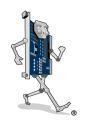
VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

Product Manual

12090 South Memorial Parkway Huntsville, Alabama 35803-3308, USA (256) 880-0444 • (800) 322-3616 • Fax: (256) 882-0859

500-001182-000 Rev.D

A GE Fanuc Company


© Copyright 2002. The information in this document has been carefully checked and is believed to be entirely reliable. While all reasonable efforts to ensure accuracy have been taken in the preparation of this manual, VMIC assumes no responsibility resulting from omissions or errors in this manual, or from the use of information contained herein.

VMIC reserves the right to make any changes, without notice, to this or any of VMIC's products to improve reliability, performance, function, or design.

VMIC does not assume any liability arising out of the application or use of any product or circuit described herein; nor does VMIC convey any license under its patent rights or the rights of others.

For warranty and repair policies, refer to VMIC's Standard Conditions of Sale.

AMXbus, BITMODULE, COSMODULE, DMAbus, IOMax, IOWorks Foundation, IOWorks Manager, IOWorks Server, MAGICWARE, MEGAMODULE, PLC ACCELERATOR (ACCELERATION), Quick Link, RTnet, Soft Logic Link, SRTbus, TESTCAL, "The Next Generation PLC", The PLC Connection, TURBOMODULE, UCLIO, UIOD, UPLC, Visual Soft Logic Control(ler), *VMEaccess*, VMEbus Access, *VMEmanager*, *VMEmonitor*, VMEnet, VMEnet II, and *VMEprobe* are trademarks and The I/O Experts, The I/O Systems Experts, The Soft Logic Experts, and The Total Solutions Provider are service marks of VMIC.

(I/O man figure)

(IOWorks man figure)

The I/O man figure, IOWorks, IOWorks man figure, UIOC, Visual IOWorks and the VMIC logo are registered trademarks of VMIC.

ActiveX, Microsoft, Microsoft Access, MS-DOS, Visual Basic, Visual C++, Win32, Windows, Windows NT, and XENIX are registered trademarks of Microsoft Corporation.

MMX is trademarked, Celeron, Intel and Pentium are registered trademarks of Intel Corporation.

PICMG and CompactPCI are registered trademarks of PCI Industrial Computer Manufacturers' Group.

Other registered trademarks are the property of their respective owners.

Table of Contents

List of Figures
List of Tables
Overview
Features
Functional Description
Reference Material List
Safety Summary
Warnings, Cautions and Notes
Chapter 1 - Theory of Operation
Internal Functional Organization17
Field Inputs
Voltage Sensing
Contact Sensing
Input Data Processing
Debounce Time
Pulse Accumulation
COS Definition
Time Tag Clock
Sequence of Event
EPROM
VMEbus Interface
Control Logic
Bus Interrupter
Watchdog Timer
Self-Test

VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

Po	wer Requirements	26
Chapte	er 2 - Configuration and Installation	27
Un	packing Procedures	28
	ysical Installation	
Ор	erational Configuration	30
	Factory-Installed Jumpers.	30
	Access Modes.	32
	Address Modes	32
	Board Address	32
Fie	Id Input Configurations	34
	Voltage Sensing	34
	Contact Sensing - Wetting Voltage at P2	35
	Contact Sensing - Wetting Voltage at P3	
Sy	stem Connections	38
.		
-	er 3 - Programming	
	ard ID Register (BID)	
	ntrol and Status Register (CSR)	
	If-Test Results Register (STR)	
	errupt Vector Register (IVR)	
	bounced Input Data Registers (IDR)	
	ange-of-State Registers (COS)	
	Ise Accumulation Interrupt Registers (PAI)	
	bounce/Select Registers (DSR)	
	Ise Accumulation Count Registers (PAC)	
	ne Tag Register	
	ximum SOE Count Register	
	E Count Register	
	E Index Register	
AC	Input Register	57
	vision Level Register	
Fo	rce LED Register	59
SC	E Request Register	30
SC	E Buffer Registers	51
Mainte	nance	33
	intenance	
	intenance Prints	

List of Figures

Figure 1	VMIVME-1182 Functional Block Diagram	14
Figure 1-1	Voltage Sensing Input Circuit	19
Figure 1-2	Contact Sensing Input Circuit	19
Figure 2-1	Configuration Jumpers and System Connectors	31
Figure 2-2	Supervisory and Nonprivileged Access Modes and Jumper Locations	32
Figure 2-3	Short I/O and Standard Addressing Modes and Jumper Locations	32
Figure 2-4	Board Configuration Jumpers	33
Figure 2-5	User Input Connection Circuit (Voltage Sensing)	34
Figure 2-6	User Input Connection Circuit (Contact Sensing)	35
Figure 2-7	P3 Wetting Voltage Input (Contact Sensing)	37
Figure 2-8	P2 Connector	38
Figure 2-9	P3 Connector	39
Figure 2-10	P4 Connector	40

VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

List of Tables

Table 2-1	Programmable Jumper Functions	30
Table 2-2	VMIVME-1182 AB0 Jumper Placement for Voltage Sensing	34
Table 2-3	VMIVME-1182 AB1 and AB0 Wetting Voltage Applied at P2 on Byte Boundaries	35
Table 2-4	Wetting Voltages to Channels	36
Table 2-5	VMIVME-1182 AB1 Wetting Voltage Applied at P3 Reference Ground at P3	36
Table 2-6	Wetting Voltage	37
Table 2-7	P2 Connector Pinout	38
Table 2-8	P3 Connector Pinout	39
Table 2-9	P4 Connector Pinout	40
Table 3-1	VMIVME-1182 Memory Map	42
Table 3-2	Board ID Register Bit Map	43
Table 3-3	Control and Status Register Bit Map	44
Table 3-4	Self-Test Results Bit Map	46
Table 3-5	Interrupt Control and Vector Register Bit Map	47
Table 3-6	Interrupt Levels	47
Table 3-7	Debounced Input Data Register Bit Map	48
Table 3-8	COS Bit Map	49
Table 3-9	PAI Register Bit Map	50
Table 3-10	Debounce/Select Registers	51
Table 3-11	COS Select Bits	51
Table 3-12	Debounce Timer Select	51
Table 3-13	Pulse Accumulation Count Register Bit Map	52
Table 3-14	Time Tag Register Bit Map	53
Table 3-15	Maximum SOE Count Bit Map	54
Table 3-16	SOE Count Bit Map	55
Table 3-17	SOE Index Bit Map	56
Table 3-18	Force LED Bit Map	59

VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

Table 3-19	SOE Request Bit Map	. 60
Table 3-20	SOE Buffers Bit Map	. 61

Overview

Contents

Functional Description	12
Reference Material List	13
Safety Summary	15
Warnings, Cautions and Notes	16

Features

The VMIVME-1182 is a 64-channel optically isolated digital input board that can detect Changes of State (COS) on any of the 64 inputs. This COS data can be used in Sequence-of-Events (SOE) acquisition. The board provides pulse accumulation data, time tag data, and programmable debounce for each input. A variety of interrupt options are available. Figure 1 on page 14 is a block diagram of the VMIVME-1182.

The VMIVME-1182 features are outlined below.

- · 64 optically isolated inputs
- Multiple-functions available per channel:
 - Sequence-of-Events (SOE) reporting
 - Pulse accumulation reporting
 - Time tag reporting
 - Programmable debounce times
- Available in 5 to 60 VDC or 110 to 240 VAC options
- · Available in contact sensing or voltage sensing options
- 1000 VDC or 700 Vrms channel-to-channel and channel-to-VMEbus isolation (1 minute)
- Pulse accumulation for up to 65,535 pulses per channel
- Sequence-of-Events (SOE) monitoring on a channel-by-channel basis
- Debounce time software controlled on a channel-by-channel basis
- Change-of-State (COS) monitoring software controlled on a channel-by-channel basis
- A24/A16 addressing capability
- · Supervisory bus access, nonprivileged bus access, or both
- Release-On-Acknowledge (ROAK) interrupts on all VMEbus levels

Functional Description

The VMIVME-1182 provides Change-of-State (COS) detection on all of its 64 inputs. Each input may be software controlled to detect rising edges, falling edges, or both rising and falling edges, or it may be software controlled to ignore all changes for a given channel. In addition to COS detection, a variety of reporting and interrupt capabilities are available.

Each COS event may be stored in a Sequence-of-Events (SOEs) buffer where it is time tagged with a relative timer value of up to 65,535 ms. The timer may be reset from the VMEbus when desired. Each COS event is counted in Pulse Accumulation Count registers, which record the number of events per channel.

