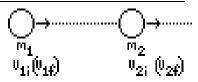
$$m1 \cdot v1i^2 = m1 \cdot v1f^2 + m2 \cdot v2f^2$$
Eq. 3

Variable	Description	Units
θ1	Collision angle 1	rad
θ 2	Collision angle 2	rad
m1	Mass 1	kg
m2	Mass 2	kg
v1f	Final velocity of 1	m/s
v1i	Initial velocity of 1	m/s
v2f	Final velocity of 2	m/s

Example 22.5.1.2:

A ping-pong ball is (2 g) is fired at a tennis ball (30 g). Before colliding, the ping-pong ball has a velocity of 25 m/s and rebounds 30 degrees relative to its original axis in the opposite direction. What are the velocities of the ping-pong ball and tennis ball? What is the angle of tennis ball's trajectory relative to the ping-pong ball's original flight path?

Computed results


Solution - **Select all three equations** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. Enter zero when the dialogue box appears to calculate the principal angle solution for θ 2. The entries and results are shown in the screen displays above.

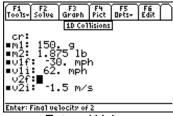
Given	Solution
θ 1=30 deg	$\theta 2 = -14.0449 \text{ deg}$
m1=2g	v1f=-22.0713 m/s
m2 = 30 g	v2f=3.03158 m/s
v1i=25 m/s	

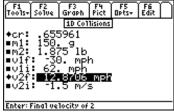
22.5.2 Inelastic Collisions

22.5.2.1 1D Collisions

Most collisions are not purely elastic, and some of the kinetic energy is converted to heat or used in deformation of the colliding objects (such as two cars in a head-on collision). The **first equation** represents the law of conservation of momentum; the **second equation** is Newton's collision rule for inelastic collisions. The coefficient of restitution, **cr**,

in the second equation is a factor to account for loss of kinetic energy in an inelastic collision. In a perfectly elastic collision, **cr** is equal to **1** (**cr=1**, kinetic energy is completely conserved) and **cr** is equal to **0** in a purely inelastic collision (**cr=0**, all kinetic energy is converted to heat or deformation). The **third** and **fourth** equations are combinations of the first two equations.


$m1 \cdot v1i + m2 \cdot v2i = m1 \cdot v1f + m2 \cdot v2f$	Eq. 1
$v1f - v2f = -cr \cdot (v1i - v2i)$	Eq. 2
$v1f = \frac{(m1 - cr \cdot m2) \cdot v1i + m2 \cdot (1 + cr) \cdot v2i}{m1 + m2}$	Eq. 3
$v2f = \frac{m1 \cdot (1+cr) \cdot v1i + (m2-cr \cdot m1) \cdot v2i}{m1+m2}$	Eq. 4


Variable	Description	Units
cr	Coefficient of restitution	unitless
m1	Mass 1	kg
m2	Mass 2	kg
v1f	Final velocity of 1	m/s
v1i	Initial velocity of 1	m/s
v2f	Final velocity of 2	m/s
v2i	Initial velocity of 2	m/s

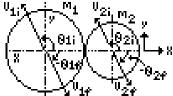
Example 22.5.2.1:

A baseball, weighing 150 g and traveling at 62 mph, is bunted with a bat, weighing 1.875 lb, moving towards the ball at a velocity of 1.5 m/s. The ball rebounds in the in the opposite direction at 30 mph.

What is the coefficient of restitution for the bat, ball collision? If the bat is released the moment it collides with the ball, what would be the bat's velocity towards the person who was holding it?

Entered Values

Computed results


Solution – Select **third** and **fourth equations**. Select these by highlighting the equations and pressing <u>ENTER</u>. Press <u>F2</u> to display the variables. Enter the values for the known parameters and press <u>F2</u> to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given
m1=150 g
m2 = 1.875 lb
vli=62 mph
v1f=-30 mph
v2i = -1.5 m/s

Solution cr=0.655961 v2f=12.8706 mph

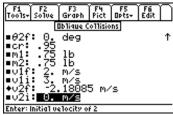
22.5.2.2 Oblique Collisions

The following equations describe an inelastic collision between two objects in two dimensions. The trajectory angles of the two objects before colliding, $\theta 1i \& \theta 2i$ (rad), and after collision, $\theta 1f \& \theta 2f$ (rad), are relative to an axis which passes through the center of mass of the two colliding objects and their point of contact. The **first eight equations** convert velocities from polar to rectangular coordinates. The **ninth** and

tenth equations compute the conservation of tangential velocities (component of velocity perpendicular to the axis of contact) for the two objects. The **last two equations** combine the conservation of momentum principle and Newton's collision rule to determine the velocity components parallel to the axis of contact. The velocity values **v1i**, **v1f**, **v2i**, and **v2f** (m/s) are vector values (i.e. positive when pointing away from the axis, negative when they are pointing towards the axis).

$v1ix = v1i \cdot \cos(\theta 1i)$	Eq. 1
$v1iy = v1i \cdot \sin(\theta 1i)$	Eq. 2
$v2ix = v2i \cdot \cos(\theta 2i)$	Eq. 3
$v2iy = v2i \cdot \sin(\theta 2i)$	Eq. 4
$v1fx = v1f \cdot \cos(\theta 1f)$	Eq. 5
$v1fy = v1f \cdot \sin(\theta 1f)$	Eq. 6
$v2fx = v2f \cdot \cos(\theta 2f)$	Eq. 7

$v2fy = v2f \cdot \sin(\theta 2f)$	Eq. 8
$v1i \cdot \sin(\theta 1i) = v1f \cdot \sin(\theta 1f)$	Eq. 9
$v2i \cdot \sin(\theta 2i) = v2f \cdot \sin(\theta 2f)$	Eq. 10
$v1f \cdot \cos(\theta 1f) = \frac{(m1 - cr \cdot m2) \cdot \cos(\theta 1i) \cdot v1i + m2 \cdot (1 + cr) \cdot v2i \cdot \cos(\theta 2i)}{m1 + m2}$	Eq. 11
$v2f \cdot \cos(\theta 2f) = \frac{m1 \cdot v1i \cdot \cos(\theta 1i) \cdot (1+cr) + v2i \cdot \cos(\theta 2i) \cdot (m2-cr \cdot m1)}{m1+m2}$	Eq. 12


Variable	Description	Units
θ1i	Initial collision angle 1	rad
θ2i	Initial collision angle 2	rad
θ1f	Final collision angle 1	rad
θ2f	Final collision angle 2	rad
cr	Coefficient of restitution	unitless
m1	Mass 1	kg
m2	Mass 2	kg
v1f	Final velocity of 1	m/s
v1fx	Final velocity of 1 along x-axis	m/s
v1fy	Final velocity of 1 along y-axis	m/s
v1i	Initial velocity of 1	m/s
v1ix	Initial velocity of 1 along x-axis	m/s
v1iy	Initial velocity of 1 along y-axis	m/s
v2f	Final velocity of 2	m/s
v2fx	Final velocity of 2 along x-axis	m/s
v2fy	Final velocity of 2 along y-axis	m/s
v2i	Initial velocity of 2	m/s
v2ix	Initial velocity of 2 along x-axis	m/s
v2iy	Initial velocity of 2 along y-axis	m/s

Example 22.5.2.2:

A pool player hits a cue ball (0.75 lb) towards an eight ball of the same mass at 3 m/s. The player wants to determine a collision angle for the first ball relative to an axis that runs through the center of the two balls at contact so that the cue ball leaves the point of collision at 2 m/s. If the coefficient of restitution for the two balls is 0.95, what is the velocity of the eight ball, what angle does the cue ball leave the collision? (Assume that the balls are sliding before and after the collision instead of rolling).

Upper Display

Lower Display

Solution – Solving angular values from trigonometric expressions often requires the user to choose or convert a solution from many possible answers. Drawing a diagram, similar to the figure in this section, and with vectors for each object before and after collision often helps. In this case, mass 1 is selected as the cue ball and mass 2, the eight ball. **Select the last four equations**, enter the values as stated below, press [72], enter the known values and press [72] to solve the unknown variables. The initial and final angles of the eight ball are known to be zero since momentum is only transferred along the axis of collision. In this case, the solution displays the cue ball (1) coming from the *upper right* of the eight ball (2) (a mirror image of the diagram).

Given	Solution
θ 2f=0 deg	θ 1i=221.79 deg
θ 2i=0 deg	$\theta 1 f = -91.6022 \text{ deg}$
cr=0.95	v2f=-2.18085 m/s
m1=0.75 lb	
m2=0.75 lb	
v1f = 2m/s	
vli=3 m/s	
v2i=0 m/s	

22.6 Gravitational Effects

22.6.1 Law of Gravitation

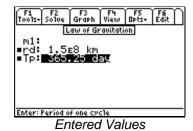
The following equations compute the orbital properties an object with mass, m2 (kg), in a circular orbit around a stationary mass, m1 (kg). Equation 1 computes the force, F (N), between the orbiting mass, m2, and central mass, m1, due to gravity. Equation 2 calculates the gravitational acceleration, ag (m/s^2), at distance rd (m), from the center of mass of m1. Equation 3 calculates the escape velocity, v (v (v (v), required for a launched object to overcome the gravitational field of v 1. The centripetal acceleration, v (v (v), in equation 4, or angular velocity, v (v (v), in the equation 8. The force, v (v), acting on v 2 due to centripetal acceleration v 2, can be calculated in equation 5. The period of rotation, v (v), for an object in circular orbit at distance, v 4, from a central body, v 1, is computed in equation 6. The tangential velocity, v 0, of an object in orbit at distance v 4 with angular velocity v 0 is calculated in equation 7. Equation 9 calculates the orbital angular momentum, v 1, or v 2, or v 2. Equations 10 through 12 calculate the potential v 4, kinetic, v 6, and total, v 1, energies of v 2 orbiting at distance v 4 from v 1.

$$F = \frac{G \cdot m1 \cdot m2}{rd^2}$$

$$ag = \frac{G \cdot m1}{rd^2}$$

$$vesc = \sqrt{\frac{2 \cdot G \cdot m1}{rd}}$$

$$ag = \frac{v^2}{rd}$$
Eq. 1


Eq. 2

$F = m2 \cdot ag$	Eq. 5
$Tp^2 = \frac{4 \cdot \pi^2}{G \cdot m1} \cdot rd^3$	Eq. 6
$v = \omega \cdot rd$	Eq. 7
$ag = \omega^2 \cdot rd$	Eq. 8
$Lm = m2 \cdot rd^2 \cdot \omega$	Eq. 9
$PE = \frac{-G \cdot m1 \cdot m2}{rd}$	Eq. 10
$KE = \frac{G \cdot m1 \cdot m2}{2 \cdot rd}$	Eq. 11
TE = KE + PE	Eq. 12

Variable	Description	Units
ω	Angular Acceleration	rad/s
ag	Gravitational acceleration	m/s^2
F	Force	N
G	Gravitational constant	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
KE	Kinetic energy	J
Lm	Angular momentum	$kg \cdot m^2/s$
m1	Mass 1	kg
m2	Mass 2	kg
PE	Potential Energy	J
rd	Radius between c/m	m
TE	Total energy	J
Tp	Period of one cycle	S
V	Velocity	m/s
vesc	Escape velocity	m/s

Example 22.6.1: Part 1

Calculate a rough estimate of the mass of the sun given the earth orbits the sun once every 365.25 days and the mean distance from the earth to the sun is approximately 150 million kilometers.

Computed results

Solution - Select the **sixth equation** to solve this problem. Select this by highlighting the equation and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

Solution

Rd=1.5E8 km Tp=365.25 days m1 = 2.00508 E 30 kg (actual value is 1.99 E 30 kg)

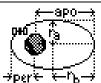
Example 22.6.1: Part 2

An astronaut on the surface of the moon wants to know the minimum velocity needed to send a golf ball beyond the moon's gravitational field. In this case, neglect the added speed of the moon's rotation. The mass and mean radius of the moon are $7.36 \times 10^{22} \text{ kg}$ and $1.74 \times 10^6 \text{ m}$ respectively.

Entered Values

Computed results

Solution - Select the **third equation** to solve this problem. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above. The value of \mathbf{G} the gravitational constant (6.67-11 N m²/kg) is automatically retrieved from the TI operating system and is not displayed as a variable.


Given

m1=7.36 E22 kg rd=1.74E6 m Solution

vesc=2375.89 m/s

22.6.2 Kepler's Laws

Johannes Kepler from Tycho Brahe's recorded observations of planetary orbits, we use these principles to derive the following equations were developed by. Kepler's statements are as follows: 1) Planetary orbits are elliptical in shape. 2) The elliptical area traversed by an orbiting planet over time is constant. 3) The third observation, which is summarized in the first two equations, is that the square of orbital period, **Tp** (s), is proportional to the cube of the minimum distance between the two objects **per** (perigee).

The **first two equations** compute the elliptical area of the orbit, **Area** (m^2), from the minimum, **per**, and maximum, **apo** (m), distances between the two bodies. The **third equation** calculates the distance, **rd** (m), between the central mass, **m** (kg), and the orbiting object at angular position, θ (rad), from the perigee location of the orbit. The **fourth equation** computes the period of rotation for the satellite, **Tp** (s). **Equation 5** defines the constant, **hs** (m^2/s), which represents Kepler's second principle, and is used in the second and fifth equations. The **sixth equation** calculates the orbital tangential velocity **v** (m/s) at orbital distance, **rd** (m), from the central mass, **m** (kg). The **seventh equation** relates **apo** (m), and, **per** (m), between the sun (mass **m**) and the planet given a planet's tangential velocity, **vp** (m/s), at the perigee. The **eighth** and **ninth equations** relate the apogee, **apo**, and perigee, **per**, distances to the major and minor elliptical axis. The **last equation** calculates the eccentricity, ϵ , of the elliptical orbit.

$Area = \frac{\pi}{2} \cdot (per + apo) \cdot \sqrt{apo \cdot per}$	Eq. 1
$Area = \frac{hs \cdot Tp}{2}$	Eq. 2
$\frac{1}{rd} = \frac{1}{per} \cdot \left(1 - \frac{G \cdot m}{per \cdot vp^2}\right) \cdot \cos(\theta) + \frac{G \cdot m}{per^2 \cdot vp^2}$	Eq. 3
$Tp = \frac{\pi}{hs} \cdot (apo + per) \cdot \sqrt{apo \cdot per}$	Eq. 4
$hs = vp \cdot per$	Eq. 5
$v = \frac{hs}{rd}$	Eq. 6
$apo = \frac{per}{\frac{2 \cdot G \cdot m}{per \cdot vp^2} - 1}$	Eq. 7
$ra = \frac{per + apo}{2}$	Eq. 8
$rb = \sqrt{per \cdot apo}$	Eq. 9
$\varepsilon = \frac{1}{per} \cdot \left(1 - \frac{G \cdot m}{per \cdot vp^2} \right) \cdot \frac{hs^2}{G \cdot m}$	Eq. 10

Variable	Description	Units
ε	Eccentricity	unitless
θ	Displacement angle	rad
apo	Apogee distance – maximum distance to center of mass	m
Area	Area	m^2
G	Gravitational constant	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
hs	Constant	m^2/s
m	Mass	kg
per	perigee distance – minimum distance to center of mass	m
ra	Radius: semi-major ellipse axis	m
rb	Radius: minor ellipse axis	m
rd	Radius between center of masses m1 and m2	m
Tp	Period of one cycle	S
V	Tangential velocity	m/s
vp	Tangential velocity at perigee	m/s

Example 22.6.2:

Halley's comet orbits the sun once every 76 years. Verify this information given that the perihelion distance (nearest distance to the sun is 87.8 million kilometers) and the semi-major axis radius is 2.7 billion km. The sun's mass is 1.99 E30 kg. In addition to the orbital period, find the apogee distance, minor axis length and maximum velocity.

Upper Display

Lower Display

Solution - Choose **the fourth, fifth, seventh, eighth, ninth** and **tenth** equations. The maximum velocity always occurs at the perigee of the orbit.

Given

m=1.99 E30 kg per=8.78 E7 km ra= 2.7 E9 km **Solution**

apo = 5.3122 E 9 km hs = 1.72417 E 13 km²/hr rb = 6.82943 E8 km Tp = 27998.7 day (~76.6 years) yp = 196374 kph

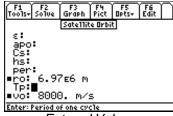
22.6.3 Satellite Orbit

These equations describe gravitation, launch and elliptical satellite orbit around the earth. **Mea** (kg), the mass of the earth (5.98 E24 kg) is a constant defined in $ME \bullet Pro$ that can be viewed in *Reference* under *Engineering constants*. The **first equation** calculates the polar coordinates of a satellite trajectory, \mathbf{r} (m), and, $\mathbf{\theta}$ (rad), around the earth given initial velocity, \mathbf{vo} (m/s), and initial release height of the orbiting satellite from the earth's center of gravity. \mathbf{ro} (m) The **next three equations** are used to calculate the polar coordinates of a satellite from the earth's center of gravity.

from the earth's center of gravity, \mathbf{ro} (m). The **next three equations** are used to calculate the eccentricity $\boldsymbol{\epsilon}$ of a conic section of the trajectory. The eccentricity of the conic section will determine whether the free-flight trajectory is a circle ($\boldsymbol{\epsilon} = \mathbf{0}$), parabola ($\boldsymbol{\epsilon} = \mathbf{1}$), ellipse ($\boldsymbol{\epsilon} < \mathbf{1}$), or hyperbola ($\boldsymbol{\epsilon} > \mathbf{1}$). The **fifth equation** calculates the minimum escape (launch) velocity, **vesc** (m/s), for a satellite to flee the earth's gravitational field. The **sixth equation** calculates \mathbf{vc} (m/s), the critical (minimum) velocity required to launch a satellite into a circular orbit at initial height, \mathbf{ro} (m). The **next five equations** calculate the relationships between **apo** (m), the apogee (maximum distance of a satellite to the center of orbit), **per** (m), the perigee (the minimum distance from the center of orbit), \mathbf{ra} (m) the minimum distance of a satellite to the center of the earth, \mathbf{rb} (m), the maximum distance of an orbiting satellite to the center of the earth and \mathbf{Tp} (s), the time period for a single orbit. The **final equation** computes the tangential velocity of the orbiting satellite, \mathbf{v} (m/s), at radius, \mathbf{r} (m), given the product of the tangential velocity \mathbf{vo} and the perigee (initial) distance, \mathbf{per} .

$$\frac{1}{r} = \frac{1}{ro} \cdot \left(1 - \frac{G \cdot Mea}{ro \cdot vo^2}\right) \cdot \cos(\theta) + \frac{G \cdot Mea}{ro^2 \cdot vo^2}$$

$$\varepsilon = \frac{Cs \cdot hs^2}{G \cdot Mea}$$


$$hs = vo \cdot ro$$
Eq. 3

$Cs = \frac{1}{ro} \cdot \left(1 - \frac{G \cdot Mea}{ro \cdot vo^2} \right)$	Eq. 4
$vesc = \sqrt{\frac{2 \cdot G \cdot Mea}{ro}}$	Eq. 5
$vc = \sqrt{\frac{G \cdot Mea}{ro}}$	Eq. 6
per = ro	Eq. 7
$apo = \frac{ro}{\frac{2 \cdot G \cdot Mea}{ro \cdot vo^2} - 1}$	Eq. 8
$Tp = \frac{\pi}{hs} \cdot (apo + per) \cdot \sqrt{apo \cdot per}$	Eq. 9
$ra = \frac{per + apo}{2}$	Eq. 10
$rb = \sqrt{per \cdot apo}$	Eq. 11
$v = \frac{hs}{rd}$	Eq. 12

Variable	Description	Units
ε	Eccentricity	unitless
θ	Displacement angle	rad
apo	Apogee-maximum distance to center of mass	m
Cs	Constant	1/m
G	Gravitational constant	$6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$
hs	Constant	m^2/s
per	Perigee – min. distance to center of mass	m
Pwr	Power	W
r	Radius	m
ra	Radius or semi-major axis of ellipse	m
rb	Radius or minor axis of ellipse	m
ro	Initial height/distance from planet center	m
Тр	Period of one cycle	S
V	Tangential velocity	m/s
vc	Critical velocity	m/s
vesc	Escape velocity	m/s
VO	Initial tangential velocity at ro/per	m/s

Example 22.6.3:

A satellite is launched 600 km above the earth's surface and has an initial velocity of 8000 m/s. Calculate the features of the satellite trajectory including its minimum maximum distance from the earth's center, period of orbit, and the shape of the trajectory.

Entered Values

Computed results

Solution - The value for the mean radius of the earth **rea**=6.37E6 m is located in the **Engineering Constants** section of **Reference**. Use **equations 2, 3, 4, 7, 8** and **9** to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given

ro=6 E5 m (surface to satellite) + 6.37 E6 m(surface to earth center)=6.97E6 m. vo=8000 m/s

Solution

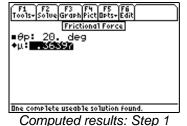
 $\varepsilon = .118685$ (ellipse)

apo =8.84727 E6 m Cs=1.52214 E-8 1/m hs=5.576E10 km²/hr per=6.97E6 m T=116.635 min

22.7 Friction

22.7.1 Frictional Force

These equations compute static friction for a mass on an inclined plane. θp (rad), is the minimum angle of incline required for gravity to overcome the frictional forces, which maintain the object from sliding. Fn (N), is the component of the object weight, W (N), normal to the plane of the inclined surface, μ is the coefficient of static friction for the mass/plane system and, $F\mu$ (N), is the force exerted by friction in the static system.


$F\mu = \mu \cdot Fn$	Eq. 1
$Fn = W \cdot \cos(\theta p)$	Eq. 2
$\mu \cdot W \cdot \cos(\theta p) = W \cdot \sin(\theta p)$	Eq. 3
$\mu = \tan(\theta p)$	Eq. 4
$W = m \cdot grav$	Eq. 5

Variable	Description	Units
θ p	Angle	rad
μ	Coefficient of friction	unitless
Fn	Normal force	N
grav	Acceleration due to gravitation	9.80665 m/s^2
m	Mass	kg
W	Weight	N

Example 22.7.1:

A calculator, weighing 7.1 oz, rests on an inclined textbook. The angle of incline required for the calculator to slide is 20 degrees. What is the coefficient of friction? If the textbook is laid flat, what force, parallel to the surface, must be exerted on the calculator to achieve the same effect?

Entered Values: Step 1

Given (Step 1)

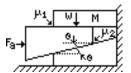
 $\theta p = 20 \text{ deg}$

Solution (Step 1)

 $\mu = 0.36397$

Solution (Step 1) – This problem can be solved in two steps. First, select the **fourth equation**. Select this by highlighting the equation and pressing $\boxed{\text{ENTER}}$. Press $\boxed{\text{F2}}$ to display the variables. Enter the values for the known parameters and press $\boxed{\text{F2}}$ to solve for the unknown variables.

Entered Values: Step 2


Computed results: Step 2

Given (Step 2) $\theta p = 20 \text{ deg}$ $\mu = 0.36397$ m = 5 oz Solution (Step 2) $F\mu = .475431 \text{ N}$ Fn = 1.30624 NW = 1.39007 N

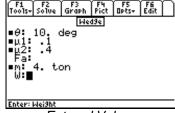
Solution (Step 2) Next, select the first, second and last equations. Enter the computed value of μ , the mass of the calculator, and a zero angle of incline. The entries and results are shown in the screen displays above.

22.7.2 Wedge

The following equations calculate forces on a wedge lodged between two blocks. There are five forces, which act on the wedge shown in the diagram. These forces add to zero when these forces are in equilibrium. W (N), is the weight of the upper block, **µ1** is the friction coefficient between the upper block and wedge, **u2**, is the coefficient of friction on the inclined surface of the wedge and the

lower block and θ (rad) is the angle of incline of the wedge. Fa (N), is the force required to overcome the forces of friction, which maintain the wedge-block system in equilibrium. The coefficient of friction between the upper block and the vertical surface to its right is assumed to be negligible.

$$Fa = \mu 1 \cdot W + \frac{W \cdot (\mu 2 \cdot \cos(\theta) + \sin(\theta))}{\cos(\theta) - \mu 2 \cdot \sin(\theta)}$$


$$Fa = W \cdot \left(\mu 1 + \frac{\mu 2 + \tan(\theta)}{1 - \mu 2 \cdot \tan(\theta)}\right)$$

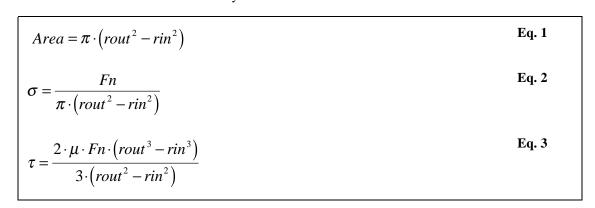
$$W = m \cdot grav$$
Eq. 3

Variable	Description	Units	
θ	Displacement angle	rad	
μ1	Coefficient of friction	unitless	
μ2	Coefficient of friction	unitless	
Fa	Horizontal force	N	
grav	Acceleration due to gravitation	9.80665 m/s^2	
m	Mass	kg	
W	Weight	N	

Example 22.7.2:

What force must be exerted on the wedge with a 10-degree incline to lift a 4-ton load. The friction coefficients for $\mu 2$ and $\mu 1$ in the above diagram, are 0.1 and 0.4, respectively.

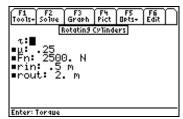
Entered Values

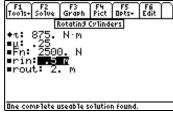

Computed results

Solution – The first and third, or second and third equations are needed to solve this problem. Select these by highlighting the equations and pressing [ENTER]. Press [F2] to display the variables. Enter the values for the known parameters and press [F2] to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\theta = 10 \deg$	Fa=25623.9 N
$\mu 1 = 0.1$	W=35585.8 N
$\mu 2 = 0.4$	
m=4 ton	

22.7.3 Rotating Cylinder


The following equations describe a rotating cylinder having an annulus-shaped contact with a stationary surface. The inner radius of the contact area is \mathbf{rin} (m), and an outer radius of contact is \mathbf{rout} (m). The **first equation** calculates the **Area** (m²) of the annulus-shaped contact between the cylinder and the surface. The **second equation** estimates the pressure, σ (Pa), over the area of the annulus-shaped contact surface, **Area**. The **third equation** computes the torque, τ (N·m), required to overcome the static forces of friction between the surface and the cylinder.

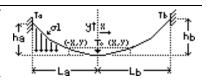

Description	Units
Stress	Pa
Torque	N⋅m
Coefficient of static friction	unitless
Cross-sectional area	m^2
Normal force	N
Acceleration due to gravitation	9.80665 m/s^2
Inner radius	m
Outer radius	m
	Stress Torque Coefficient of static friction Cross-sectional area Normal force Acceleration due to gravitation Inner radius

Example 22.7.3:

A rotating cylinder, at rest, exerts a force of 2500 N on a surface. The cylinder has inner and outer contact radii of 0.5 m and 2 m, respectively. The coefficient of static friction is 0.25. What is the torque required to initiate rotation of the cylinder?

Entered Values

Computed results


Solution – Select the **last equation**. Highlight the equation and press **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

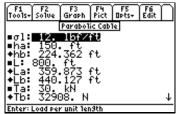
 $\label{eq:continuous} \begin{array}{ll} \textbf{Given} & \textbf{Solution} \\ \mu = 0.25 & \tau = 875 \ N \ m \\ Fn = 2500 \ N & \\ rin = 0.5 \ m & \\ rout = 2 \ m & \end{array}$

22.8 Statics

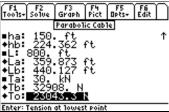
22.8.1 Parabolic cable

A cable between two fixed anchor points (a, b) assumes the shape of a parabola when there is a constant load per *horizontal distance*, $\sigma 1$ (N/m), *between the two stationary ends*. In such a case, the weight of the cable is typically insignificant in reference to the load. The **first equation** calculates y (m), the vertical distance from the lowest

point of the cable at distance, \mathbf{x} (m), from \mathbf{To} (N), the tension of the cable at the lowest point. The **second equation** calculates the total distance, \mathbf{L} (m), between the two anchors from horizontal distances to the lowest point, \mathbf{La} (m) and \mathbf{Lb} (m), from the location of \mathbf{To} . The **third** and **fourth** equations compute \mathbf{To} from the vertical, \mathbf{ha} (m) and \mathbf{hb} (m), and horizontal distances, \mathbf{La} , and \mathbf{Lb} , of the anchors to \mathbf{To} . The **fifth** and **sixth** equations estimate the tension at the two fixed points, \mathbf{Ta} (N) and \mathbf{Tb} (N).


$y = \frac{\sigma 1 \cdot x^2}{2 \cdot To}$	Eq. 1
L = La + Lb	Eq. 2
$To = \frac{\sigma 1 \cdot La^2}{2 \cdot ha}$	Eq. 3
$To = \frac{\sigma 1 \cdot Lb^2}{2 \cdot hb}$	Eq. 4
$Ta = \sigma 1 \cdot La \cdot \sqrt{1 + \frac{La^2}{4 \cdot ha^2}}$	Eq. 5
$Tb = \sigma 1 \cdot Lb \cdot \sqrt{1 + \frac{Lb^2}{4 \cdot hb^2}}$	Eq. 6

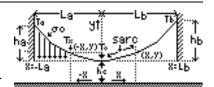
Variable	Description	Units
σl	Load per horizontal unit length	N/m
ha	Height from low point to left support	m
hb	Height from low point to right support	m
L	Total length	m


Variable	Description	Units
La	Distance from low point to left support	m
Lb	Distance from low point to right support	m
Ta	Tension at left anchor	N
Tb	Tension at right anchor	N
To	Tension at lowest point	N
X	Distance from origin along x axis	m
у	Displacement	m

Example 22.8.1:

A parabolic cable supports a uniform horizontal load of 12-lb/ft distances across a river gorge 800 ft wide. If an anchor on one side is able to support a load of 30kN at a height of 150 ft above the river, what is the minimum height and tension of the anchor on the opposite side of the gorge? What is the minimum distance of one side to the sag point (location of **To**)? What is the tension at the lowest point of the cable?

Upper Display

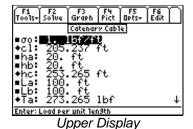

Lower Display

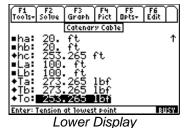
Solution – The **second through sixth equations** are needed to solve this problem. Select these by highlighting the equations and pressing **ENTER**. Press **F2** to display the variables. Enter the values for the known parameters and press **F2** to solve for the unknown variables. The entries and results are shown in the screen displays above.