VMEbus interrupts may be issued on any level (software selectable), and a single byte vector is placed on the bus during the acknowledge cycle. The interrupt is cleared during the acknowledge (ROAK). Addressing is jumper selected and supports both A24 and A16 address space.

Address modifiers are jumper-selected and are decoded to support nonprivileged, supervisory, or both nonprivileged and supervisory access. A self-test is run automatically after a system reset, setting the Self-Test Complete bit in the Control and Status Register (CSR) to one when completed. The board is initialized with the following default conditions:

- Fail LED is ON
- All interrupts are disabled
- · All flags are cleared
- Test mode is enabled
- Interrupt Vector Register (IVR) is cleared
- · Change-of-State (COS) registers are cleared
- Pulse Accumulation Interrupt (PAI) registers are cleared
- Input Debounce/Select Registers (DSRs) are cleared
- Input Pulse Accumulation Count (PAC) registers are cleared
- Time tag clock is set to zero (0) and stopped
- Sequence-of-Events (SOEs) maximum count is cleared
- Sequence-of-Events (SOEs) count is cleared
- Sequence-of-Events (SOEs) buffers contain test data, if self-test fails. If self-test passes, then the SOE buffers are cleared.
- Self-Test Complete bit is set in the CSR

Reference Material List

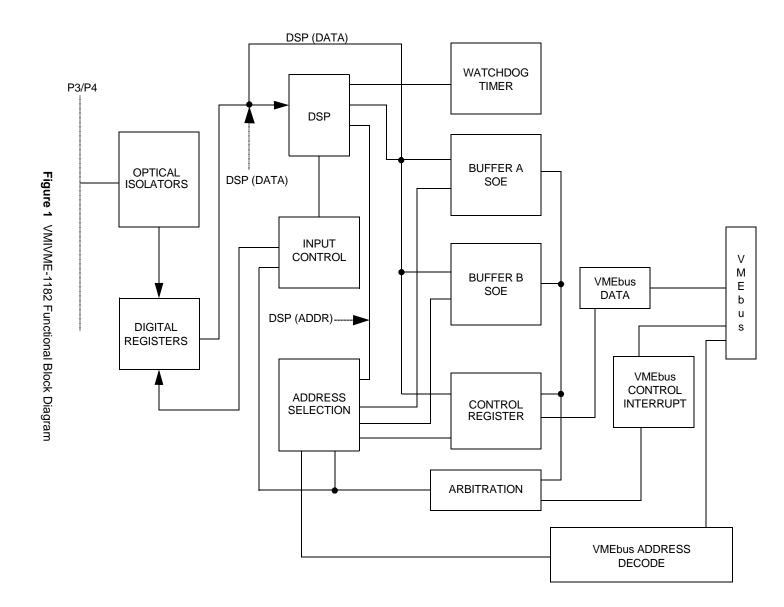
Refer to "The VMEbus Specification" for a detailed explanation of the priority interrupt bus. "The VMEbus Specification" is available from the following source:

VITA

VMEbus International Trade Association

7825 East Gelding Drive, No. 104

Scottsdale, Arizona 85260


(602) 951-8866

FAX: (602) 951-0720

Internet: http://www.vita.com/

Physical Description and Specifications: Refer to Product Specification, 800-001182-000 available from:

VMIC 12090 South Memorial Pkwy. Huntsville, AL 35803-3308, USA (256) 880-0444 (800) 322-3616 Fax: (256) 882-0859 www.vmic.com

14

VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

Safety Summary

The following general safety precautions must be observed during all phases of the operation, service and repair of this product. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture and intended use of this product.

VMIC assumes no liability for the customer's failure to comply with these requirements.

Ground the System

To minimize shock hazard, the chassis and system cabinet must be connected to an electrical ground. A three-conductor AC power cable should be used. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet.

Do Not Operate in an Explosive Atmosphere

Do not operate the system in the presence of flammable gases or fumes. Operation of any electrical system in such an environment constitutes a definite safety hazard.

Keep Away from Live Circuits

Operating personnel must not remove product covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

Do Not Service or Adjust Alone

Do not attempt internal service or adjustment unless another person capable of rendering first aid and resuscitation is present.

Do Not Substitute Parts or Modify System

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the product. Return the product to VMIC for service and repair to ensure that safety features are maintained.

Dangerous Procedure Warnings

Warnings, such as the example below, precede only potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING: Dangerous voltages, capable of causing death, are present in this system. Use extreme caution when handling, testing and adjusting.

Warnings, Cautions and Notes

STOP informs the operator that a practice or procedure should not be performed. Actions could result in injury or death to personnel, or could result in damage to or destruction of part or all of the system.

WARNING denotes a hazard. It calls attention to a procedure, practice or condition, which, if not correctly performed or adhered to, could result in injury or death to personnel.

CAUTION denotes a hazard. It calls attention to an operating procedure, practice or condition, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the system.

NOTE denotes important information. It calls attention to a procedure, practice or condition which is essential to highlight.

Theory of Operation

Contents

Field Inputs 19)
nput Data Processing)
VMEbus Interface	2
Bus Interrupter	;
Watchdog Timer	ł
Self-Test	j
Power Requirements	;

Introduction

This section describes the internal organization of the VMIVME-1182 board and reviews the general principles of operation. The following Paragraphs summarizes the major board functions, and the remainder of the Theory of Operation describes each function individually. The information in this section is supplemented by programming details in Chapter 3 "*Programming*".

Internal Functional Organization

The VMIVME-1182 is a 64-channel optically isolated digital input board that provides the user with a continuous update of the state of the 64 inputs. The user may elect to interrupt the host upon selected change-of-state events. COS data and time tag information is stored in memory (SOE monitoring) for later processing.

The SOE memory is allocated into two buffers which store the COS data with a sequential time tag for each event in the order that they occurred. The host can process the SOE buffer without losing any COS data from the inputs.

The VMIVME-1182 provides a Pulse Accumulation Count register for each channel. When enabled, these registers each store a count representing the number of times a COS has occurred on its associated input. Inputs can be programmed individually for a debounce time from 1 ms to 1.023 seconds.

The board design can be logically divided into functional blocks which describe the following principal hardware functions:

- Field Inputs
- Input Data Processing by the Digital Signal Processor (DSP)
- EPROM
- VMEbus Interface
- Control Logic
- Bus Interrupter
- Watchdog Timer
- Self-Test
- Power Requirements

Field Inputs

The field inputs consist of 64 optically isolated inputs. Input options may be ordered to support either contact sensing or voltage sensing in a variety of AC or DC voltage ranges. The inputs are provided through connectors P3 and P4. Chapter 2 provides detailed information about both of these connectors.

Voltage Sensing

The Voltage Sensing option detects the presence or absence of a voltage at the inputs. Figure 1-1 below shows typical voltage sensing input circuitry.

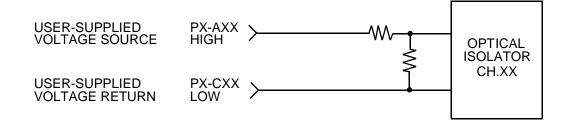


Figure 1-1 Voltage Sensing Input Circuit

Contact Sensing

The Contact Sensing option detects the presence or absence of a closed contact set across the inputs. Figure 1-2 below shows typical Contact Sensing Input circuitry. The external "wetting" voltage can be applied at the P2 connector on a byte level or can be applied to P3 at channel 32. This is described in detail in Chapter 2.

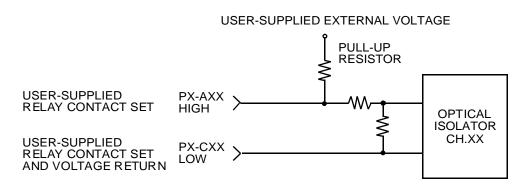


Figure 1-2 Contact Sensing Input Circuit

Input Data Processing

The VMIVME-1182 provides various programmable features. In default mode, the inputs are stored every millisecond and can be accessed by the user at any time. The programmable features are executed through an on-board Digital Signal Processor (DSP) chip and include:

- Debounce time for each input
- · Pulse accumulation for each input
- COS definition/selection for each input
- Time tag clock
- Sequence-of-Event monitoring

Each feature is described in the following paragraphs.

Debounce Time

The VMIVME-1182 provides 64 registers which contain the desired debounce time for each input. The debounce time ranges from 1 ms (default) to 1.024 seconds. See Section 4 for more information on selecting debounce times.

The debounce algorithm is implemented by the DSP microcontroller. Through the optical isolator, all 64 field inputs are clocked into registers during the DSP time interrupt service routine. The DSP processes this data using an algorithm which determines a true high or low state.

A different algorithm may be used by setting a bit in the Debounce/Select Register (see Section 4). This algorithm accepts inputs from AC signal sources. The rising edge period is determined by the Debounce/Select time provided by the user. The falling edge period requires the DSP to detect a low at four times the debounce time in milliseconds. This ratio, the AC Ratio, is defined in the Chapter 3 "*Programming*".

Pulse Accumulation

Each channel has an associated Pulse Accumulation Count (PAC) register. The count represents 0 to 65,535 pulses. A pulse is defined as either a state change from zero (0) to one (1) or a state change from one (1) to zero (0), but not both. If the PAC Interrupt Enabled bit is activated, the PAC register interrupts the host when it rolls over to zero (0).

COS Definition

Each channel can be programmed to detect rising edge (low to high) only, falling edge (high to low) only, both edges, or no detection (COS disabled). Interrupts can be issued when any input meets the programmable COS selection. A detailed description of this function is found in Section 4.

Time Tag Clock

The Time Tag register is updated every millisecond. The user may reset or preset this data at any time. The Time Tag feature is provided by the DSP Timer Interrupt Logic and microcontroller. The microcontroller is interrupted every millisecond. During the interrupt service routine, the field inputs are stored and a frame flag is updated. A frame is the period in which all 64 inputs have been processed. Every frame, the DSP updates the Time Tag data. Each bit of the count in the Time Tag register represents 1 ms.

Sequence of Event

Depending on COS select options, each COS can be time tagged in the SOE buffer. The SOE buffer collects the channel ID and the time in which the state changed. This buffer can contain 3072 events. When the host is accessing the SOE buffer, the VMIVME-1182 continues to monitor the inputs and stores events in a mirrored SOE buffer. The additional buffer also provides 3072 events of storage, allowing the user sufficient time to process the SOE data without losing event data. The SOE logic can provide an interrupt to the host at the end-of-buffer or at a count provided by the user.

The SOE buffer arbitration is controlled by software. To read the data in the SOE buffer, the host first writes to the SOE Request register. A write to this register interrupts the DSP code and switches the pointer in the DSP to the second SOE buffer. The VMEbus then has access to the first SOE buffer while the DSP continues its updates to a second SOE buffer. This method allows the DSP to always have access to one of the SOE buffers in order to prevent data loss.

NOTE: The DSP will auto wrap the buffer and begin writing over old data whenever the buffer reaches the physical end of the buffer. The SOE count rolls over from 3072 to zero (0) and continues counting. the host must process the data from the primary buffer before the DSP reaches the physical end of the data buffer or data can be lost. interrupts are provided (SOE maximum count) to alert the host that data needs to be processed.

The SOE count is valid for whichever SOE buffer the DSP is currently updating. Once the buffer is requested, the SOE count is written to the SOE index and then reset to zero (0).

EPROM

DSP firmware is stored in the EPROM and is loaded into the DSP during power up or after a reset to the DSP. The DSP can be reset by the VMEbus system reset or by the watchdog timer circuitry.

VMEbus Interface

The VMEbus interface consists of:

- Address decoding for the A24/A16 address space
- Address modifier decoding for supervisory/nonprivileged accesses
- D16/D8 data transfers
- ROAK interrupter circuitry
- Two SOE buffers
- Control logic memory

Control Logic

The Control Logic offset address begins at \$000. The Board ID register contains an ID code which indicates the VMIVME-1182 is present. The Control and Status register provides control of the front panel LED, the Test Mode Disable, and various interrupt enables. It also provides various flags, including a Self-Test complete flag.

The Self-Test Results register provides pass/fail status of the VMIVME-1182 integrity tests. The Interrupt Vector register provides programmable level and vector data. Debounced input data is provided in four words, each bit representing a channel. Change of State registers are provided in four words, each bit representing a channel. Pulse Accumulation Interrupt registers are provided in four words, each bit representing a channel. Pulse Accumulation Interrupt registers are provided in four words, each bit representing a channel. Pulse Accumulation Interrupt registers are provided in four words, each bit representing a channel. Each channel has an associated Debounce/Select register and Pulse Accumulation Count register.

A Time Tag register is provided and is updated every millisecond. Three registers are provided to support SOE buffer function: the Maximum SOE Count, the SOE Count, and the SOE Index.

When used in conjunction with the Debounce/Select registers, the AC Input register provides debounce with AC input.

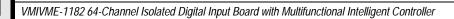
Bus Interrupter

A Bus Interrupter provides access to the VMEbus interrupt structure. An interrupt can be issued on any level (software selectable), and a single byte vector is placed on the bus when acknowledged. Any of the following conditions can initiate the interrupt:

- COS on any of the 64 channels
- Time Tag rollover
- Pulse Accumulation rollover on any of the 64 channels
- SOE, End-of-Buffer, First Word Received
- SOE buffer count equal to programmable maximum count provided by the user

Each of these interrupt conditions may be enabled or disabled by the host. A global disable occurs if the interrupt level is set to zero (0). There is one ROAK interrupt for the VMIVME-1182 board. Details of the interrupter capabilities are described in Chapter 3 "*Programming*".

Watchdog Timer


The VMIVME-1182 monitors the health of the DSP and resets it if necessary. The DSP must write to a specified address every millisecond or the watchdog timer will issue a reset to the DSP. A reset to the DSP results in reloading the EPROM data and reinitializing the default conditions. The VMIVME-1182 is off-line at this time. This circuitry also monitors the general integrity of the +5 V on the VMEbus and issues a reset to the DSP if it falls below +4.5 V.

Self-Test

The VMIVME-1182 performs Self-Test functions when one of the following conditions occur:

- VMEbus SYSRESET activated
- Watchdog timer invokes a reset to the DSP
- Test Mode bit in CSR activated

The DSP performs the Self-Test of the VMIVME-1182. Control memory and both SOE memory buffers are tested, and the results stored in the Self-Test Status register located in control memory. The Self-Test mode is an integrity test of the DSP and the memory. The field input connectors to the digital registers are not tested on-board. The VMEbus-to-VMIVME-1182 memory is not tested in Self-Test mode. System test software is responsible for determining these functions and for turning the front panel LED off when the system has determined that the VMIVME-1182 has passed.

Power Requirements

The VMIVME-1182 specification (Document Number 800-001182-000) defines the power requirements.

Configuration and Installation

Contents

Unpacking Procedures	28
Physical Installation	29
Operational Configuration	30
Field Input Configurations	34
System Connections	38

Introduction

This chapter describes the installation and configuration of the board. Cable configuration, jumper/switch configuration and board layout are illustrated in this chapter.

VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

Unpacking Procedures

CAUTION: Some of the components assembled on VMIC's products may be sensitive to electrostatic discharge and damage may occur on boards that are subjected to a high-energy electrostatic field. When the board is placed on a bench for configuring, etc., it is suggested that conductive material should be inserted under the board to provide a conductive shunt. Unused boards should be stored in the same protective boxes in which they were shipped.

Upon receipt, any precautions found in the shipping container should be observed. All items should be carefully unpacked and thoroughly inspected for damage that might have occurred during shipment. The board(s) should be checked for broken components, damaged printed circuit board(s), heat damage, and other visible contamination. All claims arising from shipping damage should be filed with the carrier and a complete report sent to VMIC together with a request for advice concerning the disposition of the damaged item(s).

Physical Installation

CAUTION: Do not install or remove the boards while power is applied.

De-energize the equipment and insert the board into an appropriate slot of the chassis. While ensuring that the board is properly aligned and oriented in the supporting card guides, slide the board smoothly forward against the mating connector until firmly seated.

Operational Configuration

VMEbus access modes, address modes, and input configurations are controlled by field replaceable jumpers. This section describes the use of these jumpers and their effects on board performance. Locations and functions of all VMIVME-1182 jumpers are shown in Figure 2-1 on page 31 and Table 2-1 below.

Factory-Installed Jumpers

Each VMIVME-1182 is configured at the factory with the specific jumper arrangement shown in Figure 2-1 on page 31. The factory configuration ensures that all essential jumpers are installed and establishes the following functional baseline for the VMIVME-1182 board:

- Board Identification is located at \$000000 in the Standard I/O Space, with either Supervisory or Nonprivileged access.
- Wetting voltage application at P3 is disabled.
- Reference ground to P3 is disabled.
- Shorting plug of all external wetting voltages is disabled.