Given	Solution
$\sigma l = 12 lbf/ft$	hb = 224.362 ft
ha=150 ft	La = 359.873 ft
L = 800 ft	Lb = 440.127 ft
Ta=30 kN	Tb = 32908 N
	To = 23043.3 N

22.8.2 Catenary cable

A catenary cable supports a uniform load *per length of* cable, **50** (N/m). The cable forms a hyperbolic curve when the load is solely due to the weight of the cable. The **first equation** calculates the vertical displacement, \mathbf{y} (m), at position, \mathbf{x} (m), from the point of sag, above a plane located at a distance, \mathbf{hc} (m), below the sag point. **Equation 2** computes the total horizontal distance between the two




$y = hc \cdot \cosh\left(\frac{x}{hc}\right)$	Eq. 1
L = La + Lb	Eq. 2
$hc = \frac{To}{\sigma o}$	Eq. 3
$sarc = hc \cdot \sinh\left(\frac{x}{hc}\right)$	Eq. 4
$ha = hc \cdot \left(\cosh\left(\frac{La}{hc}\right) - 1\right)$	Eq. 5
$hb = hc \cdot \left(\cosh\left(\frac{Lb}{hc}\right) - 1\right)$	Eq. 6
$Tx = \sigma o \cdot hc \cdot \cosh\left(\frac{x}{hc}\right)$	Eq. 7
$Ta = \sigma o \cdot hc \cdot \cosh\left(\frac{La}{hc}\right)$	Eq. 8
$Tb = \sigma o \cdot hc \cdot \cosh\left(\frac{Lb}{hc}\right)$	Eq. 9
$cl = hc \left(\sinh \left(\frac{La}{hc} \right) + \sinh \left(\frac{Lb}{hc} \right) \right)$	Eq. 10

Variable	Description	Units
σο	Load per cable length	N/m
cl	Length of cable	m
ha	Height from low point to left support	m
hb	Height from low point to right support	m
hc	Characteristic length	m
L	Distance between a and b	m
La	Dist. from low point to left support	m
Lb	Dist. from low point to right support	m
sarc	Length of cable from lowest point	m
Ta	Tension at left support	N
Tb	Tension at right support	N
Tx	Tension at a location x	N
То	Tension at lowest point	N
X	Distance from origin along x axis	m
у	Displacement	m

Example 22.8.2:

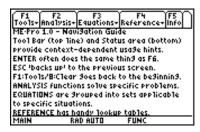
A cable weighing 1 lb per foot length is strung between two towers 200 ft apart. The sag is 20 ft below each tower. Calculate the tension at each tower and the length of cable required.

Solution - The third, fifth, sixth, eighth, ninth, and tenth equations are needed to solve this problem. Select these by highlighting the equations and pressing ENTER. Press F2 to display the variables. Enter the values for the known parameters and press F2 to solve for the unknown variables. The entries and results are shown in the screen displays above. Since the towers are equal of equal height, the sag point should be halfway in between the two towers (100 ft). Enter the known values and press F2 to solve for the unknown variables. This problem takes about 5 minutes to solve.

Given	Solution
$\sigma o = 1 lbf/ft$	cl = 205.237 ft
ha = 20 ft	hc = 253.265 ft
hb = 20 ft	Ta = 273.265 lbf
La = 100 ft	Tb = 273.265 lbf
Lb = 100 ft	To = 253.265 lbf

References:

- 1. Engineering Mechanics, Vol. 1, Statics, Edition 2, J. L. Meriam and L. G. Kraige, John Wiley and Sons, New York, 1986
- Engineering Mechanics, Vol. 2, Dynamics, Edition 2, J. L. Meriam and L. G. Kraige, John Wiley and Sons, New York, 1986
- 3. Engineering Mechanics, 7th Edition, R. C. Hibbeler, Prentice-Hall, Englewood Cliffs, NJ, 1995
- 4. Fundamentals of Physics, D. Halliday, R. Resnick and J. Walker, 4th Edition, John Wiley and sons, Inc. New York, 1993
- 5. Michael R. Lindeburg, Mechanical Engineering Reference Manual, Professional Publications, Belmont, CA 1990
- 6. Murray R. Spiegel, Theoretical Mechanics, Schaum's Outline Series, McGraw-Hill Book Company, New York, NY, 1967
- 7. Lane K. Bronson, Engineering Mechanics, Statics and Dynamics, Simon and Schuster technical outlines series, Simon and Schuster, New York, NY 1970


Part III: Reference

Chapter 23: Introduction to Reference

This chapter guides the user through the *Reference* Section of ME•*Pro*. The information in the *Reference* Section of the software is organized in a fashion similar to that in *Analysis* and *Equations*, except that it is generally non-interactive.

23.1 Introduction

The Reference Part is organized in twelve sections that include the following topics: Engineering Constants; Fourier and Laplace Transforms; Valves/Fitting Loss; Friction Coefficients; Roughness of Pipes; Water Physical Properties; Gases and Vapors; Thermal Properties; Fuels and Combustion; Refrigerants; SI prefixes; and, the Greek Alphabet.

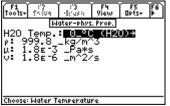
Pull down menu on TI - 89 and TI - 92 Plus

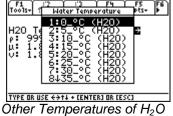
Unlike *Analysis* and *Equations*, the screen formats for the topics in the *Reference* section can differ significantly, depending on the information presented.

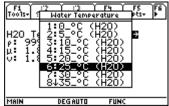
23.2 Finding Reference

Starting ME•Pro you can access the Reference Part.

- 1. Start ME•*Pro*:
 - TI-89 and TI-92 Plus: Press APPS key to display the pull down menu. Press ENTER or press 1 to view flash applications. Use ⊗ key to move the highlight bar to ME•*Pro* and press ENTER.
 - Pressing F4 accesses the menu for the *Reference* section listing the topics. ME•*Pro* is structured with a hierarchy of screens for choosing a specific topic.
- 2. Select a topic of *Reference* by moving the highlight bar to the desired section using the ⊙ key and pressing ENTER. Alternatively, type in the number corresponding to the section desired. For example, press 2 to access the *Transforms* section or press 6 to access *Water-Physical Properties*.


Transforms Menu


Water-Physical Properties Screen


23.3 Reference Screens

The Water-Physical Properties section has been chosen to illustrate how to navigate within a topic of the Reference section. When accessing the Water-Physical Properties section the properties of H₂O should be displayed.

Main Water-Physical Properties Screen

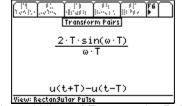
Highlight bar at 25°C (H₂O)

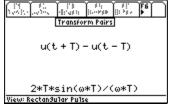
Properties of H₂O at 25°C

- Note that H₂O Temp has an arrow → to its right indicating that there are other temperatures of H₂0 whose properties are also listed. Move the highlight bar to H₂0 Temp., press [ENTER] to view the other temperatures of H₂0. The list of other temperatures include 0 °C to 100 °C in five degree increments. To display the properties of H_2O at 25 °C, use the \odot key to move the high light bar to 25°C (H₂O) and press [ENTER]. Alternatively, type in [6] when the pull down menu
- The data displayed automatically updates to list the properties of water at 25 °C as shown above.

23.4 Using Reference Tables

The Transform section is used as an example of viewing reference tables. Transforms allows the user to inspect Fourier and Laplace Transforms. Each of these topics is divided into three sub-topics: Definitions, Properties and Transform Pairs. For example, navigate from Transforms \rightarrow Fourier $Transforms \rightarrow Transform\ Pairs$. A screen display below lists the equations displaying the fundamental properties of Fourier transform pairs. Note that the name of the selected transform equation appears in the status line (at the bottom of the screen). For example, if the highlight bar is moved to the sixth equation, the status line displays "Rectangular Pulse" as the description of the property.


Normal View


Inverse View (press F4)

To view an equation in *Pretty Print* format, press (i). The contents on the right side of the colon (;) are displayed in *Pretty Print*, while the contents to the left of the colon are displayed in regular type above the status line. To reverse this display (display the inverse of the property), press ESC to exit Pretty Print mode; press F4 to display the *inverse* form of the transform property; and, ① to view the inverse

transform in *Pretty Print*. This function is only available in the Transforms Section of the ME-Pro Reference.

Normal View of Rectangular Pulse

Inverse View of Rectangular Pulse

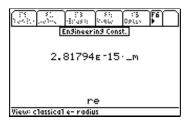
Chapter 24: Engineering Constants

This *Constants Reference Table* section lists the values and units for 46 commonly used universal constants. These constants are embedded in equations in the *Equations* section of ME•*Pro* and are automatically inserted during computations, when required.

24.1 Using Constants

The *Constants* section in *Reference* is designed to give a quick glance for commonly used constants. It lists values of accuracy available by the standards of measurement established by appropriate international agencies. This section does not include any information about the uncertainty in measurement, if any.

Table 24.1 Constants Reference Table


Display	Description	Display	Description
π	Circle ratio	φ0	Magnetic flux quantum
e	Napier constant	μΒ	Bohr magneton
γ	Euler constant	μe	e- magnetic moment
ф	Golden ratio	μN	Nuclear magneton
α	Fine structure	μр	p+ magnetic moment
c	Speed of light in vacuum	μμ	μ magnetic moment
ε0	Permittivity of a vacuum	a0	Bohr radius
F	Faraday constant	R∞	Rydberg constant
G	Newtonian constant of	brc1	1st radiation constant
	gravitation		
grav	Acceleration of gravity	brc2	2nd radiation constant
h	Planck constant	Brc3	Wien displacement
hb	Dirac constant	σ	Stefan-Boltzmann constant
k	Boltzmann constant	λc	e- Compton wavelength
μ0	Permeability of vacuum	λn	n Compton wavelength
q	e- charge	λр	p+ Compton wavelength
em	e- charge / mass	SP	Standard pressure
me	e- rest mass	ST	Standard temperature
mn	n rest mass	Vm	Molar volume at STP
mp	p+ rest mass	mwa	Molecular mass of dry air
mμ	muon rest mass	NA	Avogadro constant
pe	Mass p+ / mass e-	Rm	Molar gas constant
re	Classical e- radius	Mea	Mass of the earth
μq	Mass μ / mass e-	rea	Mean radius of earth

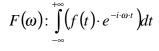
These constants were arranged in the following order: universal mathematical constants lead the list, followed by universal physical constants; atomic and quantum mechanical constants; radiation constants; standard temperature and pressure; universal gas constant; and, molar constants. To view a constant, use the arrow key \odot key to move the highlight bar to the value and press the *View* key $\boxed{\text{F4}}$. The status line at the bottom of the screen gives a verbal description of the constant.

Example 24.1:

Look up the classical radius of an electron.

- 1. **Re** value is located about half way down the list. Make sure it is selected by the highlight bar using the arrow keys.
- 2. Access the *View* function by pressing key [F4].
- 3. Press any key to return to the constants screen.

Transforms


Chapter 25: Transforms

This section accesses a series of tables containing transforms of common interest to mechanical engineers. The transforms are listed are – *Fourier Transforms*, and *Laplace Transforms*. Each topic contains information categorized under three subtopics; Definitions, Properties and Transform Pairs. All formulae can be viewed in *Pretty Print* equation-display format. These sub-topics are not interactive; i.e., one cannot specify an arbitrary expression and expect to compute a transformed result.

25.1 Using Transforms

When the **Transform** section is selected, a dialog box is appears. To choose a topic, move the highlight bar using \odot or \odot keys and press ENTER; alternatively, press the number associated with the topic.

- 1. Select Fourier, or Laplace Transforms.
- 2. Select Definitions, Properties or Transform Pairs
- 3. Use the \odot or \odot keys to move to the transform line desired.
- 4. The forward transforms are displayed by default.
- 5. Pressing F4 toggles between the forward and inverse formats.
- 6. Press ① to view the transform property in *Pretty Print*.
 - Information is presented on either side of the colon as shown below. The term on the left side of the colon, $F(\omega)$, represents the function in the frequency domain. The right side of the colon represents the exact definition for $F(\omega)$ in terms of the time domain function, f(t), integrated over all time modulated by $e^{-i\cdot\omega \cdot t}$.

Forward Fourier Transform

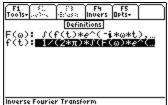
$$F(t): \frac{1}{2\pi} \int_{-\infty}^{+\infty} (F(\omega) \cdot e^{i\cdot \omega \cdot t}) d\omega$$

Inverse Fourier Transform

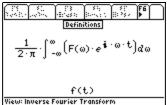
Forward and Inverse Formats

• The information can be displayed in the inverse (as opposed to forward) form. This means that the information on either side of the colon changes positions when the Inverse key F4 is pressed. A '•' symbol appears in the F4 tool bar to indicate the inverse form of the transform function is being displayed.

Status Line Message


• The status line gives a description of the equation highlighted. The descriptions use standard terminology such as *Modulation, Convolution, Frequency Integration*, etc.

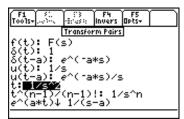
Example 25.1:


What is the definition of the *Inverse Fourier transform*?

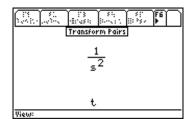
Normally, Fourier Transform is a representation of a periodic time domain function f(t) in terms of an integral involving the frequency domain function $F(\omega)$. An inverse Fourier Transform refers to a representation $F(\omega)$ in terms of f(t).

- 1. In the main **Transforms** screen, move the highlight bar to **Fourier Transforms** and press **ENTER**].
- 2. Press ENTER a second time to access **Definitions**.
- 3. Move the highlight bar to the second definition and press ① to display the equation in *Pretty Print* format.
- 4. Press ① or ① to scroll. Press any key to return to the previous screen, if the Pretty Print display is larger than the screen.

Fourier Definitions



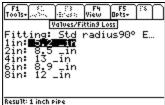
Pretty Print of Fourier (Inverse Fourier Transform)


Example 25.2:

View the **Laplace** transform of the time function f(t)=t, in terms of a universal frequency variable Laplace s.

- 1. In the initial **Transforms** screen, move the highlight bar to **Laplace Transforms** and press **ENTER**].
- 2. Move the highlight bar to **Transform Pairs** and press **ENTER**.
- 3. Scroll down to t: $1/s^2$ and press 0 to view the equation in *Pretty Print* format.

Laplace Transform Pairs


Pretty Print of 't'

Chapter 26: Valves and Fitting Loss

This Section covers the head loss of 11 different valves and fittings.

26.1 Valves and Fitting Loss Screens

When accessing the *Valves and Fitting Loss* section, the next screen will show the properties of the Std radius 90° Elbow. The Valve/Fitting Loss for each type of fitting is listed for a 1in., 2in., 4in., 6in., and 8in. radius.

Properties Std radius 90° Elbow

Materials available in Fitting type

Properties of Open Globe Valve

- Note that *Fitting*: has an arrow → to its right indicating that there are additional cases of materials whose properties are also listed as shown above. Move the highlight bar to *Std radius* 90°; press ENTER to view the other materials. The list of other materials includes Long radius 90° elbow, Regular 45° elbow, Tee-flow thru line, Tee-flow thru stem, 180° return bend, Open globe valve, Open gate valve, Open angle valve, Swing check valve, Coupling or union. To display the properties of *Open Globe Valve*, use the ⊙ key to move the high light bar to *Open Globe Valve* and press ENTER. Alternatively, type in [7] when the pull down menu appears.
- The data displayed automatically updates to list the properties of Open Globe Valve as shown above.

Chapter 27: Friction Coefficients

This Section covers the friction coefficients of 34 materials. Four types of friction coefficient values are displayed when known. Static or dynamic friction coefficients under dry or greasy conditions are displayed. The friction coefficients are unitless quantities, when the display shows "-" character it implies there is no reliable data available.

Table 27.1 Friction Coefficients Reference

Display	Status Line	Display	Status Line
Static	Static – Dry	Dynamic	Dynamic – Dry
Static	Static – Greasy	Dynamic	Dynamic – Greasy

27.1 Friction Coefficients Screens

When accessing the *Friction Coefficients* section, the next screen will show the properties of the *Hardsteel/hardsteel*.