Jumper ID	Function (Installed)	Factory Configuration
E3-1,2	Standard	Installed
E3-3,4	Supervisory or Nonprivileged	Installed
E3-5,6	Nonprivileged	Omitted
E3-7,8	Address Bit A14 = 0	Installed
E3-9,10	Address Bit A15 = 0	Installed
E3-11,12	Address Bit A16 = 0	Installed
E3-13,14	Address Bit A17 = 0	Installed
E3-15,16	Address Bit A18 = 0	Installed
E3-17,18	Address Bit A19 = 0	Installed
E3-19,20	Address Bit A20 = 0	Installed
E3-21,22	Address Bit A21 = 0	Installed
E3-23,24	Address Bit A22 = 0	Installed
E3-25,26	Address Bit A23 = 0	Installed
E1-1,2	CH32 Wetting Input at P3	*
E2-1,2	Reference Ground at P3	Omitted
E4	Jumper Carrier	Installed
E5	Wetting Voltages tied together	Omitted

* VMIVME-1182 Factory Option AB1 Omitted VMIVME-1182 Factory Option AB0 Installed

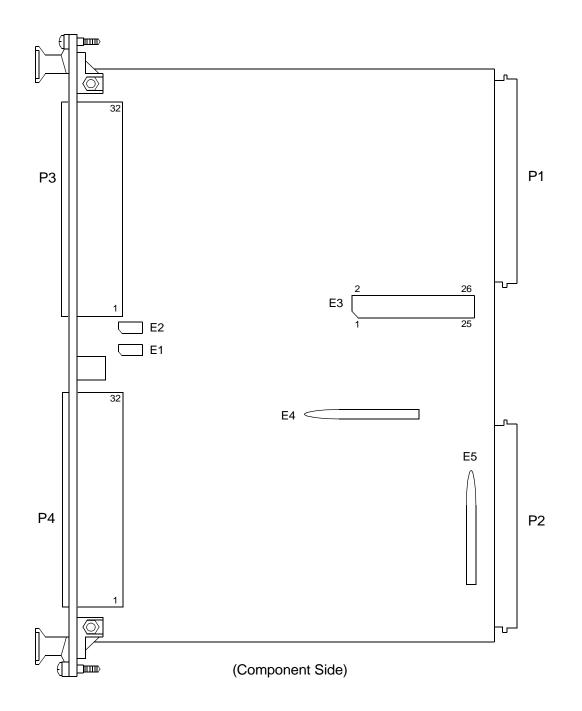


Figure 2-1 Configuration Jumpers and System Connectors

Access Modes

Supervisory or nonprivileged access is selected by pins 3 through 6 of jumper E3. Figure 2-2 below shows the jumper locations and access modes.

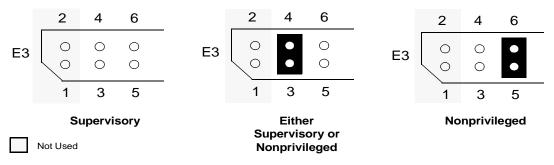


Figure 2-2 Supervisory and Nonprivileged Access Modes and Jumper Locations

Address Modes

Short I/O or Standard Addressing is selected by pins 1 and 2 of jumper E3. Figure 2-3 below shows the jumper locations and address modes.

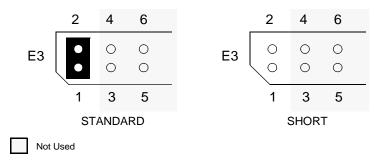


Figure 2-3 Short I/O and Standard Addressing Modes and Jumper Locations

Board Address

The board address is configured by pins 7 through 26 of jumper E3. The board supports A24/A16 addressing. The jumpers corresponding to the address bits are shown in Figure 2-4 on page 33. This figure also shows the factory configuration of E3 and example configurations. The board address is programmed by installing shorting plugs at all zero (0) or LOW address bit positions in jumper field E3 and by omitting the shorting plugs at the one (1) or HIGH positions (ON = 0; OFF = 1).

Operational Configuration

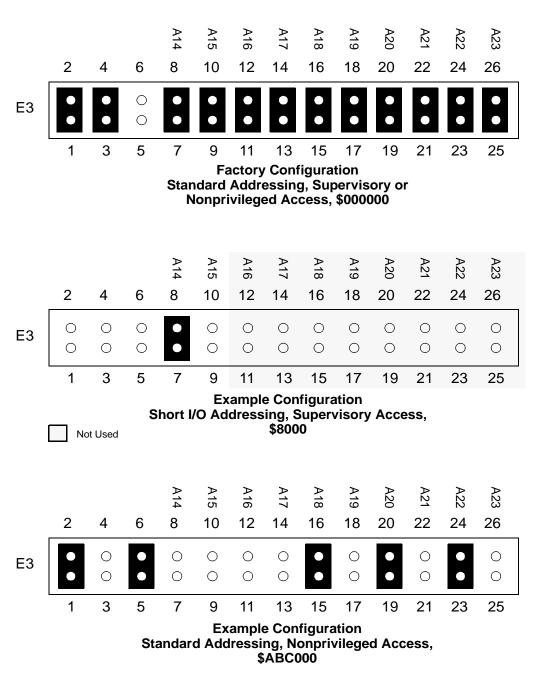


Figure 2-4 Board Configuration Jumpers

Field Input Configurations

The VMIVME-1182 provides factory configuration of voltage sensing or contact sensing input configurations. The four, user-defined jumper fields for field inputs are described in the following sections. The connector pinout descriptions are shown in Figure 2-9 on page 39 and Figure 2-10 on page 40.

Voltage Sensing

The user input connection circuit for voltage sensing is shown in Figure 2-5 below. Jumpers E1 and E4 are installed for this configuration. Jumpers E2 and E5 are omitted (see Table 2-2 below). This disables the wetting voltage input at P3 and allows channel 32 to be used as an input channel.

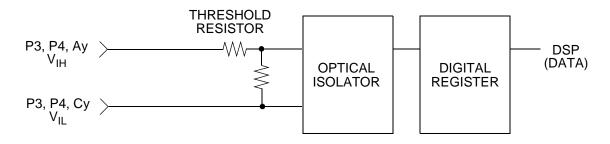


Figure 2-5 User Input Connection Circuit (Voltage Sensing)

Jumper Field	Function	Configuration
E1	Channel 32 enabled	Installed
E2	Reference Ground (Not at P3)	Omitted
E4	Carrier (No function)	Installed
E5	Wetting Voltages (Not tied together)	Omitted

Table 2-2 VMIVME-1182 AB0 Jumper Placement for Voltage Sensing

Contact Sensing - Wetting Voltage at P2

The user input connection circuit for contact sensing is shown in Figure 2-6 below. The connector pinout description is shown in Figure 2-9 on page 39 and Figure 2-10 on page 40. Jumpers E1 and E4 are installed for this configuration and jumpers E2 and E5 are omitted (see Table 2-3). This disables the wetting voltage input at P3 and allows channel 32 to be used as an input channel. The wetting voltages can be applied at P2 on byte boundaries. See Table 2-4 on page 36 for identification of wetting voltages to channels. When the contact sensing mode is used, the isolation specification is from byte-to-byte **not** channel-to-channel.

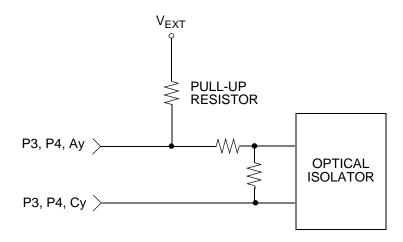


Figure 2-6 User Input Connection Circuit (Contact Sensing)

Jumper	Function	Configuration
E1	Channel 32 enabled	Installed
E2	Reference Ground (Not at P3)	Omitted
E4	Carrier (No function)	Installed
E5	Wetting Voltages (Not tied together)	Omitted

 Table 2-3
 VMIVME-1182 AB1 and AB0 Wetting Voltage Applied at P2 on Byte Boundaries

External Voltage at P2*	P2 Connection	Channel		
V _{EXT} 32	C10	Input Channel 32 through 39		
V _{EXT} 40	C13	Input Channel 40 through 47		
V _{EXT} 48	C16	Input Channel 48 through 55		
V _{EXT} 56	C19	Input Channel 56 through 63		
V _{EXT} 0	C22	Input Channel 00 through 07		
V _{EXT} 8	C25	Input Channel 08 through 15		
V _{EXT} 16	C28	Input Channel 16 through 23		
V _{EXT} 24	C31	Input Channel 24 through 31		
NOTE: *External wetting voltage pin description in Table 2-7 on page 38				

Table 2-4 Wetting Voltages to Channels

Contact Sensing - Wetting Voltage at P3

The user input connection circuit for wetting voltage at P3 is shown in Figure 2-7 on page 37. The wetting voltage may be applied for all channels through P3 instead of P2. Channel 32 cannot be used as a channel input and must be configured (by jumpers) to accept external wetting voltage. See Table 2-6 on page 37 for a description. The wetting voltage input of all channels are tied together with the installation of E5. E4 is used as a carrier for the jumper. Reference ground may be output on P3 by installation of E2. The user is required to move the jumpers to the proper location. (See Table 2-5.)