Properties Friction
Coefficients

Materials available in Material type

Properties of Open Mildsteel/Cd-Ag

- Note that *Hardsteel/hardsteel* has an arrow → to its right indicating that there are other materials whose properties are also listed. Move the highlight bar to *Hardsteel/hardsteel*, press ENTER to view the other materials. The list of other materials includes Mildsteel/mildsteel, Hardsteel/graphite, Hardsteel/Babbit#1, Hardsteel/Babbit#8, Hardsteel/Babbit#10, Mildsteel/Cd-Ag, Mildsteel/P Bronze, Mildsteel/Cu Pb, Mildsteel/cast Iron, Mildsteel/Pb, Ni/Mildsteel, Al/mildsteel, Mg/mildsteel, Teflon/steel, Wcarbide/Wcarbide, Wcarbide/steel, Wcarbide/Copper, Wcarbide/Iron, Bonded Carbide/Cu, Bonded carbide/Iron, Cd/Mildsteel, Cu/Mildsteel, Brass/Mildsteel, Brass/cast Iron, Zinc/cast Iron, Cu/cast iron, Tin/castIron, Lead/cast Iron, Aluminum/Aluminum, Glass/glass, Glass/Nickel, Copper/glass, Cast Iron/Cast Iron. To display the properties of Mildsteel/Cd-Ag, use the ⓒ key to move the high light bar to Mildsteel/Cd-Ag and press ENTER. Alternatively, type in 7 when the pull down menu appears.
- The data displayed automatically updates to list the properties of Mildsteel/Cd-Ag as shown above.
- To return to display listing material types, press [F6]. To return to screen with Reference sections, press [ESC].

Chapter 28: Relative Roughness of Pipes

This Section covers 23 different pipe materials and their relative roughness.

Table 28.1 Relative Roughness Reference

Display	Status Line	Display	Status Line
Com.	Comment	HW	HW const – range
Range	Roughness range	HW	HW const – clean
Design	Roughness design	HW	HW const - design

28.1 Relative Roughness Screens

When accessing the Roughness of Pipes section, the next screen will show the properties of Steel.

Properties Steel

Materials available in Material type

Properties of Concrete

- Note that Steel has an arrow > to its right indicating that there are other materials whose properties are also listed. Move the highlight bar to Steel, press ENTER to view the other materials. The list of other materials includes Steel-rivets, Steel-girth, Steel-horiz. rivets, Spiral rivets, vitrified, Concrete, Cement-asbestos, vitrified Clay, Brick sewer, Cast Iron, Cast Iron coated, Cast Iron lined, Cast Iron Bituminous, Cast Iron spun, Cast Iron galvanized, Wrought Iron, Fiber, Copper and Brass, Wood stave, Transite, lead, tin, glass, and Plastic. To display the properties of Concrete, use the ⊙ key to move the high light bar to Concrete and press [ENTER]. Alternatively, type in [7] when the pull down menu appears.
- The data displayed automatically updates to list the properties of Concrete as shown above. You may return to Pipe material type screen by highlighting Mat: Concrete→ and press ().

Chapter 29: Water-Physical Properties

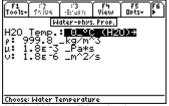
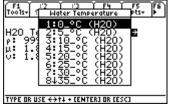
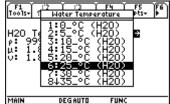
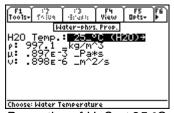

This section covers the properties of water from 0 $^{\circ}$ C – 100 $^{\circ}$ C. Properties tabulated are; density, dynamic, and kinematic viscosity.

Table 29.1 Properties of Water


Water-Physical Properties			
Display Status Line			
ρ	Density		
μ	Dynamic Viscosity		
v	Kinematic Viscosity		

29.1 Water-Physical Properties Screens


When accessing the Water-Physical Properties section the properties of H₂O should be displayed.


Main Water-Physical Properties Screen

Other Temperatures of H₂O

Highlight bar at 25°C (H₂O)

Properties of H₂O at 25 °C

- Note that H₂O Temp has an arrow → to its right indicating that there are other temperatures of H₂O whose properties are also listed. Move the highlight bar to H₂O Temp., press ENTER to view the other temperatures of H₂O. The list of other temperatures include 0 °C to 100 °C in five degree increments. To display the properties of H₂O at 25 °C, use the ⊙ key to move the high light bar to 25°C (H₂O) and press ENTER. Alternatively, type in ⑥ when the pull down menu appears.
- The data displayed automatically updates to list the properties of water at 25 °C as shown above.

Chapter 30: Gases and Vapors

This section covers the reference data for six topics relating to the behavior of gases and vapors.

♦ Air Enthalpy and Psi Function

 $200K - 780K \\ 800K - 1480K \\ 1500K - 2200K$

♦ Critical Data for Various Gases

Gases, general Gases, organic

♦ Viscosity (µ) at One Atmosphere

♦ Saturation Temperature

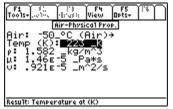
<1 bar ≥1 bar

♦ Saturated Gas Properties

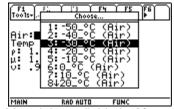
Ammonia Carbon Dioxide Ethane (R170) Hydrogen (n) Methane Refrigerant 11

♦ Air Physical Properties

Table 30.1 Gases and Vapors Reference Table


Display	Status Line	Display	Status Line
h	Specific enthalpy	vg	Specific volume, gas
Psi	Psi function	hf	Specific enthalpy, liquid
Gas	Gas type	hg	Specific enthalpy, gas
Temp	Boiling temperature	sf	Specific entropy, liquid
Temp	Critical temperature	sg	Specific entropy, gas
Temp	Temperature at K	cpf	Specific heat at constant pressure
Press.	Critical pressure	ρ	Density
Vol.	Critical Volume	μ μ	Dynamic viscosity
P	Vapor Pressure	v	Kinematic viscosity
vf	Specific volume, liquid		-

30.1 Gases and Vapors Screens


When accessing the *Gases and Vapors* section, a dialog box appears listing the available topics. Use \odot key to move the highlight bar to Air - physical properties and press ENTER. This will display the properties of air at -50°C.

Sections in Gases and Vapors

Properties of air at -50°C

Materials available in Air – Physical Properties

- Note that -50°C has an arrow → to its right indicating that there are other Air Temperatures whose properties are also listed. Move the highlight bar to -50°C, press ENTER to view the other materials. The list of other materials includes -40°C (Air), -30°C (Air), -20°C (Air), -10°C (Air), 0°C (Air), 10°C (Air), 20°C (Air), 30°C (Air), 40°C (Air), 50°C (Air), 60°C (Air), 70°C (Air), 80°C (Air), 90°C (Air), 100°C (Air), 150°C (Air), 200°C (Air), 250°C (Air), and 300°C (Air). To display the properties of -30°C (Air), use the ⓒ key to move the high light bar to -30°C (Air) and press ENTER. Alternatively, type in ③ when the pull down menu appears.
- The data displayed automatically updates to list the properties of Air at -30°C.

Chapter 31: Thermal Properties

This section covers the Thermal Conductivity of metals, liquids, gases and other specified materials; and the Specific Heat of liquids and gases.

♦ Thermal Conditions

Metals

Elemental Alloys

♦ Specific Heat

Cp of Liquids and gases Cp/Cv of liquids and gases at 1atm

- ♦ Heat of Fusion (Various elements)
- ♦ Mean Specific Heat (Solids)

Table 31.1 Thermal Properties Reference Table

Display	Status Line	Display	Status Line
Temp	Temperature range	ср	Specific heat at constant pressure
Temp	Temperature	μ	Viscosity at Bulk Temperature
kto	Thermal Conductivity	Melt temp	Melting Temperature
k	Thermal Conductivity	Max temp	Maximum temperature
a	Empirical constant	Density	Bulk Density
ρ	Density		-

31.1 Thermal Properties Screens

When accessing the *Thermal Properties* section, a dialog box appears listing the available topics. Use \odot key to move the highlight bar to *Heat of Fusion* and press ENTER. This will display the heat of fusion properties for 35 different materials.

Sections in Thermal Properties

Heat of fusion Properties for 34 different materials

• To select any of the materials on the list use the ⊙ or ⊙ keys. Now you can view the heat of fusion values for the materials listed.

Chapter 32: Fuels and Combustion

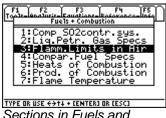
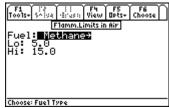

This section covers mechanical engineering reference data for the below mentioned seven topics:

Table 32.1 Fuels and Combustion Reference Table


Display	Status Line	Display	Status Line	
	Compare SO2 Control Systems		Heats of Combustion	
Req.	Requirements	Sym.	Chemical symbol	
Rec.	Recoverable material	Qv	Qv (per lb)	
Cost	Extra cost power gen%	Qv	Qv (per ft ³)	
SO2	SO2 efficiency %	Qp	Qp (per lb)	
Inv.	Extra plant investment %	Qp	Qp (per ft ³)	
	Liquid Petro Gas Specs		Products of Combustion	
v.p.	Max v.p. at 100°F	Formula	Chemical formula	
Butane	Max % butane v. residue	Mol.	Molecular weight	
Pentane	Max % pentane v. residue	Wt.	Specific Weight at STP	
Res.	Residue from evap, max	Vol	Volume ration air to fuel	
Oil	Oil stain observation	CO_2	CO2 from 1ft ³ Fuel	
Corr	Corrosion, Cu strip, max	H_2O	H2O from 1ft ³ Fuel	
Sulfur	Sulfur, max	N2	N2 from 1ft ³ Fuel	
H2O	Free H20 content	Wt	Weight ratio air to fuel	
	Flammable Limits in Air	CO_2	CO2 from 1lb fuel	
Lo	Low limit in air vol%	H_2O	H2O from 1lb fuel	
Hi	High limit in air vol%	N_2	N2 from 1lb fuel	
	Comparative Fuel Specs		Flame Temperature	
Petrol	Conventional petroleum	Gas	Gas Type	
Tar	Tar sand bitumen	80%	80% Theoretical air	
Syn.	Synthetic crude oil	90%	90% Theoretical air	
		100%	100% Theoretical air	
		120%	120% Theoretical air	
		140%	140% Theoretical air	

32.1 Fuels and Combustion Screens

When accessing the Fuels and Combustion section, a dialog box appears listing the available topics. Use ⊗ key to move the highlight bar to Flamm..Limits in Air, and press ENTER. This will display the properties of Methane.

Properties of Methane

Materials available in Fuels

Note that *Methane* has an arrow → to its right indicating that there are other materials whose properties are also listed. Move the highlight bar to Methane, press ENTER to view the other

materials. The list of other materials include: Ethane; Propane; Butane; Isobutane; Pentane; Isopentane; Hexane; Ethylene; Propylene; Butylene; Acetylene; Hydrogen; Carbon monoxide; Ammonia; Hydrogen sulfide; Natural; Producer; Blast-furnace; Water; Carbureted-water; Coal; Coke-oven; and, High-Btu oil. To display the properties of Propane, use the ⓒ key to move the high light bar to Propane and press ENTER. Alternatively, type in ③ when the pull down menu appears.

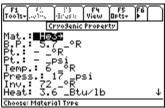
• The data displayed automatically updates to list the properties of Propane.

Chapter 33: Refrigerants

This section covers selected refrigerants and gases in low-temperature applications, transition temperatures and common cryogenic properties

- Selected Materials
- ♦ Transition Temperatures
 - I Type I superconductor
 - II Type II superconductors
- ♦ Common Cryogenic Prop.

Table 33.1 Refrigerants Reference Table


Display	Status Line	Display	Status Line
No.	Refrigerant number	Pt.	Triple pt. pressure
Mol.	Molecular weight	Temp.	Critical temperature
B.P.	Boiling point	Press.	Critical pressure
Temp.	Critical point temperature	Inv.	Upper inversion temperature
Press.	Critical point pressure	Heat	Heat of vapor (wt)
To	Transition temperature	Heat	Heat of vapor (vol)
Но	Critical magnetic fields	Liq.	Liquid density
Hc2	Upper critical fields	Vap.	Vapor density
T(K)	Temp of upper critical fields	Gas	Gas density
Pt.	Triple pt. temperature		

33.1 Refrigerants Screens

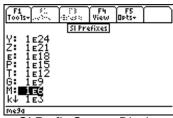
When accessing the *Refrigerants* section, a dialog box appears listing the available topics. Use \odot key to move the highlight bar to Cryogenic Properties and press ENTER). This will display the properties He3.

Properties of He3

Materials available in Cryogenic property

- Note that He3 has an arrow → to its right indicating that there are other materials whose properties are also listed. Move the highlight bar to He3; press [ENTER] to view the other materials. The list of other materials includes He4, H2 (equilib), D2 (normal), Ne, N2, Air, Argon, F2, O2, and CH4. To display the properties of H2 (equilib), use the ⊙ key to move the high light bar to H2 (equilib) and press ENTER. Alternatively, type in 3 when the pull down menu appears.
- The data displayed automatically updates to list the properties of H2.

Chapter 34: SI Prefixes


The SI Prefixes section displays the prefixes adapted by the Systeme International [d'Unit[eacute]s] (SI).

34.1 Using SI Prefixes

The prefixes are listed in the order shown in Table 34-1. The ⊕ key is used to move the highlight bar to select a SI prefix multiplier. The name of the prefix is displayed in the status line. The prefix and multiplier can be viewed by pressing the [F4] key.

Table 34-1 SI Prefix Table

Prefix	Multiplier	Prefix	Multiplier
Y: (Yotta)	1E24	d: (deci)	1E-1
Z: (Zetta)	1E21	c: (Centi)	1E-2
E: (Exa)	1E18	m: (Milli)	1E-3
P: (Peta)	1E15	μ: (Micro)	1E-6
T: (Tera)	1E12	n: (Nano)	1E-9
G: (Giga)	1E9	p: (Pico)	1E-12
M: (Mega)	1E6	f: (Femto)	1E-15
k: (Kilo)	1E3	a: (Atto)	1E-18
h: (Hecto)	1E2	z: (Zepto)	1E-21
da: (Deka)	1E1	y: (Yocto)	1E-24

SI Prefix Screen Display

Chapter 35: Greek Alphabet

This section displays the Greek Alphabet and their names. There are several Greek letters supported by the TI-89. To enter the Greek letters, the sequential keystrokes are listed in the TI-89 manual. They are repeated here for convenience of the user. Alternatively, [2nd] + (or [CHAR]) followed by 1 will access an internal menu listing several Greek characters. Table 35-1

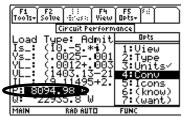
Key stroke Sequence	Greek Letter	Key stroke Sequence	Greek Letter
◆ (alpha =	α		
(alpha (β		
• (alpha ,	δ	◆ (alpha 🛧 ,	Δ
• (alpha ÷	3		
(alpha I	ф		
• (alpha 7	γ	◆ (alpha ₹ 7	Γ
• (alpha 4	λ		
• (alpha 5	μ		
◆ (alpha ST0►	π	◆ (alpha †STO►	П
• (alpha 2	ρ		
• (alpha 3	σ	◆ (alpha	Σ
• (alpha T	τ		
• (alpha .	ω	◆ (alpha 🕂 ·	Ω
• (alpha X	ξ		
• (alpha Y	Ψ		
• (alpha Z	ζ		

Part IV: Appendix and Index

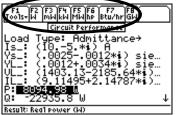
Appendix A Frequently Asked Questions

A.1 Questions and Answers

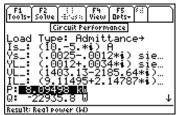
A list of commonly asked questions about the ME•*Pro* is listed here. Review this list of questions prior to contacting the Technical support either at Texas Instruments or at da Vinci. You might save yourself a phone call! These questions are classified under four general headings.


- ♦ Equations Questions
- ♦ General Questions

- **♦** Reference Questions
- Analysis Questions


A.2 General Questions

The following is a list of questions about the general features of ME • Pro:


- **Q.** Where can I find additional information about a variable?
- **A.** A brief description of a highlighted variable appears in the status line at the bottom of the screen. More information, including its allowable entry parameters (i.e.: whether complex, symbolic or negative values can be entered, etc.) can be accessed by pressing [F5]/Opts and 2:Type.
- **Q.** How do I convert the results of a calculation in analysis and equations into different units?
- **A.** Highlight the value which you want to convert; Press F5/Opts, 4:Conv. A unit menu for the variable is displayed. Select the desired unit by pressing the function key corresponding to the appropriate units.

To display a result in different units, highlight the variable (P) and press [5]:Opts, move the cursor to '4:Conv'

The unit menu for the variable appears in the top bar. Press the function key corresponding to the desired units. (F4] in this case).

The computed value for Real Power, **P**, is now displayed in kilowatts (**kW**).

- **Q.** What does the underscore "_" next to a variable mean?
- **A**. This designates a variable, which allows entry of complex values.
- **Q.** I am in the middle of a computation and it seems to stay busy for longer than I would like. How can I halt this process?
- A. Some computations can take a long time, particular if many equations and unknowns are being solved or a complex analysis function has been entered. Notice if the message in the status line at the bottom-right of the screen reads BUSY. This indicates that the TI math engine is attempting to solve the problem. Pressing the ON key usually halts a computation and allows the user to regain control of the software. If, for some reason, the calculator locks up and does not allow user intervention, a "cold start" will have to be performed to reset the calculator. This can be done by holding down the keys; 2nd, ①, and ①, and pressing ON for the TI-89 (for the TI-92 Plus, press 2nd, ② and ON).

WARNING: This will delete folders containing any defined variables or stored programs. Use it as a last resort. A "cold start" will **not** delete ME•*Pro* from your calculator.

- **O.** What do three dots (...) mean at the end of an item on the screen?
- **A.** The three dots (an ellipsis) indicate the item is too wide to fit on the available screen area. To view an item in its entirety, select it by moving the highlight bar and press [F4] (or ①, in some cases) to view the item in *Pretty Print*. Press ① or ① to scroll the item back and forth across the screen to view the entire object.
- **Q.** How can I recall, or view values of a previously computed problem?
- **A.** ME•*Pro* automatically stores its variables in the current folder specified by the user in MODE or the HOME screens. The current folder name is displayed in the lower left corner of the screen (default is "Main"). To create a new folder to store values for a particular session of ME•*Pro*, press F1:/TOOLS, [3:/NEW] and type the name of the new folder (see Chapter 5 of the TI-89 Guidebook for the complete details of creating and managing folders).

There are several ways to display or recall a value:

- The contents of variables in any folder can be displayed using the [VAR-LINK], moving the cursor to the variable name and pressing [F6] to display the contents of a particular variable.
- Variables in a current folder can be recalled in the HOME screen by typing the variable name.
- Finally, values and units can be copied and recalled using the F1/Tools 5:COPY and 6:PASTE feature. The COPY/PASTE function will copy the highlighted value and units in *Analysis* and *Equations* but will only copy the *value* (no units) in the *Reference* section.

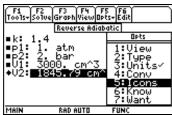
All inputs and calculated results from *Analysis* and *Equations* section are saved as variable names. Previously calculated, or entered values for variables in a folder are replaced when equations are solved using new values for inputs.

- **Q.** I am not able to calculate a value for a particular variable. Why?
- A. Check the status-line message to insure that a complete or partial solution was found. Some variables have range restrictions; for example, only positive values are allowed for kinetic energy or satellite distance from the earth. Make sure that the inputs are meaningful in context of the allowable result(s). Sometimes, variable conflicts can occur from other applications. It is recommended that ME•*Pro* be used in a separate folder. Press [F1]: **Tools**, [3]: **New** to create a new folder. As a last resort, open a new folder or clear the variables in the current folder using [VAR-LINK] and repeat the calculation.
- **Q.** An item, which is supposed to be displayed in a menu, doesn't appear.
- **A.** Some menus have more than eight items. If an arrow \downarrow appears next to the digit 8, use the arrow key \odot to scroll the menu and view the remaining topics or press [2nd] \odot jump to the bottom of the menu.
- **Q.** Can I copy and paste entries from one variable to another?
- A. You can copy and paste a highlighted value using F1/Tools 5:COPY and 6:PASTE feature. The COPY/PASTE function will copy the highlighted value and units in *Analysis*, *Equations and reference sections*.
- **Q.** Is there a help section in the software?
- **A.** There is a short series (slides) of general hints which can be accessed from the main screen of ME•*Pro* under [5]/Info. A different message appears each time [5] is pressed. We've attempted to keep most of the explanation of certain topics to the manual in an effort to keep the software compact. Consult the chapter corresponding to the appropriate section of the software. A compiled list of the received questions and answers will be posted periodically on the da Vinci website at http://www.dvtg.com/faq/mepro

A.3 Analysis Questions

These are some commonly asked questions about the *Analysis* section of ME•*Pro*.

- Q. The screen display of computed results does not look identical to the example in the manual.
- A. The MODE setting, which controls the number of floating point digits displayed in a value and whether an answer appears in exact or approximate form, may have been set differently on the calculator used to make the screen displays for the example problem. Press the MODE key to view or change the mode settings. The first page will display the number of floating-point digits, whether the display is in NORMAL, SCIENTIFIC, OR ENGINEERING exponential formats. Pressing F2 will display whether computed answers are displayed in APPROXIMATE or EXACT formats. The default mode setting for ME•*Pro* is *Float 6*, *Radian* and *Approximate* calculations.
- **Q.** The calculated angle isn't correct.
- **A.** If the result is greater than 2π or less than -2π (result $| \ge 360^\circ$), the TI *solve* (...) function may be generating a non-principal solution. A principal solution is defined as a value between 0 and 2π (or between 0 and 360°). A non-principal solution can be converted to a principal solution by adding or subtracting integer multiples of 2π (or 360°) until the remainder is within the range of 0 and 2π (or 0 and 360°). The remainder is the principal solution.


Example: When solving the equation $\sin(x) = 0.5$, non-principle solutions include: 30° , 390° , -330° , 750° , etc., but the *principal* solution is 30° .

- Q. I am not able to calculate a value for a particular variable. Why?
- **A.** If a computed result displays no value, try clearing the variables in the current folder or opening a new folder to remove any possible variable conflicts and repeat the calculation. To delete variables in the current folder, press [VAR-LINK], [F5]: All, [1]: Select All, [F1]: Manage, [1]: Delete, [ENTER]: Yes. To open a new folder in ME•*Pro*, press [F1]: Tools, [3]: New. Type the name of the new folder and press [ENTER].
- **Q.** What is the multiple graph feature in **Capital Budgeting** and how do I get it to plot sev eral projects simultaneously?
- **A.** Activating the multiple graph features allows successive graphs to be overlaid on the same. To do this, the graphing execution must be repeated each time a new project is plotted.
 - 1. Make sure the cash flows for all the named projects have been entered.
 - 2. Enable the **Multiple Graphs** feature by highlighting and pressing the **ENTER** key.
 - 3. Select the name of a project you wish to graph and press [F3].
 - 4. To overlay a second project on the first, select a different project name and press [F3] to graph.
 - 5. Repeat step 4 each time a new project is to be graphed on top of previously plotted functions.

A.4 Equations Questions

These are some common questions about the Equations section of ME•*Pro*.

- **Q.** What do the icons next the variables and equations mean?
- **A.** The explanation for these icons ' \blacklozenge ', ' \blacksquare ', and ' \checkmark ' can be displayed by pressing F5:Opts, [5] Icons.
- $\sqrt{\ }$ This appears when an equation or feature has been selected.
- This appears when a value has been accepted by the system.
- ♦ Designates a value as having been calculated.

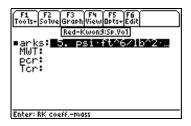
To view icon descriptions, press F5:Opts, 5:Icons

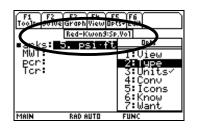
Icon descriptions

- Q. There are already values stored in some of my variables. How do I clear or use those values?
- A. These values remain from previous solving operations. It is okay to ignore the values. As long as they aren't selected '•', they will be overwritten by new solutions. If you want to reset the values, clear one or all of the variables. A value can be re-used in a computation by highlighting the displayed value and pressing ENTER twice. The values can be accessed via VAR-LINK menu. To delete variables in VAR-LINK, use the file management tool provided (use F1 key to access file management tools), F4 check the variables you want deleted and delete the variables.
- **Q.** Why do the values of the entered or calculated results change when the Units feature is deactivated in the F5 options menu?
- **A.** When the Units feature is on, values can be entered and saved in any unit. When units are off, values can be entered in any unit, but the values will automatically be displayed on the screen in the default SI units. This is necessary so that when a series of equations are solved, all the values are consistent.
- Q.: Why does this screen appear when I solve for a value? What do I enter?

- **A.** This happens when angles or radian frequencies are involved in the equation(s) you are solving. The TI 89 may have found a non-principal solution to your equation, or may have displayed the angle in radians. If a non-principal solution is found, it may then be used to solve other equations, leading to strange results. Example: Imagine solving the equation $x + y = 90^{\circ}$. If x is 30°, then y should be 60°. But if a non-principal solution for x was found, such as 750°, then the value of y will be -660°, which although technically correct, is also not a principal solution. **Select an arbitrary integer of 0** to compute the principal solution (the principal solution, P, in a periodic trigonometric function, trig(...), is $P = trig(\theta + n \cdot \pi)$ and n is the arbitrary integer).
- **Q.** When solving a set of equations "Too many unknowns to finish solving." is displayed. Why? **A.** Sometimes the solver doesn't have enough information to solve for all the remaining, unknown variables. In some cases, a *Partial Solution* set will be displayed. If the unknown value(s) is not calculated, more known values (or selected equations) will need to be selected to compute the solution.
- **Q.** Why can't I select multiple equations under different **when**' headings?
- A. Conditions for each **when** (...) statement is usually exclusive to each other. In *Beams and Columns*, equations for the slope of beam deflection are different depending on whether the deflection at distance x along the beam is calculated to the left side of the load (x<a) or right side of the load (x>a). Since these conditions cannot simultaneously exist, ME•*Pro* restricts selection to equations under a single **when** (...) heading. However, in at least one known case (*Beams and Columns/Simple Beams/Point load*), conditions in more than one **when** (...) statement can occur simultaneously. A work around is to solve the equation set in

two steps, using equations under a single **when (...)** heading at a time and designating the results from one calculation as the input into the second (to designate a calculated or previously entered value as a known variable for a calculation, move the cursor to the value, press [F5]:**Opts**, [6]:**Know**). A marker '•' should appear next to the variable.


Q. If I view the value of a variable in *Pretty Print*, I notice that the units contain an extra character (such as ' Λ ').


A. In a few cases $ME \bullet Pro$ and the TI-89 and TI-92 operating systems use slightly different conventions for displaying units. The unit system in $ME \bullet Pro$ is designed to conform to the convention established by SI, however, in order to CUT and PASTE a value and units from $ME \bullet Pro$ to another area of the TI operating system, $ME \bullet Pro$ must insert extra characters in the units to match TI's syntax. This causes extra characters to appear or symbols to appear differently in *Pretty Print*.

Q. The solution to my problem is clearly wrong! An angle might be negative or unreasonably large. Why? **A.** This is most likely to happen when angles are involved in the equation(s) you are solving. The TI 89 may have found a non-principal solution to your equation, or may have displayed the angle in radians. If a non-principal solution is found, it may then be used to solve other equations, leading to strange results. Example: Imagine solving the equation $x + y = 90^{\circ}$. If x is 30° , then y should be 60° . But if a non-principal solution for x was found, such as 750° , then the value of y will be -660° , which although technically correct, is also not a principal solution.

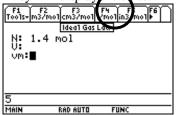
Q. There is not enough room on the screen to display the units for a variable. How can I see the entire unit string?

A. There are two methods to view the units. First, highlight the variable using the cursor bar and press F5 Opts. Press 2: Type. This will display the information for the variable including the displayed units.

An alternative method that displays the units for the variable in TI syntax is to highlight the variable and press the right arrow key, ①. This will display the value with the name of the variable containing the unit string (usually begins with an underscore '_'). Press [VAR-LINK]. Scroll down the list of variables and highlight the name of variable containing the unit string. Press [F6]: Contents. This displays the units in TI syntax.

To display the units of a variable in TI syntax, press () to view the value and unit string.

The unit string usually begins with an underscore ''.



Press [VAR-LINK] and scroll to the unit variable name

Press [F6] to view the contents.

- **Q**. Why does an arrow '>' appear on one of the function keys when the unit menu for a variable is being displayed?
- A. There are a few unit menus, which are too large to fit on the available space for the unit toolbar. The arrow indicates that there is an additional unit entry, which cannot be shown in the allotted width. Pressing the function key will display the pairs.

An arrow A attached to one of the function keys indicates an additional unit for the variable.

Pressing the function key [F6] appends the units to the entered value.

- **Q.** I am solving for a variable inside the **erf** or **erfc** functions, a notice appears that the calculation may take a long time?
- **A.** User-defined functions, which are external to the equation set, including the error functions (erf and erfc), use the nsolve function -an iterative solving process. The nsolve function will not generate multiple solutions and the solution which nsolve converges upon may not be unique. It may be possible to find a solution starting from a different initial guess. To specify an initial guess, enter a value for the unknown and then use **F5:Opts/7:Want** to designate it as the variable to solve for.
- **Q.** Why can't I select all of the equations automatically by pressing [F2]?
- **A.** You can however have some equation sets do not form a consistent set, which can be solved together. An example occurs in *Equations/Fluid Mechanics/Fluid Dynamics/Equivalent Diameter* (see **Chapter 24.3.3**), where each equation represents fluid flow through a different-shaped cross-section. In such a case, the equations must be selected explicitly by moving the cursor to each equation and pressing EINTER]. Special restrictions for a particular equation or group of equations should appear in status line while an equation is being highlighted. In some cases a **'when'** clause preceding the equation(s) state which condition must be fulfilled.

A.5 Graphing

- **Q.** How do I switch between ME•*Pro* and a graph in split screen mode?
- **A.** Press [2nd] [APPS] shift from one screen to the other.
- **Q.** If I have created a graph in full screen mode, how do I return to ME•*Pro*?
- A. Press 2nd APPS
- **Q.** How do I clear the split screen after I am finished with graphing?
- A. You will need to change the display settings in the MODE screen of the calculator. To do this:
 - 1. Press MODE
 - 2. Press [F2]: Page 2, move the cursor to Split Screen.

- 3. Press the right arrow key ① to display a pop-up menu.
- 4. Select FULL.
- 5. Press ENTER twice.

A.6 Reference

- Q. Can I do any computations in the Reference Section?
- **A.** By the nature of the design of the product, the Reference Section was intended to be non-computing, and table look up only.
- **Q.** Can I convert units in the reference section?
- **A.** The feature of unit conversion has not been implemented in the Reference section.
- Q. How can I view an equation or value, which does not fit the width of the screen?
- **A.** Highlight the object and press the right arrow key ① to view the object in *Pretty Print*.

Appendix B Warranty, Technical Support

B.1 da Vinci License Agreement

By downloading/installing the software and/or documentation you agree to abide by the following provisions.

- 1. License: da Vinci Technologies Group, Inc. ("da Vinci") grants you a license to use the software program(s) and documentation ("Licensed Materials"). Making a copy of the software and documentation on the hard drive of your PC is permitted.
- **2. Restrictions:** You may not reverse-assemble or reverse-compile the software program portion of the Licensed Materials that are provided in object code format. You may not sell, rent or lease copies that you make.
- **3. Support:** Limited technical support is provided through Texas Instruments Incorporated and da Vinci Technologies Group, Inc.
- **4. Copyright:** The Licensed Materials are copyrighted. Do not delete the copyright notice, trademarks or protective notice from any copy you make.
- 5. Warranty: da Vinci does not warrant that the program or Licensed Materials will be free from errors or will meet your specific requirements. The Licensed Materials are made available "AS IS" to you or any subsequent user.