CAUTION: Installation of jumper E1 while also using external voltages on the P2 connector may result in physical damage to the circuit board and or the external power supply.

Jumper	Function	Configuration
E1	Channel 32 disabled	Omitted
E2	Reference Ground	Installed
E4	Carrier (No function)	Omitted
E5	All wetting voltages tied together	Installed

Table 2-5 VMIVME-1182 AB1 Wetting Voltage Applied at P3 Reference Ground at P3

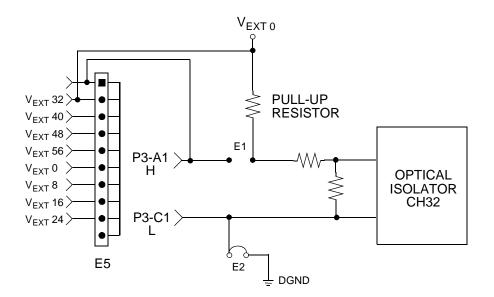


Figure 2-7 P3 Wetting Voltage Input (Contact Sensing)

Table 2-6	Wetting	Voltage
-----------	---------	---------

External Voltage at P3-A1	Channels
V_{EXT} 0 through V_{EXT} 56 tied together by E5	Input Channels 0 through 31 and Input Channels 33 through 63

System Connections

Table 2-7 below lists the P2 connector pinout, Table 2-8 on page 39 lists P3 connector pinout, and Table 2-9 on page 40 lists P4 connector pinout. All inputs are available using two 64-pin front panel connectors.

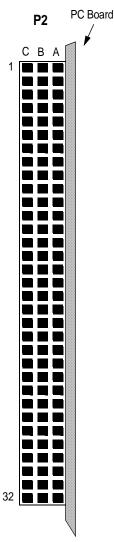


Figure 2-8 P2 Connector

Pin	Row C	Row B	Row A
01	B0*	+5 V	DGND
02	B1*	DGND	DGND
03	B2*	N/C	DGND
04	B3*	N/C	DGND
05	B4*	N/C	DGND
06	B5*	N/C	DGND
07	B6*	N/C	DGND
08	B7*	N/C	DGND
09	N/C	N/C	N/C
10	V _{EXT} 32	N/C	N/C
11	DGND	N/C	N/C
12	DGND	DGND	N/C
13	V _{EXT} 40	+5 V	N/C
14	DGND	N/C	N/C
15	DGND	N/C	N/C
16	V _{EXT} 48	N/C	N/C
17	DGND	N/C	N/C
18	DGND	N/C	N/C
19	V _{EXT} 56	N/C	N/C
20	DGND	N/C	N/C
21	DGND	N/C	N/C
22	V _{EXT} 0	DGND	N/C
23	DGND	N/C	N/C
24	N/C	N/C	N/C
25	V _{EXT} 8	N/C	N/C
26	DGND	N/C	N/C
27	DGND	N/C	N/C
28	V _{EXT} 16	N/C	DGND
29	DGND	N/C	N/C
30	DGND	N/C	N/C
31	V _{EXT} 24	DGND	N/C
32	N/C	+5 V	DGND

Table 2-7 P2 Connector Pinout

N/C = No Connection

*Reserved for future use

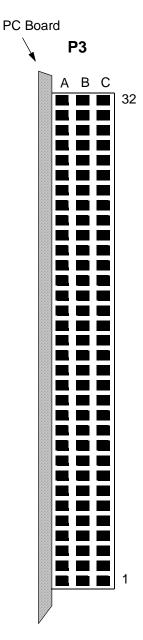


Table 2-8 P3 Connector Pinout

Pin	Row A	Row B	Row C
32	CH 63 HIGH	N/C	CH 63 LOW
31	CH 62 HIGH	N/C	CH 62 LOW
30	CH 61 HIGH	N/C	CH 61 LOW
29	CH 60 HIGH	N/C	CH 60 LOW
28	CH 59 HIGH	N/C	CH 59 LOW
27	CH 58 HIGH	N/C	CH 58 LOW
26	CH 57 HIGH	N/C	CH 57 LOW
25	CH 56 HIGH	N/C	CH 56 LOW
24	CH 55 HIGH	N/C	CH 55 LOW
23	CH 54 HIGH	N/C	CH 54 LOW
22	CH 53 HIGH	N/C	CH 53 LOW
21	CH 52 HIGH	N/C	CH 52 LOW
20	CH 51 HIGH	N/C	CH 51 LOW
19	CH 50 HIGH	N/C	CH 50 LOW
18	CH 49 HIGH	N/C	CH 49 LOW
17	CH 48 HIGH	N/C	CH 48 LOW
16	CH 47 HIGH	N/C	CH 47 LOW
15	CH 46 HIGH	N/C	CH 46 LOW
14	CH 45 HIGH	N/C	CH 45 LOW
13	CH 44 HIGH	N/C	CH 44 LOW
12	CH 43 HIGH	N/C	CH 43 LOW
11	CH 42 HIGH	N/C	CH 42 LOW
10	CH 41 HIGH	N/C	CH 41 LOW
09	CH 40 HIGH	N/C	CH 40 LOW
08	CH 39 HIGH	N/C	CH 39 LOW
07	CH 38 HIGH	N/C	CH 38 LOW
06	CH 37 HIGH	N/C	CH 37 LOW
05	CH 36 HIGH	N/C	CH 36 LOW
04	CH 35 HIGH	N/C	CH 35 LOW
03	CH 34 HIGH	N/C	CH 34 LOW
02	CH 33 HIGH	N/C	CH 33 LOW
01	CH 32 HIGH [*]	N/C	CH 32 LOW**

Figure 2-9 P3 Connector

*. Channel 32 high can be used as a wetting voltage input by the proper placement of on-board jumpers.

**. Channel 32 low can be used to obtain digital ground by the proper placement of on-board jumpers.

N/C = No Connection

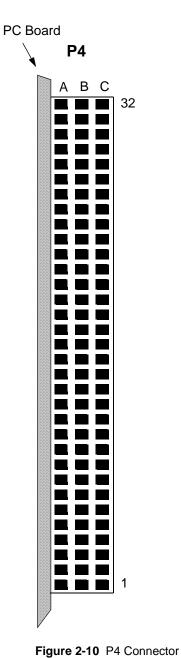


Table 2-9 P4 Connector Pinout

Pin	Row A	Row B	Row C
32	CH 31 HIGH	N/C	CH 31 LOW
31	CH 30 HIGH	N/C	CH 30 LOW
30	CH 29 HIGH	N/C	CH 29 LOW
29	CH 28 HIGH	N/C	CH 28 LOW
28	CH 27 HIGH	N/C	CH 27 LOW
27	CH 26 HIGH	N/C	CH 26 LOW
26	CH 25 HIGH	N/C	CH 25 LOW
25	CH 24 HIGH	N/C	CH 24 LOW
24	CH 23 HIGH	N/C	CH 23 LOW
23	CH 22 HIGH	N/C	CH 22 LOW
22	CH 21 HIGH	N/C	CH 21 LOW
21	CH 20 HIGH	N/C	CH 20 LOW
20	CH 19 HIGH	N/C	CH 19 LOW
19	CH 18 HIGH	N/C	CH 18 LOW
18	CH 17 HIGH	N/C	CH 17 LOW
17	CH 16 HIGH	N/C	CH 16 LOW
16	CH 15 HIGH	N/C	CH 15 LOW
15	CH 14 HIGH	N/C	CH 14 LOW
14	CH 13 HIGH	N/C	CH 13 LOW
13	CH 12 HIGH	N/C	CH 12 LOW
12	CH 11 HIGH	N/C	CH 11 LOW
11	CH 10 HIGH	N/C	CH 10 LOW
10	CH 09 HIGH	N/C	CH 09 LOW
09	CH 08 HIGH	N/C	CH 08 LOW
08	CH 07 HIGH	N/C	CH 07 LOW
07	CH 06 HIGH	N/C	CH 06 LOW
06	CH 05 HIGH	N/C	CH 05 LOW
05	CH 04 HIGH	N/C	CH 04 LOW
04	CH 03 HIGH	N/C	CH 03 LOW
03	CH 02 HIGH	N/C	CH 02 LOW
02	CH 01 HIGH	N/C	CH 01 LOW
01	CH 00 HIGH	N/C	CH 00 LOW