Although no warranty is given for the License Material, the media (if any) will be replaced if found to be defective during the first three (3) months of use. For specific instructions, contact the TI webstore via www.ti.com. THIS PARAGRAPH EXPRESSES da Vinci's MAXIMUM LIABILITY AND YOUR SOLE AND EXCLUSIVE REMEDY.

- 6. Limitations: da Vinci makes no warranty or condition, either express or implied, including but not limited to any implied warranties of merchantability and fitness for a particular purpose, regarding the Licensed Materials.
- 7. Restricted Rights: The Licensed Materials are provided with Restricted Rights. Use, duplication or disclosure by the United States Government is subject to restrictions as set forth in subparagraph [c](1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 or in subparagraph [c](1) and (2) of the Commercial Computer Software Restricted Rights at 48 CFR 52.227-19, as applicable.

In no event shall da Vinci, its suppliers, licensers, or sub licensees be liable for any indirect, incidental or consequential damages, lost of profits, loss of use or data, or interruption of business, whether the alleged damages are labeled in tort, contract or indemnity.

Some states do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation may not apply.

B.2 How to Contact Customer Support

Customers in the U.S., Canada, Puerto Rico, and the Virgin Islands

For questions that are specific to the purchase, download and installation of ME•*Pro*, or questions regarding the operation of your TI calculator, contact Texas Instruments Customer Support:

phone: 1.800.TI.CARES (1-800-842-2737)

e-mail: ti-cares@ti.com

For questions specific to the use and features of MEPro, contact da Vinci Technologies Group, Inc.

phone: 1-541-757-8416, 9 AM-3 PM, P.S.T. (Pacific Standard Time), Monday thru Friday (except normal holidays observed in the US).

e-mail: support@dvtg.com

Customers outside the U.S., Canada, Puerto Rico, and the Virgin Islands

For questions that are specific to the purchase, download and installation of ME•*Pro*, or questions regarding the operation of your TI calculator, contact Texas Instruments Customer Support:

e-mail: ti-cares@ti.com
Internet: www.ti.com/calc

For questions specific to the use and features of ME•Pro, contact da Vinci Technologies Group, Inc.

e-mail: support@dvtg.com
Internet: www.dvtg.com

Appendix C: TI-89 & TI-92 Plus- Keystroke and Display Differences

C.1 Display Property Differences between the TI-89 and TI-92 Plus

The complete display specifications for both the TI-89 and TI-92 Plus calculators are displayed below.

Table C-1 TI-89 and TI-92 Plus display specifications.

	Table 9 1 11 00 and 11 02 1 lab dioplay opcomodulone.				
Property	TI-89	TI-92 Plus			
Display size					
Pixel	160 x 100	240 x 128			
Aspect ratio	1.60	1.88			
Full Screen	26 characters/line	40 characters/line			
	10 lines	13 Lines			
Horizontal Split Screen	156 x 39 pixels	236 x 51 pixels			
	25 characters	39 characters, 6 lines			
	4 lines				
Vertical Split Screen	77 x 80 pixels	117 x 104 pixels			
	12 characters	19 characters, 13 lines			
	10 lines				
Vertical Split Screen (1/3rd)	Not supported	236 x 33 pixels			
		39 characters, 4 lines			
Vertical Split screen (2/3rd)	Not supported	236 x 69 pixels			
		39 characters, 8 lines			
Horizontal Split Screen (1/3rd)	Not supported	77 x 104 pixels			
_		12 characters, 13 lines			
Horizontal Split Screen (2/3rd)	Not supported	157 x 104 pixels			
		26 characters, 13 lines			
Key legends	16 pixel rows	20 pixel row			

C.2 Keyboard Differences Between TI-89 and TI-92 Plus

The keystrokes in the manual for ME•*Pro* are written for the TI-89. The equivalent keystrokes for the TI-92 Plus are listed in the following tables.

Table C-2 Keyboard Differences, Representation in Manual

Function	Specific Key	TI-89 Key strokes	TI-92 Plus key strokes	Representation in the manual
Function Keys	F1	F1	F1	F1
	F2 F3 F4 F5 F6 F7 F8	F2 F3 F4 F5 2nd F1 2nd F2 2nd F3	F2 F3 F4 F5 F6 F7	F2 F3 F4 F5 F6 F7 F8
Trig Functions	Sin	2nd Y	SIN	SIN
	Cos Tan Sin ⁻¹ Cos ⁻¹ Tan ⁻¹	2nd Z 2nd T • Y • Z • T	COS TAN 2nd SIN 2nd COS 2nd TAN	COS TAN [SIN ⁻¹] [COS ⁻¹] [TAN ⁻¹]
Alphabet keys	A	alpha =	A	A
	B C D E F G H I J K L M N O P Q R S T	alpha (alpha) alpha ; alpha ; alpha [1] alpha [7] alpha [8] alpha [8] alpha [EE] alpha [4] alpha [5] alpha [6] alpha [5] alpha [5] alpha [7] alpha [6] alpha [7]	B C F	BCDEF GHIJKLMNOPQRST

	U V W X Y Z Space	alpha + alpha 0 alpha . X Y Z alpha (-)	V X	U V W X Y Z
Function	Specific Key	TI-89 Key strokes	TI-92 Plus key strokes	Representation in the manual
Log, EXP	LN e ^X	2nd X ◆ X	LN 2nd LN	[LN] [e ^x]
Special Characters	π θ Negation i ∞	2nd △ (-) 2nd CATALOG CATALOG	2nd ^ (-) 2nd I 2nd J	$egin{array}{c} [\pi] \ [heta] \ \hline (heta) \ [\iota] \ [\infty] \end{array}$
Graphing Functions	Y= Window Graph	◆ F1◆ F2◆ F3	• W• E• R	[Y=] [WINDOW] [GRAPH]
Editing Functions	Cut Copy Paste Delete Quit Insert Recall Store Backspace	• 2nd • ↑ • ESC • ←- 2nd ESC 2nd ←- 2nd STO• STO•	2nd ← 2nd STO ► STO ► ←	[CUT] [COPY] [PASTE] [DEL] [QUIT] [INS] [RCL] STO•
Parenthesis, Brackets	() { } [() 2nd () 2nd () 2nd (, 2nd (,	() 2nd () 2nd) 2nd , 2nd ; 2nd ;	[(] [(] [(] [(] [1]
Math Operations	Addition Subtraction Multiplication Division Raise to power Enter	+ - × -	+ - × ÷ ^ 2nd 1	+ - × ÷

	Exponent for power of 10 Equal Integrate Differentiate	= 2nd 7 2nd 8	= 2nd 7 2nd 8	[f] [d]
Function	Specific Key	TI-89 Key strokes	TI-92 Plus key strokes	Representation in the manual
Math Operations	Less than Greater than	2nd 0 2nd .	2nd 0 2nd .	[<] [>]
cont.	Absolute value Angle Square root Approximate	1	2nd K 2nd × • ENTER	[] [∠] [∽] [≈]
Tables	TblSet Table	◆ F4 ◆ F5	• T • Y	[TblSet] [TABLE]
Modifier Keys	2 nd Diamond Shift Alphabet Alphabet lock	2nd ◆ ↑ alpha 2nd alpha	2nd ◆ 1	2nd ◆ ₹ alpha [a-lock]
Special Areas	Math Mem Var-Link Units Char Ans Entry	2nd 5 2nd 6 2nd – 2nd 3 2nd + 2nd (-) 2nd (ENTER	2nd 5 2nd 6 2nd – 2nd + 2nd (-) 2nd (ENTER)	[MATH] [MEM] [VAR-LINK] [UNITS] [CHAR] [ANS] [ENTRY]
Special Characters	Single Quote	2nd =		[/]
Characters	Double Quote Back slash Underscore Colon Semicolon	2nd 1 2nd 2 • MODE 2nd 4 2nd 9	2nd L 2nd = 2nd Θ 2nd M	["] [\] [-] [:] [;]
Number keys	One	1	1	1
	Two Three Four Five Six Seven Eight Nine	2 3 4 5 6 7 8	2 3 4 5 6 7 8	2 3 4 5 6 7 8 9

	Zero Comma Decimal point) ,	0 ,	0 ,
Main Functions	Home		• Q	HOME
Function	Specific Key	TI-89 Key strokes	TI-92 Plus key strokes	Representation in the manual
Main Functions cont.	Mode Catalog Clear Custom Enter ON OFF ESCAPE Application	ON 2nd ON ESC APPS	MODE 2nd 2 CLEAR 2nd 3 ENTER ON 2nd ON ESC APPS	MODE CATALOG CLEAR [CUSTOM] ENTER ON [OFF] ESC APPS
Cursor Movement	Top Right Left Bottom	①①①②②	© ⊙ ⊙	⊙⊙⊙⊙

Appendix D Error Messages

- ♦ General Error Messages
- ♦ Equations Error Messages

- Analysis Error Messages
- ♦ Reference Error Messages

D.1 General Error Messages

1. **NOTE:** Make sure the settings in the MODE screen **do not** have the following configuration.

Angle: DEGREE

Complex Format: POLAR

ME•*Pro* works best in the default mode settings of your calculator (ie. Complex Format: REAL, or Angle: RADIAN). If one set of error messages appears which includes "An error has occurred while converting....", Data Error", "Domain Error", and/or "Internal Error", check to see if the above settings in the MODE screen exists. If it does, change or reset your calculator to the default mode settings (2nd MEM] F1 1 2 ENTER).

- 2. **"Syntax Error"** -- occurs if the entered information does not meet the syntax requirements of the expected entry. Check to make sure extra parenthesis are removed and the entered value meets the legal rules for number entry.
- 3. "Invalid Entry...": This occurs when the entered value or units do not match the specified format of the variable. Check to make sure the entry can be reduced to a numeric value, which is within the range of the allowed values for the variable (i.e.: greater than zero, between zero and one, real, etc.). If a value with units is being copied from one section and pasted in another, using the [fi]: Tools, [5]:Copy (or 4:Cut) [6]:Paste feature, this can only work if the unit feature is deactivated. To turn off the unit feature, press [f5]:Opts. /[3]:Units.
- 4. "Insufficient Table Space" or "Insufficient Memory" can occur when the system is low on available memory resources. Consult your TI-89 manual on methods of viewing memory status and procedures for deleting variables and folders to make more memory available.
- 5. The message "Unable to save ME•Pro data" will be displayed if ME•Pro is unable to save information of its last location in the program before exiting due to low memory availability. Consult your TI-89 manual under the index heading: Memory-manage.
- 6. "The variable prodata1 was not created by ME•Pro..." ME•Pro uses a variable called "prodata1" to recall its last location in the program when it is re-accessed. If this variable list is changed to a format, which is non-recognizable to ME•Pro, it displays this message before overwriting.
- 7. "Data length exceeds buffer size. The variable name will be displayed instead. The variable's value may be viewed with VAR-LINK using [F6] or recalled to the status line of the HOME screen."
- 8. "An error has occurred while converting this variable's data for display. (The name of the variable is in the title of this dialog box.) There may be something stored in the variable that ME•Pro can't make sense of. You may be able to correct the problem by deleting the variable."

- 9. **"Storage error..."** This message is set to occur if the user attempts to enter a value into a variable, which is locked or archived, or a memory error has occurred. Check the current status of the variable by pressing [VAR-LINK] and scrolling to the variable name, or check the memory parameters by pressing [MEM].
- 10. "Invalid variable reference. Conflict with system variable or reserved name." This can occur if a variable name is entered which is reserved by the TI operating system. A list of reserved variable names is included in **Appendix F**.

D.2 Analysis Error Messages

EE for MEs

 "No impedances/admittances defined" This message is displayed if an entry for impedance ZZ_ or YY_ admittance is not a real, complex number or a defined variable in the Voltage Divider and Current Divider sections of AC Circuits.

Capital Budgeting

- 1. When changing the name of a project, the error "Duplicate project variable name." will occur if the entered name is already in use by an existing project.
- 2. The **"Too few cash flows"** message will be displayed if an attempt is made to solve a project which contains too few or no cash flow entries.
- 3. The message "Data Error. Reinitializing project." will occur if the project data has been altered or is inconsistent with current state. ME•*Pro* will restart.

D.3 Equation Messages

If a value is entered that is inconsistent with the expected data type, an error dialog will appear which lists the entry name, the description, and the expected data type(s), and the expected units.

If an error occurs during a computation that involves temperature, "temp conversion err" or "deg/watt conversion err" will be displayed.

When solving equation sets, several messages can be displayed. These messages include:

- "One or more equations has no unknowns....." This message occurs if one or more of the selected equations in a solution set have all of its variables defined by the user. This can be remedied by pressing [ESC], deselecting the equation(s) where all of the variables are defined and resolving the solution set by pressing [F2] twice. To determine which equation has all of its variables defined, press [ESC] to view the equations, select an equation in question by highlighting the equation and pressing [ENTER], and pressing [F2] to view the list of variables. A '• 'next to a variable indicates a value has been specified for that variable by the user. If all of the variables in an equation are marked with a '• 'no unknown variables exist for that equation. This equation should not be included in the solution set. Press [ESC] to view the list of equations. Select the equations to be solved, excluding the equation with no unknowns, and press [F2] twice to resolve the set of equations.
- "Unable to find a solution in the time allowed. Examine variables meinput and meprob to see the exact statement of the problem. ME•Pro sets Exact/Approx mode to AUTO during solve."
- "No equations have been selected. Please select either a single equation to solve by itself, or several equations to solve simultaneously." This can occur when the set contains equations, which are mutually exclusive (i.e.: cannot be solved altogether) and must be explicitly selected. In such a case, the equations must be selected explicitly by moving the cursor to each equation and pressing ENTER. Special restrictions for a particular equation or group of equations should appear in status line while an equation is being highlighted. In some cases a 'when' clause preceding the equation(s) states which condition must be fulfilled before using an equation.

- "Too many unknowns to finish solving"-generally occurs if the number of equations is less than the number of unknowns
- "It may take a long time to find a complete solution, if one can be found at all. You may abort the calculation at any time by pressing the ON key." -this occurs if there are many unknowns or multiple solutions.
- "No input values provided...." occurs if none of the variables have values designated when solving an equation set.
- "The nsolve command will be used. The existing value for the unknown, if any, will be used as an initial guess." The *nsolve* function is used when a single unknown exists in the equation and the unknown variable is an input in a user-defined function. The nsolve function will not generate multiple solutions and the solution which nsolve converges upon may not be unique. It may be possible to find a solution starting from a different initial guess. To specify an initial guess, enter a value for the unknown and then use [F5]:Opts/[7]: Want to designate it as the variable to solve for. More information on the differences between *solve*, *nsolve* and *csolve* functions is listed in the TI-89 manual.
- "One complete useable solution found." All of the unknown variables can be solved in the selected equations.
- "One partial useable solution found." Only some of the variables in the selected equations could be solved.
- "Multiple complete useable solns found." One or more variables in the selected equations
 have two possible values
- "Multiple partial useable solns found." One or more variables in the selected equations have two possible values, however not all of the unknown variables could be solved.
- "No Apparent solution found." A solution could not be computed with the available inputs. Make sure the known variables compute accepted ranges of the target value (e.g. a negative electrical resistance is not being computed). Press F5:Opts./2:Type to view the acceptable ranges of a particular variable. If a large number of equations are being used in a solving routine, you might try reducing the number of equations being solved at one time. Example, instead of solving 10 equations for 10 unknown variables, solve the first five equations and use the computed results and known variables as inputs to compute the second five variables in the remaining five equations.

The following messages can appear when attempting to graph equation set functions:

- "Independent and dependent variables are the same."
- "Unable to define Pro (x)"-cannot resolve the dependent and independent variables. This may occur when graphing a complex equation or an equation, which contains user-defined functions such as erf (...) and erfc (...).
- **"Undefined variable" too** many dependent variables or dependent variable unable to be defined in terms of the independent variable.
- "Error while graphing."