CHAPTER 1

Programming

Introduction

The VMIVME-1182 can be programmed for a variety of features. After initial power up, system reset, or watchdog timer reset, the following conditions are initialized:

- Fail LED is ON
- All interrupts are disabled
- All flags are cleared
- Test mode enabled
- IVR register is cleared
- COS registers are cleared
- PAI registers are cleared
- DSR registers are cleared
- PAC registers are cleared
- Time tag clock set to zero (0) and stopped
- SOE maximum count is cleared
- SOE count is cleared
- SOE buffers contain test data, if self-test fails. Otherwise, the buffers are cleared.
- Self-Test Complete bit is set in the CSR

If the initial conditions meet default requirements, then the user writes to the CSR to disable test mode and turn off the Fail LED. The user may then begin reading the input data registers which are updated with field data every millisecond. Table 3-1 on page 42 is the address map for the VMIVME-1182. All addresses shown are relative to the board's base address.

NOTE: To be consistent with conventional VMEbus development system nomenclature, hexadecimal numbers in this document are designated with a "\$" prefix unless otherwise indicated. decimal numbers are presented without a prefix.

Relative Address	Description	Desig	Read/Write
\$000	Board ID Register	BID	Read
\$002	Control and Status Register	CSR	Read/Write
\$004	Self-Test Results Register	STR	Read/Write
\$006	Interrupt Vector Register	IVR	Read/Write
\$008	Debounce Input Data for Channels 63-48	IDR 0	Read/Write
\$00A	Debounce Input Data for Channels 47-32	IDR 1	Read/Write
\$00C	Debounce Input Data for Channels 31-16	IDR 2	Read/Write
\$00E	Debounce Input Data for Channels 15-00	IDR 3	Read/Write
\$010	Change of State for Channels 63-48	COS 0	Read/Write
\$012	Change of State for Channels 47-32	COS 1	Read/Write
\$014	Change of State for Channels 31-16	COS 2	Read/Write
\$016	Change of State for Channels 15-00	COS 3	Read/Write
\$018	Pulse Accumulation Interrupt Chan 63-48	PAI 0	Read/Write
\$01A	Pulse Accumulation Interrupt Chan 47-32	PAI 1	Read/Write
\$01C	Pulse Accumulation Interrupt Chan 31-16	PAI 2	Read/Write
\$01E	Pulse Accumulation Interrupt Chan 15-00	PAI 3	Read/Write
\$020 - \$09E	Debounce/Select Register (0-63)	DSR	Read/Write
\$0A0 - \$11E	Pulse Accumulation Count Register (0-63)	PAC	Read/Write
\$120	Time Tag Register		Read/Write
\$122	Maximum SOE Count Register		Read/Write
\$124	SOE Count Register		Read/Write
\$126	SOE Index Register		Read/Write
\$128	Reserved (Note 1)		Read/Write
\$12A	AC Input Register (default = 5)		Read/Write
\$12C	Reserved (Note 1)		Read
\$12E	Revision Level Register		Read
\$130 - \$7FE	Reserved (Note 1)		
\$800	Force LED Register		Write
\$802	SOE Request Register		Write
\$804 - \$9FE	Reserved (Note 1)		
\$1000 - \$3FFE	Sequence-of-Events Buffer Register		Read/Write

Table 3-1 VMIVME-1182 Memory Map

Board ID Register (BID)

The BID register is a 16-bit read-only register. Its data is fixed at \$3800. Table 3-2 shows the bit map for this register.

Relative Address \$00 Board ID (read only)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
0	0	1	1	1	0	0	0

Table 3-2 Board ID Register Bit Map	
-------------------------------------	--

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
0	0	0	0	0	0	0	0

Control and Status Register (CSR)

The CSR is a 16-bit register that is used to control the operating parameters of the VMIVME-1182. Table 3-3 below shows the bit map for this register.

Relative Address \$002 CSR (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
Fail_LED	Test Mode	COS Reset	COS INT DIS	SOE WD INT EN	SOE CNT INT EN	PAC INT EN	TAG INT EN

Table 3-3	Control and Status Register Bit Ma	р
-----------	------------------------------------	---

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
SOE WD FL	SOE CNT FL	PAC FL	TAG FL	BUFF END FL	Reserved		Self-Test Complete

Control and Status Register Bit Definitions

- Bit 15:Fail_LED Controls the Fail LED. Writing a zero (0) to this bit turns the Fail
LED ON; writing a one (1) turns it OFF. The default condition is zero (0).
- **Bit 14: Test Mode** Controls the Test Mode. Writing a zero (0) to this bit initiates Test Mode. The default condition is zero (0). Test mode is enabled at power up, and the results are stored in the Self-Test Results register. To initiate test mode, the bit must be disabled by writing the bit to one (1) and then enabled by writing the bit to zero (0).
- **Bit 13: COS Reset** Clears the COS registers. Writing a one (1) to this bit clears all bits in the COS registers. After the COS registers are cleared, this bit is set to zero (0) by the microcontroller. After power up or reset, this bit is zero (0).
- **Bit 12: COS INT DIS** Controls the COS interrupts. Writing a one (1) to this bit disables the COS interrupts but allows COS data to be stored in the SOE buffer. The default condition is zero (0), allowing interrupts for any input meeting the requirements of its DSR.
- **Bit 11: SOE WD INT EN** Controls the SOE First Word interrupt. Writing a one (1) to this bit causes the board to interrupt the host whenever the first COS is received. The default condition is zero (0) which prevents an interrupt on this condition.
- **Bit 10: SOE CNT INT EN** Controls the SOE Buffer Count interrupt. Writing a one (1) to this bit causes the board to interrupt the host whenever the SOE count reaches the programmed value in the SOE Maximum Count register or when it reaches the physical end of memory. The default condition is zero (0) which prevents an interrupt on this condition.

Control and Status Register Bit Definitions (Continued)

Bit 09:	PAC INT EN - Controls the Pulse Accumulation Count Interrupt. Writing a one (1) to this bit causes the board to interrupt the host whenever any of the 64 PAC registers rolls over from a maximum count to zero (0) and sets the corresponding bit in the PAI registers. The default condition is zero (0) which prevents an interrupt on this condition.
Bit 08:	TAG INT EN - Controls the Time Tag Interrupt. Writing a one (1) to this bit causes the board to interrupt the host whenever the Time Tag Counter rolls over from maximum count to zero (0). The default condition is zero (0) which prohibits an interrupt on this condition.
Bit 07:	SOE WD FL - Set to one (1) whenever the first COS has been received and the SOE count equals one (1). The user must clear this bit by setting it to zero (0). This bit is active even if interrupts are disabled. The default condition is zero (0).
Bit 06:	SOE CNT FL - Set to one (1) whenever the SOE count has reached the preprogrammed value stored in the Maximum SOE Count register. The user must clear this bit by setting it to zero (0). This bit is active even if interrupts are disabled. The default condition is zero (0).
Bit 05:	PAC FL - Set to one (1) whenever any of the PAC registers (\$0A0 through \$11E) has rolled over. The user must clear this bit by setting it to zero (0). This bit is active even if interrupts are disabled. The corresponding bit (Channel ID) is set in the PAI register. The default condition is zero (0).
Bit 04:	TAG FL - Set to one (1) whenever a Time Tag overflow has occurred. The user must clear this bit by setting it to zero (0). This bit is active even if interrupts are disabled. The default condition is zero (0).
Bit 03:	BUFF END FL - Set to one (1) whenever the physical end of memory has been reached. The user must clear this bit by setting it to zero (0). The default condition is zero (0).
Bit 02 and 01:	Reserved - The data must remain zero (0).
Bit 00:	Self-Test Complete - Set to one (1) whenever the self-test is complete. This bit is not cleared (set to zero (0)) when test mode is disabled.

Self-Test Results Register (STR)

The VMIVME-1182 performs Self-Test functions when one of the following conditions occur:

- VMEbus SYSRESET activated
- · Watchdog timer invokes a reset to the DSP
- Test Mode bit in CSR activated (The bit must be deactivated before it can be reactivated.)