D.4 Reference Error Messages

No error messages specific to this section have been documented.

Appendix E: System Variables and Reserved Names

The TI-89 and TI-92 Plus has a number of variable names that are reserved for the Operating System. The table below lists all the reserved names that are not allowed for use as variables or algebraic names.

Graph	y1(x)-y99(x)*	y1'(t)-y99'(t)*	Yi1-yi99*	$r1(\theta)$ - $r99(\theta)$ *
Graph	xt(t)-xt99(t)*	yt(1)-y99(t)*	z1(x,y)-z99(x,y)	u1(n)-u99(n)*
	ui1-ui99*	xc	yc	ZC
	tc	rc	$\frac{g}{\theta c}$	nc
	xfact	yfact	zfact	xmin
	xmax	xsc1	xrid	ymin
	ymax	ysc1	ygrid	xres
	Δx	Δy	zmin	zmax
	zsc1	eye0	eye¢	eyeφ
	ncontour	θmin	θmax	θstep
	tmin	tmax		t0
	tplot	ncurves	tstep difto1	dtime
	Estep	fldpic	fldres	nmin
	nmax	plotStrt		
	шил	prototit	plotStep	sysMath
Graph	Zxmin	Zxmax	Zxscl	Zvarid
Graph Zoom	Zymin Zymin			Zxgrid Zygrid
ZOOIII	Zymin Zxres	Zymax	Zyscl	
	Zxres Ztmin	zθmin	zθmax	zθstep
	Ztmin Ztmaxde	ztmax	ztstep	zt0de
	Zmax	ztstepde	ztplotde	zzmin
		zzsc1	zeyeθ	zeye¢
	zeyeφ	znmin	znmax	zpltstrt
g, iii	zpltstep	 	_	
Statistics	X 2	<u>À</u>	Σx	σx
	$\sum x^2$	Σχ	Σy	σу
	Σy^2	corr	maxX	maxY
	medStat	medx1	medx2	medx3
	medyl	medy2	medy3	minX
	minY	nStat	q1	q3
	regCoef	regEq(x)*	seedl	seed2
	Sx	Sy	\mathbb{R}^2	
Table	tblStart	Δtbl	tblInput	
Data/Matr	C1-c99	SysData		
ix		-		
Miscellan	Main	Ok	Errornum	
eous				
Solver	Eqn*	Exp*		

Index

#	Basic Transfer Mechanisms	
	Beams and Columns	
[VAR-LINK]391	Bearing Life	
1	Bearings	
1	Bending	
1 φ Induction Motor 96	Bernoulli Equation	
1 Fixed End / 1 Free End252	BHN	
1 Section - Even	blackbody	
1 Section - Uneven	Blackbody Radiation	
1D Collision349	Both Ends Fixed	
1D Collisions351	Both Ends Free	254
1D Heat Transfer122	Brinell's method	52
1 st radiation constant372	Buckling	75
	buffer size	404
2	\boldsymbol{c}	
2D Collision	C	
2 nd radiation constant372	C Section	47
	Cantilever Beams	70
\boldsymbol{A}	Capilllary Rise	289
About	Capital Budgeting	
AC Circuits	Cash	
circuit performance	Catenary cable	
impedance calculations	center of mass	
AC Motors	Centrifugal Compressor	
Activities 92 Add 21	Centrifugal Pumps	
	centripetal acceleration	
advanced user	CF _t	
Affinity Law-Constant Speed226	•	
Affinity Law-Variable Speed225	Charles's Law	
AGMA Stresses	choosing equations	
Air Properties	Cipolletti	
Analysis	Circle	
finding	circuit performance	
Analysis Error Messages405	Circular Cross Section	
Analysis Screens	Circular Flat Plate	
Angular Harmonic Oscillation232	Circular Motion	
Angular Motion343	Circular Ring	
apogee356	Circular Shafts	
Apparent Power	Circular Straight Bar	215
area of cross-section	Clear	21
armature resistance	Clutches	
ASME Weirs	Clutches and Brakes	204
axial274	coefficient of performance	261
Axial Load270	coefficient of resitution	351
Axial Loaded217	Coiled Springs	212
D	cold start	
В	Collisions	
back emf	Columns	75
bars in torsion285	Compressible Flow	
Basic Definitions222	Compressible Fluid	
Basic Electricity	Compression Cycle	

compression ratio263	Dynamic Load	272
Compute Hardness Number 52	Dynamic Viscosity	379
conditional constraints 58	Dynamics and Statics	
Conduction		
Conical Circular Section217	\boldsymbol{E}	
Conical Vessel	eccentricity	356
conservation of energy349	eccentricity ratio	
conservation of momentum330	Eccentricity, Axial Load	
Constant Acceleration340	EE for MEs, Analysis	
Constant Liquid Level	EE for MEs, Equations	
Constant Pressure	Efflux	
Constant Surface-Heat Flux143	Elastic Collisions	
Constant Temperature103	Elasticity	
Constant Volume101	Electrical Analogy	
Conv	ellipsis	
Convection120	emissivity	
convective coefficient123	Engineering Constants	
Convective Source	Equation Messages	
Convolution374	Equations Questions	
Copy 21	Equivalent Diameter	
Copy/Paste 59	Error Messages	
Coupling or union376	Euler constant	
Crane Hook192	examples	
Critical Damping (ξ=1)239	capital budgeting	29
Critical magnetic fields	Constants reference table	
critical pressure	external periodic force	
critical temperature	external resistance	
csolve		
Cylinder with Insulation Wrap137	$oldsymbol{F}$	
Cylinder-Critical radius	Faraday constant	372
Cylinders	field coil resistance	
Cylindrical Helical-Circular wire212	field constant	
Cylindrical-Helical219	Field current	
Cylindreal Helical219	finding	
D	Analysis	18
da Vinci website391	Reference	
Damped Forced Vibration245	first kind, radiative transfer	
damping ratio	Flame Temperature	
Darcy-Weisbach equation313	Flammable Limits in Air	
DC Generators 90	FlashApps	
DC Motors	Flat Plates	
DC Series Generator 90	Floating Bodies	
DC Series Motor	Flow in Conduits	
DC Shunt Generator	Flow pipe Inlet	
DC Shunt Motor	Flow Pipe Inlet	
Definitions	Fluid Dynamics	
deflection angle	Fluid Mass Acceleration	
Delete 21	Fluid Mechanics	
design in the number of revolutions197	Fluid Properties	
<u> </u>	Fluid Statics	
design lead 197	Fluid staticsFluid vapor pressure	
design load	fluxflux	
	Forced Vibrations	
Dirac constant		
discharge coefficient	Forces in Angular Motion Fourier Transforms	
discharge rate	Free Fall	
Discount Rate	ттее ган	541

Free Vibration236	Inclined Plane/Surface	296
Frequently asked Questions390	Incompressible	324
Friction360	incompressible fluid	311
Friction Coefficients377	Inelastic Buckling	81
Friction Coefficients Screens377	Insufficient Table Space	404
Frictional Force360	Insulated pipe	137
Frictions Coefficients Reference377	Interfacial temperature	
Fuels and Combustion383	Internal Enegry/Ethalpy	
Fuels and Combustion Screens383	internal rate of return	
function	International Conventions	23
	Introduction to Analysis	17
G	Introduction to Equations	
Gas Laws	Introduction to Reference	
Gases and Vapors380	Introductions to ME•Pro	12
Gases and Vapors Screens381	Invalid Entry	
Gay-Lussac's Law101	Inverse Fourier transform	
General Cycle261	isentropic	
General Questions390	_	
Graph	J	
Graphing a Funtion	Jet Propulsion	330
Gravitational Effects354	tot i ropulsion	
Greek Alphabet388	K	
guessed value	Kepler's Laws	356
Gyroscope Motion346	Kepler's second principle	
•	Key Features	
H	Keystroke and Display Differences	
Hardness Number	Kinematic Viscosity	
harmonic motion	Kinetic Gas Theory	
Heat of Fusion	Miletic Gas Theory	100
heat pump	L	
Heat Transfer	Laminar Flow	
heat transfer coefficient	Smooth Pipe	211
near transfer coefficient237		
Heating Load 259		301
Heating Load	Laminar Flow – Flat Plate	
help390	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane	309
help	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms	309 . 374, 375
help 390 Hertzian Stresses 193 Hollow Circle 45	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice	309 . 374, 375 38
help	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation	309 . 374, 375 38 354
help	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion	309 . 374, 37538354
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula	309 . 374, 37538354338
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement	309 . 374, 37538354338200397
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration	309 . 374, 37538354397397
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation	309 . 374, 37538354397397302
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion	309 . 374, 37538354338200397302340
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees	309 . 374, 37538354397302302302340383
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance	309 . 374, 375383543973023134038333
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems	309 . 374, 37538354397302397340383334
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance	309 . 374, 37538354397302397340383334
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems	309 . 374, 37538354397302397340383334
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms. Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients	309 . 374, 37538354397302397302340340333331
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21 ideal blackbody 146	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms. Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients M Machine Design	309 . 374, 37538354397302302319319
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21 ideal blackbody 146 Ideal Gas Laws 98	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients M Machine Design Machine Elements	309 . 374, 37538354397302319319
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21 ideal blackbody 146 Ideal Gas Laws 98 impedance calculations 32	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients M Machine Design Machine Elements magnetic flux	309 . 374, 37538354397302340340319319
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21 ideal blackbody 146 Ideal Gas Laws 98 impedance calculations 32 impeller diameter 226	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients M Machine Design Machine Elements magnetic flux Manual Disclaimer	309 . 374, 37538354397302340340383270319319
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21 ideal blackbody 146 Ideal Gas Laws 98 impedance calculations 32 impeller diameter 226 Imperfections in Columns 79	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients M Machine Design Machine Elements magnetic flux Manual Disclaimer Maximum Power	309 . 374, 37538354397302340340319319319
help 390 Hertzian Stresses 193 Hollow Circle 45 Hollow Cylinder 135 Hollow Polygon 50 Hollow Rectangle 43 Hollow Sphere 136 homologous pump 226 Hook's law 278 Horizontal Cylinder 38 Horizontal Plate 332 How to Contact Customer Support 398 How to use this Manual 14 I I Icons 21 ideal blackbody 146 Ideal Gas Laws 98 impedance calculations 32 impeller diameter 226	Laminar Flow – Flat Plate Laminar Flow on an Inclined Plane Laplace Transforms Large Rectangular Orifice Law of Gravitation Laws of Motion Lewis Formula License Agreement Linear Acceleration Linear Harmonic Oscillation Linear Motion Liquid Petro Gas Spees Load Admittance Load Problems Loss Coefficients M Machine Design Machine Elements magnetic flux Manual Disclaimer	309 . 374, 37538354397302397340340319319319

mean roughness31	6 Phase voltage93
Mean Specific Heat	<u> </u>
mean velocity	
mechanical angular speed	
Mechanical power	
Memory Requirements	
minor elliptical axis	
Modulation	
Mohr's circle radius	
Mohr's Circle Stress28	
molar volume	1
Moment Load	• •
Moving Blade33	
Multiple Graphs	
N	Power Factor34
14	Power in rotor
Napier constant37	Pressure and Shrink Fits
Natural and Forced Vibrations23	6 Pressure Fed Bearings
Natural Frequencies24	7 Pressure Variation
Natural Vibrations23	
net present value17, 2	8 principal shear stress
New	
No apparent solution found40	
Non-Blackbody radiation	
normal force	
Normal Stress and Strain	
nsolve	
iisorve 0	Project
0	
011. 0.11.	Projectile Motion
Oblique Collisions	
Ohm	
Ohm's Law and Power	
One partial useable solution found40	
Open	
Open angle valve37	
Open gate valve37	
Open globe valve37	
Open Jet33	
Ordering a Manual 1	3 Pure Torsion
Overdamped Case (ξ>1)23	
P	questions and answers
Parabolic cable36	1
Parallel 3	Λ
Parallel Pipe System	
Parallel Series	
Partial Solutions	
paste	
payback period	
Pendulums 23	
perfectly plastic impact27	
perigee35	
perimeter25	
Periodic solutions	
period of oscillation23	
Petroff's law	8 Rectangle42