The Self-Test of the VMIVME-1182 is performed by the DSP. Control memory and both SOE memory buffers are tested and the results stored in the Self-Test Status register located in control memory. The Self-Test mode is an integrity test of the DSP and the memory. The microcontroller sets the complete bit in the CSR but the user is responsible for clearing it and the STR register. Table 3-4 is the bit map for this register.

The STR contains a data pattern of \$0CBA whenever the self-test is completed and passed.

	Relative Address \$004 STR (read/write)										
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08											
STR15	STR15 STR14 STR13 STR12 STR11 STR10 STR09 STR08										

Table 3-4 Self-Test Results Bit Map

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00

STR04

Self-Test Results Register Bit Definitions

STR03

STR02

STR01

STR00

- **Bits 11 through 08:** Set to \$C whenever the Control Register Test has passed. This test is performed by the microcontroller by writing address equal data to the Control Register RAM. The data is then read and compared for accurate results. The control RAM is cleared after the results are posted.
- **Bits 07 through 04:** Set to \$B whenever Buffer B has been tested and passed. This test is performed by the microcontroller by writing an incremental (by 1) pattern from 0 through \$17FF to the SOE buffer B RAM. The data is then read and compared for accurate results.
- **Bits 03 through 00:** Set to \$A whenever Buffer A has been tested and passed. This test is performed by the microcontroller by switching the buffer to A and writing a decremental pattern from \$17FF through 0 to the SOE buffer A RAM. The data is then read and compared for accurate results.

NOTE: If self-test fails, then soe buffer A and SOE buffer B test patterns are not cleared at the time the test complete bit of the CSR is set. if self-test passes, then the buffers are cleared before the test complete bit of the CSR is set.

STR07

STR06

STR05

Interrupt Vector Register (IVR)

The IVR is a 16-bit register used to enable any interrupts that may be set up in the CSR. Table 3-5 shows the bit map of the IVR.

	Relative Address \$006 IVR (read/write)									
Bit 15	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08									
Reserved					ILVL 2	ILVL 1	ILVL 0			

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00	
	Vector bits 07 through 00							

Interrupt Vector Register Bit Definitions

Bits 15 through 11: Reserved - These bits are reserved and must be set to zero (0).

Bits 10 through 08: Interrupt Levels[2:0] - This field is used to select the VMEbus interrupt request level as shown in Table 3-6. The default is 000 (disabled).

VMEbus Interrupt Level	ILVL 2	ILVL 1	ILVL 0
Interrupts are disabled	0	0	0
IRQ1	0	0	1
IRQ2	0	1	0
IRQ3	0	1	1
IRQ4	1	0	0
IRQ5	1	0	1
IRQ6	1	1	0
IRQ7	1	1	1

Table 3-6 Interrupt Levels

Bits 07 through 00: Interrupt Vector bits - This field is used to select the VMEbus interrupt vector which is presented during the interrupt acknowledge cycle. Each bit corresponds to the Vector bit (bit 07 is vector bit 07).

Debounced Input Data Registers (IDR)

The Debounced Input Data registers are a set of four 16-bit registers which indicate the current state of the board inputs. Table 3-7 lists the input channels and their associated register bit locations.

	Relative Address \$008 Input Data Register 0 (read/write)										
Bit 15	Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08										
CH 63	CH 62	CH 61	CH 60	CH 59	CH 58	CH 57	CH 56				

Table 3-7	Debounced	Input Data	Reaister	Bit Map

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 55	CH 54	CH 53	CH 52	CH 51	CH 50	CH 49	CH 48

Relative Address \$00A Input Data Register 1 (read/write)										
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08			
CH 47	CH 46	CH 45	CH 44	CH 43	CH 42	CH 41	CH 40			
	•		•	•	·	•				

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 39	CH 38	CH 37	CH 36	CH 35	CH 34	CH 33	CH 32

Relative Address \$00C Input Data Register 2 (read/write)										
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 0							Bit 08			
CH 31	CH 30	CH 29	CH 28	CH 27	CH 26	CH 25	CH 24			

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 23	CH 22	CH 21	CH 20	CH 19	CH 18	CH 17	CH 16

Relative Address \$00E Input Data Register 3 (read/write)										
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08			
CH 15	CH 14	CH 13	CH 12	CH 11	CH 10	CH 09	CH 08			

Bit	07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH	07	CH 06	CH 05	CH 04	CH 03	CH 02	CH 01	CH 00

Change-of-State Registers (COS)

The Change-of-State registers are a set of four 16-bit registers. These registers are updated upon every change of state (if enabled). If the bit is a one (1), the input has had a change of state. These bits can be cleared by writing zero (0) to the registers or by writing a one (1) to bit 13 of the CSR. Bit 13 of the CSR is cleared when the COS registers are cleared. Table 3-8 is the bit map of the COS registers.

Relative Address \$010 COS Register 0 (read/write)										
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08										
CH 63	CH 62	CH 61	CH 60	CH 59	CH 58	CH 57	CH 56			

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 55	CH 54	CH 53	CH 52	CH 51	CH 50	CH 49	CH 48

Relative Address \$012 COS Register 1 (read/write)										
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08			
CH 47	CH 46	CH 45	CH 44	CH 43	CH 42	CH 41	CH 40			

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 39	CH 38	CH 37	CH 36	CH 35	CH 34	CH 33	CH 32

	Relative Address \$014 COS Register 2 (read/write)											
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08					
CH 31	CH 30	CH 29	CH 28	CH 27	CH 26	CH 25	CH 24					
Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00					
CH 23	CH 22	CH 21	CH 20	CH 19	CH 18	CH 17	CH 16					

	Relative Address \$016 COS Register 3 (read/write)										
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08											
CH 15	CH 14	CH 13	CH 12	CH 11	CH 10	CH 09	CH 08				

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 07	CH 06	CH 05	CH 04	CH 03	CH 02	CH 01	CH 00

Pulse Accumulation Interrupt Registers (PAI)

The Pulse Accumulation Interrupt registers are a set of four 16-bit registers. These registers indicate that the pulse accumulation count for that channel has rolled over from a maximum count to zero (0). The user may clear these bits at any time. Table 3-9 shows the bit map of the PAI registers.

Relative Address \$018 PAI Register 0 (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
CH 63	CH 62	CH 61	CH 60	CH 59	CH 58	CH 57	CH 56

Table 3-9 PAI Register Bit Map

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 55	CH 54	CH 53	CH 52	CH 51	CH 50	CH 49	CH 48

Relative Address \$01A PAI Register 1 (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
CH 47	CH 46	CH 45	CH 44	CH 43	CH 42	CH 41	CH 40

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 39	CH 38	CH 37	CH 36	CH 35	CH 34	CH 33	CH 32

Relative Address \$01C PAI Register 2 (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
CH 31	CH 30	CH 29	CH 28	CH 27	CH 26	CH 25	CH 24

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 23	CH 22	CH 21	CH 20	CH 19	CH 18	CH 17	CH 16

Relative Address \$01E PAI Register 3 (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
CH 15	CH 14	CH 13	CH 12	CH 11	CH 10	CH 09	CH 08

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CH 07	CH 06	CH 05	CH 04	CH 03	CH 02	CH 01	CH 00

Debounce/Select Registers (DSR)

The Debounce Select registers are a set of 64, 16-bit registers. These registers control what conditions define a COS for that channel as well as the debounce time for that channel. If a COS is defined for a channel, the SOE Buffer is updated each time a COS is detected. Table 3-10 shows the bit map for the Debounce/Select register for channel 0. All DSRs follow the same map.

Relative Address \$020 DSR Register (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
COS 1	COS 0	AC EN		Reserved		DEB 09	DEB 08
Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
DEB 07	DEB 06	DEB 05	DEB 04	DEB 03	DEB 02	DEB 01	DEB 00

Table 3-10	Debounce/Select	Registers
	Debourice/ Delect	Registers

Debounce/Select Register Bit Definitions

Bits 15 and 14: COS 1 and 0 - COS Select bits (see Table 3-11 below).

Table 3-11 COS Select Bits

COS 1	COS 0	COS Definition/Detection			
0	0	COS Definition/Detection Disabled*			
0	1	COS Definition/Detection on falling edge			
1	0	COS Definition/Detection on rising edge			
1	1	COS Definition/Detection on both edges*			
NOTE: *Pulse Accumulation function disabled.					

Bit 13: AC EN - Controls COS algorithm. Writing a one (1) to this bit enables COS detection for AC input voltages. The default condition is zero (0). Section 4.16 describes typical debounce select time when using AC Input.