Rectangular Cross Section 219 Shape factors 119 Rectangular Notch 39 Shear Stress and Modulus 269 Rectangular Notch 39 Shear Stress and Modulus 269 Rectangular Spiral 213 Slipe Stress and Modulus 269 Rectangular Spiral 213 Simple Harmonic Motion 231 Molar 112 Simple Beams 64 Redlich-Kwong 110 Simple Pendulum 233 Sp. Vol 110 slenderness ratio 77 Reference 396 solve 61 finding 369 solve 61 findin	Pactangular Cross Section	210	Shape factors	110
Rectangular Notch 39 Shear Stress and Modulus 269 Rectangular Spiral 213 Shear Stress coefficient 306 Rectangular Spiral 213 Simple Harmonic Motion 231 Molar 112 Simple Beams 64 Sp. Vol. 110 Simple Pendulum 233 Sp. Vol. 110 Simple Dendulum 233 Rediich-Kwong coefficients 110 simple Pendulum 233 Refrierence 396 solve 61 finding 396 solve 61 finding 396 solve 61 simple Ference streens 370 Solving Equations Sets 55 Referierence tables 370 Solving Equations Sets 55 Referierence tables 370 Solving Equations Sets 55 Referierence tables 370 Solving Equations Sets 55 Referierence Screens 370 Solving Equations Sets 55 Referierence Screens 370 Solving Equations Sets 22<	=		=	
Rectangular Plate 208 shear stress coefficient 306 Rectangular Straight Bar 216 Simple Beams 64 Redlich-Kwong 112 Simple Harmonic Motion 231 Molar 112 Simple Harmonic Motion 233 Sp. Vol 110 Simple Padulum 233 Redlich-Kwong coefficients 110 Simple Padulum 233 Redlich-Kwong coefficients 110 Simple Padulum 233 Redlich-Kwong coefficients 110 Simple Padulum 233 Rediich-Kwong coefficients 110 Simple Spedulum 250 Reference 396 Solve 01 using reference tables 370 Solving Equations Sets 55 Referigeration 385 Source Admittance 33 Refrigerants Screens 386 Specific Speed 229 Refrigeration and Air Conditioning 259 Spilit Screen 395 refrigeration explex 261 Spilit Screen 395 refrigeration oxplex 251				
Rectangular Spiral 213 SI Prefixes 387 Rectangular Straight Bar 216 Simple Beams 64 Redlich-Kwong 112 Simple Pendulum 231 Sp. Vol 110 Simple Pendulum 233 Sp. Vol 110 Slenderness ratio 77 Reference 396 solve 61 finding 369 Solve 21 using reference tables 370 Solving Equations Sets 55 Refrigerants 385 Source Admittance 33 Refrigerants Screens 386 Specific Speed 229 Refrigeration screens 386 Specific Speed 229 Refrigeration and Air Conditioning 259 Split Screen 395 refrigeration eyele 261 Sphere-Critical radius 141 Refrigerants orycle 261 Spring Design 208 Refrigeration eyele 261 Spring Design 208 Refrigeration eyele 261 Spring Design 208				
Rectangular Straight Bar 216 Simple Beams 64 Redlich-Kwong 31mple Harmonic Motion 231 Sp. Vol 110 Simple Pendulum 233 Sp. Vol 110 Simple Pendulum 233 Redlich-Kwong coefficients 110 Simply Supported 250 Reference 396 solve 61 finding 369 solve 61 finding 369 solve 21 using reference tables 370 Solving Equations Sets 55 Refriegrants 385 Source Admittance 33 Refrigeration 261 Sphere-Critical radius 141 Refrigeration and Air Conditioning 259 Split Screen 35 refrigeration ocycle 261 Sphere-Critical radius 141 Refrigeration ocycle 261 Spring Stiffnes 231 Relative Roughness Of Pipes 378 Split Screen 395 refrigeration ocycle 261 Spring Stiffness 231 <t< td=""><td></td><td></td><td></td><td></td></t<>				
Redlich-Kwong Simple Harmonic Motion 231 Molar	-			
Molar 112 Simple Pendulum 233 Sp. Vol 110 Simply Supported 250 Redlich-Kwong coefficients 110 slenderness ratio 77 Reference 396 solve 61 finding 369 solve 61 inding 369 solve 21 using reference tables 370 Solving Equations Sets 55 Refrigeratis 385 Source Admittance 33 Refrigeration Screens 386 Specific Speed 229 Refrigeration and Air Conditioning 259 Split Screen 395 Relative Roughness of Pipes 378 Spring Design 208 Relative Roughness Screens 378 Starting ME*Pro 13 Reserved Variables 22 static clongation 272 Resistance Formulas 83 Statics 364 Revering torque 232 Stationary Blade 333 Restricted Rights 397 Statosphere 292 R		210	±	
Sp. Vol 110 Simply Supported. 250 Redlich-Kwong coefficients. 110 slenderness ratio. 77 Reference. 396 solve. 61 finding. 369 Solve. 21 using reference tables. 370 Solving Equations Sets. 55 Reference Screens. 370 Sommerfeld. 198 Refrigerants. 385 Source Admittance. 33 Refrigeration Screens. 386 Specific Speed. 229 Refrigeration and Air Conditioning. 259 Split Screen. 395 refrigeration cycle. 261 Sphere-Critical radius. 141 Refrigeration cycle. 261 Spring Design. 208 Relative Roughness of Pipes. 378 Spring Busin 208 Relative Roughness of Pipes. 378 Spring Stiffness. 231 Resistance Formulas. 38 Status Bilme-Pro. 13 Resistance Formulas. 38 Statics. 364 restircted Rights. 397 St	<u> </u>	112		
Redlich-Kwong coefficients				
Reference .396 solve .61 finding .369 Solve .21 using reference tables .370 Solving Equations Sets .55 Refrence Screens .370 Sommerfeld .198 Refrigerants .385 Source Admittance .33 Refrigeration Screens .386 Specific Speed .229 Refrigeration and Air Conditioning .259 Split Screen .395 refrigeration cycle .261 Spring Design .208 Relative Roughness of Pipes .378 Spring Besign .208 Relative Roughness Screens .378 Spring stiffness .231 Restirative Roughness Screens .378 Starting Mit*Pro .13 Reserved Variables .22 static elongation .272 Resistance Formulas .83 Statics .364 restorict d Rights .397 Statosphere .232 Restricted Rights .397 Statosphere .232 Restricted Rights .397 Stato				
finding 369 Solve 21 using reference tables 370 Solving Equations Sets 55 Reference Screens 370 Souring Equations Sets 55 Refrigerants 385 Source Admittance 33 Refrigerants Screens 386 Specific Speed 229 Refrigeration 261 Sphere-Critical radius 141 Refrigeration and Air Conditioning 259 Split Screen 395 Relative Roughness of Pipes 378 Spring Design 208 Relative Roughness Screens 378 Spring stiffness 231 Reserved Variables 22 static clongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restrictions 397 Statosphere 293 Restricted Rights 397 Statosphere 293 Reverse Brayton 263 steady state oscillation 244 Reverse Brayton 263 steady state os				
using reference tables 370 Solving Equations Sets .55 Reference Screens 370 Sommerfeld .198 Refrigerants 385 Source Admittance .33 Refrigeration 261 Spheric Speed .229 Refrigeration and Air Conditioning .259 Sphit Screen .395 refrigeration cycle .261 Spring Design .208 Relative Roughness of Pipes .378 Spring stiffness .231 Relative Roughness Screens .378 Starting ME•Pro .13 Reserved Variables .22 static elongation .272 Resistance Formulas .33 Statics .364 restoring torque .232 Stationary Blade .333 Restricted Rights .397 Statosphere .293 Reverse drights .397 Statosphere .293 Reverse Brayton .263 steady state oscillation .244 Reverse Brayton .263 steady state oscillation .244 Reverse Carnot .2				
Reference Screens 370 Sommerfeld 198 Refrigerants 385 Source Admittance 33 Refrigeration 261 Sphere-Critical radius 141 Refrigeration and Air Conditioning 259 Split Screen 395 refrigeration cycle 261 Sping Design 208 Relative Roughness of Pipes 378 Spring stiffness 231 Reserved Variables 22 static clongation 272 Resistance Formulas 83 Station 364 restoring torque 232 Stationary Blade 333 Restrictions 397 stator 92 Restricted Rights 397 stator 92 Reverse Adiabatic 1113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 37 Reynolds Number 299 Stefan-Boltzmann law	•			
Refrigerants 385 Source Admittance 33 Refrigeration 261 Specific Speed 229 Refrigeration 261 Sphere-Critical radius 141 Refrigeration and Air Conditioning 259 Split Screen 395 refigeration cycle 261 Spring Design 208 Relative Roughness of Pipes 378 Spring stiffness 231 Relative Roughness Screens 378 Starting ME+Pro 13 Reserved Variables 22 static elongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restricted Rights 397 statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 234 Revorse Carnot 262 Steam Tables 244 Revorse Carnot 262 Steam Tables <				
Refrigerants Screens 386 Specific Speed 229 Refrigeration 261 Sphere-Critical radius 141 Refrigeration and Air Conditioning 259 Split Screen 395 refrigeration cycle 261 Spring Design 208 Relative Roughness of Pipes 378 Starting ME•Pro 113 Reserved Variables 22 static elongation 272 Resistance Formulas 83 Starting ME•Pro 13 Restrictions 83 Statios 364 restoring torque 232 Stationary Blade 333 Restricted Rights 397 stator, 92 Restricted Rights 397 statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Carnot 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzma				
Refrigeration 261 Sphere-Critical radius 141 Refrigeration and Air Conditioning 259 Spring Design 208 Relative Roughness of Pipes 378 Spring Design 208 Relative Roughness of Pipes 378 Spring stiffness 231 Reserved Variables 22 static clongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 restricted Rights 397 Statosphere 293 Restricted Rights 397 Statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 46 RoMS velocity 107 Storing and recalling variable 61 Rolling/Rotation				
Refrigeration and Air Conditioning 259 Split Screen 395 refrigeration cycle 261 Spring Design 208 Relative Roughness of Pipes 378 Spring stiffness 231 Relative Roughness Screens 378 Starting ME•Pro 13 Reserved Variables 22 static clongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restricted Rights 397 Statosphere 293 Reverse Ratights 397 Statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363				
refrigeration cycle				
Relative Roughness of Pipes 378 Spring stiffness 231 Relative Roughness Screens 378 Starting ME•Pro 13 Reserved Variables 22 static elongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restricted Rights 397 statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Revorse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS versic Carnot				
Relative Roughness Screens 378 Starting ME•Pro 13 Reserved Variables 22 static elongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restrictions 397 stator 92 Restricted Rights 397 Statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stres				
Reserved Variables 22 static elongation 272 Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restrictions 397 stator 92 Restricted Rights 397 Statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 ROlling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303				
Resistance Formulas 83 Statics 364 restoring torque 232 Stationary Blade 333 Restricted Rights 397 Statosphere 293 Reverse Adiabatic 113 statosphere 293 Reverse Paryton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92				
restoring torque 232 Stationary Blade 333 Restrictions 397 stator 92 Restricted Rights 397 Statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating Rings 189 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 S Surface Resistance 304			e e e e e e e e e e e e e e e e e e e	
Restrictions. 397 stator. 92 Restricted Rights 397 Statosphere 293 Reverse Adiabatic. 113 status line. 390 Reverse Brayton 263 steady state oscillation. 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93				
Restricted Rights 397 Statosphere 293 Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating Rings 189 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 Surface Resistance 304	0 1		•	
Reverse Adiabatic 113 status line 390 Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface R				
Reverse Brayton 263 steady state oscillation 244 Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Resistance 304	•		•	
Reverse Carnot 262 Steam Tables 23 reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Resistance 304 Surface Resistance 304 Surface Resistance 304 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties<	Reverse Brayton	263		
reversible adiabatic process 113 Stefan-Boltzmann constant 372 Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Resistance 304 Surface Temperature 142 Saturated Steam Properties 23 Syntax Error 40 Saccant Formula <				
Reynolds Number 299 Stefan-Boltzmann law 146 RMS velocity 107 Storing and recalling variable .61 Rolling/Rotation 343 Strength Materials .267 Rotating Cylinder 363 Stress Analysis .274 rotating magnetic field 92 Stress and Strain Basics .267 Rotating Rings 189 Stress on an inclined Section .274 Rotational Acceleration 303 Stretched String .247 rotational moment of inertia 232 Summary .15 rotor 92 Superheated Steam Properties .23 Rotor current 93 Suppressed Weir .40 Rydberg constant 372 Surface Convection .145 S Surface Resistance .304 Surface Resistance .304 Satellite Orbit .358 Swing check valve .376 Saturated Steam Properties .23 Syntax Error .404 Secant Formula .77 .77 .77 .48 <td>reversible adiabatic process</td> <td>113</td> <td></td> <td></td>	reversible adiabatic process	113		
RMS velocity 107 Storing and recalling variable 61 Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Family Street and Properties 42 Technical Support 397 <td< td=""><td></td><td></td><td>Stefan-Boltzmann law</td><td> 146</td></td<>			Stefan-Boltzmann law	146
Rolling/Rotation 343 Strength Materials 267 Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 From Elliptical 210 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite S			Storing and recalling variable	61
Rotating Cylinder 363 Stress Analysis 274 rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperatu	Rolling/Rotation	343		
rotating magnetic field 92 Stress and Strain Basics 267 Rotating Rings 189 Stress on an inclined Section 274 Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Saturated Steam Properties 23 Syntax Error 404 Screens System Variables and Reserved Names 407 Analysis 18 T T Secant Formula 77 T T 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321	Rotating Cylinder	363		
Rotational Acceleration 303 Stretched String 247 rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118	rotating magnetic field	92		
rotational moment of inertia 232 Summary 15 rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271	Rotating Rings	189	Stress on an inclined Section	274
rotor 92 Superheated Steam Properties 23 Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 Screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	Rotational Acceleration	303	Stretched String	247
Rotor current 93 Suppressed Weir 40 Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Surface Temperature 142 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	rotational moment of inertia	232	Summary	15
Rydberg constant 372 Surface Convection 145 S Surface Resistance 304 Satellite Orbit 358 Surface Temperature 142 Saturated Steam Properties 23 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	rotor	92	Superheated Steam Properties	23
S Surface Resistance 304 Satellite Orbit 358 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	Rotor current	93	Suppressed Weir	40
Satellite Orbit 358 Surface Temperature 142 Saturated Steam Properties 23 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	Rydberg constant	372	Surface Convection	145
Satellite Orbit 358 Surface Temperature 142 Saturated Steam Properties 23 Swing check valve 376 Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	C		Surface Resistance	304
Saturated Steam Properties 23 Syntax Error 404 screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	3		Surface Temperature	142
screens System Variables and Reserved Names 407 Analysis 18 T Secant Formula 77 T second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	Satellite Orbit	358	Swing check valve	376
Analysis. 18 Secant Formula. 77 second kind, heat transfer. 148 T Section 48 Section Properties. 42 Technical Support. 397 Semi Elliptical. 210 Temperature Effect. 85, 271 Semi-Infinite Solid. 142 terminal voltage. 88 Series. 32 thermal conductivity. 118 Series Pipe System. 321 thermal expansion coefficient. 271 Session Folders. 22 Thermal Properties. 382	Saturated Steam Properties	23	Syntax Error	404
Secant Formula 77 second kind, heat transfer 148 T Section 48 Section Properties 42 Technical Support 397 Semi Elliptical 210 Temperature Effect 85, 271 Semi-Infinite Solid 142 terminal voltage 88 Series 32 thermal conductivity 118 Series Pipe System 321 thermal expansion coefficient 271 Session Folders 22 Thermal Properties 382	screens		System Variables and Reserved Names	407
Secant Formula 77 second kind, heat transfer .148 T Section .48 Section Properties .42 Technical Support .397 Semi Elliptical .210 Temperature Effect .85, 271 Semi-Infinite Solid .142 terminal voltage .88 Series .32 thermal conductivity .118 Series Pipe System .321 thermal expansion coefficient .271 Session Folders .22 Thermal Properties .382			$oldsymbol{T}$	
Section Properties42Technical Support397Semi Elliptical210Temperature Effect85, 271Semi-Infinite Solid142terminal voltage88Series32thermal conductivity118Series Pipe System321thermal expansion coefficient271Session Folders22Thermal Properties382	Secant Formula	77	1	
Semi Elliptical210Temperature Effect85, 271Semi-Infinite Solid.142terminal voltage.88Series.32thermal conductivity.118Series Pipe System.321thermal expansion coefficient.271Session Folders.22Thermal Properties.382	second kind, heat transfer	148	T Section	48
Semi-Infinite Solid142terminal voltage88Series32thermal conductivity118Series Pipe System321thermal expansion coefficient271Session Folders22Thermal Properties382			Technical Support	397
Semi-Infinite Solid142terminal voltage88Series32thermal conductivity118Series Pipe System321thermal expansion coefficient271Session Folders22Thermal Properties382	Semi Elliptical	210	Temperature Effect 8	5, 271
Series Pipe System321thermal expansion coefficient271Session Folders22Thermal Properties382	Semi-Infinite Solid	142	terminal voltage	88
Series Pipe System	Series	32		
Session Folders	Series Pipe System	321		
Shafts				
	Shafts	203	Thermal Radiation Shield	149

thermal resistance	122, 128, 259	Using SI Prefixes	387
Thermocouples	26	Using Transforms	
Three \phi Induction Motor I	92	•	
Three of Induction Motor II		V	
Torsion		Validity Range	25
Torsional Member		Valves and Fitting Loss	
Torsional Pendulum		Valves and Fitting Loss Screens	
Torsional Spring		van der Waals	
Transfoms		Molar form	109
Transform Pairs		Specific Volume	108
Transitions temperature		Variable	
Trapezoid		Overwriting	22
Triangular Plate		Variable Names	
Triangular Weir		Varying Liquid Level	
Triple pt. pressure		Venturi Meter	
Troposhpere		Vertical Plate	
troubleshooting		VHN	
Turbulent Flow		Vibration Isolation	
Rough Pipe	316	vibration mode	
Smooth Pipe		Vickers method	
Turbulent Flow – Flat Plate		View	
Two Conductors in Parallel		Viewing in <i>Pretty Print</i>	
Two Conductors in Series		Viewing Multiple Solutions	
Two Cylinders		Viewing Results in different units	
Two Spheres		Volume Dilation	
1 wo opineres		volumetric flow rate	
U			
undamped oscillating	236	W	
Undefined variable		Want	21
Underdamped Case (ξ <1)		Warranty	
Underdamped Forced Vibration		Water Physical Properties	
underscore		Water-Physical Properties Screens	
Uniform Beams		Waves and Oscillation	
Uniform Fluid		Web Store	
Uniform Load		Wedge	
Uniform Pressure - Cone Break.		when ()	
uniform thermal strain		Wien displacement	
		Wye $\leftrightarrow \Delta$ Conversion	
Uniform Wear - Cone Brake Units		Wye Imedances	
		vv ye inicualices	34
Universal Gas Constant		Y	
Upper inversion temperature		Voung's modulus	250
User-defined functions		Young's modulus	230
Using Constants	372		

1600 S.W. Western Blvd Suite 250 Corvallis, OR 97333 Phone: (541) 754-2860

Fax: (541) 753-7821

email: support@dvtg.com

website: www.dvtg.com

© 2000 da Vinci Technologies Group, Inc. All rights reserved. PocketProfessional and ME \bullet Pro are registered trademarks of da Vinci Technologies Group, Inc. Printed in U.S