Bits 12 through 10: Reserved - These bits are reserved and must be set to zero (0).

Bits 09 through 00: DEB[09:00] - Debounce Timer Select may be set from 1 ms through 1.024 seconds. See Table 3-12 for a description of the bit weight.

Bits 9 through 0	Debounce Rate
\$000	1 ms
\$001	2 ms
\$002	3 ms

Table 3-12 Debounce Timer Selec	Table 3-12	Debounce	Timer Sele	ct
---------------------------------	------------	----------	------------	----

•	•
•	•
\$3FD	1.022 s
\$3FE	1.023 s

\$3FF

.

1.024 s

_	
5	1
л	1

Pulse Accumulation Count Registers (PAC)

The Pulse Accumulation Count registers are a set of 64, 16-bit registers. These registers are incremented each time a COS is detected on the corresponding input. In the event of a rollover, the corresponding bit is set in the PAI registers and a flag is set in the CSR. These registers may be preset to any value. Table 3-13 shows the bit map for one of the Pulse Accumulation Count registers. All PAC registers follow the same map. This function is **not** implemented if COS 1 and COS 0 of the DSR are both zero (0) or both one (1).

Relative Address \$0A0 PAC Register (read/write)								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08	
PAC 15	PAC 14	PAC 13	PAC 12	PAC 11	PAC 10	PAC 09	PAC 08	

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
PAC 07	PAC 06	PAC 05	PAC 04	PAC 03	PAC 02	PAC 01	PAC 00

Time Tag Register

The Time Tag register stores the current value of the 16-bit timer which is used for time tagging the COS data in the SOE buffer. The Time Tag counter is a free-running counter which can be preset during non-test mode. At maximum count, the board sets a flag in the CSR and issues an interrupt to the host if the Time Tag Rollover interrupt is enabled in the CSR. Table 3-14 shows the bit map of the Time Tag register. The bit weight is 1 ms.

Relative Address \$120 Time Tag Register (read/write)									
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08		
Time Tag MSB									

Table 3-14 Time Tag Register Bit Map

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08		
Time Tag MSB									

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00			
	Time Tag LSB									

Maximum SOE Count Register

The Maximum SOE Count register is a 16-bit register. This register enables the user to program the maximum count of events before an SOE buffer count interrupt occurs. If the maximum count is reached, the board sets a flag in the CSR and interrupts the host if the SOE count interrupt is enabled in the CSR. See Table 3-15 for bit definitions.

The Maximum SOE Count should be set for \$C00 or less. \$C00 represents the last SOE event that can be stored. Any further events overwrite the beginning of the buffer resulting in a loss of data.

Relative Address \$122 Maximum SOE Count (read/write)								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08	
MAX 15	MAX 14	MAX 13	MAX 12	MAX 11	MAX 10	MAX 09	MAX 08	

Table 3-15	Maximum	SOE	Count Bit Map
------------	---------	-----	---------------

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
MAX 07	MAX 06	MAX 05	MAX 04	MAX 03	MAX 02	MAX 01	MAX 00

SOE Count Register

IL

The SOE Count register is a 16-bit register which indicates the present count of events in the SOE buffer currently being updated by the microcontroller. The register is initialized at system reset. When an SOE Request is received, the count is written to the SOE index register and then reset. Table 3-16 shows the SOE Count register bit map.

Relative Address \$124 SOE Count (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
CNT 15	CNT 14	CNT 13	CNT 12	CNT 11	CNT 10	CNT 09	CNT 08

Table 3-16 SOE Count Bit Map

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CNT 07	CNT 06	CNT 05	CNT 04	CNT 03	CNT 02	CNT 01	CNT 00

55

SOE Index Register

The SOE Index represents the SOE count of the buffer available to the VMEbus. Table 3-17 shows the bit map of the SOE Index register.

Relative Address \$126 SOE Index (read/write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
CNT 15	CNT 14	CNT 13	CNT 12	CNT 11	CNT 10	CNT 09	CNT 08

Table 3-17 SOE Index Bit Map

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
CNT 07	CNT 06	CNT 05	CNT 04	CNT 03	CNT 02	CNT 01	CNT 00

AC Input Register

To designate a particular channel as an AC input, write the default value \$0005 to the AC Input register and set the AC EN control bit to one (1) in the associated DSR. Adjust the debounce time and change-of-state parameters as described in Section 4.9.

AC inputs are detected as pulse trains with assumed duty cycles of approximately 35 percent. Consequently, the delay time for a LOW-to-HIGH transition is determined by input sensitivity and may vary as much as 50 percent from the selected debounce time. Delay times for HIGH-to-LOW transitions, however, are not affected by input sensitivity and should agree closely with selected debounce times.

Debounce times for AC inputs should be selected to include at least five complete cycles of the AC input waveform. For example, debounce times for 50 Hz inputs (period equals 20 ms) should not be less than 100 ms.

Revision Level Register

The value in this register corresponds to the part description in the assembly drawing for the EPROM on the VMIVME-1182.

Force LED Register

The Force LED is a write-only (data = don't care) register which forces the front panel LED on. If Force LED is activated, the CSR bit 15 is ignored, and the LED can only be turned off by a VMEbus system reset. See Table 3-18 for the Force LED bit map.

Relative Address \$800 Force LED (write)							
Bit 15 Bit 14 Bit 13 Bit 12 Bit 11 Bit 10 Bit 09 Bit 08							
Х	Х	Х	Х	Х	Х	Х	Х

Table 3-18	Force LED Bit Map
------------	-------------------

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
X	Х	Х	Х	Х	Х	Х	Х

X = Don't Care

SOE Request Register

The SOE Request is a write-only (data = don't care) register. A write to this register allows the user access to the SOE data, copies the SOE count to the SOE Index register, and resets the SOE count. Table 3-19 shows the bit map of the SOE Request register.

Relative Address \$802 Buffer Access (write)							
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08
Х	Х	Х	Х	Х	Х	Х	Х

Table 3-19	SOE	Request	Bit Map
------------	-----	---------	---------

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00
Х	Х	Х	Х	Х	Х	Х	Х

X = Don't Care

SOE Buffer Registers

The Sequence-of-Events Buffer is a set of 6144, 16-bit registers capable of storing 3072 events. If the user issues a SOE Request, the board may continue to store up to 3072 more events while the user is processing the present buffer.

CAUTION: The DSP will auto wrap the buffer and begin writing over old data whenever the buffer reaches the physical end of the buffer. The SOE count rolls over from 3072 to zero (0) and continues counting. the host must process the data from the primary buffer before the DSP reaches the physical end of the data buffer or data can be lost interrupts are provided (SOE maximum count) to alert the host that data needs to be processed.

The event data stored in the SOE buffer consists of two words. Word 1 is a 16-bit time stamp as read from the Time Tag register when the COS occurred. The Channel ID is located in word 2 in the lower byte (bits 7 through 0). If the state changed from a zero (0) to a one (1), bit 8 of word 2 is set to a one (1). If the state changed from a one (1) to a zero (0), bit 8 of word 2 is set to a zero (0). Table 3-20 is a bit map of one SOE buffer. All SOE buffers follow the same map.

Table 3-20	SOE Buffers Bit Map
------------	---------------------

Relative Address \$1000 SOE Buffer Word 1 (read/write)								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08	
Time Tag MSB								

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00		
Time Tag LSB									

Relative Address \$1002 SOE Buffer Word 2 (read/write)								
Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 09	Bit 08	
0	0	0	0	0	0	0	LVL	

Bit 07	Bit 06	Bit 05	Bit 04	Bit 03	Bit 02	Bit 01	Bit 00	
Channel ID								

VMIVME-1182 64-Channel Isolated Digital Input Board with Multifunctional Intelligent Controller

Maintenance

Maintenance

This section provides information relative to the care and maintenance of VMIC's products. If the product malfunctions, verify the following:

- System power
- Software
- System configuration
- Electrical connections
- Jumper or configuration options
- Boards are fully inserted into their proper connector location
- Connector pins are clean and free from contamination
- No components of adjacent boards are disturbed when inserting or removing the board from the chassis
- Quality of cables and I/O connections

If products must be returned, contact VMIC for a Return Material Authorization (RMA) Number. This RMA Number must be obtained prior to any return.

Contact VMIC Customer Service at 1-800-240-7782, or E-mail: customer.service@vmic.com

Maintenance Prints

User level repairs are not recommended. The drawings and tables in this manual are for reference purposes only.